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CONNECTIVITY THRESHOLDS FOR BOUNDED SIZE RULES

BY HAFSTEINN EINARSSON∗,1, JOHANNES LENGLER∗, FRANK MOUSSET∗,2,
KONSTANTINOS PANAGIOTOU†,3 AND ANGELIKA STEGER∗

ETH Zürich∗ and University of Munich†

In an Achlioptas process, starting with a graph that has n vertices and
no edge, in each round d ≥ 1 vertex pairs are chosen uniformly at random,
and using some rule exactly one of them is selected and added to the evolv-
ing graph. We investigate the impact of the rule’s choice on one of the most
basic properties of a graph: connectivity. In our main result we focus on the
prominent class of bounded size rules, which select the edge to add accord-
ing to the component sizes of its vertices, treating all sizes larger than some
constant equally. For such rules we provide a fine analysis that exposes the
limiting distribution and the expectation of the number of rounds until the
graph gets connected, and we give a detailed picture of the dynamics of the
formation of the single component from smaller components. Our results al-
low us to study the connectivity transition of all Achlioptas processes, in the
sense that we identify a process that accelerates it as much as possible.

1. Introduction. Over the last decades the so-called “power of choice”
paradigm has received a large amount of attention in various fields. Rather roughly,
the term power of choice stands for the impact that an observer can have on a
system even if she can influence it only by small, local choices. To give an illus-
tration, suppose that we throw n balls uniformly at random into n bins. Then a
classical result asserts that the largest number of balls in a bin, the so-called max-
imum load, is close to logn/ log logn with high probability (w.h.p.), that is, with
probability tending to one as n → ∞; see, for example, [15]. If, instead, we dis-
tribute the balls one after the other, and we place each ball in the least loaded out
of d ≥ 2 randomly selected bins, then the maximum load becomes w.h.p. expo-
nentially smaller, namely log logn/ logd + �(1) [3]. The paradigm of the power
of choice has many applications and was investigated in numerous different situ-
ations; see [23, 24] for some techniques and results. In this paper, we study it in
the context of the (online) formation of graphs, where the appearance of edges is
driven by some random process.
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Let � be a positive even integer. An �-Achlioptas process is a game with a single
player, Paul, who is building a graph. The game is played in rounds. It starts with
a graph that has n vertices and no edge. In each round, � vertices v1, . . . , v� are
chosen uniformly at random and shown to Paul, who can then select one of the
edges {v1, v2}, {v3, v4}, . . . , {v�−1, v�} and add it to the graph. This game defines
a random sequence (GN)N≥0, where GN is the graph after N rounds of the game.

The most prominent and well-studied instance of an Achlioptas process is when
� = 2. In this case, Paul is presented only one pair of vertices per round, so he
actually has no choice. This is the classical Erdős–Rényi random graph process
ER, and we denote by GER

N the graph that is created after N edges have been added
(where we will always ignore multiple edges and loops). The asymptotic properties
of GER

N have been studied in depth. One of the most striking and intensely studied
properties is the phase transition, which is also described as the emergence of the
giant component [14]: if one parametrizes N = tn, then for t < 1/2, the largest
component in GER

N contains w.h.p. O(logn) vertices, while for t > 1/2, there is
w.h.p. a unique component with �(n) vertices. From today’s perspective, the fine
details of the phase transition in GER

N are well understood; see, for example, [10,
11, 16].

The classical Erdős–Rényi process does not give any power to our protagonist.
Dimitris Achlioptas proposed a simple modification in which Paul is presented
two randomly chosen edges per round and may select any one of them. This corre-
sponds to a 4-Achlioptas process as defined above. Specifically, Achlioptas asked
if there exists a strategy that Paul can adopt to delay the phase transition past the
critical point N = n/2. This question was answered affirmatively by Bohman and
Frieze, who gave the following rule, which we call the Bohman–Frieze rule, BF for
short: of the two given pairs {v1, v2} and {v3, v4}, select {v1, v2} if and only if both
v1 and v2 are isolated vertices in the current graph, and select {v3, v4} otherwise.
Bohman and Frieze proved that if N = 0.535n, then w.h.p. the largest component
of GBF

N is polylogarithmic in n [8]. The BF process has received a lot of attention
since then; see [6, 18, 29] and references therein.

The BF rule is an example of a so-called size rule: in each round, Paul bases
his decision only on the current component sizes of the randomly selected vertices
v1, . . . , v�. Actually, it is even what one calls a bounded-size rule, since there exists
an absolute constant ω such that all components that have at least ω vertices are
treated in the same way (for the BF process ω = 2). An example of a size rule that
is not bounded-size is the infamous product rule, which always selects the pair
of vertices for which the product of the component sizes is smallest. For many
size rules, and particularly for bounded-size rules, it is by now established that
they exhibit a phase transition that shares many qualitative characteristics with the
transition in the Erdős–Rényi process; see [4, 5, 9, 12, 26, 27, 30].

While the study of the phase transition has attracted a large amount of attention,
the typical properties of a random graph that is created by an Achlioptas process
after the transition are far less understood. There are some results concerning the
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presence of small subgraphs [20, 22, 25] or Hamiltonicity [21]. However, one of
the most basic properties of a graph—connectivity—has been studied only very
little [19].

Before we state our results, we quickly review what is known for the Erdős–
Rényi process. For GER

N , the connectivity transition is very well understood. If we
write T ER

con for the smallest N for which GER
N is connected, then it is known that

w.h.p. T ER
con = (1 + o(1))n logn/2. Moreover, the fine behavior of T ER

con has been
studied; in particular, for any c ∈ R

lim
n→∞ Pr

[
T ER

con ≤ n logn + cn

2

]
= exp

{−e−c}.
Actually, more can be said. Let T ER

1 denote the smallest N for which GER
N contains

no isolated vertex. Then w.h.p. T ER
1 = T ER

con , that is, the graph becomes w.h.p. con-
nected exactly at the round in which the last isolated vertex disappears. For more
details, we refer to [11] and the references therein.

In this paper, we study the fine details of the connectivity transition of all
bounded-size rules. For such rules, we give a simple combinatorial criterion that
distinguishes between “degenerate” and “nondegenerate” rules. We show that ev-
ery degenerate rule needs in expectation �(n2) rounds to create a connected graph,
while every nondegenerate rule needs �(n logn) rounds. For nondegenerate rules
R, we are in fact much more precise. If T R

con denotes the number of rounds until
GR

N first becomes connected, then we determine the expectation and the limiting
distribution of T R

con, which is always a Gumbel distribution.
The results for nondegenerate rules are summarized in Theorem 4, the main

result of this paper. Since the precise statements require some preparations, we
postpone them to Section 2. The following corollary illustrates our results by stat-
ing what they imply for the Bohman–Frieze process. Its proof, a simple application
of Theorem 4, can be found in Section 6.1.

COROLLARY 1. For the BF process, we have that

E
[
T BF

con
] = n logn

2
+

(
γ

2
− logϕ√

5

)
· n + o(n),

where γ = 0.577 . . . is the Euler–Mascheroni constant and ϕ = (1 + √
5)/2 the

golden ratio, and

lim
n→∞ Pr

[
T BF

con ≤ n logn + cn

2

]
= exp

{−ϕ−2/
√

5e−c} for all c ∈R.

Moreover, w.h.p. GBF
N gets connected with the addition of the same edge that de-

stroys the last isolated vertex.
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In addition, we also discover a surprising phenomenon: while the Erdős–Rényi
process becomes w.h.p. connected exactly at the round in which the last iso-
lated vertex disappears (and, as already mentioned in the previous corollary,
the Bohman–Frieze process has the same property), this is not true for general
bounded-size rules. In particular, depending on the rule, several different compo-
nent sizes may be involved in a “race” to get extinct last, and each one of them has
a positive limiting probability, which we determine explicitly, of achieving this.
The next corollary gives a simple example of this phenomenon, which is a small
modification of the BF process; its proof is again an application of Theorem 4 and
can be found in Section 6.2.

COROLLARY 2. The KP process is a 4-Achlioptas process from [19] defined
as follows: select {v1, v2} if at least one of v1, v2 is isolated in the current graph,
and select {v3, v4} otherwise. Let T KP

k denote the first round in which the last
component with k vertices disappears, that is,

T KP
k = min

{
T | GKP

N has no component with k vertices ∀N ≥ T
}
.

Then

lim
n→∞ Pr

[
T KP

1 = T KP
con

] = 0.693 . . . and lim
n→∞ Pr

[
T KP

2 = T KP
con

] = 0.306 . . . ,

and the two limiting probabilities sum up to one. Analytic expressions for the lim-
iting probabilities are given in Section 6.2.

Although our results are concerned with bounded-size rules, they enable us
to study the connectivity transition of all �-Achlioptas processes in the follow-
ing sense. A fundamental question is to identify the processes that accelerate the
connectivity transition as much as possible. We solve this problem by giving a
specific bounded-size rule that is provably the fastest among all �-Achlioptas pro-
cesses. We define the lexicographic rule LEX� as follows: given randomly chosen
vertices v1, v2, . . . , v� whose components have sizes s1, s2, . . . , s�, respectively,
choose the pair {v2i−1, v2i} for which (min {s2i−1, s2i}, max {s2i−1, s2i}) is mini-
mal with respect to the lexicographical ordering. In case of ties, choose the smallest
eligible i. The following theorem states that no �-Achlioptas process connects the
graph faster than LEX�. The proof and some further discussion can be found in
Section 6.3.

THEOREM 3. Let � be a positive even integer and let

c� := lim
z→0

(
log z + �

∫ z

1

1

(1 − x2)�/2 + (1 − x)� − 2
dx

)
.

Set f (c) := (n logn + cn)/�. For every �-Achlioptas process A and every c ∈ R,
we have

lim sup
n→∞

Pr
[
T A

con ≤ f (c)
] ≤ lim

n→∞ Pr
[
T LEX�

con ≤ f (c)
] = exp

{−ec�−c}.
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We believe that some of the methods used in this paper can also be modified ap-
propriately to study the connectivity transition for general (unbounded) size rules,
provided that certain mild regularity conditions are satisfied. Some conditions are
certainly necessary, since, in the completely general case of a size rule, it is not
even guaranteed that there exists a connectivity transition in the sense established
in this paper. For example, the KP rule from Corollary 2 can either reach a round
where there are two components of sizes 1 and n−1, or it can reach a round where
there are two components of sizes 2 and n − 2, and both cases occur with a proba-
bility bounded away from 0. If we allow completely general unbounded size rules,
then Paul could play to delay the connectivity transition if he sees a component of
size n − 1, and play to hasten it if he sees a component of size n − 2. It is clear
that for such a rule, there can be no connectivity transition in the classical sense.
In bounded-size rules this cannot happen, as Paul is unable to distinguish between
components of sizes n − 1 and n − 2.

1.1. Further related work. The authors of [1] study a different generalization
of the Erdős–Rényi process, where in every round the new edge is selected by a
nonuniform distribution that gives pairs of isolated vertices a weight of 1 and all
other pairs a weight of K ∈ [0,∞). In [2], a similar process is studied, where a pair
receives weight 1 already if only one of its vertices is isolated. These processes are
not Achlioptas processes as we define them here, but still they are “bounded-size”
in the sense that only components of size one are treated in a special way. Indeed,
the methods used in the analysis of processes of this kind seem to be quite similar
to those used for bounded-size Achlioptas processes. In [2], the authors determine
the asymptotic number of rounds until the graph gets connected. It is likely that one
could extend their results by computing the limiting distribution of the connectivity
transition, in a way similar to how we perform this for bounded-size rules in this
work.

1.2. Outline and methods. Since the proof of our main result is long and
spread over the following sections, we provide at this point a (rather informal)
overview of the arguments that we will exploit and the obstacles that we have
to overcome. We use BF and also sometimes the KP process for illustration. The
reader who wishes to skip this subsection may do so and proceed directly to Sec-
tion 2, which contains the formal definitions and our main theorem.

In order to gain some intuition for the relevant features regarding the connec-
tivity transition, let us start with a fact that can be established rather easily for all
Achlioptas processes; see also Lemma 11 below. For any ε > 0, there is a Cε > 0
such that after at most Cεn rounds, the graph will typically contain a component
with at least (1 − ε)n vertices, where n is the total number of vertices in the graph.
That is, the graph has a unique largest component, and the at most εn remaining
vertices are contained in small components.
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Apart from the existence of a unique giant component there are also other fea-
tures that determine the fine details of the connectivity transition. Particularly, the
number of vertices in “small” components plays an important role. For example,
for the BF process, it suffices to consider the number Y(N) of isolated vertices
in GBF

N . This is so because—as it will turn out—the components of size 1 will be
the last to disappear in the BF process. For the KP process from Corollary 2, the
situation is different, and one would also need to track components of size two.
At this point, due to technical reasons, we split our analysis in two stages: the so-
called early stages, where N ≤ T n for some (large) constant T ; and second, the
case N > T n, the late stages of the process.

Early stages. In Section 3, we study bounded-size rules in their early stages.
The analysis relies on the differential equation method of Wormald [31], although
alternative routes can be taken (see below for a discussion). In the case of the BF
process, the main idea is to set up an ordinary differential equation of the form
z′(t) = f (z(t)) such that for all 0 ≤ t ≤ T , the value of the solution z(t) is very
close to Y(tn)/n, the fraction of isolated vertices in the tnth round. This reduces
the study of the process in the early stages to the study of the analytic properties
of z(t).

For the BF process, the equation is given by z(0) = 1 and

z′ = −2z2 − (
1 − z2)

2z.(1)

This equation has actually a neat probabilisitc interpretation. Indeed, in the process
either (a) the first two selected vertices are isolated, and thus disappear, which
corresponds to the term −2z2 or (b) at least one of the two first selected vertices is
not isolated (this happens with probability 1 − z2) and then the expected number
of isolated vertices among the third and the fourth randomly selected vertex is 2z.
It is then intuitively reasonable that z(t) should describe the fraction of isolated
vertices at time tn. The theorem of Wormald guarantees us that this is in fact true
for any fixed t ≥ 0. As an alternative, the same statement could be obtained by
applying the results of [28], where differential equations describing the evolution
of the component size distribution are derived.

For the specific equation (1), one can show that the limit

c1 := lim
t→∞ log z(t) − 2t

exists. In this particular case, this is not too difficult, but performing this task for
general bounded-size rules is a cornerstone of our proof; see Lemma 10. This
statement implies that for every ε > 0 and sufficiently large t we have

Y(tn)/n ∈ (1 ± ε)z(t) ⊆ (1 ± 2ε)ec1−2t ,(2)

that is, the fraction of isolated vertices after tn rounds is close to ec1−2t . In fact, a
similar statement is true for every bounded size rule. To make the connection with
Corollary 1, we just note here that for the BF process we have c1 = −2(logϕ)/

√
5.
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The use of differential equations in the context of Achlioptas processes is not
new. For example, Spencer and Wormald used differential equations similar to (1)
to describe the evolution of bounded-size 4-Achlioptas processes, and they proved
that the analytic properties of the solution to these equations determines the critical
point for the phase transition [30]. Moreover, Riordan and Warnke proved that for a
large class of rules (including all bounded-size rules), the solution to certain similar
differential equations also determines the evolution of the component sizes [28].
However, we need to extend the methods to also cover times much later than the
emergence of the giant component.

Late stages. The analysis of the early stages is not sufficient to determine the
connectivity transition, since we need information about Y(tn) when t = ω(1), in
particular, when t = �(logn). As it turns out a statement similar to (2) remains
true for much longer time scales. We will argue that

Y(tn)/n ∈ (1 ± ε)ec1−2t(3)

even for all T ≤ t ≤ (1 − ε)(logn)/2. In other words, the answer given by the
(asymptotic) solution to the differential equation is true almost all the way up to
the connectivity transition.

The first part of Section 4 is dedicated to proving the validity of (3) for bounded-
size rules (and for several component sizes); see Lemma 12. Ideally, we would
like to use some general-purpose theorem that tells us that the differential equation
method can be extended all the way up to t = (1 − ε)(logn)/2. However, the stan-
dard deviation of the number Y(t) of isolated vertices is of order

√
n if we consider

early stages of the process, that is, if t = �(1). Therefore, the (additive) error term
in the description of Y(t) must necessarily be at least of this order. Moreover, in a
general-purpose theorem it seems that such error terms cannot decrease again, and
it is unclear under what conditions the desired shrinking can be established.

With this in mind, we prove (3) directly, by developing a novel induction ar-
gument over t . The main reason why this works (for the BF process) is the fol-
lowing. As we have already argued, whenever T is large enough, then w.h.p. for
all t ≥ T , the graph at time tn consists of a single component containing all but
εn vertices. The most likely way for an isolated vertex to disappear is then that
it is merged into the giant component because it was selected as one of the two
vertices v3, v4, which happens with probability close to 2/n. Thus, if there are
ec1−2t isolated vertices in round tn, then in round (t + 1)n, we expect to have
ec1−2t (1 − 2/n)(t+1)n−tn ≈ ec1−2(t+1) isolated vertices. By a delicate analysis of
several error terms and probabilities we argue that this expectation is in fact very
close to the truth for all t ≤ (1 − ε)(logn)/2.

Fine analysis of T BF
con. After establishing (3), we are ready to prove Corol-

lary 1. The full proof for the general case is in Section 4. Given c ∈ R, let
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Nc := (n logn + cn)/2. The first step is to show that for every c, w.h.p. all noniso-
lated vertices in GBF

Nc
are in the same component. We will also show that w.h.p. the

graph is not connected at time (n logn)/2 − ω(n), and that it is connected at time
(n logn)/2 + ω(n); this will imply by a union bound over all relevant values of c

that the graph becomes connected with the addition of the same edge that removes
the last isolated vertex. For a general bounded-size rule, we will instead show that
all vertices in “large” components are in the same component, for example, for the
KP process there is only one component of size larger than two.

Knowing this, our ultimate goal is to determine the limiting distribution of
Y(Nc) as n → ∞. To achieve this, we compute the (factorial) moments of Y(Nc)

and show that they coincide with the moments of our desired limiting distribution.
More precisely, for the BF process we show that

lim
n→∞E

[
Y k(Nc)

] = (
ec1−c)k,

which are the factorial moments of a Poisson distribution with parameter ec1−c.
Hence, by the method of moments (see, e.g., [17], Theorem 6.10), this implies

lim
n→∞ Pr

[
Y(Nc) = x

] = e−ec1−c(
ec1−c)x/x!,

whence

lim
n→∞ Pr

[
T BF

con ≤ Nc

] = lim
n→∞ Pr

[
Y(Nc) = 0

] = exp
{−ec1−c}.

In fact, for technical reasons, the analysis is carried out in a conditional space in
which all rounds are “wellbehaved.” The details are in the proof of Theorem 4.

Finally, to compute the expectation of T BF
con, we use the standard fact that if

a sequence of random variables Xn converges weakly to X, and, moreover, the
sequence is uniformly integrable, then limn→∞E[Xn] = E[X]. After proving that
the sequence 2T BF

con(n)/n − logn is, in fact, uniformly integrable, we obtain the
expression

lim
n→∞E

[
2T BF

con/n − logn
] =

∫ ∞
−∞

ce−ec1−c

ec1−c dc = c1 + γ,

and one can check that this is exactly the statement of Corollary 1.

2. Bounded-size rules. In this paper, we study a broad class of random graph
processes that in particular include all bounded-size rules treated in [30]. We use
the conventions N = {1,2,3, . . .}, N0 = N ∪ {0}, and [m] = {1, . . . ,m} for m ∈ N.
Let K,� ∈ N, with � even. Let SK = {1,2, . . . ,K,ω}, where ω stands (informally)
for “larger than K .” A (K, �)-rule is a mapping

R : S�
K → [�/2].
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Any such mapping naturally defines a random graph process (GR
N)N that will be

defined shortly. For a given graph G, we write C(G;v) for the connected compo-
nent of G containing v and |G| for the number of vertices in G. Set

cK(G;v) :=
{ ∣∣C(G;v)

∣∣, if
∣∣C(G;v)

∣∣ ≤ K ,

ω, otherwise.

In the following, we will often omit the subscript K and the reference to G

whenever they are obvious from the context. With this notation, the R-random
graph process (or R-process for short) with n vertices is defined as follows. Un-
less otherwise stated, we begin with GR

0 being the graph with vertex set [n] and
no edge. GR

N is then obtained by choosing independently and uniformly at ran-
dom � vertices v1, . . . , v� and adding the edge {v2i−1, v2i} to GR

N−1, where i =
R(cK(GR

N−1;v1), . . . , cK(GR
N−1;v�)). In words, given the vector of the (truncated)

sizes of the components that contain the vi ’s, R determines which of the �/2 edges
determined by the vi ’s is to be added to GR

N−1. Note that we do not require R to
be symmetric, that is, we allow, for example, R(1,2,2, . . . ,2) �= R(2,1,2, . . . ,2).

EXAMPLE 1. The BF process is given by the (1,4)-rule

BF(1,1, x, y) = 1, BF(ω, x, y, z) = BF(x,ω, y, z) = 2,(4)

where x, y, z ∈ {1,ω}. Similarly, the KP process is given by the (1,4)-rule

KP(1, x, y, z) = KP(x,1, y, z) = 1, KP(ω,ω, x, y) = 2,

where x, y, z ∈ {1,ω}.

For a given (K, �)-rule R, we write T R
con(n) for the smallest N ∈ N0 ∪ {∞}

such that GR
N is connected. We will usually drop the dependence on n, unless it is

necessary to make it explicit. For k ∈ N, a k-component of a graph is a component
with k vertices, a small component is a component with at most K vertices, and an
ω-component is a component with more than K vertices. Given μ,ν ∈ SK , we let
Cμ,ν = Cμ,ν(R) be the set of all component size vectors for which a μ-component
and a ν-component are connected by an edge in a step of the R-process. That is,

Cμ,ν(R) := {
s = (s1, . . . , s�) ∈ S�

K | {s2i−1, s2i} = {μ,ν} for i = R(s)
}
.

Note that Cμ,ν = Cν,μ. For 1 ≤ k ≤ K , we call

exk(R) := k · ∣∣{s ∈ Ck,ω(R) | ∃i ∈ [�] : si = k and sj = ω for all j ∈ [�] \ {i}}∣∣
the extinction rate for size k. That is, exk(R) equals k times the number of all
component size vectors in Ck,ω(R) that contain exactly one k at some position,
and all other positions are equal to ω. The role of this parameter will become clear
at a later point of the analysis; here we provide an informal discussion of its actual
meaning. Let us consider the R-process at a rather late point N in time, where GR

N



CONNECTIVITY THRESHOLDS FOR BOUNDED SIZE RULES 3215

is almost connected. Then GR
N typically consists of one huge component (we make

this statement precise in Lemma 11) that contains almost all vertices, and all other
vertices are in constant-sized components; this is, for example, the situation in
the Erdős–Rényi process; see, for example, [11, 17]. Then, if we select � vertices
uniformly at random, most likely they will all be part of the huge component.
However, now and then we will also select a vertex in a small component, say
with k vertices, and then the most likely event is that we select exactly one such
vertex. So, the observed component size vector will look like (ω, . . . , k, . . . ,ω)

with the “k” at a random position. Whether we actually connect the component
of size k with the large component depends on whether this component vector
belongs to Ck,ω(R) or not. In other words, the speed with which components of
size k disappear depends on the number of such vectors in Ck,ω(R). This explains
the second factor in the definition of exk(R). The first factor comes from the fact
that a component of size k has k vertices that can be chosen in order to select this
component. Indeed, as we will see during the analysis, the smaller exk(R), the
later components of size k will disappear in the R-process. We also let

ex(R) := min
1≤k≤K

exk(R)

be the total extinction rate of R, and we let

slow(R) := {
k ∈ [K] | exk(R) = ex(R)

}
and fast(R) := [K] \ slow(R)

be the sets of slow indices and fast indices, respectively. As already indicated
above, we will see that the main “obstacles” that delay the point in time at which
GR

N becomes connected are the components of size k ∈ slow(R). Thus, not too
surprisingly, the value of the total extinction rate essentially determines the point in
time where the R-process gets connected, which is w.h.p. (1 + o(1))n logn/ex(R)

if ex(R) > 0. This already shows that the case ex(R) = 0 is special, and we call a
rule degenerate if ex(R) = 0 and nondegenerate otherwise.

EXAMPLE 2. The BF and KP rules are nondegenerate. Indeed, for the BF
rule, we have ex1(BF) = ex(BF) = 2, and for the KP rule, we have ex1(KP) =
ex(KP) = 4.

The main results of this paper are summarized in the following theorem, which
asserts that all nondegenerate rules belong to the same “universality class”: with
respect to the connectivity transition, the limiting distribution is always a Gumbel
distribution, and the expected value of T R

con equals (n logn+dn)/ex(R)+o(n) for
some d = d(R). To the best of our knowledge, the latter statement has not previ-
ously been shown even for the ER-process. Finally, only a finite set of component
sizes provides the main “obstacle” for the graph becoming connected.
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THEOREM 4. Let �,K be positive integers, � even, and let R be a nondegen-
erate (K, �)-rule such that ex(R) < 2K + 2. For 1 ≤ k ≤ K let Yk(N) denote the
number of vertices in k-components of GR

N . Then, for each k ∈ slow(R) there
exists4 a constant dk = dk(R) such that the following statements are true:

(a) For any c ∈ R, w.h.p. for all N ≥ (n logn + cn)/ex(R) we have for all
k ∈ fast(R) that Yk(N) = 0, and there is only one component with more than K

vertices in GR
N .

(b) For any c ∈ R,

lim
n→∞ Pr

[
T R

con ≤ n logn + cn

ex(R)

]
= ∏

k∈slow(R)

e−dke
−c

.

(c) Let γ = 0.577 . . . be the Euler–Mascheroni constant, and let c0 :=
log(

∑
k∈slow(R) dk). Then

E
[
T R

con
] = n logn + γ n + c0n

ex(R)
+ o(n).

(d) For k ∈ [K], let T R
k := min{T | ∀N ≥ T : Yk(N) = 0} be the time at which

the last k-component vanishes. Then Pr[T R
k = T R

con] n→∞−→ 0 for k ∈ fast(R), and
for k ∈ slow(R),

Pr
[
T R

k = T R
con

] n→∞−→ dk∑
i∈slow(R) di

.

For a better understanding of the theorem, we give two remarks.

REMARK 1. The theorem is in general not true if ex(R) ≥ 2K +2. For exam-
ple, for the KP rule as we defined it in Example 1 we have ex(KP) = 4 ≥ 2 · 1 + 2,
and indeed, the conclusions of the theorem do not hold (intuitively, because com-
ponents of size two also play an important role).

However, every (K, �)-rule R is also naturally a (K ′, �)-rule R′ for every
K ′ > K , with extinction speeds exk(R′) = exk(R) for 1 ≤ k ≤ K and exk(R′) =
2k for K < k ≤ K ′. More precisely, let

trunc:SK ′ → SK, trunc(k) =
{

k, if k ≤ K ,
ω, otherwise.

Then the (K ′, �)-rule R′ is defined by

R′(s1, . . . , s�) = R
(
trunc(s1), . . . , trunc(s�)

)
.

4A formula for dk(R) is given in Lemma 10. Concrete values of dk(R) for the BF, KP and lexico-
graphic rules can be found in the last section.
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In particular, if we have a (K, �)-rule R for which ex(R) ≥ 2K + 2, then we can
as well express it as a ((�/2) · K,�)-rule R′, and one checks immediately that
ex(R′) < 2 · (�/2) · K + 2. In this way, Theorem 4 is applicable to every bounded
size rule.

REMARK 2. The proof of the theorem will also imply that for all k ∈
slow(R),

lim
n→∞ Pr

[
Yk

(⌊
n logn + cn

ex(R)

⌋)
= 0

]
= e−dke

−c

.

Given this, the theorem shows an “independence in the limit” of the variables
Yk in the following sense. Since by Theorem 4(a) w.h.p. there is only one com-
ponent with more than K vertices for N = (n logn + cn)/ex(R), the graph
GR

N is connected if and only if Yk(N) = 0 for all 1 ≤ k ≤ K . Hence, Theo-
rem 4(b) can also be stated as “limn→∞ Pr[Yk(N) = 0 for all 1 ≤ k ≤ K] =
limn→∞

∏
1≤k≤K Pr[Yk(N) = 0].”

Theorem 4 addresses only nondegenerate rules. Degenerate rules R have the
unpleasant property that T R

con can be very large, as it is possible that components
of a given fixed size ≤K are never connected to other components unless the rule
has no choice. In particular, assume that exk(R) = 0 for some 1 ≤ k ≤ K , and
that there are only two components left in GR

N : a component with n − k vertices
and a k-component. Then the k-component will not be connected to the big com-
ponent unless at least two of the randomly selected vertices in the current round
belong to the k-component. Since the probability that this happens is in O(n−2),
we will need to wait an expected quadratic number of rounds until the graph gets
connected. In fact, a similar situation always occurs with nonnegligible probability,
which is the reason for the following theorem. The proof can be found in Section 5.

THEOREM 5. Let �,K be positive integers, � even, and let R be a degenerate
(K, �)-rule. Then E[T R

con] = �(n2).

Note that for certain rules T R
con can be even larger than n2. Consider for example

a (1, �)-rule that does not take any 1-component unless forced to, that is, the rule
chooses (ω,ω)-edges whenever such an edge is available. In the proof of Theo-
rem 5, we will show that w.h.p. there is a situation where only one or two isolated
vertices remain. These last vertices will only be collected if in every edge there is
at least one isolated vertex. This will eventually happen since we allow a vertex to
appear several times in the same round. However, the probability of this event is
O(n−�/2), and thus E[T R

con] = �(n�/2).



3218 H. EINARSSON ET AL.

2.1. Further terminology and prerequisites. For a graph G and an induced
subgraph C of G, we write C ∈ compk(G) if C is a k-component of G. We say that
an event E = E(n) holds with high probability (w.h.p.) if limn→∞ Pr[E(n)] = 1.
Without further reference, we will use for x ∈ [0,1] the well-known bounds

(1 − x)n = 1 − nx + O
(
n2x2)

and 1 − x = e−x+�(x2).

In several proofs we will also exploit the following version of the Chernoff bounds;
see, for example, [17], Section 2.1.

LEMMA 6. Let X1, . . . ,Xn be independent Bernoulli variables such that
Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for all 1 ≤ i ≤ n, and let X = ∑n

i=1 Xi .
Then for all δ ∈ [0,1],

Pr
[
X ≥ (1 + δ)np

] ≤ e−δ2np/3 and Pr
[
X ≤ (1 − δ)np

] ≤ e−δ2np/3,

and for all t ≥ 2enp,

Pr[X ≥ t] ≤ 2−t .

3. Early stages of the R-process. Let R be a (K, �)-rule. In this section, we
will prove several key lemmas that describe the typical structure of GR

N when N is
proportional to the number n of vertices, corresponding to the early stages in the
outline given in the Introduction. Let us write Y R

k (N) = Yk(N) for the number of
vertices in k-components in GR

N = GN , where k ∈ SK .
We will show in Lemma 7 that for an appropriate range of N , Yk(N) =

(1+o(1)) · zk(N/n) ·n, where the zk’s are the unique solution of a specific system
of differential equations (5). To this end, we will use a version of Wormald’s dif-
ferential equation method [31]. An alternative route to obtain the same statement
would be to apply the results in [28]; however, we prefer to give a direct proof
since it is rather short and demonstrates where the various terms in (5) stem from.

The argument for establishing the typical trajectory of the Yk’s on the basis of
differential equations is rather standard. However, the main contribution of this
section is to study in detail the analytic properties of the solution of the system (5),
and in particular the case where N/n gets large; see Lemmas 9, 10. These results
will be important ingredients in forthcoming arguments.

Let us begin with specifying the system of differential equations. For s =
(s1, . . . , s�) ∈ S�

K and μ,ν ∈ SK , we define the following polynomials in the vari-
ables (zk)k∈SK

:

Ps

(
(zk)k∈SK

) :=
�∏

k=1

zsk and Pμ,ν

(
(zk)k∈SK

) := ∑
s∈Cμ,ν(R)

Ps

(
(zk)k∈SK

)
.

The system is given by

dzk

dt
= fk

(
z1(t), . . . , zK(t), zω(t)

)
(5)
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with initial conditions z1(0) = 1 and zk(0) = 0 for k ∈ SK \ {1}, and where [omit-
ting for brevity the argument (z1(t), . . . , zω(t))] for k ∈ [K],

fk = f +
k − f −

k
(6)

with f +
k = k

∑
1≤μ≤ν

μ+ν=k

Pμ,ν, f
−
k = 2kPk,k + k

∑
μ∈SK\{k}

Pμ,k,

and for k = ω,

fω = ∑
1≤μ≤ν≤K

μ+ν>K

(μ + ν)Pμ,ν +
K∑

μ=1

μPμ,ω.(7)

The idea behind these definitions is that if Yk(N) = nzk(N/n) for all k ∈ SK ,
then Ps equals the probability that s is the component size vector of K randomly
selected vertices (i.e., the ith selected vertex is in an si-component, for all 1 ≤
i ≤ �). Thus, f +

k is (close to) the expected number of vertices in k-components
created in round N + 1, and f −

k is (close to) the expected number of vertices in
k-components destroyed in round N + 1; this will be made precise in the proof of
Lemma 7. Note that these functions depend on the underlying (K, �)-rule R. The
following lemma justifies the specific choice of the differential equation system.

LEMMA 7. Let k, � ∈ N, let R be a (K, �)-rule, and let T > 0. Let λ ∈
ω(n−1) ∩ o(1). Then there exists a unique solution (zk(t))k∈SK

of the system (5),
and with probability at least 1 − O( 1

λ
exp(−nλ3/8K3)),

Yk(N) = nzk(N/n) + O(λn)

uniformly for all k ∈ SK and all 0 ≤ N ≤ T n.

In the proof of Lemma 7, we use the following general statement that is a special
case of [31], Theorem 5.1. Assume that for every n ≥ 1 we have a Markov chain
(G

(n)
0 ,G

(n)
1 , . . .), where the random variable G

(n)
N takes values in the set G(n) of

all graphs on n vertices. When referring to the Markov chain, we usually drop the
dependence on n from the notation. In our context, GN = GR

N . Let G(n)+ be the set
of valid sequences with respect to the Markov chain, that is, the set of all sequences
(G0,G1, . . .) such that GN ∈ G(n), and the transition probability from GN to GN+1

is positive for all N ≥ 0. For functions Y1 = Y
(n)
1 , . . . , Ya = Y

(n)
a :G(n) → R, and

D ⊆ R
a+1, we define the stopping time ND(Y1, . . . , Ya) to be the minimum N

such that (
N/n,Y1(GN)/n, . . . , Ya(GN)/n

)
/∈ D.

In our context, a = K + 1 and YK+1 = Yω. With this notation, the following theo-
rem holds.
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THEOREM 8 (Theorem 5.1. in [31], simplified5). Let a,n ∈ N. For 1 ≤ k ≤ a

let Yk:G(n) → R and fk:Ra+1 → R be functions such that |Yk(G)| ≤ n for all
G ∈ G(n). Let D be some bounded connected open set containing the closure of{

(0, z1, . . . , za) | Pr
[
Yk(G0) = zkn for all 1 ≤ k ≤ a

] �= 0 for some n
}
.

Assume the following three conditions hold.

(i) (Boundedness hypothesis) There is a constant β ≥ 1 such that for all 1 ≤
k ≤ a, all (G0,G1, . . .) ∈ G(n)+, and all N ≥ 0 we have∣∣Yk(GN+1) − Yk(GN)

∣∣ ≤ β.

(ii) (Trend hypothesis) For some function λ = λ(n) = o(1) and for all 1 ≤ k ≤
a and all G ∈ G,∣∣∣∣E[

Yk(GN+1) − Yk(GN) | GN = G
] − fk

(
N

n
,
Y1(G)

n
, . . . ,

Ya(G)

n

)∣∣∣∣ ≤ λ

for all N < ND .
(iii) (Lipschitz hypothesis) Each function fk is continuous, and satisfies a Lip-

schitz condition on D ∩ {(t, z1, . . . , za) | t ≥ 0}.
Then the following is true.

(a) For (0, ẑ1, . . . , ẑa) ∈ D, the system of differential equations

dzk

dt
= fk(t, z1, . . . , za), k = 1, . . . , a

has a unique solution in D for zk : R → R passing through zk(0) = ẑk,1 ≤ k ≤ a

and the solution extends to points arbitrarily close to the boundary of D;
(b) For some C > 0, with probability 1 − O( 1

λ
exp(−nλ3/β3)),

Yk(GN) = nzk(N/n) + o(λn)(8)

uniformly for 0 ≤ N ≤ σn and for each k, where zk(t) is the solution in (a) with
ẑk = 1

n
Yk(0), and σ = σ(n) is the supremum of those x to which the solution can

be extended before reaching within �∞-distance Cλ of the boundary of D.

PROOF OF LEMMA 7. We apply Theorem 8 as follows. As domain D, we
choose (somewhat arbitrarily) D := (−2T ,2T ) × (−1,2)K+1. Note that D con-
tains the set [0, T ] × [0,1]K+1, as required. We will verify the conditions in The-
orem 8 one by one.

As already mentioned, for k ∈ SK , Yk(N) = Yk(G
R
N) denotes the number of

vertices in k-components in GR
N . Note that

∑
k∈SK

Yk(N) = n for all N . Then the

5The theorem in [31] is not restricted to Markov chains, and it is also not restricted to graphs.
Moreover, the boundedness hypothesis may be satisfied only for a function β = β(n) and may fail
with some error probability γ = γ (n).
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boundedness hypothesis (i) is met with β = 2K , since any of the Yk’s, k ∈ [K],
can change by at most 2K when adding an edge to GN .

The functions fk , k ∈ SK are given by (6) and (7). To see that they satisfy
the trend hypothesis (ii), note that the probability that s ∈ S�

K is the (truncated)
component size vector of � randomly selected vertices is Ps((Yk)k∈SK

). On the
other hand, if s ∈ Cμ,ν , μ �= ν is the component size vector, then two components
of size μ and ν are combined into a component of size μ + ν, so Yμ and Yν

decrease by μ and ν, respectively, and Yμ+ν (or YK+1, if μ + ν > K) increases
by μ + ν. The case μ = ν is slightly more complicated, as it might be that both
components are identical, in which case only an internal edge (or a loop) is added
to the component. However, this event occurs only with probability O(n−1). Since
all sums are over finitely many terms, the trend hypothesis is satisfied for a suitable
function λ ∈ O(n−1).

Finally, all the functions fk are polynomials in z1, . . . , zω, so they trivially sat-
isfy the Lipschitz condition (iii). Thus, all the assumptions of Theorem 8 are satis-
fied.

It remains to check that the solution of the differential equations does not come
close to the boundary of D except for the first component. Observe that zk(N/n) ∈
[0,1] for all N for which (8) holds, because 0 ≤ Yk(N) ≤ n. Thus, part (b) and the
continuity of the zk’s imply the claim. �

We also state a simpler but more explicit bound that will be convenient to use
in the sequel.

COROLLARY 3. Let k, � ∈ N, let R be a (K, �)-rule, and let T > 0. For every
ε > 0, with probability at least 1 − O(exp(−nε)),

Yk(N) = nzk(N/n) + o
(
n2/3+ε),

uniformly for all k ∈ SK and all 0 ≤ N ≤ T n.

PROOF. Use λ := 2Kn−1/3+ε in Lemma 7. �

For later reference, we first collect some basic properties of the functions zk .
The following lemma is in parts a generalization of Theorem 2.1 in [30], where
the phase transition was studied in the case � = 4.

LEMMA 9. Let K,� ∈ N and let R be a (K, �)-rule. Then the unique solution
(zk(t))k∈SK

of (5) has the following properties:

(a)
∑

k∈SK
zk(t) = 1 for all t ≥ 0.

(b) For all t > 0 and all k ∈ SK we have 0 < zk(t) < 1.
(c) For every 1 ≤ i ≤ K the function

∑i
k=1 zk is strictly decreasing. Moreover,

zω is strictly increasing.
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(d) If R is nondegenerate, then there is t0 > 0 and c > 0 such that 1 − zω(t) ≤
e−c(t−t0) for all t ≥ t0. In particular, zω(t) → 1 for t → ∞.

PROOF OF (a). In the sum
∑

k∈Sk
fk(z1, . . . , zω), for μ �= ν and s ∈ Cμ,ν

the term μ · Ps is added and subtracted exactly once. For s ∈ Cμ,μ, the term
μ · Ps is added and subtracted exactly twice. Hence, all terms cancel, and we have∑

k∈Sk
fk(z1, . . . , zω) = 0. Thus, the function z̃(t) := ∑

k∈SK
zk(t) satisfies the dif-

ferential equation dz̃/dt = 0, with initial condition z̃(0) = 1. Therefore, z̃(t) = 1.
�

PROOF OF (b). We will show zk(t) > 0 for all k ∈ SK and all t > 0; the other
inequality follows then directly from (a). By applying Corollary 3, we infer that
zk(t) ≥ 0 for all k ∈ SK . By (a), this implies zk(t) ≤ 1 for all k ∈ SK .

First, we show that if there is t0 > 0 and 1 ≤ k ≤ K such that zk(t0) > 0, then
zk(t) > 0 for all t ≥ t0. Note that

z′
k(t) ≥ −f −

k ≥ −k
∑

μ∈SK\{k}

∑
s∈Cμ,k

Ps − 2k
∑

s∈Ck,k

Ps.

In the last expression each occurring term Ps contains a factor zk , and all other
factors are ≤1. Thus, by abbreviating Ck := ∑

μ∈SK\{k}
∑

s∈Cμ,k
1 + 2

∑
s∈Ck,k

1,
we readily get that z′

k(t) ≥ −kCkzk(t). By integrating this from t0 to t , we obtain
that zk(t) ≥ e−kCk(t−t0)zk(t0) > 0 for all t ≥ t0.

Next, note that z1(0) = 1 > 0, so the previous argument implies that z1(t) > 0
for all t ≥ 0. We show by induction on k that zk(t) > 0 holds for all t > 0 and
1 ≤ k ≤ K . For some 2 ≤ k ≤ K , assume there was t0 > 0 with zk(t0) = 0. Since
zk(0) = 0, then again the previous argument implies that zk(t) = 0 for all 0 ≤ t ≤
t0, and for this range (6) simplifies to

fk(z1, . . . , zω) = ∑
1≤μ≤ν

μ+ν=k

(
(μ + ν)

∑
s∈Cμ,ν

Ps

)
.

This expression is at least
∑

1≤μ≤ν,μ+ν=k z
�/2
μ z

�/2
ν , since (μ, ν, . . . ,μ, ν) ∈ Cμ,ν .

The right-hand side is positive by induction hypothesis, which contradicts the fact
that fk(z1, . . . , zω) = dzk/dt = 0 for all 0 ≤ t ≤ t0. This shows the claim for all
1 ≤ k ≤ K and t > 0.

It remains to treat the case k = ω. Equation (7) implies that

fω(z1, . . . , zω) ≥ P1,K

and since we have already shown that zk(t) > 0 for all 1 ≤ k ≤ K and t > 0 this
expression is >0 for all t > 0. The claim now follows with the same contradiction
as for fk . �
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PROOF OF (c). In the sum
∑i

k=1 fk(z1, . . . , zω), for all 1 ≤ μ ≤ ν ≤ K with
μ + ν ≤ i and s ∈ Cμ,ν the term μ · Ps is added and subtracted exactly once if
μ �= ν, and it is added and subtracted exactly twice if μ = ν. So all these terms
cancel. On the other hand, for all 1 ≤ μ ≤ ν ≤ K with μ + ν > i, the terms μ · Ps

are only subtracted (once or twice), but not added, and by (b) all these terms are >0
for t > 0. Hence, the function

∑i
k=1 zk has negative derivative for all t > 0, so it is

strictly decreasing. As for the final remark, we infer directly that zω = 1−∑K
k=1 zk

is strictly increasing. �

PROOF OF (d). By definition of Cμ,ν the bounded size rule is nondegenerate,
if and only if for each 1 ≤ k ≤ K there exists s ∈ Ck,ω such that Ps = zk · z�−1

ω .
Thus, fω(z1, . . . , zω) ≥ (

∑K
k=1 zk)z

�−1
ω . Fix any t0 > 0, and let c̃ := zω(t0). From

(b) and (c), we know that c̃ > 0 and that zω(t) ≥ c̃ for all t ≥ t0, respectively.
Hence,

K∑
k=1

fk = −fω ≤ −
(

K∑
k=1

zk(t)

)
zω(t)�−1 ≤ −

(
K∑

k=1

zk(t)

)
c̃�−1

for all t ≥ t0. Therefore, the function z̃ := ∑K
k=1 zk satisfies dz̃/dt ≤ −c̃�−1z̃ for all

t ≥ t0. Thus, 0 ≤ z̃(t) ≤ z̃(t0)e
−c̃�−1(t−t0) → 0 for t → ∞. The claim now follows

with c := c̃�−1 from z̃(t0) ≤ 1 and 1 − zω(t) = z̃(t). �

We continue with a crucial ingredient for studying the fine properties of the
distribution of T R

con. We determine the limiting behavior of the fraction zk(t) of
vertices in k-components in GR

tn; in particular, for all k ∈ slow(R) the next lemma
asserts that zk(t) approaches Cke

−ex(R)t , for some Ck = Ck(R) > 0.

LEMMA 10. Let K,� ∈ N and let R be a (K, �)-rule.

(a) For every ε > 0, there exists a t0 > 0 such that for all t ≥ t0∑
k∈fast(R)

zk(t) ≤ ε · ∑
k∈slow(R)

zk(t).

(b) If R is nondegenerate then for k ∈ slow(R) the limit

ck := lim
t→∞

(
ex(R) · t + log zk(t)

)
exists.6

PROOF. For brevity, we write slow = slow(R), fast = fast(R) and
ex= ex(R). Furthermore, we let zslow := ∑

k∈slow zk and zfast := ∑
k∈fast zk .

6As will be proven later, the constant dk from Theorem 4 equals eck /k.



3224 H. EINARSSON ET AL.

Note that, by Lemma 9, we have zslow(t) + zfast(t) + zω(t) = 1 for all t ≥ 0 and
that zω(t) is increasing, while zslow(t) + zfast(t) is decreasing.

Recall that z′
k = fk = f +

k − f −
k for all 1 ≤ k ≤ K ; see (6). Here, f +

k consists
of terms Ps , s ∈ Cμ,ν , with 1 ≤ μ ≤ ν ≤ K . Every such term contains at least two
factors zi, zj with 1 ≤ i, j ≤ K . Since by Lemma 9 we know that zi ≤ 1 for all
i ∈ SK there is a c > 0, such that

0 ≤ f +
k ≤ c(zslow + zfast)

2.(9)

The term f −
k sums up terms Ps for indices s ∈ S�

K for which at least one component
equals k. Moreover, if k ∈ slow then the coefficient of the polynomial zkz

�−1
ω

in f −
k is exactly ex, and for k ∈ fast it is ≥(ex + 1). All other terms in f −

k

contain at least the factor zk and another factor zi , 1 ≤ i ≤ K . Hence, by making
the constant c > 0 from (9) larger if necessary we obtain

ex · z�−1
ω · zk ≤ f −

k ≤ (
ex+ c(zslow + zfast)

) · zk for all k ∈ slow,(10)

and

(ex+ 1)z�−1
ω · zk ≤ f −

k for all k ∈ fast.(11)

Consider an arbitrary ε > 0. By Lemma 9(d), there exists t ′0 > 0 such that zω(t ′0) ≥
1 − ε2, and by the monotonicity of zω(t),

zω(t) ≥ 1 − ε2 and zslow(t) + zfast(t) ≤ ε2 for all t ≥ t ′0.(12)

Together with z′
k = f +

k − f −
k , the lower bound in (9) and the upper bound in (10)

imply z′
k(t) ≥ −(ex+ ε)zk(t) for all 0 < ε < 1/c and k ∈ slow. Dividing both

sides by zk(t) and integrating from t ′ to t yields

zk(t) ≥ zk

(
t ′

) · e−(ex+ε)(t−t ′) for all k ∈ slow and all t ≥ t ′ ≥ t ′0.(13)

With the above preparations, we are ready to prove the lemma. In order to see (a),
we first prove an auxiliary statement. We claim that whenever there exist t2 > t1 ≥
t ′0 with t1 ∈ R and t2 ∈ R ∪ {∞} such that for all t ∈ [t1, t2) we have zfast(t) ≥
εzslow(t)/2, then

zfast(t)

zslow(t)
≤ zfast(t1)

zslow(t1)
· e−(1/2−ε)(t−t1) for all t ∈ [t1, t2).(14)

To prove (14), note that the assumption on t1 and t2, together with (9), (11) and
(12), imply that for all t ∈ [t1, t2)

z′
fast(t) ≤ ∑

k∈fast

(
c(zslow + zfast)

2 − (ex+ 1)z�−1
ω · zk

)

≤ c|fast|ε2
(

1 + 2

ε

)
zfast(t) − (ex+ 1)

(
1 − ε2)�−1

zfast(t).
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For ε > 0 sufficiently small, we thus have z′
fast(t) ≤ −(ex+ 1

2)zfast(t) and so

zfast(t) ≤ zfast(t1) · e−(ex+1/2)(t−t1) for all t ∈ [t1, t2).
Together with (13) (where we use t ′ = t1), this implies (14), as claimed.

Equation (14) allows us to infer (a) by contradiction as follows. First of all,
note that if for all t ≥ t ′0 we had zfast(t) ≥ εzslow(t)/2 then we could apply (14)
with t ′0 in place of t1 and ∞ in place of t2. Since by Lemma 9 zslow(t

′
0) > 0,

we infer that there is a t ′′0 ≥ t ′0 such that zfast(t
′′
0 ) < εzslow(t

′′
0 )/2, a contradic-

tion. So there is a t ′1 ≥ t ′0 such that zfast(t
′
1) < εzslow(t

′
1)/2. Assume for the sake

of contradiction that there is a t ′2 > t ′1 such that zfast(t
′
2) > εzslow(t

′
2). Then by

continuity of the zk’s, there would be an interval I = [t ′′1 , t ′′2 ] ⊆ [t ′1, t ′2] such that
zfast(t

′′
1 ) = εzslow(t

′′
1 )/2, zfast(t

′′
2 ) = εzslow(t

′′
2 ) and zfast(t) ≥ εzslow(t)/2

for all t ∈ I . However, this is a contradiction since (14) implies that the ratio
zfast(t)/zslow(t) cannot increase in I . Thus, zfast(t) ≤ εzslow(t) for all t ≥ t ′1;
this establishes (a) with t0 = t ′1.

In order to prove (b), by applying (9), (10) and (12) we infer that for 0 < ε <

min{1/c,1} and t ≥ t0

z′
slow(t) = ∑

k∈slow

(
f +

k − f −
k

)

≤ cKε2(
zslow(t) + zfast

) − ex · (
1 − ε2)�−1

zslow(t).

By using (a), we further get for t ≥ t0

z′
slow(t) ≤ 2cKε2zslow(t) − ex · (

1 − ε2)�−1
zslow(t).

For all ε > 0 small enough, we thus get z′
slow(t) ≤ −(ex− ε)zslow(t) and so

zslow(t) ≤ zslow(t0) · e−(ex−ε)(t−t0) for all t ≥ t0.(15)

Since R is nondegenerate, we have ex≥ 1. Together with (13) (applied to t ′ = t0)
this implies that for ε > 0 small enough there exists a constant C > 0 such that

(zslow(t))
2

zk(t)
≤ Ce−t/2 for all k ∈ slow and all t ≥ t0.(16)

Next, we use (10) and (a) again to obtain for k ∈ slow and t ≥ t0

z′
k(t) ≥ −f −

k ≥ −(
ex+ c

(
zslow(t) + zfast(t)

))
zk(t)

≥ −(
ex+ 2czslow(t)

)
zk(t)

and similarly, using (9), (10) and zω(t) = 1− zfast(t)− zslow(t) ≥ 1−2zslow(t)

z′
k(t) = f +

k − f −
k ≤ 4c · (

zslow(t)
)2 − ex · (

1 − 2zslow(t)
)�−1

zk(t).

Thus, for t ≥ t0

−(
ex+ 2czslow(t)

) ≤ z′
k(t)

zk(t)
≤ 4c · (zslow(t))2

zk(t)
− ex · (

1 − 2�zslow(t)
)
.



3226 H. EINARSSON ET AL.

Now we integrate all three sides from t1 to t2. By (15) and (16), all terms on
the left and the right-hand side decay exponentially, except for the constant −ex.
Therefore, there exists t̂0 ≥ t0 so that for t2 > t1 ≥ t̂0

−ex · (t2 − t1) − ε ≤ log zk(t2) − log zk(t1) ≤ −ex · (t2 − t1) + ε.

That is, the sequence ex · t + log zk(t) is a Cauchy sequence, and thus convergent.
�

We close this section with a statement about the existence of a large component
in random graph processes, which is also true if we begin with a graph that already
contains some edges.

LEMMA 11. Let ε > 0 and let � > 0 be an even integer. Then there exists a
constant Cε > 0 such that for any �-Achlioptas process with arbitrary initial graph
G0 on n vertices, after at most Cεn rounds the number of vertices in the largest
component is at least (1 − ε)n with probability 1 − o(1/n).

PROOF. We may assume that ε < 1/3. Then observe that as long as there is
no component with ≥(1 − ε)n vertices there exist two disjoint vertex sets A and
B (not necessarily the same in each round) such that |A|, |B| ≥ εn and such that
no component contains vertices both from A and B . Note that this assumption
on A and B implies that every edge between A and B connects two different
components. Observe also that the probability that the �-Achlioptas process will
choose such an edge is at least pε := ε�, as this is at least the probability that
(v1, . . . , v�) ∈ (A × B)�/2.

Set Cε := 2/pε and assume that for Cεn rounds the size of the largest compo-
nent is ≤(1 − ε)n. From the previous discussion, we know that this occurs with
probability at most Pr[Bin(Cεn,pε) < n], which is easily seen to be o(1/n) by the
choice of Cε and the Chernoff bounds. �

4. Late stages of the R–process and proof of Theorem 4. As described in
the proof outline given in the Introduction, the differential equation method al-
lows us to analyze (K, �)-rules in (relatively) early stages of the process, that
is, when a linear number of edges is added to an initially empty graph. How-
ever, as we will see shortly, the graph will become connected much later, af-
ter roughly n logn/ex(R) rounds. The following lemma shows that the concen-
tration result of Lemma 7 can essentially be extended up to the point where
(1/ex(R)−o(1))n logn edges have been added. Since it is not clear (at least to us)
how such a statement can be established via a method based on differential equa-
tions, we choose a more direct route, where we prove inductively that the post-
linear regime follows typically a suitably defined deterministic trajectory. In the
remainder of this section, we write a = x ± y, where y > 0, for a ∈ [x − y, x + y].
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LEMMA 12. Let K,� ∈ N and let R be a nondegenerate (K, �)-rule. For 1 ≤
k ≤ K , let Yk(N) denote the number of vertices in components with k vertices
in GR

N . Moreover, for k ∈ slow(R) let ck(R) be defined as in Lemma 10. Then
there is an ε0 > 0 such that for any 0 < ε < ε0 there is a t0 = t0(ε) such that with
probability 1 − o(1/ logn), the following holds for all t0 ≤ t ≤ (1 − ε) logn:

(a) Yk(tn/ex(R)) = (1 ± ε) · eck(R)−tn for all k ∈ slow(R), and
(b) Yk(tn/ex(R)) ≤ εe−t n for all k ∈ fast(R).

PROOF. For t ∈ R≥0, let us write Nt = tn/ex(R). We use an inductive ar-
gument, where Corollary 3 provides us with the base case. Indeed, for any fixed
T > 0, by Corollary 3, there exists δ > 0 such that with probability 1−o(1/ logn),
we have

Yk(Nt ) = nzk

(
t/ex(R)

) + o
(
n1−δ) for all 1 ≤ k ≤ K and t ≤ T .(17)

By Lemma 10, there exists some positive constant T such that for all k ∈ slow(R)

and all t ∈ [T ,T + 1], we have

zk

(
t/ex(R)

) = (
1 ± ε2/2

)
eck−t

and such that for all t ∈ [T ,T + 1], we have

∑
k∈fast(R)

zk(t) ≤ ε2 ∑
k∈slow(R) zk(t)

2K · maxk∈slow(R) eck
.

Together with (17), we obtain that (a) and (b) hold for all t ∈ [T ,T + 1], with ε

replaced by ε2. This will serve as the base case of our induction.
The reason why we showed (a) and (b) with much smaller error terms than re-

quired (for t ∈ [T ,T + 1]) is that, in order to cover all cases t0 ≤ t ≤ (1 − ε) logn,
we will prove inductively a statement in which the error terms will gradually in-
crease. Formally, let

ε0 := ε2 and εi+1 = εi + c′(e−ti + eti/2
√

logn/n
)

for i ∈ N0(18)

for a constant c′ > 0 that we will fix later (and that will not depend on ε). By
expanding the recursive definition, it is easy to see that for n sufficiently large we
have εi ≤ ε2 + 2c′e−t0 ≤ c′′ε2, by choice of t0. Note that c′′ does not depend on ε,
as c′ does not. If we thus choose ε < 1/c′′, we obtain that εi ≤ ε for all i ∈ N0.

Recall that our choice of T implies that for all t0 ∈ [T ,T + 1], we have
Yk(Nt0) = (1 ± ε0)e

ck−t0n. Fix some t0 ∈ [T ,T + 1] and let ti := t0 + i for i ∈ N.
To simplify notation, let us write Ni = Nti . With this notation at hand, it suffices to
prove that with probability 1 − o((n logn)−1) we have for all 1 ≤ i ≤ (1 − ε) logn

that

Yk(Ni) = (1 ± εi)e
ck−ti n for k ∈ slow(R)(19)
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and

Yk(Ni) ≤ εie
−ti n for k ∈ fast(R).(20)

Then the lemma follows by a union bound over n possible choice of t0.
We use induction over i. We already know that the claim is true for i = 0. For

the induction step, we will show that assuming the claim holds for some i ≥ 0 it
also holds for i + 1 with probability 1 − o(n−2).

A round Ni ≤ N < Ni+1 is called Ni-regular if out of the � randomly selected
vertices there is at most one vertex v that is contained in a small component (i.e.,
in a k-component for 1 ≤ k ≤ K) in GR

Ni
, and Ni-nonregular otherwise. Note that

the definition refers to the graph GR
Ni

, not to GR
N . This seemingly strange definition

has the advantage that for different rounds the events that a specific round is Ni-
regular are independent. In particular, let I be the number of Ni -nonregular rounds.
The induction assumption guarantees that in round Ni , there are only O(e−ti n)

vertices in small components. Thus, the probability that any succeeding round is
Ni-nonregular is in O(e−2ti ). Since Ni+1 − Ni = n/ex(R) it follows that the ex-
pected number of nonregular rounds between Ni and Ni+1 is at most ce−2ti n, for
some sufficiently large constant c > 0. By the Chernoff bounds there is a constant
C > 0 (not depending on ε) such that

Pr
[
I ≥ max

{
Ce−2ti n, e−ti/2√n

}] ≤ min
{
2−ce−2ti n,2−e−ti /2√n}

(21)
= o

(
n−2)

,

using ti ≤ t0 + (1 − ε) logn.
In order to prove the induction step, consider some 1 ≤ k ≤ K . Denote a posi-

tion 1 ≤ p ≤ � as k-good if a vector (ω, . . . ,ω, k,ω, . . . ,ω) with the k at position
p results in merging the k-component with an ω-component. Recall that the num-
ber of k-good positions is exactly exk(R)/k.

For ease of notation, we use Xk(N) to denote the number of k-components in
GR

N . Clearly, Xk(N) = Yk(N)/k for all k ∈ [K]. To give bounds on Xk(Ni+1),
let Z be the number of k-components C ∈ compk(G

R
Ni

) that never appear in a
k-good position during rounds [Ni,Ni+1). Observe that if a k-component appears
in an Ni -regular round N ≥ Ni , then it is merged with an ω-component if and
only if its position is k-good (since the other vertices in this round belong to
ω-components in Ni and in all subsequent rounds). Thus, Z counts basically the
number of k-components in round Ni+1, miscounting only components that appear
in Ni -nonregular rounds. Since there are at most �I such components,

Z − �I ≤ Xk(Ni+1) ≤ Z + �I.(22)

In the sequel, we bound Z. We proceed as follows: enumerate the Xk(Ni) k-
components in GR

Ni
from 1 to Xk(Ni) in an arbitrary but fixed way and let Zj,s



CONNECTIVITY THRESHOLDS FOR BOUNDED SIZE RULES 3229

be a Bernoulli random variable that is one if and only if in round j we choose a
vertex from the sth component in a k-good position. Thus,

Pr[Zj,s = 1] = 1 −
(

1 − k

n

)exk(R)/k

= exk(R)

n
± c

n2

for a constant c that depends on K and � but not on ε. Clearly,

Z =
Xk(Ni)∑

s=1

Zs, where Zs is the indicator function for
Ni+1∑

j=Ni+1

Zj,s = 0.

Therefore, using the induction assumption on Xk(Ni) and bounding the error terms
very generously, we get

E[Z] = Xk(Ni) ·
(

1 − exk(R)

n
± c

n2

)n/ex(R)

= e−exk(R)/ex(R) · Xk(Ni) · (1 ± 2c/n)(23)

= e−exk(R)/ex(R) · Xk(Ni) ± c̃e−2ti n,

for some constant c̃ that depends on K , � and maxk∈slow(R) ck(R) but not on ε.
Note that for k ∈ slow(R) [i.e., for exk(R) = ex(R)] the expectation agrees

with the prediction of the statement: the main term is Xk(Ni)/e, as desired. We
thus just need to show that Z is concentrated. For the alert reader, this should
come as no surprise: the variables Xj,s are defined similarly as in a balls-and-bin
game where the variable Z counts the number of empty bins. It is well known
that in a balls-and-bin game the variables are negatively associated and one can
thus apply Chernoff bounds to the variable Z. Adapted to our scenario, we can
argue as follows. For a fixed round j , the random variables (Zj,s)s are Bernoulli
random variables that sum up to at most 1. By adding an additional variable Zj,0 :=
1 − ∑

s≥1 Zj,s , we may thus assume that they sum up to exactly one and [13],
Lemma 8, thus implies that these variables are negatively associated. Moreover,
for j �= j ′ the variables are independent and then [13], Lemma 7, implies that the
whole sequence (Zj,s)j,s is also negatively associated. Finally, the functions Zs

are given by applying a decreasing function to the variables (Zj,s)j and so [13],
Lemma 7, implies that the variables Zs are also negatively associated. Therefore,
we may apply the Chernoff bound to Z = ∑Xk(Ni)

s=1 Zs [13], Proposition 5. Using
(23) and our induction assumption on Xk(Ni), we thus obtain

Pr
[∣∣Z −E[Z]∣∣ ≥ Ce−ti/2

√
n logn

] ≤ e−C logn/3 = o
(
n−2)

,(24)

for an appropriately chosen constant C > 0 (not depending on ε).
It remains to collect the pieces. From (22), (23) and (24), we obtain that with

probability 1 − o(n−2),

Xk(Ni+1) = e−exk(R)/ex(R) · Xk(Ni) ± c̃e−2ti n ± Ce−ti/2
√

n logn ± �I.
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We can bound the effect of I by using (21). We immediately observe that the terms
in (21) are of the same form (or smaller) than the terms that we already have. We
can thus incorporate the effect of I by just increasing the constants in the error
terms. For k ∈ slow, we thus get from the induction assumption that

Xk(Ni+1) = 1

k
eck−ti+1n · (

1 ± εi ± c′e−ti ± c′eti/2√logn/n
)
,

for an appropriate constant c′ > 0 that does not depend on ε. This proves the induc-
tive step for k ∈ slow(R), cf. the definition of εi+1. The claim for k ∈ fast(R)

follows similarly. �

We are now ready to prove the main theorem, which we restate here in a slightly
stronger form.

THEOREM 4. Let K,� ∈ N and let R be a nondegenerate (K, �)-rule. For 1 ≤
k ≤ K , let Yk(N) denote the number of vertices in k-components in GR

N . Moreover,
for k ∈ slow(R) let dk := eck(R)/k, where ck(R) is defined as in Lemma 10. Then,
if ex(R) < 2K + 2 the following statements are true:

(a) For any c ∈ R, with probability7 1 − o(1/ logn) we have for all N ≥
(n logn + cn)/ex(R) and all k ∈ fast(R) that Yk(N) = 0, and there is only one
component with more than K vertices in GR

N .
(b) For any c ∈ R,

lim
n→∞ Pr

[
T R

con ≤ n logn + cn

ex(R)

]
= ∏

k∈slow(R)

e−dke
−c

.

(c) Let c0 := log(
∑

k∈slow(R) dk). Then

E
[
T R

con
] = n logn + γ n + c0n

ex(R)
+ o(n).

(d) For k ∈ [K], let T R
k := min{T | ∀N ≥ T : Yk(N) = 0} be the time at which

the last k-component vanishes. Then Pr[T R
k = T R

con] n→∞−→ 0 for k ∈ fast(R), and
for k ∈ slow(R),

Pr
[
T R

k = T R
con

] n→∞−→ dk∑
i∈slow(R) di

.

PROOF. Given δ > 0 and c ∈R, we use the following notation throughout:

Nδ :=
⌊
(1 − δ)n logn

ex(R)

⌋
, Nc :=

⌊
n logn + cn

ex(R)

⌋
, N∞ := 2

⌊
n logn

ex(R)

⌋
.

7This is stronger than the statement given in the Introduction, and it is needed in the proof of
part (c).
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In order to avoid ambiguity, we will use the first expression always with a constant
named δ, while the expression for Nc is also sometimes used with other subscripts.
For example, we use Nc+ε to mean �(n logn + (c + ε)n)/ex(R)�.

For all statements, we will make use of the following basic observation. Fix
some δ < 1/2. By Lemma 12, the total number of vertices in small components
(in components of size k for some 1 ≤ k ≤ K) is in O(nδ) with probability at
least 1 − o(1/ logn), and this number cannot increase in succeeding rounds. Sim-
ilarly, as in the proof of Lemma 12, we call a round regular if at least � − 1 of
the randomly selected vertices belong to ω-components. Let Eδ be the event that
all rounds between Nδ + 1 and N∞ are regular. The probability that a round is
not regular is in O(n2δ−2), and so Pr[Eδ] = 1 − O(N∞n2δ−2) = 1 − o(1/ logn).
Note that Eδ implies that no new small component is created between rounds Nδ

and N∞.
We will make frequent use of this observation in the following way. Let 1 ≤

k ≤ K . As in the proof of Lemma 12, we denote a position 1 ≤ p ≤ � as k-good
if a vector (ω, . . . ,ω, k,ω, . . . ,ω) with the k at position p results in merging the
k-component with an ω-component. Recall that the number of k-good positions
equals exk(R)/k. Now assume that C ∈ compk(G

R
Nδ

) is a k-component in round
Nδ . Then the probability that in some fixed round N ≥ Nδ , the component C does
not appear in a k-good position is exactly (1 − k/n)exk(R)/k .

Note that a k-component that appears at a k-good position is merged with an ω-
component, unless the round is not regular. Since with probability 1 − o(1/ logn)

there are no nonregular rounds between rounds Nδ and N∞, Markov’s inequality
gives that for all 0 < δ < 1/2, M ∈ N and N ∈ [Nδ,N∞),

Pr
[
Yk(N) > 0 | ∣∣compk

(
GR

Nδ

)∣∣ ≤ M
]

(25)
≤ M · (1 − k/n)(N−Nδ)exk(R)/k + o(1/ logn).

With these preparations, we come to the proof of the specific statements.

PROOF OF (a). We first prove the statement for all N ∈ [Nc,N∞). Let k ∈
fast(R). Then the right-hand side of (25), applied for N = Nc and M = nδ , is
o(1/ logn), since exk(R) ≥ ex(R) + 1 and Nc − Nδ = n(δ logn + c)/ex(R). As
with probability 1 − o(1/ logn), all rounds between Nδ and N∞ are regular, and
since a small component can only be created in a nonregular round, this shows that

Pr
[∀N ∈ [Nc,N∞), k ∈ fast(R) : Yk(N) = 0

] = 1 − o(1/ logn).

Actually, we can say a little more. We interpret R as a (K ′, �)-rule R′ for K ′ :=
24(K +1), as outlined in Remark 1(a). Note that K ′ > 12ex(R), since by assump-
tion ex(R) < 2K + 2. Then {K + 1, . . . ,K ′} ⊆ fast(R′) and ex(R′) = ex(R),
so by the same argument as before, with probability 1−o(1/ logn) all components
of these sizes [i.e., in fast(R) ∪ {K + 1, . . . ,K ′}] will be extinct at round Nc.
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Next, we show that in round Nc, with probability 1 − o(1/ logn) all vertices
that are in an ω-component are actually contained in the same component. Fix
δ = 1/3, and note that the event Eδ guarantees that no new ω-component (i.e., with
more than K ′ vertices) is created between round Nδ and Nc. We apply the same
idea as before, but now instead of regular rounds we consider ω-rounds, that is,
rounds in which all � randomly selected vertices are in ω-components. Let Xω(N)

be the set of components in GR
N with more than K ′ and less than n/2 vertices,

and set Xω(N) = |Xω(N)|. Moreover, let ε > 0 be so small that (1 − ε)�−1 > 1/2.
Let Egiant denote the event that GR

Nδ
contains a giant component of size at least

(1 − ε)n. By Lemma 11, we have Pr[Egiant] = 1 − o(1/ logn). Then it suffices to
show that with probability at least 1 − o(1/ logn), for every C ∈ Xω(Nδ), there is
some round Nδ ≤ N ≤ Nc in which an edge between C and the giant component
is added to the graph.

Fix a component C ∈ Xω(Nδ), and consider some N ∈ [Nδ,Nc]. If all chosen
vertices v1, . . . , v� of the N th round are in ω-components, then R will select some
edge, say {v2i−1, v2i} for some 1 ≤ i ≤ �/2. So, if one of v2i−1 and v2i is in C,
and the other � − 1 vertices are in the giant, then C will be connected to the gi-
ant. The probability that this happens is at least 2K ′(1 − ε)�−1/n > K ′/n. In a
regular round, no new large component is created. Hence, by the same argument
as for (25), and using Nc − Nδ = n logn/3+cn

ex(R)
≥ n logn

6ex(R)
for sufficiently large n and

Xω(Nδ) ≤ n, we may bound

Pr
[
Xω(Nc) > 0 | Egiant

] ≤ n

(
1 − K ′

n

)Nc−Nδ

+ o(1/logn)

≤ ne−K ′ logn/6ex(R) + o(1/logn) = o(1/logn).

Since all rounds between Nc and N∞ are regular with probability 1 − o(1/ logn),
this proves (a) for all rounds N ∈ [Nc,N∞). To see the claim for N ≥ N∞, recall
that with probability 1 − o(1/ logn), there are O(nδ) components with at most K

vertices in GR
Nδ

. Moreover, since R is nondegenerate, we have exk(R) ≥ ex(R) ≥
1 for all 1 ≤ k ≤ K . Together with (25), applied for N = N∞ = 2�n logn/ex(R)�
and any 0 < δ < 1/2, this implies that

Pr
[∀1 ≤ k ≤ K : Yk(N∞) = 0

] = 1 − o(1/ logn).

Thus, GR
N∞ is connected with probability at least 1 − o(1/ logn). Hence, the claim

also follows for N ≥ N∞. �

PROOF OF (b). We will resort to the so-called method of moments. Suppose
that we have r sequences Zi(1),Zi(2), . . . of random variables, 1 ≤ i ≤ r , with
support on N0. Suppose further that there are λ1, . . . , λk > 0 such that for all
e1, . . . , er ∈ N0

E
[
Z

e1

1 (N) · Ze2

2 (N) · · ·Zer

r (N)
] → λ

e1
1 · · ·λer

r as N → ∞,
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where nx := n(n − 1) · · · (n − x + 1). Then the joint distribution of the Zk(N)

converges to the joint distribution of independent Poisson random variables with
parameters λ1, . . . , λr , that is, for all z1, . . . , zr ∈ N0 we have Pr[Z1(N) = z1 ∧
· · ·∧Zr(N) = zr ] → ∏

1≤k≤r e−λkλ
zk

k /zk! as N → ∞, see e.g. [17], Theorem 6.10.
Let δ > 0 be sufficiently small and recall that Nδ = �(1 − δ)n logn/ex(R)�.

For any ε = ε(n) > 0, let E(ε) be the event that for k ∈ slow(R) we have
| compk(G

R
Nδ

)| = (1 ± ε)dkn
δ . By Lemma 12, Pr[E(ε0)] = 1 − o(1) for every

ε0 > 0. By a standard argument there exists also a (possibly very slowly converg-
ing) sequence ε = ε(n) = o(1) such that Pr[E(ε)] = 1 − o(1) for n → ∞.

For every k ∈ slow(R), every N ≥ Nδ , and every C ∈ compk(G
R
Nδ

), let Z(C)

be a Bernoulli random variable that is 1 if C does not appear in a k-good position
between rounds Nδ and N (recall that a position is called k-good if a k-component
that appears in this position in a regular round is merged into an ω-component).
Moreover, for every k ∈ slow(R) and N ≥ Nδ let Zk(N) := ∑

C∈compk(G
R
Nδ

) Z(C).

We will apply the method of moments to the random variables Zk(Nc) in the con-
ditional space in which E(ε) occurs. More precisely, we will show that for every
vector e ∈ N

K
0 we have for all large enough n that

E

[ ∏
k∈slow(R)

Z
ek

k (Nc)
∣∣∣ E(ε)

]
= ∏

k∈slow(R)

(
(1 ± 3ε)dke

−c)ek .(26)

This implies the claim as follows: recall that Eδ is the event that all rounds between
Nδ and N∞ are regular. Then by (a) and since Pr[Eδ] = 1 − o(1), we have

Pr
[
Tcon ≤ Nc | E(ε)

] = Pr
[∀k ∈ slow(R) : Zk(Nc) = 0 | E(ε)

] + o(1),

where the error term does not depend on ε. Since Pr[E(ε)] = 1 − o(1), for n → ∞
the left-hand side converges to Pr[Tcon ≤ Nc], while the right-hand side converges
to

∏
k∈slow(R) exp{−dke

−c} by the method of moments, thus proving the claim.
It remains to prove (26). For this, let H be the set of all ordered tuples

((Ck,i)
ek

i=1)k∈slow(R) of pairwise distinct components Ck,i ∈ compk(G
R
Nδ

). For
h ∈ H , we write Zh(N) = 1 if

∏
C∈H Z(C) = 1 or, in other words, if none of

the components Ck,i of h occur in a k-good position between rounds Nδ and N .
Note that an elementary counting argument implies∏

k∈slow(R)

Z
ek

k (N) = ∑
h∈H

Zh(N).

Consider any tuple h = ((Ck,i)
ek

i=1)k∈slow(R) ∈ H . The probability that for a fixed
k ∈ slow(R) none of the components (Ck,i)

ek

i=1 appears in a k-good position in
a given round N is (1 − kek/n)ex(R)/k [even if we condition on E(ε)]. Similarly,
using the fact that Pr[∀i : Ai] = ∏

i Pr[Ai | ∀j < i : Aj ], we deduce that the prob-
ability that none of the components {Ck,i}1≤i≤ek

appears in a k-good position in a
given round N is

F := ∏
k∈slow(R)

(
1 − kek

n − O(1)

)ex(R)/k

,
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where the O(1) term depends only on e1, . . . , ek and R. Thus, for every N ≥ Nδ ,

E

[ ∏
k∈slow(R)

Z
ek

k (N + 1)
∣∣∣ E(ε)

]
= F ·E

[ ∏
k∈slow(R)

Z
ek

k (N)
∣∣∣ E(ε)

]
.

Moreover, by definition of E(ε) we have

E

[ ∏
k∈slow(R)

Z
ek

k (Nδ)
∣∣∣ E(ε)

]
= ∏

k∈slow(R)

(
(1 ± 2ε)dkn

δ)ek ,

for all large enough n, and so by induction we get for any c ∈R

E

[ ∏
k∈slow(R)

Z
ek

k (Nc)
∣∣∣ E(ε)

]
= FNc−Nδ · (

(1 ± 2ε)dkn
δ)ek .

Note that 1 − kek

n−O(1)
= (e−k/n+O(n−2))ek . Thus,

E

[∏
k

Z
ek

k (Nc)
∣∣∣ E(ε)

]
= ∏

k

(
(1 ± 2ε)

(
e−(k/n)+O(n−2))ex(R)(Nc−Nδ)/k

dkn
δ)ek ,

where the products are over all k ∈ slow(R). Since ex(R)(Nc − Nδ) = cn +
δn logn, the claim in (26) follows.

For later reference (and omitting the details), we note that a slight variation on
this argument shows the following: for every ε > 0 and c ∈ R, and for all k ∈
slow(R), we have, as n → ∞

Pr
[
Yk(Nc+ε) = 0 ∧ ∀i �= k : Yi(Nc) = 0

] → e−dke
−(c+ε) ∏

i∈slow(R)\{k}
e−die

−c

(27)

and

Pr
[
Yk(Nc) = 0 ∧ ∀i �= k : Yi(Nc+ε) = 0

] → e−dke
−c ∏

i∈slow(R)\{k}
e−die

−(c+ε)

.(28)
�

PROOF OF (c). We consider T ′
con(n) = ex(R) · T R

con(n)/n − logn. Let D be a
random variable such that Pr[D ≤ c] = F(c) := ∏

k∈slow(R) exp{−dke
−c}, where

c ∈ R. Then, by (b), T ′
con(n) converges in distribution to D. In the following, we

will prove that the sequence T ′
con(n) is uniformly integrable, that is,

lim sup
n∈N

(
E

[∣∣T ′
con(n)

∣∣≥α

]) → 0 as α → ∞,(29)

where X≥α = X if X ≥ α, and X≥α = 0 otherwise.
First, we show how (29) implies the statement of (c). Convergence in distri-

bution together with uniform integrability implies convergence of the means, that
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is, E[T ′
con(n)] → E[D] (see, e.g., [7]). By elementary calculus and the change of

variables u = ∑
k∈slow(R) dke

−c = ec0−c, we get

E[D] =
∫ ∞
−∞

c

( ∏
k∈slow(R)

e−dke
−c

)( ∑
k∈slow(R)

dke
−c

)
dc

=
∫ 0

∞
(−c0 + logu)e−u du = c0 + γ,

where we used the well-known identity γ = − ∫ ∞
0 (logu)e−u du for the Euler–

Mascheroni constant. Thus, E[T ′
con(n)] = γ + c0 + o(1), and

E
[
Tcon(n)

] = n

ex(R)

(
E

[
T ′

con(n)
] + logn

) = n logn + γ n + c0n

ex(R)
+ o(n).

Thus, it suffices to prove (29). We define the following events, where δ = 1/3 [and,
as usual, Yk(N) is the number of vertices in k-components of GR

N ]:

(i) for N0 = n logn/ex(R) we have Yk(N0) = 0 for all k ∈ fast(R), and
there is only one ω-component in GR

N0
,

(ii) ec0nδ/2 ≤ ∑
k∈slow(R) Yk(Nδ) and

∑
1≤k≤K Yk(Nδ) ≤ 2ec0Knδ , and

(iii) all rounds between Nδ and N∞ are regular.

Then by part (a) of Theorem 4, by Lemma 12, and by the properties of N∞, re-
spectively, the events (i), (ii) and (iii) each have probability 1 − o(1/ logn), where
for (ii) we also use

∑
k∈slow(R) e

ck ≤ Kec0 . For the proof, we also need the follow-
ing claim, whose justification we postpone to a later point: there exists a constant
η > 0 such that

E
[∣∣T ′

con(n)
∣∣≥α | T ′

con(n) > 2�log logn�] ≤ η logn.(30)

Our next goal is to give bounds for Pr[T ′
con(n) > c] that are uniform in c [in (b)

we calculated the limit of this probability only for constant c]. For every 1 ≤ k ≤
K and N ≥ Nδ , write Xk(N) for the number of components in compk(Nδ) that
never appear at a k-good position between rounds Nδ and N . Furthermore, let
Xslow(N) := ∑

k∈slow(R) Xk(N). Note that for every c such that N0 ≤ Nc ≤ N∞
we have

Pr
[
T ′

con(n) > c
] ≤ Pr

[
Xslow(Nc) > 0

] + o(1/ logn),(31)

since T ′
con(n) > c implies that at least one of the events ¬(i), ¬(iii) or Xslow(Nc) >

0 occurs. Conversely, for every c such that Nδ ≤ Nc ≤ N∞ [note that the range for
c in (31) is different] we have

Pr
[
T ′

con(n) > c
] ≥ Pr

[
Xslow(Nc) > 0

] − o(1/ logn),(32)

since Xslow(Nc) > 0 implies that at least one of the events ¬(iii) or T ′
con(n) > c

occurs.
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Observe that in every round a k-component C fails to appear at a k-good posi-
tion with probability (1 − k/n)exk(R)/k ≤ (1 − k/n)ex(R)/k . Therefore, for every
M ∈ N and N ≥ Nδ ,

E
[
Xk(N) | ∣∣compk

(
GR

Nδ

)∣∣ ≤ M
] ≤ M ·

(
1 − k

n

)(N−Nδ)ex(R)/k

.

Thus, by Markov’s inequality and the fact that (ii) occurs with probability 1 −
o(1/ logn), we get from (31) uniformly for c such that N0 ≤ Nc ≤ N∞

Pr
[
T ′

con(n) > c
] ≤ Pr

[
Xslow(Nc) > 0 | (ii)

] + o(1/logn)

≤ 2K2ec0nδ max
k∈slow(R)

(
1 − k

n

)(Nc−Nδ)ex(R)/k

+ o

(
1

logn

)
(33)

≤ 2K2ec0−c + o(1/logn).

On the other hand, a k-component, where k ∈ slow(R), fails to appear at a k-
good position with probability (1 − k/n)ex(R)/k ≥ 1 − ex(R)/n. Therefore, in
every given round N ≥ Nδ , the probability that Xslow(N) decreases is at most
Xslow(N)ex(R)/n, by the union bound. This allows us to couple the number
of rounds until Xslow(N) decreases with geometrically distributed random vari-
ables. Indeed, for every i ≤ n/ex(R), let Ti be geometrically distributed with mean

n/(iex(R)), and let T = ∑ec0nδ/(2K)
i=1 Ti . Then, for every Nδ ≤ Nc ≤ N∞ and x ∈ N

Pr
[
Xslow(Nc) = 0 | (ii)

] ≤ Pr[T ≤ Nc − Nδ].
It is not difficult to bound Pr[T ≤ Nc − Nδ]. Straightforward calculation shows
that for a suitable constant ζ > 0 we have that E[T ] ≥ (n logn − ζn)/3ex(R) and
Var[T ] ≤ ζn2/ex(R)2. Hence, by (32) and Chebyshev’s inequality, and since (ii)
occurs with probability 1 − o(1/ logn), for all −δ logn < c < −ζ/3

Pr
[
T ′

con(n) ≤ c
] ≤ Pr

[
Xslow(Nc) = 0

] + o(1/ logn)

≤ Pr[T ≤ Nc − Nδ] + o(1/ logn)
(34)

= Pr
[
T ≤ n logn + 3cn

3ex(R)

]
+ o(1/ logn) [as δ = 1/3]

≤ 9ζ (ζ + 3c)−2 + o(1/ logn).

We are now ready to complete the proof of (29). For α > 0, we write

E
[∣∣T ′

con(n)
∣∣≥α

] = E
[
T ′

con(n)≥α

] −E
[
T ′

con(n)≤−α

]
.(35)

We will consider each term separately. For the second term, observe that by the def-
inition of T ′

con(n) the inequality T ′
con(n) ≥ − logn holds. Thus, for X = (−T ′

con)≥α

the general formula E[X] = ∫ ∞
0 Pr[X ≥ c]dc simplifies to

−E
[
T ′

con(n)≤−α

] = α Pr
[
T ′

con(n) ≤ −α
] +

∫ logn

α
Pr

[
T ′

con(n) ≤ −c
]
dc.
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Since the integrand is nonincreasing (as a function of c), we get that

−E
[
T ′

con(n)≤−α

] ≤ α Pr
[
T ′

con(n) ≤ −α
] +

�logn�∑
c=�α�

Pr
[
T ′

con(n) ≤ −c
]
.

Then, for all sufficiently large α > ζ/3, (34) gives

−E
[
T ′

con(n)≤−α

] ≤ 10ζ

α
+

�logn�∑
c=�α�

9ζ

(ζ − 3c)2 + o(1) ≤ 20ζ

α
+ o(1).

This establishes that lim supn→∞ −E[T ′
con(n)≤−α] → 0 as α → ∞. For the first

term in (35), by (30) and (33),

E
[
T ′

con(n)≥α

] ≤
2�log logn�∑

c=�α�
(c + 1)

(
2K2ec0−c + o(1/ logn)

)

+ (
2K2ec0−2�log logn� + o(1/ logn)

)
(η + 3) logn.

The second summand is in O(e−2 log logn logn) + o(1) = o(1). Moreover, the first
term is a partial sum of a converging series, and becomes arbitrarily small as
α → ∞. We obtain

lim sup
n→∞

E
[
T ′

con(n)≥α

] → 0 as α → ∞.

This completes the proof of (c), assuming (30), and it only remains to prove this
auxiliary claim. So let N ∈ N, and let G0 be a nonempty graph on n vertices.
We will bound the conditional expectation E[|T ′

con(n)| | GR
N = G0]. If G0 is con-

nected, then Tcon(n) ≤ N , so assume otherwise. Fix some ε > 0 with the property
(1 − ε)�−1 > 1/2. Let Egiant(N

′) be the event that in round N ′ there is a giant com-
ponent with (1 − ε)n vertices. Then by Lemma 11 there is a constant ρ > 0 such
that uniformly over all G0 we have Pr[Egiant(Nρ) | GR

N = G0] ≥ 1−o(1/n), where
Nρ := N + ρn.

Assuming that Egiant(Nρ) occurred, let S be the vertex set of the giant. Let
Z(N), N ≥ Nδ , be the set of vertices in V \ S that have no neighbor in S in round
N . Fix some v ∈ Z(N). Then the probability that in round N + 1 the vertex v

appears at position i (among the � randomly selected vertices), while at all other
positions there are vertices of S is at least 1/n · (1 − ε)�−1 > 1/(2n). If v is in a
component of size k ≤ K , then there is a k-good position, so with probability at
least 1/(2n) the vertex v is joined to S by an edge. Similarly, if v is in a component
of size larger than K , then it is also joined to S with probability at least 1/(2n).
Since Z(Nδ) ≤ n/2,

E
[∣∣Z(Nρ + �)

∣∣ | Egiant(Nρ) and GR
N = G0

] ≤ n

2

(
1 − 1

2n

)�
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for every � ∈ N. In particular, for � = 4n logn the right-hand side is at most
1/(2n). Note that |Z(N)| = 0 implies Tcon(n) ≤ N . Thus, by Markov’s inequality,

Pr
[
Tcon(n) > Nρ + 4n logn | Egiant(Nρ) and GR

N = G0
] ≤ 1/2n.

Note that Nρ + 4n logn < N + 5n logn for sufficiently large n. Therefore, we get
for sufficiently large n (but uniformly for all N and G0):

Pr
[
Tcon(n) > N + 5n logn | GR

N = G0
]

≤ Pr
[¬Egiant(Nρ) | GR

N = G0
]

+ Pr
[
Tcon(n) > Nρ + 4n logn | Egiant(Nρ) and GR

N = G0
]

≤ 1/n.

Applying this bound iteratively, we find that for sufficiently large n we have for all
N > 0, all graphs G0, and all i ∈ N,

Pr
[
Tcon(n) > N + 5in logn | GR

N = G0
] ≤ n−i .(36)

In particular, E[Tcon(n) | GR
N = G0] ≤ N + n logn · O(

∑∞
i=0 i · n−i) = N +

O(n logn). Recalling the definition T ′
con(n) = ex(R)Tcon(n)/n − logn, we get

E
[
T ′

con(n) | GR
N = G0

] ≤ ex(R) · N/n + O(logn).

On the other hand, T ′
con(n) ≥ − logn always, since Tcon(n) ≥ 0. Summarizing,

there exists η′ > 0 such that for all n ≥ 2, all nonempty graphs G0, and all N > 0,

E
[∣∣T ′

con(n)
∣∣ | GR

N = G0
] ≤ ex(R) · N

n
+ η′ logn.(37)

Let us denote by L the event that T ′
con(n) > 2 log logn, and let N ′ = �(n logn +

2n�log logn�)/ex(R)�. Then

E
[∣∣T ′

con(n)
∣∣≥α | L] = ∑

G0

Pr
[
GR

N ′ = G0 | L] ·E[∣∣T ′
con(n)

∣∣≥α | GR
N ′ = G0

]

≤
(
ex(R) · N ′

n
+ η′ logn

)∑
G0

Pr
[
GR

N ′ = G0 | L]

= ex(R) · N ′/n + η′ logn,

and (30) follows. �

PROOF OF (d). For a C > 0, let A= A(C) be the event that:

• all rounds from N−C to NC are regular (where N−C and NC are defined in the
beginning of the proof),

• there is only one ω-component in GR
N−C

and
• for all k ∈ fast(R) we have Yk(N−C) = 0.
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Fix k ∈ slow(R) and ε > 0 and define for all −C ≤ c ≤ C three events

E1(c) := A∧ Yk(Nc+ε) = 0 ∧ Yk(Nc) > 0 ∧ ∀i ∈ slow(R) \ {k} : Yi(Nc) = 0,

and

E2(c) := A∧ T R
k = T R

con ∧ T R
con ∈ (Nc,Nc+ε],

E3(c) := A∧ Yk(Nc) > 0 ∧ ∀i ∈ slow(R) : Yi(Nc+ε) = 0.

Since A guarantees that all rounds from N−C to NC are regular, we have that E1(c)

implies E2(c) which in turn implies E3(c). That is, we have

Pr
[
E1(c)

] ≤ Pr
[
E2(c)

] ≤ Pr
[
E3(c)

]
for all −C ≤ c ≤ C − ε.(38)

From (27) and (28), and the fact that Pr[A] = 1 − o(1), we infer that for all −C ≤
c ≤ C − ε we have

lim
n→∞ Pr

[
E1(c)

] = (
e−dke

−(c+ε) − e−dke
−c) ∏

i∈slow(R)\{k}
e−die

−c

,

(39)
lim

n→∞ Pr
[
E3(c)

] = (
e−dke

−(c+ε) − e−dke
−c) ∏

i∈slow(R)\{k}
e−die

−(c+ε)

.

Let fd(c) = e−de−c
. Then we infer, with Sk := ∑

i∈slow(R)\{k} di , by applying Tay-
lor’s theorem

lim
n→∞ Pr

[
E1(c)

] = (
εf ′

dk
(c) + O

(
ε2)) · fSk

(c),

and

lim
n→∞ Pr

[
E3(c)

] = (
εf ′

dk
(c) + O

(
ε2)) · fSk

(c + ε).

Note that since fd is smooth, and since we will be considering only values of
fd and its derivatives in a compact interval [−C,C] for a C > 0 independent of ε,
there exists is universal constant C ′ (depending on C only) such that all error terms
are in absolute value at most (C ′ −1)ε2. Moreover, let SC,ε := {j ·ε | j ∈ N,−C ≤
j · ε ≤ C − ε}. Since |SC,ε| is a constant, for sufficiently large n the probabilities
Pr[E1(c)] and Pr[E3(c)] are within distance at most ε2 from their respective limits
for all c ∈ SC,ε . Therefore, together with (38) we obtain that there is C′ > 0 and
n0 ∈N such that for all n ≥ n0 and all c ∈ SC,ε

εf ′
dk

(c)fSk
(c) + C′ε2 ≤ Pr

[
E1(c)

] ≤ Pr
[
E3(c)

]
(40)

≤ εf ′
dk

(c)fSk
(c + ε) + C′ε2.

With those preparations at hand, let E∗ be the event that T R
k = T R

con and T R
con ∈

(N−C,NC] and that A holds. We may assume that C is a multiple of ε. Then

Pr
[
E∗] =

(C−ε)/ε∑
j=−C/ε

Pr
[
E2(jε)

]
.
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For any ε′ > 0 we have, by choosing C = C(ε′) large enough, that∣∣Pr
[
T R

k = T R
con

] − Pr
[
E∗]∣∣ ≤ Pr

[
T R

con /∈ (N−C,NC]] + Pr[¬A].
However, the last expression is at most ε′, due to part (b) for C(ε′) and n = n(ε′)
large enough. In particular, this derivation, combined with (38), implies that

(C−ε)/ε∑
j=−C/ε

Pr
[
E1(jε)

] ≤ Pr
[
T R

k = T R
con

] ≤ ε′ +
(C−ε)/ε∑
j=−C/ε

Pr
[
E3(jε)

]
.

Thus, (40) guarantees that for sufficiently large n,((C−ε)/ε∑
j=−C/ε

εf ′
dk

(jε)fSk
(jε)

)
+ C′Cε ≤ Pr

[
T R

k = T R
con

]

and

Pr
[
T R

k = T R
con

] ≤ ε′ +
((C−ε)/ε∑

j=−C/ε

εf ′
dk

(jε)fSk

(
(j + 1)ε

)) + C′Cε.

Since the statement holds for any choice of ε > 0, we have∫ C

−C
fSk

(x) · f ′
dk

(x) dx ≤ lim
n→∞ Pr

[
T R

k = T R
con

] ≤ ε′ +
∫ C

−C
fSk

(x) · f ′
dk

(x) dx.

Again this statement holds for any choice of ε′ > 0 if C = C(ε′) is large enough.
Hence,

lim
n→∞ Pr

[
T R

k = T R
con

] = lim
C→∞

∫ C

−C
fSk

(x) · f ′
dk

(x) dx.

Setting S = Sk + dk = ∑
i∈slow(R) di , the integral can be computed as follows:

lim
C→∞

∫ C

−C
fSk

(x)f ′
dk

(x) dx = lim
C→∞

∫ C

−C
e−Ske

−x · e−dke
−x · dke

−x dx

= lim
C→∞dk

∫ C

−C
e−Se−x−x dx

= lim
C→∞

dk

S

(
e−Se−C − e−SeC ) = dk

S
,

as claimed. � �

5. Degenerate rules. In this section, we will discuss lower bounds for de-
generate rules and we will prove Theorem 5. As an auxiliary result, we need the
following lemma implying that the typical behavior of the process is to end up
with fast components gone and only a constant number of slow components left.
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For brevity, we will denote fast(R) and slow(R) by fast and slow, respec-
tively. Moreover, we will denote

∑
k∈fast Yk(N) by Yfast(N),

∑
k∈fast zk(t) by

zfast(t),
∑

k∈slow Yk(N) by Yslow(N) and
∑

k∈slow zk(t) by zslow(t). Recall
that a component is small if it has size ≤K .

LEMMA 13. Let K,� ∈ N and let R be a degenerate (K, �)-rule. Then for
every ε > 0 there is a C > 0 and t0 > 0 such that w.h.p. Yfast(tn) < εYslow(tn)+
C logn for all t0 < t < n.

PROOF. Let ε > 0. Since the statement becomes stronger for smaller ε > 0 we
may assume ε < (32�2K)−1 and (1−ε2)�−1 ≥ 1/2. By Lemma 10 and Lemma 11,
there is t0 > 0 such that zfast(t) < ε/2 · zslow(t) and zfast(t) + zslow(t) < ε2/2
for all t ∈ [t0, t0 + 1], and by Corollary 3, w.h.p.

Yfast(tn) < ε · Yslow(tn) and Yfast(tn) + Yslow(tn) < ε2n(41)

for all t ∈ [t0, t0 + 1].
We show by induction on t that (41) holds w.h.p. for all t ′ ∈ [t0, t] as long as

t < n and Yslow(tn) ≥ 64K/ε · logn. More precisely, we show that if (41) holds
for some t ≥ t0, and if Yslow(tn) ≥ 64K/ε · logn, then with probability 1−o(1/n)

it also holds for t + 1. The idea of the inductive step is similar as in the proof for
Lemma 10(a), but here we need to work with Yk instead of zk , which forces us to
split the proof into small steps.

Since Yfast(N) + Yslow(N) is nonincreasing, we only need to show the first
inequality of (41). Note that if Yslow(tn) + Yfast(tn) < C logn for some C > 0
then the statement is trivial. So assume that (41) holds for some t ≥ t0, and that
Yslow(tn) ≥ 64K/ε · logn. We first give a lower bound for Yslow((t + 1)n). As R
is degenerate, small components can only be removed in rounds for which at least
two of the � vertices belong to small components. Let I denote the number of such
rounds in the interval (tn, (t + 1)n]. The probability that a single round contains
at least two vertices in small components is at most(

�

2

)(
Yslow(tn) + Yfast(tn)

n

)2

≤ �2 Yslow(tn)2

n2 .(42)

Since the number of small components is nonincreasing, using the induction as-
sumption (41) for tn guarantees that

E[I ] ≤ n · �2Yslow(tn)2/n2 ≤ �2ε2Yslow(tn) < εYslow(tn)/(32K).(43)

Note that the right-hand side is >2 logn by our assumption on Yslow(tn). By the
Chernoff bounds, with probability 1 − o(1/n) the actual number of nonregular
rounds is at most I ≤ εYslow(tn)/(16K). Since in each round at most two slow
components can be merged, each having at most K vertices, with probability 1 −
o(1/n) we have with room to spare

Yslow
(
(t + 1)n

) ≥ Yslow(tn) − 2K · I > 15
16 · Yslow(tn).(44)
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Next, we derive an upper bound for the fast components. A new fast component
can only be created by merging two small components. Hence, the number of
vertices in fast components that are created between time t and t + 1 is at most
K · I . To use this fact, we distinguish two cases. First, assume that there exists a
round N ∈ (tn, (t + 1)n] such that Yfast(N) ≤ εYslow(tn)/2. In this case, we can
directly bound

Yfast
(
(t + 1)n

) ≤ Yfast(N) + K · I < 15
16 · εYslow(tn),(45)

where we used the bound I ≤ εYslow(tn)/(16K), which holds with probability
1 − o(1/n).

Now let us turn to the second case. So assume that for all N ∈ (tn, (t + δ)n] we
have Yfast(N) ≥ εYslow(tn)/2. Recall that for each k ∈ fastwe have exk(R) >

0. In other words, for each fast component C there exists at least one “good”
position so that if C appears in this position (and all other positions are filled with
vertices from ω-components) then C is merged with an ω-component. Therefore,
the probability that in a fixed round N a fast component is merged with an ω-
component is at least

Yfast(N)

n

(
1 − ε2)�−1 ≥ εYslow(tn)

4n
.

Again we apply the Chernoff bounds and use that the right-hand side is >2 logn/n.
Thus, with probability 1 − o(1/n) the number Z of fast components that
are merged with an ω-component between time t and t + 1 is at least Z ≥
εYslow(tn)/8. Therefore, with probability at least 1 − o(1/n),

Yfast
(
(t + 1)n

) ≤ Yfast(tn) − Z + K · I
≤ εYslow(tn) − εYslow(tn)

8
+ εYslow(tn)

16
(46)

≤ 15

16
· εYslow(tn),

so we get the same bound as in the first case; cf. (45).
In either case, together with (44) the inductive conclusion follows since with

probability 1 − o(1/n),

εYslow
(
(t + 1)n

) ≥ 15
16εYslow(tn) ≥ Yfast

(
(t + δ)n

)
.

This concludes the induction step and the proof of the lemma.

PROOF OF THEOREM 5. Choose any 0 < ε < 1, and let C, t0 > 0 be as in
Lemma 13. From Lemma 9 and Corollary 3, we know that at time t0 there is a
linear number of slow components. We distinguish two cases. First, if the num-
ber of vertices in small components is larger than Y0 := (C + 1 + ε) · logn after
n2 rounds, then there is nothing to show. Second, suppose that the number drops
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below Y0 at some round N0. Then Lemma 13 implies Yslow(N0) ≥ logn, while
Yfast(N0) ≤ Y0 = O(logn). We wait a bit further until in some round N1 the
number of slow components has dropped to 1 or 2. (In each round, it can decrease
by at most 2.) Then the number of fast components is still at most Y0.

Now we wait for � := n3/2 further rounds. The probability that in a fixed
round at least two vertices in small components are chosen is in O((Y0/n)2) =
O(log2 n/n2). Thus, the probability that there exists a round between N1 and
N1 + � in which two vertices in small components are chosen is in O(log2 n/n2 ·
�) = o(1). In particular, w.h.p. the set of slow components remains unchanged.

On the other hand, in each round the probability that a particular fast com-
ponent is merged with an ω-component is �(1/n). Thus, the expected number
of fast components that will remain after � rounds is (1 − �(1/n))� = o(1).
By Markov’s inequality, the probability that there are no fast components left is
1 − o(1). Thus, w.h.p. after N1 + � rounds there is no fast component left, and
only one or two slow components. Then we only merge the slow components if at
least two of their vertices are selected in some round. The expected time until this
happens is �(n2), which proves the theorem. �

6. Examples and applications. In this section, we illustrate Theorem 4 by
performing the analysis of the BF, KP and LEX� rules defined in the Introduction.
In Section 6.3, we also prove Theorem 3 by showing that the lexicographic rule is
connects asymptotically at least as fast as any other Achlioptas processes.

6.1. The BF process. The BF process is defined by the (1,4)-rule

BF(1,1,∗,∗) = 1 and BF(ω,∗,∗,∗) = BF(∗,ω,∗,∗) = 2,

where we use ∗ as a placeholder for either 1 or ω. Components can be combined
in three different ways given by

C1,1 = {
(1,1,∗,∗), (ω,∗,1,1), (1,ω,1,1)

}
,

C1,ω = {
(ω,∗,1,ω), (ω,∗,ω,1), (1,ω,1,ω), (1,ω,ω,1)

}
and

Cω,ω = {
(∗,ω,ω,ω), (ω,1,ω,ω)

}
.

The extinction rate for 1-components is

ex(BF) = ex1(BF) = 1 · ∣∣{(ω,ω,ω,1), (ω,ω,1,ω)
}∣∣ = 2.

Since ex1(BF) < 2K + 2 = 4, Theorem 4 is applicable. As K = 1, we have z1 +
zω = 1, so we can express the functions fk in the differential equations (5) in terms
of z1 only. By writing z instead of z1, they are given by

z′ = −2z − 2z2 + 2z3 and z′
ω = 2z + 2z2 − 2z3.
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Integrating, we get

−2T =
∫ T

0

z′(t)
z(t) + z(t)2 − z(t)3 dt

x=z(t)=
∫ z(T )

1

1

x + x2 − x3 dx

=
[
logx − 5 − √

5

10
log(1 + √

5 − 2x) − 5 + √
5

10
log(−1 + √

5 + 2x)

]z(T )

x=1
.

For T → ∞, we know z(T ) → 0, so 2T + log(z(T )) converges to

c1 = log(5 − √
5) − log(5 + √

5)√
5

= −2 logϕ√
5

= −0.43040894 . . . ,

where ϕ = (1 + √
5)/2 is the golden ratio. Hence, by Theorem 4, since c0 = c1,

the expected time until the graph is connected is

E
[
T BF

con
] = n logn + γ n + c1n

ex(BF)
+ o(n) = n logn + 0.1468067 . . . n

2
+ o(n),

and for all c ∈ R, since d1 = ec1 = 0.6502431 . . . ,

lim
n→∞ Pr

[
T BF

con ≤ n logn + cn

2

]
= e−d1e

−c = e−0.6502431...e−c

.

6.2. The KP process. The KP process is defined by the (1,4)-rule

KP(ω,ω,∗,∗) = 2 and KP(1,∗,∗,∗) = KP(∗,1,∗,∗) = 1,

where we use ∗ as a placeholder for either 1 or ω. We have ex(KP) = 4, as

ex1(KP) = 1 · ∣∣{(1,ω,ω,ω), (ω,1,ω,ω), (ω,ω,1,ω), (ω,ω,ω,1)
}∣∣ = 4.

Moreover, slow(KP) = {1}. Note that Theorem 4 is not directly applicable, since
ex(KP) ≥ 2K + 2. However, we can instead study a (2,4)-rule KP′ as described
in Remark 1, by setting

KP′(•,•,∗,∗) = 2 and KP′(1,∗,∗,∗) = KP′(∗,1,∗,∗) = 1,

where ∗ is a placeholder for 1, 2 or ω and • is a placeholder for 2 or ω. Then we
have ex1(KP) = ex1(KP′) = 4 and

ex2
(
KP′) = 2 · ∣∣{(ω,ω,2,ω), (ω,ω,ω,2)

}∣∣ = 4,

and thus ex(KP′) = 4 and slow(KP′) = {1,2}. Since ex(KP′) < 2 · 2 + 2 Theo-
rem 4 is applicable to KP′. Moreover,

C1,1 = {
(1,1,∗,∗), (•,•,1,1)

}
,

C1,2 = {
(1,2,∗,∗), (2,1,∗,∗), (•,•,1,2), (•,•,2,1)

}
,

C1,ω = {
(1,ω,∗,∗), (ω,1,∗,∗), (•,•,1,ω), (•,•,ω,1)

}
,

C2,2 = {
(•,•,2,2)

}
,

C2,ω = {
(•,•,2,ω), (•,•,ω,2)

}
and

Cω,ω = {
(•,•,ω,ω)

}
.
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Recall that z1 + z2 + zω ≡ 1. We can express fk in (5) for k ∈ {1,2,ω} in terms of
z1 and z2 only. The differential equations are given by

z′
1 = −4z1 + 4z2

1 − 2z3
1,

z′
2 = 2z4

1 − 4z3
1 − 4z2

1z2 + 4z2
1 + 4z1z2 − 4z2.

Like in the Bohman–Frieze process we get for z1

−4T =
∫ T

0

z′
1(t)

z1(t) − z1(t)2 + z1(t)3/2
dt

x=z1(t)=
∫ z1(T )

1

dx

x − x2 + x3/2
(47)

=
[
−1

2
log

(
x2 − 2x + 2

) + log(x) − tan−1(1 − x)

]z1(T )

x=1
.

For T → ∞, we know z1(T ) → 0, so the expression 4T + log(z1(T )) converges
to

c1 = (
π + log(4)

)
/4 = 1.13197 . . . .

We can also compute the value of c2. Note that the differential equation for z2 is
linear and we can rewrite it as

z′
2 = f + gz2, where f = 2z4

1 − 4z3
1 + 4z2

1 and g = −4z2
1 + 4z1 − 4.

Thus, we can solve explicitly for z2 in terms of z1, and since z2(0) = 0

z2(T ) = exp
{∫ T

0
g(t) dt

}
·
∫ T

0
f (t) exp

{
−

∫ t

0
g(y) dy

}
dt

= exp
{
−4T + 4

∫ T

0

(
z1(t) − z2

1(t)
)
dt

}
(48)

×
∫ T

0
f (t) exp

{
4t + 4

∫ t

0

(
z1(y)2 − z1(y)

)
dy

}
dt.

In order to simplify this expression, note that∫ T

0
z1(t) dt

(x=z1(t))=
∫ z1(T )

1

x

−4x + 4x2 − 2x3 dx = 1

2
tan−1(

1 − z1(T )
)
,

and the same change of variables yields∫ T

0
z1(t)

2 dt =
∫ z1(T )

1

x2

−4x + 4x2 − 2x3 dx

= −1

4
log

(
z1(T )2 − 2z1(T ) + 2

) + 1

2
tan−1(

1 − z1(T )
)
.

By plugging this into (48) and using that z1(T ) → 0, we infer that as T → ∞
4T + log z2(T ) → log(2) + log

∫ ∞
0

f (t) exp
{
4t − log

(
z1(t)

2 − 2z1(t) + 2
)}

dt.
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Using once more the change of variables x = z1(t) and (47), we infer that

c2 = log(2) + log
[∫ 1

0

etan−1(1−x)

√
x2 − 2x + 2

dx

]
.

The last integral can be approximated numerically and we get c2 = 1.008 . . . .

Hence, by Theorem 4, for all c ∈ R, since

d1 = ec1 = 3.1017 . . . and d2 = ec2/2 = 1.3700 . . . ,(49)

we obtain

lim
n→∞ Pr

[
T KP

con ≤ n logn + cn

4

]
= e−(d1+d2)e

−c = e−4.47...e−c

,

and moreover,

E
[
T KP

con
] = n logn + γ n + log(d1 + d2)n

4
+ o(n) = n logn + 2.075 . . . n

4
+ o(n).

Finally, we obtain that with some probability that is bounded away from zero and
from one, the graph gets connected when the last isolated vertex/isolated edge
disappears. More precisely, with d1, d2 as in (49)

lim
n→∞ Pr

[
T KP

1 = T KP
con

] = d1

d1 + d2
= 0.693 . . .

and limn→∞ Pr[T KP
2 = T KP

con] = d1/(d1 + d2) = 0.306 . . . . Note that the same state-
ments are also true for KP′.

6.3. The lexicographic rule. Fix some even � ≥ 0, and let K ≥ �/2. The
(K, �)-rule LEX� is defined as follows. We begin with mapping the component
size vector to one in which the sizes are ordered, that is,

(s1, . . . , s�) �→ (
s′

1, . . . , s
′
�

)
:= (

min{s1, s2},max{s1, s2}, . . . ,min{s�−1, s�},max{s�−1, s�}).
We then choose that i ∈ {1, �/2} for which (s ′

2i−1, s
′
2i) is minimal with respect to

the lexicographical ordering. In case of ties, we choose the smallest eligible i. As
an example, consider � = 4 and K = 2. In this case, we almost get the KP-rule,
except that we choose the second edge (instead of the first) for the two vectors
(1,ω,1,1) and (ω,1,1,1).

Note that for all component size vectors of the form (ω, . . . ,ω, k,ω, . . . ,ω),
where k ∈ [K], LEX� selects the edge with the component of size k, thus we have
that ex(LEX�) = � and slow(LEX�) = {1}. Note that the condition on K ensures
that we may apply Theorem 4.

We abbreviate again z := z1. Then by using
∑

k∈SK
zk = 1, we will be able to ex-

press the differential equation (5) for z without reference to the other functions zk ,
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k ∈ SK . The differential equation for z is given by dz
dt

= −f −
1 (z). Recall that P1,1

corresponds to the probability of adding an edge that joins two isolated vertices
conditioned on the fraction of isolated vertices being z. Similarly,

∑
μ∈Sk\{1} Pμ,1

corresponds to the probability to add an edge that joins an isolated vertex to a
component with at least two vertices. Thus,

z′
1 = −f −

1 (z) = −2P1,1 − ∑
μ∈Sk\{1}

Pμ,1

= −2
(
1 − (

1 − z2)�/2) − (
1 − (1 − z)� − (

1 − (
1 − z2)�/2))

= −2 + (
1 − z2)�/2 + (1 − z)�.

By the same means as in the Bohman–Frieze process, an explicit expression for
c� := limt→∞(� · t + log z(t)) is given by

lim
z→0

(
log z + �

∫ z

1

1

−2 + (1 − x2)�/2 + (1 − x)�
dx

)
.

In general, this integral can be expressed as a rational function in the roots of the
polynomial f −

1 and their logarithms. Since the rational functions give little insight,
we only give Table 1 with the numerical values.

Mind that the table only gives second-order terms. Since the dominating term
of E[T lex

con] is n logn/�, the lexicographic rules become faster to connect the graph
as � increases.

PROOF OF THEOREM 3. Consider any �-Achlioptas process A, that is, a pro-
cess in which � vertices are drawn uniformly at random, and then any strategy may
be used to choose between the �/2 edges. We claim that for every N ≥ 0 the num-
ber of isolated vertices after N rounds of A stochastically dominates the number of
isolated vertices after N rounds of LEX�. Formally, if Y lex

1 (N) and Y A
1 (N) denote

the number of isolated vertices after N rounds of LEX� and of A, respectively, then
for every N ≥ 0 and every μ ∈ N0,

Pr
[
Y lex

1 (N) ≤ μ
] ≥ Pr

[
Y A

1 (N) ≤ μ
]
.(50)

In order to show (50), let I lex
N and IA

N denote the sets of isolated vertices in Glex
N

and GA
N , respectively. We will show by induction on N that it is possible to couple

TABLE 1
Numerical expressions for c�

� 2 4 6 8 10 12 14 16

c1 0 0.935 . . . 1.910 . . . 2.905 . . . 3.912 . . . 4.927 . . . 5.948 . . . 6.972 . . .

d1 1 2.549 . . . 6.756 . . . 18.275 . . . 50.03 . . . 138.07 . . . 383.0 . . . 1.06 . . . · 103
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Glex
N and GA

N such that there is a permutation πN of the vertex set with the property
that I lex

N ⊆ πN(IA
N); this immediately establishes (50).

The claim is trivial for N = 0 (with π0 being the identity map). For the in-
duction step, let N ∈ N and let πN be a permutation with the required prop-
erty. Let v1, . . . , v� be the � random vertices selected at the beginning of round
N + 1. Then we create GA

N+1 as usual, that is, by adding to GA
N the edge that

we choose according to A when v1, . . . , v� (and GA
N ) are presented. The crucial

idea of the coupling is that we may assume that LEX� is presented the vertices
πN(v1), . . . , πN(v�). More formally, we create a second graph G that includes all
edges in Glex

N and an additional edge e, which is the edge that LEX� would choose
when presented the images of the vi ’s under πN . That is, e = {πN(vi),πN(vi+1)}
and i = LEX�(c(πN(v1)), . . . , c(πN(v�))), where c(u) denotes the number of ver-
tices in the component that contains u in Glex

N . Since the vi ’s are uniformly random
and πN is a permutation of the vertices we infer that G is distributed like Glex

N+1,
and so this construction is indeed a coupling for Glex

N and GA
N .

It remains to show the existence of a permutation πN+1 such that I lex
N+1 ⊆

πN+1(I
A
N+1). Note that it suffices to show that |I lex

N+1| ≤ |IA
N+1|. However, this is

a consequence of the fact that LEX� favours 1-components. For example, suppose
that A selects the edge {u, v} such that u, v ∈ IA

N and, moreover, πN(u),πN(v) ∈
I lex
N . Then both |I lex

N | and |IA
N | decrease by two (albeit LEX� might select a differ-

ent edge joining two isolated vertices in Glex
N ), and the induction hypothesis im-

plies |I lex
N+1| ≤ |IA

N+1|. More generally, in the case u, v ∈ IA
N set s = |{x ∈ {u, v} :

πN(x) /∈ I lex
N }| ∈ {0,1,2}; we just handled the case s = 0. Since I lex

N ⊆ πN(IA
N),

this definition implies |I lex
N | ≤ |IA

N | − s. Moreover, |IA
N | will decrease by 2, and

|I lex
N | will decrease by at least 2 − s. Again the hypothesis guarantees |I lex

N+1| ≤
|IA

N+1|. The other cases (i.e., when u /∈ IA
N or v /∈ IA

N ) follow by completely analo-
gous arguments, so we leave them as an easy exercise to the reader.

To make use of (50), recall that Theorem 4(b) implies that for every c ∈ R,

lim
n→∞ Pr

[
Y lex

1

(⌊
n logn + cn

�

⌋)
= 0

]
= exp

{−ec�−c}.
Thus, by (50) we also have

lim sup
n→∞

Pr
[
T A

con ≤ n logn + cn

�

]
≤ lim sup

n→∞
Pr

[
Y A

1

(⌊
n logn + cn

�

⌋)
= 0

]

≤ lim
n→∞ Pr

[
Y lex

1

(⌊
n logn + cn

�

⌋)
= 0

]

= exp
{−ec�−c},

as required. �
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