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SECOND-ORDER MARKOV RANDOM FIELDS FOR
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Recently, there has been significant interest in understanding the prop-
erties of Markov random fields (M.r.f.) defined on the independent sets of
sparse graphs. When these M.r.f. are restricted to pairwise interactions (i.e.,
hardcore model), much progress has been made. However, considerably less
is known in the presence of higher-order interactions, which arise, for exam-
ple, in the analysis of independent sets with special properties and the study
of resource-constrained communication networks. In this paper, we further
our understanding of such models by analyzing M.r.f. with second-order in-
teractions on the independent sets of the infinite Cayley tree. We prove that
the associated Gibbsian specification satisfies the celebrated FKG inequality
whenever the local potentials defining the Hamiltonian satisfy a log-convexity
condition. Under this condition, we give necessary and sufficient conditions
for the existence of a unique infinite-volume Gibbs measure in terms of an
explicit system of equations, prove the existence of a phase transition and
give explicit bounds on the associated critical activity, which we prove to
exhibit a certain robustness. For potentials which are small perturbations of
those coinciding to the hardcore model at the critical activity, we character-
ize whether the resulting specification has a unique infinite-volume Gibbs
measure in terms of whether these perturbations satisfy an explicit linear in-
equality. Our analysis reveals an interesting nonmonotonicity with regards to
biasing toward excluded nodes with no included neighbors.

1. Introduction. Recently, there has been a significant interest in combin-
ing ideas from probability, computer science, physics, statistics and operations re-
search, to shed light on the structure and complexity of combinatorial optimization,
counting and sampling problems (cf. [1, 10, 23]). Some of the most well-studied
such problems involve the independent sets of a graph. Consider an undirected
graph G, which consists of a set of nodes V and edges E, where each edge e ∈ E

is of the form (vi, vj ) for some vi, vj ∈ V . Then the independent sets of G, I(G),
are defined to be the subsets S of V with no internal edges,that is, a set S ⊆ V is an
independent set iff for all pairs of nodes vi, vj ∈ S, (vi, vj ) /∈ E. There are a wealth
of results about the complexity and (in)approximability of counting, sampling and
optimizing independent sets under various restrictions. We make no attempt to
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survey that literature here, instead focusing only on the results most relevant to
our own investigations, and refer the interested reader to [36] and the references
therein for a recent overview.

1.1. Infinite-volume Gibbs measures on the Cayley tree and the uniqueness
regime. As our main results will be stated in terms of measures on the �-regular
infinite Cayley tree T∞, we begin by briefly reviewing several concepts needed to
formally describe such measures, following the exposition given in [13]. We as-
sume the nodes of T∞ are indexed by the nonnegative integers Z+, and the tree
is rooted at node 0. With a slight abuse of notation, we also let T∞ denote the
corresponding indexed set of nodes. In the spin systems considered in this paper,
each node i ∈ T∞ is assigned a spin from the set {0,1}. Let � denote the collec-
tion of all {0,1} spin assignments to the nodes of T∞. For ω ∈ � and S ⊆ T∞, let
ωS denote the restriction of ω to the nodes of S, and �S denote the collection of
all {0,1} spin assignments to the nodes of S. For an event A, let I (A) denote the

corresponding indicator. For S ⊆ T∞ and ω ∈ �S , let |ω| �= ∑
i∈S ω{i}. Also, for a

general set S, let |S| denote the cardinality of S.
For every S ⊆ T∞, we define a potential �S : �S → R, mapping the spins of

S to R, where we use R to denote the positively extended real numbers, that is,
including ∞. For all models considered, there will exist a finite radius R such
that �S = 0 (i.e., is identically zero) for all S which contain any two nodes i, j at
graph-theoretic distance strictly greater than R in T∞. Let � denote the collection
of all potentials, that is, {�S,S ⊆ T∞}. As a notational convention, let us evaluate
all empty summations to zero, and all empty products to unity. For i, j ∈ T∞, let
d(i, j) denote the graph-theoretic distance between i and j in T∞. For S ⊆ T∞
and i ∈ T∞, let d(i, S)

�= infj∈S d(i, j), and ∂S
�= ⋃

j∈T∞:d(j,S)≤2R{j} \ S, that is,
∂S denotes the depth-2R boundary surrounding S. For d ≥ 1, let Td denote the set
of nodes with graph-theoretic distance at most d from 0 in T∞. For two disjoint
subsets S1, S2 ⊆ T∞, and configurations ω1 ∈ �S1,ω

2 ∈ �S2 , let ω1 · ω2 denote
the composition spin assignment which agrees with ω1 on S1 and ω2 on S2.

For every � ⊆ T∞, we define the Hamiltonian H�
� : ��∪∂� → R as∑

S⊆T∞:S∩�
=∅ �S(ωS). A so-called infinite-volume Gibbs measure μ consistent
with � is a probability measure μ on � (associated with an appropriate probabil-
ity space and filtration F , see [13] for details), which satisfies certain consistency
requirements associated with conditioning on a boundary. In particular, for finite
S ⊆ � ⊆ T∞, ω ∈ �S , and η ∈ �∂�, let

P�,�(S = ω|η)
�=

∑
ν∈��:νS=ω exp(−H�

�(ν · η))∑
ν∈��

exp(−H�
�(ν · η))

,(1)

whenever this ratio is well-defined. For an event A on an appropriate filtration as-
sociated with the subset S, we analogously define P�,�(A|η) = ∑

ω∈A P�,�(S =
ω|η). For S ⊆ T∞ and ω ∈ �S , we let {S = ω} be the event that the nodes of S



2628 D. A. GOLDBERG

receive the spin-configuration dictated by ω. Then the aforementioned consistency
requires that for any finite S ⊆ � ⊆ T∞ and ω ∈ �S ,

μ(S = ω) = ∑
η∈∂�

P�,�(S = ω|η) × μ(∂� = η).(2)

Any measure μ satisfying (2), as well as certain other technical conditions (the
details of which we omit, instead referring the reader to [13]), is said to be an
infinite-volume Gibbs measure consistent with �, and we let G(�) denote the
collection of all such measures. As a notational convenience, we denote P�,Td

(S =
ω|η) by P�(S = ω|η), where d is to be inferred from context (e.g., η belonging to
�∂Td

).
It is well known that under minimal technical conditions G(�) is a nonempty

convex set, where we denote the corresponding set of extreme measures as Ĝ(�).
If |Ĝ(�)| = 1, we say that � belongs to the uniqueness regime, that is, admits
a unique infinite-volume Gibbs measure. Furthermore, every such extremal mea-
sure can be constructed as a so-called thermodynamic limit of appropriately con-
ditioned finite spin systems, in the following sense. To each μ ∈ Ĝ(�), we can
associate ωμ ∈ � such that for any finite S ⊆ T∞ and ω ∈ �S ,

μ(S = ω) = lim
d→∞P�

(
S = ω|ωμ

∂Td

)
.(3)

In light of (3), nonuniqueness can also be interpreted as nonvanishing dependence
on distant boundary conditions.

1.2. Hardcore model on T∞. The hardcore model on T∞ coincides with the
following collection of potentials �. For some fixed activity λ > 0: �{i}(ω) =
− log(λ)I (ω{i} = 1) for all i ∈ T∞, �{i,j}(ω) = ∞I (|ω{i,j}| = 2) for all pairs of
nodes (i, j) which are adjacent in T∞ and �S is identically zero for all other
S ⊆ T∞. Under local conditioning, this measure puts all probability on spin assign-
ments corresponding to independent sets, assigning an independent set S probabil-
ity proportional to λ|S|. When λ = 1, computing the relevant normalizing constant
(i.e., partition function) is equivalent to counting the number of independent sets
(a #P -Complete problem in general graphs [45]); as λ → ∞, all the probability
mass gets put on the largest independent sets, and computing the partition func-
tion is analogous to finding the cardinality of the maximum independent set (an
NP-Complete problem in general graphs [15]). Such models have a rich history
in the physics literature. Models on the infinite lattice were studied early on by
several authors (cf. [11, 32, 38]). This work was extended to the three-regular infi-
nite Cayley tree by Runnels in [31], and the general �-regular infinite Cayley tree
in [39].
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1.2.1. Phase transition and nonuniqueness. Motivated by the behavior of
large particle systems, several of the original investigations of the hardcore model
focused on identifying which sets of potentials (here parametrized by λ) belonged
to the uniqueness regime. In particular, for each � ≥ 3, there exists a critical ac-

tivity λ�
�= (�− 1)�−1(�− 2)−� such that the hardcore model on the infinite �-

regular Cayley tree admits a unique infinite-volume Gibbs measure iff λ ∈ (0, λ�]
(cf. [18]). More recently, it has been shown that this same phase transition also
corresponds to the point at which certain Markov chains for sampling from the
independent sets of a graph of maximum degree � switch from mixing in poly-
nomial time to mixing in exponential time (cf. [24]). Furthermore, it was shown
in [45] that for all λ ≤ λ�, the problem of computing

∑
S∈I(G) λ

|S| admits a Fully
Polynomial Time Approximation Scheme (FPTAS) for all graphs of maximum de-
gree �. Combined with the results of [36] (and the references therein), which show
that no such FPTAS exists for λ > λ� unless certain complexity classes collapse,
this shows that the aforementioned phase transition has deep connections to com-
putational complexity. This phase transition also has implications for various other
applications, for example, the design of communication networks (cf. [18]).

1.3. Higher-order M.r.f. for independent sets. Many applications modeled by
Gibbs measures defined on the independent sets of graphs involve more compli-
cated dependencies and constraints on the independent sets themselves. This in-
cludes several models in physics, for example, models with next-nearest neighbor
and/or competing interactions (cf. [42]), kinetically constrained spin models (cf.
[20]), and geometrically constrained spin models (cf. [6]), and we refer the in-
terested reader to the recent survey of [29] for many more such examples. Such
measures also arise in combinatorial optimization, for example, through the study
of subfamilies of independent sets such as those in which every excluded node is
adjacent to some minimal number of included nodes (cf. [9, 10]). Closely related
models have also arisen in the analysis of resource-constrained communication
networks (cf. [17, 22, 28]). In such networking applications, two central questions
are:

• What is the distribution of the number of included neighbors of an excluded
node? (cf. [2, 5, 19]).

• Does the system exhibit long-range boundary independence? (cf. [18, 28]).

Combining the above, we are led to the following question.

QUESTION 1. When sampling from the independent sets of the infinite Cayley
tree, which distributions can be attained for the number of included neighbors of
any given excluded node, while staying in the uniqueness regime?

A good starting place is the hardcore model, for which the following result is
well known. Let B(n,p) denote a standard binomial distribution with parameters
n and p.



2630 D. A. GOLDBERG

OBSERVATION 1. [37] For the hardcore model on the infinite Cayley tree in
the uniqueness regime, every excluded node has a number of included neighbors
which follows a binomial distribution. Exactly which binomial distributions can be
achieved in this way is dictated by the phase-transition at λ�. In particular, it is
possible to induce a B(�,p) distribution on the number of included neighbors of
each excluded node for any p ∈ (0, (� − 1)−1] in the uniqueness regime, and this
characterization is tight.

A natural framework for studying distributions on the independent sets of a
graph with more complicated dependencies, reflected in many of the applications
discussed above, is that of so-called higher-order M.r.f. (cf. [40]), equivalently
spin systems in which the potentials �S defining the Hamiltonian are nonzero for
more complicated subsets of T∞ (i.e., not just individual nodes and edges, which
correspond to first-order M.r.f.). We note that such systems can also be analyzed
as so-called factor (i.e., graphical) models with long-range interactions, and refer
the reader to the excellent survey [44] for an overview.

1.3.1. Second-order M.r.f. for independent sets. In this paper, we will consider
so-called second-order M.r.f. for independent sets (cf. [40]), in which potentials
are defined on depth-1 neighborhoods, that is, R = 1 (which should be assumed
throughout). Here, we also assume that the potentials are translation and rotation-
invariant. In particular, for i ∈ T∞, let N(i) denote the set of neighbors of i in T∞,

as well as i itself, and N1(i)
�= N(i) \ {i}. We will consider sets of potentials �

such that for some activity λ > 0 and strictly positive (� + 1)-dimensional vector
θ = (θ0, . . . , θ�), and every i ∈ T∞,

�N(i)(ω) =
⎧⎪⎨
⎪⎩

− log(λ), if ω{i} = 1, |ωN(i)| = 1;

− log(θk), if ω{i} = 0, |ωN(i)| = k;

∞, otherwise;

(4)

while �S is identically zero for all other S ⊆ T∞. Thus, in addition to the hardcore
constraints and activity parameter λ, we assign a different potential − log(θk) for
each excluded node which is adjacent to exactly k included nodes. To express the
dependence on λ and θ , we denote the corresponding set of potentials � by the
vector (λ, θ). For a given vector θ , let us say that θ exhibits a phase transition if
there exist strictly positive finite λ1 < λ2 such that (λ1, θ) belongs to the unique-
ness regime, while (λ2, θ) does not belong to the uniqueness regime. For θ ex-

hibiting a phase transition, let us define the critical activity λθ
�= inf{λ > 0 : (λ, θ)

does not belong to the uniqueness regime}. We note that several of the examples
mentioned earlier involving independent sets with more complicated dependency
structure may be put in the framework of such second-order M.r.f.
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The hardcore model may be viewed as a special case of our model, in which
θk = 1 for all k. More generally, it follows from a straightforward reduction that
the case θk = θ0γ

k (for some parameters θ0, γ > 0) also reduces to the hard-
core model, albeit with activity λθ−1

0 γ �. Recall that a strictly positive sequence
{xi, i = 0, . . . , n} is called log-convex if xi+1

xi
≥ xi

xi−1
for all i ∈ {1, . . . , n − 1}. If

θ is log-convex, it is natural to define vectors θ , θ such that θk = θ0(
θ1
θ0

)k, θk =
θ0(

θ�
θ�−1

)k , where log-convexity ensures that θk ≤ θk ≤ θk for all k ∈ {0, . . . ,�},
and

θk+1
θk

≤ θk+1
θk

≤ θk+1
θk

for all k ∈ {0, . . . ,� − 1}. Note that θ (θ ) corresponds to
the vector in which all ratios between consecutive entries are lowered (raised) to
the lowest (highest) such ratio manifesting in θ . By the aforementioned reduction
to the hardcore model, λθ = λ�θ0(

θ0
θ1

)�; while λθ = λ�θ0(
θ�−1
θ�

)�, where we note
that log-convexity ensures λθ ≤ λθ .

1.4. FKG inequality. A powerful tool for analyzing whether a given set of
potentials belongs to the uniqueness regime are the so-called correlation inequal-
ities, including the celebrated FKG theorem (cf. [12, 26]). Roughly, the FKG
theorem proves that if a probability measure satisfies a certain supermodularity
condition known as the FKG inequality, then that measure enjoys certain mono-
tonicity properties. Although the FKG theorem holds in considerable generality,
we will only state the inequality and its implications as customized to the spe-
cific models considered in this paper, following the exposition given in [16] for
a different generalization of the hardcore model. Let us define a partial order ≤̃
on � (and appropriate restrictions) as follows. Let T e∞ denote the subset of T∞
consisting of the root 0, and all nodes whose graph-theoretic distance from 0 is

even, and T o∞
�= T∞ \ T e∞. For S ⊆ T∞ and ω1,ω2 ∈ �S , let us say that ω1≤̃ω2 if

ω1{i} ≤ ω2{i} for all i ∈ S ∩ T e∞, and ω1{i} ≥ ω2{i} for all i ∈ S ∩ T o∞. For S ⊆ T∞
and ω1,ω2 ∈ �S , let ω1 ∧ ω2 ∈ �S denote the following spin configuration.
ω1 ∧ ω2{i} = min(ω1{i},ω2{i}) for i ∈ S ∩ T e∞; and ω1 ∧ ω2{i} = max(ω1{i},ω2{i}) for

i ∈ S ∩ T o∞. Similarly, let ω1 ∨ ω2 ∈ �S denote the following spin configuration.
ω1 ∨ ω2{i} = max(ω1{i},ω2{i}) for i ∈ S ∩ T e∞; and ω1 ∨ ω2{i} = min(ω1{i},ω2{i}) for

i ∈ S ∩ T o∞. Note that ω1 ∧ ω2≤̃ω1,ω2≤̃ω1 ∨ ω2. Let �̃ denote the subset of �

consistent with the hardcore constraints, that is, ω ∈ �̃ if |ω{i,j}| ≤ 1 whenever
d(i, j) = 1, and define all projective notations (e.g., �̃S ) in analogy with those for
�. For an event A belonging to an appropriate filtration, let us say that A is in-
creasing if ω1 ∈ A,ω1≤̃ω2 implies ω2 ∈ A. For example, if S is a finite subset of
T e∞, then {|ωS | = |S|}, that is, the event that all spins in S are 1, is increasing. In
that case, the conditions of the FKG inequality are as follows.

DEFINITION 1 ([12, 16] FKG inequality). The family of potentials � satisfies
the FKG inequality on T∞ under partial order ≤̃ if for all d ≥ 0, ω1,ω2 ∈ �Td

, and
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η ∈ �̃∂Td
,

P�
(
Td = ω1 ∧ ω2|η) × P�

(
Td = ω1 ∨ ω2|η)

(5)
≥ P�

(
Td = ω1|η) × P�

(
Td = ω2|η)

.

Then the celebrated FKG theorem is as follows.

THEOREM 1 ([12] FKG theorem). If � satisfies the FKG inequality on T∞
under partial order ≤̃, then for any d ≥ 0, η ∈ �̃∂Td

, and increasing events A,B

belonging to the appropriate filtration,

P�
(
A ∩ B|η) ≥ P�(A|η) × P�(B|η).

It is well known that this monotonicity can be leveraged to reduce the question
of uniqueness to the analysis of two special Gibbs measures (cf. [16, 27]). In par-
ticular, let ω+ ∈ � denote the spin configuration with ω+

{i} = 1 for all i ∈ T e∞, and

ω+
{i} = 0 for all i ∈ T o∞; and ω− ∈ � denote the spin configuration with ω−

{i} = 0 for

all i ∈ T e∞, and ω−
{i} = 1 for all i ∈ T o∞. Then the following well-known implica-

tions of the FKG inequality hold for the family of potentials (λ, θ), whenever those
potentials indeed satisfy the FKG inequality. Many of these implications hold in
considerably greater generality, and we refer the interested reader to [27] for a
comprehensive discussion.

THEOREM 2 ([13, 16, 27] Further implications of the FKG inequality). If the
family of potentials (λ, θ) satisfies the FKG inequality on T∞ under partial order
≤̃, then all of the following implications hold:

• There is a unique (up to sets of measure 0) infinite-volume Gibbs measure μ+
λ,θ

such that for every finite S ⊆ T∞ and ω ∈ �S ,

μ+
λ,θ (S = ω) = lim

d→∞Pλ,θ

(
S = ω|ω+

∂Td

)
,

and a unique (up to sets of measure 0) infinite-volume Gibbs measure μ−
λ,θ such

that for every finite S ⊆ T∞ and ω ∈ �S ,

μ−
λ,θ (S = ω) = lim

d→∞Pλ,θ

(
S = ω|ω−

∂Td

);
where all relevant limits appearing in the above definitions exist, and both of
these measures are extremal, that is, belong to Ĝ(λ, θ).

• For every increasing event A on an appropriate filtration and μ ∈ G(λ, θ),

μ−
λ,θ (A) ≤ μ(A) ≤ μ+

λ,θ (A).

• |G(λ, θ)| = 1 iff μ+
λ,θ (ω{0} = 1) = μ−

λ,θ (ω{0} = 1). Furthermore, if |G(λ, θ)| =
1, then the unique such infinite-volume Gibbs measure is translation and
rotation-invariant.
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If (λ, θ) belongs to the uniqueness regime, we denote the corresponding unique

infinite-volume Gibbs measure on T∞ by μ∗
λ,θ . Also, we let p

λ,θ
+

�= μ∗
λ,θ (ω{0} =

1), p
λ,θ
k

�= μ∗
λ,θ (ω{0} = 0, |ωN(0)| = k), and pλ,θ the corresponding vector. Also,

we let p̂
λ,θ
k

�= p
λ,θ
k (1 − p

λ,θ
+ )−1 denote the associated conditional distribution for

the number of occupied neighbors of an unoccupied node, and p̂λ,θ the correspond-
ing vector.

1.5. Our contribution. In this paper, we take a step toward answering Ques-
tion 1, by analyzing M.r.f. with second-order interactions on the independent sets
of the infinite Cayley tree. We prove that the associated Gibbsian specification sat-
isfies the FKG inequality whenever the local potentials defining the Hamiltonian
satisfy a certain log-convexity condition. Under this condition, we give necessary
and sufficient conditions for the existence of a unique infinite-volume Gibbs mea-
sure in terms of an explicit system of equations, prove the existence of a phase tran-
sition and give explicit lower and upper bounds on the associated critical activity,
denoted λθ and λθ , respectively, which we prove to exhibit a certain robustness. In-
terestingly, we find that λθ exhibits a dependence on (

θ�−1
θ�

)�, like λθ ; while λθ ex-

hibits a dependence on (
θ0
θ1

)�, like λθ . For potentials which are small perturbations
of those coinciding to the hardcore model at its critical activity λ�, we perform
a perturbative analysis of the system of equations arising from our necessary and
sufficient conditions for uniqueness, allowing us to explicitly characterize whether
the resulting specification has a unique infinite-volume Gibbs measure in terms
of whether these perturbations satisfy an explicit linear inequality. Our analysis
reveals an interesting nonmonotonicity with regards to biasing toward excluded
nodes with no included neighbors, which implies that the uniqueness regime for
our model is incomparable to that suggested by λθ and λθ .

1.6. Outline of paper. The rest of the paper proceeds as follows. In Section 2,
we make several additional definitions and state our main results. In Section 3,
we prove that when θ is log-convex, (λ, θ) satisfies the FKG inequality for all
λ > 0. In Section 4, we rephrase the relevant probabilities and questions of in-
terest in terms of sequences of ratios of partition functions, whose even and odd
subsequences we prove to converge, and satisfy a certain system of equations. By
proving that the functions arising in this system of equations satisfy certain bounds
and monotonicities, we derive our necessary and sufficient conditions for unique-
ness. In Section 5, we prove the existence of a phase transition, and provide explicit
bounds on the critical activity. In Section 6, we perform a perturbative analysis of
the system of equations arising from our necessary and sufficient conditions for
uniqueness, allowing us to explicitly characterize whether the resulting specifica-
tion has a unique infinite-volume Gibbs measure in terms of whether these pertur-
bations satisfy an explicit linear inequality. In Section 7, we summarize our main
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results, provide a broader discussion of the potential use of higher-order M.r.f. for
analyzing independent sets in graphs and present directions for future research.

2. Main results.

2.1. Potentials, probabilities and reverse ultra log-concave measures. Before
stating our main results, we formally relate the family of potentials (λ, θ) to the
resulting occupancy probabilities p

λ,θ
+ , p̂λ,θ in the uniqueness regime, and review

the definition of reverse ultra log-concave measures.

OBSERVATION 2. If (λ, θ) belongs to the uniqueness regime, then the associ-
ated occupancy probabilities may be characterized as follows. There exist c, x ∈
R

+ (depending only on λ and θ ) such that p̂
λ,θ
k = cθk

(�
k

)
xk for k ∈ {0, . . . ,�}.

For certain natural choices of θ , p̂λ,θ corresponds exactly to a well-known fam-
ily of distributions. If θ = 1, then p̂λ,θ corresponds to a binomial distribution. If
θk = 1

k!(�
k )

for k ∈ {0, . . . ,�}, then p̂λ,θ corresponds to a truncated Poisson dis-

tribution. If θk = 1
(�

k )
for k ∈ {0, . . . ,�}, then p̂λ,θ corresponds to a truncated

geometric distribution.

Recall that a strictly positive sequence {xi, i = 0, . . . , n} is called log-convex if
xi+1
xi

≥ xi

xi−1
for all i ∈ {1, . . . , n − 1}, reverse ultra log-concave if the sequence

{ xi

(�
i )

, i = 0, . . . , n} is log-convex, and convex if for all i ∈ {1, . . . , n − 1}, ei-

ther xi+1 − xi > xi − xi−1 or xi+1 = xi = xi−1. We note that our definition of
convex does not require nonnegativity, and is slightly nonstandard to preclude
degeneracies when the relevant inequalities are not strict. We say that a mea-
sure μ with support on {0, . . . ,�} is reverse ultra log-concave if the sequence
{μ(k), k = 0, . . . ,�} is strictly positive and reverse ultra log-concave. Then the
following may be easily verified using Observation 2, and we refer the interested
reader to [7] for details and further references regarding reverse ultra log-concave
measures.

OBSERVATION 3. If θ is log-convex and (λ, θ) belongs to the uniqueness
regime, then p̂λ,θ is reverse ultra log-concave. Furthermore, the binomial, trun-
cated Poisson and truncated geometric distributions considered in Observation 2
are all reverse ultra log-concave, with the corresponding choices of θ log-convex.

2.2. Main results. We now state our main results, and begin by formalizing the
connection between log-convexity of the local potentials and the FKG inequality.

THEOREM 3 (Log-convexity of potentials implies the FKG inequality). If θ
is log-convex, then for all λ > 0, (λ, θ) satisfies the FKG inequality on T∞ under
partial order ≤̃.
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For a given vector θ , let

fθ (x)
�=

∑�−1
k=0 θk+1

(�−1
k

)
xk∑�−1

k=0 θk

(�−1
k

)
xk

,

and

gθ (x)
�= 1∑�−1

k=0 θk

(�−1
k

)
xk

.

Using Theorem 3, the implications of the FKG inequality dictated by Theorem 2,
and a recursive analysis of certain relevant partition functions, we prove the fol-
lowing necessary and sufficient conditions for uniqueness.

THEOREM 4 (Necessary and sufficient conditions for uniqueness). If θ is log-
convex, the system of equations

x = λgθ (y)f �−1
θ (x);(6)

y = λgθ (x)f �−1
θ (y);(7)

always has at least one nonnegative solution on R
+ × R

+. (λ, θ) belongs to the
uniqueness regime iff this solution is unique.

Note that Theorem 4 reduces to the well-known characterization for uniqueness
in the hardcore model whenever θk = θ0γ

k for some θ0, γ > 0, as in this special
case fθ = γ .

We now prove the existence of a phase transition for every log-convex θ , and
provide explicit bounds on the associated critical activity. For log-convex θ , let

ψθ
�= max

k=0,...,�−2

((
� − (k + 1)

)θk+1

θk

)
,

λθ
�=

(
2ψθθ

−1
0

(
θ�

θ�−1

)�−2(
θ�

θ�−1
+ (� − 1)

(
θ�

θ�−1
− θ1

θ0

)))−1

≥ λ
θ

�= θ0

2�2

(
θ�−1

θ�

)�

;

and

λθ
�= 3θ0

�
exp

(
3

θ�

θ�−1

θ0

θ1

)(
θ0

θ1

)�

.

THEOREM 5 (Bounds on the critical activity). For any log-convex θ , (λ, θ)

belongs to the uniqueness regime for all λ < λθ , and does not does not belong to
the uniqueness regime for all λ > λθ .
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To gain further insight into λθ and λθ , we briefly discuss the special case in
which θk = θ0γ

k for some θ0, γ > 0. In this case, θ = θ = θ , and λθ = λ�θ0γ
−�,

which (with θ0, γ held fixed) scales like θ0
e
�

γ −� as � → ∞. Furthermore, it may

be easily verified that in this case, λθ = θ0
2(�−1)

γ −�, λθ = 3e3θ0
�

γ −�. In particular,
as � → ∞, both our lower and upper bound scale (up to constant factors inde-
pendent of θ0,�,γ ) like θ0

�
γ −�, agreeing with the true asymptotic scaling of the

critical activity. When � is large but θ does not have this simple factorized form,
we find that λθ exhibits a dependence on (

θ�−1
θ�

)�, like λθ ; while λθ exhibits a de-

pendence on (
θ0
θ1

)�, like λθ . As log-convexity dictates that θ�−1
θ�

≤ θ0
θ1

, this leads to
a potentially exponentially large gap between our lower and upper bounds as one
moves away from the special case in which θk = θ0γ

k . Determining whether the
associated phase transition is sharp, and more generally closing the gap between
our lower and upper bounds, remain interesting open questions. We also note that
similar ideas (albeit connecting log-concavity of local potentials to certain nega-
tive association properties of the resulting Gibbs measure) were recently used in
[33] to prove the nonexistence of a phase transition for so-called b-matchings on
infinite graphs, and exploring further connections between our results and those of
[33] remains a direction for future research.

We now comment briefly on several implications of Theorem 5, all of which
follow from straightforward algebraic manipulations of λθ , λθ and simple Taylor
series expansions. We first show that our lower and upper bounds, and by implica-
tion the associated critical activity, exhibit a certain form of robustness.

OBSERVATION 4 (Robustness of bounds). If there exists c ∈ [0,�] such that
max( θ�

θ�−1
,

θ0
θ1

) ≤ 1 + c
�

, then λθ ≥ (2 exp(c)(1 + 4c))−1 θ0
�

, and λθ ≤ 3 exp(12 +
c)

θ0
�

. It follows that, up to constant factors independent of �, the critical activity

will scale like θ0
�

(as � → ∞) for any vector θ which does not deviate too much
from the all ones vector.

We next use our results to bound the critical activity for θ corresponding to the
truncated Poisson distribution.

OBSERVATION 5. For θ such that θk = 1
k!(�

k )
, one has that λθ ≥ 1

2�−1. In

particular, the critical activity is at least 1
2�−1, as in the hardcore model.

An explicit description of when equations (6)–(7) have a unique nonnega-
tive solution, and which inclusion/exclusion probabilities can be attained in this
way, seems difficult in general. However, we can develop a considerably more
in-depth understanding when the relevant potentials are small perturbations of
those coinciding to the hardcore model at the critical activity. Let us fix a vec-
tor c = (c0, . . . , c�). It follows from a simple Taylor series expansion that convex
perturbations of the all ones vector yield log-convex θ , as formalized below.
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OBSERVATION 6. For every vector c, there exists εc > 0 such that for h ∈
(0, εc), 1 + ch is log-convex iff c is convex.

We now define a convenient notion of uniqueness for perturbations around the
all ones vector, which we will use in our analysis.

DEFINITION 2 [Direction of (non)uniqueness]. We say that c is a direction of
uniqueness iff there exists εc > 0 such that for all h ∈ (0, εc), (λ�,1 + ch) belongs
to the uniqueness regime; and a direction of nonuniqueness iff there exists εc > 0
such that for all h ∈ (0, εc), (λ�,1+ch) does not belong to the uniqueness regime.

We now provide an explicit characterization/dichotomy theorem, classify-
ing (almost) all convex vectors as either directions of uniqueness or direc-

tions of nonuniqueness. For j ∈ {0, . . . ,�}, let ��,j
�= (�

j

)
(� − 2)−j . Let π =

(π0, . . . , π�) denote the vector such that for j ∈ {0, . . . ,�},
πj

�= ��,j

(
(� − 2) + (6 − 5�)j + 2(� − 1)j2)

.

Then we prove the following.

THEOREM 6 (Perturbative necessary and sufficient conditions for uniqueness).
A convex vector c is a direction of uniqueness if π · c < 0, and a direction of
nonuniqueness if π · c > 0.

In particular, the hyperplane defined by π · c = 0 represents a phase transition
in the perturbation parameter space. We note that the question of what happens at
the boundary (i.e., π · c = 0) seems to require a finer asymptotic analysis, and we
leave this as an open question.

We now study some qualitative features of π , to shed light on the set of convex
directions of uniqueness, and reveal an interesting nonmonotonicity of the unique-
ness regime.

OBSERVATION 7. For all � ≥ 3, π0 > 0,π1 < 0,π2 < 0, and πk > 0 for all
k ∈ {3, . . . ,�}.

That π1 < 0,π2 < 0, and πk > 0 for all k ∈ {3, . . . ,�} makes sense at an intu-
itive level, since biasing toward excluded nodes which are adjacent to few (many)
included nodes should tend to reduce (increase) alternation and long-range corre-
lations. That the cutoff occurs at exactly k = 2 can be further justified by noting
that the average number of included neighbors of an excluded node in the hardcore
model, at the critical activity λ�, is 1 + (� − 1)−1 ∈ (1,2).
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The counterintuitive feature of Observation 7, which seems to violate the above
reasoning, is that π0 > 0, that is, biasing toward excluded nodes with no in-
cluded neighbors leads to nonuniqueness. We note that this effect is perhaps es-
pecially surprising in light of Theorem 5, as we now explain. Let e0 denote the
(�+ 1)-dimensional vector whose first component is a 1, with all remaining com-
ponents 0. As it is easily verified that 1 + e0h is log-convex for all h ≥ 0, and
limh→∞ λ1+e0h

= ∞, we conclude that the associated uniqueness regime exhibits
the following nonmonotonicity.

COROLLARY 1 (Nonmonotonicity of uniqueness regime). For all � ≥ 3,
there exist strictly positive finite constants a� < b� such that (λ�,1 + e0h) be-
longs to the uniqueness regime for h = 0 and h ≥ b�, and does not belong to the
uniqueness regime for h ∈ (0, a�).

Thus, biasing a small amount toward excluded nodes with no included neigh-
bors leads to nonuniqueness, while biasing a large amount toward excluded nodes
with no included neighbors leads to uniqueness. This nonmonotonicity also sheds
light on the relationship between λθ , λθ and λθ . In particular, it would be natural
to conjecture that for general log-convex θ , the critical activity λθ always belongs
to the interval [λθ , λθ ], that is, that the critical activity is sandwiched between that
for the model in which all ratios between consecutive entries of θ are raised (low-
ered) to θ�

θ�−1
( θ1
θ0

). However, the aforementioned nonmonotonicity demonstrates
that such a result cannot hold. Indeed, if such a bound were to hold, it would imply
that for all h > 0,

λ1+e0h ≥ λ1+e0h
= (1 + h)λ� > λ�,

which Corollary 1 disproves. Furthermore, although it is easily verified that for
log-convex θ one has λθ ≥ λθ , and λ

θ
≤ λθ , in general λθ is incomparable to λθ .

For example, considering the case that θk = 1 for k ∈ {0, . . . ,�− 1} and θ� = �2,
one can easily compute that

λθ = (
2(� − 1)�2�−4(

�2 + (� − 1)
(
�2 − 1

)))−1 ≥ 1

2�2�
,

which can be shown to be strictly greater than λθ = (�−1)�−1

(�−2)�
1

�2� for all � ≥ 8.
However, our previous example involving θ = 1 + e0h demonstrates that the op-
posite inequality can hold as well. We note that several previous works in the liter-
ature on M.r.f. examine various notions of nonmonotonicity (cf. [22]), and better
understanding the relevant (non)monotonicities with regards to higher-order M.r.f.
remains an interesting open question.
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3. Verification of FKG inequality. In this section, we prove Theorem 3.

PROOF OF THEOREM 3. It follows from the definition of the Hamiltonian, the
symmetry of the potentials � = (λ, θ), and a straightforward algebraic manipula-
tion (cf. [34]) that it suffices to demonstrate that for all i ∈ T∞ and ω1,ω2 ∈ �N(i),

�N(i)

(
ω1 ∧ ω2) + �N(i)

(
ω1 ∨ ω2) ≤ �N(i)

(
ω1) + �N(i)

(
ω2)

.(8)

Let us fix such a node i. Let S1,1 �= {j ∈ N1(i) : ω1{j} = 1} (i.e., those neighbors

of i with spin 1 in ω1), S1,0 �= N1(i) \ S1,1; S2,1 �= {j ∈ N1(i) : ω2{j} = 1}; and

S2,0 �= N1(i) \ S2,1.
We proceed by a case analysis. First, suppose that for some l ∈ {1,2},

�N(i)(ω
l) = ∞. In this case, (8) holds trivially. Thus, we subsequently suppose

this situation is precluded.
We now treat the case i ∈ T e∞, equivalently N1(i) ⊆ T o∞. Note that from def-

initions, for i ∈ T e∞, ω1 ∧ ω2{i} = 1 iff both ω1{i} = 1 and ω2{i} = 1; ω1 ∨ ω2{i} = 1

iff either ω1{i} = 1 or ω2{i} = 1; |ω1 ∧ ω2
N1(i)

| = |S1,1 ∪ S2,1|; and |ω1 ∨ ω2
N1(i)

| =
|S1,1 ∩ S2,1|.

First, suppose ω1{i} = ω2{i} = 1. In this case, |S1,1| = |S2,1| = 0, and thus |ω1 ∧
ω2

N1(i)
| = |ω1 ∨ ω2

N1(i)
| = 0. We conclude that both the left-hand side (LHS) and

right hand side (RHS) of (8) equal −2 log(λ), and (8) holds.
Next, suppose ω1{i} = 1,ω2{i} = 0. In this case, ω1 ∧ ω2{i} = 0, |ω1 ∧ ω2

N1(i)
| =

|S2,1|,ω1 ∨ω2{i} = 1, |ω1 ∨ω2
N1(i)

| = 0. We conclude that both the LHS and RHS of

(8) equal − log(θ|S2,1|)− log(λ), and (8) holds. The case ω1{i} = 0,ω2{i} = 1 follows
from a symmetric and identical argument.

Finally, suppose ω1{i} = 0,ω2{i} = 0. In this case, ω1 ∧ ω2{i} = 0, |ω1 ∧ ω2
N1(i)

| =
|S1,1 ∪ S2,1|,ω1 ∨ ω2{i} = 0, |ω1 ∨ ω2

N1(i)
| = |S1,1 ∩ S2,1|. We conclude that (8)

would hold if it were true that

log(θ|S1,1∪S2,1|) + log(θ|S1,1∩S2,1|) ≥ log(θ|S1,1|) + log(θ|S2,1|).(9)

However, (9) follows immediately from the log-convexity of θ , and the well-
known connection between convexity and supermodularity (cf. [41]), completing
the proof for the case i ∈ T e∞. As the case i ∈ T o∞ follows from a nearly identi-
cal argument with the role of ω1 ∨ ω2 and ω1 ∧ ω2 reversed, we omit the details.
Combining the above completes the proof. �

4. Probabilities, partition functions and proof of Theorem 4. In this sec-
tion, we first rephrase the relevant probabilities and questions of interest in terms
of sequences of ratios of partition functions, whose even and odd subsequences
we prove to converge, and which are amenable to a recursive analysis. We then
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prove that the functions arising in the relevant recursions satisfy certain bounds
and monotonicities, which we exploit to prove Theorem 4. Without loss of gen-
erality, let us assign the neighbors of 0 in T∞ indices 1, . . . ,� in an arbitrary but
fixed manner. For d ≥ 2, let T 1

d denote the subtree of Td rooted at node 1, ex-
cluding node 1 itself, that is, the collection of nodes j ∈ Td \ {1} such that every
undirected path in Td from j to 0 contains node 1. For d ≥ 2 and i, j ∈ {0,1} such
that i + j ≤ 1, let ηi,j,d ∈ �∂T 1

d
denote that boundary condition such that η

i,j,d
{0} =

i, η
i,j,d
{1} = j , η

i,j,d
{k} = 0 for all k ∈ ∂T 1

d such that d(k,0) = d + 1, and η
i,j,d
{k} = 1

for all k ∈ ∂T 1
d such that d(k,0) = d + 2. Similarly, for d ≥ 2, let Zλ,θ ,d(i, j)

�=∑
ν∈�

T 1
d

exp(−Hλ,θ

T 1
d

(ν · ηi,j,d)). For the special case d = 1, as T 1
d = ∅, we define

Zλ,θ ,1(0,0) = θ0θ
�−1
�−1 ,Zλ,θ,1(1,0) = θ1θ

�−1
�−1 ,Zλ,θ,1(0,1) = λθ�−1

� . For d ≥ 1

and i ∈ {0,1}, let Zλ,θ ,d(i)
�= Zλ,θ,d (i,0)

Zλ,θ,d (0,1)
, and ζλ,θ ,d

�= Z−1
λ,θ,d(0), where we also de-

fine ζλ,θ ,0
�= 0. When there is no ambiguity, we will suppress the notation on (λ, θ),

simply writing, for example, Zd(i, j),Zd(i), ζd, f, g. For d ≥ 1, let η−,+,d ∈ �∂Td

denote that boundary condition such that η
−,+,d
{k} = 0 for all k ∈ ∂Td such that

d(k,0) = d + 1, and η
−,+,d
{k} = 1 for all k ∈ ∂Td such that d(k,0) = d + 2. Note

that for even d , η−,+,d = ω+
∂Td

; while for odd d , η−,+,d = ω−
∂Td

. Then for d ≥ 2
and k ∈ {0, . . . ,�},

Pλ,θ

(
ω0 = 0, |ωN(0)| = k|η−,+,d)

=
(�
k

)
θkZ

k
d(0,1)Z�−k

d (0,0)

λZ�
d (1,0) + ∑�

i=0
(�

i

)
θiZ

i
d(0,1)Z�−i

d (0,0)
(10)

=
(�
k

)
θkζ

k
d

λ(Zd(1)ζd)� + ∑�
i=0

(�
i

)
θiζ

i
d ,

�= p
λ,θ ,d
k .

We also let pλ,θ ,d denote the associated vector, and p
λ,θ ,d
+

�= 1 − pλ,θ,d · 1.
We now derive several recursions for Zd(i) and ζd , to aid in our analysis.

LEMMA 1. For all d ≥ 1,

Zd(1) = ζ−1
d f (ζd−1);(11)

and for all d ≥ 2,

ζd = λg(ζd−1)f
�−1(ζd−2).(12)

PROOF. We first treat the cases d = 1,2. That (11) holds for d = 1 follows
from definitions and the fact that f (0) = θ1

θ0
. For d = 2, a straightforward calcula-
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tion demonstrates that

Z2(0,0) = (
θ�−1
�−1 θ0

)�−1
�−1∑
k=0

θk

(
� − 1

k

)
ζ k

1 ,

Z2(1,0) = (
θ�−1
�−1 θ0

)�−1
�−1∑
k=0

θk+1

(
� − 1

k

)
ζ k

1 ,

Z2(0,1) = λθ�−1
1 θ

(�−1)2

�−1 ,

Z2(1) = λ−1
(

θ0

θ1

)�−1 �−1∑
k=0

θk+1

(
� − 1

k

)
ζ k

1 ,

Z2(0) = λ−1
(

θ0

θ1

)�−1 �−1∑
k=0

θk

(
� − 1

k

)
ζ k

1 , ζ2 = λf �−1(0)g(ζ1);

from which (11) and (12) follow.
For d ≥ 3 and i ∈ {0,1},

Zd(i,0) =
�−1∑
k=0

(
� − 1

k

)
θk+iZ

k
d−1(0,1)Z�−1−k

d−1 (0,0),

and

Zd(0,1) = λZ�−1
d−1 (1,0).

Thus,

Zd(0) =
∑�−1

k=0

(�−1
k

)
θkZ

k
d−1(0,1)Z�−1−k

d−1 (0,0)

λZ�−1
d−1 (1,0)

= λ−1
(

Zd−1(0)

Zd−1(1)

)�−1 �−1∑
k=0

(
� − 1

k

)
θkζ

k
d−1.

Similarly,

Zd(1) = λ−1
(

Zd−1(0)

Zd−1(1)

)�−1 �−1∑
k=0

(
� − 1

k

)
θk+1ζ

k
d−1.

Combining with the definition of f and g completes the proof. �

We next establish some useful properties of f and g.

LEMMA 2. If θ is log-convex, then for all x ≥ 0: ∂xf (x) ≥ 0, ∂xg(x) ≤ 0,
0 ≤ g(x) ≤ θ−1

0 , and θ1
θ0

≤ f (x) ≤ θ�
θ�−1

.
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PROOF. We first prove that ∂xf (x) ≥ 0 for all x ≥ 0. It follows from a straight-
forward calculation that

∂xf (x) = (� − 1)

∑�−1
i=0

∑�−2
j=0

(�−1
i

)(�−2
j

)
xi+j (θiθj+2 − θi+1θj+1)

(
∑�−1

k=0 θk

(�−1
k

)
xk)2

,(13)

and
∑�−1

i=0
∑�−2

j=0

(�−1
i

)(�−2
j

)
xi+j (θiθj+2 − θi+1θj+1) equals

2�−3∑
k=0

xk
min(�−1,k)∑

i=max(0,k−(�−2))

(
� − 1

i

)(
� − 2
k − i

)
(θiθk−i+2 − θi+1θk−i+1).(14)

We now demonstrate that
min(�−1,k)∑

i=max(0,k−(�−2))

(
� − 1

i

)(
� − 2
k − i

)
(θiθk−i+2 − θi+1θk−i+1)(15)

is nonnegative for all k ∈ [0,2� − 3], completing the proof. We proceed by “pair-
ing up” certain terms appearing in (15), by using the fact that for all k ∈ [0,2�−3]
and i ∈ [max(0, k − (� − 2)),min(� − 1, k)],

θiθk−i+2 − θi+1θk−i+1
(16) = −(θ(k−i+1)θk−(k−i+1)+2 − θ(k−i+1)+1θk−(k−i+1)+1).

Let us say that a function f , with domain and range containing the finite set S ⊆ Z,
is a paired bijection on S if the restriction of f to domain S is a bijection (i.e., every
element of S is mapped to some element of S, and every element of S is mapped
to by some element of S), and f does not map any element of S to itself. We
now demonstrate that for all k ∈ [0,2� − 3], the mapping f (i) = k − i + 1 is a
paired bijection on S = [max(0, k − (� − 2)),min(� − 1, k)] \ {0, k+1

2 }. We first
show i ∈ S implies f (i) ∈ S. Indeed, i ≥ 0, i 
= 0 implies i ≥ 1, and thus f (i) ≤ k;
i ≥ k− (�−2) implies f (i) ≤ �−1; i ≤ �−1 implies f (i) ≥ k− (�−2); i ≤ k

implies f (i) ≥ 1. Furthermore, as k+1
2 is the unique (possibly noninteger) solution

to f (x) = x (i.e., fixed point), i 
= k+1
2 implies f (i) 
= k+1

2 . Combining the above
completes the demonstration that i ∈ S implies f (i) ∈ S. The proof that f is a
paired bijection on S then follows from the fact that f is strictly decreasing and
invertible, with unique fixed point k+1

2 . Furthermore, since f is strictly decreasing
and � k

2� < k+1
2 ≤ � k

2� + 1, it is also true that for i ∈ S, i ≤ � k
2� iff f (i) ≥ � k

2� + 1.
Combining the above with (16) and the fact that � k

2� ≤ min(� − 1, k) for all k ∈
[0,2� − 3], we conclude that (15) equals

�k/2�∑
i=max(1,k−(�−2))

((
� − 1

i

)(
� − 2
k − i

)
−

(
� − 1

k − i + 1

)(
� − 2
i − 1

))
(17) × (θiθk−i+2 − θi+1θk−i+1)
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+ I (k ≤ � − 2)

(
� − 2

k

)
(θ0θk+2 − θ1θk+1)(18)

+ I

(
k + 1

2
∈ Z+

)(
� − 1
k + 1

2

)(
� − 2
k − 1

2

)

(19)
× (θ(k+1)/2θ(k+1)/2+1 − θ(k+1)/2+1θ(k+1)/2).

We now verify that (17)–(19) are nonnegative, and begin with (17). It follows from
a straightforward calculation that

(�−1
i

)(�−2
k−i

)− ( �−1
k−i+1

)(�−2
i−1

)
will be the same sign

as k+1
i

− 2, and thus nonnegative for i ≤ � k
2�. Also, the log-convexity of θ implies

that θiθk−i+2 − θi+1θk−i+1 will be nonnegative if k − i + 1 ≥ i, which holds for
i ≤ � k

2�. Combining the above demonstrates the nonnegativity of (17). The log-
convexity of θ similarly implies the nonnegativity of θ0θk+2 − θ1θk+1, and thus
also of (18). As (19) is identically zero, combining the above completes the proof.
That θ1

θ0
≤ f (x) ≤ θ�

θ�−1
then follows by letting x ↓ 0 and x ↑ ∞. Noting that the

associated monotonicity and bounds for g are straightforward completes the proof
of the lemma. �

We now combine Lemmas 1 and 2 to prove that the even and odd subsequences
of {ζd, d ≥ 1} are monotone, and thus converge, where we will later prove that
(λ, θ) belongs to the uniqueness regime iff these limits coincide. We note that
although the monotonicity of certain related sequences follows directly from the
FKG theorem and its implied monotonicities, here our analysis fundamentally in-
volves Zd(0,0), in which nodes at both even and odd parity have their spins set
to 0, which seems to preclude such a direct approach. Instead, we proceed by in-
duction, using the properties of f and g demonstrated in Lemma 2.

LEMMA 3. If θ is log-convex, then {ζ2d, d ≥ 0} is monotone increasing, and
{ζ2d+1, d ≥ 0} is monotone decreasing.

PROOF. We proceed by induction simultaneously on both sequences. The base
case entails demonstrating that ζ3 ≤ ζ1, and ζ2 ≥ ζ0. It follows from definitions that
ζ1 = λθ−1

0 ( θ�
θ�−1

)�−1. Combining with the bounds for f and g of Lemma 2, and
the fact that ζ3 satisfies (12), demonstrates that ζ3 ≤ ζ1. That ζ2 ≥ ζ0 follows from
nonnegativity, completing the proof of the base case.

Now, suppose that {ζ2k, k = 0, . . . , d − 1} is monotone increasing, and {ζ2k+1,

k = 0, . . . , d − 1} is monotone decreasing for some d ≥ 2. Then it follows from
Lemma 1, the monotonicity of f and g guaranteed by Lemma 2, and the induction
hypothesis that

ζ2d = λg(ζ2(d−1)+1)f
�−1(ζ2(d−1))

≥ λg(ζ2(d−2)+1)f
�−1(ζ2(d−2)) = ζ2(d−1).
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Similarly, the above further implies that

ζ2d+1 = λg(ζ2d)f �−1(ζ2(d−1)+1)

≤ λg(ζ2(d−1))f
�−1(ζ2(d−2)+1) = ζ2(d−1)+1.

Combining the above completes the proof. �

It follows from Lemma 3 that ζ λ,θ ,∞
�= limd→∞ ζλ,θ ,2d+1 and ζ

λ,θ ,∞
�=

limd→∞ ζλ,θ ,2d both exist. Furthermore, the continuity of f and g on R
+, com-

bined with (12) and Lemma 3, implies the following.

OBSERVATION 8. 0 < ζ∞, ζ∞ < ∞, and (ζ∞, ζ∞) is a solution to the system
of equations (6)–(7).

With Observation 8 in hand, we now complete the proof of Theorem 4, as well

as Observation 2. Let Lθ (z)
�= ∑�

i=0 θi

(�
i

)
zi .

PROOF OF THEOREM 4. We first prove that the system of equations (6)–
(7) always has at least one solution (x∗, y∗) on R

+ × R
+ for which x∗ = y∗.

Let η(x)
�= x − λg(x)f �−1(x). Note that η(0) = −λ

θ�−1
1
θ�

0
< 0. It follows from

Lemma 2 that η(λθ−1
0 ( θ�

θ�−1
)�−1) ≥ 0. As η is continuous on [0,∞), we conclude

that there exists z∗ ∈ R
+ such that η(z∗) = 0, which implies that (z∗, z∗) is a solu-

tion to the system of equations.
We now prove that if the system of equations (6)–(7) has a unique solution on

R
+ × R

+, then (λ, θ) belongs to the uniqueness regime. Suppose (6)–(7) has a
unique solution (x∗, y∗) on R

+ ×R
+. Then it must be that any nonnegative solu-

tion (x, y) to the system of equations satisfies x = x∗ = y∗ = y. By Observation 8,
(ζ∞, ζ∞) is such a solution. Thus, ζ∞ = ζ∞, in which case it follows from The-
orems 3 and 2, (10), and Lemma 1 that (λ, θ) belongs to the uniqueness regime.

We now prove that if the system of equations (6)–(7) does not have a unique so-
lution on R

+ ×R
+, then (λ, θ) does not belong to the uniqueness regime. Indeed,

suppose that the system of equations does not have a unique solution on R
+ ×R

+.
Let S denote the set of all 2-vectors (x, y) such that 0 ≤ x ≤ y < ∞, and (x, y) is

a solution to the system of equations. Let y
�= supz∈S z2, that is, the largest number

appearing in any solution pair. We first show that y is itself part of some solution
pair (i.e., it is not just approached). If |S| < ∞, this is immediate. If not, con-
sider any sequence of solution vectors {zi , i ≥ 1} such that limi→∞ zi

2 = y. Since
{zi

1, i ≥ 1} is uniformly bounded by Lemma 2, the Bolzano–Weirerstrass theorem
implies that {zi , i ≥ 1} will itself have a convergent subsequence {zik , k ≥ 1}, and
let us denote limk→∞ z

ik
1 by x. That (x, y) satisfies the system of equations then
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follows from the continuity of f and g. Similarly, let x
�= infz∈S z1, that is, the

smallest number appearing in any solution pair, and y the other number appear-
ing in the corresponding solution pair (whose existence is guaranteed by the same
argument used above). Note that x < y.

We now prove (by induction) that in this case, {ζd, d ≥ 0} has a nonvanishing
parity-dependence, with even values lying below x, and odd values lying above y.
We begin with the base cases d = 0,1. The d = 0 case follows from nonnegativity.
The d = 1 case follows from the fact that y satisfies (7), combined with Lemma 2
and the definition of ζ1. Now, proceeding by induction, suppose that for some
d ≥ 1 and all k ∈ {0, . . . , d − 1}, ζ2k ≤ x, and ζ2k+1 ≥ y. Then it follows from
Lemma 1, and the monotonicity of f and g implied by Lemma 2, that

ζ2d = λg(ζ2d−1)f
�−1(ζ2d−2)

≤ λg(y)f �−1(x)

≤ λg(y)f �−1(x) = x, since y ≥ y,

and

ζ2d+1 = λg(ζ2d)f �−1(ζ2d−1)

≥ λg(x)f �−1(y)

≥ λg(x)f �−1(y) = y, since x ≤ x,

completing the proof.
Finally, we prove that the aforementioned parity dependence of {ζd, d ≥ 0}

implies a nonvanishing parity dependence on the probability that the root is in-
cluded when conditioning on the appropriate extremal boundary conditions, im-
plying nonuniqueness. It follows from the parity dependence of {ζd, d ≥ 0}, (10),
and Lemma 2 that for all d ≥ 1,

Pλ,θ

(
ω0 = 1|η−,+,2d)
=

(
1 + L(ζ2d)

λf �(ζ2d−1)

)−1

≥
(

1 + L(x)

λf �(y)

)−1

;Pλ,θ

(
ω0 = 1|η−,+,2d+1)

=
(

1 + L(ζ2d+1)

λf �(ζ2d)

)−1

≤
(

1 + L(y)

λf �(x)

)−1

<

(
1 + L(x)

λf �(y)

)−1

.

Combining with Theorems 3 and 2, along with the fact that η−,+,d equals ω+
∂Td

for

even d , and equals ω−
∂Td

for odd d , completes the proof. As it follows that (λ, θ)

belongs to the uniqueness regime iff limd→∞ ζd exists, combining with (10) also
completes the proof of Observation 2. �
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5. Existence of phase transition and proof of Theorem 5. In this section,
we show the existence of a phase transition for log-convex θ , and provide explicit
bounds on the critical activity, completing the proof of Theorem 5. Recall that

ψθ = max
k=0,...,�−2

((
� − (k + 1)

)θk+1

θk

)
,

λθ = 3θ0

�
exp

(
3

θ�

θ�−1

θ0

θ1

)(
θ0

θ1

)�

,

λθ =
(

2ψθθ
−1
0

(
θ�

θ�−1

)�−2(
θ�

θ�−1
+ (� − 1)

(
θ�

θ�−1
− θ1

θ0

)))−1

.

PROOF OF THEOREM 5. We first show that for any log-convex θ , (λ, θ) be-
longs to the uniqueness regime for all activities λ < λθ . We proceed by proving
that for λ < λθ , the update rule for |ζd − ζd−1| implied by (12) is a contraction.
We first demonstrate that f,g are Lipschitz, and explicitly bound the relevant Lip-
schitz constants. Note that f,g are differentiable on R+. We begin by bounding
|∂xg(x)|. For all x ≥ 0,

∣∣∂xg(x)
∣∣ =

∑�−2
k=0 (k + 1)θk+1

(�−1
k+1

)
xk

(
∑�−1

k=0 θk

(�−1
k

)
xk)2

.

Combining with the fact that for all x ≥ 0,

�−1∑
k=0

θk

(
� − 1

k

)
xk ≥ max

(
θ0,

�−2∑
k=0

θk

(
� − 1

k

)
xk

)
,

it follows that

∣∣∂xg(x)
∣∣ ≤ θ−1

0

∑�−2
k=0 (k + 1)θk+1

(�−1
k+1

)
xk∑�−2

k=0 θk

(�−1
k

)
xk

= θ−1
0

∑�−2
k=0

(k+1)θk+1(
�−1
k+1)

θk(
�−1

k )
(θk

(�−1
k

)
xk)

∑�−2
k=0 θk

(�−1
k

)
xk

(20)

≤ θ−1
0 max

k=0,...,�−2

(k + 1)θk+1
(�−1
k+1

)
θk

(�−1
k

) = θ−1
0 ψθ ;

where the final inequality follows from convexity.
We now bound |∂xf (x)|. For all x ≥ 0, it follows from (13) that

∣∣∂xf (x)
∣∣ ≤ (� − 1)

∑�−1
i=0

∑�−2
j=0

(�−1
i

)(�−2
j

)
xi+j |θiθj+2 − θi+1θj+1|

(
∑�−1

k=0 θk

(�−1
k

)
xk)2

.
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Combining with the fact that nonnegativity implies

(
�−1∑
k=0

θk

(
� − 1

k

)
xk

)2

=
�−1∑
i=0

�−1∑
j=0

θiθj

(
� − 1

i

)(
� − 1

j

)
xi+j

≥
�−1∑
i=0

�−2∑
j=0

θiθj

(
� − 1

i

)(
� − 1

j

)
xi+j ,

we conclude that∣∣∂xf (x)
∣∣

≤ (� − 1)

∑�−1
i=0

∑�−2
j=0

(�−1
i

)(�−2
j

)|θiθj+2 − θi+1θj+1|xi+j

∑�−1
i=0

∑�−2
j=0 θiθj

(�−1
i

)(�−1
j

)
xi+j

= (� − 1)

∑�−1
i=0

∑�−2
j=0

(�−1
i )(�−2

j )|θiθj+2−θi+1θj+1|xi+j

θiθj (
�−1

i )(�−1
j )xi+j

(θiθj

(�−1
i

)(�−1
j

)
xi+j )

∑�−1
i=0

∑�−2
j=0 θiθj

(�−1
i

)(�−1
j

)
xi+j

≤ (� − 1) max
i∈[0,�−1]
j∈[0,�−2]

(�−1
i

)(�−2
j

)|θiθj+2 − θi+1θj+1|xi+j

θiθj

(�−1
i

)(�−1
j

)
xi+j

= max
i∈[0,�−1]
j∈[0,�−2]

((
� − (j + 1)

)∣∣∣∣θj+2

θj

− θi+1

θi

θj+1

θj

∣∣∣∣
)
,

where the final inequality follows from convexity. Further noting that the def-
inition of ψθ and log-convexity together imply that for all i ∈ [0,� − 1] and
j ∈ [0,� − 2],

(
� − (j + 1)

)∣∣∣∣θj+2

θj

− θi+1

θi

θj+1

θj

∣∣∣∣
= (

� − (j + 1)
)θj+1

θj

∣∣∣∣θj+2

θj+1
− θi+1

θi

∣∣∣∣
≤ ψθ

(
θ�

θ�−1
− θ1

θ0

)
,

we may combine the above with the chain rule and Lemma 2 to conclude that for
all x ≥ 0,

∣∣∂xf
�−1(x)

∣∣ ≤ (� − 1)

(
θ�

θ�−1

)�−2(
θ�

θ�−1
− θ1

θ0

)
ψθ .(21)
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It follows from (20), (21), Lemmas 1 and 2, the fact that |ab − cd| ≤ |a + c||b −
d| + |b + d||a − c| for all a, b, c, d ∈ R, that for all d ≥ 2,

|ζd+1 − ζd | = ∣∣λg(ζd)f �−1(ζd−1) − λg(ζd−1)f
�−1(ζd−2)

∣∣
≤ λ

∣∣g(ζd) + g(ζd−1)
∣∣∣∣f �−1(ζd−1) − f �−1(ζd−2)

∣∣
+ λ

∣∣f �−1(ζd−1) + f �−1(ζd−2)
∣∣∣∣g(ζd) − g(ζd−1)

∣∣
≤ λ

(
2θ−1

0

)(|ζd−1 − ζd−2|(� − 1)

(
θ�

θ�−1

)�−2(
θ�

θ�−1
− θ1

θ0

)
ψθ

)

+ λ

(
2
(

θ�

θ�−1

)�−1)(|ζd − ζd−1|θ−1
0 ψθ

)
.

Note that Lemma 3, combined with our proof of Theorem 4 (in particular the
fact that supd≥0 ζ2d ≤ x ≤ y ≤ infd≥0 ζ2d+1), implies that {|ζd+1 − ζd |, d ≥ 0} is
monotone decreasing. Combining the above, we conclude that

|ζd+1 − ζd |

≤ 2λθ−1
0

(
θ�

θ�−1

)�−2

ψθ

(
(� − 1)

(
θ�

θ�−1
− θ1

θ0

)
+ θ�

θ�−1

)
|ζd−1 − ζd−2|.

It thus follows from the definition of λθ that for all λ < λθ , there exists ρ ∈ (0,1)

such that for all d ≥ 2, |ζd+1 − ζd | ≤ ρ|ζd−1 − ζd−2|. Combining with our proof of
Theorem 4 (in particular the fact that existence of limd→∞ ζd implies uniqueness)
completes the proof.

We now prove that (λ, θ) does not belong to the uniqueness regime for all
λ > λθ . We first show that for λ = λθ , any nonnegative solution to the system
of equations (6)–(7) of the form (x, x) satisfies

x ≥ 3

�

θ0

θ1
.(22)

Indeed, it follows from log-convexity that θk ≤ θ0(
θ�

θ�−1
)k, k = 0, . . . ,�. Thus, for

all x ≥ 0,

�−1∑
k=0

θk

(
� − 1

k

)
xk ≤ θ0

�−1∑
k=0

(
� − 1

k

)(
θ�

θ�−1
x

)k

= θ0

(
1 + θ�

θ�−1
x

)�−1

,

and

g(x) ≥
(
θ0

(
1 + θ�

θ�−1
x

)�−1)−1

≥ θ−1
0 exp

(
−�

θ�

θ�−1
x

)
.
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Thus, by Lemma 2, any nonnegative solution to the system of equations (6)–(7) of
the form (x, x) for λ = λθ satisfies

x exp
(
�

θ�

θ�−1
x

)
≥ λθ

θ0

(
θ1

θ0

)�−1

= 3

�

θ0

θ1
exp

(
3

θ�

θ�−1

θ0

θ1

)
.(23)

To complete the proof of (22), we observe that in light of (23), x < 3
�

θ0
θ1

would
yield a contradiction, since it would imply

x exp
(
�

θ�

θ�−1
x

)
<

3

�

θ0

θ1
exp

(
3

θ�

θ�−1

θ0

θ1

)
.

We next prove that for any x ≥ 3
�

θ0
θ1

and M ≥ 1,

η(M,x)
�= Mg(Mx) ≤ g(x),(24)

a property that will allow us to use Lemma 1 to explicitly demonstrate that {ζd, d ≥
0} exhibits a parity dependence. We proceed by showing that for any x ≥ 3

�
θ0
θ1

and

M ≥ 1, ∂Mη(M,x) ≤ 0. Since ∂xg(x) = −g2(x)
∑�−1

k=1

(�−1
k

)
θkkxk−1, it follows

from the chain rule that

∂Mη(M,x) = −Mxg2(Mx)

�−1∑
k=1

(
� − 1

k

)
θkk(Mx)k−1 + g(Mx)

= g(Mx)

(
1 −

∑�−1
k=1

(�−1
k

)
θkk(Mx)k∑�−1

k=0

(�−1
k

)
θk(Mx)k

)
.

By the nonnegativity of g, it thus suffices to demonstrate that for any x ≥ 3
�

θ0
θ1

and
M ≥ 1,

�−1∑
k=1

(
� − 1

k

)
θkk(Mx)k −

�−1∑
k=0

(
� − 1

k

)
θk(Mx)k(25)

is nonnegative. Note that (25) equals

�−1∑
k=1

(
� − 1

k

)
θk(k − 1)(Mx)k − θ0,

which by nonnegativity and the fact that M ≥ 1 is at least
(�−1

2

)
θ2x

2 − θ0. As log-

convexity implies θ2 ≥ θ0(
θ1
θ0

)2, and it is easily verified that
(�−1

2

) ≥ �2

9 for all � ≥
3, we conclude that x ≥ 3

�
θ0
θ1

implies that (25) is at least �2

9 θ0(
θ1
θ0

)2( 3
�

θ0
θ1

)2−θ0 = 0,
completing the proof.

We now use (22) and (24) to prove by induction that for λ > λθ , {ζd, d ≥ 0}
exhibits a parity dependence, mirroring our proof of Theorem 4. Recall from
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our proof of Theorem 4 that for λ = λθ , the system of equations (6)–(7) al-
ways has at least one nonnegative solution of the form (x, x). Let us fix any
such solution (xθ , xθ ), and note that xθ ≥ 3

�
θ0
θ1

. We now prove by induction that

for all λ > λθ , {ζd, d ≥ 0} has a nonvanishing parity-dependence, with even val-
ues lying below xθ , and odd values lying above λ

λθ
xθ . The d = 0 base case fol-

lows from nonnegativity. For the case d = 1, recall from definitions that ζ1 =
λθ−1

0 ( θ�
θ�−1

)�−1. However, by virtue of satisfying (6)–(7) with λθ and Lemma 2,

we have xθ ≤ λθθ
−1
0 ( θ�

θ�−1
)�−1. Combining the above completes the proof for the

d = 1 case. Now, proceeding by induction, suppose that for some d ≥ 1 and all
k ∈ {0, . . . , d − 1}, ζ2k ≤ xθ , and ζ2k+1 ≥ λ

λθ
xθ . Then it follows from Lemma 1,

the monotonicity of f and g implied by Lemma 2, (22) and (24) that

ζ2d = λg(ζ2d−1)f
�−1(ζ2d−2)

≤ λg

(
λ

λθ

xθ

)
f �−1(xθ )

≤ λ
λθ

λ
g(xθ )f

�−1(xθ ) = λθg(xθ )f
�−1(xθ ) = xθ ,

with the final inequality following from (24). Similarly,

ζ2d+1 = λg(ζ2d)f �−1(ζ2d−1)

≥ λg(xθ )f
�−1

(
λ

λθ

xθ

)

= λ

λθ

λθg(xθ )f
�−1

(
λ

λθ

xθ

)
≥ λ

λθ

λθg(xθ )f
�−1(xθ ) = λ

λθ

xθ ,

with the final inequality following from the monotonicity of f and fact that λ

λθ
> 1.

This completes the desired induction, demonstrating that {ζd, d ≥ 0} exhibits the
stated parity-dependence. Combining with our proof of Theorem 4 (in particular
the fact that nonexistence of limd→∞ ζd implies nonuniqueness) completes the
proof. �

6. A perturbative analysis and proof of Theorem 6. In this section, we per-
form a perturbative analysis of the system of equations arising from our necessary
and sufficient conditions for uniqueness, proving Theorem 6. First, it will be use-
ful to rewrite the system of equations (6)–(7), which will allow us to apply known

results from the theory of dynamical systems. Note that if pθ (x)
�= xf

−(�−1)
θ (x)

is strictly increasing on [0, λ( θ�
θ�−1

)�−1θ−1
0 ], then it follows from Lemma 2 that

pθ has a well-defined and unique inverse p←
θ , with domain a superset of [0, λθ−1

0 ]
and range a subset of R

+, that is, p←
θ (pθ (x)) = x. In this case, we can define
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qλ,θ (x)
�= p←

θ (λgθ (x)), and we observe that the system of equations (6)–(7) may
be rewritten as follows.

OBSERVATION 9. If θ is log-convex, and pθ (x) is strictly increasing on
[0, λ( θ�

θ�−1
)�−1θ−1

0 ], then on R
+ ×R

+, the system of equations (6)–(7) is equiva-
lent to the system of equations:

qλ,θ

(
qλ,θ (x)

) = x,(26)

y = qλ,θ (x).(27)

Furthermore, qλ,θ is strictly decreasing on R
+, and the equation qλ,θ (x) = x

has a unique solution xλ,θ on R
+. Also, it follows from Lemma 2 that ev-

ery solution (x, y) to the system of equations (26)–(27) on R
+ × R

+ satisfies
0 ≤ x, y ≤ λ( θ�

θ�−1
)�−1θ−1

0 . In addition, x ∈ [0, λ( θ�
θ�−1

)�−1θ−1
0 ] implies qλ,θ (x) ∈

[0, λ( θ�
θ�−1

)�−1θ−1
0 ].

It is well known from the theory of dynamical systems that under certain addi-
tional assumptions on qλ,θ , necessary and sufficient conditions for when the sys-
tem of equations (26)–(27) has a unique solution can be stated in terms of whether
the map qλ,θ exhibits a certain local stability at the fixed point xλ,θ . We now make
this precise, and note that our approach is similar to that taken previously in the
literature to analyze related models (cf. [22]). Recall that for a thrice-differentiable
function F(x) with nonvanishing derivative on some interval I , we define (on I )
the Schwarzian derivative of F as the function

S[F ] �= d3

dx3 F
/ d

dx
F − 3

2

(
d2

dx2 F
/ d

dx
F

)2

.

For a function F and n ≥ 1, let F {n}(x) denote the n-fold iterate of F , that is,
F {n+1}(x) = F(F {n}(x)), with F {1}(x) = F(x). Then the following well-known
result from dynamical systems is stated in Lemma 4.3 of [22].

THEOREM 7. Suppose I = [L,R] ⊆ R is some closed bounded interval, and
F is some function with the following properties:

(i) F has domain I , and range a subset of I .
(ii) The third derivative of F exists and is continuous on I .

(iii) The equation x = F(x) has a unique solution x∗ on I .
(iv) F is a decreasing function on I .
(v) S[F ](x) < 0 for all x ∈ I .

Then limn→∞ F {n}(x) exists and equals x∗ for all x ∈ I iff |∂xF (x∗)| ≤ 1 iff
limn→∞ F {n}(L) = x∗.
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We now customize Theorem 7 to our own setting. Let rθ (x)
�= | ∂xgθ (x)

∂xpθ (x)
|. Then

combined with Observation 9, Theorem 7 implies the following.

OBSERVATION 10. Suppose that θ is log-convex, pθ (x) is strictly increasing
on [0, λ( θ�

θ�−1
)�−1θ−1

0 ], and the conditions of Theorem 7 are satisfied with F =
qλ,θ , I = [0, λ( θ�

θ�−1
)�−1θ−1

0 ]. Then (λ, θ) belongs to the uniqueness regime iff

rθ (xλ,θ ) ≤ λ−1.

PROOF. We first prove that the system of equations (26)–(27) does not have a
unique solution on R

+ × R
+ iff |∂xqλ,θ (xλ,θ )| > 1. Suppose the system of equa-

tions (26)–(27) does not have a unique solution on R
+ ×R

+. Since Observation 9
implies that the equation qλ,θ (x) = x has a unique solution xλ,θ , it follows that
there must exist a solution (x, y) to the system of equations (26)–(27) with x < y.
In this case, limn→∞ q

{n}
λ,θ (x) does not exist, as the series alternates between x

and y, and it follows from Theorem 7 that |∂xqλ,θ (xλ,θ )| > 1.
Alternatively, suppose that |∂xqλ,θ (xλ,θ )| > 1. Then it follows from Theorem 7

that limn→∞ q
{n}
λ,θ (0) does not exist. However, both Zeven

�= limn→∞ q
{2n}
λ,θ (0) and

Zodd
�= limn→∞ q

{2n+1}
λ,θ (0) both exist. Indeed, this follows from the fact that q

{1}
λ,θ

is decreasing, q
{2}
λ,θ is increasing, q

{2}
λ,θ (0) ≥ 0, and q

{3}
λ,θ (0) ≤ q

{1}
λ,θ (0), which implies

that both relevant sequences are appropriately monotone. Noting that the nonexis-
tence of the stated limit implies Zeven 
= Zodd, and the pair (Zeven,Zodd) must be
a solution to the system of equations (26)–(27), completes the desired demonstra-
tion.

As it follows from elementary calculus that ∂xqλ,θ (xλ,θ ) = λ
∂xgθ (xλ,θ )

∂xpθ (xλ,θ )
, combin-

ing the above with Theorem 4 and Observation 9 completes the proof. �

We note that pθ is not necessarily an increasing function for the case of general
log-convex θ . Furthermore, even when pθ is increasing, an analysis of S[qλ,θ ]
seems difficult, and the associated uniqueness regime of the parameter space seems
to be quite complex. However, for the special setting in which θ belongs to a
neighborhood of the all ones vector, in which case the associated M.r.f. becomes a
perturbation of the hardcore model at criticality, these difficulties can be overcome
by expanding the relevant functions using appropriate Taylor series. The theory of
real analytic functions provides a convenient framework for proving the validity of
these expansions, and we refer the reader to [21] for details. Using this framework,
we prove the following.

LEMMA 4. For each convex vector c, and U ∈ R
+, there exists δc,U > 0 such

that the following hold:
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(i) g1+ch(x) and p1+ch(x) are jointly real analytic functions of (h, x) on
[0, δc,U ] × [0,U ]. For each fixed h ∈ [0, δc,U ] and all x ∈ [0,U ], ∂xg1+ch(x) < 0,
and ∂xp1+ch(x) > 0.

(ii) For each fixed h ∈ [0, δc,U ], p1+ch(x) has a well-defined and unique in-
verse p←

1+ch(x) with domain a superset of [0,U ] and range a subset of R+. Fur-
thermore, p←

1+ch(x) is a jointly real analytic function of (h, x) on [0, δc,U ]×[0,U ].
(iii) qλ�,1+ch(x), ∂xqλ�,1+ch(x), and S[qλ�,1+ch](x) are all jointly real ana-

lytic functions of (h, x) on [0, δc,U ] × [0,U ]. Furthermore, ∂xqλ�,1+ch(x) and
S[qλ�,1+ch](x) are strictly negative for all (h, x) ∈ [0, δc,U ] × [0,U ].

PROOF. We prove (i)–(iii) in order.

(i) The claim with respect to real analyticity follows from the fact that for
any fixed U1, there exists δ1,U1 > 0 such that both g1+ch(x) and p1+ch(x) are
ratios of nonvanishing polynomials of (h, x) on [0, δ1,U1] × [0,U1]. That there
exists δ2,U1 > 0 such that ∂xg1+ch(x) < 0 and ∂xp1+ch(x) > 0 for all (h, x) ∈
[0, δ2,U1]× [0,U1] then follows from the fact that ∂xg1(x) = −(�− 1)(x + 1)−�,
and ∂xp1(x) = 1.

(ii) The claim follows from (i) and the inverse function theorem for real ana-
lytic functions (cf. [21]).

(iii) The claim with respect to qλ�,1+ch(x) and ∂xqλ�,1+ch(x) follows from
(ii), and the fact that ∂xqλ�,1(x) = −(� − 1)λ�(x + 1)−�. As this implies that
∂xqλ�,1(x) is strictly negative (and thus nonvanishing), the desired claim with re-
spect to S[qλ�,1+ch](x) then follows from the fact that S[qλ�,1](x) = −�(�−2)

2(x+1)2 .
�

Combining Observations 10 and 6 with Lemma 4 immediately yields necessary
and sufficient conditions for uniqueness when θ is a convex perturbation of 1.

COROLLARY 2. For each convex vector c, there exists δc > 0 such that the
following hold for all h ∈ [0, δc]:

(i) qλ�,1+ch(x) − x is strictly decreasing on [0,2λ�], and has a unique zero
xλ�,1+ch on [0,2λ�].

(ii) (λ�,1 + ch) belongs to the uniqueness regime iff r1+ch(xλ�,1+ch) ≤ λ−1
� .

With Corollary 2 in hand, we now complete the proof of Theorem 6. For l ∈
{0,1} and c = (c0, . . . , c�), let

fl,θ (x)
�=

�−1∑
i=0

θi+l

(
� − 1

i

)
xi,

zl,c
�=

�−1∑
i=0

(
� − 1

i

)
xi
λ�,1ci+l ,
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wl,c
�=

�−1∑
i=0

(
� − 1

i

)
ixi−1

λ�,1ci+l ,

and

xc
�= 1

2

(� − 2)�−2

(� − 1)�−1

(
(� − 1)z1,c − �z0,c

)
.

Also, let o(h) denote the family of functions F(h) such that limh↓0 h−1F(h) = 0.
With a slight abuse of notation, we will also let o(h) refer to any particular function
belonging to this family. Finally, in simplifying certain expressions, we will use the
following identities, which follow from a straightforward calculation (the details
of which we omit).

LEMMA 5.

xλ�,1 = (� − 2)−1,

�∑
i=0

��,i =
(

� − 1

� − 2

)�

,

�∑
i=0

i��,i = �
(� − 1)�−1

(� − 2)�
,

�∑
i=0

i2��,i = 2�
(� − 1)�−1

(� − 2)�
,

�∑
i=0

πi = −
(

� − 1

� − 2

)�−1
,

�∑
i=0

iπi = �

(
� − 1

� − 2

)�−1
.

PROOF OF THEOREM 6. We proceed by analyzing r1+ch(xλ�,1+ch) − λ−1
� as

h ↓ 0, and begin by proving that

lim
h↓0

(xλ�,1+ch − xλ�,1)h
−1 = xc.(28)

Note that for any fixed α ∈ R and l ∈ {0,1},
fl,1+ch(xλ�,1 + αh)

=
�−1∑
i=0

(
� − 1

i

)
(1 + ci+lh)

i∑
j=0

(
i

j

)
x

i−j
λ�,1(αh)j

(29)

=
�−1∑
i=0

(
� − 1

i

)
xi
λ�,1(1 + ci+lh)

(
1 + ix−1

λ�,1αh
) + o(h)

= (1 + xλ�,1)
�−1 + (

(� − 1)(1 + xλ�,1)
�−2α + zl,c

)
h + o(h).

We conclude that

g1+ch(xλ�,1 + αh)

= (1 + xλ�,1)
−(�−1)(30)

− (1 + xλ�,1)
−2(�−1)((� − 1)(1 + xλ�,1)

�−2α + z0,c
)
h + o(h),
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and

f1+ch(xλ�,1 + αh) = 1 + (1 + xλ�,1)
−(�−1)(z1,c − z0,c)h + o(h).(31)

It follows from (30), (31) and a straightforward calculation (the details of which
we omit) that for α ∈R,

(xλ�,1 + αh) − λ�f �−1
1+ch(xλ�,1 + αh)g1+ch(xλ�,1 + αh)

= 2(α − xc)h + o(h).

Combining with Corollary 2(i), and the fact that xλ�,1 < λ�, completes the proof.
Next, we use (28) to prove that

∂xp1+ch(xλ�,1+ch) + λ�∂xg1+ch(xλ�,1+ch)
(32)

= −1

2

(
� − 2

� − 1

)�

π · ch + o(h).

Indeed, it follows from (28) that

∂xfl,1+ch(xλ�,1+ch)

=
�−1∑
i=1

(
� − 1

i

)
i(1 + ci+lh)

i−1∑
j=0

(
i − 1

j

)
x

i−1−j
λ�,1 (xch)j + o(h)

=
�−1∑
i=1

(
� − 1

i

)
ixi

λ�,1(1 + ci+lh)
(
x−1
λ�,1 + (i − 1)x−2

λ�,1xch
) + o(h),

which itself equals

(� − 1)(1 + xλ�,1)
�−2

(33)
+ (

xc(� − 1)(� − 2)(1 + xλ�,1)
�−3 + wl,c

)
h + o(h).

It follows from (28)–(33), and a straightforward calculation (the details of which
we omit), that

∂xg1+ch(xλ�,1+ch) = −g2
1+ch(xλ�,1+ch)∂xf0,1+ch(xλ�,1+ch),

which itself equals

−(� − 1)(1 + xλ�,1)
−� + (1 + xλ�,1)

−(2�−1)

× (−(1 + xλ�,1)w0,c + �(� − 1)(1 + xλ�,1)
�−2xc + 2(� − 1)z0,c

)
h(34)

+ o(h);
∂xf1+ch(xλ�,1+ch) equals

g2
1+ch(xλ�,1+ch)

(
f0,1+ch(xλ�,1+ch)∂xf1,1+ch(xλ�,1+ch)

− f1,1+ch(xλ�,1+ch)∂xf0,1+ch(xλ�,1+ch)
)
,
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which itself equals

(1 + xλ�,1)
−�(

(1 + xλ�,1)(w1,c − w0,c) + (� − 1)(z0,c − z1,c)
)
h + o(h);

and

∂xp1+ch(xλ�,1+ch)

= f
−(�−1)
1+ch (xλ�,1+ch)

− (� − 1)xλ�,1+chf
−�
1+ch(xλ�,1+ch)∂xf1+ch(xλ�,1+ch),

which itself equals

1 − (� − 1)xλ�,1(1 + xλ�,1)
−(�−1)(w1,c − w0,c)h + o(h).(35)

Combining (34)–(35) with Lemma 5 and simplifying, we conclude that the LHS
of (32) equals

(� − 2)�−2

2(� − 1)�

(−(� − 2)3z0,c + �(� − 1)(� − 2)z1,c

(36)
+ 2(� − 1)(� − 2)w0,c − 2(� − 1)2w1,c

)
h + o(h).

It follows from the definition of π and a further straightforward algebraic manip-
ulation that (36) equals −1

2(�−2
�−1)�π · ch + o(h), completing the desired demon-

stration.
Combining (28), (32) and Corollary 2 with the fact that r1+ch(xλ�,1+ch) ≤ λ−1

�

iff the LHS of (32) is nonnegative completes the proof. �

7. Conclusion. In this paper, we investigated second-order M.r.f. for indepen-
dent sets on the infinite Cayley tree, a generalization of the hardcore model which
arises in statistical physics, combinatorial optimization and operations research,
with an eye toward understanding which distributions can be attained for the num-
ber of included neighbors of an excluded node, while staying in the uniqueness
regime. We proved that the associated Gibbsian specification satisfies the FKG in-
equality whenever the local potentials defining the Hamiltonian satisfy a certain
log-convexity condition, which leads to so-called reverse ultra log-concave dis-
tributions for the number of included neighbors of an excluded node. Under this
condition, we gave necessary and sufficient conditions for the existence of a unique
infinite-volume Gibbs measure in terms of an explicit system of equations, proved
the existence of a phase transition, and gave explicit lower and upper bounds on
the associated critical activity, which we proved to exhibit a certain robustness.
For potentials which are small perturbations of those coinciding to the hardcore
model at its critical activity, we performed a perturbative analysis of the system of
equations arising from our necessary and sufficient conditions for uniqueness, al-
lowing us to explicitly characterize whether the resulting specification has a unique
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infinite-volume Gibbs measure in terms of whether these perturbations satisfy an
explicit linear inequality. Our analysis revealed an interesting nonmonotonicity
with regards to biasing toward excluded nodes with no included neighbors, which
we used (in conjunction with our lower and upper bounds) to compare the unique-
ness regime for our model to a related model in which the associated potentials
have a simple factorized form.

This work leaves many interesting directions for future research. The full power
of higher-order M.r.f. for sampling from independent sets in sparse graphs, and
the associated uniqueness regime, remains poorly understood. Several questions
build immediately on the models considered in this paper, such as developing a
deeper understanding of the uniqueness regime for second-order M.r.f. with log-
convex potentials, and more generally higher-order M.r.f. which also satisfy the
FKG inequality. Analyzing settings in which the FKG inequality no longer holds
(at least for the partial order considered in this paper), for example, second-order
M.r.f. with log-concave potentials (which includes the restriction to maximal in-
dependent sets, and for which fθ is monotone decreasing instead of increasing),
remains an open challenge. It is also an open question to understand which sets
of occupancy probabilities can be achieved by higher-order M.r.f. (in the unique-
ness regime). Can one use higher-order M.r.f. (in the uniqueness regime) to sample
from denser independent sets than can be attained using the hardcore model at the
critical activity? It would also be interesting to study higher-order M.r.f. for related
combinatorial problems, for example, graph coloring, as well as for more general
sparse graphs. Indeed, although our results can be easily extended to the setting
of regular graphs of large girth using standard techniques, proving results for gen-
eral bounded-degree graphs (as was done by Weitz for the hardcore model in [45])
seems to require fundamentally new ideas. Similarly, the algorithmic implications
of phase transitions for higher-order M.r.f. also remain open questions. In partic-
ular, one would expect a “complexity transition” at the uniqueness threshold with
respect to approximately computing the relevant partition functions, as has been
recently established for first-order M.r.f. (cf. [35]).

Finally, it is open to investigate the connection between higher-order M.r.f.
and research on bernoulli shifts, i.i.d. factors of graphs, and local algorithms (cf.
[4, 43]), which have played a prominent role recently in developing algorithms
for finding dense independent sets in sparse graphs (cf. [8, 14]). For example, it
has been proven that under certain additional technical assumptions, certain M.r.f.
can(not) be well-approximated (in an appropriate sense) by i.i.d. factors of graphs
(cf. [3, 43]). However, a complete understanding of this and related questions
seems beyond the reach of current techniques. The converse, that is, questions
regarding whether an i.i.d. factor of graphs can be well-approximated by a finite-
order M.r.f. in the uniqueness regime, seem to have received less attention in the
literature, beyond the special case in which the underlying graph is a line and the
M.r.f. reduces to a Markov chain (cf. [25, 30]). Such a connection could open the
door to, for example, searching the space of M.r.f. (which are easily parametrized
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on sparse graphs) to find specifications which sample from dense independent sets
while remaining in the uniqueness regime. We conclude with the following related
question.

QUESTION 2. To what extent are higher-order M.r.f. in the uniqueness regime
capable of (approximately) encoding those distributions on independent sets which
exhibit long-range independence, such as i.i.d. factors of graphs?
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