
The Annals of Applied Probability
2016, Vol. 26, No. 4, 2106–2140
DOI: 10.1214/15-AAP1141
© Institute of Mathematical Statistics, 2016

GAUSSIAN APPROXIMATION OF NONLINEAR
HAWKES PROCESSES
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We give a general Gaussian bound for the first chaos (or innovation)
of point processes with stochastic intensity constructed by embedding in a
bivariate Poisson process. We apply the general result to nonlinear Hawkes
processes, providing quantitative central limit theorems.

1. Introduction. In the seminal papers [27] and [29], Stein’s method and
Malliavin’s calculus have been combined to derive explicit bounds in the Gaus-
sian approximation of random variables on the Wiener and Poisson spaces. Fur-
ther developments on the Poisson space include, for example, [19, 30, 32, 34]. In
particular, in [32] the authors derive new Gaussian bounds for functionals of the
one-dimensional homogeneous Poisson process by using the Clark–Ocone repre-
sentation formula; see, for example, [31]. In contrast with covariance identities
based on the inverse of the Ornstein–Uhlenbeck operator the Clark–Ocone repre-
sentation formula only requires the computation of a gradient and a conditional
expectation. For this reason, the Clark–Ocone representation formula is a valuable
tool even for the probability approximation of random variables on spaces differ-
ent from the Wiener and Poisson. We refer the reader to [33] for the use of the
Clark–Ocone representation formula for the Gaussian and Poisson approximation
of random variables on the Bernoulli space and to [26] for the use of the Clark–
Ocone representation formula for the Gaussian approximation of solutions of some
stochastic equations.

The contributions of this paper are the following. We provide a Gaussian bound
for the first chaos of a large class of point processes with stochastic intensity; see
Theorem 3.1. Particularly, we consider point processes on the line constructed by
embedding in a bivariate Poisson process and provide a Gaussian approximation
for the first chaos (or innovation) combining Stein’s method and Malliavin’s cal-
culus via a Clark–Ocone type representation formula.

To the best of our knowledge, this is the first paper which provides Gaus-
sian bounds for the innovation of a point process with stochastic intensity by the
Malliavin–Stein method.
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We apply our general result to nonlinear Hawkes processes, deriving an explicit
Gaussian bound for the innovation; see Theorem 4.1. In the special case of self-
exciting processes (or linear Hawkes processes), relying on the knowledge of the
intensity of the process and the spectral theory of point processes, we are able to
provide alternative Gaussian bounds for the innovation which, in some cases, im-
prove those one obtained by directly applying Theorem 4.1; see Theorems 5.1, 5.2
and Proposition 5.3. We exploit such Gaussian bounds to provide new quantitative
central limit theorems in the Wasserstein distance for the first chaos of Hawkes
processes; see Corollaries 4.5 and 5.4. The quantitative nature of these Gaussian
approximations allows, for example, to construct in a standard way confidence in-
tervals for the corresponding innovations, we outlined this simple application in
Example 4.6.

From the point of view of applications, the extension of our results to multi-
variate point processes with stochastic intensity and random marks is certainly of
interest; see, for example, [1, 22] and [39]. This topic is presently under investiga-
tion by the author, as well as the topic concerning the Poisson approximation, via
the Malliavin–Stein method, of first-order stochastic integrals with respect to point
processes with stochastic intensity (note that for this latter argument some results
are already known, see [3] and [4]).

In the last years, there has been a renewed interest on Hawkes processes, mainly
due to their mathematical tractability and versatility in modeling contexts. Self-
exciting processes were introduced in [15] and [16], while the wider class of non-
linear Hawkes processes was introduced in [7]. Various mathematical aspects of
these processes (and their generalizations), such as stability, rate of convergence
to equilibrium, perfect and approximate simulation, large deviations and limit the-
orems, are studied in [5, 7–9, 15–17, 22–25, 39, 42, 43]. Linear Hawkes processes
are Poisson cluster processes with a simple self-exciting structure which makes
them very appealing to account for situations where the occurrence of future events
directly depends on the past history. Nonlinear Hawkes processes allow to account
for inhibitory effects. For these reasons, Hawkes processes naturally and simply
capture a causal structure of discrete events dynamics associated with endogenous
triggering, contagion and self-activation phenomena. Typical fields where this kind
of dynamics arise are seismology (occurrence of earthquakes), neuroscience (oc-
currence of neuron’s spikes), genome analysis (occurrence of events along a DNA
sequence), insurance (occurrence of claims) and finance (occurrence of market or-
der arrivals); see, for example, [1, 2, 18, 28, 35–37, 41] for applications of Hawkes
processes in these contexts.

The paper is organized as follows. In Section 2, we give some preliminaries
on point processes including the notion of stochastic intensity, the Poisson embed-
ding construction and a Clark–Ocone type representation formula. In Section 3, we
prove a general upper bound for the Wasserstein distance between the first chaos of
a point process with stochastic intensity (constructed by embedding on a bivariate
Poisson process) and a standard normal random variable. In Section 4, we apply
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the result in Section 3 to nonlinear Hawkes processes. Particularly, in Section 4.1
we provide an explicit Gaussian bound for the first chaos (and a suitable approxi-
mated version of it) of a stationary nonlinear Hawkes process. The corresponding
quantitative central limit theorem is derived in Section 4.2. The special case of
self-exciting processes is treated in Section 5.

2. Preliminaries on point processes. In this section, we give some prelimi-
naries on point processes, and refer the reader to the books [6, 12, 13] for more
insight into this subject.

Let {Tn}n∈Z be a sequence of random times defined on a probability space
(�,A,P ). Given a Borel set A ∈ B(R), we define

N(A) := ∑
n∈Z

1A(Tn)

and we call N := {N(A)}A∈B(R) the point process with times {Tn}n∈Z. We suppose
that N has the following properties:

Tn ∈R := R∪ {±∞}; |Tn| < ∞ �⇒ Tn < Tn+1; T0 ≤ 0 < T1;
N(A) < ∞, for all bounded A.

These conditions guarantee that N is simple, that is, N({a}) ≤ 1 for any a ∈ R,
and locally finite.

Given a sequence {Zn}n∈Z of random variables on � with values in some mea-
surable space (E,E), we define

N(A) := ∑
n∈Z

1A(Tn,Zn), A ∈ B(R) ⊗ E

and ∫
A

ψ(t, z)N(dt × dz) := ∑
n∈Z

ψ(Tn,Zn)1A(Tn,Zn)

for a measurable function ψ : R × E → R for which the infinite sum is well de-
fined.

2.1. Point processes with stochastic intensity. Let F := {Ft }t∈R ⊂ A be a fil-
tration such that Ft ⊇ FN

t for any t ∈ R, where FN := {FN
t }t∈R is the natural

filtration of the point process N , that is,

FN
t := σ

{
N(A) : A ∈ B(R),A ⊆ (−∞, t]}.

Let {λ(t)}t∈R be a nonnegative stochastic process defined on (�,A,P ) which is
F -adapted, that is, λ(t) is Ft -measurable for any t ∈ R, and such that∫ b

a
λ(t)dt < ∞, a.s., for all a, b ∈ R.
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We call {λ(t)}t∈R F -stochastic intensity of N if, for any a, b ∈ R,

E
[
N

(
(a, b])|Fa] = E

[∫ b

a
λ(t)dt

∣∣∣Fa

]
, a.s.

Since one usually considers predictable stochastic intensities, we define the pre-
dictable σ -field. Given a filtration G := {Gt }t∈R ⊂ A, we define the σ -field P(G)

on R× � by

P(G) := σ
{
(a, b] × A : a, b ∈ R,A ∈ Ga

}
.

We call P(G) predictable σ -field and say that a real-valued stochastic process
{X(t)}t∈R is G-predictable if the mapping X : R × � → R is P(G)-measurable.
A typical G-predictable process is a G-adapted process with left-continuous trajec-
tories.

2.2. Point processes constructed by embedding in a bivariate Poisson process.
Hereafter, N denotes a Poisson process on R×R+, defined on a probability space
(�,A,P ), with mean measure dt dz. Let FN := {FN

t }t∈R be the natural filtration
of N , that is,

FN
t := σ

{
N(A × B) : A ∈ B(R),B ∈ B(R+),A ⊆ (−∞, t]}.

Point processes with stochastic intensity may be constructed by embedding in a
bivariate Poisson process as follows.

LEMMA 2.1. Let f,g :R×� →R+ be two nonnegative, P(FN)-measurable
mappings such that∫ b

a

∣∣f (t) − g(t)
∣∣ dt < ∞, a.s., for all a, b ∈ R,

set It := (min{f (t), g(t)},max{f (t), g(t)}], t ∈ R, and define the point process
on R

N(dt) := N(dt × It ), t ∈R.

Then N has FN -stochastic intensity {|f (t) − g(t)|}t∈R.

This result is an extension of the method proposed in [21] for the simulation
of nonhomogeneous Poisson processes and was used, for example, in [7] and [22]
to study the stability of various classes of point processes, including Hawkes pro-
cesses.

Throughout this paper, we consider point processes N on R defined by

N(dt) := N
(
dt × (

0, λ(t)
])

,(2.1)

where {λ(t)}t∈R is a nonnegative process of the form

λ(t) := ϕ(t,N |(−∞,t))(2.2)
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such that ∫ b

a
λ(s)ds < ∞, a.s., for all a, b ∈ R.(2.3)

Here, ϕ :R×N →R+ is a measurable functional, N denotes the space of simple
and locally finite counting measures on R×R+ endowed with the vague topology
(see, e.g., [13]) and, for simplicity, with a little abuse of notation, we denote by
N |(−∞,t) the restriction of N to (−∞, t) ×R+, that is,

N |(−∞,t)(A) := N
(
A ∩ (

(−∞, t) ×R+
))

, A ∈ B(R) ⊗B(R+).

Since the process {N |(−∞,t)(A)}t∈R is FN -adapted and left-continuous the map-
ping

(t,ω) → N(ω)|(−∞,t)(A)

is P(FN)-measurable for any fixed A ⊆ B(R) ⊗ B(R+). Therefore, {λ(t)}t∈R is
FN -predictable (see, e.g., Remark 1 in [22]). Consequently, by Lemma 2.1 we de-
duce that N defined by (2.1), (2.2) and (2.3) has FN -stochastic intensity {λ(t)}t∈R.

As we shall see more in detail later on, Hawkes processes may be constructed
by embedding in a bivariate Poisson process; see [7].

2.3. The finite difference operator on the Poisson space and a Clark–Ocone
type representation formula. Given a measurable functional ψ : N → R, we de-
fine the finite difference operator D by

D(t,z)ψ(N) := ψ(N + ε(t,z)) − ψ(N),

where ε(t,z) denotes the Dirac measure at (t, z) ∈ R × R+. We also define the σ -
field

FN
t− := σ

{
N(A × B) : A ∈ B(R),B ∈ B(R+),A ⊆ (−∞, t)

}
, t ∈ R.

The following Clark–Ocone type representation formula holds; see Theorem 1.1
in [20] (see also Lemma 1.3 in [40]).

LEMMA 2.2. For any measurable functional ψ : N → R such that ψ(N) ∈
L2(�,dP), we have

ψ(N) − E
[
ψ(N)

] =
∫
R×R+

E
[
D(t,z)ψ(N)|FN

t−
](

N(dt × dz) − dt dz
)
.

As pointed out in [20] and [40], we can (and we will) work with a P(FN) ⊗
B(R+)-measurable version of the conditional expectation E[D(t,z)ψ(N)|FN

t−].
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3. Gaussian approximation of the first chaos of point processes with
stochastic intensity. In this section, we provide a bound for the Wasserstein dis-
tance between a standard normal random variable Z and the first chaos

δ(u) :=
∫
R

u(t)
(
N(dt) − λ(t)dt

)
,(3.1)

being u : R → R a measurable function and N defined by (2.1), (2.2) and (2.3).
We recall that, given two random variables X, Y defined on the same probability
space, the Wasserstein distance between X and Y is

dW(X,Y ) := sup
h∈Lip(1)

∣∣E[
h(X)

] − E
[
h(Y )

]∣∣,
where Lip(1) denotes the class of real-valued Lipschitz functions with Lipschitz
constant less than or equal to 1. We also recall that the topology induced by dW

on the class of probability measures over R is finer than the topology of weak
convergence (see, e.g., [14]).

Following [29], we give a general bound for dW(X,Z), where X is an inte-
grable random variable. Given h ∈ Lip(1), it turns out that there exists a twice
differentiable function fh :R →R so that

h(x) − E
[
h(Z)

] = f ′
h(x) − xfh(x), x ∈ R.(3.2)

For a function g : R → R, we define ‖g‖∞ := supx∈R |g(x)|. Equation (3.2) is
called Stein’s equation [38] and the function fh has the following properties:

‖fh‖∞ ≤ 2
∥∥h′∥∥∞,

∥∥f ′
h

∥∥∞ ≤
√

2/π
∥∥h′∥∥∞, ‖fh‖∞ ≤ 2

∥∥h′∥∥∞;
see [11], Lemma 2.4. Since ‖h′‖∞ ≤ 1 (indeed h has Lipschitz constant less than
or equal to 1), letting FW denote the class of twice differentiable functions f so
that ‖f ‖∞ ≤ 2, ‖f ′‖∞ ≤ √

2/π and ‖f ′′‖∞ ≤ 2, we have

dW(X,Z) ≤ sup
f ∈FW

∣∣E[
f ′(X) − Xf (X)

]∣∣.(3.3)

Note that the right-hand side of (3.3) is finite since the functions f,f ′ are bounded
and X is integrable.

The following upper bound extends Corollary 3.4 in [29] to a class of not nec-
essarily Poisson processes.

THEOREM 3.1. Let u :R →R be a measurable function such that

E
[∫

R

∣∣u(t)
∣∣λ(t)dt

]
< ∞,(3.4)

E
[∫

R

∣∣u(t)
∣∣2λ(t)dt

]
< ∞,(3.5) ∫

R×R+

(∫ ∞
t

∣∣u(s)
∣∣E[∣∣D(t,z)λ(s)

∣∣] ds

)
dt dz < ∞,(3.6)
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(∫ ∞
t

∣∣u(s)
∣∣2E

[∣∣D(t,z)λ(s)
∣∣] ds

)
dt dz < ∞(3.7)

and ∫
R×R+

∣∣u(t)
∣∣2(∫ ∞

t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds

)
dt dz < ∞.(3.8)

In addition, assume that, for dx dy-almost all (t, z) ∈ R × R+, the random func-
tion |D(t,z)λ(·)| is a.s. locally integrable on (t,∞) with respect to the Lebesgue
measure. Then

dW

(
δ(u),Z

)
≤

√
2/πE

[∣∣∣∣1 −
∫
R

∣∣u(t)
∣∣2λ(t)dt

∣∣∣∣] + E
[∫

R

∣∣u(t)
∣∣3λ(t)dt

]
(3.9)

+ 2
√

2/π

∫
R×R+

∣∣u(t)
∣∣(∫ +∞

t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds

)
dt dz

+
∫
R×R+

∣∣u(t)
∣∣(∫ +∞

t

∣∣u(s)
∣∣2E

[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣] ds

)
dt dz,

where δ(u) is defined by (3.1).

REMARK 3.2. Note that if the function u is bounded, then conditions (3.4)
and (3.6) imply (3.5), (3.7) and (3.8).

PROOF OF THEOREM 3.1. We may assume

E
[∫

R

∣∣u(t)
∣∣3λ(t)dt

]
< ∞,(3.10) ∫

R×R+

∣∣u(t)
∣∣(∫ +∞

t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds

)
dt dz < ∞(3.11)

and ∫
R×R+

∣∣u(t)
∣∣(∫ +∞

t

∣∣u(s)
∣∣2E

[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣] ds

)
dt dz < ∞.(3.12)

Indeed, if one of the above terms is equal to infinity, then the claim is trivially true.
We have

δ(u) =
∫
R

u(t)
(
N(dt) − λ(t)dt

) =
∫
R

u(t)
(
N

(
dt × (

0, λ(t)
]) − λ(t)dt

)
=

∫
R×R+

u(t)1(0,λ(t)](z)
(
N(dt × dz) − dt dz

)
.

For any f ∈ FW , we have f (δ(u)) ∈ L2(�,dP) since f is bounded. So by
Lemma 2.2 we deduce

f
(
δ(u)

) − E
[
f

(
δ(u)

)] =
∫
R×R+

E
[
D(t,z)f

(
δ(u)

)|FN
t−

](
N(dt × dz) − dt dz

)
.
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For ease of notation, we set

g1(t,ω, z) := u(t)1(0,λ(t,ω)](z) and g2(t,ω, z) := E
[
D(t,z)f

(
δ(u)

)|FN
t−

]
(ω).

By the arguments at the end of Section 2.2 and the comment after the statement of
Lemma 2.2, we have that g1 and g2 are P(FN) ⊗ B(R+)-measurable. Note that,
due to assumptions (3.4) and (3.5), g1 is integrable and square integrable with
respect to dt dz dP(ω). We shall check later on that

g2 is integrable and square integrable with respect to dt dz dP(ω).(3.13)

So by Theorem 3 in [8] [formulas (19) and (20)], we have

E
[
δ(u)f

(
δ(u)

)] = E
[
δ(u)

(
f

(
δ(u)

) − E
[
f

(
δ(u)

)])]
= E

[(∫
R×R+

g1(t, z)
(
N(dt × dz) − dt dz

))

×
(∫

R×R+
g2(t, z)

(
N(dt × dz) − dt dz

))]

= E
[∫

R×R+
g1(t, z)g2(t, z)dt dz

]
.

By the Taylor formula, we deduce

D(t,z)f
(
δ(u)

) = f
(
δ(u) + D(t,z)δ(u)

) − f
(
δ(u)

)
(3.14)

= f ′(δ(u)
)
D(t,z)δ(u) + R

(
D(t,z)δ(u)

)
,(3.15)

where the rest R satisfies |R(y)| ≤ y2 since ‖f ′′‖∞ ≤ 2. Since f is bounded,
by (3.14) we have that g2 is a.s. bounded, and so by the standard properties of the
conditional expectation [note that λ(t) is FN

t−-measurable] and Fubini’s theorem
we deduce

E
[
δ(u)f

(
δ(u)

)] = E
[∫

R×R+
g1(t, z)D(t,z)f

(
δ(u)

)
dt dz

]
.

Consequently, by (3.15),∣∣E[
f ′(δ(u)

) − δ(u)f
(
δ(u)

)]∣∣
=

∣∣∣∣E[
f ′(δ(u)

) −
∫
R×R+

g1(t, z)D(t,z)f
(
δ(u)

)
dt dz

]∣∣∣∣
≤

∣∣∣∣E[
f ′(δ(u)

)(
1 −

∫
R×R+

g1(t, z)D(t,z)δ(u)dt dz

)]∣∣∣∣
+

∣∣∣∣E[∫
R×R+

g1(t, z)R
(
D(t,z)δ(u)

)
dt dz

]∣∣∣∣
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≤
√

2/πE
[∣∣∣∣1 −

∫
R×R+

g1(t, z)D(t,z)δ(u)dt dz

∣∣∣∣]

+ E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣2 dt dz

]
.

Therefore, using the basic inequality (3.3), we have

dW

(
δ(u),Z

) ≤
√

2/πE
[∣∣∣∣1 −

∫
R×R+

g1(t, z)D(t,z)δ(u)dt dz

∣∣∣∣]

+ E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣2 dt dz

]
.

We shall check later on that

E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣ dt dz

]
< ∞(3.16)

and

E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣2 dt dz

]
< ∞.(3.17)

So the above upper bound on dW(δ(u),Z) is nontrivial. For dx dy-almost all
(t, z) ∈ R×R+, we have

D(t,z)δ(u) = D(t,z)

(∫
R×R+

g1(s, v)N(ds × dv)

)
− D(t,z)

(∫
R×R+

g1(s, v)ds dv

)
.

Computing separately these two finite differences and writing ϕt (N |(−∞,t)) in
place of ϕ(t,N |(−∞,t)) for ease of notation, we have

D(t,z)

(∫
R×R+

g1(s, v)N(ds × dv)

)

= D(t,z)

(∫
R×R+

1s≤tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)

+
∫
R×R+

1s>tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)

)
=

∫
R×R+

1s≤tu(s)1(0,ϕs((N+ε(t,z))|(−∞,s))](v)(N + ε(t,z))(ds × dv)

+
∫
R×R+

1s>tu(s)1(0,ϕs((N+ε(t,z))|(−∞,s))](v)(N + ε(t,z))(ds × dv)

−
∫
R×R+

1s≤tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)

−
∫
R×R+

1s>tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)
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=
∫
R×R+

1s≤tu(s)1(0,ϕs(N |(−∞,s))](v)(N + ε(t,z))(ds × dv)

+
∫
R×R+

1s>tu(s)1(0,ϕs(N |(−∞,s)+ε(t,z))](v)N(ds × dv)

−
∫
R×R+

1s≤tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)

−
∫
R×R+

1s>tu(s)1(0,ϕs(N |(−∞,s))](v)N(ds × dv)

= g1(t, z) +
∫
(t,∞)

u(t,z)(s)N(t,z)(ds),

where for s > t

u(t,z)(s) := sign
(
ϕs(N |(−∞,s) + ε(t,z)) − ϕs(N |(−∞,s))

)
u(s)

= sign
(
D(t,z)λ(s)

)
u(s),

N(t,z)(ds) := N
(
ds × (

ϕs(N |(−∞,s) + ε(t,z)) ∧ ϕs(N |(−∞,s)),

ϕs(N |(−∞,s) + ε(t,z)) ∨ ϕs(N |(−∞,s))
])

.

Here, for ease of notation, we denoted by a ∧ b and a ∨ b the minimum and the
maximum between a, b ∈ R, respectively. Moreover,

D(t,z)

(∫
R×R+

g1(s, v)ds dv

)
=

∫ +∞
t

u(s)D(t,z)λ(s)ds

=
∫ +∞
t

u(t,z)(s)
∣∣D(t,z)λ(s)

∣∣ ds.

Therefore,

D(t,z)δ(u) = g1(t, z) + δ(t,z)(u),(3.18)

where

δ(t,z)(u) :=
∫
(t,∞)

u(t,z)(s)
(
N(t,z)(ds) − ∣∣D(t,z)λ(s)

∣∣ ds
)
.

Combining (3.18) with the previous bound on dW(δ(u),Z), we deduce

dW

(
δ(u),Z

) ≤
√

2/πE
[∣∣∣∣1 −

∫
R

∣∣u(t)
∣∣2λ(t)dt

∣∣∣∣]
+

√
2/πE

[∫
R×R+

∣∣u(t)
∣∣1(0,λ(t)](z)

∣∣δ(t,z)(u)
∣∣ dt dz

]

+ E
[∫

R

∣∣u(t)
∣∣3λ(t)dt

]
(3.19)
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+ 2E
[∫

R×R+

∣∣u(t)
∣∣u(t)1(0,λ(t)](z)δ(t,z)(u)dt dz

]

+ E
[∫

R×R+

∣∣u(t)
∣∣1(0,λ(t)](z)

∣∣δ(t,z)(u)
∣∣2 dt dz

]
.

We shall check later on that

E
[∫

R×R+

∣∣g1(t, z)
∣∣2∣∣D(t,z)δ(u)

∣∣ dt dz

]
< ∞,(3.20)

and so by (3.5), (3.10), (3.16), (3.17), (3.18) and (3.20) the bound (3.19) is nontriv-
ial. By Lemma 2.1, for dx dy-almost all (t, z) ∈ R × R+, the point process N(t,z)

on (t,∞) has {FN
s }s>t -stochastic intensity {|D(t,z)λ(s)|}s>t . Indeed, the mapping

(t,∞) × � � (s,ω) �→ ∣∣D(t,z)λ(s,ω)
∣∣ ∈ R

is P({FN
s }s>t )-measurable and (by assumption), for P -almost all ω, it is locally

integrable in s with respect to the Lebesgue measure. We note that

1(0,λ(t)](z)δ(t,z)(u) =
∫
(t,∞)

1(0,λ(t)](z)u(t,z)(s)
(
N(t,z)(ds) − ∣∣D(t,z)λ(s)

∣∣ ds
)

and the mapping

(t,∞) × � � (s,ω) → 1(0,λ(t,ω)](z)u(t,z)(s,ω)

is P({FN
s }s>t )-measurable. By (3.6) and (3.7), we have∫ +∞

t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds < ∞,

for dx dy-almost all (t, z) ∈ R×R+
and ∫ +∞

t

∣∣u(s)
∣∣2E

[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣] ds < ∞,

for dx dy-almost all (t, z) ∈R×R+.

Therefore, by Theorem 3 in [8] [formulas (19) and (20)], for dx dy-almost all
(t, z) ∈ R×R+, we have

E
[
1(0,λ(t)](z)δ(t,z)(u)

] = 0(3.21)

and

E
[
1(0,λ(t)](z)

∣∣δ(t,z)(u)
∣∣2] =

∫ ∞
t

∣∣u(s)
∣∣2E

[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣] ds.(3.22)

By the triangular inequality and formula (19) in [8], we have

E
[
1(0,λ(t)](z)

∣∣δ(t,z)(u)
∣∣] ≤ 2

∫ ∞
t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds.(3.23)
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Inequality (3.9) follows combining (3.19) with (3.21), (3.22) and (3.23).
It remains to prove the integrability conditions (3.13), (3.16), (3.17) and (3.20).

Since f ∈ FW , then it is Lipschitz continuous with Lipschitz constant less than or
equal to 1. Therefore, by (3.14) we have |D(t,z)f (δ(u))| ≤ |D(t,z)δ(u)|, and so to
prove (3.13) it suffices to check∫

R×R+
E

[∣∣D(t,z)δ(u)
∣∣] dt dz < ∞ and

∫
R×R+

E
[∣∣D(t,z)δ(u)

∣∣2]
dt dz < ∞.

Using relation (3.18) and formula (19) in [8], we have∫
R×R+

E
[∣∣D(t,z)δ(u)

∣∣] dt dz

≤ E
[∫

R

∣∣u(t)
∣∣λ(t)dt

]
+ 2E

[∫
R×R+

(∫ ∞
t

∣∣u(s)
∣∣∣∣D(t,z)λ(s)

∣∣ ds

)
dt dz

]
and this latter term is finite due to assumptions (3.4) and (3.6). Using again relation
(3.18) and formula (20) in [8], we have∫

R×R+
E

[∣∣D(t,z)δ(u)
∣∣2]

dt dz

≤ 2E
[∫

R

∣∣u(t)
∣∣2λ(t)dt

]
+ 2E

[∫
R×R+

(∫ ∞
t

∣∣u(s)
∣∣2∣∣D(t,z)λ(s)

∣∣ ds

)
dt dz

]
and this latter term is finite due to assumptions (3.5) and (3.7). By (3.18) and
(3.23), we have

E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣ dt dz

]

≤ E
[∫

R

∣∣u(t)
∣∣2λ(t)dt

]
+ E

[∫
R×R+

∣∣g1(t, z)
∣∣∣∣δ(t,z)(u)

∣∣ dt dz

]

≤ E
[∫

R

∣∣u(t)
∣∣2λ(t)dt

]
+ 2

∫
R×R+

∣∣u(t)
∣∣(∫ ∞

t

∣∣u(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣] ds

)
dt dz,

and (3.16) follows by (3.5) and (3.11). Similarly, by (3.18) and (3.22) we have

E
[∫

R×R+

∣∣g1(t, z)
∣∣∣∣D(t,z)δ(u)

∣∣2 dt dz

]

≤ 2E
[∫

R

∣∣u(t)
∣∣3λ(t)dt

]
+ 2E

[∫
R×R+

∣∣g1(t, z)
∣∣∣∣δ(t,z)(u)

∣∣2 dt dz

]

= 2E
[∫

R

∣∣u(t)
∣∣3λ(t)dt

]
+ 2

∫
R×R+

∣∣u(t)
∣∣(∫ ∞

t

∣∣u(s)
∣∣2E

[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣] ds

)
dt dz,
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and (3.17) follows by (3.10) and (3.12). Finally, (3.20) may be checked similarly
to (3.16), but using (3.10) and (3.8) in place of (3.5) and (3.11), respectively. The
proof is completed. �

4. Application to stationary nonlinear Hawkes processes. A nonlinear
Hawkes process with parameters (φ,h) is a point process N on R with FN -
stochastic intensity of the form

t �→ φ

(∫
(−∞,t)

h(t − s)N(ds)

)
, t ∈ R,(4.1)

where φ : R → R+ and h : R+ → R are measurable functions. A particular case
is the self-exciting process (or linear Hawkes process) with parameters (ν, h), for
which φ(x) := ν + x, for some constant ν > 0, and h is nonnegative.

In the seminal paper [7], the authors proved that if φ is Lipschitz continuous
with Lipschitz constant α such that αμ < 1, where μ := ‖h‖L1(R+,dx), then there
exists a unique stationary distribution of N with dynamics (4.1) and finite inten-
sity λ := E[N((0,1])]. The stationary solution is constructed by embedding in a
bivariate Poisson process, as follows. Define recursively the processes λ(0) ≡ 0,

N(n)(dt) := N
(
dt × (

0, λ(n)(t)
])

and

λ(n+1)(t) := φ

(∫
(−∞,t)

h(t − s)N(n)(ds)

)
,

n ≥ 0, t ∈ R, where N is a Poisson process on R × R+ with mean measure
dt dz. It turns out that, for any fixed n ≥ 0, the point process N(n) is station-
ary and {λ(n)(t)}t∈R is an FN -stochastic intensity of N(n). It is then proved that
N(n)((a, b]) → N((a, b]) and λ(n)(t) → λ(t) a.s., for any a, b, t ∈ R, and the lim-
iting process is stationary and satisfies

N(dt) = N
(
dt × (

0, λ(t)
])

, λ(t) = φ

(∫
(−∞,t)

h(t − s)N(ds)

)
, t ∈R

and λ ∈ (0,∞). Note that λ(t) = ϕ(t,N |(−∞,t)), for some functional ϕ :R×N →
R+ satisfying

ϕ(t,N |(−∞,t))
(4.2)

:= φ

(∫
(−∞,t)×R+

1(0,ϕ(s,N |(−∞,s))](z)h(t − s)N(ds × dz)

)
.

Then by Lemma 2.1 it follows that N is a point process on R with FN -stochastic
intensity {λ(t)}t∈R. In conclusion, N is a stationary nonlinear Hawkes process with
parameters (φ,h) and finite intensity.
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4.1. Explicit Gaussian bound for the first chaos of nonlinear Hawkes processes.
The following explicit Gaussian bound holds.

THEOREM 4.1. Assume that h : R+ → [0,∞) is locally bounded and φ :
[0,∞) → [0,∞), φ(0) > 0, is nondecreasing and Lipschitz continuous, with Lips-
chitz constant α such that αμ < 1. Let N be a stationary nonlinear Hawkes process
with parameters (φ,h) and finite intensity λ ∈ (0,∞). If u ∈ L1(R,dx), then

dW

(
δ(u),Z

) ≤N,(4.3)

where

N :=
√

2/π max
{∣∣1 − φ(0)‖u‖2

L2(R,dx)

∣∣, ∣∣∣∣1 − φ(0)

1 − αμ
‖u‖2

L2(R,dx)

∣∣∣∣}

+ φ(0)

1 − αμ
‖u‖3

L3(R,dx)
+ 2

√
2/πφ(0)αμ(2 − αμ)

(1 − αμ)2 ‖u‖2
L2(R,dx)

(4.4)

+ φ(0)αμ

(1 − αμ)2 ‖u‖L2(R,dx)

∥∥u2∥∥
L2(R,dx).

REMARK 4.2. Suppose that φ and h satisfy the assumptions of Theorem 4.1.
One says that N ′ is a (nonstationary) nonlinear Hawkes process on R+ with pa-
rameters (φ,h) and initial condition IC (see [7]) if N ′ has stochastic intensity

λ′(t) := φ

(∫
(−∞,t)

h(t − s)N ′(ds)

)
, t > 0

on R+ and N ′ satisfies the condition IC on R−. If u′ ∈ L1(R+,dx), following the
lines of the proof of Theorem 4.1, one can show (without major difficulties) that
the Gaussian bound (4.3) holds replacing δ(u) with

δ′(u′) :=
∫
R+

u′(t)
(
N ′(dt) − λ′(t)dt

)
and replacing u with u′ (and R with R+) in the expression of N.

Let N be a stationary nonlinear Hawkes process with parameters (φ,h) which
satisfy the assumptions of Theorem 4.1. Since h ≥ 0 and φ is nondecreasing and
Lipschitz continuous with Lipschitz constant α, we have

φ(0) ≤ λ(t) ≤ φ(0) + α

∫
(−∞,t)

h(t − s)N(ds), t ∈R.(4.5)

Taking the mean, we deduce φ(0) ≤ λ ≤ φ(0) + λαμ, and so

φ(0) ≤ λ ≤ φ(0)

1 − αμ
.(4.6)
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Given an integrable function u, one may think of approximating the quantity∫
R

u(t)λ(t)dt

with its expectation λ
∫
R u(t)dt . Unfortunately, in general the intensity λ is not

known explicitly (unless we consider the linear case which is treated in the next
section). However, it may be estimated by, for example, Monte Carlo simulation
(using the ergodic theorem). For a fixed positive constant λ̂ ∈ [φ(0), φ(0)(1 −
αμ)−1], to be interpreted as an estimate of the intensity λ, we define the “approx-
imated” first chaos by

δa(u) :=
∫
R

u(t)
(
N(dt) − λ̂dt

)
.

The following explicit Gaussian bound holds.

THEOREM 4.3. Under assumptions and notation of Theorem 4.1, we have

dW

(
δa(u),Z

) ≤ N+ 2φ(0)αμ

1 − αμ
‖u‖L1(R,dx).(4.7)

REMARK 4.4. In the case of stationary linear Hawkes processes, the bounds
(4.3) and (4.7) may be (slightly) improved due to the knowledge of the intensity λ,
see Theorem 5.1. Moreover, alternative bounds may be obtained by using the spec-
tral theory of self-exciting processes; see Theorem 5.2.

The proofs of Theorems 4.1 and 4.3 are given in Section 4.3.

4.2. A quantitative central limit theorem for nonlinear Hawkes processes. The
following quantitative central limit theorem in the Wasserstein distance is an im-
mediate consequence of Theorems 4.1 and 4.3.

COROLLARY 4.5. For ε > 0, assume that hε : R+ → [0,∞) is locally
bounded and φε : [0,∞) → [0,∞), φε(0) > 0, is nondecreasing and Lips-
chitz continuous, with Lipschitz constant αε such that αεμε < 1, where με :=∫ ∞

0 hε(t)dt . Let Nε be a stationary nonlinear Hawkes process with parameters
(φε, hε) and finite intensity λε ∈ R+, and take uε ∈ L1(R,dx). Then:

(i)

dW

(
δ(ε)(uε),Z

) ≤Nε, ε > 0(4.8)

and

dW

(
δ(ε)
a (uε),Z

) ≤Nε + 2φε(0)αεμε

1 − αεμε

‖uε‖L1(R,dx), ε > 0.(4.9)
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Here, Nε is defined as N in (4.4), with φε , uε , αε and με in place of φ, u, α and
μ, respectively,

δ(ε)(uε) :=
∫
R

uε(t)
(
Nε(dt) − λε(t)dt

)
,

λε(t) := φε

(∫
(−∞,t)

hε(t − s)Nε(ds)

)
,

δ(ε)
a (uε) :=

∫
R

uε(t)
(
Nε(dt) − λ̂ε dt

)
and λ̂ε ∈ [φε(0), φε(0)(1 − αεμε)

−1].
(ii) If, as ε → 0,

αεμε → 0,(4.10)

φε(0)‖uε‖2
L2(R,dx)

→ 1,(4.11)

φε(0)‖uε‖3
L3(R,dx)

→ 0,(4.12) √
φε(0)αεμε

∥∥(uε)
2∥∥

L2(R,dx) → 0,(4.13)

then

dW

(
δ(ε)(uε),Z

) → 0, as ε → 0.

If moreover, as ε → 0,

φε(0)αεμε‖uε‖L1(R,dx) → 0,(4.14)

then

dW

(
δ(ε)
a (uε),Z

) → 0, as ε → 0.

We conclude this subsection with an example.

EXAMPLE 4.6. Let Iε , ε > 0, be a given family of bounded Borel sets, Iε with
Lebesgue measure �ε , and φε : [0,∞) → [0,∞), φε(0) > 0, ε > 0, a family of
nondecreasing and Lipschitz continuous functions with Lipschitz constant αε . Let
με , ε > 0, be a collection of positive numbers such that αεμε ⊂ (0,1), ε > 0, and
define the functions hε(t) := μεfε(t), ε > 0, t > 0, where fε is a locally bounded
probability density (with respect to the Lebesgue measure) on (0,∞). Hereafter,
we consider the family Nε , ε > 0, of stationary nonlinear Hawkes processes with
parameters (φε, hε), ε > 0, and the functions

uε(t) := 1√
φε(0)�ε

1−αεμε

1Iε (t), ε > 0, t ∈ R.



2122 G. L. TORRISI

We have

‖uε‖2
L2(R,dx)

= 1 − αεμε

φε(0)
, ‖uε‖3

L3(R,dx)
=

(
1 − αεμε

φε(0)�ε

)3/2

�ε,

∥∥(uε)
2∥∥

L2(R,dx) = 1 − αεμε

φε(0)
√

�ε

and ‖uε‖L1(R,dx) =
(

1 − αεμε

φε(0)�ε

)1/2

�ε.

So by Corollary 4.5(i) we deduce

dW

(
δ(ε)(uε),Z

) ≤Nε, ε > 0(4.15)

and

dW

(
δ(ε)
a (uε),Z

) ≤Nε + 2
√

φε(0)�εαεμε√
1 − αεμε

, ε > 0,(4.16)

where

Nε :=
√

2/παεμε + 2
√

2/παεμε(2 − αεμε)

1 − αεμε

+
√

1 − αεμε

φε(0)�ε

+ αεμε√
φε(0)�ε(1 − αεμε)

.

If

lim
ε→0

φε(0)�ε = +∞ and lim
ε→0

αεμε = 0,(4.17)

then one may easily check conditions (4.10), (4.11), (4.12) and (4.13) and so
dW(δ(ε)(uε),Z) → 0, as ε → 0. To guarantee condition (4.14) and, therefore,
dW(δ

(ε)
a (uε),Z) → 0, as ε → 0, we need to suppose

αεμε = o

(
1√

φε(0)�ε

)
, as ε → 0.(4.18)

Clearly, for specific choices of the sets Iε , ε > 0, and the quantities φε(0), αε and
με , we can provide the rate of convergence to zero of the Wasserstein distances.
For instance if, for ε ∈ (0,1), we take Iε = (0,1/ε), φε(0) = ν, αε = α, being ν

and α positive constants, and με = ε, then a straightforward computation shows
that, as ε → 0, the right-hand sides of (4.15) and (4.16) converge to a positive
constant when divided by ε1/2, and so

dW

(
δ(ε)(uε),Z

) = dW

(
δ(ε)
a (uε),Z

) = O(
√

ε), as ε → 0.

The bounds (4.15) and (4.16) may be used to construct confidence intervals for
δ(ε)(uε) and δ

(ε)
a (uε), respectively. For instance, let FX denote the distribution

function of a random variable X, assume (4.17), choose b
(β)
i , i = 1,2, β ∈ (0,1/2),

so that b
(β)
1 < b

(β)
2 and

FZ

(
b

(β)
1

) ≤ β/2 and FZ

(
b

(β)
2

) ≥ 1 − β

2
(4.19)
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and choose ε > 0 so small that 2
√
Nε ≤ β/2, then

P
(
b

(β)
1 < δ(ε)(uε) ≤ b

(β)
2

) ≥ 1 − 2β.(4.20)

Indeed, by (4.15) and the inequality

sup
x∈R

∣∣FX(x) − FZ(x)
∣∣ ≤ 2

√
dW(X,Z)

(see, e.g., [11]), we have∣∣Fδ(ε)(uε)

(
b

(β)
i

) − FZ

(
b

(β)
i

)∣∣ ≤ 2
√
Nε ≤ β/2, i = 1,2.

Relation (4.20) easily follows by this latter inequality and (4.19).

4.3. Proofs of Theorems 4.1 and 4.3.

PROOF OF THEOREM 4.1. We divide the proof in two main steps. In the first
step, we prove

dW

(
δ(u),Z

) ≤
√

2/πE
[∣∣∣∣1 −

∫
R

∣∣u(t)
∣∣2λ(t)dt

∣∣∣∣]
+ λ‖u‖3

L3(R,dx)
(4.21)

+ 2λαμ

1 − αμ

√
2/π‖u‖2

L2(R,dx)

+ λαμ

1 − αμ
‖u‖L2(R,dx)

∥∥u2∥∥
L2(R,dx).

In the second step, we complete the proof. If u /∈ L2(R,dx) ∩ L3(R,dx) ∩
L4(R,dx), then the claim is clearly true. So we shall assume u ∈ L2(R,dx) ∩
L3(R,dx) ∩ L4(R,dx).

Step 1: Proof of (4.21). Hereafter, for ease of notation, we write ϕt(N |(−∞,t))

in place of ϕ(t,N |(−∞,t)), t ∈R. By (4.2), for s, t ∈ R, we have

λ(s) = ϕs(N |(−∞,s))

= φ

(∫
(−∞,s)×R+

1u≤th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

+
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

)
.

We shall show later on that h ≥ 0 and φ nondecreasing imply

D(t,z)λ(s) ≥ 0, for s, t ∈ R, s > t and z ∈ R+.(4.22)
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So, by the Lipschitz continuity of φ, for s, t ∈ R, s > t , and z ∈ R+, we have

0 ≤ D(t,z)λ(s)

≤ α

(∫
(−∞,s)×R+

1u≤th(s − u)1(0,ϕu((N+ε(t,z))|(−∞,u))](v)(N + ε(t,z))(du × dv)

+
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu((N+ε(t,z))|(−∞,u))](v)(N + ε(t,z))(du × dv)

−
∫
(−∞,s)×R+

1u≤th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

−
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

)

= α

(∫
(−∞,s)×R+

1u≤th(s − u)1(0,ϕu(N |(−∞,u))](v)(N + ε(t,z))(du × dv)

+
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u)+ε(t,z))](v)(N + ε(t,z))(du × dv)

−
∫
(−∞,s)×R+

1u≤th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

(4.23)

−
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

)

= α

(
h(s − t)1(0,ϕt (N |(−∞,t))](z)

+
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u)+ε(t,z))](v)N(du × dv)

−
∫
(−∞,s)×R+

1u>th(s − u)1(0,ϕu(N |(−∞,u))](v)N(du × dv)

)

= α

(
h(s − t)1(0,ϕt (N |(−∞,t))](z)

+
∫
(t,s)×R+

h(s − u)
(
1(0,ϕu(N |(−∞,u)+ε(t,z))](v)

− 1(0,ϕu(N |(−∞,u))](v)
)
N(du × dv)

)
= α

(
h(s − t)1(0,ϕt (N |(−∞,t))](z) +

∫
(t,s)

h(s − u)N(t,z)(du)

)
,

where N(t,z) is the point process on (t,∞) defined by

N(t,z)(du) := N
(
du × (

ϕu(N |(−∞,u)), ϕu(N |(−∞,u) + ε(t,z))
])

.
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The processes {ϕu(N |(−∞,u) + ε(t,z))}u>t and {ϕu(N |(−∞,u))}u>t are {FN
u }u>t -

predictable, and we shall check later on that the mapping

(t,∞) � u �→ E
[
D(t,z)λ(u)

] ∈ R is locally bounded.(4.24)

Therefore, ∫ b

a
D(t,z)λ(u)du < ∞ a.s., for any a, b > t.

Consequently, by Lemma 2.1 we have that N(t,z) has {FN
u }u>t -stochastic intensity

{D(t,z)λ(u)}u>t . Taking the mean in (4.23), we deduce

E
[
D(t,z)λ(s)

] ≤ α

(
h(s − t)P

(
λ(t) ≥ z

) +
∫ s

t
h(s − u)E

[
D(t,z)λ(u)

]
du

)
.

Extending the definition of h for nonpositive times as h(t) = 0, t ≤ 0, we rewrite
the above inequality as

q(t,z)(s) ≤ p(t,z)(s) + r ∗ q(t,z)(s), s, t ∈R, z ∈ R+,

where for ease of notation we set q(t,z)(s) := E[D(t,z)λ(s)], p(t,z)(s) := αh(s −
t)P (λ(t) ≥ z), r(s) := αh(s) and ∗ denotes the convolution product between func-
tions. Iterating this inequality, we deduce, for n ≥ 1,

q(t,z)(s) ≤
n−1∑
i=0

p(t,z) ∗ r∗i(s) + q(t,z) ∗ r∗n(s), s, t ∈ R, z ∈ R+,

where r∗0 is by definition the Dirac delta function. By (4.24) and the stability
condition αμ < 1, we deduce q(t,z) ∗ r∗n(s) → 0, as n → ∞, for any t, s ∈ R,
z ∈ R+. Indeed, for some constant Ct,z,s > 0,

q(t,z) ∗ r∗n(s) =
∫
R

r∗n(s − u)q(t,z)(u)du =
∫ s

t
r∗n(s − u)q(t,z)(u)du

≤ Ct,z,s

∫
R

r∗n(s − u)du

≤ Ct,z,s(αμ)n,

where the latter inequality follows by a standard property of convolutions; see, for
example, Theorem IV.15 in [10]. Therefore,

q(t,z)(s) ≤ ∑
i≥0

p(t,z) ∗ r∗i(s)

= P
(
λ(t) ≥ z

)∑
i≥0

αi+1
∫
R

h(s − u − t)h∗i (u)du(4.25)

= P
(
λ(t) ≥ z

)∑
i≥1

αih∗i(s − t), s, t ∈ R, z ∈ R+.
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Consequently, for any f,g integrable and square integrable, defining f̌ (x) :=
f (−x), by the Cauchy–Schwarz inequality and the properties of the convolution
product (see again Theorem IV.15 in [10]), we have∫

R×R+

∣∣f (t)
∣∣(∫ +∞

t

∣∣g(s)
∣∣E[

1(0,λ(t)](z)D(t,z)λ(s)
]
ds

)
dt dz

≤ λ
∑
i≥1

αi
∫
R

∣∣f (t)
∣∣(ȟ∗i ∗ |g|)(t)dt(4.26)

≤ λ‖f ‖L2(R,dx)

∑
i≥1

αi
∥∥ȟ∗i ∗ |g|∥∥L2(R,dx)

≤ λ‖f ‖L2(R,dx)‖g‖L2(R,dx)

∑
i≥1

αi
∥∥ȟ∗i

∥∥
L1(R,dx)

≤ λ‖f ‖L2(R,dx)‖g‖L2(R,dx)

∑
i≥1

αiμi

(4.27)

= ‖f ‖L2(R,dx)‖g‖L2(R,dx)

λαμ

1 − αμ
.

Assume for the moment that we may apply Theorem 3.1, then by (3.9) and the
above inequality (applied first with f = g = u and then with f = u and g = u2)
we easily deduce (4.21).

It remains to prove (4.22), (4.24) and to check the assumptions of Theorem 3.1.
We first prove (4.24). Let (t, z) ∈ R×R+ be fixed. Since

E
[
λ(u)

] = E
[
ϕu(N |(−∞,u))

] = λ ∈ (0,∞)

for any u ∈ R, to show (4.24) it suffices to prove that the map

u �→ E
[
ϕu(N |(−∞,u) + ε(t,z))

]
is locally bounded on (t,∞). We define recursively the processes λ

′(0)
(t,z) ≡ 0,

N
′(n)
(t,z)(ds) = N

(
ds × (

0, λ
′(n)
(t,z)(s)

])
,

λ
′(n+1)
(t,z) (s) = φ

(∫
(−∞,s)

h(s − u)
(
N

′(n)
(t,z)(du)(4.28)

+ ε(t,z)

(
du × (

0, λ
′(n)
(t,z)(u)

])))
, n ≥ 0, s > t.

We are going to check by induction that, for any n ≥ 0,∫ b

a
λ

′(n)
(t,z)(s)ds < ∞, a.s., for any a, b > t(4.29)

and {λ′(n)
(t,z)(s)}s>t is {FN

s }s>t -predictable. The basis of the induction is clearly ver-

ified. So assume the claim for λ
′(n)
(t,z) and let {T ′(n)

(t,z),m}m∈Z be the points of N
′(n)
(t,z)
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on (t,∞). By Lemma 2.1, we have that N
′(n)
(t,z) has {FN

s }s>t -stochastic intensity

{λ′(n)
(t,z)(s)}s>t . By the Lipschitz property of φ and the nonnegativity of h, we de-

duce

λ
′(n+1)
(t,z) (s) ≤ φ(0) + α

∫
(−∞,s)

h(s − u)N
′(n)
(t,z)(du)

+ α

∫
(−∞,s)

h(s − u)ε(t,z)

(
du × (

0, λ
′(n)
(t,z)(u)

])
= φ(0) + α

∑
m∈Z

h
(
s − T

′(n)
(t,z),m

)
1(−∞,s)

(
T

′(n)
(t,z),m

)
(4.30)

+ α

∫
(−∞,s)×R+

h(s − u)1
(0,λ

′(n)
(t,z)(u)](v)ε(t,z)(du × dv)

= φ(0) + α
∑
m∈Z

h
(
s − T

′(n)
(t,z),m

)
1(−∞,s)

(
T

′(n)
(t,z),m

)
+ αh(s − t)1

(0,λ
′(n)
(t,z)(t)](z).

Integrating over the finite interval (a, b) ⊂ (t,∞), we have∫ b

a
λ

′(n+1)
(t,z) (s)ds ≤ φ(0)(b − a) + α

∑
m∈Z

1
{
t < T

′(n)
(t,z),m < b

} ∫ b−T
′(n)
(t,z),m

0∨(a−T
′(n)
(t,z),m)

h(u)du

+ α

∫ b

a
h(s − t)ds,

and this latter quantity is finite since h is integrable and N
′(n)
(t,z) has an a.s. finite

number of points in any bounded interval of (t,∞) [due to (4.29)]. Moreover, the

process {λ′(n+1)
(t,z) (s)}s>t is {FN

s }s>t -predictable. Indeed,

λ
′(n+1)
(t,z) (s) = φ

(
h(s − t)1

(0,λ
′(n)
(t,z)(t)](z) +

∫
(−∞,s)

h(s − u)N
′(n)
(t,z)(du)

)
and the processes{

h(s − t)1
(0,λ

′(n)
(t,z)(t)](z)

}
s>t ,

{∫
(−∞,s)

h(s − u)N
′(n)
(t,z)(du)

}
s>t

(4.31)

are {FN
s }s>t -predictable. To justify the predictability of the first process in (4.31),

one may first note that it is {FN
s }s>t -adapted [since λ

′(n)
(t,z)(t) is FN

t -measurable
and h is deterministic] and then conclude by applying, for example, Theorem T34
in [6]. To justify the predictability of the second process in (4.31), one notes that
it is left-continuous and {FN

s }s>t -adapted. The induction is therefore completed
and by Lemma 2.1, for any n ≥ 0 and (t, z) ∈ R × R+, the point process N

′(n)
(t,z)
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on (t,∞) has {FN
s }s>t -stochastic intensity {λ′(n)

(t,z)(s)}s>t . For fixed (t, z) ∈ R ×
R+, since h is nonnegative and φ is nondecreasing, we have that λ

′(n)
(t,z)(s,ω) and

N
′(n)
(t,z)(C)(ω) increase with n ≥ 0, for all ω, s > t and Borel sets C ⊆ (t,∞). So

the limiting processes {λ′(∞)
(t,z) (s)}s>t and N

′(∞)
(t,z) are defined for all ω. Setting h ≡ 0

on (−∞,0], by (4.30), for any n ≥ 0, s, t ∈ R and z ∈ R+, we have

λ
′(n+1)
(t,z) (s) ≤ φ(0) + αh(s − t) + α

∫
R

h(s − u)N
′(n)
(t,z)(du).

Taking the mean over this inequality, we have

q
′(n+1)
(t,z) (s) ≤ p′

t (s) + r ∗ q
′(n)
(t,z)(s),

where for ease of notation we set q
′(n)
(t,z)(s) := E[λ′(n)

(t,z)(s)], p′
t (s) := φ(0)+ r(s − t)

and the function r is defined as above. Iterating this latter inequality and using that
q

′(0)
(t,z) ≡ 0, we deduce

q
′(n+1)
(t,z) (s) ≤ ∑

i≥0

r∗i ∗ p′
t (s) = φ(0)

∑
i≥0

∥∥r∗i
∥∥
L1(R,dx) + ∑

i≥1

r∗i(s − t).

Passing to the limit as n → ∞, by the monotone convergence theorem, a standard
property of the convolution and the stability condition αμ < 1, we have

E
[
λ

′(∞)
(t,z) (s)

] =: q ′(∞)
(t,z) (s) ≤ φ(0)

∑
i≥0

∥∥r∗i
∥∥
L1(R,dx) + ∑

i≥1

r∗i(s − t)

≤ φ(0)

1 − αμ
+ ∑

i≥1

r∗i(s − t)

= φ(0)

1 − αμ
+ ∑

i≥1

αi
∫
R

h∗i−1(s − t − u)h(u)du

≤ φ(0)

1 − αμ
+ ∑

i≥1

αi
∫ s−t

0
h∗i−1(s − t − u)h(u)du

≤ φ(0)

1 − αμ
+ α(1 − αμ)−11s>t max

u∈[0,s−t]h(u),

and so by the local boundedness of h we have

max
s∈[a,b]q

′(∞)
(t,z) (s) < ∞, for any a < b,a, b > t.(4.32)

In particular, ∫ b

a
λ

′(∞)
(t,z) (s)ds < ∞ a.s., for any a < b,a, b > t.
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Moreover, {λ′(∞)
(t,z) (s)}s>t is {FN

s }s>t -predictable as limit of {FN
s }s>t -predictable

processes and

N
′(∞)
(t,z) (ds) = N

(
ds × (

0, λ
′(∞)
(t,z) (s)

])
, s > t.

So by Lemma 2.1 N
′(∞)
(t,z) has {FN

s }s>t -stochastic intensity {λ′(∞)
(t,z) (s)}s>t . Taking

the limit as n → ∞ in (4.28), we have

λ
′(∞)
(t,z) (s) = φ

(∫
(−∞,s)

h(s − u)
(
N

′(∞)
(t,z) (du)

(4.33)

+ ε(t,z)

(
du × (

0, λ
′(∞)
(t,z) (u)

])))
, s > t.

Therefore,

E
[
ϕs

(
(N + ε(t,z))|(−∞,s)

)] = E
[
ϕs(N |(−∞,s) + ε(t,z))

] = E
[
λ

′(∞)
(t,z) (s)

]
, s > t

and (4.24) follows by (4.32).
We now prove (4.22). Let (t, z) ∈ R × R+ be fixed. We define recursively the

processes λ
′′(0)
(t,z) ≡ 0,

N
′′(n)
(t,z)(ds) = N

(
ds × (

0, λ
′′(n)
(t,z)(s)

])
,

λ
′′(n+1)
(t,z) (s) = φ

(∫
(−∞,s)

h(s − u)N
′′(n)
(t,z)(du)

)
, n ≥ 0, s > t

and note that since h ≥ 0 and φ is nondecreasing we have

λ
′′(n)
(t,z)(s,ω) ≤ λ

′(n)
(t,z)(s,ω), for all ω,n ≥ 0 and s > t,(4.34)

where λ
′(0)
(t,z) ≡ 0 and λ

′(n+1)
(t,z) , n ≥ 0, is defined by (4.28). Arguing as above, we have

that, for fixed (t, z) ∈ R × R+, λ
′′(n)
(t,z)(s,ω) and N

′′(n)
(t,z)(C)(ω) increase with n ≥ 0,

for all ω, s > t and Borel sets C ⊆ (t,∞), and the limiting processes {λ′′(∞)
(t,z) (s)}s>t

and N
′′(∞)
(t,z) are such that∫ b

a
λ

′′(∞)
(t,z) (s)ds < ∞ a.s., for any a < b,a, b > t

{λ′′(∞)
(t,z) (s)}s>t is {FN

s }s>t -predictable and

N
′′(∞)
(t,z) (ds) = N

(
ds × (

0, λ
′′(∞)
(t,z) (s)

])
, s > t,

λ
′′(∞)
(t,z) (s) = φ

(∫
(−∞,s)

h(s − u)N
′′(∞)
(t,z) (du)

)
, s > t.

Inequality (4.22) follows noticing that taking the limit as n → ∞ in (4.34) we have

λ
′′(∞)
(t,z) (s,ω) ≤ λ

′(∞)
(t,z) (s,ω), for almost all ω and any s > t.
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We now check the assumptions of Theorem 3.1. Since N is stationary with a
finite intensity and u is integrable and square integrable, conditions (3.4) and (3.5)
hold. Arguing similarly to (4.26), for an integrable function g we have∫

R×R+

(∫ ∞
t

∣∣g(s)
∣∣E[

D(t,z)λ(s)
]
ds

)
dt dz ≤ λ

∑
i≥1

αi
∫
R

ȟ∗i ∗ |g|(t)dt

≤ λαμ

1 − αμ
‖g‖L1(R,dx).

Taking first g = u and then g = u2, one then has that conditions (3.6) and (3.7)
are satisfied. Condition (3.8) follows by (4.27) with f = u2 and g = u. Finally, the
local integrability on (t,∞) of the random function D(t,z)λ(·) is a consequence of
(4.24). The proof is complete.

Step 2: Proof of (4.3). We have

E
[∣∣∣∣1 −

∫
R

∣∣u(t)
∣∣2λ(t)dt

∣∣∣∣]
(4.35)

≤ ∣∣1 − λ‖u‖2
L2(R,dx)

∣∣ + ∫
R

∣∣u(t)
∣∣2E

[∣∣λ(t) − λ
∣∣] dt.

By (4.5) and (4.6), it follows∣∣λ(t) − λ
∣∣ ≤ max

{
α

∫
(−∞,t)

h(t − s)N(ds),
φ(0)αμ

1 − αμ

}
a.s., for all t ∈ R.

Taking the expectation on this relation and using the rightmost inequality in (4.6),
we have

E
[∣∣λ(t) − λ

∣∣] ≤ 2φ(0)αμ

1 − αμ
a.s., for all t ∈ R.(4.36)

Combining this latter inequality with (4.35) and (4.6), we deduce

E
[∣∣∣∣1 −

∫
R

∣∣u(t)
∣∣2λ(t)dt

∣∣∣∣]
≤ ∣∣1 − λ‖u‖2

L2(R,dx)

∣∣ + 2φ(0)αμ

1 − αμ
‖u‖2

L2(R,dx)
(4.37)

≤ max
x∈{φ(0),φ(0)(1−αμ)−1}

∣∣1 − x‖u‖2
L2(R,dx)

∣∣ + 2φ(0)αμ

1 − αμ
‖u‖2

L2(R,dx)
.

The claim follows by (4.21), (4.37) and the rightmost inequality in (4.6). �

PROOF OF THEOREM 4.3. Without loss of generality, we may assume u ∈
L2(R,dx) ∩ L3(R,dx) ∩ L4(R,dx) (otherwise the claim trivially holds). By the
triangular inequality, we have

dW

(
δa(u),Z

) ≤ dW

(
δa(u), δ(u)

) + dW

(
δ(u),Z

)
.
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So, due to Theorem 4.1, we only need to prove

dW

(
δa(u), δ(u)

) ≤ 2φ(0)αμ

1 − αμ
‖u‖L1(R,dx).(4.38)

We have

dW

(
δa(u), δ(u)

) = sup
h∈Lip(1)

∣∣E[
h
(
δa(u)

)] − E
[
h
(
δ(u)

)]∣∣
≤ E

[∣∣δa(u) − δ(u)
∣∣] = E

[∣∣∣∣∫
R

u(t)λ(t)dt − λ̂

∫
R

u(t)dt

∣∣∣∣]
≤

∫
R

∣∣u(t)
∣∣E[∣∣λ(t) − λ̂

∣∣] dt.

Inequality (4.38) then follows by bounding the term E[|λ(t) − λ̂|], t ∈ R, with the
quantity 2φ(0)αμ/(1 − αμ) (since λ̂ ∈ [φ(0), φ(0)(1 − αμ)−1] the same argu-
ments for (4.36) work). �

5. The case of stationary linear Hawkes processes. Let N be a stationary
linear Hawkes process with parameters (ν, h) and μ := ∫ ∞

0 h(t)dt < 1. Taking the
mean of its stochastic intensity we easily see that the intensity of N is equal to

λ = ν

1 − μ
(5.1)

and so the “approximated” first chaos reads

δa(u) :=
∫
R

u(t)
(
N(dt) − ν(1 − μ)−1 dt

)
.

5.1. Explicit Gaussian bounds for the first chaos of linear Hawkes processes.
The knowledge of the intensity allows to improve the bounds (4.3) and (4.7) spe-
cialized to the linear case. More precisely, the following theorem holds.

THEOREM 5.1. Assume h : R+ → [0,∞) locally bounded and μ < 1. Let N

be a stationary linear Hawkes process with parameters (ν, h). If u ∈ L1(R,dx),
then

dW

(
δ(u),Z

) ≤ L(5.2)

and

dW

(
δa(u),Z

) ≤ L+ 2νμ

1 − μ
‖u‖L1(R,dx),(5.3)

where

L :=
√

2/π

∣∣∣∣1 − ν

1 − μ
‖u‖2

L2(R,dx)

∣∣∣∣ + ν

1 − μ
‖u‖3

L3(R,dx)

+ 2
√

2/πνμ(2 − μ)

(1 − μ)2 ‖u‖2
L2(R,dx)

+ νμ

(1 − μ)2 ‖u‖L2(R,dx)

∥∥u2∥∥
L2(R,dx).
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In the linear case, alternative explicit Gaussian bounds may be obtained
using the spectral theory of self-exciting processes; see [15]. See also [12],
pages 303–309.

THEOREM 5.2. Under assumptions and notation of Theorem 5.1, if moreover
h ∈ L2(R+,dx), then

dW

(
δ(u),Z

) ≤ L′(5.4)

and

dW

(
δa(u),Z

)
(5.5)

≤ L′ +
√

ν

(1 − μ)3/2 min
{
μ‖u‖L2(R,dx),‖h‖L2(R+,dx)‖u‖L1(R,dx)

}
,

where

L′ :=
√

2/π

((
1 − ν

1 − μ
‖u‖2

L2(R,dx)

)2

+ ν

(1 − μ)3 min
{
μ2∥∥u2∥∥2

L2(R,dx),‖h‖2
L2(R+,dx)

∥∥u2∥∥2
L1(R,dx)

})1/2

+ ν

1 − μ
‖u‖3

L3(R,dx)
+ 2

√
2/πνμ

(1 − μ)2 ‖u‖2
L2(R,dx)

+ νμ

(1 − μ)2 ‖u‖L2(R,dx)

∥∥u2∥∥
L2(R,dx).

The proofs of Theorems 5.1 and 5.2 are given in Section 5.3.
Next proposition (whose proof is a simple consequence of the elementary in-

equality
√

a2 + b2 ≤ |a| + |b|, a, b ∈ R, and therefore omitted) provides sufficient
conditions under which the bounds of Theorem 5.2 improve the bounds of Theo-
rem 5.1. Hereafter, for ease of notation, we denote by L̃ the right-hand side of (5.3)
and by L̃′ the right-hand side of (5.5).

PROPOSITION 5.3. Under assumptions and notation of Theorem 5.2, we have:

(i) If

ν ≥ 1

4(1 − μ)
min

{‖u2‖2
L2(R,dx)

‖u‖4
L2(R,dx)

,
‖h‖2

L2(R+,dx)

μ2

}
(5.6)

then L′ ≤ L.
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(ii) If

ν ≥ 1

4(1 − μ)
max

{
min

{‖u2‖2
L2(R,dx)

‖u‖4
L2(R,dx)

,
‖h‖2

L2(R+,dx)

μ2

}
,

(5.7)

min
{‖u‖2

L2(R,dx)

‖u‖2
L1(R,dx)

,
‖h‖2

L2(R+,dx)

μ2

}}
then L̃′ ≤ L̃.

5.2. A quantitative central limit theorem for linear Hawkes processes. The
following quantitative central limit theorem in the Wasserstein distance is an im-
mediate consequence of Theorems 5.1 and 5.2.

COROLLARY 5.4. For ε > 0, assume hε : R+ → [0,∞) locally bounded
functions and such that με := ∫ ∞

0 hε(x)dx < 1. Let Nε be a stationary linear
Hawkes process with parameters (νε, hε) and take uε ∈ L1(R,dx). Then:

(i)

dW

(
δ(ε)(uε),Z

) ≤ min
{
Lε,L

′
ε1{hε∈L2(R+,dx)}

} +Lε1{hε /∈L2(R+,dx)},
(5.8)

ε > 0

and

dW

(
δ(ε)
a (uε),Z

) ≤ min
{
L̃ε, L̃′

ε1{hε∈L2(R+,dx)}
} + L̃ε1{hε /∈L2(R+,dx)},

(5.9)
ε > 0.

Here, Lε , L′
ε , L̃ε and L̃′

ε are defined as L, L′, L̃ and L̃′, respectively, with νε , με ,
uε and hε in place of ν, μ, u and h, respectively;

δ(ε)(uε) :=
∫
R

uε(t)
(
Nε(dt) − λε(t)dt

)
,

λε(t) := νε +
∫
(−∞,t)

hε(t − s)Nε(ds),

δ(ε)
a (uε) :=

∫
R

uε(t)
(
Nε(dt) − νε(1 − με)

−1 dt
)
.

(ii) If, as ε → 0,

με → 0,(5.10)

νε‖uε‖2
L2(R,dx)

→ 1,(5.11)

νε‖uε‖3
L3(R,dx)

→ 0,(5.12)

νε(με)
2∥∥(uε)

2∥∥2
L2(R,dx) → 0,(5.13)
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then

dW

(
δ(ε)(uε),Z

) → 0, as ε → 0.

If moreover, as ε → 0,

νεμε‖uε‖L1(R,dx) → 0,(5.14)

then

dW

(
δ(ε)
a (uε),Z

) → 0, as ε → 0.

This latter limit holds even if we replace condition (5.14) with

hε ∈ L2(R+,dx), ε > 0.(5.15)

REMARK 5.5. In this remark, we compare Corollary 4.5, specialized to the
case of a self-exciting process Nε with parameters (νε, hε), with Corollary 5.4.
First, we note that the upper bounds (5.8) and (5.9) improve the upper bounds
(4.8) and (4.9), respectively. Second, we note that conditions (5.10)–(5.14) coin-
cide with conditions (4.10)–(4.14). Finally, we note that in Corollary 5.4 we de-
duce the convergence to zero of the family {dW(δ

(ε)
a (uε),Z)}ε>0 even replacing

condition (5.14) with the alternative condition (5.15).

We conclude this subsection with an example.

EXAMPLE 5.6. Let Iε , ε > 0, be a given family of bounded Borel sets, Iε

with Lebesgue measure �ε , and νε > 0, ε > 0, be a family of positive constants.
Let με , ε > 0, be a collection of positive numbers such that με < 1, ε > 0, and
define the functions hε(t) := μεfε(t), ε > 0, t > 0, where fε is a locally bounded
probability density (with respect to the Lebesgue measure) on (0,∞) such that
fε ∈ L2(R+,dx), ε > 0. Hereafter, we consider the family Nε , ε > 0, of stationary
linear Hawkes processes with parameters (νε, hε), ε > 0, and the functions

uε(t) := 1√
(νε�ε)/(1 − με)

1Iε (t), ε > 0, t ∈ R.

Using the expressions of the Lp-norms of uε computed in the Example 4.6 [clearly
setting αε = 1 and φε(0) = νε therein], one may easily see that conditions (5.6) and
(5.7) are both equivalent to

νε ≥ 1

4(1 − με)
min

{
�−1
ε ,‖fε‖2

L2(R+,dx)

}
, ε > 0.(5.16)

Note also that the square integrability of fε implies hε ∈ L2(R+,dx). Therefore,
under (5.16), by Proposition 5.3 we deduce L′

ε ≤ Lε and L̃′
ε ≤ L̃ε , ε > 0. So, under
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(5.16), by Corollary 5.4 we have

dW

(
δ(ε)(uε),Z

)
≤ L′

ε = (√
2/π min

{
(�ε)

−1/2,‖fε‖L2(R+,dx)

} + (�ε)
−1/2) με√

νε(1 − με)

+
√

1 − με

νε�ε

+ 2
√

2/π
με

1 − με

, ε > 0

and

dW

(
δ(ε)
a (uε),Z

)
≤ L̃′

ε = (√
2/π min

{
(�ε)

−1/2,‖fε‖L2(R+,dx)

} + (�ε)
−1/2) με√

νε(1 − με)

+
√

1 − με

νε�ε

+ (
2
√

2/π + min
{
1,

√
�ε‖fε‖L2(R+,dx)

}) με

1 − με

, ε > 0.

Finally, one easily sees that if

με → 0 and νε�ε → ∞, as ε → 0(5.17)

then

dW

(
δ(ε)(uε),Z

) → 0 and dW

(
δ(ε)
a (uε),Z

) → 0, as ε → 0.

It has to be noticed that a straightforward computation shows that condition (5.17)
implies conditions (5.10)–(5.13), but does not imply condition (5.14).

5.3. Proofs of Theorems 5.1 and 5.2.

PROOF OF THEOREM 5.1. The claim follows by an obvious modification of
the proofs of Theorems 4.1 and 4.3. For instance, to get (5.2) it suffices to modify
the proof of Theorem 4.1 as follows. We combine inequality (4.21) [taking therein
λ = ν(1 − μ)−1 and α = 1] with inequalities (4.35) and (4.36) [taking therein
λ = ν(1 − μ)−1, α = 1 and φ(0) = ν]. Note that, due to the knowledge of λ, we
do not need anymore to further bound the quantity |1 − λ‖u‖2

L2(R,dx)
| as in (4.37).

�

PROOF OF THEOREM 5.2. The claim is clearly true if u /∈ L2(R,dx) ∩
L3(R,dx)∩L4(R,dx). So we shall assume these integrability conditions. We first
prove the bound (5.4). By (4.21) [with λ = ν(1 − μ)−1 and α = 1], the Cauchy–
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Schwarz inequality and the stationarity of N , we have

dW

(
δ(u),Z

) ≤
√

2/π

√
1 − 2

ν

1 − μ
‖u‖2

L2(R,dx)
+

∫
R2

∣∣u(t)u(s)
∣∣2E

[
λ(t)λ(s)

]
dt ds

+ ν

1 − μ
‖u‖3

L3(R,dx)
+ 2νμ

(1 − μ)2

√
2/π‖u‖2

L2(R,dx)
(5.18)

+ νμ

(1 − μ)2 ‖u‖L2(R,dx)

∥∥u2∥∥
L2(R,dx).

By (5.1) and again the stationarity of N , we deduce

E
[
λ(t)λ(s)

] = λ2 + Cov
(
λ(t), λ(s)

)
(5.19)

=
(

ν

1 − μ

)2

+ Cov
(∫

R
ht (u)N(du),

∫
R

hs(u)N(du)

)
,

where we set ht (u) := 1(−∞,t)(u)h(t − u). In the following, for f ∈ L1(R,dx) ∩
L2(R,dx), we denote by f̂ (ω) := ∫

R eiωtf (t)dt the Fourier transform of f , and
we extend the definition of h on (−∞,0] setting h(t) := 0 for t ≤ 0. By the results
in [15], we have (see also formulas (8) and (24) in [8])

Cov
(∫

R
ht (u)N(du),

∫
R

hs(u)N(du)

)
(5.20)

= ν

2π(1 − μ)

∫
R

ĥt (ω)ĥs(ω)
1

|1 − ĥ(ω)|2 dω.

Note that∣∣1 − ĥ(ω)
∣∣ ≥ ∣∣1 − ∣∣ĥ(ω)

∣∣∣∣ ≥ 1 − ∣∣ĥ(ω)
∣∣ ≥ 1 − μ > 0, ω ∈R(5.21)

and that ĥt (ω) = eiωt ĥ(−ω) (since h has a positive support). Therefore,∫
R2

∣∣u(t)u(s)
∣∣2E

[
λ(t)λ(s)

]
dt ds

=
(

ν

1 − μ

)2

‖u‖4
L2(R,dx)

(5.22)

+ ν

2π(1 − μ)

∫
R

(∫
R

∣∣u(t)
∣∣2ĥt (ω)dt

)2 1

|1 − ĥ(ω)|2 dω

≤
(

ν

1 − μ

)2

‖u‖4
L2(R,dx)

+ ν

2π(1 − μ)3

∫
R

∣∣∣∣∫
R

∣∣u(t)
∣∣2ĥt (ω)dt

∣∣∣∣2 dω.(5.23)

In (5.22), we used Fubini’s theorem, which is applicable since∫
R3

∣∣u(t)u(s)
∣∣2∣∣ĥt (ω)ĥs(ω)

∣∣ 1

|1 − ĥ(ω)|2 ds dt dω
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≤ 1

(1 − μ)2 ‖u‖4
L2(R,dx)

∫
R

∣∣ĥ(−ω)
∣∣2 dω

= 2π

(1 − μ)2 ‖u‖4
L2(R,dx)

‖h‖2
L2(R,dx)

< ∞,

where in the latter equality we used Parseval’s identity. Setting f̌ (x) := f (−x),
u2(·) := u(·)2 and letting the symbol ∗ denote the convolution product, we have∫

R

∣∣u(t)
∣∣2ĥt (ω)dt = ĥ(−ω)û2(ω) = ̂̌

h(ω)û2(ω) = ̂̌
h ∗ u2(ω).

Consequently, using again the Parseval identity, we deduce∫
R

∣∣∣∣∫
R

∣∣u(t)
∣∣2ĥt (ω)dt

∣∣∣∣2 dω =
∫
R

∣∣̂̌h ∗ u2(ω)
∣∣2 dω = 2π

∥∥ȟ ∗ u2∥∥2
L2(R,dx).

By this relation, (5.23) and standard properties of the convolution (see, e.g., Theo-
rem IV.15 in [10]), we have∫

R2

∣∣u(t)u(s)
∣∣2E

[
λ(t)λ(s)

]
dt ds

≤ ν2

(1 − μ)2 ‖u‖4
L2(R,dx)

+ ν

(1 − μ)3

∥∥ȟ ∗ u2∥∥2
L2(R,dx)

≤ ν2

(1 − μ)2 ‖u‖4
L2(R,dx)

+ ν

(1 − μ)3 min
{
μ2∥∥u2∥∥2

L2(R,dx),‖h‖2
L2(R,dx)

∥∥u2∥∥2
L1(R,dx)

}
.

The claim follows combining this inequality with (5.18). We now prove the bound
(5.5). By the triangular inequality and (5.4), we only need to prove

dW

(
δa(u), δ(u)

) ≤
√

ν

(1 − μ)3/2 min
{
μ‖u‖L2(R,dx),‖h‖L2(R,dx)‖u‖L1(R,dx)

}
.

Note that

dW

(
δa(u), δ(u)

) = sup
h∈Lip(1)

∣∣E[
h
(
δa(u)

)] − E
[
h
(
δ(u)

)]∣∣
≤ E

[∣∣δa(u) − δ(u)
∣∣] = E

[∣∣∣∣∫
R

u(t)λ(t)dt − λ

∫
R

u(t)dt

∣∣∣∣]
and so by the Cauchy–Schwarz inequality we have

dW

(
δa(u), δ(u)

)
≤

(
E

[∣∣∣∣∫
R

u(t)λ(t)dt − ν

1 − μ

∫
R

u(t)dt

∣∣∣∣2])1/2

(5.24)
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=
√√√√∫

R2
u(t)u(s)E

[
λ(t)λ(s)

]
dt ds −

(
ν

1 − μ

)2(∫
R

u(t)dt

)2

.

To upper bound the first addend inside the square root, we repeat the arguments
above. So, by (5.20), (5.20), (5.21), Fubini’s theorem and Parseval’s identity, we
have ∫

R2
u(s)u(t)E

[
λ(s)λ(t)

]
ds dt

≤
(

ν

1 − μ

)2(∫
R

u(t)dt

)2

+ ν

2π(1 − μ)3

∫
R

∣∣∣∣∫
R

u(t)ĥt (ω)dt

∣∣∣∣2 dω

=
(

ν

1 − μ

)2(∫
R

u(t)dt

)2

+ ν

(1 − μ)3 ‖ȟ ∗ u‖2
L2(R,dx)

(5.25)

≤
(

ν

1 − μ

)2(∫
R

u(t)dt

)2

+ ν

(1 − μ)3 min
{
μ2‖u‖2

L2(R,dx)
,‖h‖2

L2(R,dx)
‖u‖2

L1(R,dx)

}
.

Note that in (5.24) we used Fubini’s theorem to exchange the double integral with
the expectation. This is justified by the fact that inequality (5.25) holds replac-
ing u with |u| and the resulting right-hand side is finite. The proof is complete.

�
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