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CENTRAL LIMIT THEOREMS OF A RECURSIVE STOCHASTIC
ALGORITHM WITH APPLICATIONS TO ADAPTIVE DESIGNS

BY LI-XIN ZHANG1

Zhejiang University

Stochastic approximation algorithms have been the subject of an enor-
mous body of literature, both theoretical and applied. Recently, Laruelle and
Pagès [Ann. Appl. Probab. 23 (2013) 1409–1436] presented a link between
the stochastic approximation and response-adaptive designs in clinical tri-
als based on randomized urn models investigated in Bai and Hu [Stochastic
Process. Appl. 80 (1999) 87–101; Ann. Appl. Probab. 15 (2005) 914–940],
and derived the asymptotic normality or central limit theorem for the normal-
ized procedure using a central limit theorem for the stochastic approximation
algorithm. However, the classical central limit theorem for the stochastic ap-
proximation algorithm does not include all cases of its regression function,
creating a gap between the results of Laruelle and Pagès [Ann. Appl. Probab.
23 (2013) 1409–1436] and those of Bai and Hu [Ann. Appl. Probab. 15 (2005)
914–940] for randomized urn models. In this paper, we establish new central
limit theorems of the stochastic approximation algorithm under the popular
Lindeberg condition to fill this gap. Moreover, we prove that the process of
the algorithms can be approximated by a Gaussian process that is a solu-
tion of a stochastic differential equation. In our application, we investigate a
more involved family of urn models and related adaptive designs in which
it is possible to remove the balls from the urn, and the expectation of the
total number of balls updated at each stage is not necessary a constant. The
asymptotic properties are derived under much less stringent assumptions than
those in Bai and Hu [Stochastic Process. Appl. 80 (1999) 87–101; Ann. Appl.
Probab. 15 (2005) 914–940] and Laruelle and Pagès [Ann. Appl. Probab. 23
(2013) 1409–1436].

1. Introduction. Stochastic approximation (SA) algorithms, which have pro-
gressively gained sway thanks to the development of computer science and au-
tomatic control theory, have been the subject of many studies. An SA algorithm
is also used in clinical trials to solve the dose-finding problem [see, e.g., Cheung
(2010) and the citations therein]. The basic frameworks of SA algorithms and their
theoretical results can be found in classical textbooks such as those by Benveniste,
Métivier and Priouret (1990), Duflo (1996, 1997), Kushner and Clark (1978) and
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Kushner and Yin (2003). In this paper, we consider the following recursive SA
algorithm defined on a filtered probability space (�,F , (Fn)n≥0,P)

(1.1) θn+1 = θn − h(θn)

n + 1
+ �Mn+1 + rn+1

n + 1
,

where θn is a row vector in R
d , the regression function h : Rd → R

d is a real
vector-valued function, θ0 is a finite random vector, M0 = 0, {�Mn,Fn;n ≥ 1} is
a sequence of martingale differences and rn is a remainder term.

Very recently, Laruelle and Pagès (2013) presented a link between this SA al-
gorithm and the response-adaptive randomization process in clinical trials based
on the randomized Generalized Friedman Urn [GFU, also known as a generalized
Pólya urn (GPU) in the literature] models investigated in Bai and Hu (1999, 2005).
They derived the almost sure (a.s.) convergence and the joint asymptotic normal-
ity or central limit theorem (CLT) of the normalized procedure for both the urn
compositions and the assignments by applying SA theory. Higueras et al. (2003,
2006) also showed that the urn compositions can be written as an SA algorithm
under some extra assumptions, including that the total number of balls added to
the urn at each stage is the same. However, they did not consider the procedure of
assignments.

The main tool used by Laruelle and Pagès (2013) to derive the asymptotic nor-
mality of GPU models is the CLT for an SA algorithm. Various types of results
on the CLT of θn have been established in the literature under certain conditions,
especially when rn ≡ 0, and they can thus be found in classical textbooks such as
that by Kushner and Yin (2003), page 330. For results in a more general frame-
work, one can refer to Pelletier (1998). Let θ∗ be an equilibrium point of {h = 0}.
Assume that the function h is differentiable at θ∗ and that all of the eigenval-
ues of Dh(θ∗) =: (∂hi(θ

∗)/∂θj ; i, j = 1, . . . , d) have positive real parts. Denote
ρ = Re(λmin), where λmin is the eigenvalue of Dh(θ∗) with the lowest real part. In
considering the CLT, ρ > 1/2 is usually assumed as a basic condition. The follow-
ing CLT can be found in Duflo (1997), Benveniste, Métivier and Priouret (1990)
and Kushner and Yin (2003) [cf. Theorem A.2 of Laruelle and Pagès (2013)] with
different groups of conditions.

THEOREM 1.1. Let θ∗ be an equilibrium point of {h = 0}. Suppose that θn →
θ∗ a.s. and assume that for some δ > 0,

sup
n≥0

E
[‖�Mn+1‖2+δ|Fn

]
< +∞ a.s.

(1.2)
E
[
(�Mn+1)

t�Mn+1|Fn

]→ � a.s.,

where � is a deterministic symmetric positive semidefinite matrix and for an ε > 0,

(1.3) (n + 1)E
[‖rn+1‖2

I{‖θn−θ∗‖≤ε}
]→ 0.
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Suppose ρ := Re(λmin) > 1/2. Then

(1.4)
√

n
(
θn − θ∗) D→ N(0,�),

where

(1.5) � :=
∫ ∞

0

(
e−(Dh(θ∗)−Id/2)u)t�e−(Dh(θ∗)−Id/2)u du,

and Id is a d × d-identity matrix.

In the cases of ρ = 1/2 and 0 < ρ < 1/2, partial results have been established
when Dh(θ∗) is diagonal. For example, Duflo (1997), cf. Theorem 2.2.12 showed
that if Dh(θ∗) = ρId , the CLT holds with rate

√
n

logn
when ρ = 1/2, and nρ(θn −

θ∗) almost surely converges to a random vector when 0 < ρ < 1/2. Laruelle and
Pagès (2013) summarized this kind of results to their Theorem A.2 and applied
them to GPU, but they missed the condition that Dh(θ∗) is diagonal, thus the
results in their Theorem 2.2(b) and (c) are not consistent with those in Theorems
2.2 and 3.2 of Bai and Hu (2005). The main purpose of this paper is to establish
the CLT for a general matrix Dh(θ∗). We find that in the cases of ρ = 1/2 and
0 < ρ < 1/2, the results for a general matrix Dh(θ∗) are much more complex than
those for a diagonal matrix.

In the next section, we establish general asymptotic results on the SA algorithm
(1.1) under the popular Lindeberg condition, which is less restrictive than (1.2).
From these results, we find that the limiting behavior of the SA algorithm depends
on not only the value of the eigenvalue λmin but also the multiplicity of this eigen-
value. Moreover, nρ(θn −θ∗) does not converge in general when ρ < 1/2. Further,
in Section 3, we prove that the process of the algorithms can be approximated al-
most surely by a Gaussian process when ρ ≤ 1/2 under a condition a little more
stringent than the Lindeberg condition, and the Gaussian process is a solution of a
stochastic differential equation.

As an application of SA theory, in Section 4, we derive the asymptotic properties
of an important class of response-adaptive designs in clinical trials based on the
randomized GFU. Laruelle and Pagès (2013) provided a clever way to study the
asymptotic normality of randomized urn models. Motivated by their idea, as an
application of the new SA theory, in Section 4, we retrieve the a.s. convergence
and the asymptotic normality of the randomized GFU models under assumptions
much less stringent than those in Bai and Hu (1999, 2005). We investigate a more
involved family of urn models in which it is possible for the balls of each type to
be removed from the urn, and the expectation of the total number of balls updated
at each stage is not necessarily a constant. The asymptotic property of such urns is
stated as an open problem in Hu and Rosenberger (2006), page 158, and examples
of models featuring the removal of balls can be found in Hu and Rosenberger
(2006), Janson (2004), Zhang et al. (2011), etc. For this general framework, the
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first problem is to show the a.s. convergence. The methods of Bai and Hu (1999,
2005) and Higueras et al. (2003, 2006) do not work because they depend heavily on
the assumption that the total number of balls or the expectation of the total number
of balls updated at each stage is a constant. We show that the ordinary differential
equation (ODE) method proposed by Laruelle and Pagès (2013) is valid to prove
the a.s. convergence, although in their original proof, such an assumption is also
needed. However, the ODE is no longer a linear equation, as it was in Laruelle and
Pagès (2013). The convergence rate of the urn model depends on the second-largest
eigenvalue λsec and the largest eigenvalue λmax of the urn’s limiting generating
matrix. When the ratio λsec/λmax of these two eigenvalues is large (>1/2), the
asymptotic property is also an unsolved problem [cf. Hu and Rosenberger (2006),
page 158]. In Section 4, a clear answer to this open problem is provided.

Finally, some basic results on the convergence of the recursive algorithm and
multi-dimensional martingales are given in the Appendix.

In the sequel to this paper, the Euclidean norm of a vector x = (x1, . . . , xd) is

defined to be ‖x‖ =
√∑

j x2
j , and the norm of a matrix M is defined to be ‖M‖ =

sup{‖xM‖ : ‖x‖ = 1}. 1 = (1, . . . ,1) denotes the unit row vector in Rd . xt denotes
the transpose of x. For a function f(t) : Rd → R, ḟ(t) denotes its derivative, and
for a function f(x) : Rd → R

d , Df(x) denotes the matrix of its partial derivatives
with the (i, j)th element being ∂fi(x)/∂xj . Further, for two positive sequences
{an} and {bn} and a sequence of vectors {vn}, we write an = O(bn) if there is a
constant C such that an ≤ Cbn, an ∼ bn if an/bn → 1, an ≈ bn if an = O(bn)

and bn = O(an), vn = O(bn) if there is a constant C such that ‖vn‖ ≤ Cbn, and
vn = o(bn) if ‖vn‖/bn → 0.

2. Central Limit Theorems. In this section, we consider the central limit
theorem of the SA logarithm (1.1). We first need some assumptions. The first two
are on the differentiability of the function h(·).

ASSUMPTION 2.1. Let θ∗ be an equilibrium point of {h = 0}. Assume that
function h is differentiable at θ∗ and that all of the eigenvalues of Dh(θ∗) have
positive real parts.

Under Assumption 2.1, we have that h(θ∗) = 0,

(2.1) h(θ) = h
(
θ∗)+ (

θ − θ∗)Dh
(
θ∗)+ o

(∥∥θ − θ∗∥∥) as θ → θ∗,

and Dh(θ∗) has the following Jordan canonical form:

T−1Dh
(
θ∗)T = diag(J1,J2, . . . ,Js),



3634 L.-X. ZHANG

where

Jt =

⎛⎜⎜⎜⎜⎜⎜⎝
λt 1 0 . . . 0
0 λt 1 . . . 0
... . . .

. . .
. . .

...

0 0 . . . λt 1
0 0 0 . . . λt

⎞⎟⎟⎟⎟⎟⎟⎠
νt×νt

= λtIνt + Jνt ,

where Iνt is a νt × νt -identity matrix and Sp(Dh(θ∗)) = {λ1, . . . , λs} is the set of
eigenvalues of Dh(θ∗). Let ρ = min{Re(λ), λ ∈ Sp(Dh(θ∗))} and ν = max{νt :
Re(λt ) = ρ}.

When we consider the case of ρ ≤ 1/2, we need a condition a little more strin-
gent than (2.1).

ASSUMPTION 2.2. Suppose that Assumption 2.1 is satisfied, h(θ∗) = 0 and

(2.2) h(θ) = h
(
θ∗)+ (

θ − θ∗)Dh
(
θ∗)+ o

(∥∥θ − θ∗∥∥1+ε) as θ → θ∗

for some ε > 0.

We show the CLT under the following conditional Lindeberg’s condition, which
is popular in the study of the CLT for martingales.

ASSUMPTION 2.3. Suppose that the following Lindeberg’s condition is satis-
fied:

1

n

n∑
m=1

E
[‖�Mm‖2

I
{‖�Mm‖ ≥ ε

√
n
}|Fm−1

]→ 0 a.s.

(2.3)
or in L1,∀ε > 0.

Further, assume that

(2.4)
1

n

n∑
m=1

E
[
(�Mm)t�Mm|Fm−1

]→ � a.s. or in L1,

where � is a symmetric positive semidefinite random matrix.

In Assumption 2.3, � is a F∞(= ∨
n Fn) measurable random matrix, which

was assumed to be deterministic in Bai and Hu (1999, 2005), Pelletier (1998) and
Laruelle and Pagès (2013). Although � is usually deterministic in practice, we
consider the general martingales, as in Hall and Heyde (1980). Our main results
are the following two theorems on the limiting properties of the sequence {θn} in
the cases of 0 < ρ < 1/2 and ρ = 1/2.
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THEOREM 2.1. Suppose that θn → θ∗ a.s., Assumptions 2.2 and 2.3 are sat-
isfied, and ρ = 1/2. Further, for the remainder term rn we assume that

(2.5)
n∑

k=1

rk = o(
√

n/ logn) a.s.

or

(2.6)
n∑

m=1

‖rm‖√
m

= o(
√

logn) a.s. or in L1.

Then

(2.7)

√
n

(logn)ν−1/2

(
θn − θ∗) D→ N(0, �̃) (stably),

where

(2.8) �̃ = lim
n→∞

1

(logn)2ν−1

∫ logn

0

(
e−(Dh(θ∗)−Id/2)u)t�e−(Dh(θ∗)−Id/2)u du,

and N(0, �̃) denotes a mixing normal distribution with the conditional character-
istic function f (t) = exp{−1

2 t�̃tt } for given �̃. Moreover, �̃ satisfies

(2.9)
(
T�t�̃T

)
ij = 1

((ν − 1)!)2

1

2ν − 1
t�a1�tt

b1,

whenever i = ν1 + · · · + νa , j = ν1 + · · · + νb and λa = λb, Re(λa) = 1/2,
νa = νb = ν, and (T�t�̃T)ij = 0 otherwise. Here, x� is the conjugate vector
of a complex vector x and tt

a1 is the first column vector of the ath block in
T = [. . . , tt

a1, . . . , tt
aνa

, . . .]. Further, let raνa be the last row vector of the ath block
in T−1 = [. . . , rt

a1, . . . , rt
aνa

, . . .]t. Then raνa and tt
a1 are respectively the left and

right eigenvectors of H with respect to the eigenvalue λa , and

�̃ = 1

((ν − 1)!)2

1

2ν − 1

∑
a,b:λa=λb,Re(λa)=1/2,νa=νb=ν

(
rt
aνa

ta1
)�

�
(
tt
b1rbνb

)
.

THEOREM 2.2. Suppose that θn → θ∗ a.s., Assumption 2.2 is satisfied with
0 < ρ < 1/2. Further, assume that

n∑
m=1

E
[
(�Mm)t�Mm|Fm−1

]= O(n) a.s. or in L1, and(2.10)

n∑
k=1

rk = o
(
n1−ρ−δ0

)
a.s. for some δ0 > 0.(2.11)

Then there are complex random variables ξ1, . . . , ξs such that

nρ

(logn)ν−1

(
θn − θ∗)− ∑

a:Re(λa)=ρ,νa=ν

e−i Im(λa) lognξaeaT−1 → 0 a.s.,
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where i = √−1, ea = (0, . . . ,0,0, . . . ,0,1,0, . . . ,0) is the vector such that the
νa th element of its block a is 1 and other elements are zero, and eaT−1 = raνa is a
right eigenvector of H with respect to the eigenvalue λa .

When ρ > 1/2, the CLT is classical and can be found in the literature under
various groups of settings. Moreover, the stepsize 1

n+1 can be more general. One
can refer to Benveniste, Métivier and Priouret (1990), Duflo (1997), Kushner and
Yin (2003), cf. Theorem 2.1, Chapter 10, Pelletier (1998), etc. Here, in considering
applications to a general framework of GPU models, we present the following
example under the Lindeberg condition.

THEOREM 2.3. Suppose that θn → θ∗ a.s., Assumptions 2.1 and 2.3 are sat-
isfied, and ρ > 1/2. Further, for the remainder term rn we assume that

(2.12)
n∑

k=1

rk = o(
√

n) a.s. or in L1.

Then

(2.13)
√

n
(
θn − θ∗) D→ N(0, �̃) (stably),

where

(2.14) �̃ =
∫ ∞

0

(
e−(Dh(θ∗)−Id/2)u)t�e−(Dh(θ∗)−Id/2)u du.

REMARK 2.1. The condition (2.2) cannot be weakened to (2.1) in Theorems
2.1 and 2.2. The convergence rates in conditions (2.5) or (2.6) cannot be weakened
in Theorem 2.1.

From the proof of Theorems [cf. (2.22) and (2.25)], we have the following corol-
lary on the rate of the a.s. convergence.

COROLLARY 2.1. Suppose that θn → θ∗ a.s., Assumption 2.1 is satisfied
with ρ > 0. Further assume that condition (2.10) in Theorem 2.2 is satisfied, and
1
n

∑n
k=1 rk = o(n− 1

2 ∧ρ+δ) a.s. for all δ > 0. Then

θn − θ∗ = o
(
n− 1

2 ∧ρ+δ) a.s. for all δ > 0.

Now, we give the proof of Theorems 2.1–2.3. Write H = Dh(θ∗),

H(θ) =
⎧⎪⎨⎪⎩H + (θ − θ∗)t

‖θ − θ∗‖
h(θ) − h(θ∗) − (θ − θ∗)H

‖θ − θ∗‖ , if θ �= θ∗,

H, if θ = θ∗.
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Then H(θ) → H as θ → θ∗ and

h(θ) = h
(
θ∗)+ (

θ − θ∗)H(θ).

Let Hn+1 = H(θn), �n
n = Id and for all 0 ≤ m ≤ n − 1

(2.15) �n
m =

(
Id − Hm+1

m + 1

)
· · ·

(
Id − Hn

n

)
, �̃

n
m =

n∏
j=m+1

(
Id − H

j

)
.

Then Hn → H a.s. as n → ∞. It follows that for all 1 ≤ m ≤ n − 1, ‖�n
m‖ ≤

Cδ(n/m)−ρ+δ a.s. and ‖�n
0‖ ≤ Cδn

−ρ+δ a.s. by Proposition B.1(i) in the Ap-
pendix. By (1.1),

(2.16) θn+1 − θ∗ = (
θn − θ∗)(Id − Hn+1

n + 1

)
+ �Mn+1 + rn+1

n + 1
.

It follows that

(2.17) θn − θ∗ = (
θ0 − θ∗)�n

0 +
n∑

m=1

�Mm

m
�n

m +
n∑

m=1

rm

m
�n

m.

If we write sn =∑n
m=1 rm, then the last term is

n∑
m=1

rm

m
�n

m = sn

n
�n

n +
n−1∑
m=1

sm

(
1

m
�n

m − 1

m + 1
�n

m+1

)
(2.18)

= sn

n
�n

n +
n−1∑
m=1

sm

Id − Hm+1

m(m + 1)
�n

m+1.

PROOF OF THEOREMS 2.1 AND 2.3. First, we consider the case of ρ = 1/2.
Suppose the conditions in Theorem 2.1 are satisfied. At first, (2.5) or (2.6) will
imply that

(2.19)
n∑

m=1

rm = o
(
n1/2+δ) a.s. ∀δ > 0.

In fact, it is sufficient to show that (2.6) implies (2.19). Note that

(2.20)
n∑

m=1

‖rm‖ ≤ √
n

n∑
m=1

‖rm‖√
m

= o(
√

n logn) a.s. or in L1.

Assume that the above inequality holds in the sense of L1. Then

∑
k

P

(2k+1∑
m=1

‖rm‖ ≥ ε
(
2k)1/2+2δ

)
≤ C

∑
k

(2k+1 log 2k+1)1/2

(2k)1/2+2δ
< ∞.
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It follows that for 2k ≤ n ≤ 2k+1,∑n
m=1 ‖rm‖
n1/2+2δ

≤
∑2k+1

m=1 ‖rm‖
(2k)1/2+2δ

→ 0 a.s.

(2.19) is true.
In contrast, one can verify that condition (2.10) or (2.4) implies that

(2.21) Mn = o
(
n1/2+δ) a.s. for all δ > 0.

Recall (2.17), (2.18) and Hn → H a.s. as n → ∞. We have

θn − θ∗ = (
θ0 − θ∗)�n

0 + Mn + sn

n
�n

n +
n−1∑
m=1

(Mm + sm)
Id − Hm+1

m(m + 1)
�n

m+1

= o
(
n−ρ+δ)+ o(n1/2+δ)

n
+

n−1∑
m=1

o(m1/2+δ)

m(m + 1)

(
n

m

)−ρ+δ

(2.22)

= o
(
n−1/2+2δ) a.s. ∀δ > 0.

According to condition (2.2), we have

r∗
n+1 =: (θn − θ∗)H − (

h(θn) − h
(
θ∗))

(2.23)
= o

(∥∥θn − θ∗∥∥1+ε)= o
(
n−1/2−ε/4) a.s.

and

θn+1 − θ∗ = (
θn − θ∗)(Id − H

n + 1

)
+ �Mn+1 + rn+1 + r∗

n+1

n + 1
.

It follows that

θn − θ∗ = (
θ0 − θ∗)�̃n

0 +
n∑

m=1

�Mm

m
�̃

n
m +

n∑
m=1

rm

m
�̃

n
m +

n∑
m=1

r∗
m

m
�̃

n
m

=: (θ0 − θ∗)�̃n
0 + ζ n + ηn + η∗

n,

where �̃
n
m is defined as in (2.15), and ‖�̃n

m‖ ≤ C(n/m)−1/2 logν−1(n/m) by
Proposition B.1(i) in the Appendix. Thus,

η∗
n = O(1)

n∑
m=1

m−1/2−ε/4

m

(
n

m

)−1/2
logν−1 n

m
= o

(
n−1/2(logn)ν−1/2) a.s.

If (2.6) is satisfied, then

ηn = O(1)

n∑
m=1

‖rm‖
m

(
n

m

)−1/2
logν−1 n

m

= o
(
n−1/2(logn)ν−1/2) a.s. or in L1.



CLT OF THE STOCHASTIC ALGORITHM 3639

If (2.5) is satisfied, then we also have

ηn = sn

n
�̃

n
n +

n−1∑
m=1

sm

Id − H
m(m + 1)

�̃
n
m+1

= O(1)

n∑
m=1

o(
√

m/ logm)

m2

(
n

m

)−1/2
logν−1 n

m

= O(1)n−1/2 logν−1 n

n∑
m=1

o(1)

m
√

logm

= o
(
n−1/2(logn)ν−1/2) a.s.

At last, ζ n is a sum of martingale differences. By verifying the Lindeberg condition
and checking the variance, we can show that

√
n

(logn)ν−1/2 ζ n
D→ N(0, �̃) (stably)

via the CLT for martingales [cf. Corollary 3.1 of Hall and Heyde (1980)]. The
above convergence is stated in Proposition B.2 in the Appendix. The proof of The-
orem 2.1 is complete.

Now, we consider the case of ρ > 1/2. Suppose Assumptions 2.1, 2.3 and (2.12)
are satisfied. It is obvious that the first term of (2.17) is O(1)n−ρ+δ = o(n−1/2)

a.s., and the last term is

n∑
m=1

rm

m
�n

m = o(
√

n)

n
+

n−1∑
m=1

o(
√

m)

m(m + 1)

(
n

m

)−ρ+δ

= o
(
n−1/2)

in probability by (2.12) and (2.18). The middle term of (2.17) is a sum of weighted
martingale differences. Unfortunately, we cannot apply the CLT for martingales
directly because {�Mm

m
�n

m;m = 1, . . . , n} is not an array of martingale differences.
We can show that the random weight �n

m can be replaced by the nonrandom weight
�̃

n
m, that is,

(2.24)
√

n

n∑
m=1

�Mm

m

(
�n

m − �̃
n
m

)→ 0 in probability.

Now, {�Mm

m
�̃

n
m;m = 1, . . . , n} is an array of martingale differences. By verifying

the Lindeberg condition and checking the variance, we can show that

√
n

n∑
m=1

�Mm

m
�̃

n
m

D→ N(0,�) (stably)

via the CLT for martingales. The above convergence and (2.24) are stated in Propo-
sition B.2 in the Appendix. Thus, (2.13) is proved. The proof is now complete. �
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PROOF OF THEOREM 2.2. Recall (2.17) and Hn → H a.s. as n → ∞. By
(2.11) and (2.21), we have

θn − θ∗

= (
θ0 − θ∗)�n

0 + Mn + sn

n
�n

n +
n−1∑
m=1

(Mm + sm)
Id − Hm+1

m(m + 1)
�n

m+1

= o
(
n−ρ+δ)

+ o(n1/2+δ/2) + o(n1−ρ)

n
+

n−1∑
m=1

o(m1/2+δ/2) + o(m1−ρ)

m(m + 1)

(
n

m

)−ρ+δ

= o
(
n−ρ+δ) a.s.

It follows that

(2.25) nρ−δ(θn − θ∗)→ 0 a.s. for all δ > 0.

According to (2.2), we can rewrite (1.1) as

θn+1 − θ∗ = (
θn − θ∗)(Id − H

n + 1

)
+ r∗

n+1

n + 1
,

where r∗
n+1 = o(‖θn − θ∗‖1+ε) + �Mn+1 + rn+1. From (2.11), (2.21) and (2.25),

it follows that s∗
n =: ∑n

k=1 r∗
k = o(n1−ρ−δ) a.s. for some δ > 0. Recall that H

has the Jordan canonical form T−1HT = diag(J1, . . . ,Js), with Ja = λaIνa + Jνa .
Denote (θn − θ∗)T := yn = (yn,1, . . . ,yn,s), r∗

nT := r̃n = (̃rn,1, . . . , r̃n,s), s∗
nT :=

s̃n = (̃sn,1, . . . , s̃n,s). Then

yn+1,a = yn,a

(
Iνa − Ja

n + 1

)
+ r̃n+1,a

n + 1
.

Write

�̃
n,a
k =

n∏
j=k+1

(
Iνa − Ja

j

)
.

Then∥∥�̃n,a
0
∥∥≤ Cn−Re(λa)(logn)νa−1,

∥∥�̃n,a
k

∥∥≤ C

(
n

k

)−Re(λa)(
log

n

k

)νa−1
,

1 ≤ k ≤ n. If Re(λa) < 1, then �̃
n,a
0 nJa → Aa , n−Ja (�̃

n,a
0 )−1 → A−1

a for an in-
vertible matrix Aa , and ‖�̃n,a

0 ‖ ≈ n−Re(λa)(logn)νa−1. We have

yn,a = y0,0�̃
n,a
0 +

n∑
k=1

r̃k,a

k
�̃

n,a
k

= y0,0�̃
n,a
0 + s̃n,a

n
�̃

n,a
n +

n−1∑
k=1

s̃k,a

k

Iνa − Ja

k + 1
�̃

n,a
k+1.
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If Re(λa) > ρ, then

‖yn,a‖ = O(1)n−Re(λa)(logn)νa−1 + o
(
n−ρ−δ)

+
n−1∑
k=1

o(k−ρ−δ)

k + 1

(
n

k

)−Re(λa)(
log

n

k

)νa−1

= o
(
n−ρ−κ) a.s.

for some 0 < κ < Re(λa) − ρ. If Re(λa) = ρ, then

‖yn,a‖ = O(1)n−ρ(logn)νa−1 + o
(
n−ρ−δ)+ n−1∑

k=1

o(k−ρ−δ)

k + 1

(
n

k

)−ρ(
log

n

k

)νa−1

= O(1)n−ρ(logn)νa−1 = o
(
n−ρ(logn)ν−1) a.s. when νa < ν.

Finally, consider the yn,a with Re(λa) = ρ and νa = ν. Note that

yn,a

(
�̃

n,a
0
)−1 = y0,a + s̃n,a

n

(
�̃

n,a
0
)−1 +

n−1∑
k=1

s̃k,a

k

Iνa − Ja

k + 1

(
�̃

k+1,a
0

)−1
.

Observe that
s̃n,a

n

(
�̃

n,a
0
)−1 = o

(
n−ρ−δ)nρ(logn)νa−1 → 0 a.s.,

∞∑
k=1

∥∥∥∥ s̃k,a

k

Iνa − Ja

k + 1

(
�̃

k+1,a
0

)−1
∥∥∥∥ ≤ c

∞∑
k=1

O(k1−ρ−δ)

k2 kρ(log k)νa−1 < ∞ a.s.

It follows that

yn,a

(
�̃

n,a
0
)−1 → y0,a +

∞∑
k=1

s̃k,a

k

Iνa − Ja

k + 1

(
�̃

k+1,a
0

)−1 a.s.

Thus,

yn,an
Ja → ξa =:

[
y0,a +

∞∑
k=1

s̃k,a

k

Iνa − Ja

k + 1

(
�̃

k+1,a
0

)−1

]
Aa a.s.

It follows that

yn,a = (
ξa + o(1)

)
n−Ja = (

ξa + o(1)
)
n−λa exp{−Jνa logn}

=
νa−1∑
j=0

(
ξa + o(1)

)
n−λa

(−Jνa )
j (logn)j

j !

= ξa,νa−1n
−λa (−1)νa−1 (logn)νa−1

(νa − 1)! (0, . . . ,0,1) + o
(
n−ρ(logn)ν−1)

= ξa,νa−1n
−i Im(λa)(−1)νa−1 n−ρ(logn)νa−1

(νa − 1)! (0, . . . ,0,1) + o
(
n−ρ(logn)ν−1),
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because (Jνa )
νa = 0. Denote ξa = ξa,νa−1(−1)νa−1 1

(νa−1)! . Then

nρ

(logn)ν−1 yn − ∑
a:Re(λa)=ρ,νa=ν

e−i Im(λa) lognξaea → 0 a.s.,

nρ

(logn)ν−1

(
θn − θ∗)− ∑

a:Re(λa)=ρ,νa=ν

e−i Im(λa) lognξaeaT−1 → 0 a.s.

The proof is complete. �

3. Gaussian process approximation. Write H = Dh(θ∗). Suppose that B(t)

is a d-dimensional standard Brownian motion that is independent of �. Let Gt be
a solution of the following differential equation:

(3.1) dG(t) = −G(t)

t
Hdt + dB(t)

t
�1/2, G(1) = G1.

It can be verified that

G(t) =
∫ t

1

dB(x)�1/2

x

(
x

t

)H
+ G1t

−H, t > 0.

When G1 = 0, for a given �, G(t) is a Gaussian process with the variance-
covariance matrix

(3.2) Var
{
G(t)

}= 1

t

∫ log t

0

(
e−(Dh(θ∗)−I/2)u)t�e−(Dh(θ∗)−I/2)u du.

It is obvious that for a given �, the limit variabilities in (2.14) and (2.8) are, re-
spectively,

lim
t→∞ t Var

{
G(t)

}
and lim

t→∞
t

log2ν−1 t
Var

{
G(t)

}
.

The next theorem shows that θn −θ∗ can be approximated by the Gaussian process
G(t) under certain conditions. From the Gaussian approximation, we can obtain
the law of the iterated logarithm for θn − θ∗ and the functional central limit theo-
rem for the process θ [nt] − θ∗.

THEOREM 3.1. Suppose that Assumption 2.2 is satisfied, θn → θ∗ a.s. and
n∑

m=1

rm = o
(
n1/2−ε0

)
a.s.,(3.3)

∞∑
m=1

E
[‖�Mm‖2I

{‖�Mm‖2 ≥ m1−ε0
}|Fm−1

]
/m1−ε0 < ∞ a.s., and(3.4)

n∑
m=1

E
[
(�Mm)t�Mm|Fm−1

]= n� + o
(
n1−ε0

)
a.s. or in L1(3.5)
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for some 0 < ε0 < 1, where � is a symmetric positive semidefinite matrix that is
Fm-measurable for some m. Then [possibly in an enlarged probability space with
the process {(θn,Mn, rn);n ≥ 1} being redefined without changing its distribu-
tion] there is a d-dimensional standard Brownian motions B(t) that is independent
of �, such that

(3.6) θn − θ∗ = G(n) + o
(
n−1/2−τ ) a.s. for some τ > 0,

when ρ > 1/2, and

(3.7) θn − θ∗ = G(n) + O
(
n−1/2 logν−1 n

)
a.s.

when ρ = 1/2, where G(t) is the solution of equation (3.1).

REMARK 3.1. The proof of Gaussian approximation is based on the strong
approximation theorems for multivariate martingales. The condition that � is Fm-
measurable for some m is given by Eberlein (1986), Monrad and Philipp (1991)
and Zhang (2004) to establish the strong approximation theorems for multivari-
ate martingales. For general random �, the strong approximation is unknown. In
practice, � is usually assumed to be deterministic.

PROOF OF THEOREM 3.1. Note conditions (3.4) and (3.5). By Theorem 1.3
of Zhang (2004), possibly in an enlarged probability space with the process
{(θn,Mn, rn);n ≥ 1} redefined without changing its distribution, there is d-
dimensional standard Brownian motions B(t) independent of �, such that

(3.8) Mn = B(n)�1/2 + o
(
n1/2−τ ) a.s. for some τ > 0.

Let G(t) be the solution of equation (3.1). By some elementary calculation we can
write

G(n + 1) − G(n) = −
∫ n+1

n

G(x)

x
dxH +

∫ n+1

n

dB(x)

x
�1/2

= − G(n)

n + 1
H + [B(n + 1) − B(n)]�1/2 + δn+1

n + 1

with

(3.9)
∞∑

m=1

δm being convergent a.s.

According to (1.1), we have

θn+1 − θ∗

= (
θn − θ∗)(Id − H

n + 1

)
+ �Mn+1 + [(θn − θ∗)H − h(θn)] + rn+1

n + 1
.
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It follows that the sequence {θn − θ∗ − G(n)} satisfies

θn+1 − θ∗ − G(n + 1) = (
θn − θ∗ − G(n)

)(
Id − H

n + 1

)
+ r∗

n+1

n + 1

with

r∗
n+1 = rn+1 − δn+1 + [(

θn − θ∗)H − h(θn)
]+ �

(
Mn+1 − B(n + 1)�1/2).

According to (2.23),

(3.10)
(
θn − θ∗)H − h(θn) = o

(∥∥θn − θ∗∥∥1+ε)= o
(
n−1/2−ε/4) a.s.

From (3.3), (3.8), (3.9) and (3.10), it follows that

s∗
n =:

n∑
m=1

r∗
m = o

(
n1/2−τ ) a.s. for some τ > 0.

Recall that �̃
n
m =∑n

j=m+1(Id − H
j
) and ‖�̃n

m‖ ≤ C0(
n
m

)−ρ logν−1 n
m

by Proposi-
tion B.1(i). Following the lines in (2.17) and (2.18), we conclude that

θn − θ∗ − G(n)

= (
θ0 − θ∗)�̃n

0 + s∗
n

n
�̃

n
n +

n−1∑
m=1

s∗
m

Id − H
m(m + 1)

�̃
n
m+1

= O(1)n−ρ logν−1 n + o(n1/2−τ )

n
+

n−1∑
m=1

o(m1/2−τ )

m(m + 1)

(
n

m

)−ρ

logν−1 n

= O
(
n−(1/2+τ)∧ρ logν−1 n

)
a.s.

The proof is complete. �

4. Urn models. Urn models have long been considered powerful mathemati-
cal instruments in many areas, including the physical sciences, biological sciences,
social sciences and engineering [Johnson and Kotz (1977), Kotz and Balakrishnan
(1997)]. The Pólya urn (also known as the Pólya–Eggenberger urn) model was
originally proposed to model the problem of contagious diseases [Eggenberger
and Pólya (1923)]. Since then, there have been numerous generalizations and ex-
tensions. Among them, the GFU (also known as the generalized Pólya urn or GPU
in the literature) is the most popular [see Athreya and Karlin (1968), Athreya
and Ney (1972), Janson (2004); etc.]. In clinical trial studies, response-adaptive
designs for randomizing treatments to patients aim at detecting “on-line” which
treatment should be assigned to more patients while retaining enough randomness
to preserve the basis of treatments. A large family of adaptive designs is based on
the GFU [Bai and Hu (1999, 2005), Hu and Rosenberger (2006), Hu and Zhang
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(2004), Smythe (1996), Wei (1979), Wei and Durham (1978), Zhang, Hu and Che-
ung (2006), Zhang et al. (2011); etc.]. In this model, the adaptive approach relies on
the cumulative information provided by the responses to previous patients’ treat-
ments to adjust treatment allocation to the new patients. The idea of this modeling
is that the urn contains balls of d different types representative of the treatments.
At the beginning, the urn contains Y0 = (Y0,1, . . . , Y0,d) ∈ R

d \ {0} balls, where
Y0k denotes the number of balls of type k, k = 1, . . . , d . At stage m (m = 1,2, . . .),
a ball is drawn from the urn with instant replacement. If the ball is of type k,
then the mth patient is allocated to treatment k, and additional Dk,q(m) balls of
type q , q = 1, . . . , d , are added to the urn, where Dk,q(m) may be a function of
another random variable ξ(m) and also may be a function of urn compositions
and the results of draws from previous stages. The random vector ξ(m) is usually
the response of the mth patient. This procedure is repeated throughout n stages.
After n draws and generations, the urn composition is denoted by the row vector
Yn = (Yn,1, . . . , Yn,d), where Yn,k is the number of balls of type k in the urn after
the nth draw. This relation can be written as the following recursive formula:

(4.1) Yn = Yn−1 + XnDn,

where Dn = (Dk,q(n))dk,q=1 and Xn is the result of the nth draw, distributed ac-
cording to the urn composition at the previous stage, that is, if the nth draw is
a type k ball, then the kth component of Xn is 1 and other components are 0.
The matrices’ Dns’ are named as the adding rules. The conditional expectations
Hn = (E[Dk,q(n)|Fn−1])dk,q=1, for given the history sigma field Fn−1 generated
by the urn compositions Y1, . . . ,Yn−1, the results of draws X1, . . . ,Xn−1 and
ξ(1), . . . , ξ(n − 1) of all previous stages, n = 1,2, . . . , are named as the generat-
ing matrices. When Dn, n = 1,2, . . . , are independent and identically distributed,
the GFU model is usually said to be homogeneous. In such a case, Hn = H are
identical and nonrandom and the adding rule Dn is merely a function of the ξ(n).
In the general heterogeneous cases, both Dn and Hn depend on the entire history
of all of the stages.

Write Nn = (Nn,1, . . . ,Nn,d), where Nn,k is the number of times that a type
k ball is drawn in the first n stages. Also, in an adaptive design based on this
urn model, Nn,k is the number of patients being assigned to treatment k after n

assignments. Obviously,

(4.2) Nn =
n∑

k=1

Xk.

Athreya and Karlin (1967, 1968) first considered the asymptotic properties of
the homogeneous GFU model and conjectured that Nn is asymptotically normal.
Janson (2004) established the functional CLTs of Yn and Nn for a homogenous
case in which the numbers of each type of balls were assumed to be integers. Bai
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and Hu (2005) established the asymptotic normality for the nonhomogeneous GFU
model under the following conditions:

Hn → H a.s., H = (Hk,j )d×d, Hk,j ≥ 0,(4.3)

sup
n≥1

E
[‖Dn‖2+ε|Fn−1

]
< +∞ a.s. for some ε > 0,(4.4)

Cov
[{

Dq,k(n),Dq,l(n)
}|Fn−1

]→ Vqkl a.s., q, k, l = 1, . . . d,(4.5)
∞∑

m=1

‖Hm − H‖∞√
m

< ∞ a.s.,(4.6)

nE‖Hn − EHn‖2 → 0 a.s.,(4.7)

Hn1t = α1t with 1 = (1, . . . ,1) for some α > 0,(4.8)

and λsec ≤ α/2, where λsec is the second largest real part of the eigenvalues of H.
Higueras et al. (2006) also considered the asymptotic normality of the urn compo-
sitions Yn under the condition that

(4.9) nE‖Hn − H‖2 → 0,

which is weaker than Bai and Hu’s conditions (4.6) and (4.7). However, Higueras
et al. (2006) only considered the case λsec < α/2 and assumed an extra assumption;
namely, that Dn1′ = α1′, which is stricter than (4.8).

Laruelle and Pagès (2013) derived the joint asymptotic distribution of the vector
(Yn,Nn) and weakened conditions (4.6) and (4.7) to (4.9). Moreover, the results
only held when λsec < α/2. In the study of adaptive designs driven by urn models,
λsec ≤ α/2 is a very stringent condition even when d = 3 [cf. Chapter 4 of Hu
and Rosenberger (2006)]. The limit properties for λsec > α/2 and for the case that
(4.8) is not satisfied are stated as open problems in Hu and Rosenberger (2006),
page 158. In this section, we derive the joint asymptotic distribution of (Yn,Nn) by
applying our new results on the SA algorithm (1.1). We consider both the cases of
λsec ≤ α/2 and λsec > α/2. We also remove condition (4.8) and weaken condition
(4.4) to the conditional Lindeberg condition.

Before we state the results, we first need some more notation and assumptions.
To include various cases, we allow the numbers of balls to be nonintegers and neg-
ative. For example, Dk,l(n) < 0 means that |Dk,l(n)| balls of type l are removed
from the urn when a ball of type of k is drawn. We assume that a type of ball with
a negative number will never be selected and so

P(Xn,k = 1|Fn−1) = Y+
n−1,k

|Y+
n−1|

.

Here, Y+
n,k = max{Yn,k,0} is the positive part of Yn,k , Y+

n = (Y+
n,1, . . . , Y

+
n,d),

|Y+
n | = ∑d

k=1 Y+
n,k and 0

0 is defined as 1
d

, which means that each type of ball is
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selected with equal probability when the urn has no balls with a positive number.
In this general framework, the urn allows negative and/or non-integer numbers
of balls, removal and nonhomogeneous updating. In considering the asymptotic
properties, we need two assumptions on the adding rules.

ASSUMPTION 4.1. Suppose that there is a deterministic matrix H = (Hq,k)
d
q,k

with Hq,k ≥ 0 for q �= k such that

(4.10)
n∑

m=1

‖Hm − H‖ = o(n) a.s.

Further, assume that H has a single largest eigenvalue α > 0 and the corresponding
left eigenvector v = (v1, . . . , vd) and right eigenvector ut = (u1, . . . , ud)t such that∑

k vk =∑
k vkuk = 1 and vk > 0, uk > 0, k = 1, . . . , d .

Without loss of generality, we assume that α = 1 throughout this paper. Other-
wise, we may consider Ym/α, Dm/α instead.

Assumption 4.1 means that the updating is asymptotically stable and that on
average, a draw will not generate the removal of the undrawn balls to avoid urn
extinction, although balls of any type can be dropped from the urn at each specific
stage.

When H satisfies the conditions in Assumption 4.1, we let λ2, . . . , λs be the
other eigenvalues of H and suppose that H has the following Jordan canonical
form decomposition:

(4.11) diag(1,J2, . . . ,Js)

with Jt = λtIνt + Jνt , where νt is the order of the Jordan block Jt . Denote by
λsec = max{Re(λ2), . . . ,Re(λs)} and ν = max{νt : Re(λt ) = λsec}.

ASSUMPTION 4.2. Let Vqkl(n) =: Cov[{Dqk(n),Dql(n)}|Fn−1], q, k, l =
1, . . . , d , and denote by Vnq = (Vqkl(n))dk,l=1. Suppose that

1

n

n∑
m=1

E
[‖Dm‖2I

{‖Dm‖ ≥ ε
√

n
}|Fm−1

]→ 0 a.s.

(4.12)
or in L1,∀ε > 0,

1

n

n∑
m=1

Vmq → Vq a.s. or in L1 for all q = 1, . . . , d,(4.13)

where Vq = (Vqkl)
d
k,l=1, q = 1, . . . , d , are d × d symmetric positive semidefinite

random matrices.
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4.1. Convergence results. An important step in showing the a.s. convergence
of Yn/n and Nn/n in Bai and Hu (1999, 2005) and Laruelle and Pagès (2013) is

the convergence of
∑d

k=1 Yn,k

n
, which is derived from the observation that{

d∑
k=1

(
�Yn,k − E[�Yn,k|Fn−1]);n ≥ 1

}
is a martingale difference sequence where �Yn,k = Yn,k − Yn−1,k and

d∑
k=1

E[�Yn,k|Fn−1] = E
[
XnDn1t |Fn−1

]= Y+
n−1

|Y+
n−1|

Hn1t = α.

The last equality above is due to condition (4.8). When (4.8) is not satisfied, there

is not an easy way to directly show the convergence of
∑d

k=1 Yn,k

n
. Next, we modify

the ODE method proposed by Laruelle and Pagès (2013) to prove the convergence
of Yn/n and Nn/n. The following theorem is the main result followed by its proof.
Some of the basic tools in the ODE method that we used in the proof are presented
in the Appendix.

THEOREM 4.1. Suppose that

(4.14)
n∑

m=1

Vmq = O(n) a.s. or in L1 for all q = 1, . . . , d,

and Assumption 4.1 is satisfied with λsec < 1. Then

(4.15)
Yn

n
→ v a.s. and

Nn

n
→ v.

REMARK 4.1. It is easily seen that (4.14) is implied by either supm E[‖Dm‖2|
Fm−1] < ∞ a.s. or supm E‖Dm‖2 < ∞.

PROOF. To prove this theorem, we note that Yn+1 = Yn + Xn+1Dn+1 and

E[Xn+1|Fn] = Y+
n

|Y+
n | . Let �Mn,1 = Xn − E[Xn|Fn−1] and �Mn,2 = Xn(Dn −

E[Dn|Fn−1]). We have

Yn+1 = Yn + Y+
n

|Y+
n |H + �Mn+1,1H + �Mn+1,2 + Xn+1(Hn+1 − H).(4.16)

Under assumption (4.10), we have
∑n

m=1 Xm(Hm − H) = o(n) a.s. It can be veri-
fied that Mn,1H + Mn,2 = o(n) a.s. by assumption (4.14). Thus,

Yn = Y0 +
n−1∑
m=0

Y+
m

|Y+
m|H + (Mn,1H + Mn,2) +

n∑
m=1

Xm(Hm − H)

=
n−1∑
m=0

Y+
m

|Y+
m|H + o(n) a.s.
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It follows that

lim sup
n→∞

|Yn,k|
n

≤ lim sup
n→∞

1

n

n−1∑
m=0

|∑d
q=1 Y+

m,qHq,k|
|Y+

m| ≤ max
q,k

|Hq,k| a.s.

and

lim inf
n→∞

Ynut

n
= lim inf

n→∞
1

n

n−1∑
m=0

Y+
mut

|Y+
m| ≥ min

k
uk > 0 a.s.

Let �∞ be the set of limiting values of Y+
n

n
as n → ∞. Then

(4.17) �∞ ⊂
{
θ = (θ1, . . . , θd) : θut > 0,0 ≤ θk ≤ max

q,l
|Hq,l |, k = 1, . . . , d

}
.

Next, we show that

(4.18) Y+
n − Yn = o(n) a.s.

Note that |Y+
n | ≥ cY+

n ut ≥ cYnut → ∞ a.s. as n → ∞. Without loss of generality,
we assume that |Y+

n | > 0 for all n. Then Xm+1,k = 0 if Ym,k < 0. For n and k, let
ln = max{l ≤ n : Yl,k ≥ 0} be the largest integer for which Yl,k ≥ 0. Then

Yn,k = Yln,k +
n∑

m=ln+1

d∑
q=1

Xm,qDq,k(m)

= Yln,k +
n∑

m=ln+1

d∑
q=1

Xm,q

[
Dq,k(m) − Hq,k(m)

]

+
n∑

m=ln+1

d∑
q=1

Xm,q

[
Hq,k(m) − Hq,k

]+ n∑
m=ln+1

d∑
q=1

Xm,qHq,k

= Yln,k +
n∑

m=ln+1

d∑
q=1

Xm,qHq,k + o(n) ≥ Xln+1,kHk,k + o(n) a.s.

because Hq,k ≥ 0 if q �= k and Xm,k = 0 for m = ln + 2, . . . , n. It follows that

lim infn→∞ Yn,k

n
≥ 0 a.s., and then (4.18) follows.

Now, write θn = Y+
n

n
and

rn = (�Mn,1H + �Mn,2) + Xn(Hn − H) + (
�Y+

n − �Yn

)
,

sn =
n∑

m=1

rm = (Mn,1H + Mn,2) +
n∑

m=1

Xm(Hm − H) + (
Y+

n − Yn

)
− M0,1H − M0,2 − (

Y+
0 − Y0

)
.
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Then, from (4.16) and (4.18) we conclude that θn is bounded with a probability of
one and satisfies the SA algorithm (1.1) with

h(θ) = θ

(
Id − H

|θ |
)

and
sn

n
→ 0 a.s.,

where |θ | = ∑d
k=1 |θk|. It is obvious that h(θ) is a continuous function on {θ :

θut > 0}.
By Theorem A.1 (a) and Remark A.1, the set �∞ of the limiting values of

θn is a.s. a compact connected set, stable by the flow of the ordinary differential
equation (ODE):

θ̇ = −h(θ).

It is obvious that h(v) = 0. By Theorem A.2, � =: {θ : θut > 0} is a region of
attraction of the above ODE for v. Moreover, � is a neighborhood of v. Further,
�∞ ⊂ � by (4.17). By Theorem A.1 (b), we conclude that

Y+
n

n
= θn → v a.s.

Accordingly, Yn/n → v a.s., |Y+
n |/n → |v| = 1 a.s.

Finally,

Nn = Nn−1 + (
Xn − E[Xn|Fn−1])+ Y+

n−1

|Y+
n−1|

(4.19)

= · · · = Mn,1 − M0,1 +
n−1∑
m=0

Y+
m

|Y+
m| .

It follows that

lim
n→∞

Nn

n
= lim

n→∞
Mn,1

n
+ lim

n→∞
1

n

n−1∑
m=0

Y+
m/m

|Y+
m|/m

= v a.s.

The proof is complete. �

4.2. Limiting distribution. We apply Theorems 2.1–2.3 to show the rates of
convergence. First, we show that the random vector (Yn

n
, Nn

n
) satisfies equation

(1.1). By (4.16) and (4.19), we have

Yn+1 = Yn + Y+
n

n

H

|Y+
n /n| + �Mn+1,1H + �Mn+1,2 + Xn+1(Hn+1 − H)

and

Nn+1 = Nn + �Mn+1,1 + Y+
n

n

Id

|Y+
n /n|

(4.20)

= Nn + �Mn+1,1 +
(

Y+
n

n
− v

)
n

|Y+
n |
(
Id − 1tv

)+ v.
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Write θn = (θ (1)
n , θ (2)

n ) = (
Y+

n

n
, Nn

n
), θ∗ = (v,v),

�Mn = (�Mn+1,1H + �Mn+1,2,�Mn+1,1)

and

rn+1 = (
Xn+1(Hn+1 − H) + �

(
Y+

n+1 − Yn+1
)
,0
)
.

Then θn satisfies SA algorithm (1.1):

θn+1 = θn − h(θn)

n + 1
+ �Mn+1 + rn+1

n + 1
,(4.21)

with

h(θ) = θ

⎛⎜⎝Id − H

|θ (1)| − Id

|θ (1)|
0 Id

⎞⎟⎠ .

For rn+1, by noting that Yn,q is positive eventually, and thus Yn,q = Y+
n,q eventually

due to Theorem 4.1 and the fact that vq > 0, we have

(4.22) Y+
n − Yn = O(1) a.s.

It follows that

(4.23)
n∑

m=1

‖rm‖ = O(1)

n∑
m=1

‖Hm − H‖ + O(1) a.s.

For �Mn+1, write �n,1 = diag(Yn

n
) − Yt

n

n
Yn

n
, �n,2 =∑d

q=1
Yn,q

n
Vn+1,q . We have

E
[
(�Mn+1)

t�Mn+1|Fn

]= (
Ht�n,1H + �n,2 Ht�n,1

�n,1H �n,1

)
.

Then, under Assumptions 4.1 and 4.2,

1

n

n∑
m=1

E
[
(�Mm)t�Mm|Fm−1

]→ � a.s. or in L1,

where

� =
(

Ht�1H + �2 Ht�1
�1H �1

)
, �1 = diag(v) − vtv, �2 =

d∑
q=1

vqVq.

Finally, for h(θ), it is easily seen that h(θ) is twice differentiable at θ∗ with

Dh
(
θ∗)= (

Id − (
H − 1tv

) −(Id − 1tv
)

0 Id

)
.

Obviously, the system of the eigenvalues of both Dh(θ∗) and Id − (H − 1tv) is
{1,1 − λ2, . . . ,1 − λt }. Thus, ρ = min{Re(1),Re(1 − λ2), . . . ,Re(1 − λt )} = 1 −
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λsec. Further, it can be shown that if λa �= 0, then the largest order of Jordan blocks
of both Dh(θ∗) and Id − (H − 1tv) with respect to their eigenvalue 1 − λa is
the same as the largest order of Jordan blocks of H with respect to its eigenvalue
λa . Hence, by applying Theorems 2.3 and 2.1 we have the following central limit
theorems for (Yn,Nn).

THEOREM 4.2. Suppose that Assumptions 4.1 and 4.2 are satisfied.

(i) Further, assume that λsec < 1/2 and

(4.24)
n∑

m=1

‖Hm − H‖ = o(
√

n) a.s. or in L1.

Then
√

n

(
Yn

n
− v,

Nn

n
− v

)
D→ N(0, �̃) (stably),

where

�̃ =
∫ ∞

0

(
e−Qu)t�e−Qu du

and

Q =
(

H − 1tv − Id/2 Id − 1tv
0 −Id/2

)
.

(ii) Assume that λsec = 1/2 and

(4.25)
n∑

m=1

‖Hm − H‖√
m

= o(
√

logn) a.s. or in L1.

Then √
n

(logn)ν−1/2

(
Yn

n
− v,

Nn

n
− v

)
D→ N(0, �̃) (stably),

where

�̃ = lim
n→∞

1

(logn)2ν−1

∫ logn

0

(
e−Qu)t�e−Qu du.

REMARK 4.2. It can be verified that (4.6), which is the condition of Bai and
Hu (2005), implies (4.24) and (4.25). (4.24) is also weaker than (4.9), which is
condition (2.11) in Laruelle and Pagès (2013). Further, it can be verified that either
(4.24) or (4.25) implies

n∑
m=1

‖Hm − H‖ = o
(
n1−ε0

)
a.s. for some ε0 > 0

[cf. the proof of (2.19)]. Thus, condition (4.10) can be removed from the theorems.
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THEOREM 4.3. Suppose that Assumptions 4.1 and (4.14) are satisfied. Fur-
ther, assume that λsec > 1/2 and that

(4.26)
n∑

m=1

‖Hm − H‖ = o
(
nλsec−δ0

)
a.s. for some δ0 > 0.

Then there are random complex variables ξ2, . . . , ξs and nonzero linearly indepen-
dent left eigenvectors l2, . . . , ls of H with laH = λala such that

n1−λsec

(logn)ν−1

(
Nn

n
− v

)
(4.27)

− ∑
a:Re(λa)=λsec,νa=ν

ei Im(λt ) lognξala
(
I − 1′v

)→ 0 a.s.

and

(4.28)
n1−λsec

(logn)ν−1

(
Yn

n
− v

)
− n1−λsec

(logn)ν−1

(
Nn

n
− v

)
H → 0 a.s.

PROOF. We apply Theorem 2.2 to prove this theorem. Assume that T is a
matrix such that

T−1[Id − (
H − 1tv

)]
T = diag

(
1, (1 − λ2)Iν2 + Jν2, . . . , (1 − λs)Iνs + Jνs

)
.

By (4.21), we have

Y+
n+1

n + 1
= Y+

n

n
− h1(

Y+
n

n
)

n + 1
+ �Mn+1,1H + �Mn+1,2 + r(1)

n+1

n + 1
,

where h1(θ
(1)) = Id − H

|θ (1)| is twice-differentiable with Dh1(v) = Id − (H − 1tv).

Condition (2.10) is satisfied by assumption (4.14), and (2.11) is satisfied by (4.23)
and assumption (4.26). Thus, by Theorem 2.2, there are complex random variables
ξ2, . . . , ξs such that

n1−λsec

(logn)ν−1

(
Y+

n

n
− v

)
− ∑

a:Re(λa)=λsec,νa=ν

ei Im(λa) lognξaeaT−1 → 0 a.s.

From (4.20) and the above convergence, we have

Nn − nv

= Mn,1 +
n−1∑
m=1

(
Y+

m

m
− v

)(
m

Y+
m

− 1
)(

Id − 1tv
)+ n−1∑

m=1

(
Y+

m

m
− v

)(
Id − 1tv

)

= O(
√

n log logn) +
n−1∑
m=1

(
O(1)

(logm)ν−1

m1−λsec

)2
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+
n−1∑
m=1

(logm)ν−1

m1−λsec

∑
a:Re(λa)=λsec,νa=ν

[
ei Im(λa) logmξaeaT−1 + o(1)

](
Id − 1tv

)
= nλsec(logn)ν−1

[
o(1) + ∑

a:Re(λa)=λsec,νa=ν

ei Im(λa) lognλ−1
a ξaeaT−1(Id − 1tv

)]
a.s.

Write la = λ−1
a eaT−1(I − u′v) if λa �= 0 and la = eaT−1(I − u′v) if λa = 0. Note

that eaT−1 is a left eigenvector of H − 1′v with respect to the eigenvalue λa . We
conclude that laH = λ−1

a eaT−1(H − u′v) = λ−1
a eaT−1(H − 1′v)(I − u′v) = λala

if λa �= 0 and laH = eaT−1(H − 1′v)(I − u′v) = 0 if λa = 0. Further, la(I − 1′v) =
λ−1

a ξaeaT−1(Id − 1tv) and la(I − 1′v)H = λ−1
a eaT−1(H − 1tv) = eaT−1 when

λa �= 0. (4.27) is proved, and (4.28) is also proved by noting (4.22). Finally, the
linear independence of l2, . . . , ls is due to the linear independence of the system
{v(= e1T−1), e2T−1, . . . , esT−1}. �

REMARK 4.3. When λsec > 1/2, Bai and Hu (2005) showed that Yn − nv =
O(nλsec logν−1 n) in probability. Now, by Theorem 4.3, Yn − nv = O(nλsec ×
logν−1 n) a.s. and Nn − nv = O(nλsec logν−1 n) a.s. Further, if all eigenvalues
with Re(λt ) = λsec and νt = ν are real, then both (Yn − nv)/(nλsec logν−1 n) and
(Nn − nv)/(nλsec logν−1 n) a.s. converge toward a finite random vector.

APPENDIX A: ODE METHODS FOR THE RECURSIVE ALGORITHM

THEOREM A.1 (Kushner–Clark). Consider the following recursive proce-
dure:

θn+1 = θn − γn+1h(θn) + γn+1rn+1, (RP)

where h is a continuous function and {γn} is a positive sequence that tends toward
zero, such that

∑∞
n=1 γn diverges.

(a) We suppose that sequence {θn} is bounded, and for all T > 0,

(A.1) lim
n→∞

∑
j≤m(n,T )

∥∥∥∥∥
j∑

k=n

γk+1rk+1

∥∥∥∥∥= 0,

where m(n,T ) = inf{k : k ≥ n,γn+1 + · · · + γk+1 ≥ T }. Then the set �∞ of the
limiting values of θn is a compact connected set, stable by the flow of the ODE:

ODEh ≡ θ̇ = −h(θ). (ODE1)

(b) Further, let � be a region of attraction for θ∗, where θ∗ is a zero of h, that
is, the following properties are satisfied:
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(i) For any solution of (ODE1), if θ(0) ∈ �, then θ(s) ∈ � for all s ≥ 0;
(ii) if θ is a solution of (ODE1) for which θ(0) ∈ �, then

θ(s) → θ∗ as s → +∞; and

(iii) given ε > 0, there exists δ > 0 such that θ(0) ∈ � and ‖θ(0) − θ∗‖ ≤ δ

imply ‖θ(s) − θ∗‖ ≤ ε for all s ≥ 0.

Suppose that � is a neighborhood of θ∗. We assume the framework of part (a).
If sequence {θn} returns infinitely often to a compact subset of �, then it tends
toward θ∗.

This is known as the Kushner–Clark theorem and can be found in the book
by Duflo (1997), page 318. A similar theorem is obtained by Ljung (1977). Vari-
ants and improvements have been proposed in classical textbooks by Duflo (1996,
1997), Kushner and Clark (1978) and Kushner and Yin (2003), in addition to some
papers [see, e.g., Fort and Pagès (1996)].

REMARK A.1. If γn ≡ 1
n

and 1
n

∑n
k=1 rk → 0, then (A.1) is satisfied.

In fact, let sn =∑n
k=1 rk . Then for j ≤ m(n,T ), we have

∑j
k=n+1

1
k

≤ T and

j∑
k=n

rk+1

k + 1
=

j∑
k=n+1

sk

k + 1

1

k
+ sj+1

j + 1
− sn

n + 1
.

It follows that

max
j≤m(n,T )

∥∥∥∥∥
j∑

k=n

rk+1

k + 1

∥∥∥∥∥≤ sup
m≥n

‖sm‖
m

m(n,T )∑
k=n+1

1

k
+ 2 sup

m≥n

‖sm‖
m

≤ (T + 2) sup
m≥n

‖sm‖
m

→ 0 a.s. as n → ∞.

THEOREM A.2. Let H be a matrix satisfying Assumption 4.1. Suppose that
ut > 0 and v > 0 are, respectively, the right and left eigenvectors of H with re-
spect to the largest eigenvalue 1 with v1t = 1 and vut = 1. Consider the ordinary
differential equation

θ̇ = −θ

(
Id − H

|θ |
)
, θ(0) = θ0, (ODE2)

where |θ | =∑d
k=1 |θk|. Then, � = {θ : θut > 0} is a region of attraction for v.
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APPENDIX B: BASIC RESULTS FOR MATRICES AND MARTINGALES

PROPOSITION B.1. Let {Hn} be a sequence of real matrices and H = Dh(θ∗).
Write �n

m =∏n
j=m+1(Id − Hj

j
) and �̃

n
m =∏n

j=m+1(Id − H
j
) for all 1 ≤ m ≤ n−1.

Then:

(i) ‖�̃n
m‖ ≤ C0(

n
m

)−ρ logν−1 n
m

≤ Cδ(
n
m

)−ρ+δ for all δ > 0;
(ii) If Hn → H as n → ∞, then for all δ > 0, ‖�n

m‖ ≤ Cδ(
n
m

)−ρ+δ and �n
m −

�̃
n
m = o(1)( n

m
)−ρ+δ as n ≥ m → ∞;

(iii) If
∑∞

j=1
‖Hj−H‖

j
(log j)ν−1 < ∞, then ‖�n

m‖ ≤ C( n
m

)−ρ logν−1 n
m

and

�n
m − �̃

n
m = o(1)( n

m
)−ρ logν−1 n

m
as n ≥ m → ∞; and

(iv) maxx∈[m−c,m+c] ‖�̃n
m − (n

x
)−H‖ = o(1)( n

m
)−ρ logν−1 n

m
as n ≥ m → ∞.

Here, for a positive number a, aH is defined as aH = eH loga =∑∞
j=0

1
j !(loga)j Hj .

PROPOSITION B.2. Suppose that Assumption 2.3 is satisfied. Write H =
Dh(θ∗), �n

m =∏n
j=m+1(Id − Hj

j
) and �̃

n
m =∏n

j=m+1(Id − H
j
) and

ζ n =
n∑

m=1

�Mm

m
�̃

n
m.

(i) If ρ > 1/2 and Hn → H a.s., then

√
n

n∑
m=1

�Mm

m
�n

m − ζ n → 0 in probability,

(B.1) √
nζ n

D→ N(0,�) (stably),

where

� =
∫ ∞

0

(
e−(H−Id/2)u)t�e−(H−Id/2)u du.

(ii) If ρ = 1/2, then
√

n

(logn)ν−1/2 ζ n
D→ N(0, �̃) (stably),

where

�̃ = lim
n→∞

1

(logn)2ν−1

∫ logn

0

(
e−(H−Id/2)u)t�e−(H−Id/2)u du

satisfies (2.9).

The proofs of Propositions A.2, B.1 and B.2 appear in the supplementary mate-
rial [Zhang (2016)].
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SUPPLEMENTARY MATERIAL

Supplement to “Central Limit Theorems of a recursive stochastic algo-
rithm with applications to adaptive designs”(DOI: 10.1214/16-AAP1187SUPP;
.pdf). The proofs of basic results stated in the Appendices are given.
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