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CYCLE SYMMETRIES AND CIRCULATION FLUCTUATIONS FOR
DISCRETE-TIME AND CONTINUOUS-TIME MARKOV CHAINS1

BY CHEN JIA∗,†, DA-QUAN JIANG† AND MIN-PING QIAN†

Beijing Computational Science Research Center∗ and Peking University†

In this paper, we find a series of equalities which characterize the sym-
metry of the forming times of a family of similar cycles for discrete-time and
continuous-time Markov chains. Moreover, we use these cycle symmetries to
study the circulation fluctuations for Markov chains. We prove that the sample
circulations along a family of cycles passing through a common state satisfy
a large deviation principle with a rate function which has a highly nonobvi-
ous symmetry. Further extensions and applications to statistical physics and
biochemistry are also discussed, especially the fluctuation theorems for the
sample net circulations.

1. Introduction. Markov chains are widely used to model various stochas-
tic systems in physics, chemistry, biology, engineering and other disciplines. The
trajectory of a recurrent Markov chain constantly forms various cycles. The cycle
representation theory of Markov chains [23, 31, 34–38] not only possesses rich
theoretical results, but has become a fundamental tool in dealing with nonequi-
librium (irreversible) processes in natural sciences as well. Readers may refer to
[21, 24] for the theoretical contents of the cycle representation theory and refer to
[18, 45] for its applications in physics, chemistry and biology.

The earliest theoretical result about the cycle representation theory is proba-
bly Kolmogorov’s criterion for reversibility [25], which claims that a stationary
Markov chain is reversible if and only if the product of transition probabilities
(rates) along each cycle c and that along its reversed cycle c− are the same. Illu-
minated by Hill’s diagram method [19] and Schnakenberg’s network theory [40],
the Qian’s [31, 34, 35, 37, 38] and Kalpazidou [23, 24] introduced the important
concept of circulations and further enriched the cycle representation theory. Let
Nc

t denote the number of times that cycle c is formed by a Markov chain up to
time t . Then the sample circulation J c

t along cycle c by time t is defined as

J c
t = 1

t
Nc

t(1)
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and the circulation J c along cycle c is a nonnegative real number defined as the
following almost sure limit:

J c = lim
t→∞J c

t , a.s.,(2)

which represents the number of times that cycle c is formed per unit time. It turns
out that a stationary Markov chain is reversible if and only if the circulations along
each cycle c and its reversed cycle c− are the same. This explains why the cycle
representation theory is naturally related to various nonequilibrium phenomena in
natural sciences.

Recently, biophysicists have applied the cycle representation theory to study
single-molecule enzyme kinetics and found an interesting relation named as the
generalized Haldane equality [16–18, 33]. Mathematically, each chemical reaction
catalyzed by an enzyme can be modeled as a Markov chain whose state space has
a cyclic topology (see Section 7.2 below). For such cyclic Markov chains, there are
only two effective cycles, that is, the clockwise cycle c and the counterclockwise
cycle c−. Let T c and T c− denote the time needed for the Markov chain to form the
cycle c and its reversed cycle c− for the first time, respectively. Kolomeisky et al.
[26] proved that for such cyclic Markov chains, the expectations of T c and T c−,
under the condition that the corresponding cycle is formed earlier than its reversed
cycle, are exactly the same:

E
(
T c|T c < T c−) = E

(
T c−|T c− < T c).(3)

Subsequently, Qian and Xie [33] and Ge [16] generalized the equality (3) and
proved that for cyclic Markov chains, not only the conditional expectations, but
also the conditional distributions of T c and T c− are also the same:

P
(
T c ≤ t |T c < T c−) = P

(
T c− ≤ t |T c− < T c).(4)

This equality characterizes a symmetry of the forming times of a cycle and its re-
versed cycle. Qian and Xie [33] named the equality (4) as the generalized Haldane
equality since it generalizes what is known as the Haldane relation for reversible
enzyme kinetics [41]. Interestingly, Samuels [39] and Dubins [10] have found
an equivalent form of the generalized Haldane equality even earlier in nearest-
neighbor periodic walks when studying the gambler’s ruin problem.

Now that the generalized Haldane equality holds for cyclic Markov chains, it
is natural to ask whether it holds for general Markov chains. If the state space
has a cyclic topology, then the Markov chain has only two effective cycles. In this
case, the generalized Haldane equality can be proved by the method of quasi-time-
reversal [16]. However, this method depends too much on the cyclic topology of
the state space and cannot be generalized to general Markov chains with a large
number of effective cycles.

In this paper, we establish some deep properties of taboo probabilities and
use them to prove the generalized Haldane equality for general discrete-time and
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continuous-time Markov chains with denumerable state space. We find that the
generalized Haldane equality not only holds for a cycle and its reversed cycle,
but also holds for a family of similar cycles, which are defined as cycles pass-
ing through the same set of states (see Definition 3.1 below). Let c1, c2, . . . , cr

be a family of similar cycles, let T c1, T c2, . . . , T cr be their forming times and let
T = min{T c1, T c2, . . . , T cr }. In this paper, we prove that although the distributions
of T c1, T c2, . . . , T cr can be different, their distributions, under the condition that
the corresponding cycle is formed earlier than other similar cycles, are exactly the
same:

P
(
T c1 ≤ t |T = T c1

) = P
(
T c2 ≤ t |T = T c2

) = · · · = P
(
T cr ≤ t |T = T cr

)
.(5)

This equality also implies that the forming time T of multiple similar cycles is
independent of which one of these cycles is formed (see Remark 3.13 below). This
is another important aspect of the generalized Haldane equality.

The generalized Haldane equality established in this paper has wide applica-
tions. One of the most important applications is to study the circulation fluctua-
tions for Markov chains. In the recent two decades, the studies on the fluctuations
of various thermodynamic quantities for stochastic systems have become a cen-
tral topic in nonequilibrium statistical physics [43]. Motivated by the results of
numerical simulations [13], Gallavotti and Cohen [15] gave the first mathemati-
cal presentation of the fluctuation theorem for a class of stationary nonequilibrium
systems. Since then, there has been a large amount of literature exploring various
generalizations of the fluctuation theorem [8, 12, 20, 27, 28, 42, 44].

In recent years, physicists became increasingly concerned about the fluctuation
theorems for the circulations of Markov chains [1–4, 14, 18, 30, 33]. As pointed out
by Seifert [43], the studies on the circulation fluctuations have become a hot spot
topic in nonequilibrium statistical physics. In the previous work, physicists have
studied the fluctuation theorems for the cycle currents of Markov chains based on
Schnakenberg’s network theory [1, 14, 30]. However, the cycle currents studied by
physicists are related to but in essence different from the circulations considered
in this paper [14]. In addition, Andrieux and Gaspard [2] have tried to study the
circulation fluctuations for Markov chains. However, their proofs of the fluctuation
theorems are not mathematically rigorous and seem questionable in some compli-
cated cases. As a result, the circulation fluctuations for Markov chains need to be
studied in more detail with full mathematical rigor.

Interestingly, the generalized Haldane equality established in this paper can be
used to study the circulation fluctuations for Markov chains. It is easy to see that
the circulations defined in (2) are the almost sure limits of the sample circulations
defined in (1). In this paper, we prove that the sample circulations along a family
of cycles c1, c2, . . . , cr passing through a common state satisfy a large deviation
principle with rate t and good rate function I c1,c2,...,cr . Moreover, we apply the
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generalized Haldane equality to prove that the rate function I c1,c2,...,cr has the fol-
lowing highly nonobvious symmetry: if ck and cl are similar, then

I c1,c2,...,cr (x1, . . . , xk, . . . , xl, . . . , xr)
(6)

= I c1,c2,...,cr (x1, . . . , xl, . . . , xk, . . . , xr) −
(

log
γ ck

γ cl

)
(xk − xl),

where γ ck and γ cl are the strengths of ck and cl , respectively (see Definition 5.1
below).

The results of this paper can be directly applied to statistical physics. In
nonequilibrium statistical physics, one of the topics of interest is the fluctuation
theorems for the sample net circulations, where the sample net circulation Kc

t

along cycle c by time t is defined as

Kc
t = J c

t − J c−
t .(7)

In this paper, we prove that the sample net circulations along cycles c1, c2, . . . , cr

also satisfy a large deviation principle with rate t and good rate function I
c1,c2,...,cr

K

which has the following symmetry:

I
c1,c2,...,cr

K (x1, . . . , xk, . . . , xr)
(8)

= I c1,c2,...,cr (x1, . . . ,−xk, . . . , xr) −
(

log
γ ck

γ ck−
)
xk.

This is actually the Gallavotti–Cohen-type fluctuation theorem for the sample net
circulations. During the proof of this result, we also obtain other types of fluc-
tuation theorems as by-products, including the transient fluctuation theorem, the
integral fluctuation theorem and the Kurchan–Lebowitz–Spohn-type fluctuation
theorem. All these fluctuation theorems, together with the generalized Haldane
equality, characterize the symmetries of Markov chains along a family of similar
cycles from different aspects.

At the end of this paper, we briefly discuss the application of our work to bio-
chemistry. This indicates that our work could have a broad application prospect in
natural sciences.

2. Rigorous definitions of cycles and their forming times. In this section,
we shall give the rigorous definitions of cycles and their forming times for discrete-
time and continuous-time Markov chains.

We first give the definition of cycles. Here, we adopt the definition given
by Kalpazidou [24]. Let X = (Xt)t≥0 be a time-homogeneous discrete-time or
continuous-time Markov chain with denumerable state space S defined on some
probability space (�,F ,P ).

DEFINITION 2.1. Let Z be the set of integers. A circuit function in the state
space S is defined as a periodic function f from Z into S. The smallest positive
integer s such that f (n + s) = f (n) for each n ∈ Z is called the period of f .
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DEFINITION 2.2. Two circuit functions f and g in S are called equivalent if
there exists some k ∈ Z such that g(n) = f (n + k) for each n ∈ Z.

Note that Definition 2.2 introduces an equivalence relation on the space of all
circuit functions in S. It is obvious that two equivalent circuit functions have the
same period.

DEFINITION 2.3. Let i1, i2, . . . , is be distinct states in S. Let f be a circuit
function in S with period s that satisfies f (1) = i1, f (2) = i2, . . . , f (s) = is . Then
the equivalence class of the circuit function f under the equivalence relation de-
scribed in Definition 2.2 is called a cycle and is denoted by (i1, i2, . . . , is).

In other words, a cycle is nothing but an equivalence class on the space of all
circuit functions under the equivalence relation described in Definition 2.2. Ac-
cording to the above definition, two cycles are the same if one can be transformed
into the other by a cyclic permutation. For example, (1,2,3), (2,3,1) and (3,1,2)

represent the same cycle.

DEFINITION 2.4. Let i ∈ S and let c = (i1, i2, . . . , is) be a cycle. Then we say
that cycle c passes through state i if i ∈ {i1, i2, . . . , is}.

We next give the definition of the forming times of cycles for discrete-time
Markov chains. To this end, we must first introduce the definition of the derived
chain. Let X = (Xn)n≥0 be an irreducible and recurrent discrete-time Markov
chain with denumerable state space S and transition probability matrix P = (pij ).

The trajectory of a recurrent Markov chain constantly forms various cycles.
Intuitively, if we discard the cycles formed by X and keep track of the remaining
states in the trajectory, then we obtain a new Markov chain Y called the derived
chain. We shall give the rigorous definition of the derived chain later, but the basic
ideas should be clear from the following example.

EXAMPLE 2.5. If the trajectory of the Markov chain X is {1,2,3,2,4,5,2,

3,1, . . .}, then the corresponding trajectory of the derived chain Y and the cycles
formed are as follows (see Table 1).

TABLE 1
An example of the derived chain and the cycles formed

n 0 1 2 3 4 5 6 7 8
Xn 1 2 3 2 4 5 2 3 1
Yn [1] [1,2] [1,2,3] [1,2] [1,2,4] [1,2,4,5] [1,2] [1,2,3] [1]
Cycles formed (2,3) (2,4,5) (1,2,3)
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In order to give the rigorous definition of the derived chain, we introduce
several notation. We denote an finite sequence i1, i2, . . . , is of distinct states by
[i1, i2, . . . , is] and denote the collection of all finite sequences of distinct states
by [S], that is,

[S] = {[i1, i2, . . . , is] : s ≥ 1, i1, . . . , is are distinct states in S
}
.(9)

It is easy to see that [S] is denumerable. We also define a map {·, ·} from [S] × S

into [S] by {[i1, i2, . . . , is], i}
(10)

=
{ [i1, i2, . . . , is, i], if i /∈ {i1, i2, . . . , is},

[i1, i2, . . . , im], if i = im for some 1 ≤ m ≤ s.

DEFINITION 2.6. The derived chain Y = (Yn)n≥0 of X is defined as Y0 = [X0]
and Yn = {Yn−1,Xn} for each n ≥ 1.

For any i ∈ S, let [S]i be the subset of [S] defined by

[S]i = {[i1, i2, . . . , is] ∈ [S] : i1 = i and pi1i2pi2i3 · · ·pis−1is > 0
}
.(11)

It is easy to see that if Y0 = [i], then Yn ∈ [S]i for each n ≥ 1.

PROPOSITION 2.7. The derived chain Y is a time-homogeneous Markov chain
with denumerable state space [S]. Each [S]i is an irreducible recurrent class of Y .

PROOF. Let y1 = [i1, i2, . . . , is] and y2 = [j1, j2, . . . , jr ] be two states in [S].
It is easy to see that Y is a time-homogeneous Markov chain on [S] with transition
probability

py1y2 =
⎧⎪⎨
⎪⎩

pisjr , if r ≤ s and i1 = j1, i2 = j2, . . . , ir = jr ,

pisjr , if r = s + 1 and i1 = j1, i2 = j2, . . . , is = js ,

0, otherwise.

(12)

Moreover, it is easy to see that [S]i is a communicating class of Y . If Y0 = [i], then
Yn = [i] if and only if Xn = i for each n ≥ 0. Since X is recurrent, X will return to
i infinitely often, which means that Y will return to [i] infinitely often. Thus, [i] is
a recurrent state of Y . Since recurrence is a property of the communicating class,
we claim that [S]i is an irreducible recurrent class of Y . �

DEFINITION 2.8. Let c = (i1, i2, . . . , is) be a cycle. For each ω ∈ �, we say
that the trajectory X(ω) forms cycle c at time n if one of the following two cases
occurs:

(i) there exists 1 ≤ m ≤ s such that Yn−1(ω) = [im, im+1, . . . , im+s−1] and
Yn(ω) = [im];



2460 C. JIA, D.-Q. JIANG AND M.-P. QIAN

(ii) there exists 1 ≤ m ≤ s and distinct states j1, j2, . . . , jr /∈ {i1, i2, . . . , is}
such that Yn−1(ω) = [j1, j2, . . . , jr , im, im+1, . . . , im+s−1] and Yn(ω) = [j1, j2,

. . . , jr , im],
where m + 1,m + 2, . . . ,m + s − 1 are understood to be modulo s.

DEFINITION 2.9. Let c be a cycle. Let (T c
n )n≥1 be a sequence of stopping

times defined by

T c
1 (ω) = inf

{
k ≥ 1 : the trajectory X(ω) forms cycle c at time k

}
,

T c
n (ω) = inf

{
k ≥ T c

n−1(ω) + 1 : the trajectory X(ω)(13)

forms cycle c at time k
} ∀n ≥ 2.

Then T c
n is called the nth forming time of cycle c. The (first) forming time T c

1 of
cycle c is always abbreviated as T c in the following discussion.

PROPOSITION 2.10. Let c = (i1, i2, . . . , is) be a cycle.

(i) If pi1i2pi2i3 · · ·pisi1 > 0, then T c
n < ∞, a.s. for each n ≥ 1.

(ii) If pi1i2pi2i3 · · ·pisi1 = 0, then T c
n = ∞, a.s. for each n ≥ 1.

PROOF. It is easy to see that (ii) holds. We next prove (i). Without loss of
generality, we assume that X starts from an arbitrarily fixed state i.

We first consider the case when c passes through i. Since pi1i2pi2i3 · · ·pisi1 > 0,
there exists 1 ≤ m ≤ s such that im = i and y = [im, im+1, . . . , im+s−1] ∈ [S]i . By
Proposition 2.7, the derived chain Y will hit y infinitely often. Since pim−1im > 0,
by the Markov property of Y , there will be infinitely many n such that Yn−1 =
y = [im, im+1, . . . , im+s−1] and Yn = [im]. This shows that T c

n < ∞, a.s. for each
n ≥ 1.

We next consider the case when c does not pass through i. Since pi1i2pi2i3 · · ·
pisi1 > 0, there exists 1 ≤ m ≤ s and distinct states j1, j2, . . . , jr /∈ {i1, i2, . . . , is}
such that j1 = i and z = [j1, j2, . . . , jr , im, im+1, . . . , im+s−1] ∈ [S]i . By Propo-
sition 2.7, the derived chain Y will hit z infinitely often. Since pim−1im > 0, by
the Markov property of Y , there will be infinitely many n such that Yn−1 = z =
[j1, j2, . . . , jr , im, im+1, . . . , im+s−1] and Yn = [j1, j2, . . . , jr , im]. This shows that
T c

n < ∞, a.s. for each n ≥ 1. �

We finally give the definition of the forming times of cycles for continuous-time
Markov chains. Let X = (Xt)t≥0 be an irreducible and recurrent continuous-time
Markov chain with denumerable state space S and transition rate matrix Q = (qij ).
Let (Jn)n≥0 be the jump times of X, where J0 is understood to be 0. For each n ≥ 0,
let X̄n = XJn . Then X̄ = (X̄n)n≥0 is the embedded chain of X.
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DEFINITION 2.11. Let c be a cycle. For each n ≥ 1, let T̄ c
n be the nth forming

time of cycle c by the embedded chain X̄. Then the nth forming time of cycle c by
X is defined as

T c
n = JT̄ c

n
.(14)

The (first) forming time T c
1 of cycle c is always abbreviated as T c in the following

discussion.

PROPOSITION 2.12. Let c = (i1, i2, . . . , is) be a cycle.

(i) If qi1i2qi2i3 · · ·qis i1 > 0, then T c
n < ∞, a.s. for each n ≥ 1.

(ii) If qi1i2qi2i3 · · ·qis i1 = 0, then T c
n = ∞, a.s. for each n ≥ 1.

PROOF. It is easy to see that (ii) holds. We next prove (i). Since X is irre-
ducible and recurrent, the embedded chain X̄ is also irreducible and recurrent. By
Proposition 2.10, we see that T̄ c

n < ∞, a.s. This shows that T c
n = JT̄ c

n
< ∞, a.s.

�

3. Generalized Haldane equality for discrete-time Markov chains. In this
section, we shall prove the generalized Haldane equality for discrete-time Markov
chains. Let X = (Xn)n≥0 be an irreducible and recurrent discrete-time Markov
chain with denumerable state space S and transition probability matrix P = (pij ).

Before we state the generalized Haldane equality, we introduce the following
definition.

DEFINITION 3.1. Let c1 = (i1, i2, . . . , is) and c2 = (j1, j2, . . . , jr) be two cy-
cles. Then c1 and c2 are called similar if s = r and {i1, i2, . . . , is} = {j1, j2, . . . , jr}.

According to the above definition, two cycles are similar if they pass through the
same set of states. It is easy to see that similarity is an equivalence relation on the
space of all cycles. For example, the six cycles, c1 = (1,2,3,4), c2 = (1,2,4,3),
c3 = (1,3,2,4), c4 = (1,3,4,2), c5 = (1,4,2,3) and c6 = (1,4,3,2), are similar.

We next give the definition of the strengths of cycles for discrete-time Markov
chains.

DEFINITION 3.2. Let c = (i1, i2, . . . , is) be a cycle. Then the strength of cycle
c is defined as

γ c = pi1i2pi2i3 · · ·pisi1 .(15)

The generalized Haldane equality, which characterizes the symmetry of the
forming times of a family of similar cycles, is stated in the following theorem.
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THEOREM 3.3. Let c1, c2, . . . , cr be a family of similar cycles. Let T =
min{T c1, T c2, . . . , T cr }. Then:

(i) for each n ≥ 1 and any 1 ≤ k, l ≤ r ,

P(T ck = n,T = T ck )

P (T cl = n,T = T cl )
= P(T = T ck )

P (T = T cl )
= γ ck

γ cl
;(16)

(ii) for each n ≥ 1,

P
(
T c1 = n|T = T c1

) = P
(
T c2 = n|T = T c2

)
(17)

= · · · = P
(
T cr = n|T = T cr

)
.

REMARK 3.4. The above theorem shows that although the distributions of the
forming times of a family of similar cycles may not be the same, their distributions,
under the condition that the corresponding cycle is formed earlier than other simi-
lar cycles, are exactly the same. This is the first aspect of the generalized Haldane
equality.

REMARK 3.5. It may occur that both the numerator and denominator
in (16) are 0. In this case, (16) is understood to hold trivially. In addition, if
P(T = T ck ) = 0 for some k, then (17) is understood to hold trivially. This un-
derstanding applies to similar equalities below.

In order to prove the generalized Haldane equality, we need to establish some
nontrivial properties of taboo probabilities. Let us first recall the definition of taboo
probabilities, also called transition probabilities with a taboo set [7].

DEFINITION 3.6. Let i, j ∈ S and let H be a subset of S. Then the n-step
transition probability from state i to state j with taboo set H is defined as

pH
ij (n) = Pi(Xn = j,X1, . . . ,Xn−1 /∈ H),(18)

where Pi(·) = P(·|X0 = i). If the taboo set is the union of a set H and a finite num-
ber of states k1, . . . , ks , then we shall denote the taboo probability by p

H,k1,...,ks

ij (n),
that is,

p
H,k1,...,ks

ij (n) = Pi

(
Xn = j,X1, . . . ,Xn−1 /∈ H ∪ {k1, . . . , ks}).(19)

The next four lemmas give some deep properties of taboo probabilities. The
following lemma is called the basic decomposition formula of taboo probabilities
([7], Theorem 1, Section 9, Part I). To make the paper self-contained, we give a
proof of this lemma.
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LEMMA 3.7. Let H be a subset of S and let k /∈ H . Then for each n ≥ 0 and
any i, j ∈ S,

pH
ij (n) = p

H,k
ij (n) +

n−1∑
m=1

pH
ik (m)p

H,k
kj (n − m).(20)

PROOF. When n = 0 or n = 1, it is easy to check that the theorem holds. We
next prove the theorem when n ≥ 2. Note that

pH
ij (n) = p

H,k
ij (n) + Pi

(
Xn = j,X1, . . . ,Xn−1 /∈ H,k ∈ {X1, . . . ,Xn−1}).(21)

Then by the Markov property, we obtain that

Pi

(
Xn = j,X1, . . . ,Xn−1 /∈ H,k ∈ {X1, . . . ,Xn−1})

=
n−1∑
m=1

Pi(Xn = j,X1, . . . ,Xn−1 /∈ H,Xm = k,Xm+1, . . . ,Xn−1 
= k)

=
n−1∑
m=1

Pi(Xm = k,X1, . . . ,Xm−1 /∈ H)

× Pk

(
Xn−m = j,X1, . . . ,Xn−m−1 /∈ H ∪ {k})

=
n−1∑
m=1

pH
ik (m)p

H,k
kj (n − m).

This completes the proof of this lemma. �

LEMMA 3.8. Let H be a subset of S. Let i, j /∈ H and i 
= j . Then for each
n ≥ 0,

n∑
m=0

pH
ii (m)p

H,i
jj (n − m) =

n∑
m=0

pH
jj (m)p

H,j
ii (n − m).(22)

PROOF. By Lemma 3.7, we have
n∑

m=0

pH
ii (m)p

H,i
jj (n − m)

=
n∑

m=0

pH
ii (m)pH

jj (n − m) −
n∑

m=0

pH
ii (m)

n−m−1∑
l=1

pH
ji (l)p

H,i
ij (n − m − l)

(23)

=
n∑

m=0

pH
ii (m)pH

jj (n − m) −
n∑

m=0

pH
ii (m)

n−m∑
l=0

pH
ji (l)p

H,i
ij (n − m − l)

=
n∑

m=0

pH
ii (m)pH

jj (n − m) −
n∑

l=0

pH
ji (l)

n−l∑
m=0

pH
ii (m)p

H,i
ij (n − m − l).
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Using Lemma 3.7 again, we have

n−l∑
m=0

pH
ii (m)p

H,i
ij (n − m − l)

= p
H,i
ij (n − l) +

n−l−1∑
m=1

pH
ii (m)p

H,i
ij (n − m − l)(24)

= p
H,i
ij (n − l) + pH

ij (n − l) − p
H,i
ij (n − l) = pH

ij (n − l).

Thus, we obtain that
n∑

m=0

pH
ii (m)p

H,i
jj (n − m)

(25)

=
n∑

m=0

pH
ii (m)pH

jj (n − m) −
n∑

l=0

pH
ji (l)p

H
ij (n − l).

Commuting i and j in the above equation, we finally obtain that

n∑
m=0

pH
jj (m)p

H,j
ii (n − m)

=
n∑

m=0

pH
jj (m)pH

ii (n − m) −
n∑

l=0

pH
ij (l)pH

ji (n − l)

(26)

=
n∑

m=0

pH
ii (m)pH

jj (n − m) −
n∑

l=0

pH
ji (l)p

H
ij (n − l)

=
n∑

m=0

pH
ii (m)p

H,i
jj (n − m),

which gives the desired result. �

LEMMA 3.9. Let H be a subset of S. For any distinct states i1, i2, . . . , is /∈ H ,
let

GH
n (i1, i2, . . . , is) = ∑

n1+n2+···+ns=n

pH
i1i1

(n1)p
H,i1
i2i2

(n2) · · ·pH,i1,...,is−1
is is

(ns).(27)

Then for each n ≥ 0, GH
n (i1, i2, . . . , is) is invariant under any permutation of

i1, i2, . . . , is .

PROOF. Since any permutation can be decomposed into the product of some
transpositions of adjacent elements, we only need to prove that GH

n (i1, i2, . . . , is)
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is invariant if we exchange two adjacent elements, ik and ik+1, and keep all other
elements fixed. By Lemma 3.8, we obtain that

GH
n (i1, . . . , ik, ik+1, . . . , is)

= ∑
n1+···+ns=n

pH
i1i1

(n1) · · ·pH,i1,...,ik−1
ikik

(nk)

× p
H,i1,...,ik
ik+1ik+1

(nk+1) · · ·pH,i1,...,is−1
is is

(ns)

=
n∑

m=0

∑
n1+···+nk−1+nk+2+···+ns=n−m

pH
i1i1

(n1) · · ·pH,i1,...,ik−2
ik−1ik−1

(nk−1)

× p
H,i1,...,ik+1
ik+2ik+2

(nk+2) · · ·pH,i1,...,is−1
is is

(ns)

× ∑
nk+nk+1=m

p
H,i1,...,ik−1
ikik

(nk)p
H,i1,...,ik
ik+1ik+1

(nk+1)

=
n∑

m=0

∑
n1+···+nk−1+nk+2+···+ns=n−m

pH
i1i1

(n1) · · ·pH,i1,...,ik−2
ik−1ik−1

(nk−1)

× p
H,i1,...,ik+1
ik+2ik+2

(nk+2) · · ·pH,i1,...,is−1
is is

(ns)

× ∑
nk+nk+1=m

p
H,i1,...,ik−1
ik+1ik+1

(nk)p
H,i1,...,ik−1,ik+1
ikik

(nk+1)

= ∑
n1+···+ns=n

pH
i1i1

(n1) · · ·pH,i1,...,ik−2
ik−1ik−1

(nk−1)p
H,i1,...,ik−1
ik+1ik+1

(nk)

× p
H,i1,...,ik−1,ik+1
ikik

(nk+1)p
H,i1,...,ik+1
ik+2ik+2

(nk+2) · · ·pH,i1,...,is−1
is is

(ns)

= GH
n (i1, . . . , ik−1, ik+1, ik, ik+2, . . . , is).

This completes the proof of this lemma. �

The following lemma will play a key role in the proof of the generalized Hal-
dane equality.

LEMMA 3.10. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Let T = min{T c1 , T c2, . . . , T cr }. Let ck = (i, ik2 , . . . , iks ). Then for each
n ≥ 1,

Pi

(
T ck = n,T = T ck

) = F i
n

(
ik2 , . . . , iks

)
γ ck ,(28)

where F i
n(i

k
2 , . . . , iks ) is invariant under any permutation of ik2 , . . . , iks .

PROOF. Note that the event {T ck = n,T = T ck } is equivalent to saying that X

forms ck at time n and does not form c1, c2, . . . , cr before time n. In order to make
this event occur, the Markov chain X must finish the following procedures.
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First, X must take n1 steps to return from i to i without forming c1, c2, . . . , cr ,
and then jump from i to ik2 . Second, X must take n2 steps to return from ik2 to
ik2 without entering i and without forming c1, c2, . . . , cr , and then jump from ik2
to ik3 . Third, X must take n3 steps to return from ik3 to ik3 without entering i, ik2
and without forming c1, c2, . . . , cr , and then jump from ik3 to ik4 , and so on. Fi-
nally, X must take ns steps to return from iks to iks without entering i, ik1 , . . . , iks−1
and without forming c1, c2, . . . , cr , and then jump from iks to i. Here, the steps
n1, n2, . . . , ns must satisfy (n1 + 1) + (n2 + 1) + · · · + (ns + 1) = n, that is,
n1 + n2 + · · · + ns = n − s.

We make a crucial observation that if X does not enter i, it will not form any
one of c1, c2, . . . , cr since all these cycles pass through i. Let p

c1,c2,...,cr

ii (n1) de-
note the probability that X takes n1 steps to return from i to i without forming
c1, c2, . . . , cr . According to the above discussion, we obtain that

Pi

(
T ck = n,T = T ck

)
= ∑

n1+n2+···+ns=n−s

p
c1,c2,...,cr

ii (n1)piik2
pi

ik2 ik2
(n2)pik2 ik3

p
i,ik2

ik3 ik3
(n3)

× pik3 ik4
· · ·pi,ik1 ,...,iks−1

iks iks
(ns)piks i

=
[

n−s∑
n1=0

p
c1,c2,...,cr

ii (n1)G
i
n−n1−s

(
ik2 , . . . , iks

)]
piik2

pik2 ik3
· · ·piks i ,

where

Gi
n−n1−s

(
ik2 , . . . , iks

)
(29)

= ∑
n2+···+ns=n−n1−s

pi

ik2 ik2
(n2)p

i,ik2

ik3 ik3
(n3) · · ·pi,ik1 ,...,iks−1

iks iks
(ns).

By Lemma 3.9, Gi
n−n1−s(i

k
2 , . . . , iks ) is invariant under any permutation of

ik2 , . . . , iks . Let

F i
n

(
ik2 , . . . , iks

) =
n−s∑
n1=0

p
c1,c2,...,cr

ii (n1)G
i
n−n1−s

(
ik2 , . . . , iks

)
.(30)

Then F i
n(i

k
2 , . . . , iks ) is invariant under any permutation of ik2 , . . . , iks . This com-

pletes the proof of this lemma. �

REMARK 3.11. The core idea in the above proof is to decompose the state
transitions of each trajectory in the event {T ck = n,T = T ck } into invalid tran-
sitions and valid transitions. During the invalid transitions, X will walk around in
circles without contributing to the forming of cycle ck . During the valid transitions,
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however, X will jump along cycle ck . In this way, we can decompose the proba-
bility Pi(T

ck = n,T = T ck ) into the product of an invalid part F i
n(i

k
2 , . . . , iks ) and

a valid part γ ck . The invalid part is invariant under any permutation of ik2 , . . . , iks
and the valid part is independent of time n.

We are now in a position to prove the generalized Haldane equality.

PROOF OF THEOREM 3.3. It is easy to see that (ii) is a direct corollary of (i).
Thus, we only need to prove (i). Without loss of generality, we assume that X

starts from an arbitrarily fixed state i. Since c1, c2, . . . , cr are similar, they must
pass through the same set of states.

We first consider the case when c1, c2, . . . , cr pass through i. Let ck =
(i, ik2 , . . . , iks ) and cl = (i, il2, . . . , i

l
s). By Lemma 3.10, we have

Pi

(
T ck = n,T = T ck

) = F i
n

(
ik2 , . . . , iks

)
γ ck ,

(31)
Pi

(
T cl = n,T = T cl

) = F i
n

(
il2, . . . , i

l
s

)
γ cl ,

where F i
n(i

k
2 , . . . , iks ) is invariant under any permutation of ik2 , . . . , iks . Since ck and

cl are similar, ik2 , . . . , iks can be transformed into il2, . . . , i
l
s by a permutation. This

shows that
Pi(T

ck = n,T = T ck )

Pi(T cl = n,T = T cl )
= γ ck

γ cl
.(32)

We next consider the case when c1, c2, . . . , cr do not pass through i. Let ck =
(ik1 , ik2 , . . . , iks ) and cl = (il1, i

l
2, . . . , i

l
s). By an argument similar to the proof of

Lemma 3.10, we can obtain that

Pi

(
T ck = n,T = T ck

)
=

s∑
m=1

∑
n1+n2+···+ns=n−s

p
c1,c2,...,cr

i,ikm
(n1)pikmikm+1

p
ikm

ikm+1i
k
m+1

(n2)

× pikm+1i
k
m+2

· · ·pikm,...,ikm+s−2

ikm+s−1i
k
m+s−1

(ns)pikm+s−1i
k
m

= γ ck

s∑
m=1

n−s∑
n1=0

p
c1,c2,...,cr

i,ikm
(n1)G

ikm
n−n1−s

(
ikm+1, . . . , i

k
m+s−1

)
,

where p
c1,c2,...,cr

iikm
(n1) denotes the probability that X takes n1 steps to jump from i

to ikm without forming c1, c2, . . . , cr and

G
ikm
n−n1−s

(
ikm+1, . . . , i

k
m+s−1

)
(33)

= ∑
n2+···+ns=n−n1−s

p
ikm

ikm+1i
k
m+1

(n2) · · ·pikm,...,ikm+s−2

ikm+s−1i
k
m+s−1

(ns).
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By Lemma 3.9, it is not difficult to see that

s∑
m=1

n−s∑
n1=0

p
c1,c2,...,cr

i,ikm
(n1)G

ikm
n−n1−s

(
ikm+1, . . . , i

k
m+s−1

)

is invariant under any permutation of ik1 , ik2 , . . . , iks . Since ck and cl are similar,
ik1 , ik2 , . . . , iks can be transformed into il1, i

l
2, . . . , i

l
s by a permutation. This suggests

that
Pi(T

ck = n,T = T ck )

Pi(T cl = n,T = T cl )
= γ ck

γ cl
,(34)

which gives the first equality in (16). Since the above equation holds for any n ≥ 1
and the right-hand side of the above equation does not depend on n, the second
equality in (16) also holds. �

The next corollary gives another aspect of the generalized Haldane equality.

COROLLARY 3.12. Let c1, c2, . . . , cr be a family of similar cycles. Let T =
min{T c1, T c2, . . . , T cr }. Then for each n ≥ 0 and 1 ≤ k ≤ r ,

P
(
T = n,T = T ck

) = P(T = n)P
(
T = T ck

)
.(35)

PROOF. By Theorem 3.3, it is easy to see that for each n ≥ 0 and 1 ≤ k ≤ r ,

P
(
T = n|T = T ck

) = P(T = n).(36)

Thus, we obtain that

P
(
T = n,T = T ck

) = P
(
T = n|T = T ck

)
P

(
T = T ck

)
(37)

= P(T = n)P
(
T = T ck

)
,

which gives the desired result. �

REMARK 3.13. The notation is the same as in Corollary 3.12. Let ξ be a
random variable defined by

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1, if the trajectory of X forms cycle c1 at time T ,

c2, if the trajectory of X forms cycle c2 at time T ,

· · · ,
cr , if the trajectory of X forms cycle cr at time T .

(38)

It is easy to see that ξ = ck if and only if T = T ck for each 1 ≤ k ≤ r . Thus,
Corollary 3.12 is equivalent to saying that T and ξ are independent. This suggests
that the forming time of multiple similar cycles is independent of which one of
these cycles is formed. This is another important aspect of the generalized Haldane
equality.
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In applications, we are more concerned about the symmetry of a cycle and its
reversed cycle. Thus, we introduce the following definition.

DEFINITION 3.14. Let c = (i1, i2, . . . , is) be a cycle. Then the reversed cycle
of cycle c is defined as c− = (i1, is, . . . , i2).

It is easy to see that a cycle c and its reversed cycle c− must be similar. Thus,
we obtain the following corollary.

COROLLARY 3.15. Let c = (i1, i2, . . . , is) be a cycle. Then:

(i) for each n ≥ 0,

P(T c = n,T c < T c−)

P (T c− = n,T c− < T c)
= P(T c < T c−)

P (T c− < T c)
= pi1i2pi2i3 · · ·pisi1

pi1ispis is−1 · · ·pi2i1

;(39)

(ii) for each n ≥ 0,

P
(
T c = n|T c < T c−) = P

(
T c− = n|T c− < T c);(40)

(iii) for each n ≥ 0,

P
(
T c ∧ T c− = n,T c < T c−) = P

(
T c ∧ T c− = n

)
P

(
T c < T c−)

.(41)

PROOF. This corollary follows directly from Theorem 3.3 and Corollary 3.12.
�

REMARK 3.16. The above corollary generalizes the so-called generalized
Haldane equality [see (4) in Section 1] found by biophysicists in cyclic Markov
chains [16, 18, 33].

4. Generalizations of the generalized Haldane equality. We have seen that
the most important step in the proof of the generalized Haldane equality is
Lemma 3.10, in which we decompose the probability Pi(T

ck = n,T = T ck ) into
an invalid part and a valid part. However, the conditions of Lemma 3.10 are much
weaker than those of Theorem 3.3. This suggests that the generalized Haldane
equality can be further generalized, as stated in the following theorem.

THEOREM 4.1. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Let T = min{T c1 , T c2, . . . , T cr }. Assume that ck and cl are similar for
some two indices 1 ≤ k, l ≤ r . Then:

(i) for each n ≥ 1,

Pi(T
ck = n,T = T ck )

Pi(T cl = n,T = T cl )
= Pi(T = T ck )

Pi(T = T cl )
= γ ck

γ cl
;(42)
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(ii) for each n ≥ 1,

Pi

(
T ck = n|T = T ck

) = Pi

(
T cl = n|T = T cl

)
.(43)

PROOF. It is easy to see that (ii) is a direct corollary of (i). Thus, we only need
to prove (i). Let ck = (i, ik2 , . . . , iks ) and cl = (i, il2, . . . , i

l
s). By Lemma 3.10, we

have

Pi

(
T ck = n,T = T ck

) = F i
n

(
ik2 , . . . , iks

)
γ ck ,

(44)
Pi

(
T cl = n,T = T cl

) = F i
n

(
il2, . . . , i

l
s

)
γ cl ,

where F i
n(i

k
2 , . . . , iks ) is invariant under any permutation of ik2 , . . . , iks . Since ck and

cl are similar, ik2 , . . . , iks can be transformed into il2, . . . , i
l
s by a permutation. This

shows that
Pi(T

ck = n,T = T ck )

Pi(T cl = n,T = T cl )
= γ ck

γ cl
.(45)

This completes the proof of this theorem. �

REMARK 4.2. There are two crucial differences between Theorems 3.3
and 4.1. The first difference is that we require c1, c2, . . . , cr to be similar in The-
orem 3.3, while we only require c1, c2, . . . , cr to pass through a common state in
Theorem 4.1. The second difference is that Theorem 3.3 holds for Markov chains
starting from any initial distributions, while Theorem 4.1 only holds for Markov
chains starting from the common state.

Since a cycle c and its reversed cycle c− must be similar, we obtain the follow-
ing corollary.

COROLLARY 4.3. Let c1, c2, . . . , cr be a family of cycles passing through a
common state i. Let T = min{T c1 , T c1−, . . . , T cr , T cr−}. Then:

(i) for each n ≥ 1 and 1 ≤ k ≤ r ,

Pi(T
ck = n,T = T ck )

Pi(T ck− = n,T = T ck−)
= Pi(T = T ck )

Pi(T = T ck−)
= γ ck

γ ck− ;(46)

(ii) for each n ≥ 1 and 1 ≤ k ≤ r ,

Pi

(
T ck = n|T = T ck

) = Pi

(
T ck− = n|T = T ck−)

.(47)

PROOF. This corollary follows directly from Theorem 4.1. �

REMARK 4.4. We have seen that the generalized Haldane equality has many
variations which are closely related. These results, which include Theorems 3.3
and 4.1, Corollaries 3.12, 3.15 and 4.3, will be collectively referred to as the gen-
eralized Haldane equalities in the following discussion.
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5. Generalized Haldane equalities for continuous-time Markov chains. In
this section, we shall prove the generalized Haldane equalities for continuous-time
Markov chains. Let X = (Xt)t≥0 be an irreducible and recurrent continuous-time
Markov chain with denumerable state space S and transition rate matrix Q = (qij ).

Before we state the generalized Haldane equality, we give the definition of the
strengths of cycles for continuous-time Markov chains.

DEFINITION 5.1. Let c = (i1, i2, . . . , is) be a cycle. Then the strength of cycle
c is defined as

γ c = qi1i2qi2i3 · · ·qis i1 .(48)

The generalized Haldane equality, which characterizes the symmetry of the
forming times of a family of similar cycles, is stated in the following theorem.

THEOREM 5.2. Let c1, c2, . . . , cr be a family of similar cycles. Let T =
min{T c1, T c2, . . . , T cr }. Then:

(i) for each t > 0 and any 1 ≤ k, l ≤ r ,

P(T ck ≤ t, T = T ck )

P (T cl ≤ t, T = T cl )
= P(T = T ck )

P (T = T cl )
= γ ck

γ cl
;(49)

(ii) for each t > 0,

P
(
T c1 ≤ t |T = T c1

) = P
(
T c2 ≤ t |T = T c2

)
(50)

= · · · = P
(
T cr ≤ t |T = T cr

)
.

PROOF. It is easy to see that (ii) is a direct corollary of (i). Thus, we only need
to prove (i). Let t > 0 be an arbitrarily fixed time. For each m ≥ 1, let

Ym
n = Xnt/m.(51)

Then Ym = (Ym
n )n≥0 is an irreducible and recurrent discrete-time Markov

chain with transition probability matrix Pm = (pij (t/m)), where pij (t/m) =
Pi(Xt/m = j). Let T m,c be the forming time of cycle c by Ym. Let T m =
min{T m,c1, T m,c2, . . . , T m,cr }.

Since X is irreducible and recurrent, it must be nonexplosive, which implies
that X can only complete a finite number of jumps by time t . Thus, for any ω ∈ �,
when m is sufficiently large, t/m is less than any of the waiting times of X(ω)

by time t . This means that the occurrence of the event {T ck ≤ t, T = T ck } implies
the occurrence of the event {T m,ck ≤ m,T m = T m,ck } when m is sufficiently large.
Thus, we obtain that

{
T ck ≤ t, T = T ck

} ⊂
∞⋃

N=1

∞⋂
m=N

{
T m,ck ≤ m,T m = T m,ck

}
.(52)
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Similarly, it is easy to see that the occurrence of the event {T ck > t} implies the oc-
currence of the event {T m,ck > m} when m is sufficiently large, and the occurrence
of the event {T < T ck ≤ t} implies the occurrence of the event {T m < T m,ck ≤ m}
when m is sufficiently large. Thus, we obtain that{

T ck ≤ t, T = T ck
}c

= {
T ck > t

} ∪ {
T < T ck ≤ t

}
⊂

( ∞⋃
N=1

∞⋂
m=N

{
T m,ck > m

}) ∪
( ∞⋃

N=1

∞⋂
m=N

{
T m < T m,ck ≤ m

})
(53)

⊂
∞⋃

N=1

∞⋂
m=N

{
T m,ck > m

} ∪ {
T m < T m,ck ≤ m

}

=
∞⋃

N=1

∞⋂
m=N

{
T m,ck ≤ m,T m = T m,ck

}c
.

This shows that
∞⋂

N=1

∞⋃
m=N

{
T m,ck ≤ m,T m = T m,ck

} ⊂ {
T ck ≤ t, T = T ck

}
.(54)

By (52) and (54), we have{
T ck ≤ t, T = T ck

} = lim
m→∞

{
T m,ck ≤ m,T m = T m,ck

}
.(55)

By the dominated convergence theorem, we obtain that

P
(
T ck ≤ t, T = T ck

) = lim
m→∞P

(
T m,ck ≤ m,T m = T m,ck

)
.(56)

Let ck = (ik1 , ik2 , . . . , iks ) and cl = (il1, i
l
2, . . . , i

l
s). By Theorem 3.3, we have

P(T ck ≤ t, T = T ck )

P (T cl ≤ t, T = T cl )
= lim

m→∞
P(T m,ck ≤ m,T m = T m,ck )

P (T m,cl ≤ m,T m = T m,cl )

= lim
m→∞

pik1 ik2
(t/m)pik2 ik3

(t/m) · · ·piks ik1
(t/m)

pil1i
l
2
(t/m)pil2i

l
3
(t/m) · · ·pils i

l
1
(t/m)

(57)

=
qik1 ik2

qik2 ik3
· · ·qiks ik1

qil1i
l
2
qil2i

l
3
· · ·qils i

l
1

= γ ck

γ cl
.

This completes the proof of this theorem. �

We can also obtain the following results parallel to those for discrete-time
Markov chains.
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COROLLARY 5.3. Let c1, c2, . . . , cr be a family of similar cycles. Let T =
min{T c1, T c2, . . . , T cr }. Then for each t > 0 and 1 ≤ k ≤ r ,

P
(
T ≤ t, T = T ck

) = P(T ≤ t)P
(
T = T ck

)
.(58)

PROOF. The proof of this corollary follows the same lines as that of Corol-
lary 3.12. �

COROLLARY 5.4. Let c = (i1, i2, . . . , is) be a cycle. Then:

(i) for each t > 0,

P(T c ≤ t, T c < T c−)

P (T c− ≤ t, T c− < T c)
= P(T c < T c−)

P (T c− < T c)
= qi1i2qi2i3 · · ·qis i1

qi1is qis is−1 · · ·qi2i1

;(59)

(ii) for each t > 0,

P
(
T c ≤ t |T c < T c−) = P

(
T c− ≤ t |T c− < T c);(60)

(iii) for each t > 0,

P
(
T c ∧ T c− ≤ t, T c < T c−) = P

(
T c ∧ T c− ≤ t

)
P

(
T c < T c−)

.(61)

PROOF. This corollary follows directly from Theorem 5.2 and Corollary 5.3.
�

THEOREM 5.5. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Let T = min{T c1 , T c2, . . . , T cr }. Assume that ck and cl are similar for
some two indices 1 ≤ k, l ≤ r . Then:

(i) for each t > 0,

Pi(T
ck ≤ t, T = T ck )

Pi(T cl ≤ t, T = T cl )
= Pi(T = T ck )

Pi(T = T cl )
= γ ck

γ cl
;(62)

(ii) for each t > 0,

Pi

(
T ck ≤ t |T = T ck

) = Pi

(
T cl ≤ t |T = T cl

)
.(63)

PROOF. It is easy to see that (ii) is a direct corollary of (i). Thus, we only need
to prove (i). Let t > 0 be an arbitrarily fixed time. For each m ≥ 1, let

Ym
n = Xnt/m.(64)

Then Ym = (Ym
n )n≥0 is an irreducible and recurrent discrete-time Markov

chain with transition probability matrix Pm = (pij (t/m)), where pij (t/m) =
Pi(Xt/m = j). Let T m,c be the forming time of cycle c by Ym. Let T m =
min{T m,c1, T m,c2, . . . , T m,cr }.
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By an argument similar to the proof of Theorem 5.2, we can obtain that{
T ck ≤ t, T = T ck

} = lim
m→∞

{
T m,ck ≤ m,T m = T m,ck

}
.(65)

By the dominated convergence theorem, we obtain that

Pi

(
T ck ≤ t, T = T ck

) = lim
m→∞Pi

(
T m,ck ≤ m,T m = T m,ck

)
.(66)

Let ck = (ik1 , ik2 , . . . , iks ) and cl = (il1, i
l
2, . . . , i

l
s). By Theorem 3.3, we have

Pi(T
ck ≤ t, T = T ck )

Pi(T cl ≤ t, T = T cl )
= lim

m→∞
Pi(T

m,ck ≤ m,T m = T m,ck )

Pi(T m,cl ≤ m,T m = T m,cl )

= lim
m→∞

pik1 ik2
(t/m)pik2 ik3

(t/m) · · ·piks ik1
(t/m)

pil1i
l
2
(t/m)pil2i

l
3
(t/m) · · ·pils i

l
1
(t/m)

(67)

=
qik1 ik2

qik2 ik3
· · ·qiks ik1

qil1i
l
2
qil2i

l
3
· · ·qils i

l
1

= γ ck

γ cl
.

This completes the proof of this theorem. �

COROLLARY 5.6. Let c1, c2, . . . , cr be a family of cycles passing through a
common state i. Let T = min{T c1 , T c1−, . . . , T cr , T cr−}. Then:

(i) for each t > 0 and 1 ≤ k ≤ r ,

Pi(T
ck ≤ t, T = T ck )

Pi(T ck− ≤ t, T = T ck−)
= Pi(T = T ck )

Pi(T = T ck−)
= γ ck

γ ck− ;(68)

(ii) for each t > 0 and 1 ≤ k ≤ r ,

Pi

(
T ck ≤ t |T = T ck

) = Pi

(
T ck− ≤ t |T = T ck−)

.(69)

PROOF. This corollary follows directly from Theorem 5.5. �

6. Large deviations and fluctuations of sample circulations. The general-
ized Haldane equalities established in the above sections have wide applications.
One of the most important applications is to study the circulation fluctuations for
Markov chains. In this section, we shall prove that the sample circulations along
a family of cycles passing through a common state satisfy a large deviation prin-
ciple with a good rate function. Particularly, we shall use the generalized Haldane
equalities to prove that the rate function has a highly nonobvious symmetry, which
is closely related to the Gallavotti–Cohen-type fluctuation theorem in nonequilib-
rium statistical physics.
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6.1. Preliminaries. In order to study the large deviations of the sample circu-
lations, we need some results about the large deviations of Markov renewal pro-
cesses. To avoid misunderstanding, we recall the following two definitions.

DEFINITION 6.1. Let (μt )t>0 be a family of probability measures on a Polish
space E. Then we say that (μt )t>0 satisfies a large deviation principle with rate t

and good rate function I : E → [0,∞] if:

(i) for each α ≥ 0, the level set {x ∈ E : I (x) ≤ α} is compact in E;
(ii) for each closed subset F of E,

lim sup
t→∞

1

t
logμt(F ) ≤ − inf

x∈F
I (x);(70)

(iii) for each open subset U of E,

lim inf
t→∞

1

t
logμt(U) ≥ − inf

x∈U
I (x).(71)

DEFINITION 6.2. Let ξ = (ξn)n≥0 be an irreducible discrete-time Markov
chain with finite state space E. Assume that each x ∈ E is associated with a Borel
probability measure φx on (0,∞). Let (τn)n≥1 be a sequence of positive and finite
random variables such that conditioned on (ξn)n≥0, the random variables (τn)n≥1
are independent and have the distribution

P
(
τn ∈ ·|(ξn)n≥0

) = φξn−1(·).(72)

Then (ξn, τn+1)n≥0 is called a Markov renewal process.

The following lemma, which is due to Mariani and Zambotti, shows that the
empirical flow of Markov renewal processes satisfies a large deviation principle
with a good rate function.

LEMMA 6.3. Let Z = (ξn, τn+1)n≥0 be a Markov renewal process. Let Tn =∑n
k=1 τk be the nth jump time of Z. Let Nt = inf{n ≥ 0 : Tn+1 > t} be the number

of jumps of Z by time t . Let Qt ∈ C(E × E, [0,∞)) be the empirical flow of Z by
time t defined as

Qt(x, y) = 1

t

Nt∑
n=0

1{ξn=x,ξn+1=y}.(73)

Then the law of Qt satisfies a large deviation principle with rate t and good rate
function I : C(E × E, [0,∞)) → [0,∞]. Moreover, the rate function I is convex.

PROOF. The proof of this theorem can be found in [29], Theorem 1.2. �
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6.2. Large deviations of sample circulations. In this paper, we only consider
the large deviations of the sample circulations for continuous-time Markov chains.
Using similar but simpler techniques, we can obtain parallel results for discrete-
time Markov chains.

Let X = (Xt)t≥0 be an irreducible and recurrent continuous-time Markov chain
with denumerable state space S and transition rate matrix Q = (qij ). We next give
the definition of the sample circulations for Markov chains.

DEFINITION 6.4. Let T c
n be the nth forming time of cycle c. Let Nc

t = inf{n ≥
0 : T c

n+1 > t} be the number of times that cycle c is formed by X up to time t . Then
the sample circulation J c

t along cycle c by time t is defined as

J c
t = 1

t
Nc

t(74)

and the sample net circulation Kc
t along cycle c by time t is defined as Kc

t =
J c

t − J c−
t .

We next recall the definition of the circulations for Markov chains.

DEFINITION 6.5. The circulation J c along cycle c is defined as

J c = lim
t→∞J c

t , a.s.(75)

and the net circulation Kc along cycle c is defined as Kc = J c − J c−.

Intuitively, J c represents the number of times that cycle c is formed by X per
unit time and Kc represents the net number of times that cycle c formed by X per
unit time.

REMARK 6.6. It can be proved that the almost sure limit in (75) exists when-
ever X is irreducible and recurrent and the limit is a nonnegative constant indepen-
dent of the initial distribution of X. When X is positive recurrent, the proof of the
above fact is due to the Qian’s [21, 35]. When X is null recurrent, it is easy to see
that J c = Kc = 0 for each cycle c.

We have defined the forming time of a single cycle in Definition 2.11. We shall
now define the forming time of multiple cycles.

DEFINITION 6.7. Let c1, c2, . . . , cr be a family of cycles and let T
c1
n , T

c2
n ,

. . . , T cr
n be their nth forming times. Then the nth forming time Tn of cycles

c1, c2, . . . , cr is defined as the nth order statistics of the set {T c1
m ,T

c2
m , . . . , T cr

m :
m ≥ 1}.
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If we only focus on the forming of cycles by a Markov chain, instead of the
specific state transitions, then we can obtain a Markov renewal process, as shown
in the following lemma.

LEMMA 6.8. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i and assume that γ ck > 0 for some 1 ≤ k ≤ r . Let Tn be the nth forming
time of cycles c1, c2, . . . , cr . Let τn = Tn − Tn−1. Let ξn be a random variable
defined as

ξn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1, if the trajectory of X forms cycle c1 at time Tn,

c2, if the trajectory of X forms cycle c2 at time Tn,

· · · ,
cr , if the trajectory of X forms cycle cr at time Tn.

(76)

Then under Pi , (ξn, τn)n≥1 is a Markov renewal process.

PROOF. Since X0 = i and c1, c2, . . . , cr pass through i, it is easy to see that
XTn = i for each n ≥ 1. By the strong Markov property, the random sequence
(ξn, τn)n≥1 is an i.i.d. sequence. This shows that (ξn)n≥1 is a Markov chain with
state space E = {c1, c2, . . . , cr}. Note that we have assumed that γ ck > 0 for
some k. By Proposition 2.12, we see that Tn ≤ T

ck
n < ∞, a.s. for each n ≥ 1.

This shows that (τn)n≥1 is a sequence of positive and finite random variables.
Since (ξn, τn)n≥1 is an i.i.d. sequence, for any bounded measurable function

f1, . . . , fn on (0,∞), it is easy to see that

Ei

(
f1(τ1) · · ·fn(τn)|(ξn)n≥1

)
(77)

= Ei

(
f1(τ1)|(ξn)n≥1

) · · ·Ei

(
fn(τn)|(ξn)n≥1

)
.

Moreover, for any Borel set A in (0,∞),

Pi

(
τn ∈ A|(ξn)n≥1

) = Pi(τn ∈ A|ξn) = Pi(τ1 ∈ A|ξ1 = x)|x=ξn = φξn(A),(78)

where φx(A) = Pi(τ1 ∈ A|ξ1 = x). The above two equations show that each x ∈ E

is associated with a Borel probability measure φx on (0,∞) and conditioned on
(ξn)n≥1, the random variables (τn)n≥1 are independent and have the distribution
Pi(τn ∈ ·|(ξn)n≥1) = φξn(·). This shows that (ξn, τn)n≥1 is a Markov renewal pro-
cess. �

The large deviation principle of the sample circulations is stated in the following
theorem.

THEOREM 6.9. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Then under Pi , the law of (J

c1
t , J

c2
t , . . . , J

cr
t ) satisfies a large deviation

principle with rate t and good rate function I c1,c2,...,cr :Rr → [0,∞].



2478 C. JIA, D.-Q. JIANG AND M.-P. QIAN

PROOF. We first consider the case when γ ck = 0 for each k. By Proposi-
tion 2.12, we see that T ck = ∞, a.s. for each k. This shows that J

ck
t = 0, a.s.

for each k. In this case, the theorem holds trivially.
We next consider the case when γ ck > 0 for some k. By Lemma 6.8, we see that

(ξn, τn)n≥1 is a Markov renewal process with state space E = {c1, c2, . . . , cr}. Let
Nt = inf{n ≥ 0 : Tn+1 > t} be the number of jumps of the Markov renewal process
by time t . Let Qt ∈ C(E ×E, [0,∞)) be the empirical flow of the Markov renewal
process by time t defined as

Qt(x, y) = 1

t

Nt∑
n=1

1{ξn=x,ξn+1=y}.(79)

Note that for each k,

J
ck
t = 1

t
N

ck
t = 1

t

Nt∑
n=1

1{ξn=ck} = ∑
y∈E

Qt(ck, y).(80)

We define a continuous map F : C(E × E, [0,∞)) →R
r as

F(Q) =
(∑

y∈E

Q(c1, y), . . . ,
∑
y∈E

Q(cr, y)

)
.(81)

Thus, we have
(
J

c1
t , . . . , J

cr
t

) = F(Qt).(82)

By Lemma 6.3, the law of Qt satisfies a large deviation principle with rate t and
good rate function I : C(E × E, [0,∞)) → [0,∞]. Using the contraction princi-
ple, we see that the law of (J

c1
t , . . . , J

cr
t ) satisfies a large deviation principle with

rate t and good rate function I c1,...,cr : Rr → [0,∞] which can be represented as

I c1,...,cr (x) = inf
Q∈F−1(x)

I (Q).(83)

This completes the proof of this theorem. �

6.3. Circulation fluctuations for Markov chains. We have proved that the sam-
ple circulations along a family of cycles c1, c2, . . . , cr passing through a com-
mon state satisfy a large deviation principle with rate t and good rate function
I c1,c2,...,cr . In general, it is very difficult to obtain an explicit expression of the rate
function I c1,c2,...,cr . However, we can use the generalized Haldane equalities to
prove that the rate function I c1,c2,...,cr has a highly nonobvious symmetry, whose
specific form is given in the following theorem.
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THEOREM 6.10. The notation is the same as in Theorem 6.9. Assume that
ck and cl are similar for some two indices 1 ≤ k, l ≤ r . Then the rate function
I c1,c2,...,cr has the following symmetry: for any x1, x2, . . . , xr ∈ R,

I c1,c2,...,cr (x1, . . . , xk, . . . , xl, . . . , xr)
(84)

= I c1,c2,...,cr (x1, . . . , xl, . . . , xk, . . . , xr) −
(

log
γ ck

γ cl

)
(xk − xl).

The above theorem shows that if ck and cl are similar, then the rate function
I c1,c2,...,cr satisfies a symmetric relation under the exchange of the arguments xk

and xl . In order to prove the above theorem, we need several lemmas.

LEMMA 6.11. The rate function I c1,c2,...,cr is convex.

PROOF. Note that the map F defined in (81) is linear. This fact, together with
(83), shows that for each 0 < λ < 1 and any x, y ∈ R

r ,

I c1,...,cr
(
λx + (1 − λ)y

) = inf
Q∈F−1(λx+(1−λ)y)

I (Q)

≤ inf
Q∈λF−1(x)+(1−λ)F−1(y)

I (Q)(85)

= inf
Q∈F−1(x),R∈F−1(y)

I
(
λQ + (1 − λ)R

)
.

By Lemma 6.3, the rate function I is convex. Thus, we obtain that

I c1,...,cr
(
λx + (1 − λ)y

) ≤ inf
Q∈F−1(x),R∈F−1(y)

λI (Q) + (1 − λ)I (R)

= λ inf
Q∈F−1(x)

I (Q) + (1 − λ) inf
R∈F−1(y)

I (R)(86)

= λIc1,...,cr (x) + (1 − λ)I c1,...,cr (y).

This completes the proof of this lemma. �

The following lemma follows directly from the generalized Haldane equalities.

LEMMA 6.12. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Assume that ck and cl are similar for some two indices 1 ≤ k, l ≤ r .
Let T = min{T c1, T c2, . . . , T cr }. Then for each t > 0,

Pi

(
T ≤ t, T = T ck

) = Pi

(
T ≤ t, T = T ck ∧ T cl

)
Pi

(
T ck < T cl

)
.(87)

PROOF. By Theorem 5.5(i), we have

Pi(T ≤ t, T = T ck )

Pi(T ≤ t, T = T cl )
= Pi(T ≤ t, T = T ck ∧ T cl , T ck < T cl )

Pi(T ≤ t, T = T ck ∧ T cl , T cl < T ck )
= γ ck

γ cl
.(88)
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Using Theorem 5.5(i) again, we have

Pi(T
ck ∧ T cl = T ck )

Pi(T ck ∧ T cl = T cl )
= Pi(T

ck < T cl )

Pi(T cl < T ck )
= γ ck

γ cl
.(89)

Combining the above two equations, we obtain that

Pi

(
T ≤ t, T = T ck ∧ T cl |T ck < T cl

)
(90)

= Pi

(
T ≤ t, T = T ck ∧ T cl |T cl < T ck

)
.

This implies that

Pi

(
T ≤ t, T = T ck ∧ T cl |T ck < T cl

) = Pi

(
T ≤ t, T = T ck ∧ T cl

)
.(91)

Thus, we obtain that

Pi

(
T ≤ t, T = T ck

) = Pi

(
T ≤ t, T = T ck ∧ T cl , T ck < T cl

)
= Pi

(
T ≤ t, T = T ck ∧ T cl |T ck < T cl

)
Pi

(
T ck < T cl

)
(92)

= Pi

(
T ≤ t, T = T ck ∧ T cl

)
Pi

(
T ck < T cl

)
,

which gives the desired result. �

The following lemma, whose proof strongly depends on the generalized Hal-
dane equalities, characterizes the symmetry of the joint distribution of the sample
circulations.

LEMMA 6.13. Let N be the set of nonnegative integers. Let c1, c2, . . . , cr be
a family of cycles passing through a common state i. Assume that ck and cl are
similar for some two indices 1 ≤ k, l ≤ r . Then for any n1, n2, . . . , nr ∈ N,

Pi(N
c1
t = n1, . . . ,N

ck
t = nk, . . . ,N

cl
t = nl, . . . ,N

cr
t = nr)

Pi(N
c1
t = n1, . . . ,N

ck
t = nl, . . . ,N

cl
t = nk, . . . ,N

cr
t = nr)

=
(

γ ck

γ cl

)nk−nl

.(93)

PROOF. We only need to prove this lemma when k = 1 and l = 2. The proof
of the other cases is totally the same. To simplify notation, let N = n1 + · · · + nr

and let

p = Pi

(
T c1 < T c2

)
, q = Pi

(
T c2 < T c1

)
.(94)

Let Tn be the nth forming time of c1, c2, . . . , cr . Let τn = Tn − Tn−1. Let ξn be
the random variable defined in (76). Note that ξn = ck if and only if X forms
ck at time Tn. By distinguishing which one of c1, c2, . . . , cr is formed at times
T1, T2, . . . , TN , we obtain that

Pi

(
N

c1
t = n1, . . . ,N

cr
t = nr

)
= ∑

A1,...,Ar

Pi(TN ≤ t < TN+1, ξm = c1 for those m ∈ A1, . . . , ξm = cr

for those m ∈ Ar),
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where the sequence of sets A1, . . . ,Ar ranges over all partitions of {1,2, . . . ,N}
such that Card(Ak) = nk for each 1 ≤ k ≤ r . Then Lemma 6.12, together with the
fact that (ξn, τn)n≥1 is an i.i.d. sequence, shows that

Pi

(
N

c1
t = n1,N

c2
t = n2,N

c3
t = n3, . . . ,N

cr
t = nr

)
= ∑

A1,...,Ar

Pi

(
TN ≤ t < TN+1, ξm ∈ {c1, c2} for those m ∈ A1 ∪ A2,

ξm = c3 for those m ∈ A3, . . . , ξm = cr for those m ∈ Ar

)
pn1qn2

= ∑
B1,...,Br

Pi

(
TN ≤ t < TN+1, ξm ∈ {c1, c2} for those m ∈ B2,

ξm = c3 for those m ∈ B3, . . . , ξm = cr for those m ∈ Br

)
C

n1
n1+n2

pn1qn2

= Pi

(
N

c1
t + N

c2
t = n1 + n2,N

c3
t = n3, . . . ,N

cr
t = nr

)
C

n1
n1+n2

pn1qn2,

where the sequence of sets B2, . . . ,Br ranges over all partitions of {1,2, . . . ,N}
such that Card(B2) = n1 + n2 and Card(Bk) = nk for each 3 ≤ k ≤ r . By Theo-
rem 5.5, it follows that

Pi

(
N

c1
t = n1,N

c2
t = n2,N

c3
t = n3, . . . ,N

cr
t = nr

)
= Pi

(
N

c1
t + N

c2
t = n1 + n2,N

c3
t = n3, . . . ,N

cr
t = nr

)
C

n1
n1+n2

pn1qn2

= Pi

(
N

c1
t + N

c2
t = n1 + n2,N

c3
t = n3, . . . ,N

cr
t = nr

)
(95)

× C
n1
n1+n2

pn2qn1

(
p

q

)n1−n2

= Pi

(
N

c1
t = n2,N

c2
t = n1,N

c3
t = n3, . . . ,N

cr
t = nr

)(γ c1

γ c2

)n1−n2

,

which gives the desired result. �

The following lemma shows that the moment generating function of the sample
circulations has a certain symmetry.

LEMMA 6.14. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Assume that ck and cl are similar for some two indices 1 ≤ k, l ≤ r .
Let

gt (λ1, . . . , λr) = Eie
λ1N

c1
t +···+λrN

cr
t = Eie

t(λ1J
c1
t +···+λrJ

cr
t ).(96)

Then for each t ≥ 0 and any λ1, . . . , λr ∈R,

gt (λ1, . . . , λk, . . . , λl, . . . , λr)
(97)

= gt

(
λ1, . . . , λl − log

γ ck

γ cl
, . . . , λk + log

γ ck

γ cl
, . . . , λr

)
.
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PROOF. We only need to prove this lemma when k = 1 and l = 2. The proof
of the other cases is totally the same. By Lemma 6.13, we have

gt (λ1, λ2, λ3, . . . , λr)

= Eie
λ1N

c1
t +λ2N

c2
t +λ3N

c3
t +···+λrN

cr
t

= ∑
n1,...,nr∈N

eλ1n1+···+λrnr Pi

(
N

c1
t = n1,N

c2
t = n2,N

c3
t = n3, . . . ,N

cr
t = nr

)

= ∑
n1,...,nr∈N

eλ1n1+···+λrnr Pi

(
N

c1
t = n2,N

c2
t = n1,N

c3
t = n3, . . . ,N

cr
t = nr

)

×
(

γ c1

γ c2

)n1−n2

= ∑
n1,...,nr∈N

e
(λ1+log γ c1

γ c2 )n1+(λ2−log γ c1
γ c2 )n2+λ3n3+···+λrnr

× Pi

(
N

c1
t = n2,N

c2
t = n1,N

c3
t = n3, . . . ,N

cr
t = nr

)
= Eie

(λ2−log γ c1
γ c2 )N

c1
t +(λ1+log γ c1

γ c2 )N
c2
t λ3N

c3
t +···+λrN

cr
t

= gt

(
λ2 − log

γ c1

γ c2
, λ1 + log

γ c1

γ c2
, λ3, . . . , λr

)
,

which gives the desired result. �

The following result is a strengthened version of Varadhan’s lemma in the large
deviation theory.

LEMMA 6.15. Let (μt )t>0 be a sequence of probability measures on a Polish
space E which satisfies a large deviation principle with rate t and good rate func-
tion I : E → [0,∞]. Let F : E → R be a continuous function. Assume that there
exists γ > 1 such that the following moment condition is satisfied:

lim sup
t→∞

1

t
log

∫
E

eγ tF (x) dμt (x) < ∞.(98)

Then

lim
t→∞

1

t
log

∫
E

etF (x) dμt (x) = sup
x∈E

(
F(x) − I (x)

)
.(99)

PROOF. The proof of this lemma can be found in [9], Theorem 4.3.1. �

Using the above lemma, we can obtain the following result.
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LEMMA 6.16. The notation is the same as in Lemma 6.14. Then for each
λ ∈ R

r ,

lim
t→∞

1

t
loggt (λ) = sup

x∈Rr

{
λ · x − I c1,c2,...,cr (x)

}
.(100)

PROOF. Let λ = (λ1, . . . , λr). By Theorem 6.9, the law of (J
c1
t , . . . , J

cr
t ) sat-

isfies a large deviation principle with rate t and good rate function I c1,...,cr . By
Lemma 6.15, the result of this lemma holds if the following moment condition is
satisfied for each γ > 0:

lim sup
t→∞

1

t
logEie

γ t (λ1J
c1
t +···+λrJ

cr
t ) < ∞.(101)

Note that

Eie
γ t (λ1J

c1
t +···+λrJ

cr
t ) ≤ Eie

γ |λ1|Nc1
t +···+γ |λr |Ncr

t

(102)
≤ Eie

γα(N
c1
t +···+N

cr
t ) = Eie

γαNt ,

where α = max{|λ1|, . . . , |λr |} and Nt = inf{n ≥ 0 : Tn+1 > t} is the number of
times that c1, . . . , cr are formed by X up to time t . Since X0 = i, in order to
form any one of c1, . . . , cr , X must first leave state i. This shows that the nth
forming time Tn of c1, . . . , cr is larger than the sum of n independent exponential
random variables with rate qi , where qi = ∑

j 
=i qij . This further implies that Nt

is stochastically dominated by a Poisson random variable Rt with parameter qit .
Thus, we obtain that

Eie
γαNt =

∫ ∞
−∞

γαeγαxPi(Nt ≥ x)dx ≤
∫ ∞
−∞

γαeγαxPi(Rt ≥ x)dx

(103)

= Eie
γαRt =

∞∑
n=0

eγαn (qit)
n

n! e−qi t = exp
((

eγα − 1
)
qit

)
.

This shows that

lim sup
t→∞

1

t
logEie

γ t (λ1J
c1
t +···+λrJ

cr
t ) ≤ lim sup

t→∞
1

t
logEie

γαNt

(104)
≤ (

eγα − 1
)
qi < ∞.

This completes the proof of this lemma. �

REMARK 6.17. Lemma 6.16 shows that

lim
t→∞

1

t
loggt (λ) = (

I c1,c2,...,cr
)∗

(λ),(105)
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where (I c1,c2,...,cr )∗ is the Legendre–Fenchel transform of the rate function
I c1,c2,...,cr . Recall that the Legendre–Fenchel transform of a function f : Rr →
[−∞,∞] is a function f ∗ : Rr → [−∞,∞] defined by

f ∗(λ) = sup
x∈Rr

{
λ · x − F(x)

}
.(106)

The following lemma, which is called the Fenchel–Moreau theorem, gives the
sufficient and necessary conditions under which the Legendre–Fenchel transform
is an involution. Recall that a function f : Rr → [−∞,∞] is called proper if
f (x) < ∞ for at least one x and f (x) > −∞ for each x.

LEMMA 6.18. Let f : Rr → [−∞,∞] be a proper function. Then f ∗∗ = f if
and only if f is convex and lower semi-continuous, where f ∗∗ = (f ∗)∗.

PROOF. The proof of this lemma can be found in [6], Theorem 4.2.1. �

We are now in a position to prove the symmetry of the rate function I c1,c2,...,cr .

PROOF OF THEOREM 6.10. We only need to prove this theorem when k = 1
and l = 2. The proof of the other cases is totally the same. By Lemma 6.16, we
have

lim
t→∞

1

t
loggt (λ1, . . . , λr) = (

I c1,...,cr
)∗

(λ1, . . . , λr).(107)

By Lemma 6.14, we have

gt (λ1, λ2, λ3, . . . , λr) = gt

(
λ2 − log

γ c1

γ c2
, λ1 + log

γ c1

γ c2
, λ3, . . . , λr

)
.(108)

Combining the above two equations, we obtain that(
I c1,...,cr

)∗
(λ1, λ2, λ3, . . . , λr)

(109)

= (
I c1,...,cr

)∗(
λ2 − log

γ c1

γ c2
, λ1 + log

γ c1

γ c2
, λ3, . . . , λr

)
.

By Theorem 6.9 and Lemma 6.11, I c1,...,cr is a good rate function which is also
convex. This shows that I c1,...,cr is proper, convex and lower semicontinuous. By
Lemma 6.18, we obtain that I c1,...,cr = (I c1,...,cr )∗∗. Thus, we have

I c1,...,cr (x1, x2, x3, . . . , xr)

= (
I c1,...,cr

)∗∗
(x1, x2, x3, . . . , xr)

= sup
λ1,...,λr∈R

{
λ1x1 + · · · + λrxr − (

I c1,...,cr
)∗

(λ1, λ2, λ3, . . . , λr)
}

= sup
λ1,...,λr∈R

{
λ1x1 + · · · + λrxr
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− (
I c1,...,cr

)∗(
λ2 − log

γ c1

γ c2
, λ1 + log

γ c1

γ c2
, λ3, . . . , λr

)}

= sup
λ1,...,λr∈R

{(
λ1 − log

γ c1

γ c2

)
x1 +

(
λ2 + log

γ c1

γ c2

)
x2 + λ3x3 + · · · + λrxr

− (
I c1,...,cr

)∗
(λ2, λ1, λ3, . . . , λr)

}

= I c1,...,cr (x2, x1, x3, . . . , xr) −
(

log
γ c1

γ c2

)
(x1 − x2),

which gives the desired result. �

REMARK 6.19. Let

g(λ) = lim
t→∞

1

t
loggt (λ) = lim

t→∞
1

t
logEie

t(λ1J
c1
t +···+λrJ

cr
t ).(110)

The above proof shows that

I c1,...,cr (x) = g∗(x) = sup
λ∈Rr

{
λ · x − g(λ)

}
.(111)

This equality is closely related to the well-known Gartner–Ellis theorem in the
large deviation theory. Roughly speaking, the Gartner–Ellis theorem claims that if
g(λ) is differentiable everywhere, then the sample circulations J

c1
t , J

c2
t , . . . , J

cr
t

must satisfy a large deviation principle with a good rate function which has the
form of (111). This is the routine approach to study the large deviations and fluc-
tuation theorems in nonequilibrium statistical physics. However, in some com-
plicated problems, it is extremely difficult to prove the differentiability of g(λ).
Therefore, in this paper, we obtain the desired results with the aid of the large
deviations of Markov renewal processes without involving into the complex dif-
ferentiability issue.

Since a cycle c and its reversed cycle c− must be similar, we obtain the follow-
ing corollary.

COROLLARY 6.20. Let c1, c2, . . . , cr be a family of cycles passing through
a common state i. Then under Pi , the law of (J

c1
t , J

c1−
t , . . . , J

cr
t , J

cr−
t ) satisfies

a large deviation principle with rate t and good rate function I c1,c1−,...,cr ,cr− :
R

2r → [0,∞]. Moreover, for each 1 ≤ k ≤ r , the rate function I c1,c1−,...,cr ,cr− has
the following symmetry: for any x1, y1, · · · , xr , yr ∈R and 1 ≤ k ≤ r ,

I c1,c1−,...,cr ,cr−(x1, y1, . . . , xk, yk, . . . , xr , yr)

= I c1,c1−,...,cr ,cr−(x1, y1, . . . , yk, xk, . . . , xr , yr)(112)

−
(

log
γ ck

γ ck−
)
(xk − yk).



2486 C. JIA, D.-Q. JIANG AND M.-P. QIAN

PROOF. This corollary follows directly from Theorems 6.9 and 6.10. �

REMARK 6.21. The generalized Haldane equalities characterize the symme-
try of the forming times of a family of similar cycles. Theorem 6.10, Lemma 6.13
and Lemma 6.14, however, characterize the symmetry of the sample circulations
along a family of similar cycles from different aspects.

7. Applications in natural sciences.

7.1. Applications in nonequilibrium statistical physics. Markov chains are
widely used to model various stochastic systems in physics, chemistry and biology.
In nonequilibrium statistical physics, one of the most important concepts associ-
ated with a stochastic system is the entropy production rate. Let X = (Xt)t≥0 be
an irreducible and recurrent continuous-time Markov chain with denumerable state
space S and transition rate matrix Q = (qij ). Then the sample entropy production
rate Wt of X by time t is defined as

Wt = 1

t
log

p0(X0)qX̄0X̄1
qX̄1X̄2

· · ·qX̄
Ñt −1X̄Ñt

pt (Xt )qX̄1X̄0
qX̄2X̄1

· · ·qX̄
Ñt

X̄
Ñt −1

(113)

= 1

t
log

p0(X0)

pt (Xt )
+ 1

t

Ñt−1∑
i=0

log
qX̄iX̄i+1

qX̄i+1X̄i

,

where pt = (pt (i)) is the probability distribution of X at time t , X̄ = (X̄n)n≥0 is
the embedded chain of X, and Ñt is the number of jumps of X by time t . In recent
years, physicists found that the sample entropy production rate Wt satisfies various
types of fluctuation theorems [22, 28, 42]. This discovery has been considered as
one of the most important results in nonequilibrium statistical physics in the last
two decades.

Interestingly, the sample entropy production rate of Markov chains can be de-
composed along different cycles [21, 36, 43]. Specifically, the sample entropy pro-
duction rate Wt can be decomposed as

Wt = 1

2

∑
c

Kc
t log

γ c

γ c− + Wr
t ,(114)

where c ranges over all cycles, Kc
t is the sample net circulation along cycle c, γ c

is the strength of cycle c, and the remainder Wr
t collects the contributions of those

state transitions by time t that do not form a full cycle. This implies that the sample
net circulation Kc

t along cycle c is proportional to the sample entropy production
rate of X along cycle c. Thus, it is nature to ask whether we can establish the
fluctuation theorems for the sample net circulations of Markov chains.

Fortunately, the generalized Haldane equalities established in this paper can be
used to study the fluctuation theorems for the sample net circulations. To make the
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readers understand the connections between our work and nonequilibrium statisti-
cal physics, we briefly state various types of fluctuation theorems for the sample
net circulations.

The following definition of the affinity originates from nonequilibrium statisti-
cal physics [43].

DEFINITION 7.1. Let c be a cycle. Then the affinity of cycle c is defined as

ρc = log
γ c

γ c− .(115)

Theorems of the following type are called transient fluctuation theorems in
nonequilibrium statistical physics.

THEOREM 7.2. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Then for any n1, n2, . . . , nr ∈ Z and 1 ≤ k ≤ r ,

Pi(K
c1
t = n1/t, . . . ,K

ck
t = nk/t, . . . ,K

cr
t = nr/t)

Pi(K
c1
t = n1/t, . . . ,K

ck
t = −nk/t, . . . ,K

cr
t = nr/t)

= enkρ
ck

.(116)

PROOF. We only need to prove this theorem when k = 1. The proof of the
other cases is totally the same. By Lemma 6.13, we have

Pi

(
K

c1
t = n1/t, . . . ,K

ck
t = nk/t, . . . ,K

cr
t = nr/t

)
= Pi

(
N

c1
t − N

c1−
t = n1,N

c2
t − N

c2−
t = n2, . . . ,N

cr
t − N

cr−
t = nr

)
= ∑

l1−m1=n1,...,lr−mr=nr

Pi

(
N

c1
t = l1,N

c1−
t = m1,N

c2
t = l2,N

c2−
t = m2, . . . ,

N
cr
t = lr ,N

cr−
t = mr

)
= ∑

l1−m1=n1,...,lr−mr=nr

Pi

(
N

c1
t = m1,N

c1−
t = l1,N

c2
t = l2,N

c2−
t = m2, . . . ,

N
cr
t = lr ,N

cr−
t = mr

)
e(l1−m1)ρ

c1

= ∑
l1−m1=−n1,...,lr−mr=nr

Pi

(
N

c1
t = l1,N

c1−
t = m1,N

c2
t = l2,N

c2−
t = m2, . . . ,

N
cr
t = lr ,N

cr−
t = mr

)
en1ρ

c1

= Pi

(
N

c1
t − N

c1−
t = −n1,N

c2
t − N

c2−
t = n2, . . . ,N

cr
t − N

cr−
t = nr

)
en1ρ

c1

= Pi

(
K

c1
t = n1/t, . . . ,K

ck
t = −nk/t, . . . ,K

cr
t = nr/t

)
en1ρ

c1
,

which gives the desired result. �

Theorems of the following type are called Kurchan–Lebowitz–Spohn-type fluc-
tuation theorems in nonequilibrium statistical physics.
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THEOREM 7.3. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Let

ht (λ1, . . . , λr) = Eie
t(λ1K

c1
t +···+λrK

cr
t ).(117)

Then for any t ≥ 0, λ1, . . . , λr ∈ R, and 1 ≤ k ≤ r ,

ht (λ1, . . . , λk, . . . , λr) = ht

(
λ1, . . . ,−(

λk + ρck
)
, . . . , λr

)
.(118)

PROOF. We only need to prove this theorem when k = 1. The proof of the
other cases is totally the same. By Theorem 7.2, we have

ht (λ1, λ2, . . . , λr)

= Eie
t(λ1K

c1
t +···+λrK

cr
t )

= ∑
n1,...,nr∈Z

eλ1n1+λ2n2+···+λrnr

× Pi

(
K

c1
t = n1/t,K

c2
t = n2/t, . . . ,K

cr
t = nr/t

)
= ∑

n1,...,nr∈Z
eλ1n1+λ2n2+···+λrnr

× Pi

(
K

c1
t = −n1/t,K

c2
t = n2/t, . . . ,K

cr
t = nr/t

)
en1ρ

c1

= ∑
n1,...,nr∈Z

e(λ1+ρc1 )n1+λ2n2+···+λrnr

× Pi

(
K

c1
t = −n1/t,K

c2
t = n2/t, . . . ,K

cr
t = nr/t

)
= Eie

t(−(λ1+ρc1 )K
c1
t +λ2K

c2
t +···+λrK

cr
t ) = ht

(−(
λ1 + ρc1

)
, λ2, . . . , λr

)
,

which gives the desired result. �

Theorems of the following type are called integral fluctuation theorems in
nonequilibrium statistical physics.

THEOREM 7.4. Let c1, c2, . . . , cr be a family of cycles passing through a com-
mon state i. Then for each t ≥ 0,

Eie
−t (K

c1
t ρc1+K

c2
t ρc2+···+K

cr
t ρcr ) = 1.(119)

PROOF. By Theorem 7.3, for any λ1, . . . , λr ∈ R,

Eie
t(λ1K

c1
t +···+λrK

cr
t ) = Eie

−t ((λ1+ρc1 )K
c1
t +···+(λr+ρcr )K

cr
t ).(120)

If we take λk = −ρck for each k in the above equation, we obtain the desired result.
�
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The large deviation principle of the sample net circulations and the symmetry
of the rate function are stated in the following theorem. Theorems of the follow-
ing type are called Gallavotti–Cohen-type fluctuation theorems in nonequilibrium
statistical physics.

THEOREM 7.5. Let c1, c2, . . . , cr be a family of cycles passing through
a common state i. Then under Pi , the law of (K

c1
t ,K

c2
t , . . . ,K

cr
t ) satisfies a

large deviation principle with rate t and good rate function I
c1,c2,...,cr

K : Rr →
[0,∞]. Moreover, the rate function I

c1,c2,...,cr

K has the following symmetry: for any
x1, x2, . . . , xr ∈ R and 1 ≤ k ≤ r ,

I
c1,c2,...,cr

K (x1, . . . , xk, . . . , xr) = I
c1,c2,...,cr

K (x1, . . . ,−xk, . . . , xr) − ρckxk.(121)

PROOF. We only need to prove this theorem when k = 1. The proof of the
other cases is totally the same. Let F :R2r →R

r be a continuous map defined as

F(x1, y1, . . . , xr , yr) = (x1 − y1, . . . , xr − yr).(122)

Then we have

F
(
J

c1
t , J

c1−
t , . . . , J

cr
t , J

cr−
t

) = (
K

c1
t , . . . ,K

cr
t

)
.(123)

By Corollary 6.20, the law of (J
c1
t , J

c1−
t , . . . , J

cr
t , J

cr−
t ) satisfies a large deviation

principle with rate t and good rate function I c1,c1−,...,cr ,cr−. Using the contraction
principle, we see that the law of (K

c1
t , . . . ,K

cr
t ) satisfies a large deviation principle

with rate t and good rate function

I
c1,...,cr

K (z1, . . . , zr)
(124)

= inf
x1−y1=z1,...,xr−yr=zr

I c1,c1−,...,cr ,cr−(x1, y1, . . . , xr , yr).

Thus, we have

I
c1,...,cr

K (z1, z2, . . . , zr)

= inf
x1−y1=z1,...,xr−yr=zr

I c1,c1−,...,cr ,cr−(x1, y1, x2, y2, . . . , xr , yr)

= inf
x1−y1=z1,...,xr−yr=zr

I c1,c1−,...,cr ,cr−(y1, x1, x2, y2, . . . , xr , yr)

− ρc1(x1 − y1)

= inf
y1−x1=−z1,x2−y2=z2,...,xr−yr=zr

I c1,c1−,...,cr ,cr−(y1, x1, x2, y2, . . . , xr , yr)

− ρc1z1

= I
c1,...,cr

K (−z1, z2, . . . , zr) − ρc1z1,

which gives the desired result. �
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FIG. 1. Markov chain models of enzyme kinetics. (a) The Markov chain model of single-substrate
enzyme kinetics. (b) The Markov chain model of multiple-substrate enzyme kinetics.

7.2. Applications in biochemistry. One of the most important branches of bio-
chemistry is enzyme kinetics, which studies chemical reactions catalyzed by en-
zymes. In recent years, it has been made possible to study enzyme kinetics at
the single-molecule level [11, 18, 32], in which case the concept of concentration
makes no sense and the behavior of enzymes must be studied in a single-molecule
way.

Let us consider the following three-step Michaelis–Menten enzyme kinetics [5,
16, 18]:

E + S � ES � EP � E + P,(125)

where E is an enzyme turning the substrate S into the product P . If there is only
one enzyme molecule, then it may transition stochastically among three states: the
free enzyme E, the enzyme-substrate complex ES and the enzyme-product com-
plex EP. From the perspective of a single enzyme molecule, the Michaelis–Menten
enzyme kinetics (125) can be modeled as a three-state Markov chain illustrated in
Figure 1(a).

However, single-substrate enzymes are actually rather rare in biochemistry [17].
If the enzyme E can catalyze multiple chemical reactions simultaneously with
substrates S1, S2, . . . , Sn and products P1,P2, . . . ,Pn, then the transition diagram
of the Markov chain model will contain multiple cycles passing through a common
state E, as illustrated in Figure 1(b).

We assume that the Markov chain illustrated in Figure 1(b) starts from state E.
If the Markov chain forms a clockwise cycle ck = (E,ESk,EPk), then the sub-
strate Sk is converted into the product Pk for one time. Similarly, if the Markov
chain forms a counterclockwise cycle ck− = (E,EPk,ESk), then the product Pk

is converted into the substrate Sk for one time. Thus, the sample net circulation
K

ck
t along cycle ck represents the net number of conversions from the substrate Sk

into the product Pk per unit time and the quantity

W
ck
t = K

ck
t ρck(126)
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represents the fluctuating chemical work done along cycle ck [17, 18, 33], where
ρck is the affinity of cycle ck . In fact, the results of this paper can be directly applied
to establish the multivariate fluctuation theorems for the sample net circulations
along cycles c1, c2, . . . , cn and the fluctuating chemical works done along cycles
c1, c2, . . . , cn. This shows that our work could have a broad application prospect
in biochemistry.
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