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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR BRANCHING
RANDOM WALKS, ALMOST SURE WEAK CONVERGENCE AND

APPLICATIONS TO RANDOM TREES

BY RUDOLF GRÜBEL AND ZAKHAR KABLUCHKO

Leibniz Universität Hannover and Westfälische Wilhelms-Universität Münster

Let W∞(β) be the limit of the Biggins martingale Wn(β) associated to a
supercritical branching random walk with mean number of offspring m. We
prove a functional central limit theorem stating that as n → ∞ the process
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converges weakly, on a suitable space of analytic functions, to a Gaussian
random analytic function with random variance. Using this result, we prove
central limit theorems for the total path length of random trees. In the setting
of binary search trees, we recover a recent result of R. Neininger [Random
Structures Algorithms 46 (2015) 346–361], but we also prove a similar theo-
rem for uniform random recursive trees. Moreover, we replace weak conver-
gence in Neininger’s theorem by the almost sure weak (a.s.w.) convergence
of probability transition kernels. In the case of binary search trees, our result
states that
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a.s.w.−→
n→∞ {ω �→N0,1},

where EPLn is the external path length of a binary search tree Xn with n

vertices, EPL∞ is the limit of the Régnier martingale and L{·|Gn} denotes
the conditional distribution w.r.t. the σ -algebra Gn generated by X1, . . . ,Xn.
Almost sure weak convergence is stronger than weak and even stable conver-
gence. We prove several basic properties of the a.s.w. convergence and study
a number of further examples in which the a.s.w. convergence appears nat-
urally. These include the classical central limit theorem for Galton–Watson
processes and the Pólya urn.

1. Introduction. The research that led to the present paper was motivated by
a question from the analysis of algorithms, specifically of the famous QUICKSORT

and the closely related binary search tree (BST) algorithms. The question con-
cerns the second-order (distributional) asymptotics of the number of comparisons
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needed by QUICKSORT or, equivalently, of the total path length of the associated
random binary search trees, if the input to the algorithm is random.

Let the input sequence consist of independent random variables U1,U2, . . .

distributed uniformly on the interval [0,1]. In the version considered here, the
QUICKSORT algorithm applied to the list U1, . . . ,Un proceeds as follows. It places
U1, the first element of the list, at the root of a binary tree and divides the remain-
ing elements into two sublists: The elements that are smaller than U1 are collected
into a sublist located to the left of U1, whereas the elements larger than U1 are
put into a sublist located to the right of U1. (Hence, the first element of the list
serves as the pivot, that is, the element used to subdivide the list.) The procedure
is then applied recursively to both sublists until only sublists of size 1 remain. The
random tree which is created in this way is called the binary search tree (BST);
a more detailed description will be provided in Section 5.5.1.

For the analysis of the complexity of QUICKSORT, the number Kn of compar-
isons needed to sort the list U1, . . . ,Un is of major interest. In terms of the tree
structure of sublists, this is the sum of the depths of the nodes (also called the in-
ternal path length) of the binary search tree. As shown by Régnier [33], a suitable
rescaling of Kn leads to a martingale Zn that converges almost surely to some limit
variable Z∞ as n → ∞,

(1) Zn := Kn −EKn

n + 1
a.s.−→

n→∞ Z∞.

The law L(Z∞) of the limit is known as the QUICKSORT distribution; it has been
characterized in terms of a stochastic fixed-point equation by Rösler [38].

Very recently, Neininger [30] obtained a central limit theorem (CLT) accompa-
nying (1) by proving the distributional convergence

(2)

√
n

2 logn
(Z∞ − Zn)

d−→
n→∞ N0,1,

where N0,1 is the standard normal distribution. Neininger used the contraction
method, which in the present context has been introduced by Rösler [38] in con-
nection with the distributional convergence in (1). A proof based on the method of
moments followed shortly [15].

The result (2) is surprising as for many martingales the step from a strong con-
vergence result to a second-order distributional limit theorem leads to a variance
mixture of normal distributions; see Hall and Heyde [18]. Quite generally, when-
ever one has a martingale convergence result Zn

a.s.−→
n→∞ Z∞ it is natural to ask

whether there is a corresponding distributional limit theorem in the sense that, for
some normalizing sequence bn → ∞ and some nondegenerate random variable Y ,

(3) bn(Z∞ − Zn)
d−→

n→∞ Y.
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Indeed, provided that appropriate technical conditions (which can be found in the
references cited below) are satisfied, a distributional limit theorem of the type (3)
is known to hold if:

(a) Zn is the proportion of black balls in the Pólya urn after n draws; see Hall and
Heyde [18], pages 80–81.

(b) Zn = ∑n
i=1 aiξi , where ξ1, ξ2, . . . are i.i.d. random variables with zero mean,

unit variance, and a1, a2, . . . is an appropriate square summable deterministic
sequence; see Loynes [27].

(c) Zn = Nn/mn, where Nn is a supercritical Galton–Watson process with mean
number of offspring m; see Athreya [3] and Heyde [20].

(d) Zn is the Biggins martingale of the branching random walk; see Rösler et al.
[39].

On this list, (a), (c) and (d) can be related to the analysis of QUICKSORT, and in
all three cases, the limit distribution is a nondegenerate mixture of normals.

We will use the well-known connection between the BST algorithm and the
continuous-time branching random walk (BRW) to explain the degeneracy phe-
nomenon. The state at time t of a BRW is a random point measure πt recording the
particle positions at that time; see Section 2 for a detailed description. A specific
choice of the branching mechanism and the shift distribution leads to a represen-
tation of the point measure given by the depths of the external nodes in the BST
with input size n as the value πTn at the random time Tn of the birth of the nth
particle; see Chauvin et al. [9, 10], as well as the earlier work by Devroye [11] that
connected Galton–Watson processes and random search trees. The BRW detour
provides a new and independent proof of Neininger’s result. In addition, we obtain
a stronger mode of convergence. Again, this is a topic familiar in connection with
martingale central limit theorems, where it is known that a strengthening of distri-
butional convergence to Rényi’s concept of stable convergence is often possible.
In our situation, we can even go beyond the stable convergence, obtaining what
we call almost sure weak convergence: With (Gn)n∈N the martingale filtration we
regard the conditional distribution of the left-hand side of (3) given Gn, as a ran-
dom variable with values in the set of Borel probability measures on the real line.
On the latter set we take the topology of weak convergence, and we show that the
conditional distribution converges almost surely in this space as n → ∞. In the
QUICKSORT context, with Gn the σ -field generated by U1, . . . ,Un, this results in

(4) L
{√

n

2 logn
(Z∞ − Zn)

∣∣∣Gn

}
a.s.w.−→
n→∞ {ω �→ N0,1}.

This can be applied to obtain strong prediction intervals; see Remark 5.21.
It turns out that in our context the familiar encoding of the BRW point measures

by the Biggins martingale can best be exploited via a suitable functional central
limit theorem for the latter. The Biggins martingale arises as a suitably standard-
ized moment generating function of the point measures of particle positions and
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may thus be regarded, together with its limit, as a stochastic process indexed by a
complex parameter β that varies over some open set containing 0. For β fixed, an
associated second-order distributional limit has already been obtained by Rösler et
al. [39]; see (d) in the above list. Noting that the Régnier martingale appears as the
derivative at β = 0 of this process, we are led to rescale β locally in order to ob-
tain a functional version that captures the local behavior. Of course, we also want a
nontrivial limit. This is indeed possible, and leads to Theorems 3.1 and 5.1, which
we regard as our main results. Again, we obtain almost sure weak convergence,
now on a suitable space of analytic functions. Further, the distribution of the limit
can be represented as the distribution of the Gaussian random analytic function
given by

ξ(u) =
∞∑

k=0

ξk

uk

√
k! , u ∈C,

where ξ0, ξ1, . . . is a sequence of independent standard normals. Much as in the
classical case of Donsker’s theorem (see Billingsley [8]), this may serve as the
starting point for distributional limit theorems for various functionals of the pro-
cesses, but we believe that, apart from its applicability to the question that we
started with, the BRW functional limit theorem is of interest on its own.

Finally, the above approach is not limited to binary search trees: We also obtain
an analogue of Neininger’s result for random recursive trees (RRTs). In fact, we
obtain a new result even in the setting of the Pólya urn (see Section 4.2), and we
treat Galton–Watson processes, BRW, BST and RRT with a unified method.

The paper is organized as follows. In Section 2, we define the branching random
walk and introduce the basic notation. The functional central limit theorem for the
BRW is stated in Section 3. In Section 4, we define almost sure weak convergence
and prove some of its properties. A stronger version of the functional CLT involv-
ing the notion of the a.s.w. convergence is then stated in Section 5. In the same
section, we state a number of applications of the functional CLT including (2) and
its analogues for other random trees. Proofs are given in Sections 6, 7 and 8.

2. Branching random walk.

2.1. Description of the model. An informal picture of a branching random
walk (BRW) is that of a time-dependent random cloud of particles located on the
real line and evolving through a combination of splitting (branching) and shift-
ing (random walk). The particles are replaced at the end of their possibly random
lifetimes by a random number of offspring, with locations relative to their parent
also being random. Our results will be valid for branching random walks both in
discrete and continuous time. Let us describe both models.

Discrete-time branching random walk. At time 0, we start with one particle
located at zero. At any time n ∈ N0, every particle which is alive at this time dis-
appears and is replaced (independently of all other particles and of the past of the
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process) by a random, nonempty cluster of particles whose displacements w.r.t.
the original particle are distributed according to some fixed point process ζ on R.
The number of particles in a cluster ζ is (in general) random and is always as-
sumed to be a.s. finite. Let Nn be the number of particles which are alive at time
n ∈N0. Note that {Nn : n ∈ N0} is a Galton–Watson branching process. Denote by
z1,n ≤ · · · ≤ zNn,n the positions of the particles at time n and let

πn =
Nn∑
j=1

δzj,n

be the point process recording the positions of the particles at time n. The only
parameter needed to identify the law of the discrete-time BRW is the law of the
point process ζ encoding the shifts of the offspring particles w.r.t. their parent.

Continuous-time branching random walk. At time 0, one particle is born at po-
sition 0. After its birth, any particle moves (independently of all other particles
and of the past of the process) according to a Lévy process. After an exponen-
tial time with parameter λ > 0, the particle disappears and at the same moment
of time it is replaced by a random cluster of particles whose displacements w.r.t.
the original particle are distributed according to some fixed point process ζ . The
new-born particles behave in the same way. All the random mechanisms involved
are independent. Denote the number of particles at time t ≥ 0 by Nt and note that
{Nt : t ≥ 0} is a branching process in continuous time. Let z1,t ≤ · · · ≤ zNt ,t be the
positions of the particles at time t and let

πt =
Nt∑

j=1

δzj,t

be the point process recording the positions of the particles at time t . The law of
the continuous-time BRW is determined by the parameters of the Lévy process,
the intensity λ and the law of the point process ζ .

Both models can be treated essentially by the same methods. To simplify the no-
tation, we will henceforth deal with the discrete-time BRW and indicate, whenever
necessary, how the proofs should be modified in the continuous-time case.

2.2. Standing assumptions and the Biggins martingale. Let us agree that∑
z∈ζ means a sum taken over all points of the point process ζ , where the points

are counted with multiplicities. We make the following standing assumptions on
the BRW.

ASSUMPTION A. The cluster point process ζ is a.s. nonempty, finite and the
probability that it consists of exactly one particle is strictly less than 1.
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ASSUMPTION B. There are p0 > 2 and β0 > 0 such that for all β ∈ (−β0, β0),

(5) E

[( ∑
z∈π1

eβz

)p0
]

< ∞.

We will use Assumption B at several places below, notably in the context of
Lyapunov’s condition for the classical CLT; see also Remark 5.12. It follows from
(5) that the function

(6) m(β) = E

[ ∑
z∈π1

eβz

]

is well defined and analytic in the strip {β ∈ C : |Reβ| < β0}. Note that m(β)

is the moment generating function of the intensity measure of π1. Assumption A
implies that the BRW under consideration is supercritical, that is the mean number
of particles at time 1 satisfies

m := m(0) > 1.

In a sufficiently small neighborhood of 0 the function

(7) ϕ(β) = logm(β)

is well defined and analytic, and the restriction of ϕ to real β is convex. By the
martingale convergence theorem, there is a random variable N∞ such that

(8)
Nn

mn

a.s.−→
n→∞ N∞.

Since EN2
1 < ∞ (by Assumption B) and the BRW never dies out (by Assump-

tion A), we have N∞ > 0 a.s.; see, for example, [4], Theorem 2(iii) on page 9. The
assumption that ζ is nonempty could be removed (while retaining supercriticality);
all results would then hold on the survival event.

A crucial role in the study of the branching random walk is played by the Big-
gins martingale:

(9) Wn(β) = 1

m(β)n

∑
z∈πn

eβz.

Uchiyama [42] and Biggins [6] proved that if (5) holds with some p0 ∈ (1,2], then
there is δ0 > 0 such that the martingale Wn(β) is bounded in Lp , 0 < p ≤ p0,
uniformly over all β ∈ C with |β| ≤ δ0. Furthermore, there is a random analytic
function W∞(β) defined for |β| ≤ δ0 such that a.s.,

(10) lim
n→∞ sup

|β|≤δ0

∣∣W∞(β) − Wn(β)
∣∣ = 0.

Note that Wn(0) = Nn

mn and W∞(0) = N∞, so that (10) contains (8) as a special
case.
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Notation. We denote by N0,σ 2 the normal distribution with mean 0 and vari-
ance σ 2. Given a nonnegative random variable S2 we denote by N0,S2 the mixture
of zero mean normal distributions with random variance given by S2. Throughout
the paper, we will use the notation:

(11) σ 2 = VarN∞ ≥ 0, d = ϕ′(0), τ 2 = ϕ′′(0) ≥ 0.

A generic constant which may change from line to line is denoted by C.

3. Functional central limit theorem for the Biggins martingale.

3.1. Statement of the FCLT. Under suitable conditions, Rösler et al. [39]
proved for real β in a certain interval around 0 a CLT of the form

(12)
m

1
2 n

√
VarW∞(β)

(
W∞(β) − Wn(β)

) d−→
n→∞ N0,W∞(β).

Taking here β = 0 and recalling that Wn(0) = Nn

mn , one recovers the CLT for
Galton–Watson processes [3, 20]:

(13) m
1
2 n

(
N∞ − Nn

mn

)
d−→

n→∞ N0,σ 2N∞ .

See also [4], page 53 (discrete time case), [4], page 123 (continuous time case),
[2], Theorem 3.1, page 28 (a statement with a stronger mode of convergence),
[28], Chapter 9.2 (statistical aspects).

We will prove a functional version of (12). That is, we will consider the left-
hand side of (12) as a random analytic function and prove weak convergence on a
suitable function space. In order to obtain a nondegenerate limit process, it will be
necessary to introduce a spatial rescaling into the Biggins martingale. Namely, we
consider

(14) Dn(u) = m
1
2 n

(
W∞

(
u√
n

)
− Wn

(
u√
n

))
.

We have to be explicit about the function space to which Dn belongs. Given R > 0
let DR (resp., DR) be the open (resp., closed) disk of radius R centered at the
origin. Denote by AR the set of functions which are continuous on DR and analytic
in DR . Endowed with the supremum norm, AR becomes a Banach space. Note that
AR is a closed linear subspace of the Banach space C(DR) of continuous functions
on DR . Being closed under multiplication, AR is even a Banach algebra. We always
consider Dn as a random element with values in AR (which is endowed with the
Borel σ -algebra generated by the topology of uniform convergence). Recall that
Wn and W∞ are well defined on the disk Dδ0 for some δ0 > 0, so that Dn is indeed
well defined as an element of AR for n > (R/δ0)

2. Our results remain valid for
some other choices of the function space, for example, one could replace AR by
the Hardy space H 2(DR). Recall that σ 2 = VarN∞ and τ 2 = ϕ′′(0).
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THEOREM 3.1. Fix any R > 0. The following convergence of random analytic
functions holds weakly on the Banach space AR :

(15)
{
Dn(u) : u ∈ DR

} d−→
n→∞

{
σ

√
N∞ξ(τu) : u ∈ DR

}
,

where ξ is a random analytic function which is defined in Section 3.2 below, and
which is independent of N∞.

The proof of Theorem 3.1 will be given in Section 7. In fact, we will prove a
stronger statement (Theorem 5.1, below) in which weak convergence is replaced
by the almost sure weak convergence of conditional distributions. This mode of
convergence will be studied in detail in Section 4.

3.2. Gaussian analytic function. The random analytic function ξ appearing
in Theorem 3.1 is defined as follows. Let ξ0, ξ1, . . . be independent real standard
normal variables. Consider the random analytic function ξ :C→C defined by

(16) ξ(u) =
∞∑

k=0

ξk

uk

√
k! .

With probability 1, the series converges uniformly on every bounded set be-
cause ξn = O(

√
logn) a.s. Note that for every l ∈ N and u1, . . . , ul ∈ C, the

2l-dimensional real random vector (Re ξ(u1), Im ξ(u1), . . . ,Re ξ(ul), Im ξ(ul)) is
Gaussian with zero mean. The covariance structure of the process ξ is given by

E
[
ξ(u)ξ(v)

] = euv, E
[
ξ(u)ξ(v)

] = euv̄, u, v ∈ C.

It follows that ξ̃ (u) := e−u2/2ξ(u), u ∈ R, is a stationary real-valued Gaussian
process with covariance function

E
[
ξ̃ (u)ξ̃ (v)

] = e− 1
2 (u−v)2

, u, v ∈R.

The spectral measure of ξ̃ is the standard normal distribution. We can view the pro-
cess ξ as an analytic continuation of the process eu2/2ξ̃ (u), u ∈ R, to the complex
plane.

A modification of ξ in which the variables ξ0, ξ1, . . . are independent complex
standard normal is a fascinating object called the plane Gaussian Analytic Function
(GAF) [41]. A remarkable feature of the plane GAF is that its zeros form a point
process whose distribution is invariant with respect to arbitrary translations and
rotations of the complex plane. The law of the zero set of ξ as defined in the
present paper is invariant with respect to real translations only. The function ξ and
its complex analogue appeared as limits of certain random partition functions; see
[23, 24].
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4. Almost sure weak convergence of probability kernels. Our results are
most naturally stated using the notion of almost sure weak (a.s.w.) convergence
of probability kernels. This mode of convergence seems especially natural when
dealing with randomly growing structures. In this section, we define a.s.w. conver-
gence and study its relation to other modes of convergence.

4.1. Basic definitions. Let E be a complete separable metric (Polish) space
endowed with the Borel σ -algebra E . Let M1(E) be the space of probability
measures on (E,E). The weak convergence on M1(E) is metrized by the Lévy–
Prokhorov metric which turns M1(E) into a complete separable metric space.

Probability kernels. A (probability transition) kernel is a random variable
Q : � → M1(E) defined on a probability space (�,F,P) and taking values in
M1(E). We will write Q(ω) for the probability measure on E corresponding to
the outcome ω ∈ �, and Q(ω;B) = Q(ω)(B) for the value assigned by the prob-
ability measure Q(ω) to a set B ∈ E . Instead of the above definition of kernels, we
can use the following: A kernel from a probability space (�,F,P) to (E,E) is a
function Q : � × E → R such that:

(i) for every set B ∈ E , the map ω �→ Q(ω;B) is F -Borel-measurable;
(ii) for every ω ∈ �, the map B �→ Q(ω;B) defines a probability measure on

(E,E).

Probability kernels are also called random probability measures on E.

Conditional distributions. In this paper, kernels will mostly appear in form of
a conditional distribution of a random variable given a σ -algebra. Let X : � → E

be a random variable defined on (�,F,P) and taking values in a Polish space E.
Given a σ -algebra G ⊂ F , a kernel Q : � → M1(E) is called (a version of) the
conditional distribution of X given G if:

(i) Q is G-measurable as a map from � to M1(E),
(ii) for all bounded Borel functions f : E → R and all A ∈ G,

(17)
∫
A

f
(
X(ω)

)
P(dω) =

∫
A

(∫
E

f (z)Q(ω;dz)

)
P(dω).

In this case, we use the notation Q = L(X|G).

Almost sure weak convergence. A sequence Q1,Q2, . . . : � → M1(E) of ker-
nels defined on a common probability space (�,F,P) is said to converge to a ker-
nel Q : � → M1(E) almost surely with respect to weak convergence (a.s.w.) as
n → ∞ if there exists a set A ∈ F with P[A] = 1 such that, for all ω ∈ A, the prob-
ability measure Qn(ω) converges weakly on E to the probability measure Q(ω),
again as n → ∞.
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Let us state the above definition in a slightly different (but equivalent) form.
Given a bounded Borel function f : E → R and a kernel Q consider the random
variable Qf : � →R defined by

Qf : ω �→
∫
E

f (z)Q(ω;dz).

Then a sequence of kernels Q1,Q2, . . . : � → M1(E) converges to a kernel Q in
the a.s.w. sense if and only if for every bounded continuous function f : E → R

we have

Qf
n

a.s.−→
n→∞ Qf .

The equivalence of both definitions follows from the fact that it is possible to
find a countable sequence of bounded continuous functions f1, f2, . . . : E → R

which determines the weak convergence in the sense that a sequence of probability
measures μ1,μ2, . . . on E converges to a probability measure μ on E if and only
if limn→∞

∫
E fi dμn = ∫

E fi dμ for all i ∈ N; see, for example, [32], page 280. In
fact, if we know that for every bounded continuous function f , the random variable
Q

f
n converges to some limit in the a.s. sense, then there is a kernel Q such that Qn

converges to Q a.s.w.; see [5].

REMARK 4.1. Almost sure weak convergence contains a.s. convergence as
a special case. Indeed, let X,X1,X2, . . . be random variables on the probability
space (�,F,P). Then, the sequence Xn converges a.s. to the random variable X if
and only if the sequence of kernels Qn : ω �→ δXn(ω) a.s.w. converges to the kernel
Q : ω �→ δX(ω).

REMARK 4.2. Almost sure weak convergence contains weak convergence as
a special case. Let μ,μ1,μ2, . . . be probability measures on E. The sequence μn

converges weakly to μ if and only if the sequence of kernels Qn : ω �→ μn con-
verges a.s.w. to the kernel Q : ω �→ μ.

REMARK 4.3. The central limit theorem can be extended to sequences of ran-
dom variables which are i.i.d. conditionally on some σ -algebra [17]. This and some
related results [31] fit into the framework of a.s.w. convergence.

Stable and mixing convergence. The a.s.w. convergence is related to the sta-
ble convergence which was introduced by Rényi [34–36]. We recall the definition
of stable convergence, referring to [1] and [19] for more details and references.
A sequence of kernels Q1,Q2, . . . : � → M1(E) converges stably to a kernel
Q : � → M1(E) if for every set A ∈ F and every bounded continuous function
f : E →R, we have

(18) lim
n→∞

∫
A

(∫
E

f (z)Qn(ω;dz)

)
P(dω) =

∫
A

(∫
E

f (z)Q(ω;dz)

)
P(dω).
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Of particular interest for us will be the following special case of this definition.
Let X1,X2, . . . be a sequence of random variables defined on a probability space
(�,F,P) and taking values in a Polish space E. We say that Xn converges stably
to a kernel Q : � → M1(E) if the sequence of kernels Qn : ω �→ δXn(ω) converges
stably to Q. That is to say, for every set A ∈ F and every bounded continuous
function f : E →R, we have

(19) lim
n→∞

∫
A

f
(
Xn(ω)

)
P(dω) =

∫
A

(∫
E

f (z)Q(ω;dz)

)
P(dω).

Taking in this definition A = �, we see that stable convergence implies weak con-
vergence of Xn to the law obtained by mixing Q(ω) over P(dω).

A special case of stable convergence is the mixing convergence. We say that Xn

converges to a probability distribution μ on E in the mixing sense if Xn converges
stably to the kernel Q : ω �→ μ. In this case, we write

Xn
mix−→

n→∞ μ.

By the above, mixing convergence implies weak convergence to the same limit.
Another way of expressing these definitions is the following: A sequence of

random variables Xn : � → E converges stably if for every event A ∈ F with
P[A] > 0 the conditional distribution of Xn given A converges weakly to some
probability distribution μA on E. The limiting probability distribution is given by

μA := 1

P[A]E[Q1A]
and, in general, depends on A. The limiting kernel Q can be seen as the Radon–
Nikodym density of the M1(E)-valued measure A �→ P[A]μA. If the limiting
distribution μA does not depend on the choice of A, then we have mixing conver-
gence.

4.2. An example of a.s.w. convergence: The Pólya urn. Consider an urn ini-
tially containing b black and r red balls. In each step, draw a ball from the urn at
random and replace it together with c balls of the same color. Let Bn and Rn be the
number of black and red balls after n draws and let Fn be the σ -algebra generated
by the first n draws. It is well known that the proportion Zn of black balls after n

draws is a martingale w.r.t. to the filtration {Fn}n∈N and that

(20) Zn := Bn

Bn + Rn

a.s.−→
n→∞ Z∞ ∼ Beta

(
b

c
,
r

c

)
.

We claim that

(21) Qn := L
{√

n(Z∞ − Zn)|Fn

} a.s.w.−→
n→∞ {ω �→ N0,S2(ω)} =: Q∞,

where S2(ω) = Z∞(ω)(1 − Z∞(ω)). The kernel Q∞ on the right-hand side maps
an outcome ω to the centered normal distribution on R with variance S2(ω). We
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will prove in Proposition 4.7 and Remark 4.8 below that (21) implies distributional
convergence to the normal mixture:

(22)
√

n(Z∞ − Zn)
d−→

n→∞ N0,S2 .

One can establish (22) as a direct consequence of the de Moivre–Laplace CLT
by noting that conditionally on Z∞ = p, the results of individual draws are i.i.d.
Bernoulli variables with parameter p. Of course, (22) is well known; see [22],
Section 3, or [18], pages 80–81 (where it is deduced as a special case of the CLT
for martingales), but (21) is stronger than (22).

PROOF OF (21). The random variables Bn,Rn,Zn are Fn-measurable. For the
conditional law of Z∞ given Fn we have, recalling (20),

L(Z∞|Fn) ∼ Beta
(

Bn

c
,
Rn

c

)
.

So, the conditional law Qn on the left-hand side of (21) is given by the kernel

Qn : ω �→ L
{√

n

(
B 1

c
Bn(ω), 1

c
Rn(ω)

− Bn(ω)

Bn(ω) + Rn(ω)

)}
,

where Bα,β denotes a random variable with Beta(α,β) distribution.
We will use the following CLT for the Beta distribution. Let αn,βn > 0 be two

sequences such that αn,βn → +∞ and αn

αn+βn
→ p ∈ (0,1), as n → ∞. Then

(23) Un := √
αn + βn

(
Bαn,βn − αn

αn + βn

)
d−→

n→∞ N0,p(1−p).

The proof of (23) is standard and proceeds as follows. Denote by �αn,�βn inde-
pendent random variables having Gamma distributions with shape parameters αn

and βn, respectively, and scale parameter 1. Since Bαn,βn has the same distribution

as �αn

�αn+�βn
, we can rewrite the left-hand side of (23) as follows:

Un
d= βn�αn − αn�βn√

αnβn(αn + βn)
·

√
αnβn

�αn + �βn

.

The first factor converges weakly to the standard normal distribution (as one can
easily see by computing its characteristic function), whereas the second factor con-
verges in probability to 1. Slutsky’s lemma completes the proof of (23).

Now, we apply (23) to αn = 1
c
Bn(ω) and βn = 1

c
Rn(ω). Noting that for a.a.

ω ∈ �, we have p(ω) := limn→∞ αn

αn+βn
= Z∞(ω) and αn + βn ∼ n, we obtain

that Qn(ω) converges weakly to N0,S2(ω), for a.a. ω ∈ �. �
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4.3. Properties of the a.s.w. convergence. Taken together, the following
proposition and examples show that a.s.w. convergence is strictly stronger than
stable convergence.

PROPOSITION 4.4. Let Q1,Q2, . . . : � → M1(E) be a sequence of kernels
converging to a kernel Q : � → M1(E) in the a.s.w. sense. Then Qn converges to
Q stably.

PROOF. Let f : E → R be a bounded continuous function. By definition of
the a.s.w. convergence, the sequence Q

f
n (ω) = ∫

E f (z)Qn(ω;dz) converges to

Qf (ω) = ∫
E f (z)Q(ω;dz) for a.a. ω ∈ �. Also, Q

f
n (ω) is bounded by ‖f ‖∞.

By the dominated convergence theorem, (18) holds. So, Qn converges to Q stably.
�

EXAMPLE 4.5. Let us show that, in general, stable convergence does not im-
ply a.s.w. convergence. Let ξ1, ξ2, . . . be nondegenerate i.i.d. random variables
with probability distribution μ. Then the sequence of kernels Qn : ω �→ δξn(ω) con-
verges stably (in fact, mixing) to the kernel Q : ω �→ μ. This is equivalent to saying
that the i.i.d. sequence ξ1, ξ2, . . . is mixing in the sense of ergodic theory. Alter-
natively, note that by the i.i.d. property, limn→∞P[ξn ≤ x|ξk ≤ x] = P[ξ1 ≤ x] for
every fixed k ∈ N, and apply [34], Theorem 2. However, Qn does not converge
a.s.w. because the sequence ξn does not converge a.s.

Many classical distributional limit theorems hold, in fact, even in the sense of
mixing convergence [34, 36]. In particular, this is the case for the central limit
theorem.

EXAMPLE 4.6. Let ξ1, ξ2, . . . be i.i.d. random variables with Eξi = 0, Var ξi =
1. Consider the random variables Xn = 1√

n
(ξ1 + · · · + ξn). Then the kernels Qn :

ω �→ δXn(ω) converge stably (in fact, mixing) to the kernel Q : ω �→ N0,1; see [34],
Theorem 4 or [1], Theorem 2. However, Qn does not converge a.s.w. because the
sequence Xn does not converge a.s. On the other hand, the central limit theorems
for branching random walks which we will state and prove below hold not only
stably but even in the a.s.w. sense.

PROPOSITION 4.7. Let {Fn}n∈N be a filtration on a probability space
(�,F,P). Let X1,X2, . . . be a sequence of random variables defined on (�,F,P)

and taking values in a Polish space E. Assume that for every n ∈ N, the random
variable Xn is measurable w.r.t. the σ -algebra F∞ = ∨

k∈NFk (but not necessar-
ily w.r.t. Fn). If the sequence of conditional laws Qn = L{Xn|Fn} converges to a
kernel Q : � → M1(E) in the a.s.w. sense, then Xn converges stably to Q.
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REMARK 4.8. In particular, Xn converges in distribution to the probability
measure EQ obtained by mixing the probability measures Q(ω) over P(dω). That
is, for every Borel set B ⊂ E,

(EQ)(B) =
∫
�

Q(ω;B)P(dω).

PROOF OF PROPOSITION 4.7. Let f : E →R be a bounded continuous func-
tion. We will show that for every bounded F -measurable function g : � →R,

(24) lim
n→∞

∫
�

f
(
Xn(ω)

)
g(ω)P(dω) =

∫
�

g(ω)

(∫
E

f (z)Q(ω;dz)

)
P(dω).

By taking g = 1A in (24), we obtain the required relation (19).
Let first g = 1A for some A ∈ Fk , where k ∈ N is fixed. Because of the fil-

tration property, A ∈ Fn for all n ≥ k. Applying (17) to the conditional law
Qn = L(Xn|Fn), we obtain that for all n ≥ k,∫

A
f

(
Xn(ω)

)
P(dω) =

∫
A

(∫
E

f (z)Qn(ω;dz)

)
P(dω).

For a.a. ω ∈ �, the probability measure Qn(ω) converges weakly to Q(ω), and
hence, the sequence Q

f
n (ω) = ∫

E f (z)Qn(ω;dz) (which is bounded by ‖f ‖∞)
converges as n → ∞ to Qf (ω) = ∫

E f (z)Q(ω;dz). By the dominated conver-
gence theorem, we immediately obtain (24).

A standard approximation argument extends (24) to all F∞-measurable
bounded functions g : � →R. Finally, let g be F -measurable and bounded. In this
case, one can reduce (24) to the case of F∞-measurable function g̃ = E[g|F∞].
Namely, since Xn is F∞-measurable, we have∫

�
f

(
Xn(ω)

)
g(ω)P(dω) =

∫
�

f
(
Xn(ω)

)
g̃(ω)P(dω).

Similarly, since the M1(E)-valued map ω �→ Q(ω) is F∞-measurable [as an a.s.
limit of F∞-measurable maps ω �→ Qn(ω)],∫

�
g(ω)

(∫
E

f (z)Q(ω;dz)

)
P(dω) =

∫
�

g̃(ω)

(∫
E

f (z)Q(ω;dz)

)
P(dω).

So, it suffices to establish (24) for the function g̃ instead of g, but this was already
done above since g̃ is F∞-measurable and bounded. �

We will need the following variant of the martingale convergence theorem; see
[26], page 409, 10d. An even more general result can be found in [25].

LEMMA 4.9. Let {Fn}n∈N be a filtration on a probability space (�,F,P).
Write F∞ = ∨

k∈NFk . Let ξ, ξ1, ξ2, . . . be random variables defined on (�,F,P)

such that ξn → ξ a.s. and |ξn| < M for some constant M and all n ∈N. Then

E[ξn|Fn] a.s.−→
n→∞ E[ξ |F∞].
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PROPOSITION 4.10. Let {Fn}n∈N be a filtration on a probability space
(�,F,P). Let Xn,Yn, n ∈ N, be complex-valued random variables defined on
(�,F,P). Suppose that for some kernel Q : � → M1(R),

(25) L(Xn|Fn)
a.s.w.−→
n→∞ Q.

(a) If Yn → 0 a.s., then L(Xn + Yn|Fn) converges to Q a.s.w.
(b) If Yn → 1 a.s., then L(XnYn|Fn) converges to Q a.s.w.

REMARK 4.11. Note that we do not assume Yn to be Fn-measurable. With
this assumption, the proposition would become trivial.

PROOF OF PART (A). We can find a sequence of uniformly continuous,
bounded functions f1, f2, . . . : R → R with the property that a sequence of prob-
ability measures μ1,μ2, . . . converges weakly on R to a probability measure μ if
and only if for every i ∈ N,

lim
n→∞

∫
R

fi dμn =
∫
R

fi dμ;
see, for example, [32], page 280. Fix some i ∈ N. We know from (25) that

(26) E
[
fi(Xn)|Fn

] a.s.−→
n→∞ Qfi ,

where Qfi denotes the random variable ω �→ ∫
R

fi(z)Q(ω;dz). Since fi is uni-
formly continuous and Yn → 0 a.s., we have

ξn := fi(Xn + Yn) − fi(Xn)
a.s.−→

n→∞ 0.

Also, |ξn| ≤ 2‖fi‖∞. By Lemma 4.9 with ξ = 0, we have E[ξn|Fn] → 0 a.s. and
hence, recalling (26),

E
[
fi(Xn + Yn)|Fn

] a.s.−→
n→∞ Qfi .

This holds for every i ∈ N. Hence, L(Xn + Yn|Fn) converges a.s.w. to Q. �

PROOF OF PART (B). Part (b) can be reduced to part (a) by noting that XnYn =
Xn + Xn(Yn − 1) and Y ′

n := Xn(Yn − 1) converges a.s. to 0. �

The following result shows that a.s.w. convergence of conditional laws is pre-
served under filtration coarsening.

PROPOSITION 4.12. Let {Fn}n∈N be a filtration on a probability space
(�,F,P). Let ξ1, ξ2, . . . be random variables defined on (�,F,P) and taking
values in a Polish space E. Suppose that the sequence of conditional laws Qn :=
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L(ξn|Fn) converges as n → ∞ to the kernel Q in the a.s.w. sense. Let {F̃n}n∈N be
another filtration on (�,F,P) such that F̃n ⊂Fn and let F̃∞ = ∨∞

n=1 F̃n. Then

Q̃n := L(ξn|F̃n)
a.s.w.−→
n→∞ E[Q|F̃∞].

PROOF. Let f1, f2, . . . : E → R be bounded continuous functions such that a
sequence of probability measures μ1,μ2, . . . on E converges weakly to μ if and
only if

∫
E fi dμn converges to

∫
E fi dμ as n → ∞, for all i ∈ N. Let Q

fi
n : � →R

be the function ω �→ ∫
E fi(z)Qn(ω;dz) and define Q̃

fi
n similarly. Then Qn → Q

a.s.w. means that Q
fi
n → Qfi a.s., for all i ∈ N. Using the definition of conditional

distributions, it is easy to check that Q̃
fi
n = E[Qfi

n |F̃n]. By Lemma 4.9, we have

Q̃fi
n = E

[
Qfi

n |F̃n

] a.s.−→
n→∞ E

[
Qfi |F̃∞

]
.

Since this holds for every i ∈ N, we obtain that Q̃n → E[Q|F̃∞] a.s.w. �

Finally, we need an a.s.w. version of the continuous mapping theorem. Given
two Polish spaces E and E′, any continuous function g : E → E′ defines a con-
tinuous function g∗ : M1(E) → M1(E

′) via the push-forward μ �→ μg , where
μg(A) = μ(g−1(A)) for all Borel subsets A of E′. Viewing kernels as random
elements of M1-spaces, we now obtain immediately that the a.s.w. convergence
of Qn to Q implies the a.s.w. convergence of g∗(Qn) to g∗(Q). In terms of push-
forwards, the conclusion may be rewritten as the weak convergence of Q

g
n(ω, ·) to

Qg(ω, ·) for almost all ω.

5. Conditional functional central limit theorem and applications to ran-
dom trees.

5.1. Statement of the conditional FCLT. We are almost ready to state a
stronger version of Theorem 3.1. Consider a branching random walk in discrete
or continuous time defined on a probability space (�,F,P) and satisfying the
assumptions of Section 2.2. Denote by Ft = σ {πj : 0 ≤ j ≤ t} the σ -algebra gen-
erated by the BRW up to time t ∈ N0 (discrete-time case) or t ≥ 0 (continuous-
time case). For our applications to the analysis of algorithms, we need to state a
functional CLT valid over an arbitrary increasing sequence of stopping times. Let
0 ≤ T1 ≤ T2 ≤ · · · be a monotone increasing sequence of stopping times w.r.t. the
filtration {Ft } such that a.s.,

(27) lim
n→∞Tn = +∞.

In the discrete-time case, we assume additionally that Tn takes values in N0. Two
special cases (which make sense both for discrete and continuous time) will be of
interest to us:
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1. Tn = n.
2. Tn is the time at which the nth particle is born.

The second special case will be needed for the above-mentioned applications. Let
FTn be the σ -algebra generated by the branching random walk up to the stopping
time Tn.

Fix R > 0. Consider the following random analytic function on the disk DR :

(28) DTn(u) = m
1
2 Tn

(
W∞

(
u√
Tn

)
− WTn

(
u√
Tn

))
.

We will prove that the conditional distribution of DTn under FTn converges to
some limiting kernel Q∞ : � → M1(AR), in the a.s.w. sense. To describe the
limiting kernel Q∞, we use the random variable N∞ from (8) (defined on the
same probability space as the branching random walk) and the random analytic
function ξ described in Section 3.2 (ξ may be defined on a different probability
space). For ω ∈ �, we define Q∞(ω) to be the distribution (on AR) of the random
analytic function

�(·;ω) :DR →C, u �→ σ
√

N∞(ω)ξ(τu), u ∈ DR,

where we recall that σ 2 = VarN∞ and τ 2 = ϕ′′(0). Note that the dependence of �

on its arguments factorizes.
The following is our main result.

THEOREM 5.1. As n → ∞, the conditional distribution Qn := L(DTn |FTn)

converges to the kernel Q∞ defined above, almost surely with respect to weak
convergence:

(29) L
(
DTn(·)|FTn

) a.s.w.−→
n→∞

{
ω �→ L

(
�(·;ω)

)}
.

Recalling Proposition 4.7 and Remark 4.8, we obtain the following.

COROLLARY 5.2. The following convergence of random analytic functions
holds weakly on AR for every R > 0:{

DTn(u) : u ∈DR

} d−→
n→∞

{
σ

√
N∞ξ(τu) : u ∈ DR

}
,

where N∞ and ξ are independent.

The proof of Theorem 5.1 will be given in Section 7.

REMARK 5.3. The function DTn(u) may not be defined on the event An :=
{R/

√
Tn > δ0}. Since we do not assume that Tn → ∞ uniformly, it is possible

that the probability of An is strictly positive for every n ∈ N. On the other hand,
we have 1An → 0 a.s. since Tn → ∞ a.s. Hence, on the event An we can define
DTn(u) in an arbitrary way (say, as 0) and by Proposition 4.10, part (a), this does
not affect Theorem 5.1 and Corollary 5.2.
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REMARK 5.4. Theorems 3.1 and 5.1 deal with the behavior of Wn(β) in a
small neighborhood of 0. It is possible to obtain analogues of these results in a
neighborhood of an arbitrary real β∗ from an appropriate interval; however, for
our applications we only need the case β∗ = 0.

5.2. CLT for Galton–Watson processes. In this section, we show how The-
orem 5.1 can be used to rederive and generalize the classical CLT for Galton–
Watson processes due to Athreya [3] and Heyde [20]. Consider a Galton–Watson
process Nn starting at time 0 with one particle. Suppose that N1 has mean m > 1,
variance σ 2 > 0 and finite p0th moment, for some p0 > 2. Let P[N1 = 0] = 0
(otherwise, we have to restrict everything to the survival event). The limit

(30) N∞ := lim
n→∞

Nn

mn
> 0

exists a.s. By considering a branching random walk in which the particles split
according to Nn while not moving away from 0, we can identify Nn/mn with
Wn(β), for every β ∈ C. In this setting, Theorem 5.1 takes the following form.

THEOREM 5.5. For every sequence (Tn)n∈N of stopping times with Tn ↑ ∞
a.s. as n → ∞, we have

(31) L
(√

mTn

(
N∞ − NTn

mTn

)∣∣∣FTn

)
a.s.w.−→
n→∞ {ω �→ N0,σ 2N∞(ω)}.

Indeed, f �→ f (0) is a continuous, linear map from AR to C. Observe also that
ξ(0) ∼ N0,1 by (16). The continuous mapping theorem (see the end of Section 4.3)
justifies taking u = 0 in Theorem 5.1 and yields (31).

One may ask whether it is possible to move N∞(ω) from the right-hand side of
(31) to the left. This would have the advantage that the limiting distribution would
be normal rather than a mixture of normals. The question is nontrivial because the
random variable N∞ is not FTn-measurable. Nevertheless, the answer is positive:

THEOREM 5.6. For every sequence (Tn)n∈N of stopping times with Tn ↑ ∞
a.s. as n → ∞, we have

(32) L
(√

mTn

N∞

(
N∞ − NTn

mTn

)∣∣∣FTn

)
a.s.w.−→
n→∞ {ω �→ N0,σ 2}.

PROOF. Note that by (30) and (27),

(33)

√
mTn

NTn

a.s.−→
n→∞

1√
N∞

.
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The random variable on the left-hand side is FTn-measurable. Applying Slutsky’s
lemma pointwise to Theorem 5.5, we obtain that

L
(√

mTn

NTn

√
mTn

(
N∞ − NTn

mTn

)∣∣∣FTn

)
a.s.w.−→
n→∞ {ω �→ N0,σ 2}.

By Proposition 4.10(b), we can multiply the random variable on the left-hand side

by Yn :=
√

NTn/(m
TnN∞) because Yn converges to 1 a.s. by (33). This yields (32).

�

By Proposition 4.7 and Remark 4.8, we obtain the following corollary of Theo-
rems 5.5 and 5.6.

COROLLARY 5.7. It holds that√
mTn

(
N∞ − NTn

mTn

)
d−→

n→∞ N0,σ 2N∞,(34)

√
mTn

N∞

(
N∞ − NTn

mTn

)
mix−→

n→∞ N0,σ 2 .(35)

Taking Tn = n we recover the original CLT for Galton–Watson processes;
see (13). Note that we need the condition EN

p0
1 < ∞ for some p0 > 2 (which

is slightly stronger than the condition EN2
1 < ∞ needed in the CLT for Galton–

Watson processes). This is due to the fact for general Tn’s we need to use Lya-
punov’s CLT in the proof of Theorem 5.1.

5.3. Sum of the particle positions in the BRW: Martingale convergence. In
this and the next section, we will be interested in the sum of the positions of the
particles in a branching random walk at time n:

(36) Sn =
Nn∑
j=1

zj,n.

Let d = ϕ′(0). The sum Sn is related to the first derivative W ′
n(0) via

(37) Ln := W ′
n(0) = Sn − dnNn

mn
.

Both expressions imply that Ln is a martingale, using either the fact that Wn is a
martingale and dominated convergence for conditional expectations, or the BRW
structure together with some straightforward calculations.

PROPOSITION 5.8. The limit L∞ := W ′∞(0) = limn→∞ Ln exists a.s. and in
Lp for every 0 < p ≤ p0.



3678 R. GRÜBEL AND Z. KABLUCHKO

PROOF. Recall from Section 2.2 that Wn, considered as a random element
taking values in the Banach space Aδ0 , converges a.s. to W∞, as n → ∞. The
mapping f �→ f ′(0) is linear and continuous from Aδ0 to C by the Cauchy integral
formula. Hence, Ln = W ′

n(0) converges to L∞ = W ′∞(0) in the a.s. sense.
The proof of the Lp-convergence is based on a moment estimate for Wn(β)

stated in Proposition 6.1 below. It suffices to show that the martingale Ln = W ′
n(0)

is bounded in Lp0 . By the Cauchy integral formula, for any sufficiently small r > 0
we have

E
∣∣W ′

n(0)
∣∣p0 = E

∣∣∣∣ 1

2π

∫ 2π

0

Wn(reiϕ)

reiϕ
dϕ

∣∣∣∣p0 ≤ CE

∫ 2π

0

∣∣Wn

(
reiϕ)∣∣p0 dϕ,

where the last step is by Jensen’s inequality. Interchanging the expectation and
the integral by the Fubini theorem and applying Proposition 6.1, we obtain the
required Lp0 -boundedness: E|W ′

n(0)|p0 ≤ C. �

REMARK 5.9. Since EWn(β) = 1 for all |β| ≤ δ0, we have ELn = EL∞ = 0.
Consequently, ESn = dnmn.

REMARK 5.10. With trivial modifications, the proof of Proposition 5.8 can
be extended to derivatives of arbitrary order k ∈ N0. Namely, a.s. and in Lp , for
every 0 < p ≤ p0, we have

(38) W(k)
n (0) −→

n→∞ W(k)∞ (0).

The kth derivative W
(k)
n (0) can be expressed through the “empirical BRW mo-

ments”

S(l)
n =

Nn∑
j=1

zl
j,n

with l = 0, . . . , k. It is possible to generalize the results obtained here for Sn = S
(1)
n

to such higher moments.

We will need a generalization of Proposition 5.8 to arbitrary increasing se-
quences of stopping times. Let 0 ≤ T1 ≤ T2 ≤ · · · be stopping times as in Sec-
tion 5.1.

PROPOSITION 5.11. A.s. and in Lp for every 0 < p < p0 it holds that

(39) LTn = STn − dTnNTn

mTn
−→
n→∞ L∞.

PROOF. Since Tn → +∞ a.s., we have LTn → L∞ a.s. by Proposition 5.8. We
have |LTn | ≤ supk∈N |Lk|, and Lk is a martingale bounded in Lp0 ; see the proof
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of Proposition 5.8. By Doob’s inequality, the sequence LTn is uniformly bounded
in Lp0 . By the Vitali convergence theorem, it follows that (39) holds in Lp for all
0 < p < p0. �

REMARK 5.12. It remains open what moment assumption on the BRW is
necessary and sufficient for first-order results such as Propositions 5.8 and 5.11
to hold. Our standing Assumption B is certainly not the best possible; in fact,
the proofs given above remain valid if we require (5) to hold with some p0 > 1.
Anyway, in our applications to the analysis of algorithms condition (5) is satisfied
with arbitrarily large p0.

5.4. Sum of the particle positions in the BRW: Conditional CLT. Now we are
ready to state a CLT for LTn . Let 0 ≤ T1 ≤ T2 ≤ · · · be stopping times as in Sec-
tion 5.1.

THEOREM 5.13. We have

L
{√

mTn

Tn

(L∞ − LTn)
∣∣∣FTn

}
a.s.w.−→
n→∞ {ω �→ N0,σ 2τ 2N∞(ω)}.(40)

PROOF. Note that f �→ f ′(0) is a linear continuous map from AR to C by
Cauchy’s integral theorem; we will apply this map to both sides of (29). Note that
by (28),

D′
Tn

(0) =
√

mTn

Tn

(
W ′∞(0) − W ′

Tn
(0)

) =
√

mTn

Tn

(L∞ − LTn).

Observe also that ξ ′(0) ∼ N0,1 by (16). By the continuous mapping theorem (see
the end of Section 4.3), the a.s.w. convergence in (29) is preserved when applying
the derivative map, hence we obtain (40). �

REMARK 5.14. With the same justification as in Theorem 5.6, we can move
N∞ from the right-hand side of (40) to the left-hand side.

In particular, Proposition 4.7 (see also Remark 4.8) yields the following ana-
logue of Corollary 5.7.

COROLLARY 5.15. We have√
mTn

Tn

(L∞ − LTn)
d−→

n→∞ N0,σ 2τ 2N∞,(41)

√
mTn

N∞Tn

(L∞ − LTn)
mix−→

n→∞ N0,σ 2τ 2 .(42)
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5.5. Applications to random trees. In this section, we show how our results
can be applied to binary search trees and random recursive trees. These models are
random trees grown by attaching one new node in each step, according to certain
random rules. By randomizing the times T1, T2, . . . at which the new nodes are
attached, these random trees can be embedded into a suitable BRW in continuous
time; see Chauvin et al. [9], Chauvin and Rouault [10]. This procedure can be
seen as an instance of Poissonization. The embeddings are constructed such that
the positions of the particles in the BRW correspond to the depths of external (or
internal) nodes of the random tree. Let (�,F,P) be the probability space on which
the random trees are defined. The times T1, T2, . . . form a Yule process on some
other probability space (�′,F ′,P′), and the BRW is then defined on the product
space. Using our results on the BRW we will obtain, after a de-Poissonization,
results on random trees.

The Yule process. Fix an intensity λ > 0. Let (�′,F ′,P′) be a probability space
carrying independent random variables τ1, τ2, . . . with

τn ∼ Exp(λn).

We regard Tn+1 = τ1 + · · · + τn, n ∈ N, T1 = 0, as times at which the nth particle
in a continuous-time BRW is born. We denote by Nt = ∑∞

n=1 1Tn≤t the number
of particles at time t ≥ 0. Then {Nt : t ≥ 0} is a continuous-time Markov process
(called the Yule process) with values in N and transition rates

n
intensity λn

−−−−→ n + 1.

One can imagine that each particle splits into two new particles with intensity λ,
independently of the other particles and of the past of the process. Note, however,
that the random variables specifying which particle splits are not defined on the
probability space (�′,F ′,P′). The expected number of particles at time t ≥ 0 is
ENt = eλt , and hence, m = EN1 = eλ. From the exact form of the distribution of
Nt (see, e.g., [4], pages 109 and 130) it can be deduced that

(43) N∞ = lim
t→∞

Nt

eλt
∼ Exp(1).

In particular, in all examples below we have σ 2 = VarN∞ = 1.
Genealogical structure and displacements. Consider a continuous-time BRW

in which the particles split at times T1, T2, . . . introduced above. In any such
splitting, a particle disappears and generates exactly two new particles. We as-
sume that the particles do not move between the splittings. In order to specify the
BRW, we need to specify the particle that splits at time Tn (genealogical struc-
ture), and the displacements of its offspring. We further assume that the random
variables describing the genealogical structure and displacements are defined on a
probability space (�,F,P). Then the BRW can be defined on the product space
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(�,F,P) = (�′,F ′,P′) ⊗ (�,F,P). Finally, we assume that (5) holds for arbi-
trary p0 > 0 since, as is easy to verify, this is true in all our examples.

Recall that we denote the positions of the particles at time Tn by z1,Tn ≤ · · · ≤
zn,Tn . The variable

(44) STn =
n∑

j=1

zj,Tn

will be interpreted below as the internal or external path length of a random tree.
It is easy to see that the random variable STn = STn(ω′)(ω′,ω) (which is defined on
the product space � = �′ × �) depends on the second coordinate ω only. So, we
can consider STn as a random variable defined on �. The next result (whose proof
we defer to Section 8.1) differs from Proposition 5.11 by a more convenient choice
of normalization.

PROPOSITION 5.16. Under the assumptions of the present section, on the
probability space (�,F,P) we have

(45) L̃Tn := STn − d
λ
n logn

n
−→
n→∞ L̃∞

a.s. and in Lp for every p > 0, where

(46) L̃∞ = L∞
N∞

− d

λ
logN∞.

REMARK 5.17. In the proof of Proposition 5.16, we will see that the random
variable L̃∞ (defined originally on the product space � = �′×�) depends only on
the second component ω ∈ �. By discarding the first component, we can consider
L̃∞ as a random variable on �.

The following central limit theorem is an analogue of Theorem 5.13. First, we
need to introduce several σ -algebras. Let F ′

n ⊂ F ′ be the σ -algebra on �′ gen-
erated by T1, . . . , Tn. This σ -algebra contains information about the birth times
of the particles, but it does not contain information on the genealogical and spa-
tial structure of the BRW. Denote by Gn ⊂ F the σ -algebra on � containing the
information about the genealogical structure and the displacements of the first n

particles in the BRW. Recall that FTn ⊂ F ′ ⊗ F is the σ -algebra on � = �′ × �

generated by the BRW up to time Tn. Clearly, FTn =F ′
n ⊗ Gn.

THEOREM 5.18. Under the assumptions of the present section, on the proba-
bility space (�,F,P) we have

(47) L
{√

λn

logn

(
L̃∞ − STn − d

λ
n logn

n

)∣∣∣Gn

}
a.s.w.−→
n→∞ {ω �→ N0,σ 2τ 2}.
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The proof of Theorem 5.18 will be given in Section 8.2. Using Proposition 4.7,
we obtain the following.

COROLLARY 5.19. The following convergence holds in the mixing (and
hence, distributional) sense:

(48)

√
λn

logn

(
L̃∞ − STn − d

λ
n logn

n

)
mix−→

n→∞ N0,σ 2τ 2 .

REMARK 5.20. Note that the variance of the limiting distribution is determin-
istic, which is in sharp contrast to Theorem 5.13. See Remark 7.1 for an explana-
tion.

Now we are ready to apply these results to random trees.

5.5.1. Binary search trees. This model appears for example in the analysis
of the QUICKSORT algorithm. Let V = ⋃∞

k=0{0,1}k be the set of all finite words
over the alphabet {0,1} (including the empty word ∅). One can consider V as
the set of nodes of an infinite binary tree with root ∅. Each node (ε1, . . . , εk) of
depth k is connected to two nodes (ε1, . . . , εk,0) and (ε1, . . . , εk,1) of depth k+1.
A binary tree is a nonempty finite subset X ⊂ V with the property that together
with every node (ε1, . . . , εk) �= ∅ it contains its predecessor (ε1, . . . , εk−1). The
external nodes of a binary tree X are those nodes (ε1, . . . , εk) ∈ V \ X for which
(ε1, . . . , εk−1) ∈ X. It is easy to see that the number of external nodes of X exceeds
the number of nodes of X by 1.

Consider a growing sequence X1,X2, . . . of random binary trees constructed as
follows. Let X1 be the tree with one node ∅. Inductively, given Xn (which is a
binary tree with n nodes), choose uniformly at random one of the n + 1 external
nodes of Xn and attach it to the tree. Denote the tree thus constructed by Xn+1
and proceed further in the same manner. The random tree Xn is called the binary
search tree with n nodes. For more details, we refer to Drmota [13], Chapter 6. We
will be interested in the external path length of Xn, denoted by EPLn, which is the
sum of depths of all n + 1 external nodes of Xn. For example, the number Kn of
comparisons used by the QUICKSORT algorithm applied to a random permutation
of n elements has the same distribution as EPLn − 2n. Let (�,F,P) be the prob-
ability space on which X1,X2, . . . are defined and let Gn ⊂ F be the σ -algebra
generated by X1, . . . ,Xn.

Let us construct an embedding of the binary search trees into a BRW. Consider
a continuous-time BRW in which the particles do not move between the splittings
and each particle (located, say, at x) splits with intensity λ = 1 into two particles
located at x + 1:

δx

intensity 1
−−−−→ 2δx+1.
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The particles of the BRW correspond to the external nodes, and their positions at
time Tn correspond to the depths of the external nodes in the binary search tree
with n nodes. Hence, STn can be interpreted as the external path length EPLn of
the binary search tree with n nodes. We have

ϕ(β) = 2eβ − 1, λ = ϕ(0) = 1, d = ϕ′(0) = 2, τ 2 = ϕ′′(0) = 2.

From Proposition 5.16, we obtain that there is a limit random variable EPL∞ such
that a.s. and in Lp , for all p > 0,

(49)
EPLn − 2n logn

n
−→
n→∞ EPL∞.

For p = 2, this recovers a result of Régnier [33]. In view of the a.s. convergence,
convergence in Lp for general p > 0 follows from Rösler’s [38] result on the
convergence of the respective distributions in the Wasserstein dp-metric. From
Theorem 5.18, we obtain that on the probability space (�,F,P),

(50) L
{√

n

2 logn

(
EPL∞ − EPLn − 2n logn

n

)∣∣∣Gn

}
a.s.w.−→
n→∞ {ω �→ N0,1}.

In particular, we obtain the following CLT:

(51)

√
n

2 logn

(
EPL∞ − EPLn − 2n logn

n

)
mix−→

n→∞ N0,1.

Thus, we recovered the CLT of Neininger [30], but we have a stronger (mixing
as compared to weak) mode of convergence. By the properties of mixing conver-
gence, see [1], Proposition 2, we also have the joint convergence

(52)
(√

n

2 logn

(
EPL∞ − EPLn − 2n logn

n

)
,EPL∞

)
d−→

n→∞ (Z,EPL∞),

where Z ∼ N0,1 is independent of EPL∞. This is of interest, for example, in con-
nection with the asymptotic distribution of the ratio of the standardized path length
and its limit.

REMARK 5.21. One can use (50) to construct strong prediction intervals for
EPL∞. By a strong (asymptotic) prediction interval at level 1 − α for EPL∞ we
mean two sequences of random variables θ−

n and θ+
n defined on (�,F,P) such

that:

1. θ−
n and θ+

n are measurable w.r.t. Gn;
2. limn→∞P[θ−

n ≤ EPL∞ ≤ θ+
n |Gn] = 1 − α a.s.

It follows from (50) that a strong prediction interval for EPL∞ is given by

θ±
n = EPLn − 2n logn

n
±

√
2 logn

n
z1− α

2
,

where z1− α
2

is the (1 − α
2 )-quantile of the standard normal distribution.
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5.5.2. Random recursive trees. This well-known model (see Drmota [13],
Chapter 6) is defined as follows. Consider a sequence of random trees X1,X2, . . .

generated as follows. Each Xn is a tree with n nodes labelled by 1, . . . , n. The tree
X1 consists of one node (root) labelled by 1. Inductively, given the tree Xn, we
construct the tree Xn+1 as follows. Among the n nodes of Xn, we choose one uni-
formly at random, attach to it a new direct descendant labeled by n+1, and denote
the resulting tree by Xn+1. Denote by (�,F,P) the probability space on which
X1,X2, . . . are defined. Let Gn ⊂ F be the σ -algebra generated by X1, . . . ,Xn.

Let us interpret the depths of the nodes of a random recursive tree in terms
of a suitable BRW. Consider a continuous-time BRW in which the particles do
not move between the splittings and each particle (located, say, at x) splits with
intensity 1 into one particle located at x and one particle located at x + 1:

δx

intensity 1
−−−−→ δx + δx+1.

It is easy to see that the positions of the n particles of the BRW at time Tn have
the same distribution as the depths of the nodes in a random recursive tree with n

nodes. Here, the depth means the distance to the node labelled by 1. The random
variable STn can be interpreted as the internal path length, denoted by IPLn, of the
random recursive tree with n nodes. We have

ϕ(β) = eβ, λ = ϕ(0) = 1, d = ϕ′(0) = 1, τ 2 = ϕ′′(0) = 1.

From Proposition 5.16, we obtain that there is a limit random variable IPL∞ such
that a.s. and in Lp for every p > 0,

(53)
IPLn − n logn

n
−→
n→∞ IPL∞.

This recovers results of Mahmoud [29], who proved a.s. and L2-convergence; Lp-
convergence for arbitrary p > 0 has been shown by Dobrow and Fill [12]; see
Grübel and Michailow [16] for a different approach. Dobrow and Fill [12] also
obtained a characterization of the distribution of IPL∞ in terms of a stochastic
fixed-point equation, similar to Rösler’s result [38] for the QUICKSORT distribu-
tion that we mentioned above.

From Theorem 5.18, we obtain that on the probability space (�,F,P),

(54) L
{√

n

logn

(
IPL∞ − IPLn − n logn

n

)∣∣∣Gn

}
a.s.w.−→
n→∞ {ω �→ N0,1}.

In particular, we obtain an analogue of Neininger’s CLT for random recursive trees:

(55)

√
n

logn

(
IPL∞ − IPLn − n logn

n

)
mix−→

n→∞ N0,1.



FUNCTIONAL CLT FOR BRANCHING RANDOM WALKS 3685

The results (54) and (55) seem to be new. By [1], Proposition 2, we have the joint
convergence

(56)
(√

n

logn

(
IPL∞ − IPLn − n logn

n

)
, IPL∞

)
d−→

n→∞ (Z, IPL∞),

where Z ∼ N0,1 is independent of IPL∞.

5.5.3. Trees and urns. It is well known that random trees of the type consid-
ered above are closely related to urn models; for example, in Evans et al. [14] the
corresponding process boundaries were obtained by regarding the trees as nested
Pólya urns of the type considered in Section 4.2. Similarly, the process of node
depth profiles of the external, respectively internal, nodes in the case of binary
search trees and random recursive trees is the same as the color distribution pro-
cess for a suitably chosen urn model with infinitely many colors: If the colors are
numbered by the nonnegative integers, then we start at time 0 with 1 ball of color 0
in both cases and proceed as follows. In the step from n to n+ 1, we choose one of
the then available n + 1 balls uniformly at random; let j be its color. In the binary
search tree case, we then put back two balls with color j + 1, in the recursive tree
case we put back the original ball and add one ball with color j + 1. Thus, our
approach leads to results for a class of Pólya type urn models with infinitely many
colors.

5.6. Conjectures: Laws of the iterated logarithm. A central limit theorem is
usually accompanied by a law of iterated logarithm (LIL). For example, the CLT
for Galton–Watson processes [20] is accompanied by Heyde’s LIL proved in [21].

More generally, let a zero mean, L2-bounded martingale Zn = ∑n
i=1 Xi be

given. Denote by Z∞ the a.s. and L2-limit of Zn and write σ 2
n = Var(Z∞ −Zn) →

0. [20] provided sufficient conditions for the CLT of the form

(57)
Z∞ − Zn

σn

d−→
n→∞ N0,S2 .

The most important of these conditions is this one: For some random variable S2,

1

σ 2
n

∞∑
i=n

X2
i

P−→
n→∞ S2.

Under slightly stronger conditions, Heyde [20] proved a law of the iterated loga-
rithm of the form

(58) lim sup
n→∞

Z∞ − Zn

S
√

2σ 2
n log | logσn|

= 1.

Comparing (57) with (51) suggests that in the setting of binary search trees with
Zn being the Régnier martingale EPLn−2n logn

n
, we should have S = 1, σ 2

n = 2 logn
n

.
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So, in view of (58), it is natural to conjecture that in the setting of binary search
trees the following LIL holds:

lim sup
n→∞

√
n

2
√

logn log logn

(
EPL∞ − EPLn − 2n logn

n

)
= 1.

An analogous conjecture can be stated for random recursive trees:

lim sup
n→∞

√
n√

2 logn log logn

(
IPL∞ − IPLn − n logn

n

)
= 1.

Similarly, the lim inf’s should be equal to −1.

6. A moment estimate for the Biggins martingale. The aim of this section is
to prove that the Biggins martingale Wn(β) is Lp-bounded uniformly in |β| ≤ ε0,
for some sufficiently small ε0 > 0.

PROPOSITION 6.1. For every 0 < p ≤ p0, there exist an ε0 > 0 and a constant
C > 0 such that for all n ∈N and β ∈Dε0 we have

E
∣∣Wn(β)

∣∣p < C.

REMARK 6.2. Biggins [6] proved this result for p ∈ (1,2] using the von
Bahr–Esseen inequality [43]. For the case 2 ≤ p ≤ p0, we will use the Rosen-
thal inequality [37]. It states that for p ≥ 2 and any independent random variables
X1, . . . ,Xn ∈ Lp with zero mean we have

(59) E|X1 + · · · + Xn|p ≤ Kp

(
n∑

j=1

E|Xj |p +
(

n∑
j=1

E|Xj |2
)p/2)

,

where Kp is a constant depending only on p.

PROOF OF PROPOSITION 6.1. Let 2 ≤ p ≤ p0. Decomposing the particles in
the (n + 1)st generation of the BRW into clusters according to their predecessor
zj,n, j = 1, . . . ,Nn, in the nth generation, we obtain

Wn+1(β) − Wn(β) =
Nn∑
j=1

eβzj,n

m(β)n
gj,n(β),

where g1,n(β), g2,n(β), . . . are i.i.d. copies of W1(β) − 1 which are also inde-
pendent of the σ -algebra Fn generated by the first n generations of the BRW.
By Jensen’s inequality and (5), we have the estimate, valid for all β ∈ C with
|Reβ| < β0,

(60) E
∣∣g1,n(β)

∣∣p ≤ 2p−1(
1 +E

∣∣W1(β)
∣∣p) ≤ C + CE

( ∑
z∈π1

e(Reβ)z

)p

≤ C.
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Noting that the random variables eβzj,n and Nn are Fn-measurable, Egj,n(β) = 0,
and applying the Rosenthal inequality to the conditional distributions, we obtain

E
[∣∣Wn+1(β) − Wn(β)

∣∣p|Fn

] = E

[∣∣∣∣∣
Nn∑
j=1

eβzj,n

m(β)n
gj,n(β)

∣∣∣∣∣
p

|Fn

]

≤ Kp

(
An(β) + Bn(β)

)
,

where An(β) and Bn(β) are two terms [corresponding to the two sums on the
right-hand side of (59)] which will be estimated below. The term An(β) is given
by

An(β) =
Nn∑
j=1

ep(Reβ)zj,n

|m(β)|pn
E

∣∣g1,n(β)
∣∣p ≤ C

(
m(p Reβ)

|m(β)|p
)n

Wn(p Reβ),

where we used (9) and (60). The term Bn(β) is given by

Bn(β) =
(

Nn∑
j=1

e(2 Reβ)zj,n

|m(β)|2n
E

∣∣g1,n(β)
∣∣2)p/2

≤ C

(
m(2 Reβ)1/2

|m(β)|
)pn∣∣Wn(2 Reβ)

∣∣p/2
,

where we again used (9) and the estimate E|g1,n(β)|2 < C following from (60).
We can choose ε0 > 0 so small that for all |β| < ε0,

m(p Reβ)

|m(β)|p < k < 1,
m(2 Reβ)1/2

|m(β)| < k < 1.

Indeed, as β → 0, the terms on the left-hand side converge to m1−p and m−p/2

which are both smaller than 1 by the supercriticality assumption m > 1. Now, we
can estimate the expectation of An(β) and Bn(β) as follows:

E
[
An(β)

] ≤ Ckn
EWn(p Reβ) = Ckn,

E
[
Bn(β)

] ≤ Ckpn
E

∣∣Wn(2 Reβ)
∣∣p/2 ≤ Ckpn,

where in the last step we assumed that p ∈ (2,4] and used the Biggins [6] estimate
E|Wn(2 Reβ)|p/2 < C valid for sufficiently small ε0 > 0 and all |β| ≤ ε0. We
obtain that for all n ∈ N,

E
[∣∣Wn+1(β) − Wn(β)

∣∣p] ≤ Ckpn,

which implies the required bound E|Wn(β)|p ≤ C for p ∈ (2,4].
Now, it is easy to drop the assumption on p ≤ 4 inductively: If the statement was

established for p ∈ (2k−1,2k], then one can repeat the above argument to obtain it
for p ∈ (2k,2k+1]. �
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REMARK 6.3. It is straightforward to state a continuous-time analogue of
Proposition 6.1, just replace n ∈ N by t ≥ 0. The continuous-time case can be
handled by considering a discrete skeleton of the process in the same way as in [6].

7. Proof of the functional central limit theorem. The aim of this section
is to prove Theorem 5.1. The main idea is a decomposition of W∞(β) − WTn(β)

stated in (61), below. Similar decompositions appeared in the proof of the CLT for
Galton–Watson processes and in the work of Rösler et al. [39].

7.1. The basic decomposition. Let l ∈ N0 be fixed. By the Markov property,
the behavior of any particle after time Tn depends only on the position of this
particle at time Tn but otherwise not on the behavior of the BRW before time Tn.
In particular, for all l ∈ N and |β| ≤ δ0,

m(β)TnWTn+l(β) =
N ′

n∑
j=1

eβzj,Tn W
(l)
j,Tn

(β),

where N ′
n := NTn denotes the number of particles at time Tn, and W

(l)
j,Tn

(β), j =
1, . . . ,N ′

n, are i.i.d. random analytic functions (independent of the σ -algebra FTn)
with the same distribution as Wl(β). Note that these random analytic functions are
defined on the same probability space as the BRW. Letting l → ∞ while keeping
n fixed, we obtain

m(β)TnW∞(β) =
N ′

n∑
j=1

eβzj,Tn Wj,Tn(β),

where Wj,Tn is the a.s. limit of W
(l)
j,Tn

as l → ∞; see (10). Subtracting from both

sides m(β)TnWTn(β), we obtain the basic decomposition

(61) m(β)Tn
(
W∞(β) − WTn(β)

) =
N ′

n∑
j=1

eβzj,Tn
(
Wj,Tn(β) − 1

)
.

In the rest of the proof, we exploit the fact that the summands on the right-hand
side of (61) are conditionally independent given the σ -algebra FTn . Essentially,
we will prove that conditionally on FTn it is possible to apply the Lyapunov CLT
to these summands.

REMARK 7.1. At this point, we can explain why the variance of the limiting
normal distribution is random in the CLT for Galton–Watson processes (13) and
constant in Neininger’s CLT (2). In (13), we observe a Galton–Watson process at
the fixed time Tn = n, so that the number of summands in (61) is random, and
this randomness persists in the large n limit. In Neininger’s CLT (2), we consider
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a binary search tree with n nodes meaning that the time Tn is such that N ′
n = n.

So, the number of summands in (61) is deterministic and there is no reason for the
limiting variance to be random.

7.2. The conditional distribution. Recalling the formula for DTn(u) [see (28)],
we obtain the representation (valid for |u/

√
Tn| ≤ δ0, see also Remark 5.3)

(62) DTn(u) =
N ′

n∑
j=1

aj,n(u)

(
Wj,Tn

(
u√
Tn

)
− 1

)
,

where

(63) aj,n(u) = m
1
2 Tnm

(
u√
Tn

)−Tn

e
u√
Tn

zj,Tn .

We regard the random analytic function DTn as a random element with values in
the Banach algebra AR . Note that the random analytic functions aj,n and the ran-
dom variables Tn, N ′

n (“the past”) are FTn-measurable, while the random analytic
functions Wj,Tn (“the future”) are independent of FTn by the Markov property. All
these random objects are defined on the same probability space, say (�,F,P), as
the branching random walk. We will write aj,n(u;ω), Tn(ω), N ′

n(ω) if we want to
stress the dependence of these random elements on ω ∈ �.

We are interested in the conditional distribution L(DTn |FTn) of DTn given the
σ -algebra FTn . To describe it, it will be convenient to “decouple” the “future” from
the “past” by introducing independent random analytic functions wj,n(·), j ∈ N,
which have the same law as Wj,Tn(·)−1 [equivalently: the same law as W∞(·)−1],
but which are defined on a different probability space, say (�∗,F∗,P∗). With this
notation, the conditional law L(DTn |FTn) is given by the kernel

(64) Qn : � → M1(AR), ω �→ L∗
(
Sn(u;ω)

)
, ω ∈ �,

where L∗ denotes the law w.r.t. the probability measure P∗, and Sn(u;ω) is a
“decoupled” version of DTn given by

(65) Sn(u;ω) :=
N ′

n(ω)∑
j=1

aj,n(u;ω)wj,n

(
u√

Tn(ω)

)
, u ∈DR.

Keeping ω ∈ � fixed, we regard Sn(u;ω) as a random element, defined on the
probability space (�∗,F∗,P∗) and taking values in AR . For any fixed ω ∈ �, de-
composition (65) provides a representation of Sn(u;ω) as a sum of independent
random elements defined on (�∗,F∗,P∗). Note that the individual terms in the
sum are not identically distributed, but that they arise from the identically dis-
tributed wj,n, j = 1, . . . ,N ′

n(ω), by simple rescalings that depend on ω only.
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Our aim is to show that for P-a.a. ω ∈ �, Sn(u;ω) satisfies a central limit theo-
rem in the sense that weakly on AR ,

(66) Sn(u;ω)
d−→

n→∞ S∞(u;ω),

where the limit is defined as follows:

(67) S∞(u;ω) = σ
√

N∞(ω)ξ(τu).

Here, ξ is as in Section 3.2. Let �0 ⊂ � be the set of all ω ∈ � for which the
conditions

lim
n→∞Tn(ω) = +∞,(68)

lim
n→∞ sup

|β|<δ0

∣∣W∞(β) − WTn(β)
∣∣ = 0(69)

are satisfied; cf. (10) and (27). Clearly, P[�0] = 1. For the rest of the proof of
Theorem 5.1,

we keep ω ∈ �0 fixed.

The probability space (�∗,F∗,P∗) is the only remaining source of randomness.
The proof of (66) will be divided into two parts: convergence of finite-dimensional
distributions (Section 7.3) and tightness (Section 7.4).

7.3. Convergence of finite-dimensional distributions. Fix some l ∈ N and
u1, . . . , ul ∈ C. As ω ∈ �0 is fixed, sampling Sn(·,ω), n ∈ N, and S∞(·,ω) at
these u-values results in l-dimensional random vectors on the probability space
(�∗,F∗,P∗), and our aim is to prove that

(70)
(
Sn(u1;ω), . . . , Sn(ul;ω)

) d−→
n→∞

(
S∞(u1;ω), . . . , S∞(ul;ω)

)
.

The quantities aj,n(u;ω), N ′
n(ω), Tn(ω) in the decomposition (66) are determin-

istic, whereas the wj,n, n ∈ N, j = 1, . . . ,N ′
n(ω), are independent and identically

distributed AR-valued random variables on (�∗,F∗,P∗). We are thus in the situ-
ation of the classical central limit theorem for triangular schemes of independent
zero-mean random vectors (see, e.g., [7], Chapter 5), which means that for (70)
we need to show that the covariances converge and that some condition ensuring
uniform asymptotic negligibility is satisfied; in view of our general Assumption B
on moments, the Lyapunov condition is a convenient choice. (A precise statement
of the Lyapunov CLT in the form needed here is given in [24], Theorem 3.18.)

Step 1: Convergence of covariances. Take some u, v ∈C. We show that

lim
n→∞E∗

[
Sn(u;ω)Sn(v;ω)

] = σ 2N∞(ω)eτ 2uv,(71)

lim
n→∞E∗

[
Sn(u;ω)Sn(v;ω)

] = σ 2N∞(ω)eτ 2uv̄.(72)
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Here, E∗ denotes the expectation operator w.r.t. the probability measure P∗. We
prove only (71) since the proof of (72) is analogous. Since aj,n(u) and aj,n(v) are
deterministic, we have

E∗
[
Sn(u)Sn(v)

] =
( N ′

n∑
j=1

aj,n(u)aj,n(v)

)
E∗

[
wj,n

(
u√
Tn

)
wj,n

(
v√
Tn

)]
.

The proof of (71) will be accomplished once we have shown that

(73) lim
n→∞

N ′
n∑

j=1

aj,n(u)aj,n(v) = N∞eτ 2uv,

and, noting that the P∗-distribution of wj,n does not depend on j or n,

(74) lim
n→∞E∗

[
w1,1

(
u√
Tn

)
w1,1

(
v√
Tn

)]
= σ 2.

PROOF OF (73). Using first the definition of aj,n [see (63)], and then the uni-
formity in (10), we obtain that

N ′
n∑

j=1

aj,n(u)aj,n(v) = e
Tn(ϕ(0)−ϕ( u√

Tn
)−ϕ( v√

Tn
))

N ′
n∑

j=1

e
u+v√

Tn
zj,Tn

∼ N∞e
Tn(ϕ(0)−ϕ( u√

Tn
)−ϕ( v√

Tn
)+ϕ( u+v√

Tn
))
.

Expanding ϕ into a Taylor series at 0, we obtain (73). �

PROOF OF (74). Recall that limn→∞ Tn = +∞. Since w1,1 has the same law
as W∞ − 1 and as such is continuous at 0, we have, P∗-a.e.,

(75) lim
n→∞w1,1

(
u√
Tn

)
w1,1

(
v√
Tn

)
= w2

1,1(0).

We have to prove the uniform integrability in order to be able to conclude the
convergence of expectations. By Proposition 6.1,

(76) E

∣∣∣∣w1,1

(
u√
Tn

)∣∣∣∣2+δ

< C, E

∣∣∣∣w1,1

(
v√
Tn

)∣∣∣∣2+δ

< C,

where C = C(ω) may depend on ω. By the Cauchy–Schwarz inequality, the se-

quence w1,1(u/
√

Tn)w1,1(v/
√

Tn) is bounded in L1+ δ
2 (�∗,F∗,P∗), which im-

plies that it is uniformly integrable. It follows from (74) that

lim
n→∞E∗

[
w1,1

(
u√
Tn

)
w1,1

(
v√
Tn

)]
= E∗

[
w2

1,1(0)
] = VarW∞(0) = σ 2,
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where in the last step we used that under P∗ the random variable w1,1(0) has the
same distribution as the random variable W∞(0) − 1 = N∞ − 1 under P.

Step 2: Lyapunov condition. We verify that for every u ∈ C, the Lyapunov con-
dition limn→∞ Rn(u) = 0 holds, where

(77) Rn(u) =
N ′

n∑
j=1

E∗
∣∣∣∣aj,n(u)wj,n

(
u√
Tn

)∣∣∣∣2+δ

.

Using (76) and recalling the definition of aj,n [see (63)], we obtain

Rn(u) ≤ C

N ′
n∑

j=1

∣∣aj,n(u)
∣∣2+δ = Ce

Tn( 2+δ
2 ϕ(0)−(2+δ)ϕ( Reu√

Tn
))

N ′
n∑

j=1

e
(2+δ)(Reu)

zj,Tn√
Tn .

Using (69), we obtain that uniformly in u ∈ DR ,

Rn(u) ≤ CN∞e
Tn( 2+δ

2 ϕ(0)−(2+δ)ϕ( Reu√
Tn

)+ϕ(
(2+δ)Reu√

Tn
))
.

Expanding ϕ into a Taylor series at 0, we obtain the estimate

Rn(u) ≤ CN∞e−( δ
2 +o(1))Tn.

This completes the verification of the Lyapunov condition. �

7.4. Tightness. We prove that for every ω ∈ �0, the sequence of random ana-
lytic functions Sn(u;ω), n ∈ N, is tight on AR .

LEMMA 7.2. Fix R > 0. There exist random variables M : � → R and N :
� →N such that for all ω ∈ �0, n > N(ω), u ∈ DR ,

(78) E∗
∣∣Sn(u;ω)

∣∣2 ≤ M(ω).

The required tightness can be now established as follows. A result of Shirai [40]
(see Lemma 2.6 in [40] and the remark thereafter) states that if f1, f2, . . . are
random analytic functions defined on the disk D2R such that for some q > 0, C > 0
and all n ∈ N, u ∈ D2R , we have E|fn(u)|q < C, then the sequence fn is tight on
the space of analytic functions on the smaller disk DR . Since Lemma 7.2 holds
with R replaced by 2R, Shirai’s result implies that for every ω ∈ �0, the sequence
Sn(u;ω), n ∈ N, is tight on the space of analytic functions on the disc DR .

PROOF OF LEMMA 7.2. For every ω ∈ �0, we have limn→∞ Tn(ω) = +∞
and hence, we can choose a large enough N(ω) such that for all n > N(ω) the
argument of the function wj,n in the definition of Sn(u;ω) [see (65)] is small
enough so that Sn(u;ω) is well defined for all u ∈ DR .
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Fix some ω ∈ �0 and let in the sequel n > N(ω). Note that E∗Sn(u;ω) = 0.
Using the additivity of the variance and (76), we obtain that for some C1 = C1(ω)

and all n > N(ω),

E∗
∣∣Sn(u)

∣∣2 =
N ′

n∑
j=1

∣∣aj,n(u)
∣∣2E∗

∣∣∣∣wj,n

(
u√
Tn

)∣∣∣∣2 ≤ C1

N ′
n∑

j=1

∣∣aj,n(u)
∣∣2.

Recalling the definition of aj,n [see (63)], and using (69), we obtain that

E∗
∣∣Sn(u)

∣∣2 ≤ C1e
Tn(ϕ(0)−2 Reϕ( u√

Tn
))

N ′
n∑

j=1

e
2(Reu)zj,Tn√

Tn

= C1e
Tn(ϕ(0)−2 Reϕ( u√

Tn
)+ϕ( 2 Reu√

Tn
))
WTn

(
2 Reu√

Tn

)
.

Expanding ϕ into a Taylor series at 0, we see that the argument of the exponential
function can be estimated by C2 = C2(ω). Also, for all ω ∈ �0,

lim
n→∞WTn

(
2 Reu√

Tn

;ω
)

= W∞(0;ω),

thus proving (78). �

8. Proofs of the random tree results. This section contains de-Poissoni-
zation arguments justifying the passage from BRW to random trees.

8.1. Proof of Proposition 5.16. Recall that

LTn = STn − dnTn

eλTn
, L̃Tn = STn − d

λ
n logn

n
,

(79)

L̃∞ = L∞
N∞

− d

λ
logN∞.

We are going to show that on the product probability space (�,F,P) it holds that
L̃Tn → L̃∞ a.s. and in Lp for all p > 0.

Step 1: Proof of the a.s. convergence. Let us show that L̃Tn → L̃∞ a.s. By (79),

(80) L̃Tn = LTn

eλTn

n
+ d

λ
(λTn − logn).

By Proposition 5.11 (in the continuous-time version), we have

(81) LTn

a.s.−→
n→∞ L∞.

The a.s. convergence of the martingale Nt

eλt to N∞ as t → +∞ implies, with t = Tn,
that

(82)
n

eλTn

a.s.−→
n→∞ N∞, λTn = logn − logN∞ + o(1) a.s.
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Inserting (81) and (82) into (80) yields that L̃Tn → L̃∞ a.s.
Since L̃Tn depends only on ω ∈ � (and not on ω′ ∈ �′), the same is true for the

limit random variable L̃∞. Hence, we can regard L̃Tn and L̃∞ as random variables
on the probability space (�,F,P), and the convergence L̃Tn → L̃∞ holds on this
probability space as well.

In the next two steps, we prove that L̃Tn → L̃∞ in Lp(�,F,P) for every p > 0.
In fact, by the Vitali convergence theorem, it suffices to prove that the sequence
L̃Tn is bounded in Lp for every p > 0.

Step 2: Proof that L∗
Tn

is bounded in Lp . Consider first

L∗
Tn

:= STn − d
λ
n logn

eλTn
= LTn + d

λ

n

eλTn
(λTn − logn).

By Proposition 5.11, we know that LTn is bounded in Lp . By the Minkowski and
Hölder inequalities, it suffices to show that for some Cp > 0 depending only on
p > 0,

(83) E

(
n

eλTn

)p

< Cp, E
∣∣λTn − logn

∣∣p < Cp.

Recall that Tn is the time at which the nth particle is born in a Yule process with
intensity λ. This means that

Ek := λk(Tk+1 − Tk), k ∈ N,

are i.i.d. exponential random variables with parameter 1. We have the representa-
tion

(84) λTn =
n−1∑
k=1

Ek

k
.

It follows that for every r > −1,

(85) E

(
n

eλTn

)r

= nr
n−1∏
k=1

1

1 + r
k

−→
n→∞ �(r + 1).

This implies the first estimate in (83). Also, for any 0 < ε < 1 we have

E|λTn − logn|p ≤ CE

(
n

eλTn

)ε

+ CE

(
n

eλTn

)−ε

< Cp.

This proves the second estimate in (83).
Step 3: Proof that L̃Tn is bounded in Lp . We proved that the sequence L∗

Tn
is

bounded in Lp , but we need a similar statement for the sequence L̃Tn . Note that
the random variables STn and Tn are independent. We have, by Step 2,

Cp > E
∣∣L∗

Tn

∣∣p = E

∣∣∣∣L̃Tn

n

eλTn

∣∣∣∣p = E|L̃Tn |pE
(

n

eλTn

)p

> cpE
∣∣L̃Tn

∣∣p,

where cp > 0 and the last inequality is by (85). Hence, the sequence E|L̃Tn |p is
bounded.
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8.2. Proof of Theorem 5.18. We have to show that on the probability space
(�,F,P),

(86) L
{√

λn

logn

(
L̃∞ − STn − d

λ
n logn

n

)∣∣∣Gn

}
a.s.w.−→
n→∞ {ω �→ N0,σ 2τ 2},

where we recall from (46) that L̃∞ = L∞
N∞ − d

λ
logN∞. Instead, we will show that

on the product space (�,F,P),

(87) L
{√

λn

logn

(
L̃∞ − STn − d

λ
n logn

n

)∣∣∣FTn

}
a.s.w.−→
n→∞ {ω �→ N0,σ 2τ 2}.

Assuming that we have established (87), let us prove (86). Note that FTn = F ′
n ⊗

Gn, so that Proposition 4.12 allows us to replace FTn in (87) by the smaller σ -
algebra {∅,�} ⊗ Gn. But since the random variable on the left-hand side of (87)
(defined on the product space � = �′ ×�) depends only on the coordinate ω ∈ �,
we can discard the component �′ and obtain (86). In the sequel, we are occupied
with the proof of (87).

Step 1: Proof strategy. Recalling that Tn is the time at which the nth particle
is born and using (82), we can write Theorem 5.13 in the following form: On the
product space (�,F,P),

(88) L
{√

eλTn

TnN∞

(
L∞ − STn − dnTn

eλTn

)∣∣∣FTn

}
a.s.w.−→
n→∞ {ω �→ N0,σ 2τ 2}.

Inserting (82) into equation (88) formally, we obtain the required relation (87).
However, in order to obtain (87) rigorously we need slightly more precise asymp-
totics than those given in (82).

Step 2: Precise asymptotics for Tn. We prove that

(89) lim sup
n→∞

|N∞eλTn − n|√
2n log logn

= lim sup
n→∞

|λTn − log n
N∞ |√

2n−1 log logn
= 1 a.s.

We need Kendall’s theorem; see [4], Theorem 2 on page 127. It states that condi-
tionally on N∞ = y > 0, the points Pn := y(eλTn −1), n ≥ 2, form a homogeneous
Poisson point process on (0,∞). By the law of the iterated logarithm for the Pois-
son process, we have

lim sup
n→∞

|Pn − n|√
2n log logn

= 1.

After standard transformations, we obtain (89). Alternatively, the second limit in
(89) could be computed using Heyde’s [21] law of the iterated logarithm applied
to the Yule process Nt evaluated at time t = Tn.
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Step 3: Completing the proof. We can represent the random variable on the left-
hand side of (87) as a sum of three terms:√

λn

logn

(
L̃∞ − STn − d

λ
n logn

n

)

=
√

λTn

logn

eλTnN∞
n

·
√

eλTn

TnN∞

(
L∞ − STn − dnTn

eλTn

)
(90)

+
√

λn

logn
L∞

(
1

N∞
− eλTn

n

)
+

√
λn

logn

d

λ

(
log

n

N∞
− λTn

)
.

Denote the three summands on the right-hand side of (90) by R
(1)
n ,R

(2)
n ,R

(3)
n . It

follows from (89) and (82) that

lim
n→∞R(2)

n = lim
n→∞R(3)

n = 0 a.s.,
(91)

lim
n→∞

√
λTn

logn

eλTnN∞
n

= 1 a.s.

Applying to the decomposition on the right-hand side of (90) equations (88) and
(91) together with Proposition 4.10, we obtain the required equation (87).
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