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CONVERGENCE OF EMPIRICAL DISTRIBUTIONS IN
AN INTERPRETATION OF QUANTUM MECHANICS

BY IAN W. MCKEAGUE1 AND BRUCE LEVIN2

Columbia University

From its beginning, there have been attempts by physicists to formulate
quantum mechanics without requiring the use of wave functions. An interest-
ing recent approach takes the point of view that quantum effects arise solely
from the interaction of finitely many classical “worlds.” The wave function is
then recovered (as a secondary object) from observations of particles in these
worlds, without knowing the world from which any particular observation
originates. Hall, Deckert and Wiseman [Phys. Rev. X 4 (2014) 041013] have
introduced an explicit many-interacting-worlds harmonic oscillator model to
provide support for this approach. In this note, we provide a proof of their
claim that the particle configuration is asymptotically Gaussian, thus match-
ing the stationary ground-state solution of Schrödinger’s equation when the
number of worlds goes to infinity. We also construct a Markov chain based on
resampling from the particle configuration and show that it converges to an
Ornstein–Uhlenbeck process, matching the time-dependent solution as well.

1. Introduction. Let x1, . . . , xN be a finite sequence of real numbers satisfy-
ing the recursion relation

xn+1 = xn − 1

x1 + · · · + xn

.(1.1)

In this note, we show that for a certain class of solutions (monotonic with zero-
mean), the empirical distribution of the xn converges to standard Gaussian as
N → ∞. We also construct a simple Markov chain based on resampling from
this empirical distribution and show that it converges to an Ornstein–Uhlenbeck
process.

Hall, Deckert and Wiseman (2014) derived the recursion relation (1.1) via
Hamiltonian mechanics and used it to justify a novel interpretation of quantum
mechanics. The solution they considered represents the stationary ground-state
configuration of a harmonic oscillator in N “worlds,” where xn is the location
(expressed in dimensionless units) of a particle in the nth world. The particles
behave classically (deterministically in accordance with Newtonian mechanics)
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within each world, and there is a mutually repulsive force between particles in
adjacent worlds. Observers have access to draws from the empirical distribution

PN(A) = #{n:xn ∈ A}
N

for any Borel set A ⊂ R, but do not know the world from which any observation
originates due to their ignorance as to which world they occupy. In statistical lan-
guage, Efron’s nonparametric bootstrap can be used by observers (to obtain draws
with replacement from the whole configuration {x1, . . . , xN }), but they are unable
to identify any particular xn.

Hall, Deckert and Wiseman (2014) discovered that PN is approximately Gaus-
sian, thus corresponding to the stationary ground-state solution of Schrödinger’s
equation for the wave function of a particle in a parabolic potential well, and fur-
nishing a many-interacting-worlds interpretation of this wave function. They pro-
vided convincing numerical evidence that the Gaussian approximation is accurate
when N = 11, a case in which the recursion relation admits an exact solution. As
far as we know, however, a formal proof of convergence is not yet available. Sebens
(2015) independently proposed a similar many-interacting-worlds interpretation,
called Newtonian quantum mechanics, although no explicit example was provided.
Our interest in studying the explicit model (1.1) is that rigorous investigation of its
limiting behavior becomes feasible. Both Hall, Deckert and Wiseman (2014) and
Sebens (2015) noted the ontological difficulty of a continuum of worlds, a feature
of an earlier but closely related hydrodynamical approach due to Holland (2005),
Poirier (2010) and Schiff and Poirier (2012).

The motivation for the recursion (1.1) given by Hall, Deckert and Wiseman
(2014) was to explore explicitly the consequences of replacing the continuum of
fluid elements in the Holland–Poirier theory by a “huge” but nevertheless finite
number of interacting worlds. Yet their approach raises the question of whether
such a discrete model has a stable solution when the number of worlds becomes
large. A formal way to address this question is to establish the convergence of
PN under suitable conditions. The problem is nontrivial, however, because ex-
plicit solutions of the recursion are only available for small values of N , and nu-
merical methods are useful only for exploratory purposes. Nevertheless, we are
able to establish our result using only standard methods of distribution theory, and
most crucially the Helly selection theorem. In addition, by making use of Stein’s
method, we are able to find a rate of convergence. We further construct a Markov
chain based on bootstrap resampling from PN and show that it converges to the
Ornstein–Uhlenbeck process corresponding to the full (time-dependent) ground-
state solution of Schrödinger’s equation in this setting.

Our main results are collected in Section 2, and their proofs are in Section 3.
For general background on parallel-world theories in quantum physics, we refer
the interested reader to the book of Greene (2011). For the convenience of the
reader, at the end of Section 3 we have provided Hall, Deckert and Wiseman’s
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(2014) derivation of (1.1) as representing a ground state solution of the many-
interacting-worlds Hamiltonian.

2. Main results. Our main result is that PN has a standard Gaussian limit for
monotonic zero-mean solutions {x1, . . . , xN } to the recursion (1.1). Monotonicity
and zero-mean (along with the recursion) are necessary conditions for a ground-
state solution of the many-interacting-worlds Hamiltonian, so our result establishes
in full generality the normal approximation claimed by Hall, Deckert and Wiseman
(2014). We also show that such solutions to the recursion exist and are unique for
each N ≥ 3 (Lemma 1 in Section 3). The solutions are indexed by N , and for
clarity in the proofs we will write xn as xN,n. For now, though, we suppress the
dependence on N . Our main result is as follows.

THEOREM 1. The unique monotonic zero-mean solution {xn,n = 1, . . . ,N}
of the recursion relation (1.1) satisfies PN

d−→ N (0,1) as N → ∞.

Remarks.

1. Our proof of Theorem 1 will proceed by showing that PN is close in dis-
tribution to a certain piecewise-constant density yN(x), which in turn is shown to
converge pointwise to the N (0,1) density. Further, we will construct a coupling
between two random variables XN ∼ PN and X̃N ∼ yN such that |XN − X̃N | → 0
almost surely, so the result will then follow from Slutsky’s lemma. An illustration
of yN(x) is given in Figure 1.

2. Stein’s method, as often used for studying normal approximations to sums
of independent random variables [see Chen, Goldstein and Shao (2011)], is appli-
cable in our setting and gives insight into the rate of convergence. We will discuss
this approach following the proof. Stein’s method becomes particularly easy to
apply in our setting because yN(x) is the so-called zero-bias density of PN .

3. Let w1, . . . ,wN satisfy the more general recursion relation

wn+1 = wn − σ 2

w1 + · · · + wn

,

where σ 2 > 0. The scaled sequence xn = wn/σ satisfies (1.1), so Theorem 1 ap-
plies and the empirical distribution of {w1, . . . ,wN } converges to N (0, σ 2). It is
striking that the variance σ 2, rather than the standard deviation, appears linearly
in the recursion for wn. For the harmonic oscillator studied by Hall, Deckert and
Wiseman (2014), σ 2 = �/(2mω), where � is the reduced Planck constant, m is the
mass of the particle, and ω is the angular frequency.

4. Monotonicity of the solution to the recursion may not be necessary, even
though our proof of Theorem 1 relies on it. We have found from numerical ex-
periments that non-monotonic solutions can exist with PN indistinguishable from
standard Gaussian. From the physical point of view, however, monotonicity is an
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FIG. 1. Harmonic oscillator ground state configuration for N = 22 worlds compared with the
N (0,1) density. The histogram is the PN -zero-bias density yN(x), and the breaks in the histogram
are successive xn.

essential requirement: the ordering of the particles is always preserved by the
repulsive nature of the interaction between worlds [Hall, Deckert and Wiseman
(2014), Section III].

5. Theorem 1 is equivalent to the statement that if n = n(N) → ∞ with n/N →
α for some 0 < α < 1, then xn converges to the upper-α-quantile of N (0,1). This
implies a simple recursion approximation for intermediate normal quantiles.

2.1. Numerical example. The recursion can be rapidly iterated, but to gener-
ate an exact monotonic zero-mean solution, x1 needs to be known. A “randomly
chosen” initial point will not lead to a solution, and the system is nonrobust to
the choice of x1, which parallels the physics in the sense that explicit ground-state
solutions of the many-interacting-worlds Hamiltonian are not available.

We consider an example with N = 22 worlds, and use the following trial-and-
error approach to obtain an approximate solution. Given the proximity of xn to
normal quantiles noted above, the 1/N -upper-quantile of N (0,1) might be con-
sidered as a suitable initial choice of x1. From our numerical experiments, how-
ever, we have found that the 1/(2N)-upper-quantile (denoted qN ) is much more
accurate; the normal approximation is poor in the extreme tail of PN (i.e., more
extreme than ±x1), and the scaling by 2 compensates well for this. A search over a
fine grid in a small neighborhood of qN then quickly yields a very accurate solution
by minimizing |x1 +xN |. In this example, qN = 2.0004 and the best approximation
is x1 = 2.0025 (to 4 decimal places).
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Figure 1 displays the PN -zero-bias density yN(x) having mass 1/(N − 1) uni-
formly distributed over the intervals between successive xn, along with the N (0,1)

density. The approximation is remarkably good except around zero and in the ex-
treme tails.

2.2. General solutions to the quantum harmonic oscillator. Using an approach
to quantum mechanics pioneered by Edward Nelson, it can be shown that the
full ground state solution of Schrödinger’s equation for a harmonic oscillator can
be represented in terms of the distribution of an Ornstein–Uhlenbeck (OU) pro-
cess. Moreover, the complete family of solutions can be represented by adding this
ground-state process to all solutions of the classical harmonic oscillator; see, for
example, Paul and Baschnagel (2013), pages 122–124. The limit in Theorem 1
refers to the stationary distribution of this ground-state OU process, but it is also
possible to construct a many-interacting-worlds approximation to the OU process
itself. This can be done in terms of simple random samples from PN that evolve as
a Markov chain, as we now explain.

Let {Z1, . . . ,Zm} be an independent random sample of size m from N (0,1),
corresponding to m draws from PN in the limit as N → ∞ (by Theorem 1). Let
Y0 = ∑m

i=1 Zi , and let Y1 be obtained from Y0 by replacing a randomly selected Zi

by an independent draw from N (0,1). By iterating this “random single replace-
ment” mechanism (cf. sequential bootstrap), we obtain a stationary Markov chain
of samples of size m, and an autoregressive Gaussian time series Yk satisfying

Yk = (1 − λ)Yk−1 + εk, k = 1,2, . . . ,

where λ = λm = 1/m, and the innovations εk ∼ N (0,2 − λ) are independent of
each other and of past values of the time series [cf. Chen, Goldstein and Shao
(2011), pages 22–25]. Construct a rescaled version of the time series as a random
element of the Skorohod space D[0,∞) by setting

X
(m)
t = Y[mt]/

√
m, t ≥ 0,

where [·] is the integer part. Using a result of Phillips (1987) concerning first-order
autoregressions with a root near unity, we can show that X

(m)
t converges in distri-

bution as m → ∞ to the (stationary) OU process Xt that satisfies the stochastic
differential equation

dXt = −Xt dt + √
2dWt, t ≥ 0,

where Wt is a standard Wiener process and X0 ∼ N (0,1). It suffices to consider
the time series

yk = Yk/
√

1 − λ/2, k = 1,2, . . . ,

which has i.i.d.-N (0,2) innovations and autoregressive parameter a = (1 −
λ)/

√
1 − λ/2. Setting a = ec/T where c = −1 and T = Tm → ∞ to match
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Phillips’s notation, we have T/m → 1, so his Lemma 1(a) gives that the process
y[mt]/

√
m converges in distribution to the OU process Xt , as required.

We expect the same limit result if the Markov chain consists of random samples
of size m from PN (that evolve by the same mechanism), provided N and m si-
multaneously tend to infinity. The proof of such a general result would be difficult,
however, as it would involve extending the above argument to time series in which
the innovations depend on m and N and that are no longer independent. Neverthe-
less, we can show that such a result holds provided m = mN → ∞ slowly enough,
as follows.

THEOREM 2. Suppose the conditions of Theorem 1 hold. Let YN,k be the sum
of values at time k of the stationary Markov chain of samples of size m generated
by the mechanism of random single replacement from PN . Then, if m = mN → ∞
and m = o(logN)1/3 the rescaled process

	Xt = YN,[mt]/
√

m, t ≥ 0

converges in distribution on D[0,∞) to the OU process Xt .

3. Proofs. Before proceeding to the proof of Theorem 1, we state a lemma
(to be proved later) that gives the key properties needed to establish the theorem,
and also establishes the existence of a unique solution to the recursion relation that
satisfies the conditions of the theorem. Throughout we implicitly assume N ≥ 3.
We will also make extensive use of the notion of zero-median in the following
sense: if N is odd, then x(N+1)/2 = 0; if N is even, then xN/2 = −x(N/2)+1.

LEMMA 1. Every zero-median solution x1, . . . , xN of (1.1) satisfies the fol-
lowing properties:

(P1) Zero-mean: x1 + · · · + xN = 0.
(P2) Variance-bound: x2

1 + · · · + x2
N = N − 1.

(P3) Symmetry: xn = −xN+1−n for n = 1, . . . ,N .

Further, there is a unique solution x1, . . . , xN of (1.1) such that (P1) and

(P4) Strictly decreasing: x1 > · · · > xN

hold. This solution has the zero-median property, and thus also satisfies (P2)
and (P3).

Without loss of generality, we can assume that (P4) holds, since if we start with
an increasing zero-median solution, reversing the order of the solution provides
a decreasing solution by (P3), and any monotonic solution is strictly monotonic.
The dependence on N is now made explicit: write xn = xN,n, and also denote
SN,n = xN,1 + · · · + xN,n for n = 1, . . . ,N .
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First, we show that xN,1 ≥ √
logN/2. For odd N , the median xN,m = 0, where

m = mN = (N + 1)/2, and the telescoping sum

xN,1 =
m−1∑
n=1

(xN,n − xN,n+1) >
1

xN,1

m−1∑
n=1

1

n
>

logm

xN,1
.

Here, we used (1.1), (P4) and SN,n < nxN,1 for the first inequality, and Euler’s
approximation to the partial sums of the harmonic series for the second inequality.
This gives xN,1 >

√
logm, and a similar argument shows that the same is true for

N even with m = N/2. The claim then follows using the inequality log(N/2) >

(logN)/4 for N ≥ 3.
Now using the symmetry property to bound SN,n from below by xN,1 for n =

1, . . . ,N − 1, the recursion (1.1) gives the uniform bound

0 < xN,n − xN,n+1 = 1/SN,n ≤ 1/xN,1,

and an upper bound on the mesh of the sequence:

δN ≡ max
n=1,...,N−1

|xN,n − xN,n+1| ≤ 2/
√

logN.(3.1)

Next, for x ∈ R such that |x| < xN,1, let n = n(x,N) be the unique index satis-
fying xN,n+1 ≤ x < xN,n, and define yN(x) = SN,n/(N −1), so from the recursion
relation (1.1) we have

yN(x) = [
(N − 1)(xN,n − xN,n+1)

]−1
.(3.2)

Defining yN(x) = 0 for |x| ≥ xN,1 makes yN into a piecewise-constant density;
see Figure 1 for an illustration.

We will show that yN(x) converges uniformly in x, although we only need
pointwise convergence. Let XN be a random variable distributed according to
the empirical distribution PN that was defined in the Introduction. Set YN(x) =
XNI (XN > x). Since yN(x) = (N/(N − 1))EYN(x), it suffices to consider
EYN(x). We use a subsequence argument. Note that XN has second moment
1 − 1/N by (P2), so it is bounded in probability (tight). Thus, by the Helly se-
lection theorem, there is a subsequence that converges in distribution. Let D ⊂ R

denote the set of continuity points of the limit distribution. For x ∈ D, note that
YN(x) converges in distribution (along the subsequence) by the continuous map-
ping theorem. Thus, since YN(x) is uniformly integrable as the second moment
EY 2

N(x) ≤ EX2
N is uniformly bounded by (P2), we obtain that yN(x) has a point-

wise limit for all x ∈ D.
Below we will show that there is a unique continuous function y(x) such that

yN(x) → y(x) for all x ∈ D. Then, using the monotonicity of yN(x) over either
x ≥ 0 or x ≤ 0, the whole sequence yN(x) must converge pointwise to y(x) for all
x ∈ R. The functions yN(x) are right-continuous, so, by the same argument that is
used to prove the Glivenko–Cantelli theorem and using the continuity of y(x), we
will also then have uniform convergence yN(x) → y(x) for x ∈ R, as claimed.
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We have shown that y(x) = limN→∞ yN(x) exists for x ∈ D (a dense subset
of R), when the limit is taken over a subsequence of yN . Now extend the definition
of y(x) to a general x ∈ R by taking a sequence zr ∈ D such that zr ↓ x and
setting y(x) ≡ limr→∞ y(zr). Since y(x) shares the same monotonicity properties
as the limit of yN(x) on x ∈ D, it is well-defined, that is, not dependent on the
choice of the sequence zr . Note that y(x) is right-continuous (by construction), and
yN(x) → y(x) for all x ∈ R at which y(x) is continuous. In particular, yN(x) →
y(x) a.e. [dx], since y(x) has at most countably many discontinuities.

From the recursion relation (1.1), we have

yN(xN,n+1) − yN(xN,n)

xN,n+1 − xN,n

= xN,n+1/(N − 1)

−S−1
N,n

= xN,n − S−1
N,n

−S−1
N,n(N − 1)

= 1

N − 1
− xN,nyN(xN,n).

Let 0 ≤ u < v be continuity points of x 
→ y(x), and take N to be sufficiently large
that xN,1 > v, so n(v,N) and n(u,N) are defined. Multiply the first and last parts
of the above display by xN,n+1 −xN,n and sum over n from n(v,N) to n(u,N), to
obtain an equation of the form AN = BN − CN . Here, AN and BN are telescoping
sums:

AN = yN(u) − yN(v) → y(u) − y(v), BN = (uN − vN)/(N − 1) → 0,

where uN = xN,n(u,N), vN = xN,n(v,N), and

CN =
∫ vN

uN

hN(x)yN(x) dx,

where hN(x) ≡ xN,n(x,N). Note that by (3.1) we have hN(x) → x for all x ∈ R.
This leads to the integral equation

y(u) − y(v) = −
∫ v

u
xy(x) dx

by applying the bounded convergence theorem, since hN(x)yN(x) → xy(x) a.e.
[dx]; note that the yN(x) are uniformly bounded, since they are nonnegative, uni-
modal and converge pointwise. Moreover, by the right-continuity of y(x), the in-
tegral equation holds for all 0 ≤ u < v, and, by the symmetry property the case
u < v ≤ 0 is also covered by the above argument. Therefore, y(x) is differentiable
and satisfies the linear first-order ODE y′(x) + xy(x) = 0. This ODE has general
solution of the form y(x) = cϕ(x), where c is a constant and ϕ(x) is the standard
normal density.

It remains to identify c. By (3.2),

∫ ∞
−∞

yN(x) dx =
N−1∑
n=1

[
(N − 1)(xN,n − xN,n+1)

]−1
(xN,n − xN,n+1) = 1,(3.3)
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so by Fatou’s lemma [applicable since 0 ≤ yN(x) → y(x) a.e.]

c =
∫ ∞
−∞

y(x) dx ≤ lim inf
N→∞

∫ ∞
−∞

yN(x) dx = 1.

Let X̃N be a random variable having density yN(x). The second moment of X̃N

∫ ∞
−∞

x2yN(x) dx =
N−1∑
n=1

[
(N − 1)(xN,n − xN,n+1)

]−1(
x3
N,n − x3

N,n+1
)
/3

≤ (N − 1)−1
N−1∑
n=1

x2
N,n ≤ 1,

where the last inequality follows from the variance bound (P2) in Lemma 1.
This implies that the X̃N are tight, so for any ε > 0 there exist u < v such that∫ v
u yN(x) dx > 1 − ε for all N . By the bounded convergence theorem,∫ v

u
yN(x) dx →

∫ v

u
y(x) dx = c

∫ v

u
ϕ(x) dx,

so
∫ v
u yN(x) dx < c + ε for N sufficiently large. This shows that c > 1 − 2ε, but as

ε > 0 was arbitrary and c ≤ 1, we have established that c = 1.
This uniquely identifies the function y(x) as ϕ(x), so we have shown that

yN(x) → y(x) = ϕ(x) for all x ∈ R. Hence, the distribution of X̃N (having den-
sity p̃N ) converges in total variation distance (and consequently in distribution) to
N (0,1). The last part of the proof shows that it is possible to create a coupling
between XN ∼ PN and X̃N (on the same probability space) such that

|XN − X̃N | ≤ |xN,n − xN,n+1| when X̃N ∈ [xN,n+1, xN,n].(3.4)

We then have the uniform bound

|XN − X̃N | ≤ max
n=1,...,N−1

|xN,n − xN,n+1| = δN → 0(3.5)

using (3.1), so by Slutsky’s lemma we conclude that PN converges in distribution
to N (0,1).

To create the above coupling between XN and X̃N , note that X̃N uniformly
distributes mass 1/(N −1) on each interval between successive xN,n. Let N be odd
(a similar argument works for N even), in which case xN,m = 0 for m = (N +1)/2.
We need to split each interval in such a way that there is mass 1/N assigned to
xN,n from the two adjacent parts (or the one adjacent part if n = 1 or N ). This
can be done as follows. Split the first interval to the right of zero so there is mass
L1 = 1/(2N) on the left part and R1 = 1/(N − 1) − 1/(2N) on the right part.
Split the j th interval to the right of zero so there is mass Lj = (2j − 1)/(2N) −
(j − 1)/(N − 1) on the left part, and Rj = 1/(N − 1) − Lj = j/(N − 1) − (2j −
1)/(2N) on the right part, for j = 2, . . . , (N − 1)/2. Some algebra shows that
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the mass assigned the right endpoint of the j th interval is Rj + Lj+1 = 1/N for
j = 1, . . . , (N − 1)/2 − 1, and for the last interval [j = (N − 1)/2] it is also 1/N .
Use symmetry to define the coupling over the negative intervals. Note that the
median xN,m = 0 gets mass 1/(2N) + 1/(2N) = 1/N as well. This completes the
proof of Theorem 1.

3.1. Application of Stein’s method. Stein’s method allows us to obtain bounds
on the rate of convergence. The rate will be measured using Wasserstein distance:
for two probability distributions μ and ν on R,

dW(μ, ν) = sup
h∈L

∣∣Eh(X) − Eh(Y )
∣∣,

where X ∼ μ and Y ∼ ν, and L is the collection of 1-Lipschitz functions h:R →R

such that |h(x) − h(y)| ≤ |x − y|. Here, we derive bounds on dW(PN,N ), where
N is Gaussian with the same mean and variance as PN .

Goldstein and Reinert (1997) introduced the notion of zero-bias distributions,
defined as follows. Given a r.v. X with mean zero and variance σ 2, there is a r.v.
X∗ such that σ 2E[f ′(X∗)] = E[Xf (X)] for all absolutely continuous functions
f :R → R for which E|Xf (X)| < ∞. [This result also appears as Proposition 2.1
of Chen, Goldstein and Shao (2011), although a slight correction is needed: the σ 2

is misplaced in the first display.]
The distribution of X∗ is the X-zero-bias distribution. It has density p∗(x) =

E[XI (X > x)]/σ 2. The unique fixed point of the zero-bias transformation is
N (0, σ 2), and the intuition behind Stein’s method is that if X is close to X∗ it
should be close in distribution to N (0, σ 2). Indeed, from Lemma 2.1 of Goldstein
(2004), the Wasserstein distance between X and a normal variable having the same
mean and variance is bounded above by 2E|X − X∗| when X and X∗ are defined
on the same probability space.

In our setting, X̃N has the XN -zero-bias distribution because its density yN(x)

agrees with p∗(x) when X = XN . Further, we have coupled X̃N and XN to sat-
isfy (3.4). Thus,

dW(PN,N ) ≤ 2E|XN − X̃N | ≤ 2

N − 1

N−1∑
n=1

(xN,n − xN,n+1) = 4xN,1

N − 1
.(3.6)

Larry Goldstein pointed out that it is possible to obtain a lower bound on the
Wasserstein distance between PN and its zero-bias distribution as follows. Con-
sider the “sawtooth” piecewise linear function h:R → R defined to have knots at
each xn and at each midpoint mn = (xn + xn+1)/2 between successive xn, such
that h(xn) = 0 and h(mn) = (xn − xn+1)/2, with h vanishing outside [xN, x1].
Clearly, h is 1-Lipschitz and Eh(XN) = 0, so from its definition the Wasser-
stein distance between PN and its zero-bias distribution is bounded below by
Eh(X̃N) = xN,1/[2(N − 1)], which is of the same order as the upper bound on
dW(PN,N ).
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This strongly suggests dW(PN,N ) � xN,1/N . Moreover, as mentioned earlier,
there is convincing numerical evidence that xN,1 � qN , where qN is the upper
1/(2N)-quantile of N (0,1). Indeed, we have already shown xN,1 ≥ √

logN/2,
and using Mills ratio it can be shown that qN � √

logN , so combining with (3.6)
we expect dW(PN,N ) � √

logN/N . In terms of what we have actually proved,
however, the uniform coupling property (3.5) and (3.1) only give the weaker upper
bound dW(PN,N ) ≤ 2δN ≤ 4/

√
logN .

3.2. Proof of Theorem 2. We have already shown that X
(m)
t converges in dis-

tribution to the OU process Xt . By appealing to Slutsky’s lemma for random el-
ements of metric spaces [van der Vaart (1998), Theorem 18.10], it thus suffices
to show that for each T > 0 the processes {	Xt, t ∈ [0, T ]} and {X(m)

t , t ∈ [0, T ]}
can be coupled as random elements of D[0, T ] on a joint probability space,
with their difference tending uniformly to zero in probability. The upper bound
on the Wasserstein distance just derived implies that if XN ∼ PN , there exists
Z ∼ N (0,1) on a joint probability space with E|XN − Z| = O(1/

√
logN).

Further, any sequence of i.i.d.-PN r.v.’s can be coupled in this way using inde-
pendent coupled pairs on a joint probability space. The single replacement mech-
anism that generates samples of size m from PN can be coupled with a chain of
samples from N (0,1) by using the same randomly selected index in each transi-
tion. Each transition involves selecting the update from an independent sample of
size m, so m([mT ] + 1) coupled pairs are involved over the interval [0, T ]. Thus,
we have constructed a coupling of the processes 	Xt and X

(m)
t over t ∈ [0, T ] with

E
{

sup
t∈[0,T ]

∣∣	Xt −X
(m)
t

∣∣} ≤ m
([mT ]+1

)
E|XN −Z|/√m = m3/2O(1/

√
logN) → 0

since we have assumed m = o(logN)1/3, so the result follows by Chebyshev’s
inequality.

3.3. Proof of Lemma 1. The following result is needed to prove Lemma 1.
Denote m = mN = (N + 1)/2 if N is odd and m = mN = N/2 if N is even. For
any given x1 > 0, let x2, . . . , xN be generated by the recursion (1.1). We consider
each term xn = xn(x1) as a function of x1, and similarly consider each cumulative
sum Sn = x1 + · · · + xn as a function of x1, Sn = Sn(x1), for n = 2, . . . ,N .

LEMMA 2. For all n = 2, . . . ,m:

(a) There exists a unique positive real number an such that xn(an) = 0 and for
which if xn(z) = 0 then z ≤ an. The an are strictly increasing: 0 < a2 < · · · < am.

(b) For x1 > an, xn is a positive, increasing and continuous function of x1.
(c) There exists a unique positive real number bn such that Sn(bn) = 0 and for

which if Sn(z) = 0 then z ≤ bn. The bn are strictly increasing: 0 < b2 < · · · < bm.
(d) For x1 > bn, Sn is a positive, increasing and continuous function of x1.
(e) an > bn.
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PROOF. We use induction on n. Clearly, a2 = 1 is the unique positive solu-
tion of x2 = x1 − x−1

1 = 0, and x2 is positive, increasing, and continuous in x1

for x1 > 1. The equation S2 = x1 + x2 = 2x1 − x−1
1 = 0 has the unique positive

solution b2 = √
2/2 < a2, and S2 is positive, increasing and continuous in x1 for

x1 > b2 since both 2x1 and −x−1
1 are increasing, continuous functions of x1. Note

that this holds true even though x2 < 0 for x1 < a2. This completes the initial
induction step n = 2.

Suppose we have determined constants ai and bi satisfying properties (a)–(e)
for i = 1, . . . , n < m. We show these properties hold for i = n + 1. First, we assert
that there are values of x1 > an such that xn+1 < 0. To see this, note that for any
x1 > an, we have x1 > an > bn ≥ bi for i = 1, . . . , n. Thus, Si > 0, which implies
xi+1 = xi − S−1

i < xi , hence Sn < nx1. Then xn+1 = xn − S−1
n < xn − (nx1)

−1 <

xn − (2nan)
−1 for x1 sufficiently close to an, e.g., an < x1 < 2an. But xn can

be made arbitrarily close to zero for x1 sufficiently close to an by continuity, in
particular xn < (2nan)

−1, from which it follows xn+1 < 0.
Next, we assert there are values of x1 > an such that xn+1 > 0. Note that for

such x1, each xi > 0 by property (a) and (b), so Sn > x1. Thus, xn+1 = xn −S−1
n >

xn − x−1
1 . As x1 becomes sufficiently large, xn remains bounded away from zero

while −x−1
1 can be made arbitrarily close to zero. It follows that for sufficiently

large x1 > an we have xn+1 > 0.
Thus, for x1 > an > bn, by continuity of xn and Sn > 0 as functions of x1

under the inductive hypothesis, xn+1 = xn − S−1
n is continuous, so the interme-

diate value theorem implies the existence of at least one root of the equation
xn+1(x1) = 0, and that root is strictly greater than an. The argument of the pre-
ceding paragraph showed that the set of roots of xn+1 = 0 is bounded from above,
so we determine an+1 uniquely as the supremum of the nonempty, bounded set
{x1 > an : xn+1(x1) = 0}, and that supremum satisfies an+1 > an > bn. In fact, the
set is finite because the equation xn+1(x1) = 0 is equivalent to a polynomial equa-
tion with finitely many real roots, so we can say “maximum” rather than “supre-
mum.” It is then clear that xn+1(an+1) = 0. Then xn+1 = xn −S−1

n is an increasing,
continuous function for x1 > an+1 because both xn and −S−1

n are increasing and
continuous, and so xn+1 is a positive, increasing and continuous function of x1 for
x1 > an+1. This establishes parts (a) and (b) of the inductive step.

Next, we establish parts (c) and (d) of the inductive step. For x1 greater than
but sufficiently close to bn, xn+1 = xn − S−1

n can be made arbitrarily large nega-
tive, because xn approaches the constant xn(bn) while Sn goes to zero from above.
Therefore, Sn+1 = xn+1 + Sn also becomes arbitrarily large negative as xn ap-
proaches bn from above. Writing

Sn+1 = Sn + xn+1 = Sn + xn − S−1
n = Sn + xn−1 − S−1

n−1 − S−1
n

= · · · = Sn + x1 − x−1
1 − S−1

2 − · · · − S−1
n
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we find that Sn+1 is continuous and increasing for x1 > bn > · · · > b2, because
each term in the sum on the right-hand side is continuous and increasing for such
x1 by the inductive hypothesis. Furthermore, we have established that both xn+1
and Sn are positive for x1 sufficiently large, so for such x1, Sn+1 = xn+1 +Sn is also
positive. Thus, by the intermediate value theorem, there exists a root of the equa-
tion Sn+1(x1) = 0 strictly greater than bn. Since the set of such roots is bounded
from above, we define bn+1 uniquely as the maximum of the nonempty, bounded,
finite set {x1 > bn:Sn+1(x1) = 0}, the maximum of which satisfies bn+1 > bn and
Sn+1(bn+1) = 0. We conclude that Sn+1 is a positive, increasing, continuous func-
tion of x1 for x1 > bn+1 > bn. This establishes properties (c) and (d) of the induc-
tive step.

To establish property (e), argue by contradiction. We have already shown that
an+1 > an and an > bn by the inductive hypothesis. At x1 = bn+1, we have 0 =
Sn+1 = xn+1 + Sn, that is, xn+1 = −Sn. So suppose it were the case that bn+1 ≥
an+1. Then xn+1 would be strictly negative, because we would have x1 = bn+1 ≥
an+1 > an > bn, so that Sn > 0 by the inductive hypothesis. But if x1 > an+1, then
xn+1 < 0 contradicts property (a), which states that xn+1 is positive for such x1,
or if x1 = an+1, then xn+1 < 0 contradicts the defining property of an+1, namely,
xn+1 = 0. Thus, an+1 > bn+1. This establishes part (e) of the inductive step, and
the proof of Lemma 2 is complete. �

PROOF OF LEMMA 1 (CONTINUED). First, consider the case that N is odd,
and set m = (N + 1)/2. To prove the symmetry property (P3), we need to show
that if x1 is any root of the equation xm(x1) = 0, then the identity xm+i = −xm−i

holds for i = 0,1, . . . ,m − 1. The proof is by induction on i. The case i = 0 is
immediate as it is simply xm = 0. Suppose the identity holds up to a given index
i < m. Then

xm+i+1 = xm+i − S−1
m+i = −xm−i − S−1

m−i−1

= −(
xm−i−1 − S−1

m−i−1

) − S−1
m−i−1 = −xm−i−1,

where the second equality is by the inductive hypothesis, since the symmetry
xm+i = −xm−i for values of the subscript m, . . . ,m + i on the left and m − i

on the right also implies that Sm+1 = Sm−i−1. The first and third equalities are by
the recursion, so the identity holds for i + 1, and we have shown (P3). The zero-
mean property (P1) follows from the symmetry (P3). For the variance property
(P2), denoting S0 = 0 we have

N − 1 = ∑N−1

n=1
SnS

−1
n =

N−1∑
n=1

Sn(xn − xn+1) = ∑N−1

n=1

[
(Sn−1 + xn)xn − Snxn+1

]

= ∑N−1

n=1

[
Sn−1xn − Snxn+1 + x2

n

]
= x2

1 + · · · + x2
N−1 − SN−1xN,
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where we used the recursion in the second equality, and the last equality is from a
telescoping sum. (P1) implies −SN−1 = xN , and (P2) follows.

The proof of the second part of the lemma relies on the following.

CLAIM. There exists a unique zero-median solution x1, . . . , xN that maxi-
mizes x1 in the sense that if x̃1, . . . , x̃N is any other zero-median solution then
x̃1 < x1, and this solution satisfies (P4).

To prove this claim when N is odd, let x1 = am > 0 provided by Lemma 2(a)
in the special case n = m, so that xm(x1) = 0 (i.e., the zero-median property
holds) and x1 is the largest possible root of xm = 0, establishing the existence
and uniqueness parts of the claim. For property (P4), by Lemma 2 we have that
x1 = am > bm > · · · > b2, and Sn > 0 for n = 1, . . . ,m, so xn − xn+1 = S−1

n > 0
for those n. The zero-median property and the symmetry then imply xn > xn+1 for
the remaining n = m + 1, . . . ,N , so (P4) holds.

Next, consider the case that N is even, and set m = N/2. The symmetry prop-
erty (P3) follows by a similar inductive argument on i to what we used earlier,
so the zero-mean property (P1) also holds. (P2) was proved earlier without using
any restriction on N . To prove the claim, we need to show that there is a largest
root, call it am+1/2, of the equation xm(x1) + xm+1(x1) = 0. The sum on the left
is 2xm − S−1

m , which by Lemma 2(b) and (d) is continuous for x1 > bm, negative
at x1 = am, and positive for sufficiently large x1 > am. Thus there is a root of the
above equation greater than am. Define am+1/2 as the unique maximum of the non-
empty, bounded, finite set of roots. Taking x1 = am+1/2 establishes the existence of
a solution to the recursion having the zero-median property, as well as its unique-
ness in maximizing x1. For the property (P4) that the resulting sequence is strictly
decreasing, note that by Lemma 2 we have x1 = am+1/2 > am > bm > · · · > b2,
and Sn > 0 for n = 1, . . . ,m, so xn − xn+1 = S−1

n > 0 for those n. The zero-
median property and the symmetry then imply xn > xn+1 for the remaining
n = m + 1, . . . ,N , completing the proof of the claim.

To complete the proof of the lemma, it remains to show uniqueness of zero-
mean monotonic sequences x1 > x2 > · · · > xN generated by the recursion. The
zero-mean condition is the same as SN(x1) = 0. The key point is that with x1 > 0,
assuming we have a monotonic solution implies that the cumulative sums Sn are
positive for n = 1, . . . ,N − 1, by the recursion equation xn+1 = xn − S−1

n . Ar-
gue by induction as follows. Clearly, x2 = x1 − 1/x1 is an increasing function of
x1 > 0, even if x2 happens to be negative. Therefore, S2 = x2 + S1 is an increasing
function of x1, and thus a positive increasing function for x1 greater than the given
x1 by monotonicity. Therefore, x3 = x2 −S−1

2 is an increasing function of x1 (even
if it is negative). Therefore, S3 = x3 +S2 is an increasing function of x1, and thus a
positive increasing function for x1 greater than the given x1 by monotonicity. And
so on, so by induction we have xN is an increasing function of x1 and SN−1 is a
positive increasing function of x1 for x1 greater than the given x1 by monotonicity.
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Therefore, SN = xN + SN−1 is increasing in x1 for x1 greater than the given x1
by monotonicity. If we assume the given x1 is smaller than the am constructed in
proving the claim (when N is odd, similarly when N is even), then we must have
SN(am) > 0, which contradicts the zero-mean property. The same argument shows
there is no x1 > am that generates a monotonic solution with the zero-mean prop-
erty, and we conclude that am generates the unique zero-mean monotonic solution.

�

3.4. Derivation of the recursion. In the ground state, the Hamiltonian de-
pends only on the locations of the particles x = (x1, . . . , xN), x1 > x2 > · · · > xN :
H(x) = V (x)+U(x), where V (x) = ∑N

n=1 x2
n is the classical potential for N (non-

interacting) particles of equal mass in a parabolic trap, and

U(x) =
N∑

n=1

(
1

xn+1 − xn

− 1

xn − xn−1

)2

is the hypothesized “interworld” potential, where x0 = ∞ and xN+1 = −∞. Write

(N − 1)2 =
[

N−1∑
n=1

xn+1 − xn

xn+1 − xn

]2

=
[

N∑
n=1

(
1

xn+1 − xn

− 1

xn − xn−1

)
(xn − x̄N )

]2

≤
N∑

n=1

(
1

xn+1 − xn

− 1

xn − xn−1

)2 N∑
n=1

(xn − x̄N )2

≤ U(x)V (x),

where the first inequality is Cauchy–Schwarz. So U ≥ (N − 1)2/V , leading to

H = U + V ≥ (N − 1)2/V + V ≥ 2(N − 1)

with the last inequality being equality for V = N − 1. We conclude that x is a
ground state solution if and only if (P1) and (P2) hold, and

xn = α

xn+1 − xn

− α

xn − xn−1

for some constant α. The sum of the right of the above display telescopes, leading
to the recursion (1.1) by rearranging and noting that α = −V/(N − 1) = −1 by a
similar argument to the proof of (P2) in Lemma 1.
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