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STOCHASTIC DIFFERENTIAL EQUATIONS WITH SOBOLEV
DIFFUSION AND SINGULAR DRIFT AND APPLICATIONS1

BY XICHENG ZHANG

Wuhan University

In this paper, we study properties of solutions to stochastic differential
equations with Sobolev diffusion coefficients and singular drifts. The proper-
ties we study include stability with respect to the coefficients, weak differen-
tiability with respect to starting points and the Malliavin differentiability with
respect to sample paths. We also establish Bismut–Elworthy–Li’s formula
for the solutions. As an application, we use the stochastic Lagrangian rep-
resentation of incompressible Navier–Stokes equations given by Constantin–
Iyer [Comm. Pure Appl. Math. 61 (2008) 330–345] to prove the local well-
posedness of NSEs in R

d with initial values in the first-order Sobolev space
W

1
p(Rd ;Rd ) provided p > d.

1. Introduction and main results. Consider the following stochastic differ-
ential equation (abbreviated as SDE) in R

d :

dXt = bt (Xt)dt + dWt, t ≥ 0,X0 = x ∈ R
d,(1.1)

where (Wt)t≥0 is a d-dimensional standard Brownian motion on some probability
space (�,F ,P ). It is a classical result due to Veretennikov [27] that when b is
bounded and Borel measurable, the SDE above admits a unique strong solution.
Furthermore, for almost all ω, the following random ordinary differential equation

dXt(ω) = bt

(
Xt(ω) + Wt(ω)

)
dt, t ≥ 0,X0 = x

has a unique solution (cf. Davie [3]). Recently, in [18] and [19], the Malliavin
and Sobolev differentiabilities of Xt(x,ω) with respect to the sample path ω and
with respect to the starting point x were studied, and these differentiabilities were
used to study stochastic transport equations. In a remarkable paper [14], Krylov
and Röckner proved the existence and uniqueness of strong solutions to SDE (1.1)
under the assumption

b ∈ Lq(
R+;Lp(

R
d))

with p,q ∈ (1,∞) and
d

p
+ 2

q
< 1,
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by using the Girsanov transformation and some estimates from the theory of PDEs.
Subsequently, the results of [14] were extended to the case of multiplicative noises
in [30] (see also [9, 28] for related results). The Sobolev differentiability of solu-
tions was also obtained in [5, 6]. The recent interest in studying the Sobolev dif-
ferentiability for (1.1) with singular drift is partly due to the discovery of Flandoli,
Gubinelli and Priola [7] that noises can prevent the singularity for linear transport
equations (see also [5]).

In this paper, we consider the following SDE: for given T < S:

dXt,s = bs(Xt,s)ds + σs(Xt,s)dWs, Xt,t = x,T ≤ t ≤ s ≤ S,(1.2)

where b : [T ,S] ×R
d → R

d and σ : [T ,S] × R
d → M

d are two Borel functions,
and (Ws)s∈[T ,S] is a d-dimensional standard Brownian motion on the classical
Wiener space (�,F ,P ;H). Here, Md denotes the set of all d × d-matrices, �

is the space of all continuous functions from [T ,S] to R
d , F is the Borel-σ field,

P is the Wiener measure and H ⊂ � is the Cameron–Martin space. We make the
following assumption on σ :

(Hα
K ) there exist constants K ≥ 1 and α ∈ (0,1) such that for all (t, x) ∈ [T ,S] ×

R
d ,

K−1|ξ | ≤ ∣∣σ t
t (x)ξ

∣∣ ≤ K|ξ |, ξ ∈ R
d,(1.3)

and for all t ∈ [T ,S] and x, y ∈ R
d ,∥∥σt (x) − σt (y)

∥∥ ≤ K|x − y|α.

Here and in the remainder of this paper, σ t denotes the transpose of matrix
σ , | · | the Euclidiean norm and ‖ · ‖ the Hilbert–Schmidt norm.

Throughout this work, for simplicity of presentation, we assume S − T ≤ 1 so
that all the constants appearing below are independent of the length of the time
interval [T ,S]. Our main result of this paper is the following.

THEOREM 1.1. Assume that σ satisfies (Hα
K ). Suppose also that one of the

following two conditions holds:

(i) σt (x) = σt is independent of x and for some p,q ∈ (1,∞) with d
p

+ 2
q

< 1,

b ∈ Lq([T ,S];Lp(
R

d)) =: Lq
p(T , S).

(ii) ∇σ, b ∈ L
q
p(T , S) for some q = p > d + 2.

Then we have the following conclusions:

(A) For any (t, x) ∈ [T ,S] × R
d , there is a unique strong solution denoted by

Xt,s(x) or X
b,σ
t,s (x) to SDE (1.2), which has a jointly continuous version with

respect to s and x.
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(B) For each s ≥ t and almost all ω, x 
→ Xt,s(x,ω) is weakly differentiable.
Furthermore, for any p′ ≥ 1, the Jacobian matrix ∇Xt,s(x) satisfies

ess. sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣∇Xt,s(x)

∣∣p′)

(1.4)
≤ C = C

(
d,p, q,K,α,p′,‖b‖

L
q
p(t,S),‖∇σ‖

L
q
p(t,S)

)
,

where the constant C is increasing with respect to ‖b‖
L

q
p(t,S) and ‖∇σ‖

L
q
p(t,S).

(C) For each s ≥ t and x ∈ R
d , the random variable ω 
→ Xt,s(x,ω) is Malliavin

differentiable, and for any p′ ≥ 1,

sup
x∈Rd

E

(
sup

s∈[t,S]
∥∥DXt,s(x)

∥∥p′
H

)
< +∞,(1.5)

where D is the Malliavin derivative (cf. [20]).
(D) For any f ∈ C1

b(Rd), we have the following derivative formula: for Lebesgue-
almost all x ∈ R

d :

∇Ef
(
Xt,s(x)

) = 1

s − t
E

(
f

(
Xt,s(x)

) ∫ s

t
σ−1

r

(
Xt,r(x)

)∇Xt,r(x)dWr

)
,(1.6)

where σ−1 is the inverse matrix of σ .
(E) Assume that b′ ∈ L

q
p(T , S) with the same p,q as in the assumptions. Let

X
b,σ
t,s (x) and X

b′,σ
t,s (x) be the solutions to (1.2) associated with b and b′, re-

spectively. Then

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣Xb,σ

t,s (x) − X
b′,σ
t,s (x)

∣∣2)
≤ C

∥∥b − b′∥∥2
L

q
p(t,S)

,(1.7)

where C = C(d,p, q,K,α,‖b‖
L

q
p(t,S),‖b′‖

L
q
p(t,S),‖∇σ‖

L
q
p(t,S)).

REMARK 1.2. Conclusions (A) and (B) are not really new and they are con-
tained in [6, 14, 30]. Conclusions (C), (D) and (E) seem to be new. Our proofs are
based on Zvonkin’s transformation (cf. [32]) and some results from the theory of
PDEs. The global Lp-integrability of the coefficients plays a crucial role in our ar-
gument. It should be noticed that when σt (x) = σt and bt (x) are bounded, (A), (B)
and (C) were studied in [18] and [19] by using different arguments. Moreover, un-
like [28] and [30], there is no explosion time problem here since we are assuming
global integrability conditions on σ and b; see Lemma 6.2 (4) below.

REMARK 1.3. The stability estimate (1.7) could be used to study numerical
solutions of SDEs with singular drifts. For example, let us consider the following
SDE:

dXt = 1A(Xt)dt + dWt, X0 = x,
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where A is a bounded open subset of Rd . Let bn(x) = 1A ∗�n(x) be the mollifying
approximation. By (1.7), the solution Xn

t of the above SDE corresponding to bn

converges to Xt in L2. Next, we can approximate Xn
t by Euler’s scheme. In this

way, one can give a numerical approximation for solutions of singular SDEs. We
plan to pursue this in a future project. We would also like to mention that the
derivative formula (1.6) could be used in the computation of Greeks for pay-off
functions in mathematical finance (cf. [17]).

In the remainder of this section, we present an application of the above theorem
to incompressible Navier–Stokes equations. This application is actually one of the
motivations of the present paper. Consider the following classical Navier–Stokes
equation in R

3:

∂tu = ν
u − (u · ∇)u + ∇p, divu = 0, u0 = ϕ,

where u is the velocity field, ν is the viscosity constant and p is the pressure of
the fluid, ϕ is the initial velocity with vanishing divergence. In [1], Constantin and
Iyer provided a probabilistic representation to the above NSE as follows:⎧⎪⎨

⎪⎩
Xt(x) = x +

∫ t

0
us

(
Xs(x)

)
ds + √

2νWt,

ut (x) = PE
[∇ tX−1

t · ϕ(
X−1

t

)]
(x),

(1.8)

where X−1
t (x) denotes the inverse flow of x 
→ Xt(x), ∇ tX−1

t is the transpose of
the Jacobian matrix, and P = I−∇(−
)−1 div is Leray’s projection onto the space
of all divergence free vector fields. Let ω = curl(u) = ∇ × u be the vorticity. Then
the second equation in (1.8) can be written as

ωt(x) = E
[(∇X−1

t (x)
)−1 · ω0

(
X−1

t (x)
)]

, ω0 = ∇ × ϕ,(1.9)

where (∇X−1
t (x))−1 stands for the inverse matrix of ∇X−1

t (x). In this case, the
velocity u can be recovered from ω by Biot–Savart’s law (cf. [16]):

ut(x) =
∫
R3

K3(x − y)ωt(y)dy =: Kωt(x),(1.10)

where

K3(x)h = 1

4π

x × h

|x|3 , x, h ∈ R
3.

In other words, we have the following stochastic representation to vorticity:
⎧⎪⎨
⎪⎩

Xt(x) = x +
∫ t

0
Kωs

(
Xs(x)

)
ds + √

2νWt,

ωt (x) = E
[(∇X−1

t (x)
)−1 · ω0

(
X−1

t (x)
)]

.

(1.11)
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Now if we substitute (1.9) and (1.10) into (1.11), then we obtain the following
equation:

Xt(x) = x + Ẽ

∫ t

0

∫
R3

[
K3

(
Xs(x) − y

)∇−1X̃−1
s (y) · ω0

(
X̃−1

s (y)
)]

dy ds

+ √
2νWt,

where the random field {X̃t (y)}y∈Rd is an independent copy of {Xt(x)}x∈Rd , and Ẽ

denotes the expectation with respect to (X̃t ) given (Xt). By the change of variables
X̃−1

t (y) = x′ and noticing that

det∇X̃t

(
x′) = 1,

(∇X̃−1
t

(
X̃t

(
x′)))−1 = ∇X̃s

(
x′),

we further have

Xt(x) = x + Ẽ

∫ t

0

∫
R3

[
K3

(
Xs(x) − X̃s

(
x′))∇X̃s

(
x′) · ω0

(
x′)] dx′ ds + √

2νWt .

This is simply the random vortex method for Navier–Stokes equations studied in
[16], Chapter 6.

Recently, in [29] and [31], we studied a backward analogue of the stochastic
representation (1.8), that is, for ν > 0 and t ≤ s ≤ 0,⎧⎪⎨

⎪⎩
Xt,s(x) = x +

∫ s

t
ur

(
Xt,r(x)

)
dr + √

2ν(Ws − Wt),

ut (x) = PE
[∇ tXt,0 · ϕ(Xt,0)

]
(x).

(1.12)

The advantage of this representation is that the inverse of stochastic flow x 
→
Xt,0(x) does not appear. In this case, ut(x) solves the following backward Navier–
Stokes equation:

∂tu + ν
u − (u · ∇)u + ∇p = 0, divu = 0, u0 = ϕ,

Using Theorem 1.1, we have the following local well-posedness to the stochastic
system (1.12).

THEOREM 1.4. For any p > d and divergence free ϕ ∈ W
1
p(Rd;Rd), there

exist a time T = T (p,d, ν,‖ϕ‖W1
p
) < 0 and a unique pair (u,X) with u ∈

L∞([T ,0];W1
p) solving the stochastic system (1.12).

This paper is organized as follows: In Section 2, we recall some well-known
results and give some preliminaries about the Sobolev differentiabilities of ran-
dom vector fields. In Section 3, we study a class of parabolic partial differential
equations with time dependent coefficients and give some necessary estimates. In
Section 4, we prove some Krylov-type and Khasminskii-type estimates. In Sec-
tion 5, we prove our main Theorem 1.1 for SDE (1.2) with b = 0. In Section 6,
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we prove Theorem 1.1. In Section 7, we prove Theorem 1.4 by using Theorem 1.1
and a fixed-point argument.

Throughout this paper, we use the following convention: C with or without sub-
scripts will denote a positive constant, whose value may change in different places,
and whose dependence on the parameters can be traced from the calculations.

2. Prelimiaries. We first introduce some spaces and notation for later use. For
p,q ∈ [1,∞] and T < S, we denote by L

q
p(T , S) the space of all real-valued Borel

functions on [T ,S] ×R
d with norm

‖f ‖
L

q
p(T ,S) :=

(∫ S

T

(∫
Rd

∣∣f (t, x)
∣∣pdx

)q/p)1/q

< +∞.

For m ∈ N and p ≥ 1, let Wm
p = W

m
p (Rd) be the usual Sobolev space over Rd with

norm

‖f ‖Wm
p

:=
m∑

k=0

∥∥∇kf
∥∥
p < +∞,

where ∇k denotes the k-order gradient operator, and ‖ · ‖p is the usual Lp-norm.

For β ≥ 0, let Hβ
p := (I − 
)−β/2(Lp) be the usual Bessel potential space with

norm (cf. [23, 26])

‖f ‖
H

β
p

:= ∥∥(I − 
)β/2f
∥∥
p.

Notice that for m ∈ N and p > 1,

‖f ‖Hm
p

� ‖f ‖Wm
p
,

where � means that the two sides are comparable up to a positive constant. More-
over, let C β be the usual Hölder space with finite norm

‖f ‖C β :=
[β]∑
k=0

∥∥∇kf
∥∥∞ + sup

x �=y

|∇[β]f (x) − ∇f [β]f (y)|
|x − y|β−[β] < ∞,

where [β] is the integer part of β . By Sobolev’s embedding theorem, we have

‖f ‖C δ ≤ C‖f ‖
H

β
p
, β − δ > d/p, δ ≥ 0.(2.1)

In this paper, we shall also use the following Banach space:

W
2,q
p (T , S) := Lq(

T ,S;W2
p

) ∩W
1,q([T ,S];Lp)

.

Let f be a locally integrable function on R
d . The Hardy–Littlewood maximal

function is defined by

Mf (x) := sup
0<r<∞

1

|Br |
∫
Br

f (x + y)dy,

where Br := {x ∈ R
d : |x| < r}. We recall the following result (cf. [2], Ap-

pendix A).
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LEMMA 2.1. (i) There exists a constant Cd > 0 such that for all f ∈ W
1
1(R

d)

and Lebesgue-almost all x, y ∈ R
d ,∣∣f (x) − f (y)

∣∣ ≤ Cd |x − y|(M|∇f |(x) +M|∇f |(y)
)
.(2.2)

(ii) For any p > 1, there exists a constant Cd,p > 0 such that for all f ∈
Lp(Rd),

‖Mf ‖p ≤ Cd,p‖f ‖p.(2.3)

For p > 1, let Vp be the set of all continuous random fields X : Rd × � → R
d

with

‖X‖Vp := ∥∥X(0)
∥∥
L

p
ω

+ ‖∇X‖L∞
x (L

p
ω) < ∞,(2.4)

where ∇X denotes the generalized Jacobian matrix, and

Lp
ω := Lp(�), L∞

x

(
Lp

ω

) := L∞(
R

d;Lp(�)
)
.

Let V 0
p ⊂ Vp be the set of random fields satisfying the additional condition∫

Rd
Ef

(
X(x)

)
dx =

∫
Rd

f (x)dx.(2.5)

REMARK 2.2. The continuity assumption of x 
→ X(x) in the definition of
Vp is purely technical for p > d . In fact, if X ∈ Vp for p > d , then by Sobolev’s
embedding theorem, x 
→ X(x) always has a continuous version. Condition (2.5)
means that x 
→ X(x) preserves the volume in the sense of mean values. In the
sequel, we also use the following notation:

V∞− := ⋂
p>1

Vp, V 0∞− := ⋂
p>1

V 0
p , L∞

x

(
L∞−

ω

) := ⋂
p>1

L∞
x

(
Lp

ω

)
.

Let � : Rd → [0,1] be a smooth function with support in B1 and
∫

� dx = 1.
For n ∈ N, define a family of mollifiers �n(x) as follows:

�n(x) := nd�(nx), x ∈ R
d .(2.6)

For X ∈ Vp , define

Xn(x) := �n ∗ X(x) =
∫
Rd

X(x − y)�n(y)dy.(2.7)

Clearly, by Jensen’s inequality we have

sup
x∈Rd

E
∣∣∇Xn(x)

∣∣p ≤ ess. sup
x∈Rd

E
∣∣∇X(x)

∣∣p = ‖∇X‖p

L∞
x (L

p
ω)

.(2.8)

LEMMA 2.3. Let p > 1. For any X ∈ Vp , we have

E
∣∣X(x) − X(y)

∣∣p ≤ |x − y|p‖∇X‖p

L∞
x (L

p
ω)

, ∀x, y ∈ R
d .(2.9)
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PROOF. Let Xn be defined by (2.7). By Fatou’s lemma and (2.8), we have for
all x, y ∈ R

d ,

E
∣∣X(x) − X(y)

∣∣p ≤ lim
n→∞

E
∣∣Xn(x) − Xn(y)

∣∣p

≤ |x − y|p lim
n→∞

∫ 1

0
E

∣∣∇Xn

(
x + θ(y − x)

)∣∣p dθ

≤ |x − y|p sup
x∈Rd

E
∣∣∇Xn(x)

∣∣p

≤ |x − y|p‖∇X‖p

L∞
x (L

p
ω)

,

where we have used the continuity of x 
→ X(x) in the first inequality. �

LEMMA 2.4. For any p > 1, let {Xn,n ∈ N} ⊂ Vp be a bounded sequence and
X(x) a continuous random field. If, for each x ∈ R

d , Xn(x) converges to X(x) in
probability, then X ∈ Vp and

‖∇X‖L∞
x (L

p
ω) ≤ sup

n
‖∇Xn‖L∞

x (L
p
ω).

Moreover, for some subsequence nk , ∇Xnk
weakly converges to ∇X as random

variables in Lp(� × BR;Md) for any R ∈ N, where BR = {x : |x| < R}.

PROOF. Recall the definition of Vp . Since supn ‖Xn(0)‖L
p
ω

< ∞, by (2.8) and
(2.9), we have for any R > 0,

sup
n

∫
BR

(
E

∣∣Xn(x)
∣∣p +E

∣∣∇Xn(x)
∣∣p)

dx < ∞.(2.10)

This means that {Xn(·), n ∈ N} is bounded in Lp(�;W1
p(BR)), where W

1
p(BR) is

the first-order Sobolev space over BR . Since Lp(�;W1
p(BR)) is weakly compact,

by a diagonal argument, there exist a subsequence nk and a random field X̃ ∈⋂
R∈N Lp(�;W1

p(BR)) such that for any R ∈ N,

Xnk
(x) → X̃(x) weakly in Lp(

�;W1
p(BR)

)
.(2.11)

In particular, for any Z ∈ C∞
0 (Rd;Rd) and ξ ∈ L∞(�), we have

lim
k→∞E

∫
Rd

〈
Xnk

(x),Z(x)ξ
〉
Rd dx = E

∫
Rd

〈
X̃(x),Z(x)ξ

〉
Rd dx.

Since for each x ∈ R
d , Xn(x) converges to X(x) in probability, by (2.10) and the

dominated convergence theorem, we also have

lim
k→∞E

∫
Rd

〈
Xnk

(x),Z(x)ξ
〉
Rd dx = E

∫
Rd

〈
X(x),Z(x)ξ

〉
Rd dx.
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Thus, for all Z ∈ C∞
0 (Rd;Rd) and ξ ∈ L∞(�),

E

∫
Rd

〈
X(x),Z(x)ξ

〉
Rd dx = E

∫
Rd

〈
X̃(x),Z(x)ξ

〉
Rd dx,

which implies that X(x,ω) = X̃(x,ω) for dx ×P(dω)-almost all (x,ω). In partic-
ular, for almost all ω, x 
→ X(x,ω) is Sobolev differentiable, and by (2.11), ∇Xnk

weakly converges to ∇X as random variables in Lp(�×BR;Md) for each R ∈ N.
Now, let V ∞

c be the set of all Md -valued smooth random fields with compact
supports and bounded derivatives. Let p∗ = p/(p − 1). Since the dual space of
L1(Rd;Lp∗(�)) is L∞(Rd;Lp(�)) and V ∞

c is dense in L1(Rd;Lp∗(�)), we
have

‖∇X‖L∞
x (L

p
ω) = sup

U∈V ∞
c ;‖U‖

L1(Lp∗ )
≤1

∣∣∣∣
∫
Rd

E
〈∇X(x),U(x)

〉
Md dx

∣∣∣∣

= sup
U∈V ∞

c ;‖U‖
L1(Lp∗ )

≤1

∣∣∣∣E
(∫

Rd

〈
X(x),divU(x)

〉
Rd dx

)∣∣∣∣

= sup
U∈V ∞

c ;‖U‖
L1(Lp∗ )

≤1
lim

n→∞

∣∣∣∣E
(∫

Rd

〈
Xn(x),divU(x)

〉
Rd dx

)∣∣∣∣

= sup
U∈V ∞

c ;‖U‖
L1(Lp∗ )

≤1
lim

n→∞

∣∣∣∣E
(∫

Rd

〈∇Xn(x),U(x)
〉
Md dx

)∣∣∣∣

≤ sup
n∈N

sup
U∈V ∞

c ;‖U‖
L1(Lp∗ )

≤1

∣∣∣∣E
(∫

Rd

〈∇Xn(x),U(x)
〉
Md dx

)∣∣∣∣
= sup

n∈N
‖∇Xn‖L∞

x (L
p
ω).

The proof is complete. �

PROPOSITION 2.5. Let p1,p2,p3 ∈ (1,∞) with 1
p3

= 1
p1

+ 1
p2

. If X ∈ Vp1

and Y ∈ Vp2 are two independent random fields, then we have X ◦ Y ∈ Vp3 and∥∥∇(X ◦ Y)
∥∥
L∞

x (L
p3
ω )

≤ ‖∇X‖
L∞

x (L
p1
ω )

‖∇Y‖
L∞

x (L
p2
ω )

.(2.12)

Moreover, if for each x ∈ R
d , ω 
→ X(x,ω),Y (x,ω) are Malliavin differentiable

and

sup
x∈Rd

E
∥∥DX(x)

∥∥p1
H

< ∞, sup
x∈Rd

E
∥∥DY(x)

∥∥p2
H

< ∞,

then X ◦ Y(x) is also Malliavin differentiable and

sup
x∈Rd

E
∥∥D(

X ◦ Y(x)
)∥∥p3

H
< ∞.(2.13)
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PROOF. Let Xn be defined by (2.7). By (2.9), we have

sup
x∈Rd

E
∣∣Xn(x) − X(x)

∣∣p1 ≤ sup
x∈Rd

E

∫
Rd

∣∣X(x − y) − X(x)
∣∣p1�n(y)dy

≤ ‖∇X‖p1

L∞
x (L

p1
ω )

∫
Rd

|y|p1ρn(y)dy

≤ ‖∇X‖p1

L∞
x (L

p1
ω )

/np1 .

Since (Xn(x),X(x))x∈Rd and (Yn(x), Y (x))x∈Rd are independent, we have for
each x ∈R

d ,

E
∣∣Xn ◦ Y(x) − X ◦ Y(x)

∣∣p1 = E
(
E

∣∣Xn(y) − X(y)
∣∣p1 |y=Y (x)

)
≤ sup

y
E

∣∣Xn(y) − X(y)
∣∣p1

≤ ‖∇X‖p1

L∞
x (L

p1
ω )

/np1

and
∥∥Xn ◦ Yn(x) − Xn ◦ Y(x)

∥∥
L

p3
ω

≤
∥∥∥∥∣∣Yn(x) − Y(x)

∣∣ ∫ 1

0
|∇Xn|(Yn(x) + θ

(
Y(x) − Yn(x)

))
dθ

∥∥∥∥
L

p3
ω

≤ ∥∥Yn(x) − Y(x)
∥∥
L

p2
ω

sup
x

∥∥∇Xn(x)
∥∥
L

p1
ω

≤ ‖∇X‖
L∞

x (L
p1
ω )

‖∇Y‖
L∞

x (L
p2
ω )

/n.

Since p3 ≤ p1, we thus have

lim
n→∞ sup

x∈Rd

E
∣∣Xn ◦ Yn(x) − X ◦ Y(x)

∣∣p3 = 0.(2.14)

On the other hand, by the chain rule and Hölder’s inequality, we have
∥∥∇(Xn ◦ Yn)

∥∥
L∞

x (L
p3
ω )

≤ sup
x∈Rd

[(
E

∣∣(∇Xn) ◦ Yn(x)
∣∣p1

)1/p1
(
E

∣∣∇Yn(x)
∣∣p2

)1/p2
]

≤ ‖∇Xn‖L∞
x (L

p1
ω )

‖∇Yn‖L∞
x (L

p2
ω )

≤ ‖∇X‖
L∞

x (L
p1
ω )

‖∇Y‖
L∞

x (L
p2
ω )

,

which, together with (2.14) and by Lemma 2.4, yields (2.12).
Similarly, by the chain rule,

D
(
Xn ◦ Yn(x)

) = (DXn) ◦ Yn(x) + ∇Xn ◦ Yn(x) · DYn(x),
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and since (DXn(x),∇Xn(x))x∈Rd and (Yn(x))x∈Rd are independent, as above, we
have

∥∥D(Xn ◦ Yn)
∥∥
L∞

x (L
p3
ω )

≤ ∥∥(DXn) ◦ Yn

∥∥
L∞

x (L
p3
ω )

+ ‖∇Xn ◦ Yn · DYn‖L∞
x (L

p3
ω )

≤ ∥∥(DXn) ◦ Yn

∥∥
L∞

x (L
p1
ω )

+ ‖∇Xn ◦ Yn‖L∞
x (L

p1
ω )

‖DYn‖L∞
x (L

p2
ω )

≤ ‖DXn‖L∞
x (L

p1
ω )

+ ‖∇Xn‖L∞
x (L

p1
ω )

‖DYn‖L∞
x (L

p2
ω )

≤ ‖DX‖
L∞

x (L
p1
ω )

+ ‖∇X‖
L∞

x (L
p1
ω )

‖DY‖
L∞

x (L
p2
ω )

,

which, together with (2.14) and by [20], page 79, Lemma 1.5.3, yields (2.13). �

3. A study of PDE ∂tu + Lσ
t u + f = 0. In the remainder of this paper, we

shall fix T < S with S − T ≤ 1. Suppose that σ : [T ,S] ×R
d →M

d is a bounded
Borel function. Let us consider the following backward PDE:

∂tu + Lσ
t u + f = 0, u(S) = 0,(3.1)

where f : [T ,S] ×R
d →R is a measurable function and

Lσ
t u(x) := 1

2σ ik
t (x)σ

jk
t (x)∂i ∂ju(x).(3.2)

Here and in the rest of this paper, we use the convention that repeated indices in
a product will be summed automatically. The aim of this section is to prove the
following.

THEOREM 3.1. Assume that σ satisfies (Hα
K ). Let p ∈ (1,∞). For any f ∈

L
p
p(T ,S), there exists a unique solution u ∈ W

2,p
p (T , S) to (3.1) with

‖u‖
L

p
p(T ,S) + ‖∂tu‖

L
p
p(T ,S) + ∥∥∇2

xu
∥∥
L

p
p(T ,S) ≤ C‖f ‖

L
p
p(T ,S),(3.3)

where C = C(d,α,K,p) > 0. Furthermore, if p,q ∈ (1,∞) and f ∈ L
p
p(T ,S) ∩

L
q
p(T , S), then for any β ∈ [0,2) and γ > 1 with 2

q
+ d

p
< 2 − β + d

γ
,

∥∥u(t)
∥∥
H

β
γ

≤ C(S − t)(2−β)/2−d/2p−1/q+d/2γ ‖f ‖
L

q
p(t,S),(3.4)

where C = C(d,α,K,p, q, γ,β) is independent of t ∈ [T ,S].

We first prove the a priori estimate (3.3).

LEMMA 3.2. For any p ∈ (1,∞) and f ∈ L
p
p(T ,S), let u ∈ W

2,p
p (T , S) sat-

isfy (3.1). If σ satisfies (Hα
K ), then (3.3) holds for some C = C(d,α,K,p) > 0. In

particular, the uniqueness holds for (3.1) in the class of u ∈ W
2,p
p (T , S).
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PROOF. We use the freezing coefficient argument (cf. [13], Chapter 1) and
divide the proof into four steps.

(1) In this step, we first assume σt (x) = σt does not depend on x. For f ∈
Lp(Rd), define

Tt,sf (x) := Ef

(
x +

∫ s

t
σr dWr

)
=

∫
Rd

f (y)ρ(t, x; s, y)dy,(3.5)

where

ρ(t, x; s, y) = e−〈A−1
t,s (x−y),x−y〉/2√

(2π)d det(At,s)
, At,s :=

∫ s

t
σ t

rσr dr.

In this case, the unique solution of (3.1) is explicitly given by

u(t, x) =
∫ S

t
Tt,sf (s, x)ds.(3.6)

By [12], Theorem 1.1, for any p,q ∈ (1,∞), there exists a constant C0 =
C0(d,K,p, q) > 0 such that

(∫ S

T

∥∥∥∥∇2
x

∫ S

t
Tt,sf (s, ·)ds

∥∥∥∥
q

p

dt

)1/q

≤ C0‖f ‖
L

q
p(T ,S).(3.7)

(2) Next, we assume that for some x0 ∈ R
d ,

∥∥σt (x) − σt (x0)
∥∥ ≤ 1

2C0K
,(3.8)

where C0 is the constant in (3.7) and K is the constant in (Hα
K ). In this case, we

may write

∂tu + L
σ·(x0)
t u + g = 0, where g := Lσ

t u − L
σ·(x0)
t u + f.

Note that by the definition of Lσ
t and (3.8),

‖g‖
L

q
p(T ,S) ≤ 1

2C0

∥∥∇2
xu

∥∥
L

q
p(T ,S) + ‖f ‖

L
q
p(T ,S).

Thus, by (3.6) and (3.7), we have
∥∥∇2

xu
∥∥
L

q
p(T ,S) ≤ C0‖g‖

L
q
p(T ,S) ≤ 1

2

∥∥∇2
xu

∥∥
L

q
p(T ,S) + C0‖f ‖

L
q
p(T ,S),

which in turn gives
∥∥∇2

xu
∥∥
L

q
p(T ,S) ≤ 2C0‖f ‖

L
q
p(T ,S).
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(3) Let ζ : Rd → [0,1] be a smooth function with ζ(x) = 1 for |x| ≤ 1 and
ζ(x) = 0 for |x| ≥ 2. Fix a small constant δ whose value will be determined below.
For fixed z ∈ R

d , set

ζ δ
z (x) := ζ

(
(x − z)/δ

)
.

It is easy to see that for j = 0,1,2,
∫
Rd

∣∣∇j
x ζ δ

z (x)
∣∣p dz = δd−jp

∫
Rd

∣∣∇j ζ(z)
∣∣p dz > 0.(3.9)

Multiplying both sides of (3.1) by ζ δ
z , we obtain

∂t

(
uζ δ

z

) + Lσ
t

(
uζ δ

z

) + gδ
z = 0,(3.10)

where

gδ
z := Lσ

t

(
uζ δ

z

) − (
Lσ

t u
)
ζ δ
z + f ζ δ

z .

Define

σ̃t (x) := σt

(
(x − z)ζ 2δ

z (x) + z
)
.

Since ζ δ
z (x) = 1 for |x − z| ≤ δ and ζ δ

z (x) = 0 for |x − z| > 2δ, we have

Lσ
t

(
uζ δ

z

) = Lσ̃
t

(
uζ δ

z

)
.(3.11)

Notice that by (Hα
K ),
∥∥σ̃t (x) − σ̃t (z)

∥∥ ≤ K
∣∣(x − z)ζ 2δ

z

∣∣α ≤ K|4δ|α,

and
∥∥gδ

z

∥∥
L

q
p

≤ K2∥∥∣∣∇xu| · |∇xζ
δ
z

∣∣∥∥
L

q
p

+ K2∥∥∣∣u| · |∇2
xζ δ

z

∣∣∥∥
L

q
p

+ ∥∥f ζ δ
z

∥∥
L

q
p
.

Letting δ be small enough, by (3.10), (3.11) and step (2), we have
∥∥∇2

x

(
uζ δ

z

)∥∥
L

q
p(t,S) ≤ 2C0

∥∥gδ
z

∥∥
L

q
p(t,S)

≤ 2C0K
2∥∥∣∣∇xu| · |∇xζ

δ
z

∣∣∥∥
L

q
p(t,S) + 2C0K

2∥∥∣∣u| · |∇2
xζ δ

z

∣∣∥∥
L

q
p(t,S)(3.12)

+ 2C0
∥∥f ζ δ

z

∥∥
L

q
p(t,S).

(4) If p = q , then integrating both sides of (3.12) with respect to z, and using
(3.9) and Fubini’s theorem, we obtain

∫
Rd

∥∥∇2
x

(
uζ δ

z

)∥∥p

L
p
p(t,S)

dz ≤ C
(‖∇xu‖p

L
p
p(t,S)

+ ‖u‖p

L
p
p(t,S)

+ ‖f ‖p

L
p
p(t,S)

)
.
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Hence, by (3.9) again, ‖∇u‖p ≤ C‖∇2u‖1/2
p ‖u‖1/2

p and Young’s inequality, we
have

∥∥∇2
xu

∥∥p

L
p
p(t,S)

=
∫
Rd

∥∥∇2
xu · ζ δ

z

∥∥p

L
p
p(t,S)

dz

≤ C
(‖∇xu‖p

L
p
p(t,S)

+ ‖u‖p

L
p
p(t,S)

+ ‖f ‖p

L
p
p(t,S)

)

≤ 1

2

∥∥∇2
xu

∥∥p

L
p
p(t,S)

+ C
(‖u‖p

L
p
p(t,S)

+ ‖f ‖p

L
p
p(t,S)

)
.

Thus, for some C = C(d,α,K,p) > 0,
∥∥∇2

xu
∥∥p

L
p
p(t,S)

≤ C
(‖u‖p

L
p
p(t,S)

+ ‖f ‖p

L
p
p(t,S)

)
,(3.13)

which together with (3.1) gives

∥∥u(t)
∥∥p
p ≤ C‖u‖p

L
p
p(t,S)

+ C‖f ‖p

L
p
p(T ,S)

= C

∫ S

t

∥∥u(s)
∥∥p
p ds + C‖f ‖p

L
p
p(T ,S)

.

By Gronwall’s inequality, (3.13) and (3.1), we obtain (3.3). �

REMARK 3.3. In the above proof, the reason we required p = q was due to
the use of Fubini’s theorem. In the case p �= q , it seems that we can not use the
freezing coefficient argument to obtain the a priori estimate (3.3) since in general
it is not true that for some γ ∈ [1,∞],∫

Rd

∥∥f · ζ δ
z

∥∥γ

L
q
p(t,S)

dz � ‖f ‖γ

L
q
p(t,S)

.

We leave (3.3) for p �= q as an open problem.

Next, we show the existence of a solution to (3.1) in W
2,p
p (T , S) and (3.4) by

using mollifying and weak convergence arguments. For this purpose, we assume
σ satisfies (Hα

K ) and for some α′ ∈ (0,1) and K ′ > 0,
∥∥σt (x) − σs(x)

∥∥ ≤ K ′|t − s|α′
.(3.14)

Under (Hα
K ) and (3.14), it is a classical fact that the operator ∂t + Lσ

t has a funda-
mental solution ρ(t, x; s, y) (see, e.g., [15], Chapter IV, or [8], Chapter 1), that is,
for any f ∈ Cb(R

d), the function

Tt,sf (x) :=
∫
Rd

f (y)ρ(t, x; s, y)dy

satisfies that for all (t, x) ∈ [T ,S] ×R
d ,

∂tTt,sf (x) + Lσ
t Tt,sf (x) = 0, lim

t↑s
Tt,sf (x) = f (x).(3.15)
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Furthermore, for all x, y ∈ R
d and T ≤ t < s ≤ S [see [15], page 376, (13.1)],∣∣∇j

x ρ(t, x; s, y)
∣∣

(3.16)
≤ Cj(s − t)−j/2(

2(s − t)
)−d/2e−κj |x−y|2/(2(s−t)), j = 0,1,2,

where Cj , κj > 0 only depend on α,K and d .
Here is an easy corollary of (3.16).

LEMMA 3.4. For any p,γ ∈ (1,∞) and β ∈ [0,2), there exists a constant
C = C(d,α,K,p,γ,β) > 0 such that for all f ∈ Lp(Rd) and T ≤ t < s ≤ S,

‖Tt,sf ‖
H

β
γ

≤ C(s − t)−β/2−d/2p+d/2γ ‖f ‖p.(3.17)

PROOF. By the heat kernel estimate (3.16), we have for all p ∈ [1,∞],∥∥∇jTt,sf
∥∥
p ≤ C(s − t)−j/2‖f ‖p, j = 0,1,2.

By Gagliardo–Nirenberg’s and complex interpolation inequalities (cf. [25], Theo-
rem 2.1), we have

‖Tt,sf ‖
H

β
γ

≤ C
∥∥∇2Tt,sf

∥∥β/2+d/(2p)−d/(2γ )
p ‖Tt,sf ‖(2−β)/2−d/(2p)+d/(2γ )

p

≤ C(s − t)−β/2−d/(2p)+d/(2γ )‖f ‖p,

which gives (3.17). �

Let f ∈ C([T ,S];W2
p) and define

u(t, x) :=
∫ S

t
Tt,sf (s, x)ds.

By (3.15), it is easy to see that u ∈ W
2,p
p (T , S) satisfies (3.1). Moreover, for any

p,q, γ ∈ (1,∞) and β ∈ [0,2) with 2
q

+ d
p

< 2 − β + d
γ

, by (3.17) and Hölder’s
inequality, we have

∥∥u(t)
∥∥
H

β
γ

≤
∫ S

t

∥∥Tt,sf (s)
∥∥
H

β
γ

ds

≤ C

∫ S

t
(s − t)−β/2−d/(2p)+d/(2γ )

∥∥f (s)
∥∥
p ds

(3.18)

≤ C

(∫ S

t
(s − t)−βq∗/2−dq∗/(2p)+dq∗/(2γ ) ds

)1/q∗
‖f ‖

L
q
p(t,S)

≤ C(S − t)(2−β)/2−d/(2p)−1/q+d/(2γ )‖f ‖
L

q
p(t,S),

where q∗ := q
q−1 and C = C(d,α,K,p, q, γ,β) > 0.
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Now we are ready to give:

PROOF OF THEOREM 3.1. Let � be a nonnegative smooth function in R
d+1

with support in {x ∈ R
d+1 : |x| ≤ 1} and

∫
Rd+1 �(t, x)dt dx = 1. Set �n(t, x) :=

nd+1�(nt, nx) and extend u(s) to R by setting u(s, ·) = 0 for s /∈ [T ,S]. Define

σn := σ ∗ �n, fn := f ∗ �n.(3.19)

Let un solve the following equation:

∂tun + L
σn
t un + fn = 0, un(S) = 0.(3.20)

By (3.3) and (3.18), we have the following uniform estimate:

‖un‖Lp
p(T ,S) + ‖∂tun‖Lp

p(T ,S) + ∥∥∇2
xun

∥∥
L

p
p(T ,S) ≤ C‖f ‖

L
p
p(T ,S),(3.21)

and for any β ∈ [0,2) and γ, q > 1 with 2
q

+ d
p

< 2 − β + d
γ

,
∥∥un(t)

∥∥
H

β
γ

≤ C(S − t)(2−β)/2−d/(2p)−1/q+d/(2γ )‖f ‖
L

q
p(t,S),(3.22)

where the constant C only depends on d,α,K,p, q, γ,β .
By (3.21) and the weak compactness of W2,p

p (T , S), there exist a subsequence

still denoted by un and a function u ∈ W
2,p
p (T , S) with u(S) = 0 such that un

weakly converges to u. By taking weak limits of (3.20), one sees that u satisfies
(3.1). Indeed, for any ϕ ∈ C∞

0 ((T , S) ×R
d), we have∣∣∣∣

∫ S

T

∫
Rd

(
L

σm
t un − Lσ

t un

)
ϕ dt dx

∣∣∣∣
≤ C

(∫ S

T

∥∥σm(t) − σ(t)
∥∥∞

∥∥∇2
xun

∥∥
p dt

)

≤ C

(∫ S

T

∥∥σm(t) − σ(t)
∥∥p/(p−1)
∞ dt

)p−1/p∥∥∇2
xun

∥∥
L

p
p(T ,S),

which, by (3.21), converges to zero as m → ∞ uniformly in n. On the other hand,
for fixed m, since un weakly converges to u, we have∫ S

T

∫
Rd

(
L

σm
t un − L

σm
t u

)
ϕ dt dx → 0, as n → ∞.

Hence, ∫ S

T

∫
Rd

(
L

σn
t un − Lσ

t u
)
ϕ dt dx → 0, as n → ∞.

Similarly, for any ϕ ∈ C∞
0 ((T , S) ×R

d), we have∫ S

T

∫
Rd

(∂tun)ϕ dt dx = −
∫ S

T

∫
Rd

un∂tϕ dt dx

→ −
∫ S

T

∫
Rd

u∂tϕ dt dx =
∫ S

T

∫
Rd

∂tuϕ dt dx
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as n → ∞, and by the property of convolutions,

lim
n→∞‖fn − f ‖

L
p
p(T ,S) = 0.

Moreover, as in the proof of Lemma 2.4, by (3.22) we get (3.4). �

4. Krylov-type and Khasminskii-type estimates. The following Krylov es-
timate was proved in [30], Theorem 2.1. Since we need more explicit dependence
on s − t , for the reader’s convenience, we reproduce the proof here.

THEOREM 4.1. Assume that σ satisfies (Hα
K ) and q,p ∈ (1,∞) with d

p
+ 2

q
<

2. Let 0 < S − T ≤ 1. For any s ∈ [T ,S] and x ∈ R
d , let XT,s(x) solve SDE

(1.2) with b = 0. For any δ ∈ (0,1 − d
2p

− 1
q
), there exists a positive constant

C = C(K,α, d,p, q, δ) such that for all f ∈ L
q
p(T , S), T ≤ t ≤ s ≤ S and x ∈ R

d ,

E

(∫ s

t
f

(
r,XT,r(x)

)
dr

∣∣∣
Ft

)
≤ C(s − t)δ‖f ‖

L
q
p(T ,S),(4.1)

where Ft := σ {Ws : s ≤ t}.

PROOF. Let p′ = 2d . Since L
p′
p′(T , S)∩L

q
p(T , S) is dense in L

q
p(T , S), it suf-

fices to prove (4.1) for

f ∈ L
p′
p′(T , S) ∩L

q
p(T , S).

Fix s ∈ [T ,S]. By Theorem 3.1, there exists a unique solution u ∈ W
2,p′
p′ (T , s) to

the following backward PDE:

∂tu + Lσ
t u + f = 0, t ∈ [T , s], u(s, x) = 0,

so that for all t ∈ [T , s],
‖u‖

L
p′
p′ (t,s)

+ ∥∥∇2u
∥∥
L

p′
p′ (t,s)

≤ C‖f ‖
L

p′
p′ (t,s)

.

Moreover, by (3.4) and (2.1), for any δ ∈ (0,1 − d
2p

− 1
q
), we have

sup
r∈[t,s]

∥∥u(r)
∥∥∞ ≤ C(s − t)δ‖f ‖

L
q
p(t,s), ∀t ∈ [T , s].(4.2)

Let �n be the same mollifiers as in the proof of Theorem 3.1. Define

un(t, x) := u ∗ �n(t, x), fn(t, x) := −[
∂tun(t, x) + Lσ

t un(t, x)
]
.(4.3)

Then we have

‖fn − f ‖
L

p′
p′ (t,s)

≤ ∥∥∂t (un − u)
∥∥
L

p′
p′ (t,s)

+ K
∥∥∇2(un − u)

∥∥
L

p′
p′ (t,s)

≤ ‖∂tu ∗ �n − ∂tu‖
L

p′
p′ (t,s)

+ K
∥∥∇2u ∗ �n − ∇2u

∥∥
L

p′
p′ (t,s)

≤ ‖f ∗ �n − f ‖
L

p′
p′ (t,s)

+ 2K
∥∥∇2u ∗ �n − ∇2u

∥∥
L

p′
p′ (t,s)

,
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which converges to zero as n → ∞ by the property of convolutions. So, by the
classical Krylov estimate (cf. [11], Lemma 5.1, or [9], Lemma 3.1), we have

lim
n→∞E

(∫ s

t

∣∣fn(r,XT,r) − f (r,XT,r)
∣∣ dr

)
≤ C lim

n→∞‖fn − f ‖
L

p′
p′ (t,s)

(4.4)
= 0.

Now applying Itô’s formula to un(t, x) and using (4.3), we get that for any T ≤
t ≤ s ≤ S,

un(s,XT,s) = un(t,XT,t ) −
∫ s

t
fn(r,XT,r)dr

+
∫ s

t
∂iun(r,XT,r)σ

ik
r (XT,r )dWk

r .

Since

sup
s,x

∣∣∂iun(s, x)
∣∣ ≤ Cn,

by Doob’s optional theorem we have

E

[∫ s

t
∂iun(r,XT,r)σ

ik
r (XT,r )dWk

r

∣∣∣
Ft

]
= 0.

Hence,

E

(∫ s

t
fn(r,XT,r)dr

∣∣∣
Ft

)
= E

[(
un(t,XT,t ) − un(s,XT,s)

)|Ft

]

≤ 2 sup
(r,x)∈[t,s]×Rd

∣∣un(r, x)
∣∣ ≤ 2 sup

r∈[t,s]
∥∥u(r)

∥∥∞

≤ C(s − t)δ‖f ‖
L

q
p(T ,S),

where the last step is due to (4.2). Combining this with (4.4), we arrive at the
desired conclusion. �

We also need the following Khasminskii-type estimate (cf. [21], Lemma 1.1).

LEMMA 4.2. Let (ξ(t))t∈[S,T ], (η(t))t∈[S,T ] and (β(t))t∈[S,T ] be three real-
valued measurable Ft -adapted processes, and (η(t))t∈[S,T ] and (α(t))t∈[S,T ] be
two R

d -valued measurable Ft -adapted processes. Suppose there exist c0 > 0 and
δ ∈ (0,1) such that for any T ≤ t ≤ s ≤ S

E

(∫ s

t

[∣∣β(r)
∣∣ + ∣∣α(r)

∣∣2]
dr

∣∣∣Ft

)
≤ c0(s − t)δ,(4.5)

and that

ξ(s) = ξ(T ) +
∫ s

T
ζ(r)dr +

∫ s

T
η(r)dWr +

∫ s

T
ξ(r)β(r)dr +

∫ s

T
ξ(r)α(r)dWr.
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Then for any p > 0 and γ1, γ2, γ3 > 1, we have

E

(
sup

s∈[T ,S]
ξ+(s)p

)

(4.6)

≤ C

(∥∥ξ+(T )p
∥∥
γ1

+
∥∥∥∥
(∫ S

T
ζ+(r)dr

)p∥∥∥∥
γ2

+
∥∥∥∥
(∫ S

T

∣∣η(r)
∣∣2 dr

)p/2∥∥∥∥
γ3

)
,

where a+ = max{0, a}, C = C(c0, δ,p, γi) > 0 and ‖ · ‖γ denotes the norm in
Lγ (�).

PROOF. Write

M(s) := exp
{∫ s

T
α(r)dWr − 1

2

∫ s

T

∣∣α(r)
∣∣2 dr +

∫ s

T
β(r)dr

}
.

By Itô’s formula, one sees that

ξ(s) = M(s)

{
ξ(T ) +

∫ s

T
M−1(r)

(
η(r)dWr + [

ζ(r) − 〈
α(r), η(r)

〉]
dr

)}
.(4.7)

By (4.5) and the Khasminskii estimate (cf. [21], Lemma 1.1), we have for any
p ≥ 1,

E exp
{
p

∫ S

T

∣∣α(r)
∣∣2 dr + p

∫ S

T

∣∣β(r)
∣∣ dr

}
≤ C = C(c0, β,p) < ∞,

which implies that for any p ∈ R,

s 
→ exp
{
p

∫ s

T
α(r)dWr − p2

2

∫ s

T

∣∣α(r)
∣∣2 dr

}

is an exponential martingale. Thus, by Hölder’s inequality and Doob’s maximal
inequality, we have that for any p ∈ R,

E

(
sup

s∈[T ,S]
∣∣M(s)

∣∣p)
≤ C = C(c0, δ,p) < ∞.

The desired estimate follows by (4.7), Hölder’s and Burkhölder’s inequalities. �

5. SDEs without drifts. In this section, we consider the following SDE:

dXt,s = σs(Xt,s)dWs, Xt,t = x, s ≥ t,(5.1)

where σ : [T ,S] × R
d → M

d satisfies (Hα
K ). It is well known that, under (Hα

K ),
(5.1) is well-posed in the sense of Stroock–Varadhan’s martingale solutions (cf.
[24], page 187, Theorem 7.2.1). Indeed, Hölder’s continuity can be replaced with
the weaker condition that σ is uniformly continuous in x with respect to t . More-
over, {Xt,s(x)} defines a family of time nonhomogeneous Markov processes. The
aim of this section is to prove Theorem 1.1 for SDE (5.1). More precisely, we want
to prove the following.
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THEOREM 5.1. Assume that σ satisfies (Hα
K ) and that for some q,p ∈ (1,∞)

with d
p

+ 2
q

< 1,

∇σt ∈ L
q
p(T , S).

Then we have the following conclusions:

(a) For any (t, x) ∈ [T ,S] × R
d , there is a unique strong solution denoted by

Xt,s(x) or Xσ
t,s(x) to (5.1), which has a jointly continuous version with respect

to s, x.
(b) For each s ≥ t and almost all ω, x 
→ Xt,s(x,ω) is weakly differentiable. Let

∇Xt,s(x) be the Jacobian matrix and Jt,s(x) solve the following linear matrix-
valued SDE:

Jt,s(x) = I+
∫ s

t
∇σr

(
Xt,r(x)

)
Jt,r (x)dWr.(5.2)

Then Jt,s(x) = ∇Xt,s(x) a.s. for Lebesgue almost all x ∈ R
d , and for any

p′ ≥ 1,

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣Jt,s(x)

∣∣p′) ≤ C = C
(
p,q, d,K,α,p′,‖∇σ‖

L
q
p(T ,S)

)
,(5.3)

where the constant C is increasing with respect to ‖∇σ‖
L

q
p(T ,S).

(c) For each s ≥ t and x ∈ R
d , the random variable ω 
→ Xt,s(x,ω) is Malliavin

differentiable, and for any p′ ≥ 1,

sup
x∈Rd

E

(
sup

s∈[t,S]
∥∥DXt,s(x)

∥∥p′
H

)
≤ C = C

(
p,q, d,K,α,p′,‖∇σ‖

L
q
p(T ,S)

)
.(5.4)

Moreover, for any adapted vector field h with E
∫ S
T |ḣ(r)|2 dr < ∞, the Malli-

avin derivative DhXt,s(x) along h satisfies the following linear SDE:

DhXt,s(x) =
∫ s

t
∇σr

(
Xt,r(x)

)
DhXt,r (x)dWr +

∫ s

t
σr

(
Xt,r(x)

)
ḣ(r)dr.(5.5)

(d) For any f ∈ C1
b(Rd), we have the following formula: for Lebesgue almost all

x ∈ R
d :

∇Ef
(
Xt,s(x)

) = 1

s − t
E

(
f

(
Xt,s(x)

) ∫ s

t
σ−1

r

(
Xt,r(x)

)∇Xt,r(x)dWr

)
.(5.6)

(e) Assume that σ ′ also satisfies the assumptions of the theorem with the same
K,α and p,q . Let Xσ

t,s(x) and Xσ ′
t,s(x) be the solutions to (5.1) associated

with σ and σ ′, respectively. Then

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣Xσ

t,s(x) − Xσ ′
t,s(x)

∣∣2)
≤ C(S − t)δ

∥∥σ − σ ′∥∥2
L

q
p(t,S),

provided ‖σ − σ ′‖2
L

q
p(t,S)

< ∞, where δ ∈ (0,1) only depends on p,q, d .
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5.1. Some a priori estimates. In this subsection, we assume that σ satisfies
(Hα

K ) and

sup
t,x

∣∣∇jσt (x)
∣∣ < ∞, ∀j ∈N.

In this case, it is well known that the unique solution Xσ
t,s(x) (or simply denoted by

Xt,s) of (5.1) forms a C∞-diffeomorphism flow (cf. [22], page 312, Theorem 39).
Let Jt,s := ∇Xt,s be the Jacobian matrix, and DXt,s the Malliavin derivative of
Xt,s with respect to sample paths. Then we have (cf. [22], page 312, Theorem 39)

Jt,s = I+
∫ s

t
∇σr(Xt,r )Jt,r dWr,(5.7)

and for any h ∈ H,

DhXt,s =
∫ s

t
∇σr(Xt,r )DhXt,r dWr +

∫ s

t
σr(Xt,r )ḣr dr.(5.8)

We have the following a priori estimates.

PROPOSITION 5.2. Under the assumptions of Theorem 5.1, for any p′ ≥ 1,
we have

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣∇Xt,s(x)

∣∣p′) + sup
x∈Rd

E

(
sup

s∈[t,S]
∥∥DXt,s(x)

∥∥p′
H

)
≤ C,(5.9)

where the constant C = C(K,α,p, q, d,p′,‖∇σ‖
L

q
p(T ,S)) is increasing with re-

spect to ‖∇σ‖
L

q
p(T ,S).

PROOF. Without loss of generality, we assume t = T and write Xs := XT,s

and Js := JT,s .

(1) Let

β(r) := ∥∥∇σr(Xr)Jr

∥∥2
/|Jr |2, α(r) := 2

〈
Jr,∇σr(Xr)Jr

〉
/|Jr |2.

Here, we use the convention 0
0 := 0, that is, if |Jr | = 0, then β(r) = α(r) = 0.

By (5.7) and Itô’s formula, we have

|Js |2 = |JT |2 +
∫ s

T
|Jr |2β(r)dr +

∫ s

T
|Jr |2α(r)dWr.

Let δ ∈ (0,1 − d
p

− 2
q
). By (4.1), we have for any T ≤ t ≤ s ≤ S,

E

(∫ s

t

[∣∣α(r)
∣∣2 + ∣∣β(r)

∣∣] dr
∣∣∣
Ft

)
≤ 5E

(∫ s

t

∣∣∇σr(Xr)
∣∣2 dr

∣∣∣
Ft

)

≤ C(s − t)δ
∥∥|∇σ |2∥∥

L
q/2
p/2(T ,S)

= C(s − t)δ‖∇σ‖2
L

q
p(T ,S)

,

which in turn gives the first estimate in (5.9) by (4.6).
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(2) For T ≤ r ≤ s ≤ S, let Jr,s solve the following linear SDE:

Jr,s = I+
∫ s

r
∇σr ′(Xr ′)Jr,r ′ dWr ′ .

By (5.8) and the variation of constants formula, we have

DhXs =
∫ s

T
Jr,sσr(Xr)ḣr dr.(5.10)

Let �
ij
s := 〈DXi

s,DX
j
s 〉H be the Malliavin covariance matrix. Then by (5.10) we

have

�s =
∫ s

T
Jr,sσr(Xr)

(
Jr,sσr(Xr)

)t dr.(5.11)

As in step (1), one can show that for any p′ ≥ 1,

sup
r∈[T ,S]

E

(
sup

s∈[r,S]
|Jr,s |p′) ≤ C.(5.12)

Thus, by (5.11) and (5.12) we have

E

(
sup

s∈[T ,S]
|�s |p′) ≤ CE

(
sup

s∈[T ,S]

∫ s

T
|Jr,s |2p′

dr

)

≤ CE

(∫ S

T
sup

s∈[r,S]
|Jr,s |2p′

dr

)
≤ C.

The proof is now complete. �

LEMMA 5.3. Assume that σ,σ ′ : [T ,S] × R
d → M

d satisfy (Hα
K ) with the

same K,α. If for some p,q ∈ (2,∞) with d
p

+ 2
q

< 1,

∇σt , ∇σ ′
t ∈ L

q
p(T , S),

then there exists a constant C = C(K,α,p, d, q,‖∇σ‖
L

q
p(T ,S),‖∇σ ′‖

L
q
p(T ,S)) > 0

such that

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣Xσ

t,s(x) − Xσ ′
t,s(x)

∣∣2)
≤ C(S − t)δ

∥∥σ − σ ′∥∥2
L

q
p(t,S)

,(5.13)

where δ ∈ (0,1) only depends on p,q, d . Moreover, for any γ > 1 and x ∈ R
d ,

E

(
sup

s∈[t,S]
∣∣∇Xσ

t,s(x) − ∇Xσ ′
t,s(x)

∣∣2)

(5.14)

≤ C

∥∥∥∥
∫ S

t

∣∣∇σr

(
Xσ

t,r (x)
) − ∇σ ′

r

(
Xσ ′

t,r (x)
)∣∣2 dr

∥∥∥∥
Lγ (�)

.

PROOF. Without loss of generality, we assume t = T and write Xσ
s := Xσ

T,s .
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(1) Set Zs := Xσ
s − Xσ ′

s , then

Zs =
∫ s

T

[
σr

(
Xσ

r

) − σ ′
r

(
Xσ ′

r

)]
dWr.

By Itô’s formula, we have

|Zs |2 =
∫ s

T

∥∥σ (
r,Xσ

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr + 2
∫ s

T

[
σ

(
r,Xσ

r

) − σ ′
r

(
Xσ ′

r

)]t
Zr dWr

=
∫ s

T
ζ(r)dr +

∫ s

T
η(r)dWr +

∫ s

T
|Zr |2β(r)dr +

∫ s

T
|Zr |2α(r)dWr,

where

ζ(r) := ∥∥σr

(
Xσ

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 − 2
∥∥σr

(
Xσ

r

) − σr

(
Xσ ′

r

)∥∥2
,

η(r) := 2
[
σ

(
r,Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)]t
Zr,

β(r) := 2
∥∥σr

(
Xσ

r

) − σr

(
Xσ ′

r

)∥∥2
/|Zr |2,

α(r) := 2
[
σr

(
Xσ

r

) − σr

(
Xσ ′

r

)]t
Zr/|Zr |2.

Here, we have used the convention 0
0 := 0, that is, if |Zr | = 0, then β(r) =

α(r) = 0.
By Lemma 2.1, (4.1) and (2.3), we have that for any T ≤ t < s ≤ S,

E

(∫ s

t

[∣∣β(r)
∣∣ + ∣∣α(r)

∣∣2]
dr

∣∣∣Ft

)

≤ CE

(∫ s

t

[
M|∇σr |2(

Xσ
r

) +M|∇σr |2(
Xσ ′

r

)]
dr

∣∣∣Ft

)

≤ C(s − t)δ
∥∥M|∇σ |2∥∥

L
q/2
p/2(T ,S)

≤ C(s − t)δ
∥∥|∇σ |2∥∥

L
q/2
p/2(T ,S)

= C(s − t)δ‖∇σ‖2
L

q
p(T ,S)

,

where δ ∈ (0,1 − d
p

− 2
q
), and that for any γ ∈ (1,1/(2/q + d/p)),

E

(∫ S

T

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2γ dr

)

≤ C(S − T )δ
∥∥∥∥σ − σ ′∥∥2γ ∥∥

L
q/(2γ )
p/(2γ )(T ,S)

(5.15)

= C(S − T )δ
∥∥σ − σ ′∥∥2γ

L
q
p(T ,S)

,
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where δ ∈ (0,1 − dγ
p

− 2γ
q

). Since ζ+(r) ≤ 2‖σr(X
σ ′
r ) − σ ′

r (X
σ ′
r )‖2, using (4.6)

with p = 1, γ2 = γ and γ3 = 2γ
γ+1 and by Hölder’s inequality, we obtain

E

(
sup

s∈[T ,S]
|Zs |2

)
≤ C

∥∥∥∥
(∫ S

T
|Zr |2

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr

)1/2∥∥∥∥
Lγ3 (�)

+ C

∥∥∥∥
∫ S

T

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr

∥∥∥∥
Lγ2 (�)

≤ C
∥∥∥ sup
r∈[T ,S]

|Zr |
∥∥∥
L2(�)

∥∥∥∥
∫ S

T

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr

∥∥∥∥
1/2

Lγ (�)

(5.16)

+ C

∥∥∥∥
∫ S

T

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr

∥∥∥∥
Lγ (�)

≤ 1

2

∥∥∥ sup
r∈[T ,S]

|Zr |
∥∥∥2

L2(�)
+ C

∥∥∥∥
∫ S

T

∥∥σr

(
Xσ ′

r

) − σ ′
r

(
Xσ ′

r

)∥∥2 dr

∥∥∥∥
Lγ (�)

,

which, together with (5.15), yields (5.13).
(2) Set Us := J σ

s − J σ ′
s . Then by (5.7), we have

Us =
∫ s

T

[∇σr

(
Xσ

r

)
J σ

r − ∇σ ′
r

(
Xσ ′

r

)
J σ ′

r

]
dWr.

By Itô’s formula, we have

|Us |2 = 2
∫ s

T

〈
Ur,

[∇σr

(
Xσ

r

)
J σ

r − ∇σ ′
r

(
Xσ ′

r

)
J σ ′

r

]
dWr

〉

+
∫ s

T

∥∥∇σr

(
Xσ

r

)
J σ

r − ∇σ ′
r

(
Xσ ′

r

)
J σ ′

r

∥∥2 dr.

As in the proof of (5.16), and using (5.9) and by Hölder’s inequality, we obtain
that for γ ′ > γ > 1,

E

(
sup

s∈[0,S]
|Us |2

)
≤ C

∥∥∥∥
∫ S

T

∥∥[∇σr

(
Xσ

r

) − ∇σ ′
r

(
Xσ ′

r

)]
J σ ′

r

∥∥2 dr

∥∥∥∥
Lγ (�)

≤ C

∥∥∥∥ sup
r∈[T ,S]

∣∣J σ ′
r

∣∣2 ∫ S

T

∣∣∇σr

(
Xσ

r

) − ∇σ ′
r

(
Xσ ′

r

)∣∣2 dr

∥∥∥∥
Lγ (�)

≤ C

∥∥∥∥
∫ S

T

∣∣∇σr

(
Xσ

r

) − ∇σ ′
r

(
Xσ ′

r

)∣∣2 dr

∥∥∥∥
Lγ ′

(�)

,

which gives (5.14) by changing γ ′ to γ . �

5.2. Proof of Theorem 5.1. (a) Under the assumptions, the pathwise unique-
ness follows from (e). Since σ is bounded and uniformly continuous in x with re-
spect to t , the existence of a weak solution is classical (cf. [23]). The existence of a
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strong solution then follows by Yamada–Watanabe’s theorem (cf. [10], page 163,
Theorem 1.1).

(b) Define σn
t (x) := σt ∗ �n(x), where �n is a mollifier in R

d . Consider the
following SDE:

Xn
t,s(x) = x +

∫ s

t
σ n

r

(
Xn

t,r (x)
)

dWr, s ≥ t.

Since σn is uniformly bounded, it is easy to see that for any p′ > 1,

sup
n

E

(
sup

s∈[t,S]
∣∣Xn

t,s(x)
∣∣p′) ≤ C

(
1 + |x|p′)

.

Moreover, by (5.9) we have

sup
n

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣∇Xn

t,s(x)
∣∣p′)

< ∞,

and by (5.13),

lim
n→∞ sup

x∈Rd

E

(
sup

s∈[t,S]
∣∣Xn

t,s(x) − Xt,s(x)
∣∣2)

≤ C lim
n→∞

∥∥σn − σ
∥∥2
L

q
p(t,S)

(5.17)
= 0.

Thus, by Lemma 2.4, the random field x 
→ Xt,s(x,ω) is weakly differentiable
almost surely, and for some subsequence nk and any R ∈ N,

∇X
nk
t,s weakly converges to ∇Xt,s

(5.18)
as random variables in Lp′(

� × BR;Md
)
.

Let Jt,s(x) be the solution of SDE (5.2). We need to show that ∇Xt,s(x) = Jt,s(x).
As in the proof of (5.9), we have

sup
x∈Rd

E

(
sup

s∈[t,S]
∣∣Jt,s(x)

∣∣p′) ≤ C.

Moreover, letting Jn
t,s(x) := ∇Xn

t,s(x), by (5.14) we have

E

(
sup

s∈[t,S]
∣∣Jn

t,s(x) − Jt,s(x)
∣∣2)

(5.19)

≤ C

∥∥∥∥
∫ S

t

∣∣∇σn
r

(
Xn

t,r (x)
) − ∇σr

(
Xt,r(x)

)∣∣2 dr

∥∥∥∥
Lγ (�)

.

As in the proof of (5.15), we have for γ ∈ (1,1/(2/q + d/p)),

sup
x∈Rd

∥∥∥∥
∫ S

t

∣∣∇σm
r

(
Xn

t,r (x)
) − ∇σr

(
Xn

t,r (x)
)∣∣2 dr

∥∥∥∥
Lγ (�)

(5.20)
≤ C

∥∥∇σm − ∇σ
∥∥2
L

q
p(t,S),
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where C is independent of n. On the other hand, for fixed m, by (5.17) we have

lim
n→∞ sup

x∈Rd

∥∥∥∥
∫ S

t

∣∣∇σm
r

(
Xn

t,r (x)
) − ∇σm

r

(
Xt,r(x)

)∣∣2 dr

∥∥∥∥
Lγ (�)

= 0.(5.21)

Combining (5.19)–(5.21), we obtain

lim
n→∞ sup

x∈Rd

E

(
sup

s∈[t,S]
∣∣Jn

t,s(x) − Jt,s(x)
∣∣2)

= 0,(5.22)

which, together with (5.19), implies ∇Xt,s = Jt,s a.e.
(c) By (5.9) again, we have for any p′ ≥ 1,

sup
n

sup
x∈Rd

E

(
sup

s∈[t,S]
∥∥DXn

t,s(x)
∥∥p′
H

)
≤ C,

which, together with (5.17) and by [20], page 79, Lemma 1.5.3, yields that Xt,s(x)

is Malliavin differentiable and (5.4) holds. Let h be an adapted vector field with
E

∫ S
T |ḣ(r)|2 dr < ∞. Then we have

DhX
n
t,s =

∫ s

t
∇σr

(
Xn

t,r

)
DhX

n
t,r dWr +

∫ s

t
σ n

r

(
Xn

t,r

)
ḣr dr.

Let Zh
t,s solve

Zh
t,s =

∫ s

t
∇σr(Xt,r )Z

h
t,r dWr +

∫ s

t
σr(Xt,r )ḣr dr.

As above, one can show that DhX
n
t,s → Zh

t,s in L2(�). Moreover, for some sub-
sequence nk , DhX

nk
t,s also weakly converges to DhXt,s in L2(�). Thus, Zh

t,s =
DhXt,s satisfies equation (5.5).

(d) By the classical Bismut–Elworthy–Li’s formula (cf. [4]), we have for any
f ∈ C1

b(Rd),

∇Ef
(
Xn

t,s(x)
) = 1

s − t
E

[
f

(
Xn

t,s(x)
) ∫ s

t

[
σn

r

(
Xn

t,r (x)
)]−1∇Xn

t,r (x)dWr

]
.

Using (5.17) and (5.22), by taking limits on both sides of the above formula, we
obtain (5.6). A more direct way of proving (5.6) is to use (b) and (c). We give it as
follows: For fixed v ∈ R

d and T ≤ t < s ≤ S, define an adapted Cameron–Martin
vector field hv by

hv
(
s′) := 1

s − t

∫ s′

t

[
σr(Xt,r )

]−1∇vXt,r dr, s′ ∈ [t, s],
where ∇vXt,r := 〈∇Xt,r ,v〉Rd = Jt,rv. By (5.3), we have

E

∫ s

t

∣∣ḣv(r)
∣∣2 dr = 1

(s − t)2E

∫ s

t

∣∣[σr(Xt,r )
]−1∇vXt,r

∣∣2 dr < ∞.
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Notice that by (5.5), DhvXt,s′ satisfies

DhvXt,s′ =
∫ s′

t
∇σr(Xt,r )DhvXt,r dWr + 1

s − t

∫ s′

t
∇vXt,r dr, s′ ∈ [t, s].

By (5.2) and the variation of constants formula, we have

DhvXt,s = ∇vXt,s = Jt,rv.

Hence, by the chain rule and the integration by parts formula in the Malliavin
calculus (cf. [20]), we obtain

∇vEf (Xt,s) = E
[∇f (Xt,s)∇vXt,s

]
= E

[∇f (Xt,s)DhvXt,s

] = E
[
Dhv

(
f (Xt,s)

)]

= 1

s − t
E

(
f (Xt,s)

∫ s

t

[
σr(Xt,r )

]−1∇vXt,r dWr

)
.

(e) Using (5.17) and taking limits in

E

(
sup

s∈[t,S]
∣∣Xσn

t,s(x) − X
σ ′

n
t,s(x)

∣∣2)
≤ C(S − t)δ

∥∥σn − σ ′
n

∥∥2
L

q
p(t,S),

we immediately get the desired conclusion. The proof is now complete.

6. Proof of Theorem 1.1. In this section, we assume that σ satisfies (Hα
K )

and that one of the following two conditions holds:

(i) σt (x) = σt is independent of x and for some p,q ∈ (1,∞) with d
p

+ 2
q

< 1,

b ∈ L
q
p(T , S).

(ii) ∇σ, b ∈ L
q
p(T , S) for some q = p > d + 2.

We first prove the following result.

THEOREM 6.1. Under the above assumptions (i) or (ii), for any f ∈
L

q
p(T , S), there exists a unique solution u = ub

f ∈ W
2,q
p (T , S) to

∂tu + Lσ
t u + b · ∇u + f = 0, u(S) = 0,(6.1)

satisfying

‖u‖
L

q
p(T ,S) + ∥∥∇2u

∥∥
L

q
p(T ,S) ≤ C1 exp

{
C1‖b‖q

L
q
p(T ,S)

}‖f ‖
L

q
p(T ,S),(6.2)

and for all t ∈ [T ,S],
∥∥∇u(t)

∥∥
C δ/2 ≤ C1(S − T )δ/3 exp

{
C1(S − T )qδ/3‖b‖q

L
q
p(T ,S)

}‖f ‖
L

q
p(T ,S),(6.3)
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where δ := 1
2 − d

2p
− 1

q
and C1 = C1(K,α,p, q, d, δ) > 0. Suppose that b′ also

satisfies the assumptions of this theorem and f ′ ∈ L
q
p(T , S). Let ub

f and ub′
f ′ be the

solutions of (6.1) associated with b,f and b′, f ′, respectively. Then∑
j=0,1

∥∥∇jub
f (t) − ∇jub′

f ′(t)
∥∥∞ + ∑

j=0,2

∥∥∇jub
f − ∇jub′

f ′
∥∥
L

q
p(T ,S)

(6.4)
≤ C2

(∥∥f − f ′∥∥
L

q
p(T ,S) + ∥∥b − b′∥∥

L
q
p(T ,S)

)
,

where C2 = C2(K,α,p, q, d,‖b‖
L

q
p(T ,S),‖b′‖

L
q
p(T ,S),‖f ′‖

L
q
p(T ,S)).

PROOF. By standard Picard’s iteration or a fixed point argument, we only need
to prove the a priori estimates (6.2), (6.3) and (6.4). Letting δ := 1

2 − d
2p

− 1
q

, by
(3.4), (2.1) with suitable choices of β and γ , we have

∥∥∇u(t)
∥∥q

C δ/2 ≤ C(S − T )qδ/3
∫ S

t

∥∥(b · ∇u)(s) + f (s)
∥∥q
p ds

≤ C(S − T )qδ/3
∫ S

t

[∥∥b(s)
∥∥q
p

∥∥∇u(s)
∥∥q
∞ + ∥∥f (s)

∥∥q
p

]
ds,

which, together with Gronwall’s inequality, yields (6.3).
On the other hand, in the case of (i), by (3.7) and (6.3), we have

‖u‖
L

q
p(T ,S) + ∥∥∇2u

∥∥
L

q
p(T ,S)

≤ C
∥∥(b · ∇u) + f

∥∥
L

q
p(T ,S)

≤ C‖b‖
L

q
p(T ,S)‖∇u‖∞ + C‖f ‖

L
q
p(T ,S)

≤ C
(‖b‖

L
q
p(T ,S) exp

{
C‖b‖q

L
q
p(T ,S)

} + 1
)‖f ‖

L
q
p(T ,S),

which in turn gives (6.2). In the case of (ii), by (3.3) we still have (6.2).
Moreover, if we let w := ub

f − ub′
f ′ , then

∂tw + Lσ
t w + b · ∇w + (

b − b′) · ∇ub′
f ′ + f − f ′ = 0, w(S) = 0.

As above, using (3.4), (2.1) and (6.3), and by Gronwall’s inequality, we have

‖∇w‖∞ ≤ C1 exp
{
C

(‖b‖q

L
q
p(T ,S)

+ ∥∥b′∥∥q

L
q
p(T ,S)

)}(∥∥f ′∥∥
L

q
p(T ,S) + 1

)

× (∥∥f − f ′∥∥
L

q
p(T ,S) + ∥∥b − b′∥∥

L
q
p(T ,S)

)
.

The desired estimate (6.4) follows by (3.4), (2.1) and (3.3). �

Let [t0, s0] ⊂ [T ,S] be any subinterval. For � = 1, . . . , d , by Theorem 6.1, the
following PDE:

∂tu
� + Lσ

t u� + b · ∇u� + b� = 0, u�
s0

(x) = 0



SDES WITH SOBOLEV DIFFUSION AND SINGULAR DRIFT 2725

has a unique solution u�. Let

ut (x) := ub
t (x) := (

u1
t (x), . . . , ud

t (x)
)

and

�t(x) := �b
t (x) := x + ub

t (x).(6.5)

We now prove the following Zvonkin transformation.

LEMMA 6.2. Under (i) or (ii), for any U > 0, there is a positive constant
ε = ε(K,α, d,p, q,U) such that if s0 − t0 ≤ ε and ‖b‖

L
q
p(t0,s0)

≤ U , then for each

t ∈ [t0, s0], x 
→ �t(x) is a C1-diffeomorphism with
1
2 |x − y| ≤ ∣∣�t(x) − �t(y)

∣∣ ≤ 3
2 |x − y|.(6.6)

Moreover, letting δ := 1
2 − d

2p
− 1

q
> 0, we have the following conclusions:

(1) ‖∇�t‖∞ + ‖∇�−1
t ‖∞ ≤ κ , where κ is a universal constant.

(2) ‖∇2�‖
L

q
p(t0,s0)

+ ‖∇�‖C δ/2 ≤ C, where C only depends on K,α,p, q,

d, δ,U .
(3) Let b′ ∈ L

q
p(t0, s0) be another function with ‖b′‖

L
q
p(t0,s0)

≤ U . Let �b and

�b′
be associated with b and b′, respectively. Then we have

∥∥�b − �b′∥∥
L∞∞(t0,s0)

+ ∥∥∇�b − ∇�b′∥∥
L

q
p(t0,s0)

≤ C
∥∥b − b′∥∥

L
q
p(t0,s0)

.

(4) Xt0,s solves SDE (1.2) on [t0, s0] if and only if Yt0,s := �s(Xt0,s) solves the
following SDE:

dYt0,s = �s(Yt0,s)dWs, s ∈ [t0, s0], Yt0,t0 = �t0(x),(6.7)

where �s(y) := [∇�s · σs] ◦ (�−1
s (y)) satisfies (Hα′

K ′) with α′ = α ∧ (δ/2) and
K ′ = κK .

(5) Let �b be defined as above through �b. In the case of (3), we also have
∥∥�b − �b′∥∥

L
q
p(t0,s0)

≤ C
∥∥b − b′∥∥

L
q
p(t0,s0)

,(6.8)

where C = C(K,α,p, q, d, δ,U) > 0.

PROOF. Let δ := 1
2 − d

2p
− 1

q
> 0. By (6.3), there is a C0 = C0(K,α,p, q, d) >

0 such that for all [t0, s0] ⊂ [T ,S],
‖∇ut‖C δ/2 ≤ C0(s0 − t0)

δ/3 exp
{
C0(s0 − t0)

δq/3‖b‖q

L
q
p(t0,s0)

}‖b‖
L

q
p(t0,s0)

.

For given U > 0, let us choose ε = ε(δ, q,C0,U) > 0 small enough so that for all
s0 − t0 ≤ ε and ‖b‖

L
q
p(t0,s0)

≤ U ,

sup
t∈[t0,s0]

‖∇ut‖C δ/2 ≤ 1/2.
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In particular, we have
∣∣ut (x) − ut (y)

∣∣ ≤ |x − y|/2, t ∈ [t0, s0],
which then gives (6.6) by definition (6.5).

(1) It is obvious from (6.6).
(2) It follows from definition (6.5) and the estimates (6.2), (6.3).
(3) It follows from definition (6.5) and the estimate (6.4).
(4) It follows by generalized Itô’s formula (see [11] or [30], Lemma 4.3, for

more details).
(5) By definition, we can write

�b
s (y) − �b′

s (y) = [∇�b
s · σs

] ◦ �b,−1
s (y) − [∇�b

s · σs

] ◦ �b′,−1
s (y)

+ [(∇�b
s − ∇�b′

s

) · σs

] ◦ �b′,−1
s (y) =: I1(s, y) + I2(s, y).

For I1(s, y), by (2.2) we have
∣∣I1(s, y)

∣∣ ≤ C
(
Mgs

(
�b,−1

s (y)
) +Mgs

(
�b′,−1

s (y)
))∣∣�b,−1

s (y) − �b′,−1
s (y)

∣∣,
where gs(x) := |∇[∇�b

s · σs](x)| ∈ L
q
p(t0, s0) by (2), and Mgs is the Hardy-

Littlewood maximal function. Noticing that

sup
y

∣∣�b,−1
s (y) − �b′,−1

s (y)
∣∣ = sup

y

∣∣y − �b′,−1
s ◦ �b

s (y)
∣∣

≤ ∥∥∇�b′,−1
s

∥∥∞
∥∥�b′

s − �b
s

∥∥∞,

by the change of variables, (3) and (2.3), we obtain

‖I1‖Lq
p(t0,s0)

≤ C
∥∥Mg·

(
�b,−1·

) +Mg·
(
�b′,−1·

)∥∥
L

q
p(t0,s0)

∥∥�b,−1 − �b′,−1∥∥∞
≤ C‖Mg‖

L
q
p(t0,s0)

∥∥b − b′∥∥
L

q
p(t0,s0)

≤ C‖g‖
L

q
p(t0,s0)

∥∥b − b′∥∥
L

q
p(t0,s0)

.

For I2(s, y), by the change of variables and (3) again, we have

‖I2‖Lq
p(t0,s0)

≤ C
∥∥∇�b· − ∇�b′

·
∥∥
L

q
p(t0,s0)

≤ C
∥∥b − b′∥∥

L
q
p(t0,s0)

.

Combining the above calculations, we obtain (6.8). �

We are now in a position to give the following.

PROOF OF THEOREM 1.1. Let ε be as in Lemma 6.2. Fix t0 ∈ [T ,S) and
s0 ∈ (t0, S) with

s0 − t0 ≤ ε.
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Let us first prove the theorem on the time interval [t0, s0]. By Lemma 6.2 and
Theorem 5.1, it is easy to see that (A), (B) and (C) hold. Let us look at (D). By (d)
of Theorem 5.1, we have

∇Ef
(
Yt0,s(y)

)
(6.9)

= 1

s − t0
E

(
f

(
Yt0,s(y)

) ∫ s

t0

�−1
r

(
Yt0,r (y)

)∇Yt0,r (y)dWr

)
.

Since Yt0,s(y) = �s ◦Xt0,s ◦�−1
t0

(y), by replacing f with f ◦�−1
s and the change

of variables y → �t(x), we obtain (1.6). As for (E), it follows by (e) of Theo-
rem 5.1 and (6.8).

Finally, let us consider the time interval [t1, s1], where t1 := s0+t0
2 and s1 :=

3s0−t0
2 . By the uniqueness of solutions, we have for all s ∈ [t1, s1],

Xt0,s(x) = Xt0,t1 ◦ Xt1,s(x),

where Xt0,t1(·) and Xt1,s(·) are independent. Thus, we can patch up the solutions
and conclude the proofs by Proposition 2.5. �

7. Proof of Theorem 1.4. Given p > d , ν > 0 and T ∈ [−1,0], let b ∈
L

∞
p (T ,0) be divergence free, and let Xt,s(x) solve

Xt,s(x) = x +
∫ s

t
br

(
Xt,r(x)

)
dr + √

2ν(Ws − Wt), T ≤ t ≤ s ≤ 0.(7.1)

LEMMA 7.1. For any f ∈ L1(Rd), we have

E

∫
Rd

f
(
Xt,s(x)

)
dx =

∫
Rd

f (x)dx.(7.2)

PROOF. By a density and monotonic class argument, it suffices to prove it for
f ∈ C∞

0 (Rd). Let bn
t (x) = �n ∗ bt (x), where ρn is a mollifier. Then ‖∇bn‖∞ < ∞

and divbn
t = 0. Since

det
(∇Xn

t,s(x)
) = exp

{∫ s

t
divbn

r

(
Xn

t,r (x)
)

dr

}
= 1,

by the change of variables one has∫
Rd

f
(
Xn

t,s(x)
)

dx =
∫
Rd

f (x)det
(∇X

n,−1
t,s (x)

)
dx =

∫
Rd

f (x)dx(7.3)

where x 
→ X
n,−1
t,s (x) is the inverse of x 
→ Xn

t,x(x). On the other hand, by (1.7)
we have

lim
n→∞E

(
sup

s∈[t,0]
∣∣Xn

t,s(x) − Xt,s(x)
∣∣2)

= 0.

By taking limits for both sides of (7.3), we obtain (7.2). �
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Let P = I − ∇(−
)−1 div be Leray’s projection onto the space of divergence-
free vector fields. It is well known that the singular integral operator P is bounded
from Lp to Lp (cf. [23], Theorem 3, page 96). We also need the following result
(cf. [1] and [29]).

LEMMA 7.2. Recall the definition of V 0∞− in Section 2. Let ϕ ∈ W
1
p(Rd;Rd)

for some p > 1. We have the following conclusions:

(i) For any X ∈ L∞
x (L∞−

ω ) ∩ V∞− and Y ∈ V 0∞−, we have

PE
[∇ tX · ϕ(Y )

] = −PE
[∇ tY · ∇ tϕ(Y ) · X]

.(7.4)

(ii) For any X ∈ V 0∞−, we have

∇PE
[∇ tX · ϕ(X)

] = PE
[∇ tX · (∇ tϕ − ∇ϕ

)
(X) · ∇X

]
.(7.5)

PROOF. Let Xn,Yn,ϕn be the mollifying approximations of X,Y,ϕ defined
as in (2.7).

(i) Notice that

PE
[∇ tXn · ϕn(Ym)

] + PE
[∇ tYm · ∇ tϕn(Ym) · Xn

] = P∇E
[
Xn · ϕn(Ym)

] = 0.

By (2.8), the dominated convergence theorem and Hölder’s inequality, it is easy to
see that for each n ∈N,

E
[∇ tXn · ϕn(Ym)

] → E
[∇ tXn · ϕn(Y )

]
in Lp as m → ∞,

and

E
[∇ tYm · ∇ tϕn(Ym) · Xn

] → E
[∇ tY · ∇ tϕn(Y ) · Xn

]
in Lp as m → ∞.

Hence,

PE
[∇ tXn · ϕn(Y )

] = −PE
[∇ tY · ∇ tϕn(Y ) · Xn

]
.

By letting n → ∞, we obtain (7.4).
(ii) As above calculations, we have

∇PE
[∇ tXm · ϕn(Xm)

] = PE
[∇ tXm · (∇ tϕn − ∇ϕn

)
(Xm) · ∇Xm

]
.

By Hölder’s inequality, we have

sup
n,m

∥∥∇PE
[∇ tXm · ϕn(Xm)

]∥∥
p < ∞.

First, letting m → ∞ and then n → ∞, we find that

E
[∇ tXm · (∇ tϕn − ∇ϕn

)
(Xm) · ∇Xm

]
→ E

[∇ tX · (∇ tϕ − ∇ϕ
)
(X) · ∇X

]
in Lp,

and

E
[∇ tXm · ϕn(Xm)

] → E
[∇ tX · ϕ(X)

]
in Lp.

Combining the above calculations, we obtain (7.5). �
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Below we fix

p > d and q > (2p)/(p − d),

and for given ϕ ∈ Lp(Rd;Rd), define

T(b)t (x) := ut(x) := PE
[∇ tXt,0 · ϕ(Xt,0)

]
(x).

LEMMA 7.3. For any given ϕ ∈ Lp(Rd), there exist a constant C0 =
C0(d,p, q, ν) > 0 and a time T0 = T0(C0,‖ϕ‖p) < 0 such that if ‖b‖L∞

p (T0,0) ≤
2C0‖ϕ‖p and divb = 0, then∥∥T(b)t

∥∥
p ≤ 2C0‖ϕ‖p, t ∈ [T0,0].

PROOF. Let ‖ · ‖L
p
x,ω

be the norm in Lp(Rd × �;dx × P). By definition and
(7.2), we have∥∥T(b)t

∥∥
p ≤ Cd,p

∥∥E[∇ tXt,0 · ϕ(Xt,0)
]∥∥

p

≤ Cd,pess. sup
x∈Rd

∥∥∇ tXt,0(x)
∥∥
L2

ω

∥∥ϕ(Xt,0)
∥∥
L

p
x,ω

= Cd,pess. sup
x∈Rd

∥∥∇ tXt,0(x)
∥∥
L2

ω
‖ϕ‖L

p
x

≤ C
(
d, q,p, ν,‖b‖

L
q
p(t,0)

)‖ϕ‖p,

where the first inequality is due to the boundedness of P in Lp , and the last in-
equality is due to (B) of Theorem 1.1. Since the constant C is increasing with
respect to ‖b‖

L
q
p(t,0) and goes to some C0 = C0(d,p, q, ν) as ‖b‖

L
q
p(t,0) → 0, and

also noticing that

‖b‖
L

q
p(t,0) ≤ ‖b‖L∞

p (t,0)|t |1/q ≤ 2C0|t |1/q‖ϕ‖p,

one can choose T0 < 0 close to zero so that

C
(
d, q,p, ν,2C0|T0|1/q‖ϕ‖p

) ≤ 2C0.

The proof is complete. �

LEMMA 7.4. For given ϕ ∈ W
1
p(Rd;Rd), let C0 and T0 be as in Lemma 7.3

and U := 2C0‖ϕ‖W1
p
, there exists a time T1 = T1(d, ν,p, q,U) ∈ [T0,0) such that

for all b, b′ ∈ L
∞
p (T1,0) with

‖b‖L∞
p (T1,0),

∥∥b′∥∥
L∞

p (T1,0) ≤ U, divb = divb′ = 0,

it holds that for all t ∈ [T1,0],∥∥T(b)t −T
(
b′)

t

∥∥
p ≤ 1

2

∥∥b − b′∥∥
L∞

p (T1,0).
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PROOF. Let Xb
t,0 be the solution of SDE (7.1) with drift b. By definition, we

have ∥∥T(b)t −T
(
b′)

t

∥∥
p ≤ ∥∥PE

(∇ tXb
t,0 · ϕ(

Xb
t,0

)) − PE
(∇ tXb′

t,0 · ϕ(
Xb′

t,0
))∥∥

p

≤ ∥∥PE
(∇ tXb′

t,0 · (
ϕ

(
Xb

t,0
) − ϕ

(
Xb′

t,0
)))∥∥

p

+ ∥∥PE
(∇ t(Xb

t,0 − Xb′
t,0

) · ϕ(
Xb

t,0
))∥∥

p =: I1 + I2.

For I1, by the boundedness of P in Lp and Hölder’s inequality, we have

I1 ≤ C
∥∥E(∇ tXb′

t,0 · (
ϕ

(
Xb

t,0
) − ϕ

(
Xb′

t,0
)))∥∥

p
(7.6)

≤ C
∥∥∥∥∇ tXb′

t,0

∥∥
L

p1
ω

· ∥∥ϕ(
Xb

t,0
) − ϕ

(
Xb′

t,0
)∥∥

L
p2
ω

∥∥
p,

where 1
p1

+ 1
p2

= 1 with p2 ∈ (1,
2p

p+2). By (2.2) and (E) of Theorem 1.1, we have

E
∣∣ϕ(

Xb
t,0

) − ϕ
(
Xb′

t,0
)∣∣p2

≤ CE
((
M|∇ϕ|(Xb

t,0
) +M|∇ϕ|(Xb′

t,0
))p2

∣∣Xb
t,0 − Xb′

t,0

∣∣p2
)

≤ C
(
E

(
M|∇ϕ|(Xb

t,0
)

+M|∇ϕ|(Xb′
t,0

))2p2/(2−p2)
)1−p2/2(

E
∣∣Xb

t,0 − Xb′
t,0

∣∣2)p2/2

≤ C
(
E

(
M|∇ϕ|(Xb

t,0
) +M|∇ϕ|(Xb′

t,0
))2p2/(2−p2)

)1−p2/2∥∥b − b′∥∥p2

L
q
p(t,0)

.

Substituting this into (7.6), and by (B) of Theorem 1.1 and (7.2), we obtain

I1 ≤ C

(∫
Rd

E
(
M|∇ϕ|(Xb

t,0
) +M|∇ϕ|(Xb′

t,0
))p dx

)1/p∥∥b − b′∥∥
L

q
p(t,0)

≤ C
∥∥M|∇ϕ|∥∥p

∥∥b − b′∥∥
L

q
p(t,0)(7.7)

≤ C‖∇ϕ‖p|t |1/q
∥∥b − b′∥∥

L∞
p (t,0).

As for I2, letting p′ = 2p
p−2 , by (7.4), Hölder’s inequality, (7.2) and (1.4), we have

I2 = ∥∥PE
(∇ tXb

t,0 · ∇ tϕ
(
Xb

t,0
) · (

Xb
t,0 − Xb′

t,0
))∥∥

p

≤ C
∥∥∥∥Xb

t,0 − Xb′
t,0

∥∥
L2

ω
· ∥∥∇ϕ

(
Xb

t,0
)∥∥

L
p
ω

· ∥∥∇Xb
t,0

∥∥
L

p′
ω

∥∥
p

≤ C
∥∥b − b′∥∥

L
q
p(t,0)

∥∥∇ϕ
(
Xb

t,0
)∥∥

Lp(Rd×�) · ∥∥∇Xb
t,0

∥∥
L∞

x L
p′
ω

≤ C‖∇ϕ‖p|t |1/q
∥∥b − b′∥∥

L∞
p (t,0),

which, together with (7.7), and letting T1 ∈ [T0,0) be small enough, yields the
desired estimate. �
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We are now in a position to give the following.

PROOF OF THEOREM 1.4. By Lemmas 7.3 and 7.4, the nonlinear operator
T is a contraction operator in the ball of L∞

p (T1,0) with radius U = 2C0‖ϕ‖W1
p
.

Therefore, by Banach’s fixed-point theorem, there is a unique point u ∈ L
∞
p (T1,0)

such that for each t ∈ [T1,0],
T(u)t = ut .

On the other hand, by (7.5), Hölder’s inequality and (1.4), (7.2), we also have∥∥∇T(u)t
∥∥
p ≤ C

∥∥E[|∇Xt,0|2 · ∣∣∇ tϕ − ∇ϕ
∣∣(Xt,0)

]∥∥
p < +∞.

The proof is complete. �
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