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TRACY–WIDOM DISTRIBUTION FOR THE LARGEST
EIGENVALUE OF REAL SAMPLE COVARIANCE MATRICES

WITH GENERAL POPULATION

BY JI OON LEE1 AND KEVIN SCHNELLI2

KAIST and IST Austria

We consider sample covariance matrices of the form Q =
(�1/2X)(�1/2X)∗, where the sample X is an M × N random matrix whose
entries are real independent random variables with variance 1/N and where �

is an M × M positive-definite deterministic matrix. We analyze the asymp-
totic fluctuations of the largest rescaled eigenvalue of Q when both M and N

tend to infinity with N/M → d ∈ (0,∞). For a large class of populations �

in the sub-critical regime, we show that the distribution of the largest rescaled
eigenvalue of Q is given by the type-1 Tracy–Widom distribution under the
additional assumptions that (1) either the entries of X are i.i.d. Gaussians or
(2) that � is diagonal and that the entries of X have a sub-exponential decay.
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1. Introduction. Covariance matrices are fundamental objects in multivariate
statistics whose study is an integral part of various fields such as signal processing,
genomics, financial mathematics, etc. Sample covariance matrices are the simplest
estimators for population covariance matrices: The population covariance matrix
of a mean-zero random variable y ∈ RM is � := Eyy′. Given N independent sam-
ples (y1, . . . ,yN) of y, � may be estimated through the sample covariance ma-
trix Q := 1

N

∑N
i=1 yiyi

′. Indeed, since EQ = �, Q converges, for fixed M , almost
surely to � as N tends to infinity. However, in many modern applications the pop-
ulation size M may be as large or even larger than N , and hence, one may take
M and N simultaneously to infinity in an asymptotic analysis. In this setting, �

cannot be estimated through Q due to the high dimensionality. Yet, some proper-
ties of � may be inferred from spectral statistics of Q, for example, the limiting
behavior of the largest eigenvalues of Q is frequently used in hypothesis testing
for the structure of �.

In this paper, we investigate the limiting behavior of the largest eigenvalues of
the form

Q = (
�1/2X

)(
�1/2X

)∗
,(1.1)

where the sample or data matrix, X, is an M × N matrix whose entries are a
collection of independent real or complex random variables of variance 1/N and
where the general population covariance, �, is an M × M real positive-definite
deterministic matrix. We are interested in the high-dimensional case, where d̂ :=
N/M → d ∈ (0,∞), as N → ∞. We further mainly focus on the real setting,
where X is a real data matrix, since, mathematically, the complex case is easier to
deal with. Also, the real case is of primary interest in statistics, although complex
data matrices arise in some applications. For detailed discussions of this model, we
refer to, for example, [3, 6, 14, 28, 29]. In Section 2.4 we outline an application of
this model. We denote the eigenvalues of Q and � in decreasing order by (μi)

M
i=1

and (σm)Mm=1, respectively.
The main results of this paper show that the limiting distribution of the largest

rescaled eigenvalue of Q is given by the Tracy–Widom distribution, that is,

lim
N→∞P

(
γ0N

2/3(μ1 − E+) ≤ s
) = F1(s) (s ∈R),(1.2)
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where γ0 ≡ γ0(N) and E+ ≡ E+(N) depend only on the sequence (σm)Mm=1 and
the ratio d̂ . Here, F1 denotes the cumulative distribution function (CDF) of the
type-1 Tracy–Widom distribution [46, 47] which arises as the limiting CDF of
the largest rescaled eigenvalue of the Gaussian orthogonal ensemble (GOE). More
precisely, we show that (1.2) holds in the “sub-critical regime” where the largest
eigenvalues of � are close to the bulk of the spectrum of � (for a precise statement
see Assumption 2.2 below) and if either of the following holds:

(1) the entries of X are i.i.d. real Gaussians (Corollary 2.7), or
(2) the general population � is diagonal and the entries of X have a sub-

exponential decay (Theorem 2.4).

Our results are also valid in the setting of complex data matrices X. In that setup,
one replaces F1 in (1.2) by F2, the CDF of the type-2 Tracy–Widom distribution
which arises as the limiting CDF of the largest rescaled eigenvalue of the Gaussian
unitary ensemble (GUE).

To situate our result in the literature, we first recall that the limiting spectral
distribution of the model (1.1) was derived for general � by Marchenko and Pastur
[34]. When X has i.i.d. Gaussian entries, Q is called a Wishart matrix. For Wishart
matrices with identity population covariance, often referred to as the null case,
it is well known that the limiting distribution of the largest rescaled eigenvalue
coincides with the corresponding distribution of the GOE and GUE, respectively:
in the null case, (1.2) was obtained in [28] for real Wishart matrices and in [27] for
complex Wishart matrices.

In the nonnull case, where � is not a multiple of the identity matrix, first results
were obtained for spiked population models introduced in [28], where � is a finite
rank perturbation of the identity matrix. Complex spiked Wishart matrices were
studied in [4], where an interesting phase transition in the asymptotic behavior of
the largest rescaled eigenvalue as a function of the spikes was observed. In partic-
ular, it was shown that the largest rescaled eigenvalue follows the Tracy–Widom
distribution F2 in the sub-critical regime, that is, for small finite rank perturba-
tions. These results rely on an explicit formula—the Baik–Ben Arous–Johansson–
Péché (BBJP)-formula—for the joint eigenvalue distribution of complex Wishart
matrices. For real Wishart matrices, the counterpart of the BBJP-formula is not
available, due to the lack of an analogue of the Harish–Chandra–Itzykson–Zuber
integral for the orthogonal group. Relying on quite different methods, almost sure
convergence of the largest eigenvalues was derived in [5] and Tracy–Widom fluctu-
ations of the largest eigenvalue of spiked population models were obtained in [23].
The equivalent results of the aforementioned phase transition for finite rank per-
turbations were obtained in the real setting in [10, 11, 25, 36].

In the general nonnull case, sufficient conditions for the validity of (1.2) in the
sub-critical regime were given in [14] for the nonsingular case d ∈ (0,∞), d 	= 1
and in [39] for the singular case d = 1. Yet, these results rely on the BBJP-formula
and are thus limited to complex Wishart matrices. Corollary 2.7 below establishes
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under similar assumptions the limiting behavior (1.2) for real Wishart matrices
with general population.

The aforementioned results are believed to be universal in the sense that they
are independent of the details of the distributions of the entries of X (provided
they decay sufficiently fast). This phenomenon is referred to as edge universal-
ity. It was established in the null case in [22, 41, 44] for symmetric distributions
and subsequently in [50] for distributions with vanishing third moment. This third
moment condition was removed in [42]. For spiked sample covariance matrices,
universality results were obtained in [23] under the assumption that the entries’
distribution of X are symmetric. This condition was removed in [9]. For full rank
deformed populations matrices �, universality results were obtained in [6] under
the assumption that � is either diagonal or that the first four moments of the en-
tries’ distribution of X match those of the standard Gaussian distribution in case �

is nondiagonal. Recently, the edge universality was established in [31] for general
�. Once the edge universality for general sample covariance matrices has been
established, the limiting CDF of the rescaled largest eigenvalue may then be iden-
tified in the complex setting with F2 via the results of [14, 39]. In the real setting,
this identification was only possible in the null case and finite rank deformations
thereof. Our main new results allow this identification in the real setting with gen-
eral population covariances, that is, it allows to identify F1 as the limiting CDF of
the rescaled largest eigenvalue.

Our proof of (1.2) is based on a comparison of Green functions. Discrete Green
function comparison via Lindeberg’s replacement strategy [13, 45] was used to
prove the edge universalities of Wigner matrices [21, 45] and of null sample co-
variance matrices [42]. Continuous Green function comparison was used to estab-
lish CLT results for linear statistics of null sample covariance matrices [33], and
more recently, to derive estimates on the Green function itself, that is, local laws,
for nonnull sample covariance matrices [31]. However, as for the deformed Wigner
matrices considered in [32], a direct application of discrete or continuous Green
function comparison does not work for nonnull sample covariance matrices. We
thus adopt the new approach developed in [32]: we consider a continuous interpo-
lation between the given sample covariance matrix and a null sample covariance
matrix. We follow the associated Green function flow and estimate its change over
time. This change is then offset by rescaling the matrix.

Our analysis requires as an a priori ingredient a local law for the Green function,
that is, an optimal estimate on the entries of the Green function on scales slightly
below N−2/3 at the upper edge (see Lemma 3.3 below for a precise statement).
Optimal local laws in the bulk and at the edges of the spectrum were obtained for
Wigner matrices in [17, 19, 20]. Using a similar approach, optimal local laws for
sample covariance matrices with � = 1 were obtained in [42]; see also [8, 18].
These results were extended to sample covariance matrices with general popula-
tion under a four moment matching condition in [6]. The four moment matching
condition was very recently removed in [31].
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This paper is organized as follows: In Section 2 we define the model, present
the main results of the paper and outline some applications. In Section 3 we collect
the tools and known results we need in our proofs. In Section 4 we prove the
main theorems using our essential new technical result, Proposition 4.1, the Green
function comparison theorem at the edge. In Sections 5 and 6 we outline the ideas
of the proof of the Green function comparison theorem. Its technical details can be
found in the Appendices A, B and C. Some results required in these Appendices
are adaptations from [32].

2. Definitions and main result.

2.1. Sample covariance matrix with general population.

DEFINITION 2.1. Let X = (xij ) be an M × N matrix whose entries {xij : 1 ≤
i ≤ M,1 ≤ j ≤ N} are a collection of independent real random variables such that

Exij = 0, E|xij |2 = 1

N
.(2.1)

Moreover, we assume that (
√

Nxij ) have a sub-exponential tail, that is, there are
C and ϑ > 0 such that

P
(|√Nxij | > t

) ≤ Ce−tϑ ,(2.2)

for all i, j .
Further, M ≡ M(N) with

d̂ = N

M
→ d ∈ (0,∞),(2.3)

as N → ∞. For simplicity, we assume that N/M is constant, hence we use d

instead of d̂ .

Note that we do not require in Definition 2.1 that the entries or columns of X

are identically distributed.
Let � be an M × M real positive-definite deterministic matrix. We denote by ρ̂

the empirical eigenvalue distribution of �, that is, if we let σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0
be the eigenvalues of �, then

ρ̂ := 1

M

M∑
j=1

δσj
.(2.4)

We then form the sample covariance matrix

Q := (
�1/2X

)(
�1/2X

)∗
,(2.5)
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and denote its eigenvalues in decreasing order by μ1 ≥ μ2 ≥ · · · ≥ μM . Note that
the M × M matrix Q and the N × N matrix

Q := X∗�X(2.6)

share the same nonzero eigenvalues. Since we are interested in behavior of the
largest eigenvalues, we focus on Q since it is for technical reasons more amenable
than Q. With some abuse of terminology, we also call Q a sample covariance
matrix and we denote its M largest eigenvalues by (μi)

M
i=1, also.

2.2. Deformed Marchenko Pastur law. Assuming that the empirical spectral
distribution ρ̂ of � converges weakly to some distribution ρ, it was shown in [34]
that the empirical eigenvalue distribution of Q converges weakly in probability to
a deterministic distribution, ρfc, referred to as the “deformed Marchenko–Pastur
law” below, which depends on ρ and the ratio d . It can be described in terms of
its Stieltjes transform: For a (probability) measure ω on the real line, we define its
Stieltjes transform by

mω(z) :=
∫
R

dω(v)

v − z

(
z = E + iη ∈ C+)

.(2.7)

Here and below, we write z = E + iη, with E ∈ R, η ≥ 0. Note that mω is an ana-
lytic function in the upper half-plane and that Immω(z) ≥ 0, Im z > 0. Assuming
that ω is absolutely continuous with respect to Lebesgue measure, we can recover
the density of ω from mω by the inversion formula

ω(E) = lim
η↘0

1

π
Immω(E + iη) (E ∈ R).(2.8)

We use the same symbols to denote measures and their densities.
Choosing ω to be the standard Marchenko–Pastur law ρMP, the Stieltjes trans-

form mρMP ≡ mMP can be computed explicitly and one checks that mMP satisfies
the relation

mMP(z) = 1

−z + d−1 1
mMP(z)+1

, ImmMP(z) ≥ 0
(
z ∈ C+)

.(2.9)

The deformed Marchenko–Pastur law ρfc is defined as follows. Assume that ρ̂

converges weakly to ρ as N goes to infinity. Then the Stieltjes transform of the
deformed Marchenko–Pastur law, mfc, is obtained as the unique solution to the
self-consistent equation

mfc(z) = 1

−z + d−1
∫
R

t
tmfc(z)+1 dρ(t)

,

(2.10)
Immfc(z) ≥ 0

(
z ∈ C+)

.
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It is well known [34] that the functional equation (2.10) has a unique solution
that is uniformly bounded on the upper half-plane. The density of the deformed
Marchenko–Pastur law ρfc is obtained from mfc by the Stieltjes inversion formula
(2.8). The measure ρfc has been studied in [43], for example, it was shown that
the density of ρfc is an analytic function inside its support. The measure ρfc is also
called the multiplicative free convolution of the Marchenko–Pastur law and the
measure ρ; we refer to, for example, [2, 49].

For finite N , we let m̂fc denote the unique solution to

m̂fc(z) = 1

−z + d−1
∫
R

t
tm̂fc(z)+1 dρ̂(t)

,

(2.11)
Im m̂fc(z) ≥ 0

(
z ∈ C+)

,

and let ρ̂fc denote the measure obtained from m̂fc(z) through (2.8). It is easy to
check that ρ̂fc is a well-defined probability measure with a continuous density.

The rightmost endpoint of the support of ρ̂fc is determined as follows. Define
ξ+ as the largest solution to∫

R

(
tξ+

1 − tξ+

)2
dρ̂(t) = d,(2.12)

with d = N
M

. Note that ξ+ is unique and that ξ+ ∈ [0, σ−1
1 ]. We also introduce E+

by setting

E+ := 1

ξ+

(
1 + d−1

∫
R

tξ+
1 − tξ+

dρ̂(t)

)
.(2.13)

Considering the imaginary part of (2.11) in the limit η ↘ 0, one infers from [43]
that the rightmost edge of ρ̂fc, that is, the rightmost endpoint of the support of ρ̂fc,
is given by E+ and that

ξ+ = − lim
η→0

m̂fc(E+ + iη) = −m̂fc(E+).(2.14)

The following assumption is required to establish our main results. It appeared
previously in [6, 14].

ASSUMPTION 2.2. Let σ1 ≥ σ2 ≥ · · · ≥ σM denote the eigenvalues of �.
Then, we assume that lim infN σM > 0, lim supN σ1 < ∞ and

lim sup
N

σ1ξ+ < 1.(2.15)

REMARK 2.3. We remark that Assumption 2.2 was used in [6, 31] to derive
the local deformed Marchenko–Pastur law for Q. The inequality (2.15) guarantees
that the distribution ρ̂fc(E) exhibits a square-root type behavior at the rightmost
endpoint of its support; see Lemma 3.2 below.
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2.3. Main result. The main result of this paper is as follows.

THEOREM 2.4. Let Q = X∗�X be an N ×N sample covariance matrix with
sample X and population �, where X is a real random matrix satisfying the as-
sumptions in Definition 2.1 and � is a real diagonal deterministic matrix satisfying
Assumption 2.2. Recall that F1 denotes the cumulative distribution function of the
type-1 Tracy–Widom distribution.

Let μ1 be the largest eigenvalue of Q. Then, there exist γ0 ≡ γ0(N) depending
only on the empirical eigenvalue distribution ρ̂ of � and the ratio d such that the
distribution of the largest rescaled eigenvalue of Q converges to the Tracy–Widom
distribution, that is,

(2.16) lim
N→∞P

(
γ0N

2/3(μ1 − E+) ≤ s
) = F1(s),

for all s ∈R, where E+ ≡ E+(N) is given in (2.13).

REMARK 2.5. The scaling factor γ0 ≡ γ0(N) is given by [14]

1

γ 3
0

= 1

d

∫
R

(
t

1 − tξ+

)3
dρ̂(t) + 1

ξ3+
.(2.17)

The factor γ0 has the following meaning: It was shown in [43] that the deformed
Marchenko–Pastur law ρfc exhibits a square-root behavior, that is,

ρfc(E) = C0

√
E+ − E

(
1 + O(

√
E+ − E)

)
(E ≤ E+),

at the upper edge E+, with

C0 = 1

π

(
2

g′′(ξ+)

)1/2
, g(x) = 1

x
+ 1

d

∫
R

t

1 − tx
dρ(t).

Thus, the choice of γ0 in (2.17) makes the “curvature” at the upper edge coincide
with that of Wigner semicircle law, 1/π . Moreover, it follows from Assumption 2.2
that γ0 ∼ 1.

REMARK 2.6. Theorem 2.4 can be extended to correlation functions of the
extremal eigenvalues as follows: Let W GOE be an N ×N random matrix belonging
to the Gaussian Orthogonal Ensemble (GOE); see [2, 35]. The joint distributions
of μGOE

1 ≥ μGOE
2 ≥ · · · ≥ μGOE

N , the eigenvalues of W GOE, are explicit and the joint
distribution of the k largest eigenvalues can be written in terms of the Airy kernel
[24] for any fixed k. The generalization of (2.16) to the k largest eigenvalues of Q

then reads

lim
N→∞P

((
γ0N

2/3(μi − E+) ≤ si
)
1≤i≤k

)
(2.18)

= lim
N→∞P

((
N2/3(

μGOE
i − 2

) ≤ si
)
1≤i≤k

)
,

for all s1, s2, . . . , sk ∈ R.
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If the entries of X are Gaussian, the result in Theorem 2.4 holds for general,
nondiagonal �.

COROLLARY 2.7. Let Q = X∗�X be an N × N sample covariance matrix
with sample X and general population �, where X is a real random matrix with
independent Gaussian entries satisfying the assumptions in Definition 2.1 and �

is a real positive-definite deterministic matrix satisfying Assumption 2.2. Let μ1 be
the largest eigenvalue of Q.

Then the distribution of the largest rescaled eigenvalue of Q converges to the
type-1 Tracy–Widom distribution, that is,

(2.19) lim
N→∞P

(
γ0N

2/3(μ1 − E+) ≤ s
) = F1(s),

for all s ∈ R, where E+ ≡ E+(N) is given in (2.13) and γ0 = γ0(N) is given
in (2.17).

REMARK 2.8. For non-Gaussian X and general off-diagonal �, we can com-
bine our results with edge universality results in [6, 31] to identify the Tracy–
Widom distribution for the largest eigenvalues.

2.4. Applications. In this subsection we briefly discuss possible applications
of our results to statistics. For a general overview of applications of random matrix
theory to statistical inference we refer to the review [29], where the following
application to signal detection problems is described.

Consider a signal-plus-noise vector

y := Ds + �
1/2
0 z(2.20)

of dimension M , where s is a k-dimensional real mean-zero signal vector with
population covariance matrix S, D is a M ×k real deterministic matrix which is of
full column rank, z is an M-dimensional real or complex random vector and �0 is
an M × M deterministic positive-definite matrix. In many situations, z is assumed
to be Gaussian. Assuming that the signal vector, Ds, and the noise vector, �

1/2
0 z,

are independent the population covariance matrix, �, of y is given by

� = DSD∗ + �0.(2.21)

A fundamental question is to detect signals from given data, for example, from
independent samples, (yi )

N
i=1, of y and its associated sample covariance matrix Q.

A first step in this analysis is to determine whether there is any signal present that
can be detected at all. Once signals are detected, one is led to estimate k. More
precisely, the first aim is to test, with general correlation noise �

1/2
0 z, whether

there is no signal present, that is, to test the null hypothesis k = 0 against the
alternative hypothesis k > 1. For details and results in the classical setting of large
sample size N and low dimensionality M , see [30].
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In the high dimensional setup, the described signal detection problem was con-
sidered in [7, 37], where the usability and performance of the largest eigenvalue
as a test statistics was discussed in the presence of white Gaussian noise, that is,
�0 = 1 and Gaussian z. In [38], the detection problem in presence of correlated
Gaussian noise, that is, �0 	= 1 and Gaussian z, was discussed at length. We also
refer to [48] for further developments.

In the discussion above, it was implicitly assumed that �0 is known a priori.
For many real systems, however, �0 is usually unknown. In particular, ζ+, E+ and
γ0 of, for example, (2.16), are unknown and the largest eigenvalue μ1 may not
directly be used as a test statistics. Following [40], we observe that E+ and γ0 are
eliminated under the null hypothesis in the test statistics R := (μ1 − μ2)/(μ2 −
μ3), with μ2, μ3, the second, respectively, third largest eigenvalue of Q. On the
other hand, the limiting distribution of R is determined by the Tracy–Widom–Airy
statistics under the null hypothesis as stated in Remark 2.6 above. In fact, in the
complex setting the test statistics R was shown [40] to be asymptotically pivotal
under the null hypothesis and one expects the same results to hold in the real
setting. While there is no explicit formula for the limiting distribution of R, it may
be effectively approximated by using numerics for extremal eigenvalues of GOE,
respectively GUE, matrices.

3. Preliminaries.

3.1. Notation. We first introduce a notation for high-probability estimates
which is suited for our purposes. A slightly different form was first used in [15].

DEFINITION 3.1. Let

X = (
X(N)(u) : N ∈ N, u ∈ U(N)), Y = (

Y (N)(u) : N ∈ N, u ∈ U(N))
be two families of nonnegative random variables where U(N) is a possibly N -
dependent parameter set. We say that Y stochastically dominates X, uniformly in
u, if for all (small) ε > 0 and (large) D > 0,

sup
u∈U(N)

P
[
X(N)(u) > NεY (N)(u)

] ≤ N−D,(3.1)

for sufficiently large N ≥ N0(ε,D). If Y stochastically dominates X, uniformly in
u, we write X ≺ Y . If for some complex family X, we have |X| ≺ Y we also write
X = O(Y ).

The relation ≺ is a partial ordering: it is transitive and it satisfies the arithmetic
rules of an order relation, for example, if X1 ≺ Y1 and X2 ≺ Y2 then X1 + X2 ≺
Y1 + Y2 and X1X2 ≺ Y1Y2. Furthermore, the following property will be used on
a few occasions: If �(u) ≥ N−C is deterministic, Y(u) is a nonnegative random
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variable satisfying E[Y(u)]2 ≤ NC′
for all u, and Y(u) ≺ �(u) uniformly in u,

then E[Y(u)] ≺ �(u), uniformly in u. This can be easily checked since

E
[∣∣Y(u)

∣∣1(∣∣Y(u)
∣∣ > Nε/2�

)] ≤ (
E

[∣∣Y(u)
∣∣2])1/2(

P
[∣∣Y(u)

∣∣ > Nε/2�
])1/2 ≤ N−D,

for any (large) D > 0, and E[|Y(u)|1(|Y(u)| ≤ Nε/2�)] ≤ Nε/2�(u), hence
E[Y(u)] ≤ Nε�(u).

We use the symbols O(·) and o(·) for the standard big-O and little-o notation.
The notation O , o, �, �, refer to the limit N → ∞ unless otherwise stated. Here,
a � b means a = o(b). We use c and C to denote positive constants that do not
depend on N , usually with the convention c ≤ C. Their value may change from
line to line. We write a ∼ b, if there is C ≥ 1 such that C−1|b| ≤ |a| ≤ C|b|.

Finally, we use double brackets to denote index sets, that is,

[[n1, n2]] := [n1, n2] ∩Z,

for n1, n2 ∈ R.

3.2. Local deformed Marchenko–Pastur law. For small positive c, ε and suf-
ficiently large C+, (C+ > E+), we define the domain, D(c, ε), of the spectral pa-
rameter z by

D(c, ε) := {
z = E + iη ∈ C+ : E+ − c ≤ E ≤ C+,NεN−1 ≤ η ≤ 1

}
.

Let κ ≡ κE := |E − E+|. Then we have the following results.

LEMMA 3.2 (Theorem 3.1 in [6]). Under Assumption 2.2, there is c > 0 such
that

ρ̂fc(E) ∼
√

E+ − E
(
E ∈ [E+ − 2c,E+]).(3.2)

The Stieltjes transform m̂fc(z) of ρ̂fc satisfies the following:

(i) For z ∈ D(c,0), ∣∣m̂fc(z)
∣∣ ∼ 1.(3.3)

(ii) For z ∈ D(c,0),

Im m̂fc(z) ∼
⎧⎨⎩

η√
κ + η

, if E ≥ E+ + η,

√
κ + η, if E ∈ [E+ − c,E+ + η).

(3.4)

We introduce the z-dependent control parameter, �(z), by setting

� ≡ �(z) :=
(

Im m̂fc(z)

Nη

)1/2
+ 1

Nη
.(3.5)
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We remark that, for z = E + iη with κE ≤ N−2/3+ε and η = N−2/3−ε , we have

� ≤ CN−1/3+ε.

Define the Green function GQ = ((GQ)ij ) by

GQ(z) := (Q − z)−1 (
z ∈ C+)

,(3.6)

and denote its normalized trace by

mQ(z) := 1

N
TrGQ(z)

(
z ∈ C+)

.(3.7)

Recall that μ1 denotes the largest eigenvalue of the sample covariance matrix
Q. We have the following local law from [6].

LEMMA 3.3 (Theorems 3.2 and 3.3 in [6]). Under Assumption 2.2 we have,
for any sufficiently small ε > 0,∣∣mQ(z) − m̂fc(z)

∣∣ ≺ 1

Nη
, max

i,j

∣∣(GQ)ij (z) − δij m̂fc(z)
∣∣ ≺ �(z),(3.8)

uniformly in z on D(c, ε), where c is the constant in Lemma 3.2. Moreover, we
have

|μ1 − E+| ≺ N−2/3,(3.9)

where E+ is given in (2.13).

3.3. Density of states. In this subsection we explain how the distribution of
the largest eigenvalues of Q can be related to mQ(z) for appropriately chosen z.
The arguments given here are small modifications of the methods presented in [21,
32, 42].

Recall the definition of the scaling factor γ0 in (2.17). We set

T := γ0�,(3.10)

and define

Q̃ := X∗T X.(3.11)

We denote by mQ̃ the normalized trace of the Green function of Q̃, that is,

mQ̃(z) := 1

N
Tr(Q̃ − z)−1 (

z ∈ C+)
.(3.12)

Let μ̃1 ≥ μ̃2 ≥ · · · ≥ μ̃N be the eigenvalues of Q̃. Let L+ := γ0E+ and observe
that from Lemma 3.3 we have

|μ̃1 − L+| ≺ N−2/3.
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Thus, we may assume in (2.16) that |s| ≺ 1.
Fix a small ε > 0 and let

E∗ = L+ + 2N−2/3+ε.

We note that the choice of E∗ guarantees that the probability of the event {μ̃1 >

E∗} is negligible. For E satisfying

(3.13) |E − L+| ≤ N−2/3+ε,

we let

χE := 1[E,E∗].
We also define the Poisson kernel, θη, for η > 0,

θη(x) := η

π(x2 + η2)
= 1

π
Im

1

x − iη
.

Introduce a smooth cutoff function K :R →R satisfying

(3.14) K(x) =
{

1, if x ≤ 1/9,

0, if x ≥ 2/9.

Let N (E1,E2) be the number of the eigenvalues in (E1,E2], that is,

N (E1,E2) := ∣∣{α : E1 < μ̃α ≤ E2}
∣∣,

and define the density of states in the interval (E1,E2] by

n(E1,E2) := 1

N
N (E1,E2).

In order to estimate P(μ̃1 ≤ E), we consider the following approximations:

P(μ̃1 ≤ E) = EK
(
N (E,∞)

)
(3.15)

� EK
(
N (E,E∗)

) � EK

(
N

∫ E∗

E
ImmQ̃(y + iη)dy

)
,

with η ∼ N−2/3−ε′
, for some small ε′ > 0. The first approximation in (3.15) fol-

lows from Lemma 3.3, the rigidity of the eigenvalues, and the second from

N (E,E∗) = TrχE(Q̃) � TrχE ∗ θη(Q̃) = 1

π
N

∫ E∗

E
ImmQ̃(y + iη)dy.

The following lemma shows that the approximations in (3.15) indeed hold.

LEMMA 3.4. For ε > 0, let � := 1
2N−2/3−ε and η := N−2/3−9ε . Suppose that

E satisfies (3.13). Recall that K is a smooth function satisfying (3.14). Then, for
any sufficiently small ε > 0 and any (large) D > 0, we have

(3.16) Tr
(
χE+� ∗ θη(Q̃)

) − N−ε ≤N (E,∞) ≤ Tr
(
χE−� ∗ θη(Q̃)

) + N−ε,
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with high probability, and

EK
(
Tr

(
χE−� ∗ θη(Q̃)

)) ≤ P(μ̃1 ≤ E)
(3.17)

≤ EK
(
Tr

(
χE+� ∗ θη(Q̃)

)) + N−D,

for any sufficiently large N ≥ N0(ε,D).

PROOF. We may follow the proof of Corollary 4.2 of [42]. To prove the first
part of the lemma, one sets �1 := N−2/3−3ε and shows that∣∣TrχE(Q̃) − TrχE ∗ θη(Q̃)

∣∣ ≤ C
(
N−2ε +N (E − �1,E + �1)

)
,

which corresponds to Lemma 4.1 of [42], by using Lemmas 3.2 and 3.3, the esti-
mates on |mQ̃(E + i�)− m̂fc(E + i�)| and Im m̂fc(E − κ + i�), respectively. Then,
by integrating Trχy ∗ θη(Q̃) over y on [E − �,E], one can obtain the estimate

TrχE(Q̃) ≤ TrχE−� ∗ θη(Q̃) + CN−2ε + C�−1�1N (E − 2�,E + �).

The term �−1�1N (E − 2�,E + �) in the right-hand side inequality can easily be
controlled by applying the local law, Lemma 3.3. This proves the second inequality
of (3.16). The other inequality in (3.16) can be proved analogously.

If (3.16) holds, the condition μ̃1 ≤ E implies that TrχE+� ∗ θη(Q̃) ≤ 1/9. Thus,
applying Markov inequality, we get the upper bound in (3.17). The lower bound in
(3.17) can be obtained in a similar manner. �

4. Green function comparison and proof of the main result. Having estab-
lished Lemma 3.4, the proof of Theorem 2.4 directly follows from our main tech-
nical result: the Green function comparison theorem at the edge, Proposition 4.1
below. It compares the expectations of functions of the normalized traces of the
Green functions of Q̃ and X∗X. More precisely, we let

W := √
d(1 + √

d)−4/3X∗X,(4.1)

and introduce

mW(z) := 1

N
Tr(W − z)−1 (

z ∈C+)
.

It is well known that the distribution of the rescaled largest eigenvalue of W con-
verges to the Tracy–Widom distribution; see [42].

Our main technical result is as follows. Recall that we write L+ = γ0E+, with
E+ given in (2.13) and with γ0 given in (2.17).

PROPOSITION 4.1 (Green function comparison). Let ε > 0 and set η =
N−2/3−ε . Denote by M+ the upper edge of the Marchenko–Pastur law ρMP for
W = √

d(1 + √
d)−4/3X∗X. Let E1,E2 ∈ R satisfy E1 < E2 and

|E1|, |E2| ≤ N−2/3+ε.(4.2)
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Let F : R→R be a smooth function satisfying

(4.3) max
x

∣∣F (�)(x)
∣∣(|x| + 1

)−C ≤ C, � = 1,2,3,4.

Then there exists a constant φ > 0 such that, for any sufficiently large N and
for any sufficiently small ε > 0, we have∣∣∣∣EF

(
N

∫ E2

E1

ImmQ̃(x + L+ + iη)dx

)
(4.4)

−EF

(
N

∫ E2

E1

ImmW(x + M+ + iη)dx

)∣∣∣∣ ≤ N−φ.

We outline the proof of Proposition 4.1 in the Appendices A, B and C.

REMARK 4.2. Proposition 4.1 can be extended as follows: Let ε > 0 and set
η = N−2/3−ε . Let E0,E1, . . . ,Ek ∈ R satisfy E1 < E2 < · · · < Ek and

|E0| ≤ N−2/3+ε, |E1 − E0| ≤ N−2/3+ε, . . . ,

|Ek − E0| ≤ N−2/3+ε.

Let F :Rk →R be a smooth function satisfying

max
x

∣∣F (�)(x)
∣∣(|x| + 1

)−C ≤ C, � = 1,2,3,4.

Then there exists a constant φ > 0 such that, for any sufficiently large N and for
any sufficiently small ε > 0, we have∣∣∣∣EF

((
N

∫ E0

Ei

ImmQ̃(x + L+ + iη)dx

)
1≤i≤k

)

−EF

((
N

∫ E0

Ei

ImmW(x + M+ + iη)dx

)
1≤i≤k

)∣∣∣∣ ≤ N−φ.

The proof of this statement is similar to that of Proposition 4.1 and will be omitted.
Assuming the validity of Proposition 4.1, we now prove our main results.

PROOF OF THEOREM 2.4. We follow the proof of Theorem 1.1 of [42]. Let
μW

1 be the largest eigenvalue of W [see (4.1)] and denote by M+ the upper edge
of the rescaled Marchenko–Pastur law ρMP. We notice that the distribution of
N2/3(μW

1 − M+) converges to the Tracy–Widom law F1. (See [22, 41, 42, 44].)
Thus, in order to prove (2.16), it suffices to show that

P
[
N2/3(

μW
1 − M+

) ≤ s
] − N−φ ≤ P

[
N2/3(μ̃1 − L+) ≤ s

]
(4.5)

≤ P
[
N2/3(

μW
1 − M+

) ≤ s
] + N−φ,

for some φ > 0.
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Fix an s satisfying |s| ≺ 1, and let E := L+ + sN−2/3. Let � := 1
2N−2/3−ε and

η := N−2/3−9ε . For any sufficiently small ε > 0, we have from Lemma 3.4 that

(4.6) P(μ̃1 ≤ E) ≥ E
[
K

(
Tr

(
χE−� ∗ θη(H)

))]
.

From Proposition 4.1, we find that

E
[
K

(
Tr

(
χE−� ∗ θη(H)

))] ≥ E
[
K

(
Tr

(
χE−(L+−M+)−� ∗ θη(W)

))] − N−φ,

for some φ > 0. Finally, we have from Corollary 4.2 of [42] that

E
[
K

(
Tr

(
χE−(L+−M+)−� ∗ θη(W)

))] ≥ P
(
μW

1 ≤ E − (L+ − M+)
) − N−φ.

Altogether, we have shown that

P(μ̃1 ≤ E) ≥ P
(
μW

1 ≤ E − (L+ − M+)
) − 2N−φ,

which proves the first inequality of (4.5). The second inequality can be proved
similarly. �

PROOF OF COROLLARY 2.7. Let U be an M × M orthogonal matrix that
diagonalizes �, that is, there exists an M × M real diagonal matrix D such that
� = U∗DU . Then UX is a real random matrix with Gaussian entries, satisfying
the assumptions in Definition 2.1. Thus, applying Theorem 2.4 with X∗�X =
(UX)∗D(UX), we get the desired result. �

5. Linearization of ˜Q. In this section we recall a well-known formalism that
simplifies the computations in the proof of Proposition 4.1 considerably. Instead
of working with the product matrices Q̃ = X∗T X or T 1/2XX∗T 1/2, we may “lin-
earize” the problem by introducing an (N + M) × (N + M) matrix H , whose re-
spective entries are either (xαa), (t−1

α ), z or simply zero. The inverse of H is then
related to the Green function of X∗T X, respectively, of T 1/2XX∗T 1/2, through
Schur’s complement formula or the Feshbach map. For similar applications in ran-
dom matrix theory, see, for example, [1, 26].

The linearization of Q̃ is established in Section 5.1. In Sections 5.2, 5.3 and 5.4
we collect useful technical results on the inverse of H .

5.1. Schur complement. Suppose that X and � satisfy the assumptions in The-
orem 2.4. Let z be as in the previous section. We define an (N + M) × (N + M)

matrix H by

H ≡ H(z) =
(−zIN X∗

X −T −1

)
,(5.1)

where IN is the identity matrix with size N and T = γ0�.
We claim that H(z) is invertible for z ∈ C+. To see this, assume that v, v 	= 0,

is in the kernel of H(z), Im z > 0. Let P be an N × (N + M) matrix defined by

P = (
IN 0

)
,
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and P an M × (N + M) matrix

P = (
0 IM

)
,

where IN and IM are the identity matrices of size N and M , respectively. Writing
vP := P v and vP := P v, we must have

−zvP + X∗vP = 0, XvP − T −1vP = 0.

Thus,

XX∗vP /z = T −1vP .

Taking the inner product with vP , we find that the right-hand side becomes

〈
vP ,T −1vP

〉 = M∑
α=1

(
T −1)

αα

∣∣vP (α)
∣∣2,

which is strictly positive unless vP = 0, while the left-hand side becomes〈
vP ,XX∗vP

〉
/z = ∥∥X∗vP

∥∥2
/z,

which is zero if X∗vP = 0 or, since z ∈ C+, not real valued. This shows that
vP = 0, and since −zvP + X∗vP = 0, this also shows that vP = 0. We thus get
a contradiction allowing us to conclude that v = 0 which shows that the kernel of
H(z), z ∈ C+, is trivial, that is, H(z) is invertible for z ∈ C+.

We define the “Green function,” G, of H ≡ H(z) by

G(z) := H(z)−1 (
z ∈ C+)

,(5.2)

and the normalized traces, m and m̃, of G by

(5.3) m(z) := 1

N

N∑
a=1

Gaa(z), m̃(z) := 1

M

M+N∑
α=N+1

Gαα(z)
(
z ∈C+)

.

Note that by Schur’s complement formula we have

(5.4) PG(z)P = 1

PH(z)P − PH(z)P 1
PH(z)P

PH(z)P
= 1

−zP + X∗T X
,

so that

Gab(z) = [
(Q̃ − z)−1]

ab,

for any a, b ∈ [[1,N]]. In particular,

m(z) = mQ̃(z).

Also note that

z−1PG(z)P = z−1

PHP − PHP 1
PHP

PHP
= 1

−zT −1 + XX∗ .(5.5)

In the following, we use lowercase Roman letters for indices in [[1,N]], Greek
letters for indices in [[N + 1,M + N]] and uppercase Roman letters for indices in
[[1,N + M]].
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5.2. Green function, minors and partial expectations. Recall the definitions of
the (N + M) × (N + M) matrix H ≡ H(z) in (5.1) and of the Green function G

in (5.2).
For T ⊂ [[1,N + M]], we define the “matrix minor” H(T) by setting(

H(T))
AB := 1(A /∈ T)1(B /∈ T)HAB

(
A,B ∈ [[1,N + M]]),(5.6)

that is, the entries in the columns/rows indexed by T are replaced by zeros. The
Green function G(T)(z) associated with H(T) is defined by

G
(T)
AB(z) :=

(
1

H(T)(z) − z

)
AB

(
A,B ∈ [[1,N + M]]).(5.7)

We use the shorthand notation
(T)∑
a

:=
N∑

a=1
a /∈T

,

(T)∑
a 	=b

:=
N∑

a=1,b=1
a 	=b,a,b/∈T

,

(T)∑
α

:=
N+M∑

α=N+1
α/∈T

,

(T)∑
α 	=β

:=
N+M∑

α=N+1,β=N+1
α 	=β,α,β /∈T

,

and abbreviate (A) = ({A}), (TA) = (T ∪ {A}). In Green function entries (G
(T)
AB),

we refer to {A,B} as lower indices and to T as upper indices.
We further set

m(T) := 1

N

(T)∑
a

G(T)
aa , m̃(T) := 1

M

(T)∑
α

G(T)
αα .

Note that we use the normalizations N−1 and M−1 here since they are more con-
venient in computations.

Finally, we denote by Ea , Eα the partial expectation with respect to the variables
(xαa)

N+M
α=M+1, respectively, (xαa)

N
a=1.

5.3. Green function identities. The next lemma collects the main identities
between the matrix elements of G and G(T).

LEMMA 5.1. Let G ≡ G(z), z ∈ C+, be defined in (5.2). Assume that the
matrix T is diagonal. Then, for a, b ∈ [[1,N]], α,β ∈ [[N + 1,N + M]], A,B,C ∈
[[1,N + M]], the following identities hold:

– Schur complement/Feshbach formula: For any a and α,

Gaa = 1

−z − ∑
α,β xαaG

(a)
αβ xβa

,

(5.8)

Gαα = 1

−(T −1)αα − ∑
a,b xαaG

(α)
ab xαb

.
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– For a 	= b,

Gab = −Gaa

∑
α

xαaG
(a)
αb = −Gbb

∑
β

G
(b)
aβ xβb.(5.9)

– For α 	= β ,

Gαβ = −Gαα

∑
a

xαaG
(α)
aβ = −Gββ

∑
b

G
(β)
αb xβb.(5.10)

– For any a and α,

Gaα = −Gaa

∑
β

xβaG
(a)
βα = −Gαα

∑
b

G
(α)
ab xαb.(5.11)

– For A,B 	= C,

GAB = G
(C)
AB + GACGCB

GCC
.(5.12)

– Ward identity: For any a, ∑
b

|Gab|2 = ImGaa

η
.(5.13)

For the proof, see Lemma 4.2 in [20], Lemma 6.10 in [16] and equation (3.31)
in [21].

5.4. Local law for H at the edge. Consider two families of random variables
(Xi) and (Yi), with i ∈ [[1,N]], satisfying

EZi = 0, E|Zi |2 = 1, E|Zi |p ≤ cp (p ≥ 3),(5.14)

Zi = Xi,Yi , for all p ∈ N and some constants cp , uniformly in i ∈ [[1,N]]. The
following lemma, taken from [17], provides useful large deviation estimates.

LEMMA 5.2. Let (Xi) and (Yi) be independent families of random variables
and let (aij ) and (bi), i, j ∈ [[1,N]], be families of complex numbers. Suppose
that all entries (Xi) and (Yi) are independent and satisfy (5.14). Then we have the
bounds ∣∣∣∣∑

i

biXi

∣∣∣∣ ≺
(∑

i

|bi |2
)1/2

,(5.15)

∣∣∣∣∑
i

∑
j

aijXiYj

∣∣∣∣ ≺
(∑

i,j

|aij |2
)1/2

,(5.16)

∣∣∣∣∑
i

∑
j

aijXiXj − ∑
i

aii

∣∣∣∣ ≺
(∑

i,j

|aij |2
)1/2

.(5.17)
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If the coefficients aij and bi depend on an additional parameter u, then all of these
estimates are uniform in u, that is, the threshold N0 = N0(ε,D) in the definition of
≺ depends only on the family (cp) from (5.14); in particular, N0 does not depend
on u.

From the large deviation estimates in Lemma 5.2 and the local law in
Lemma 3.3, we obtain the following estimates.

LEMMA 5.3. Let G ≡ G(z), z ∈ C+, be defined in (5.2). Suppose that T is
diagonal, that is, T = diag(tα). Then, under Assumption 2.2, the Green function
G satisfies the following bounds uniformly in z on D(c, ε) (with c, ε > 0 as in
Lemma 3.3):

(i) For any α ∈ [[N + 1,N + M]],∣∣Gαα(z)
∣∣ ≺ 1, ImGαα(z) ≺ �.(5.18)

(ii) For any a ∈ [[1,N]] and α ∈ [[N + 1,N + M]],∣∣Gaα(z)
∣∣ ≺ �.(5.19)

(iii) For any α,β ∈ [[N + 1,N + M]] with α 	= β ,∣∣Gαβ(z)
∣∣ ≺ �.(5.20)

PROOF. We first claim that |m − m(α)| ≺ � . To prove this claim, we first let

Q̃ := T 1/2XX∗T 1/2.

We notice that the normalized trace m of the Green function can be written in terms
of Q̃ as

m(z) = mQ̃(z) = 1

N

(
Tr(Q̃− z)−1 + N − M

z

)
.

Next, we consider the minor Q̃(α), which is obtained by removing all columns and
rows of Q̃ indexed by α. Then

m(α)(z) = 1

N

(
Tr

(
Q̃(α) − z

)−1 + N − M + 1

z

)
.

By Cauchy’s eigenvalue interlacing property, we get∣∣Tr(Q̃− z)−1 − Tr
(
Q̃(α) − z

)−1∣∣ ≤ Cη−1.

(See Lemma 5.4 in [6] or Lemma 8.2 in [12].) This proves the desired claim.
From Schur’s complement formula (5.8), we obtain that

1

Gαα

= −t−1
α − ∑

k,l

xαkG
(α)
kl xαl.
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Further, from the large deviation estimate (5.17) and the Ward identity (5.13), we
find ∣∣∣∣m(α) − ∑

k,l

xαkG
(α)
kl xαl

∣∣∣∣ ≺ 1

N

(∑
k,l

∣∣G(α)
kl

∣∣2)1/2

=
√

Imm(α)

Nη
≤

√
|m(α) − m̂fc| + Im m̂fc

Nη
(5.21)

≺
√

�

Nη
+

√
Im m̂fc

Nη
≺ �,

uniformly in z ∈ D(c, ε).
Since |ξ+ + m| ≺ � and t−1

α ≥ γ0(1 + c)ξ+ for some c > 0 [see (2.15)], we get
1 ≺ |Gαα|−1, hence |Gαα| ≺ 1. Moreover, using once more Schur’s complement
formula (5.8), we find

ImGαα = Im
∑

k,l xαkG
(α)
kl xαl

|−(T −1)αα − ∑
k,l xαkG

(α)
kl xαl|2

,

hence

| ImGαα| ≺
∣∣∣∣Im ∑

k,l

xαkG
(α)
kl xαl

∣∣∣∣ ≺ Imm(α) +
∣∣∣∣m(α) − ∑

k,l

xαkG
(α)
kl xαl

∣∣∣∣ ≺ �,

uniformly in D(c, ε), where we used (5.21) and that Imm(α) ≺ Immfc ∼ √
κ + η.

This proves statement (i).
From the Green function identity (5.11) and statement (i), we have

|Gaα| =
∣∣∣∣Gαα

∑
k

xαkG
(α)
ak

∣∣∣∣ ≺
∣∣∣∣∑

k

xαkG
(α)
ak

∣∣∣∣,
where we used the local law of Lemma 3.3 and the fact that |Gαα| ≺ 1. Further, it
is obvious that the local law |G(α)

ka | ≺ � holds, which can be proved in the same
way as |Gka| ≺ � but without the αth column and the row. Thus, applying the
large deviation estimate (5.15) and the local law |G(α)

ka | ≺ � , we get

|Gaα| ≺
(

1

N

∑
k

∣∣G(α)
ka

∣∣2)1/2
≺ �,

uniformly in z ∈ D(c, ε), which proves statement (ii) of the lemma.
Similarly, we have from the Green function identity (5.10) and the large devia-

tion estimate (5.15) that

|Gαβ | =
∣∣∣∣Gαα

∑
k

xαkG
(α)
kβ

∣∣∣∣ ≺
∣∣∣∣∑

k

xαkG
(α)
kβ

∣∣∣∣ ≺
(

1

N

∑
k

∣∣G(α)
kβ

∣∣2)1/2
≺ �,
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where we used |G(α)
kβ | ≺ � [which is analogous to the statement (ii)] to get the last

inequality. This proves statement (iii) of the lemma. �

We conclude this section by giving estimates on expectations of monomials of
Green functions entries.

LEMMA 5.4. Let P ≡ P(z) be a monomial in the Green function entries
(GAB(z)), with z ∈ D(c, ε), for some ε, c > 0. Then there exists a universal con-
stant C, such that

E
∣∣P(z)

∣∣2 ≺ NCn,(5.22)

where n is the degree of P . In particular, if |P(z)| ≺ �(z)k , uniformly in D(c, ε),
then E|P(z)| ≺ �(z)k , uniformly in D(c, ε). (See the paragraph after Defini-
tion 3.1.)

Moreover, the same conclusions hold with G(T) replacing G for any T.

PROOF. First, we note that |Gab| ≤ 1
η

, a, b ∈ [[1,N]], as follows from the self-
adjointness of X∗T X and the spectral calculus.

Second, to bound |Gαβ |, α,β ∈ [[N +1,M +N ]], we recall that T −1 is a strictly
positive operator by Assumption 2.2. Thus,

Im
〈
v,

(
zT −1 − XX∗)

v
〉 = η

〈
v, T −1v

〉 ≥ cη‖v‖2 ∀v ∈ CM,

for some c > 0 independent of v, where 〈·, ·〉 denotes the canonical inner prod-
uct in CM . Since z−1PG(z)P = (−zT −1 + XX∗)−1, |z| > 0, we get |Gαβ | ≤
C|z|
η

.
Third, to bound E|Gaα|p , a ∈ [[1,N]], α ∈ [[N + 1,N + M]], p ≥ 0, we note

that by (5.11) we have

|Gaα| = |Gaa|
∑
β

∣∣xβaG
(a)
βα

∣∣ ≤ C|z|
η2 N |xβa|,(5.23)

by the estimates above. From the moment bounds in (2.2), we then conclude that
E|Gαa|p ≤ CpNcp , where we also used that η � N−1, 0 < |z| < C by assump-
tion.

The lemma now easily follows from Hölder’s inequality. �

In the rest of the paper we prove Proposition 4.1 with the formalism outlined
in this section. The actual calculation will be done for the simple case F ′ ≡ 1;
the proof for general F ′ is basically the same, though the computations are much
longer for this case. The details for F ′ 	≡ 1 can be found in [32].
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6. Green function flow. The key idea of our proof of Proposition 4.1 is simi-
lar to the one of the proof of Proposition 5.2 in [32] for deformed Wigner matrices:
We consider a continuous interpolation between the sample covariance matrices Q̃

and W by introducing a time evolution that deforms T continuously to the identity.
We then track the associated flow of the Green function for sufficiently long time.
The outcome is an estimate on the time derivative of the Green function which is
sufficiently accurate to prove Proposition 4.1.

6.1. Preliminaries. Suppose that T = γ0� is diagonal, that is, T = diag(tα).
We interpolate between � = diag(σα) and the identity matrix 1 by introducing the
time evolution t �→ (σα(t)) defined by

1

σα(t)
= e−t 1

σα(0)
+ (

1 − e−t ), �(t) = diag
(
σα(t)

)
(t ≥ 0).(6.1)

From (2.12), it is natural to let ξ+(t) be the largest solution to

1

M

∑
α

(
σα(t)ξ+(t)

1 − σα(t)ξ+(t)

)2
= d,(6.2)

with ξ+(0) = ξ+. We then choose the scaling factor γ ≡ γ (t) to be given by

γ (t) =
(

1

N

∑
α

(
σα(t)

1 − σα(t)ξ+(t)

)3
+ (

ξ+(t)
)−3

)−1/3
,(6.3)

with γ0 = γ (0). (See also Remark 6.1.) We also introduce

τ ≡ τ(t) := ξ+(t)

γ (t)
.(6.4)

For simplicity, we often omit the t-dependence in the notation for T (t), γ (t) and
τ(t) in the following. Note that we have from (6.2), (6.3) and (6.4) that

1

N

∑
α

(
1

t−1
α − τ

)2
= 1

τ 2 ,
1

N

∑
α

(
1

t−1
α − τ

)3
+ 1

τ 3 = 1.(6.5)

In the following, we refer to the identities in (6.5) as “sum rules”.
We let z ≡ z(t) be time-dependent. Define the (N + M) × (N + M) matrix

H(t) ≡ H(z, t) by

H(z, t) =
(−z(t)IN X∗

X −T −1(t)

)
,

with T (t) = γ (t)�(t), T (0) = γ0�. We also let

G(z, t) := H(z, t)−1, m(z, t) = 1

N

∑
a

Gaa(z, t)
(
z ∈ C+)

.(6.6)
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We now consider the evolution of the Green function G ≡ G(t) under the evo-
lution governed by (6.1). For the diagonal Green function entries Gii, i ∈ [[1,N]],
we get

E
∂Gii

∂t
= ż

∑
a

E[GiaGai] − ∑
α

∂t tα

t2
α

E[GiαGαi].(6.7)

REMARK 6.1. Let m̃fc(z, t) be the solution to

m̃fc(z, t) = 1

−z + 1
dM

∑
α

tα
tαm̃fc(z,t)+1

(
z ∈ C+, t ≥ 0

)
such that Im m̃fc(z, t) ≥ 0.

Setting ρ̃fc(E, t) := limη↘0 π−1 Im m̃fc(E + iη, t), we note that the rightmost
point of the support of the measure ρ̃fc(t), denoted by L+ ≡ L+(t), is given by
L+ = γE+, or equivalently,

L+ = 1

τ
+ 1

dM

∑
α

tα

1 − tατ
= 1

τ
+ 1

N

∑
α

1

t−1
α − τ

.(6.8)

In fact, the rescaling by γ (t) assures that

ρ̃(E, t) = 1

π

√
L+ − E

(
1 + O(L+ − E)

)
(t ≥ 0),

as E ↗ L+, as may be checked by an explicit computation. In the framework of
Remark 2.5, this choice of γ (t) can be obtained by introducing C0(t) and gt (x),
the extensions of C0 and gt in Remark 2.5, defined by

C0(t) = 1

π

(
2

g′′
t (ξ+(t))

)1/2
, gt (x) = 1

x
+ 1

d

∫
R

E

1 − Ex
dρ̃(E, t).

6.2. Proof of Proposition 4.1. In this subsection we give the proof of Propo-
sition 4.1, which is based on two technical lemmas, Lemmas 6.2 and 6.3 below.
For simplicity, we choose F ′ ≡ 1. Recall the definition of the deterministic control
parameter � in (3.5).

The main ingredient of the proof of the Green function comparison theorem,
Proposition 4.1, is the estimate ImE[∂tGii(z)] =O(M�5), for appropriately cho-
sen z. (The naive size of E[∂tGii] is O(M�2) as one sees from (6.7).) Once we
have established the estimate ImE[∂tGii(z)] =O(M�5), we can integrate it from
t = 0 to t = 2 logN to compare ImmQ̃ with Imm|t=2 logN . The comparison be-
tween Imm|t=2 logN and mW can easily be done, since �(t) is close enough to the
identity at t = 2 logN .

To show that the imaginary part of (6.7) is much smaller than its naive size, we
use, in a first step, the following “decoupling” lemma.
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LEMMA 6.2. Under the assumptions of Proposition 4.1 the following holds
true. Let z(t) ≡ z = L+(t) + y + iη, with L+(t) as in (6.8), y ∈ [−N−2/3+ε,

N−2/3+ε] and η = N−2/3−ε .
Then there are z-dependent random variables X22, X32, X33, X42, X43, X44

and X′
44, satisfying

X22 =O
(
�2)

, X32,X33 =O
(
�3)

, X42,X43,X44,X
′
44 = O

(
�4)

,

such that

Eα[GiαGαi]
= 1

(t−1
α − τ)2

X22 − 2

(t−1
α − τ)3

X32 − 2

(t−1
α − τ)3

X33 + 3

(t−1
α − τ)4

X42(6.9)

+ 6

(t−1
α − τ)4

X43 + 12

(t−1
α − τ)4

X44 + 3

(t−1
α − τ)4

X′
44 +O

(
�5)

,

uniformly in t ≥ 0. The random variables above are explicitly given by

X22 = 1

N

∑
s

GisGsi, X32 = (m + τ)
1

N

∑
s

GisGsi,

X33 = 1

N2

∑
r,s

GirGrsGsi, X42 = (m + τ)2 1

N

∑
s

GisGsi,

X43 = (m + τ)
1

N

∑
r,s

GirGrsGsi, X44 = 1

N3

∑
r,s,t

GirGrsGstGti,

X′
44 = 1

N3

∑
r,s,t

GisGsiGrtGtr ,

where G ≡ G(z(t), t), m ≡ m(z(t), t) = 1
N

∑
s Gss(z(t), t) and τ(t) is defined in

(6.4).

We refer to Lemma 6.2 as a “decoupling” lemma, since on the right-hand side
of (6.9) the Greek index α is, up to the error O(�5), decoupled from the Green
functions which only have Roman indices as lower indices. Lemma 6.2 is proven
in Appendix A.

Taking the time derivative of (6.8), we get

ż = L̇+ = − τ̇

τ 2 + 1

dM

∑
α

t2
ατ̇

(1 − tατ )2 + 1

dM

∑
α

∂t tα

1 − tατ
(6.10)

+ 1

dM

∑
α

τ tα(∂t tα)

(1 − tατ )2 .
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From (6.5), we observe that the first two terms on the right-hand side of (6.10)
cancel. Thus, simplifying the last two terms in (6.10), we obtain

ż = 1

dM

∑
α

∂t tα

(1 − tατ )2 = 1

N

∑
α

∂t tα

t2
α

1

(t−1
α − τ)2

.(6.11)

Note that, by definition,

∂t

1

σα(t)
= −e−t 1

σα(0)
+ e−t = 1 − 1

σα(t)
(t ≥ 0),

in particular, ∂tσ
−1
α (t) = O(1), and

∂t tα

t2
α

= −∂t

1

tα(t)
=

(
∂tγ (t)

γ (t)
+ 1

)
1

tα(t)
− 1

γ (t)
(t ≥ 0).

(See the proof of Lemma 6.3 in Appendix C.) Moreover, from the definition of
ξ+(t) in (6.2), it can be easily checked that ∂tξ+(t) = O(1), which also shows that
∂tγ (t) = O(1). Since γ (t) ∼ 1, hence tα(t) ∼ 1 as well, we find that (∂t tα)/t2

α =
O(1).

Thus, plugging (6.9) into (6.7) we find

E
∂Gii

∂t
= ż

∑
a

E[GiaGai] − ∑
α

∂t tα

t2
α

1

(t−1
α − τ)2

1

N

∑
a

E[GiaGai]

+ ∑
α

∂t tα

t2
α

E

[
2

(t−1
α − τ)3

X32 + 2

(t−1
α − τ)3

X33

]
(6.12)

− ∑
α

∂t tα

t2
α

E

[
3

(t−1
α − τ)4

X42 + 6

(t−1
α − τ)4

X43

]

− ∑
α

∂t tα

t2
α

E

[
12

(t−1
α − τ)4

X44 + 3

(t−1
α − τ)4

X′
44

]
+O

(
M�5)

.

Note that the first two terms in (6.12) cancel by (6.11) and that we have

E
∂Gii

∂t
= ∑

α

∂t tα

t2
α

E

[
2

(t−1
α − τ)3

X32 + 2

(t−1
α − τ)3

X33

]

− ∑
α

∂t tα

t2
α

E

[
3

(t−1
α − τ)4

X42 + 6

(t−1
α − τ)4

X43

]
(6.13)

− ∑
α

∂t tα

t2
α

E

[
12

(t−1
α − τ)4

X44 + 3

(t−1
α − τ)4

X′
44

]
+O

(
M�5)

.

To complete the proof of Proposition 4.1, we are going to show that the imag-
inary part of the right-hand side of (6.13) is of O(M�5) as is noted in the next
lemma.
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LEMMA 6.3. Under the assumptions of Proposition 4.1 with the notation of
Lemma 6.2, we have∑

α

∂t tα

t2
α

ImE

[
2

(t−1
α − τ)3

X32 + 2

(t−1
α − τ)3

X33

]

− ∑
α

∂t tα

t2
α

ImE

[
3

(t−1
α − τ)4

X42

]
(6.14)

− ∑
α

∂t tα

t2
α

ImE

[
6

(t−1
α − τ)4

X43 + 12

(t−1
α − τ)4

X44 + 3

(t−1
α − τ)4

X′
44

]
= O

(
M�5)

,

uniformly in t ≥ 0.

We remark that the naive size of the right-hand side of (6.14) is O(M�3), but
for our choice of γ the terms cancel up to errors of O(M�5). Similar to the dis-
cussion in [32], the sum rules in (6.5) have crucial roles in this cancellation mech-
anism. Lemma 6.3 is proven in the Appendix C.

PROOF OF PROPOSITION 4.1. For simplicity, we choose F ′ ≡ 1. From (6.13)
and Lemma 6.3, we find that

E

[
Im

∂Gii

∂t

]
= O

(
�2)

.(6.15)

Integrating both sides of (6.15) from t = 0 to t = 2 logN , we obtain that∣∣∣∣E[
N

∫ E2

E1

Imm(x + L+ + iη)
∣∣∣
t=0

dx

]
(6.16)

−E

[
N

∫ E2

E1

Imm(x + L+ + iη)
∣∣∣
t=2 logN

dx

]∣∣∣∣ ≤ N−1/3+C′ε,

for some constant C′ > 0.
At t = ∞, we have σα(∞) = 1, for all α ∈ [[N +1,N +M]], hence by definition

ξ+(∞) =
√

d

1 + √
d

, γ (∞) = √
d(1 + √

d)−4/3.

In particular,

m(x + L+ + iη)|t=∞ = mW(x + M+ + iη).

Let Tf := 2 logN . At t = Tf, we have σα(Tf) = 1 + O(N−2). Using the result at
t = ∞, it can be easily seen that

γ (Tf) = γ (∞) + O
(
N−2)

.
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Similarly, we also have that z(Tf) = z(∞) + O(N−2). Thus, the matrix H(Tf) −
H(∞) is a diagonal matrix whose entries are O(N−2).

Using the resolvent identity

G(Tf) − G(∞) = −G(Tf)
(
H(Tf) − H(∞)

)
G(∞),(6.17)

we can now bound∣∣Gii(Tf) − Gii(∞)
∣∣ =

∣∣∣∣∑
A

−GiA(Tf)
(
HAA(Tf) − HAA(∞)

)
GAi(∞)

∣∣∣∣ ≺ N−5/3,

and we thus have∣∣∣∣E[
N

∫ E2

E1

Imm(x + L+ + iη)
∣∣∣
t=2 logN

dx

]
(6.18)

−E

[
N

∫ E2

E1

Imm(x + L+ + iη)
∣∣∣
t=∞ dx

]∣∣∣∣ ≤ N−4/3+C′ε.

Since m(x + L+ + iη)|t=0 = mQ̃(x + L+ + iη), we get the desired result from
(6.16) and (6.18). �

APPENDIX A: PROOF OF LEMMA 6.2

In this section we prove Lemma 6.2. We start expanding E[GiαGαi] in the ran-
dom variables indexed by the Greek index α. The following expansion follows
closely the expansions used in [32].

PROOF OF LEMMA 6.2. Using the formula for Giα in (5.9), that is,

Giα = −Gαα

∑
k

xαkG
(α)
ik ,

we expand GiαGαi in the lower index α as

GiαGαi = G2
αα

∑
k,l

G
(α)
ik xαkxαlG

(α)
li .(A.1)

Note that, by Schur’s complement formula (5.8),

Gαα = 1

hαα − ∑(α)
p,q hαpG

(α)
pq hqα

= 1

−t−1
α − ∑

p,q xαpG
(α)
pq xαq

.(A.2)

(The use of Roman letters p,q can be justified since hαp = 0 for p ∈ [[N + 1,N +
M]] and p 	= α.)

We next expand Gαα around (−t−1
α + τ)−1. (Note that lim sup tατ < 1, thus

t−1
α − τ > c > 0 for some constant c independent of N .) From the large deviation

estimates in Lemma 5.2 and the Ward identity (5.13), we have∣∣∣∣∑
p,q

xαpG(α)
pq xαq + τ

∣∣∣∣ ≺ �.(A.3)
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Returning to (A.2), we thus have

Gαα = 1

−t−1
α + τ

+ 1

(−t−1
α + τ)2

(∑
p,q

xαpG(α)
pq xαq + τ

)

+ 1

(−t−1
α + τ)3

(∑
p,q

xαpG(α)
pq xαq + τ

)2
+O

(
�3)

,

respectively,

G2
αα = 1

(t−1
α − τ)2

− 2

(t−1
α − τ)3

(∑
p,q

xαpG(α)
pq xαq + τ

)

+ 3

(t−1
α − τ)4

(∑
p,q

xαpG(α)
pq xαq + τ

)2
+O

(
�3)

.

Hence, from the resolvent identity (A.1), obtain the following expansion of
GiαGαi in the lower index α,

GiαGαi = 1

(t−1
α − τ)2

∑
s,t

G
(α)
is xαsxαtG

(α)
ti

− 2

(t−1
α − τ)3

(
(α)∑
p,q

xαpG(α)
pq xαq + τ

)∑
s,t

G
(α)
is xαsxαtG

(α)
ti

+ 3

(t−1
α − τ)4

(∑
p,q

xαpG(α)
pq xαq + τ

)2 ∑
s,t

G
(α)
is xαsxαtG

(α)
ti +O

(
�5)

.

Taking the partial expectation Eα we get

Eα[GiαGαi]
= 1

(t−1
α − τ)2

1

N

∑
s

G
(α)
is G

(α)
si

− 2

(t−1
α − τ)3

(
m(α) + τ

) 1

N

∑
s

G
(α)
is G

(α)
si

− 4

(t−1
α − τ)3

1

N2

∑
s,t

G
(α)
is G

(α)
st G

(α)
ti

(A.4)

+ 3

(t−1
α − τ)4

(
m(α) + τ

)2 1

N

∑
s

G
(α)
is G

(α)
si

+ 12

(t−1
α − τ)4

(
m(α) + τ

) 1

N2

∑
s,t

G
(α)
is G

(α)
st G

(α)
ti
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+ 6

(t−1
α − τ)4

1

N3

∑
s,p,q

G
(α)
is G

(α)
si G(α)

pq G(α)
qp

+ 24

(t−1
α − τ)4

1

N3

∑
s,p,q

G
(α)
is G(α)

sp G(α)
pq G

(α)
qi +O

(
�5)

.

In a next step, we expand (A.4) in the upper index α by using the resolvent
formula (5.12), that is,

G
(α)
is = Gis − GiαGαs

Gαα

.(A.5)

In other words, using (A.5), we can remove the upper index α from the Green
functions entries in (A.4) at the expense of higher order terms containing α as a
lower index in the Green function entries. We obtain for the first term in (A.4) that

G
(α)
is G

(α)
si = GisGsi − GiαGαs

Gαα

Gsi − G
(α)
is

GsαGαi

Gαα
(A.6)

= GisGsi − GiαGαs

Gαα

G
(α)
si − G

(α)
is

GsαGαi

Gαα

− GiαGαs

Gαα

GsαGαi

Gαα

.

We stop expanding the first term on the right-hand side of (A.6), since it does not
contain the index α, and we set

X22 := 1

N

∑
s

GisGsi.(A.7)

Using (5.11), the partial expectation of the second term on the right-hand side
of (A.6) can be expanded in the lower index α to get

Eα

[
GiαGαs

Gαα

G
(α)
si

]
= Eα

[
Gαα

∑
k,l

G
(α)
ik xαkxαlG

(α)
ls G

(α)
si

]

= − 1

t−1
α − τ

1

N

∑
k

G
(α)
ik G

(α)
ks G

(α)
si

(A.8)

+ 1

(t−1
α − τ)2

(
m(α) + τ

) 1

N

∑
k

G
(α)
ik G

(α)
ks G

(α)
si

+ 2

(t−1
α − τ)2

1

N2

∑
k,l

G
(α)
ik G

(α)
kl G

(α)
ls G

(α)
si +O

(
�5)

.

Expanding the first term in the right-hand side of (A.8) further using (5.12), we get

G
(α)
ik G

(α)
ks G

(α)
si = GikGksGsi − GiαGαk

Gαα

GksGsi

(A.9)

− G
(α)
ik

GkαGαs

Gαα

Gsi − G
(α)
ik G

(α)
ks

GsαGαi

Gαα

.
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We stop expanding the first term on the right-hand side of (A.9), since it does no
more contain the index a, and we let

X33 := 1

N2

∑
k,s

GikGksGsi.(A.10)

Expanding the remaining terms on the right-hand side of (A.9) in the lower index
α using (5.11), we obtain

Eα

[
GiαGαk

Gαα

GksGsi

]
= − 1

t−1
α − τ

Eα

[∑
l,m

G
(α)
il xαlxαmG

(α)
mkGksGsi

]
+O

(
�5)

= − 1

t−1
α − τ

1

N

∑
l

G
(α)
il G

(α)
lk GksGsi +O

(
�5)

= − 1

t−1
α − τ

1

N

∑
l

GilGlkGksGsi +O
(
�5)

and, similarly,

Eα

[
G

(α)
ik

GkαGαs

Gαα

Gsi

]
= − 1

t−1
α − τ

1

N

∑
l

GikGklGlsGsi +O
(
�5)

respectively,

Eα

[
G

(α)
ik G

(α)
ks

GsαGαi

Gαα

]
= − 1

t−1
α − τ

1

N

∑
l

GikGksGslGli +O
(
�5)

.

Thus, setting

X44 := 1

N3

∑
k,l,s

GikGklGlsGsi,(A.11)

we have

Eα

[
1

N2

∑
k,s

G
(α)
ik G

(α)
ks G

(α)
si

]
= X33 + 3

t−1
α − τ

X44 +O
(
�5)

.(A.12)

Next, we consider the O(�4) terms on the right-hand side of (A.8). Let

X43 := (m + τ)
1

N2

∑
k,s

GikGksGsi.(A.13)

Then, we have for the second term on the right-hand side of (A.8) that(
m(α) + τ

) 1

N2

∑
k,s

G
(α)
ik G

(α)
ks G

(α)
si = X43 +O

(
�5)

.(A.14)
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The last term on the right-hand side of (A.8) is simply estimated by

1

N3

∑
k,l,s

G
(α)
ik G

(α)
kl G

(α)
ls G

(α)
si = X44 +O

(
�5)

.(A.15)

In sum, we find

Eα

[
1

N

∑
s

GiαGαs

Gαα

G
(α)
si

]
(A.16)

= − 1

t−1
α − τ

X33 + 1

(t−1
α − τ)2

X43 − 1

(t−1
α − τ)2

X44 +O
(
�5)

.

Similarly, we also have

Eα

[
1

N

∑
s

G
(α)
is

GsαGαi

Gαα

]
(A.17)

= − 1

t−1
α − τ

X33 + 1

(t−1
α − τ)2

X43 − 1

(t−1
α − τ)2

X44 +O
(
�5)

.

For the last term in (A.6), we obtain

GiαGαs

Gαα

GsαGαi

Gαα

= G2
αα

∑
k,l,p,q

G
(α)
ik xαkxαlG

(α)
ls G(α)

sp xαpxαqG
(α)
qi .

Hence, denoting

X′
44 := 1

N3

∑
k,l,s

GisGsiGklGlk,(A.18)

we find

Eα

[
1

N

∑
s

GiαGαs

Gαα

GsαGαi

Gαα

]
(A.19)

= 2

(t−1
α − τ)2

X44 + 1

(t−1
α − τ)2

X′
44 +O

(
�5)

.

Thus, from (A.6), (A.16), (A.17) and (A.19) we obtain

Eα

[
1

(t−1
α − τ)2

1

N

∑
s

G
(α)
is G

(α)
si

]

= 1

(t−1
α − τ)2

X22 + 2

(t−1
α − τ)3

X33(A.20)

− 2

(t−1
α − τ)4

X43 − 1

(t−1
α − τ)4

X′
44 +O

(
�5)

,
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which completes the expansion of the first term in (A.4). The calculation and the
result coincide with those in the deformed Wigner case in [32], except the sign
of the X33 term. The discrepancy is due to the sign difference in the coefficient
(t−1

α − τ)−1.
Adapting the expansion procedure of [32], we conclude, with the definitions

X32 := (m + τ)
1

N

∑
s

GisGsi,

(A.21)

X42 := (m + τ)2 1

N

∑
s

GisGsi,

that

Eα[GiαGαi]
= 1

(t−1
α − τ)2

X22 − 2

(t−1
α − τ)3

X32

(A.22)

− 2

(t−1
α − τ)3

X33 + 3

(t−1
α − τ)4

X42

+ 6

(t−1
α − τ)4

X43 + 12

(t−1
α − τ)4

X44 + 3

(t−1
α − τ)4

X′
44 +O

(
�5)

.

This shows (6.9), and hence completes the proof of Lemma 6.2. �

Before we move on to the next section, we introduce some more notation. For
k ∈ N, let

Ak := 1

N

∑
ρ

1

(t−1
ρ − τ)k

.(A.23)

We remark that from (6.5), we have

A2 = τ−2, A3 + τ−3 = 1.(A.24)

Finally, averaging (A.22) over α, we have in this notation

1

N

∑
α

Eα[GiαGαi] = A2X22 − 2A3(X32 + X33)

(A.25)
+ 3A4

(
X42 + 2X43 + 4X44 + X′

44
) +O

(
�5)

.

This concludes the current appendix.

APPENDIX B: OPTICAL THEOREMS

In this section we establish the following “optical theorem.”
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LEMMA B.1. Under the assumptions of Proposition 4.1 with the notation of
Lemma 6.2, we have

2E[X32 + X33] − 1

N
(B.1)

= 3
(
A4 − τ−4)

E
[
X42 + 2X43 + 4X44 + X′

44
] +O

(
�5)

,

uniformly in t ≥ 0.

Lemma B.1 is an example of what we call optical theorems: optical theorems
assure that the expectations of certain linear combinations of the random variables
introduced in Lemma 6.2 are smaller than their naive sizes obtained from power
counting using the local laws in Lemmas 3.2 and 5.3. Such estimates were key
technical inputs in the proof of edge universality for deformed Wigner matrices in
[32]. As in [32], the optical theorems used in this paper are obtained by combining
expansions of random variables, for example, X22 or X33, with the sum rules in
(6.5). In the rest of this appendix, we derive the required optical theorems.

The proof of Lemma B.1 is given in Section B.4 based on estimates obtained in
Sections B.1, B.2 and B.3.

B.1. Optical theorem from X22. To derive the first optical theorem, we con-
sider ∑

s

GisGsi = G2
ii +

(i)∑
s

GisGsi.(B.2)

Similar to the expansion of Gαα , we now expand Gss around −τ . We notice that∣∣∣∣τ−1 − z − ∑
γ,δ

xγ sG
(s)
γ δxδs

∣∣∣∣ ≺ �,

which can be checked from (6.8) and the estimate∣∣∣∣Gαα − 1

−t−1
α + τ

∣∣∣∣ ≺ �.

Thus, using Schur’s complement formula (5.8), we obtain the following expansion
of Gss in the lower index s:

Gss = 1

hss − ∑(s)
γ,δ hγ sG

(s)
γ δhsδ

= 1

−τ−1 + τ−1 − z − ∑
γ,δ xγ sG

(s)
γ δxδs

= −τ − τ 2
(
τ−1 − z − ∑

γ,δ

xγ sG
(s)
γ δxδs

)

− τ 3
(
τ−1 − z − ∑

γ,δ

xγ sG
(s)
γ δxδs

)2
+O

(
�3)

.
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Using the resolvent formula (5.9) we therefore get the following expansion of
GisGsi in the lower index s, for s 	= i:

GisGsi = G2
ss

∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

= τ 2
∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

+ 2τ 3
(
τ−1 − z − ∑

γ,δ

xγ sG
(s)
γ δxδs

)∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

+ 3τ 4
(
τ−1 − z − ∑

γ,δ

xγ sG
(s)
γ δxδs

)2 ∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i +O

(
�5)

.

Taking the partial expectation Es , we obtain, for s 	= i,

Es[GisGsi] = τ 2

N

∑
ρ

G
(s)
iρ G

(s)
ρi + 2τ 3

N

(
τ−1 − z − m̃(s)

d

)∑
ρ

G
(s)
iρ G

(s)
ρi

− 4τ 3

N2

∑
ρ,σ

G
(s)
iρ G(s)

ρσG
(s)
σ i

+ 3τ 4

N

(
τ−1 − z − m̃(s)

d

)2 ∑
ρ

G
(s)
iρ G

(s)
ρi

(B.3)

− 12τ 4

N2

(
τ−1 − z − m̃(s)

d

)∑
ρ,σ

G
(s)
iρ G(s)

ρσG
(s)
σ i

+ 6τ 4

N3

∑
ρ,σ,γ

G
(s)
iρ G

(s)
ρi G(s)

σγ G(s)
γ σ

+ 24τ 4

N3

∑
ρ,σ,γ

G
(s)
iρ G(s)

ργ G(s)
γ σG

(s)
σ i +O

(
�5)

.

Using the resolvent formula (5.5) to remove the upper indices s in (B.3), we get,
for s 	= i,

Es[GisGsi] = τ 2

N

∑
ρ

GiρGρi + 2τ 3

N

(
τ−1 − z − m̃

d

)∑
ρ

GiρGρi

− 2τ 3

N2

∑
ρ,σ

GiρGρσGσi + 3τ 4

N

(
τ−1 − z − m̃

d

)2 ∑
ρ

GiρGρi

− 6τ 4

N2

(
τ−1 − z − m̃

d

)∑
ρ,σ

GiρGρσGσi(B.4)



TRACY–WIDOM LIMIT FOR SAMPLE COVARIANCE MATRICES 3821

+ 12τ 4

N3

∑
ρ,σ,γ

GiρGρσGσγ Gγ i

+ 3τ 4

N3

∑
ρ,σ,γ

GiρGγσGσγ Gρi +O
(
�5)

.

We next expand all terms on the right-hand side of (B.4) except the first one to
change Greek indices into Roman indices. Recall from (A.23) that

Ak = 1

N

∑
ρ

1

(t−1
ρ − τ)k

.(B.5)

The last two terms on the right-hand side of (B.4) are easy to convert. For ex-
ample,

GiρGρσGσγ Gγ i = GiρGρσG(ρ)
σγ G

(ρ)
γ i +O

(
�5)

= 1

(t−1
ρ − τ)2

∑
j,k

G
(ρ)
ij xρj xρkG

(ρ)
kσ G(ρ)

σγ G
(ρ)
γ i +O

(
�5)

,

which shows that

(B.6) Eρ[GiρGρσGσγ Gγ i] = 1

(t−1
ρ − τ)2

1

N

∑
j

GijGjσGσγ Gγ i +O
(
�5)

.

Repeating the argument once more, we also find, using (6.5), that

E

[
12τ 4

N3

∑
ρ,σ,γ

GiρGρσGσγ Gγ i

]
= 12τ 4

N3 A3
2E

[∑
j,k,l

GijGjkGklGli

]
+O

(
�5)

(B.7)
= 12τ−2E[X44] +O

(
�5)

.

Similarly,

E

[
3τ 4

N3

∑
ρ,σ,γ

GiρGρiGγσGσγ

]
= 3τ−2E

[
X′

44
] +O

(
�5)

.(B.8)

The other fourth-order terms in (B.4) require more treatment. We first consider

τ−1 − z − m̃

d
= τ−1 − z − 1

N

∑
β

Gββ

= τ−1 − z + 1

N

∑
β

1

t−1
β − τ

− 1

N

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
+O

(
�2)
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= (L+ − z) − 1

N

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
+O

(
�2)

= − 1

N

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
+O

(
�2)

.

We then obtain for the fifth term on the right-hand side of (B.4) that

E

[
−6τ 4

N2

(
τ−1 − z − m̃

d

)∑
ρ,σ

GiρGρσGσi

]

= E

[
6τ 4

N2

(
1

N

∑
β

1

(t−1
β − τ)2

)(
m(β) + τ

)∑
ρ,σ

G
(β)
iρ G(β)

ρσ G
(β)
σ i

]
+O

(
�5)

(B.9)
= 6τ−2E

[
(m + τ)

1

N2

∑
k,l

GikGklGki

]
+O

(
�5)

= 6τ−2E[X43] +O
(
�5)

.

Similarly, we have for the fourth term on the right-hand side of (B.4) that

(B.10) E

[
3τ 4

N

(
τ−1 − z − m̃

d

)2 ∑
ρ

GiρGρi

]
= 3τ−2E[X42] +O

(
�5)

.

This completes the discussion of the fourth-order terms in (B.4).
We move on to the third-order terms on the right-hand side of (B.4). Adapting

the expansion method above, we note that

1

N

(
τ−1 − z − m̃

d

)∑
ρ

GiρGρi

= − 1

N2

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)∑
ρ

GiρGρi

(B.11)

+ 1

N2

∑
β

1

(t−1
β − τ)3

(∑
p,q

xβpG(β)
pq xβq + τ

)2 ∑
ρ

GiρGρi

+ L+ − z

N

∑
ρ

GiρGρi +O
(
�5)

.

Taking the partial expectation Eβ , we get for the summand in the first term on the
right-hand side of (B.11) that

Eβ

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GiρGρi

]

= 1

(t−1
β − τ)2

(
m(β) + τ

)
G

(β)
iρ G

(β)
ρi(B.12)
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+Eβ

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GiβGβρ

Gββ

G
(β)
ρi

]

+Eβ

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
G

(β)
iρ

GρβGβi

Gββ

]
+O

(
�5)

.

Expanding the first term on the right-hand side of (B.12) with respect to the upper
index β , we find

E

[
1

(t−1
β − τ)2

(
m(β) + τ

)
G

(β)
iρ G

(β)
ρi

]

= E

[
1

(t−1
β − τ)2

(m + τ)GiρGρi

]
(B.13)

+E

[
2

(t−1
β − τ)3

(m + τ)
∑
k

GikGkρGρi

]

+E

[
1

(t−1
β − τ)3

∑
k,l

GklGlkGiρGρi

]
+O

(
�5)

.

Similarly, we get for the expectation of the second term on the right-hand side of
(B.12) that

E

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GiβGβρ

Gββ

G
(β)
ρi

]

= −E

[
1

(t−1
β − τ)3

(m + τ)
∑
k

GikGkρGρi

]
(B.14)

−E

[
2

(t−1
β − τ)3

1

N2

∑
k,l

GikGklGlρGρi

]

+O
(
�5)

and for the expectation of the third term on the right-hand side of (B.12) that

E

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
G

(β)
iρ

GρβGβi

Gββ

]

= −E

[
1

(t−1
β − τ)3

(m + τ)
∑
k

GikGkρGρi

]
(B.15)

−E

[
2

(t−1
β − τ)3

1

N2

∑
k,l

GikGklGlρGρi

]

+O
(
�5)

.
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Thus, from (B.12), (B.13), (B.14) and (B.15) we find

E

[
1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GiρGρi

]

= E

[
1

(t−1
β − τ)2

(m + τ)GsρGρs

]

−E

[
4

(t−1
β − τ)3

1

N2

∑
k,l

GikGklGlρGρi

]
(B.16)

+E

[
1

(t−1
β − τ)3

∑
k,l

GklGlkGiρGρi

]

+O
(
�5)

.

We next remove the Greek index ρ on the right-hand side of (B.16). We note
that

(m + τ)GiρGρi

= G2
ρρ

(
m(ρ) + τ

)∑
k,l

G
(ρ)
ik xρkxρlG

(ρ)
li

+ 1

N

∑
j

GjρGρjGρρ

∑
k,l

G
(ρ)
ik xρkxρlG

(ρ)
li .

Thus, taking the partial expectation Eρ , we find

Eρ

[
(m + τ)GiρGρi

]
= 1

(t−1
ρ − τ)2

(
m(ρ) + τ

) 1

N

∑
k

G
(ρ)
ik G

(ρ)
ki

− 2

(t−1
ρ − τ)3

(
m(ρ) + τ

)2 1

N

∑
k

G
(ρ)
ik G

(ρ)
ki

(B.17)

− 4

(t−1
ρ − τ)3

(
m(ρ) + τ

) 1

N2

∑
k,l

G
(ρ)
ik G

(ρ)
kl G

(ρ)
li

− 2

(t−1
ρ − τ)3

1

N3

∑
j,k,l

G
(ρ)
ik G

(ρ)
kj G

(ρ)
j l G

(ρ)
li

− 1

(t−1
ρ − τ)3

1

N3

∑
j,k,l

G
(ρ)
ik G

(ρ)
ki G

(ρ)
j l G

(ρ)
lj +O

(
�5)

.
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Expanding the right-hand side of (B.17) with respect to the upper index ρ, we
obtain

E
[
(m + τ)GiρGρi

]
= 1

(t−1
ρ − τ)2

E[X32](B.18)

− 1

(t−1
ρ − τ)3

(
2E[X42] + 2E[X43] + 2E[X44]) +O

(
�5)

.

We thus have for the first term on the right-hand side of (B.11) that

E

[
− 1

N2

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)∑
ρ

GiρGρi

]

= −τ−4E[X32] + τ−2A3
(
2E[X42] + 2E[X43](B.19)

+ 6E[X44] −E
[
X′

44
]) +O

(
�5)

.

The fourth-order terms in (B.11) can easily be handled: we have

E

[
1

N2

∑
β

1

(t−1
β − τ)3

(∑
p,q

xβpG(β)
pq xβq + τ

)2 ∑
ρ

GiρGρi

]
(B.20)

= τ−2A3
(
E[X42] + 2E

[
X′

44
]) +O

(
�5)

,

respectively,

E

[
L+ − z

N

∑
ρ

GiρGρi

]
= τ−2(L+ − z)E[X22] +O

(
�5)

.(B.21)

We thus obtain from (B.11), (B.19), (B.20) and (B.21) that

E

[
2τ 3

N

(
τ−1 − z − m̃

d

)∑
ρ

GiρGρi

]
= −2τ−1E[X32] + 2τA3

(
3E[X42] + 2E[X43] + 6E[X44](B.22)

+E
[
X′

44
]) + 2τ(L+ − z)E[X22] +O

(
�5)

.

The third term on the right-hand side of (B.4), which is also O(�3), can be
expanded in a similar manner: We begin with

GiρGρσGσi = GiρGρσG
(ρ)
σ i + GiρGρσ

GiρGρσ

Gρρ

.(B.23)

The second term on the right-hand side of (B.23) can easily be controlled: we have

1

N2

∑
ρ,σ

E

[
GiρGρσ

GiρGρσ

Gρρ

]
= −τ−2A3

(
2E[X44] +E

[
X′

44
]) +O

(
�5)

.



3826 J. O. LEE AND K. SCHNELLI

Taking the partial expectation Eρ , we have

Eρ

[
GiρGρσG

(ρ)
σ i

]
= 1

(t−1
ρ − τ)2

1

N

∑
k

G
(ρ)
ik G

(ρ)
kσ G

(ρ)
σ i

(B.24)

− 2

(t−1
ρ − τ)3

1

N

(
m(ρ) + τ

)∑
k

G
(ρ)
ik G

(ρ)
kσ G

(ρ)
σ i

− 4

(t−1
ρ − τ)3

1

N2

∑
k,l

G
(ρ)
ik G

(ρ)
kl G

(ρ)
lσ G

(ρ)
σ i +O

(
�5)

.

Thus, expanding with respect to the upper index ρ, we obtain

Eρ

[
GiρGρσG(ρ)

σs

] = 1

(t−1
ρ − τ)2

1

N

∑
k

GikGkσGσi

− 2

(t−1
ρ − τ)3

1

N
(m + τ)

∑
k

GikGkσGσi(B.25)

− 1

(t−1
ρ − τ)3

1

N2

∑
k,l

GikGklGlσGσi +O
(
�5)

.

Repeating the same procedure with σ instead of ρ, we eventually find

E

[
2τ 3

N2

∑
ρ,σ

GsρGρσGσs

]
(B.26)

= 2τ−1E[X33] − 2τA3
(
4E[X43] + 6E[X44] + 2E

[
X′

44
]) +O

(
�5)

.

We conclude from (A.25), (B.4), (B.7), (B.8), (B.9), (B.10), (B.22) and (B.26)
that

1

N

∑
α

E[GiαGαi]

= 1

N2

(i)∑
s

∑
ρ

E[GiρGρi] + τ−2

N
E

[
G2

ii
] + 2τ−1(L+ − z)E[X22]

− 2
(
A3 + τ−3)

E[X32 + X33]
+ 3

(
A4 + τ−4 + 2τ−1A3

)
E

[
X42 + 2X43 + 4X44 + X′

44
] +O

(
�5)

.

Since

1

N2

(i)∑
s

∑
ρ

E[GiρGρi] = 1

N

∑
ρ

E[GiρGρi] +O
(
�5)

,
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we obtain the relation

2
(
A3 + τ−3)

E[X32 + X33]
= 3

(
A4 + τ−4 + 2τ−1A3

)
E

[
X42 + 2X43 + 4X44 + X′

44
]

(B.27)

+ τ−2

N
E

[
G2

ii
] + 2τ−1(L+ − z)E[X22] +O

(
�5)

.

Recalling that

G2
ii = τ 2 + 2τ 3

(
τ−1 − z − ∑

γ,δ

xγ iG
(i)
γ δxδi

)
+O

(
�2)

,

we find

E
[
G2

ii
] = τ 2 + 2τ 3E

[
τ−1 − z − m̃

d

]
+O

(
�2)

(B.28)
= τ 2 − 2τE[m + τ ] +O

(
�2)

.

Thus, plugging (B.28) into (B.27) and recalling from (6.5) that A3 + τ−3 = 1, we
find

2E[X32 + X33] − 1

N

= 3
(
A4 + τ−4 + 2τ−1A3

)
E

[
X42 + 2X43 + 4X44 + X′

44
]

(B.29)

− 2τ−1

N
E[m + τ ] + 2τ−1(L+ − z)E[X22] +O

(
�5)

.

The identity (B.29) is the optical theorem derived from X22. We remark that the
second and third term on the right-hand side of (B.29) are both O(�4). In Sec-
tion B.3 we show that they can be written as linear combinations of X42, X43, X44
and X′

44.

B.2. Optical theorems from X32 and X33. In a next step, we derive further
optical theorems using the ideas presented in Section B.1. We start by considering

(B.30) X32 = (m + τ)
1

N

∑
s

GisGsi = (m + τ)
1

N

(i)∑
s

GisGsi + (m + τ)
1

N
G2

ii.

To estimate the first term on the very right-hand side of (B.30), we consider, for
s 	= i,

(B.31) (m + τ)GisGsi = (
m(s) + τ

)
GisGsi + 1

N

(s)∑
j

GjsGsj

Gss

GisGsi +O
(
�5)

.
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We expand the first term on the right-hand side of (B.31) with respect to the lower
index s to get(

m(s) + τ
)
GisGsi

= (
m(s) + τ

)
G2

ss

∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

= τ 2(
m(s) + τ

)∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

+ 2τ 3(
m(s) + τ

)(
τ−1 − z − ∑

γ,δ

xγ sG
(s)
γ δxδs

)∑
ρ,σ

G
(s)
iρ xρsxσsG

(s)
σ i

+O
(
�5)

.

Taking the partial expectation Es , we obtain

Es

[(
m(s) + τ

)
GisGsi

]
= τ 2

N

(
m(s) + τ

)∑
ρ

G
(s)
iρ G

(s)
ρi

+ 2τ 3

N

(
m(s) + τ

)(
τ−1 − z − m̃(s)

d

)∑
ρ

G
(s)
iρ G

(s)
ρi

− 4τ 3

N2

(
m(s) + τ

)∑
ρ,σ

G
(s)
iρ G(s)

ρσG
(s)
σ i +O

(
�5)

.

Since

τ 2

N

(
m(s) + τ

)∑
ρ

G
(s)
iρ G

(s)
ρi

= τ

N
(m + τ)

∑
ρ

GiρGρi

+ 2τ

N
(m + τ)

∑
ρ

GisGsρGρi + τ

N2

∑
j

∑
ρ

GjsGsjGiρGρi +O
(
�5)

and since

E

[
τ 3

N2 (m + τ)
∑
ρ,σ

GiρGρσGσi

]

= E

[
τ

N2 (m + τ)
∑
k

∑
σ

GikGkσGσi

]
+O

(
�5)

,
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we obtain

E

[(
m(s) + τ

) 1

N

(i)∑
s

GisGsi

]
= E

[
τ 2

N
(m + τ)

∑
ρ

GiρGρi

]
− τ−1E

[
2X42 + 2X43 − X′

44
] +O

(
�5)

.

Moreover, we have that

E

[
1

N

(s)∑
j

GjsGsj

Gss

GisGsi

]
= −τ−1E

[
2X44 + X′

44
] +O

(
�5)

.

We thus find the relation

E[X32] − N−1E
[
(m + τ)G2

ii
] = τ 2E

[
(m + τ)

1

N

∑
ρ

GiρGρi

]
− 2τ−1E[X42 + X43 + X44] +O

(
�5)

.

Applying (B.18), we obtain

E[X32] − N−1E
[
(m + τ)G2

ii
]

(B.32)
= E[X32] − 2

(
τ 2A3 + τ−1)

E[X42 + X43 + X44] +O
(
�5)

.

Further, since

N−1E
[
(m + τ)G2

ii
] = τ 2N−1E[m + τ ] +O

(
�5)

,

we obtain from (B.32) the identity

N−1E[m + τ ] = 2
(
A3 + τ−3)

E[X42 + X43 + X44] +O
(
�5)

,(B.33)

which is the optical theorem derived from X32.
We next derive the optical theorem obtained from

X33 = 1

N2

∑
k,s

GikGksGsi.(B.34)

Since the contributions to the sums in (B.34) from the cases i = k or s = k are
negligible [of O(�2)], we assume that i, s 	= k. Expanding the summand in (B.34)
with respect to the lower index k, we get

GikGksGsi = G2
kk

∑
ρ,σ

G
(k)
iρ xρkxσkG

(k)
σs G

(k)
si + GikGks

GskGki

Gkk

.(B.35)
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Taking the partial expectation Ek , we find for the first term on the right-hand side
of (B.35) that

E

[
G2

kk

∑
ρ,σ

G
(k)
iρ xρkxσkG

(k)
σs G

(k)
si

]

= E

[
τ 2

N

∑
ρ

G
(k)
iρ G(k)

ρs G
(k)
si

]
+E

[
2τ 3

N

(
τ−1 − z − m̃(k)

d

)∑
ρ

G
(k)
iρ G(k)

ρs G
(k)
si

]

−E

[
4τ 3

N2

∑
ρ,σ

G
(k)
iρ G(k)

ρσG(k)
σs G

(k)
si

]
+O

(
�2)

.

Expanding further with respect to the upper index k, we thus find from (B.35) that

E[X33] = E

[
τ 2

N2

∑
s

∑
ρ

GiρGρsGsi

]
(B.36)

− τ−1E
[
2X43 + 3X44 + X′

44
] +O

(
�5)

.

Expanding the summand in the first term on the right of (B.36) with respect the
index ρ, we get

(B.37) E[X33] = E[X33] − (
τ 2A3 + τ−1)

E
[
2X43 + 3X44 + X′

44
] +O

(
�5)

,

that is, recalling A3 + τ−3 = 1 [see (A.24)],

τ−2E
[
2X43 + 3X44 + X′

44
] = O

(
�5)

,(B.38)

which is the optical theorem derived from X33.

B.3. Optical theorem from mX22. We return to the concluding remarks of
Section B.1. In the present subsection we show that the terms (L+ − z)E[X22] and
N−1E[m + τ ], both appearing in (B.29), can be decomposed into linear combina-
tions of X42, X43, X44 and X′

44. The latter term, N−1E[m + τ ], can be handled by
(B.33), while the former needs to be dealt with the optical theorem obtained from
mX22. Recall that

mX22 = 1

N2

∑
a,s

GaaGisGsi.(B.39)

Expanding the summand on the right-hand side of (B.39) in the index a, we get

mX22 = 1

N2

∑
a 	=s

(
GaaG

(a)
is G

(a)
si + G

(a)
is GsaGai + GiaGasGsi

) +O
(
�5)

(B.40)

= 1

N2

∑
a 	=s

(
GaaG

(a)
is G

(a)
si − GiaGas

Gaa

GsaGai

)
+ 2X33 +O

(
�5)

.
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Expanding the second summand of the first term on the right-hand side of (B.40)
with respect the lower index a, we get

E[mX22] = E

[
1

N2

∑
a 	=s

GaaG
(a)
is G

(a)
si

]
(B.41)

+ τ−1E
[
2X44 + X′

44
] + 2E[X33] +O

(
�5)

.

We expand the summand of the first term on the right of (B.41) further in the lower
index a to find

Ea

[
GaaG

(a)
is G

(a)
si

]
= −τG

(a)
is G

(a)
si − τ 2

(
τ−1 − z − m̃(a)

d

)
G

(a)
is G

(a)
si

(B.42)

− τ 3
(
τ−1 − z − m̃(a)

d

)2
G

(a)
is G

(s)
si

− 2τ 3

N2

∑
γ,δ

G
(a)
γ δ G

(a)
δγ G

(a)
is G

(a)
si +O

(
�5)

.

Expanding the first term on the right-hand side of (B.42) with respect the upper
index a, we get

G
(a)
is G

(a)
si = GisGsi − G

(a)
is

GsaGai

Gaa

− GiaGas

Gaa

G
(a)
si

(B.43)

− GiaGas

Gaa

GsaGai

Gaa

.

We stop expanding the first term on the right-hand side of (B.43) which will even-
tually, after averaging over s, become X22. For the second term on the right-hand
side of (B.43), we have

Ea

[
G

(a)
is

GsaGai

Gaa

]
= − τ

N

∑
γ

G
(a)
is G(a)

sγ G
(a)
γ i

− τ 2

N

(
τ−1 − z − m̃(a)

d

)∑
γ

G
(a)
is G(a)

sγ G
(a)
γ i

+ 2τ 2

N2

∑
γ,δ

G
(a)
is G(a)

sγ G
(a)
γ δ G

(a)
δi +O

(
�5)

.
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Thus,

E

[
τ

N2

∑
a 	=s

G
(a)
is

GsaGai

Gaa

]

= −E

[
τ 2

N3

∑
a 	=s

∑
γ

G
(a)
is G(a)

sγ G
(a)
γ i

]
+ τ−1E[X43 + 2X44] +O

(
�5)

(B.44)

= −E

[
τ 2

N2

∑
s

∑
γ

GisGsγ Gγ i

]
+ τ−1E[X43 − X44] +O

(
�5)

.

Following the calculation in (B.36)–(B.37), we obtain from (B.44) that

E

[
τ

N2

∑
a 	=s

G
(a)
is

GsaGai

Gaa

]

= −E[X33] + τ 2A3E
[
2X43 + 3X44 + X′

44
]

(B.45)

+ τ−1E[X43 − X44] +O
(
�5)

.

The third term on the right-hand side of (B.43) can be expanded in a similar man-
ner. In sum, we get

−E

[
τ

N2

∑
a 	=s

G
(a)
is G

(a)
si

]
= −τE[X22] − 2E[X33]

(B.46)
+ 2τ 2A3E

[
2X43 + 3X44 + X′

44
]

+ τ−1E
[
2X43 + X′

44
] +O

(
�5)

.

We next consider the second term on the right-hand side of (B.42). We note that(
τ−1 − z − m̃(a)

d

)
G

(a)
is G

(a)
si

=
(
τ−1 − z − m̃

d

)
GisGsi

+ τ−1
(
τ−1 − z − m̃

d

)
GiaGasGsi(B.47)

+ τ−1
(
τ−1 − z − m̃

d

)
GisGsaGai

− τ−1

N

∑
γ

GγaGaγ GisGsi +O
(
�5)

.
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We expand the first term on the right-hand side of (B.47) similar to (B.11) to get(
τ−1 − z − m̃

d

)
GisGsi

= − 1

N

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GisGsi

(B.48)

+ 1

N

∑
β

1

(t−1
β − τ)3

(∑
p,q

xβpG(β)
pq xβq + τ

)2
GisGsi

+ (L+ − z)GisGsi +O
(
�5)

.

Taking the partial expectation Eβ and proceeding as in (B.12)–(B.15) we find for
the first term on the right-hand side of (B.48) that

E

[
τ 2

N3

∑
i,s

∑
β

1

(t−1
β − τ)2

(∑
p,q

xβpG(β)
pq xβq + τ

)
GisGsi

]

= E[X32] + τ 2A3E
[
X′

44 − 4X44
] +O

(
�5)

.

We thus have

E

[
− τ 2

N2

∑
a 	=s

(
τ−1 − z − m̃(a)

d

)
G

(a)
is G

(a)
si

]

= E[X32] − τ 2A3E
[
X42 + 4X44 + X′

44
]

(B.49)
− τ 2(L+ − z)E[X22]
+ τ−1E

[
2X43 + X′

44
] +O

(
�5)

.

From (B.42), (B.46) and (B.49) we find for the first term on the right-hand side
of (B.41) that

E

[
1

N2

∑
a 	=s

GaaG
(a)
is G

(a)
si

]

= −τE[X22] − 2E[X33] + 2τ 2A3E
[
2X43 + 3X44 + X′

44
]

+ τ−1E
[
2X43 + X′

44
]

+E[X32] − τ 2A3E
[
X42 + 4X44 + X′

44
] − τ 2(L+ − z)E[X22](B.50)

+ τ−1E
[
2X43 + X′

44
]

− τ−1E
[
X42 + 2X′

44
]

+ τ−1E
[
2X44 + X′

44
] + 2E[X33] +O

(
�5)

.
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Plugging (B.50) into (B.41) we finally find

E[mX22] + τ 2(L+ − z)E[X22]
= −τE[X22] +E[X32]

+ (
τ 2A3 + τ−1)

E
[−X42 + 4X43 + 2X44 + X′

44
] +O

(
�5)

.

Since X32 = (m + τ)X22 by definition, we obtain

(B.51) (L+ − z)E[X22] = (
A3 + τ−3)

E
[−X42 + 4X43 + 2X44 +X′

44
]+O

(
�5)

,

which is the optical theorem obtained from mX22.

B.4. Proof of Lemma B.1. In this subsection we prove Lemma B.1 based on
the optical theorems derived in Sections B.1, B.2 and B.3.

PROOF OF LEMMA B.1. For simplicity set

X3 := 2(X32 + X33), X4 := 3
(
X42 + 2X43 + 4X44 + X′

44
)
.(B.52)

From (B.29), (B.33) and (B.51), we have

E[X3] − N−1 = (
A4 + τ−4 + 2τ−1A3

)
E[X4] − 2τ−1N−1E[m + τ ]

+ 2τ−1(L+ − z)E[X22] +O
(
�5)

,

hence,

E[X3] − N−1 = (
A4 + τ−4 + 2τ−1A3

)
E[X4]

(B.53)
− τ−1E

[
6X42 − 4X43 − 2X′

44
] +O

(
�5)

.

Subtracting 8-times (B.38) from (B.53), we obtain

E[X3] − N−1 = (
A4 + τ−4 + 2τ−1A3

)
E[X4]

− τ−16E
[
X42 + 2X43 + 4X44 + X′

44
] +O

(
�5)

= (
A4 + τ−4 + 2τ−1A3 − 2τ−1)

E[X4] +O
(
�5)

.

Using A3 + τ−3 = 1 [see (A.24)], we conclude that

E[X3] − N−1 = (
A4 − τ−4)

E[X4] +O
(
�5)

.(B.54)

This proves (B.1) and completes the proof of Lemma B.1. �
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APPENDIX C: PROOF OF LEMMA 6.1

In this last section we prove Lemma 6.3.

PROOF OF LEMMA 6.3. In a first step of the proof of (6.14), we express
(∂t tα)/t2

α in terms of γ and γ̇ .
From the time evolution of � = diag(σα) in (6.1), we have

∂t

1

σα(t)
= −e−t 1

σα(0)
+ e−t = 1 − 1

σα(t)
(t ≥ 0).

Since tα = γ σα by the definition of T , we get

∂t tα

t2
α

= −∂t

1

tα(t)
=

(
γ̇

γ
+ 1

)
1

tα(t)
− 1

γ
(t ≥ 0).

Recalling the definitions of (Ak) in (A.23) and that A2 = τ−2, we then obtain,
dropping for simplicity the t-dependence from the notation,

1

N

∑
α

∂t tα

t2
α

1

(t−1
α − τ)3

=
(

γ̇

γ
+ 1

)
τ−2 +

(
γ̇

γ
+ 1

)
τA3 − 1

γ
A3,(C.1)

respectively,

1

N

∑
α

∂t tα

t3
α

1

(t−1
α − τ)4

=
(

γ̇

γ
+ 1

)
A3 +

(
γ̇

γ
+ 1

)
τA4 − 1

γ
A4.(C.2)

Using the short-hand notation

X3 = 2(X32 + X33), X4 = 3
(
X42 + 2X43 + 4X44 + X′

44
)

(C.3)

[see (B.52)], we observe that (6.14) is proven, once we have established that[
(γ̇ + γ )τ−2 + (γ̇ τ + γ τ − 1)A3

]
ImE[X3]

(C.4)
= [

(γ̇ + γ )A3 + (γ̇ τ + γ τ − 1)A4
]
ImE[X4] +O

(
�5)

.

Combining the following lemma with Lemma B.1, it is straightforward to assure
the validity (C.4).

LEMMA C.1. Let γ and τ be defined in (6.3) and (6.4). Then we have

(γ̇ + γ )τ−2 + (γ̇ τ + γ τ − 1)A3 = γ
(
τ−2A4 − A2

3
)
,(C.5)

(γ̇ + γ )A3 + (γ̇ τ + γ τ − 1)A4 = γ
(
τ−2A4 − A2

3
)(

A4 − τ−4)
.(C.6)

Assuming the correctness of Lemma C.1, we can recast (C.4) as

γ
(
τ−2A4 − A2

3
)

ImE[X3]
(C.7)

= γ
(
τ−2A4 − A2

3
)(

A4 − τ−4)
ImE[X4] +O

(
�5)

.
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Since E[X3]−1/N = (A4 −τ−4)E[X4]+O(�5), by the optical theorem (B.1),
we see that (C.7), respectively (C.4), indeed hold true. This in turn proves, by the
discussion above, the claim in (6.14), that is, Lemma 6.3.

It remains to prove Lemma C.1:

PROOF OF LEMMA C.1. First, we differentiate the sum rule

1

N

∑
α

(
1

t−1
α − τ

)2
= 1

τ 2

[see (6.5)] with respect to t to find

τ̇

τ 3 = 1

N

∑
α

∂t t
−1
α − τ̇

(t−1
α − τ)3

= −τ̇A3 − γ −1A3 +
(

γ̇

γ
+ 1

)
1

N

∑
α

t−1
α

(t−1
α − τ)3

,

which yields (
A3 + τ−3)

τ̇ = γ −1[
(γ̇ + γ )

(
τ−2 + τA3

) − A3
]
.(C.8)

Using A3 + τ−3 = 1, we hence get

τ̇ = γ −1[
(γ̇ + γ )τ − A3

]
.(C.9)

Similarly, differentiating the sum rule

1

N

∑
α

(
1

t−1
α − τ

)3
+ 1

τ 3 = 1

[see (6.5)] with respect to t we find(
A4 − τ−4)

τ̇ = γ −1[
(γ̇ + γ )(A3 + τA4) − A4

]
.

Combination with (C.9) yields(
A4 − τ−4)[

(γ̇ + γ )τ − A3
] = (γ̇ + γ )(A3 + τA4) − A4,

hence

γ̇ + γ = τ−4A3 − A3A4 + A4 = τ−4A3 + τ−3A4.(C.10)

Thus, we can write the left-hand side of (C.5) as(
τ−4A3 + τ−3A4

)
τ−2 + (

τ−3A3 + τ−2A4 − 1
)
A3

= (
τ−3A3 + τ−2A4

) − A3
(C.11)

= (
τ−3A3 + τ−2A4

) − A3
(
A3 + τ−3)

= (
τ−2A4 − A2

3
)
.
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This proves (C.5). Similarly, we have for the left-hand side of (C.6)(
τ−4A3 + τ−3A4

)
A3 + (

τ−3A3 + τ−2A4 − 1
)
A4

= (
τ−4A3 + τ−3A4

)
A3 + (

τ−3A3 + τ−2A4 − (
A3 + τ−3)2)

A4
(C.12)

= τ−4A2
3 + τ−2A2

4 − A2
3A4 − τ−6A4

= (
A4 − τ−4)(

τ−2A4 − A2
3
)
.

This proves (C.6), and hence completes the proof of Lemma C.1. �

Having proven Lemma C.1, we can complete the proof of Lemma 6.3. �
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