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Consider a N × n matrix �n = 1√
n
R

1/2
n Xn, where Rn is a nonnega-

tive definite Hermitian matrix and Xn is a random matrix with i.i.d. real or
complex standardized entries. The fluctuations of the linear statistics of the
eigenvalues

Tracef
(
�n�∗

n

)= N∑
i=1

f (λi), (λi) eigenvalues of �n�∗
n,

are shown to be Gaussian, in the regime where both dimensions of matrix �n

go to infinity at the same pace and in the case where f is of class C3, that is,
has three continuous derivatives. The main improvements with respect to Bai
and Silverstein’s CLT [Ann. Probab. 32 (2004) 553–605] are twofold: First,
we consider general entries with finite fourth moment, but whose fourth cu-
mulant is nonnull, that is, whose fourth moment may differ from the moment
of a (real or complex) Gaussian random variable. As a consequence, extra
terms proportional to

|V|2 = ∣∣E(Xn
11
)2∣∣2 and κ = E

∣∣Xn
11
∣∣4 − |V|2 − 2

appear in the limiting variance and in the limiting bias, which not only depend
on the spectrum of matrix Rn but also on its eigenvectors. Second, we relax
the analyticity assumption over f by representing the linear statistics with the
help of Helffer–Sjöstrand’s formula.

The CLT is expressed in terms of vanishing Lévy–Prohorov distance be-
tween the linear statistics’ distribution and a Gaussian probability distribu-
tion, the mean and the variance of which depend upon N and n and may not
converge.
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1. Introduction. Empirical random covariance matrices, whose probabilistic
study may be traced back to Wishart [56] in the late twenties, play an important
role in applied mathematics. After Marčenko and Pastur’s seminal contribution
[41] in 1967, the large dimensional setting (where the dimension of the observa-
tions is of the same order as the size of the sample) has drawn a growing interest,
and important theoretical contributions [7, 34, 50] found many applications in mul-
tivariate statistics, electrical engineering, mathematical finance, etc.; cf. [4, 17, 39,
42]. The aim of this paper is to describe the fluctuations for linear spectral statistics
of large empirical random covariance matrices. It will complete the picture already
provided by Bai and Silverstein [7] and will hopefully provide a generic result of
interest for practitioners.

The model. Consider a N × n random matrix �n = (ξn
ij ) given by

�n = 1√
n
R1/2

n Xn,(1.1)

where N = N(n) and Rn is a N × N nonnegative definite Hermitian matrix with
spectral norm uniformly bounded in N . The entries (Xn

ij ; i ≤ N,j ≤ n,n ≥ 1) of
matrices (Xn) are real or complex, independent and identically distributed (i.i.d.)
with mean 0 and variance 1. Matrix �n�

∗
n models a sample covariance matrix,

formed from n samples of the random vector R
1/2
n Xn·1, with the population covari-

ance matrix Rn. In the asymptotic regime where

N,n → ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
< ∞(1.2)

(a condition that will be simply referred as N,n → ∞ in the sequel), we study the
fluctuations of linear spectral statistics of the form:

trf
(
�n�

∗
n

)= N∑
i=1

f (λi) as N,n → ∞,(1.3)

where tr(A) refers to the trace of A and the λi ’s are the eigenvalues of �n�
∗
n . This

subject has a rich history with contributions by Arharov [3], Girko (see [21, 22]
and the references therein), Jonsson [35], Khorunzhiy et al. [38], Johansson [33],
Sinai and Soshnikov [52, 53], Cabanal-Duvillard [14], Guionnet [24], Bai and Sil-
verstein [7], Anderson and Zeitouni [2], Pan et al. [44, 45], Chatterjee [16], Lytova
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and Pastur [40], Bai et al. [6], Shcherbina [49], etc. There are also contributions
for heavy-tailed entries (see, e.g., Benaych-Georges et al. [10]).

In their 2004 article [7], Bai and Silverstein established a CLT for the linear
spectral statistics (1.3) as the dimensions N and n grow to infinity at the same
pace [N/n → c ∈ (0,∞)] and under two important assumptions:

1. The entries (Xn
ij ) are centered with unit variance and a finite fourth moment

equal to the fourth moment of a (real or complex) Gaussian standard variable.
2. Function f in (1.3) is analytic in a neighborhood of the asymptotic spectrum

of �n�
∗
n .

Such a result proved to be highly useful in probability theory, statistics and various
other fields.

The purpose of this article is to establish a CLT for linear spectral statistics (1.3)
for general entries Xn

ij with finite fourth moment and for nonanalytic functions f ,
sufficiently regular, hence to relax both assumptions (1) and (2) in [7].

It is well known since the paper by Khorunzhiy et al. [38] that if the fourth
moment of the entries differs from the fourth moment of a Gaussian random vari-
able, then a term appears in the variance of the trace of the resolvent, which is
proportional to the fourth cumulant of the entries. This term does not appear if
assumption (1) holds true because, in this case, the fourth cumulant is zero.

In Pan and Zhou [45], assumption (1) has been relaxed under an additional
assumption on matrix Rn, which somehow enforces structural conditions on Rn

(in particular, these conditions are satisfied if matrix Rn is diagonal). In Hachem
et al. [27, 37], CLTs have been established for specific linear statistics of interest
in information theory, with general entries and (possibly noncentered) covariance
random matrices with a variance profile. In Bao et al. [9], the CLT is established
for the white model (where Rn is equal to the identity matrix) with general entries
with finite fourth moment, featuring terms in the covariance proportional to the
square of the second nonabsolute moment and to the fourth cumulant.

In Lytova and Pastur [40] and Shcherbina [49], both assumptions have been
relaxed for the white model. In [40], it has been proved that mild integrability con-
ditions over the Fourier transform of f was enough to establish the CLT. In Bai
et al. [6], fluctuations for the white model are addressed as well, for nonanalytic
functions f . Following Shcherbina’s ideas, Guédon et al. [23] establish a CLT for
linear statistics of large covariance matrices with vectors with log-concave distri-
bution. Following Lytova and Pastur, Yao [57] relaxes the analyticity assumption
in [7] by using interpolation techniques and Fourier transforms. We follow here a
different approach, inspired from Bordenave [12].

Non-Gaussian entries. The presence of matrix Rn yields interesting phenom-
ena at the CLT level when considering entries with non-Gaussian fourth mo-
ment: terms proportional to the fourth cumulant and to |E(Xn

11)
2|2 appear in the

asymptotic variance (described in Section 2.3); however, their convergence is not
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granted under usual assumptions (roughly, under the convergence of Rn’s spec-
trum), mainly because these extra terms also depend on the eigenvectors of Rn. As
a consequence, such terms may not converge unless some very strong structural
assumption over Rn (such as Rn diagonal) is made. This lack of convergence has
consequences on the description of the fluctuations.

Denote by Ln(f ) the (approximately) centered version of the linear statis-
tics (1.3), to be properly defined below. Instead of expressing the CLT in the usual

way, that is (
D→ stands for the convergence in distribution)

Ln(f )
D−→

N,n→∞N
(
Bf∞,�f∞

)
,(1.4)

for some well-defined parameters Bf∞,�
f∞, we prove that the distribution of the

linear statistics Ln(f ) becomes close to a family of Gaussian distributions, whose
parameters (mean and variance) may not converge. More precisely, we establish

that there exists a family of Gaussian random variables N (Bf
n ,�

f
n ), such that

dLP
(
Ln(f ),N

(
Bf

n ,�f
n

)) −→
N,n→∞ 0,(1.5)

where dLP denotes the Lévy–Prohorov distance (and in particular metrizes the
convergence of laws). Details are provided in Section 2.5 and the fluctuation results
are stated in Theorem 1 [for the resolvent f (λ) = (λ − z)−1] and Theorem 2 (for
f of class C3, the space of functions with third continuous derivative).

From a technical point of view, the analysis of the extra term proportionnal to the
fourth cumulant requires to cope with quadratic forms of the resolvent (counterpart
of isotropic Marčenko–Pastur law). We provide the needed results in Section 5.

Expressing the CLT as in (1.5) makes it possible to avoid any cumbersome
assumption related to the joint convergence of Rn’s eigenvectors and eigenvalues;
the technical price to pay however is the need to get various uniform (in N,n)
controls over the sequence N (Bn,�n). This is achieved by introducing a matrix
meta-model in Section 2.6. The case where matrix Rn is diagonal is simpler and the
fluctuations express in the usual way (1.4); it is handled in Section 3.4. Remarks
on the white case (Rn = IN ) are also provided in Sections 3.5 and 4.2.

This framework may also prove to be useful for other interesting models such
as large dimensional information-plus-noise type matrices [18, 28] and more gen-
erally mixed models combining large dimensional deterministic and random ma-
trices.

Nonanalytic functions. In Section 3, we establish the CLT for the trace of the
resolvent

tr
(
�n�

∗
n − zIN

)−1
.

In order to transfer the CLT from the resolvent to the linear statistics of the eigen-
values trf (�n�

∗
n), we will use (Dynkin–)Helffer–Sjöstrand’s representation for-
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mula3 for a function f of class Ck+1 and with compact support [20, 32]. Denote
by �k(f ) :C+ →C the function

�k(f )(x + iy) =
k∑

�=0

(iy)�

�! f (�)(x)χ(y),(1.6)

where χ : R → R
+ is smooth, compactly supported, with value 1 in a neighbor-

hood of 0. Function �k(f ) coincides with f on the real line and is an appropriate
extension of f to the complex plane. Let ∂ = ∂x + i∂y , then Helffer–Sjöstrand’s
formula writes

trf
(
�n�

∗
n

)= 1

π
Re

∫
C+

∂�k(f )(z) tr
(
�n�

∗
n − zIN

)−1
�2(dz),(1.7)

where �2 stands for the Lebesgue measure over C+. An elementary proof of for-
mula (1.7) can be found in [13], Chapter 5. Closest to our work are the papers
by Pizzo, O’Rourke, Renfrew and Soshnikov [43, 47] where the fluctuations of
the entries of regular functions of Wigner and large covariance matrices are stud-
ied; see also the paper by Bao et al. [8] where a CLT for partial linear eigenvalue
statistics is established for Wigner matrices.

We believe that formula (1.7) provides a very streamlined way to handle non-
analytic functions and in fact enables us to state the fluctuations for the linear
statistics for functions of class C3, a lower regularity requirement than in [6, 40,
57]; in Shcherbina’s article [49], the requirements over the functions are lower and
expressed in terms of Sobolev norms ‖f ‖3/2+ε < ∞, a condition that is fulfilled
if f is C2 (with bounded derivatives in L2).

Bias in the CLT and asymptotic expansion for the linear spectral statistics. Be-
side the fluctuations, a substantial part of this article is devoted to the study of
the bias that we describe hereafter. In order to center the linear spectral statistics
trf (�n�

∗
n), we consider the (first-order) expansion of 1

N
E trf (�n�

∗
n)

1

N
E trf

(
�n�

∗
n

)= E0,n(f ) +O
(

1

N

)
,

where E0,n(f ) is O(1) and does not depend on the distribution of the entries of Xn,
and define Ln(f ) as

Ln(f ) = trf
(
�n�

∗
n

)− NE0,n(f ).

A precise description of Ln(f ) is provided in Section 2.4. In order to fully char-
acterize the fluctuations of Ln(f ), we must study the second-order expansion of

3In [31], Notes of Chapter 8, it is written “This formula is due to Dynkin but was popularized by
Helffer and Sjöstrand in the context of spectral theory, leading many authors to call it the Helffer–
Sjöstrand formula.”



1842 J. NAJIM AND J. YAO

1
N
E trf (�n�

∗
n),

1

N
E trf

(
�n�

∗
n

)= E0,n(f ) + E1,n(f )

N
+ o

(
1

N

)
,

which will naturally yield the bias of Ln(f ), as ELn(f ) = E1,n(f )+o(1). Asymp-
totic expansions for various matrix ensembles have already been studied; see, for
instance, Pastur et al. [1], Bai and Silverstein [7], Haagerup and Thorbjørnsen [25,
26], Schultz [48], Capitaine and Donati-Martin [15], Vallet et al. [55], Hachem et
al. [30], etc.

The asymptotic bias is expressed in Theorem 1 for the resolvent. In order to
lift asymptotic expansions from the resolvent to smooth functions, we combine
ideas from Haagerup and Thorbjørnsen [25] and Loubaton et al. [30, 55] together
with some Gaussian interpolation and the use of Helffer–Sjöstrand’s formula. For
smooth functions, the statement is given in Theorem 3. Somehow surprisingly, the
condition over function f is stronger for the asymptotic expansion to hold than for
the CLT as function f needs to be of class C18 (cf. Remark 4.4).

2. General background—variance and bias formulas.

2.1. Assumptions. Recall the asymptotic regime where N,n → ∞, cf. (1.2),
and denote by

cn = N

n
, �− = lim inf

N

n
and �+ = lim sup

N

n
.

ASSUMPTION A-1. The random variables (Xn
ij ;1 ≤ i ≤ N(n),1 ≤ j ≤

n,n ≥ 1) are independent and identically distributed. They satisfy

EXn
ij = 0, E

∣∣Xn
ij

∣∣2 = 1 and E
∣∣Xn

ij

∣∣4 < ∞.

ASSUMPTION A-2. Consider a sequence (Rn) of deterministic, nonnegative
definite Hermitian N × N matrices, with N = N(n). The sequence (Rn,n ≥ 1) is
bounded for the spectral norm as N,n → ∞:

sup
n≥1

‖Rn‖ < ∞.

In particular, we will have

0 ≤ λ−
R


= lim inf
N,n→∞‖Rn‖ ≤ λ+

R


= lim sup
N,n→∞

‖Rn‖ < ∞.
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2.2. Resolvent, canonical equation and deterministic equivalents. Denote by
Qn(z) (resp., Q̃n) the resolvent of matrix �n�

∗
n (resp., of �∗

n�n):

Qn(z) = (
�n�

∗
n − zIN

)−1
, Q̃n(z) = (

�∗
n�n − zIn

)−1
,(2.1)

and by fn(z) and f̃n(z) their normalized traces which are the Stieltjes transforms
of the empirical distribution of �n�

∗
n’s and �∗

n�n’s eigenvalues:

fn(z) = 1

N
trQn(z), f̃n(z) = 1

n
tr Q̃n(z).(2.2)

The following canonical equation4 admits a unique solution tn in the class of Stielt-
jes transforms of probability measures (see, e.g., [7]):

tn(z) = 1

N
tr
(−zIN + (1 − cn)Rn − zcntn(z)Rn

)−1
, z ∈ C \R+.(2.3)

The function tn being introduced, we can define the following N × N matrix:

Tn(z) = (−zIN + (1 − cn)Rn − zcntn(z)Rn

)−1
.(2.4)

Matrix Tn(z) can be thought of as a deterministic equivalent of the resolvent Qn(z)

in the sense that it approximates the resolvent in various senses. For instance,

1

N
trTn(z) − 1

N
trQn(z) −→

N,n→∞ 0, z ∈ C \R+

(in probability or almost surely). Otherwise stated, tn(z) = N−1 trTn(z) is the de-
terministic equivalent of fn(z). As we shall see later in this paper, the following
property holds true:

u∗
nQn(z)vn − u∗

nTn(z)vn −→
N,n→∞ 0,(2.5)

where (un) and (vn) are deterministic N × 1 vectors with uniformly bounded Eu-
clidean norms in N . As a consequence of (2.5), not only Tn conveys information
on the limiting spectrum of the resolvent Qn but also on the eigenvectors of Qn.

If Rn = IN , then tn is simply the Stieltjes transform of Marčenko–Pastur’s dis-
tribution [41] with parameter cn.

2.3. Entries with nonnull fourth cumulant and the limiting covariance for the
trace of the resolvent. As in [7], we first study the CLT for the trace of the re-
solvent. Let V be the second moment of the random variable Xij and κ its fourth
cumulant:

V = E
(
Xn

ij

)2 and κ = E
∣∣Xn

ij

∣∣4 − |V|2 − 2.

4We borrow the name “canonical equation” from V. L. Girko who established in [21, 22] canonical
equations associated to various models of large random matrices.
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If the entries are real or complex standard Gaussian, then V = 1 or 0 and κ = 0.
Otherwise the fourth cumulant is a priori no longer equal to zero. This induces
extra terms in the computation of the limiting variance, mainly due to the following
(V, κ)-dependent identity:

E
(
X∗·1AX·1 − trA

)(
X∗·1BX·1 − trB

)
(2.6)

= trAB + |V|2 trABT + κ

N∑
i=1

AiiBii,

where X·1 stands for the first column (of dimension N × 1) of matrix Xn and
where A,B are deterministic N × N matrices. As a consequence, there will be
three terms in the limiting covariance of the quantity (1.3); one will raise from the
first term of the right-hand side (RHS) of (2.6), a second one will be proportional
to |V|2, and a third one to κ . In order to describe these terms, let

t̃n(z) = −1 − cn

z
+ cntn(z).(2.7)

The quantity t̃n(z) is the deterministic equivalent associated to n−1 tr(�∗
n�n −

zIn)
−1. Denote by RT

n the transpose matrix of Rn (notice that since Rn is Her-
mitian, RT

n = �Rn and we shall use this latter notation) and by T T
n , the transpose

matrix5 of Tn:

T T
n (z) = (−zIN + (1 − cn)�Rn − zcntn(z)�Rn

)−1;(2.8)

notice that the definition of tn(z) in (2.3) does not change if Rn is replaced by �Rn

since the spectrum of both matrices Rn and �Rn is the same. We can now describe
the limiting covariance of the trace of the resolvent

cov
(
trQn(z1), trQn(z2)

)
= �0,n(z1, z2) + |V|2�1,n(z1, z2) + κ�2,n(z1, z2) + o(1)(2.9)


= �n(z1, z2) + o(1),

where o(1) is a term that converges to zero as N,n → ∞ and

�0,n(z1, z2)

=
{

t̃ ′n(z1)t̃
′
n(z2)

(t̃n(z1) − t̃n(z2))2
− 1

(z1 − z2)2

}
,(2.10)

�1,n(z1, z2)

= ∂

∂z2

{
∂An(z1, z2)

∂z1

1

1 − |V|2An(z1, z2)

}
,(2.11)

�2,n(z1, z2)

= z2

1z
2
2 t̃

′
n(z1)t̃

′
n(z2)

n
(2.12)

×
N∑

i=1

(
R1/2

n T 2
n (z1)R

1/2
n

)
ii

(
R1/2

n T 2
n (z2)R

1/2
n

)
ii ,

5Beware that T T
n is not the entry-wise conjugate of Tn, due to the presence of z.
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with

An(z1, z2) = z1z2

n
t̃n(z1)t̃n(z2) tr

{
R1/2

n Tn(z1)R
1/2
n

�R1/2
n T T

n (z2)�R1/2
n

}
.(2.13)

For alternative formulas for �0,n and �2,n, see Remarks 3.2 and 3.3.
At first sight, these formulas (established in Section 5) may seem complicated;

however, much information can be inferred from them.

The term �0,n. This term is familiar as it already appears in Bai and Silver-
stein’s CLT [7]. Notice that the quantities t̃n and t̃ ′n only depend on the spectrum
of matrix Rn. Hence, under the additional assumption that

cn −→
N,n→∞ c ∈ (0,∞) and FRn

D−→
N,n→∞F R,(2.14)

where FRn denotes the empirical distribution of Rn’s eigenvalues and F R is a
probability measure, it can easily be proved that

�0,n(z1, z2) −→
N,n→∞�0(z1, z2) =

{
t̃ ′(z1)t̃

′(z2)

(t̃(z1) − t̃ (z2))2
− 1

(z1 − z2)2

}
,(2.15)

where t̃ , t̃ ′ are the limits of t̃n, t̃
′
n under (2.14).

The term �1,n. The interesting phenomenon lies in the fact that this term in-
volves products of matrices R

1/2
n and its conjugate �R1/2

n . These matrices have the
same spectrum but conjugate eigenvectors. If Rn is not real, the convergence of
�1,n is not granted, even under (2.14). If however Rn and Xn’s entries are real,
that is, V = 1, then it can be easily proved that �0,n = �1,n hence the factor 2 in
[7] between the complex and the real covariance.

The term �2,n. This term involves quantities of the type (R
1/2
n TnR

1/2
n )ii which

not only depend on the spectrum of matrix Rn but also on its eigenvectors. As a
consequence, the convergence of such terms does not follow from an assumption
such as (2.14), except in some particular cases (e.g., if Rn is diagonal) and any
assumption which enforces the convergence of such terms (as, e.g., in [45], Theo-
rem 1.4) implicitly implies an asymptotic joint behavior between Rn’s eigenvectors
and eigenvalues. We shall adopt a different point of view here and will not assume
the convergence of these quantities.

2.4. Representation of the linear statistics and limiting bias. Recall that tn(z)

is the Stieltjes transform of a probability measure Fn:

tn(z) =
∫
Sn

Fn(dλ)

λ − z
(2.16)
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with support Sn included in a compact set. The purpose of this article is to describe
the fluctuations of the linear statistics

Ln(f ) =
N∑

i=1

f (λi) − N

∫
f (λ)Fn(dλ)(2.17)

as N,n → ∞.
For a smooth enough function f of class Ck+1 with bounded support, one can

rely on Helffer–Sjöstrand’s formula and write

Ln(f ) = trf
(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ)

(2.18)

= 1

π
Re

∫
C+

∂�k(f )(z)
{
trQn(z) − Ntn(z)

}
�2(dz),

where �k(f ) is defined in (1.6) and the last equality follows from the fact that∫
f (λ)Fn(dλ) = 1

π
Re

∫
C+

∂�k(f )(z)tn(z)�2(dz).

Based on (2.18), we shall first study the fluctuations of

trQn(z) − Ntn(z) = {
trQn(z) −E trQn(z)

}+ {
E trQn(z) − Ntn(z)

}
for z ∈ C

+. The first difference in the RHS will yield the fluctuations with a co-
variance �n(z1, z2) described in (2.9) while the second difference, deterministic,
will yield the bias

E trQn(z) − Ntn(z) = |V|2B1,n(z) + κB2,n(z) + o(1)
(2.19) 
= Bn(z) + o(1),

where

B1,n(z)


= −z3 t̃3
n

(
1

n
trR1/2

n T 2
n (z)R1/2

n
�R1/2

n T T
n (z)�R1/2

n

)
(2.20) /((

1 − z2 t̃2
n

1

n
TrR2

nT
2
n

)
×
(

1 − |V|2z2 t̃2
n

1

n
TrR1/2

n Tn(z)R
1/2
n

�R1/2
n T T

n (z)�R1/2
n

))
,

B2,n(z)

= −z3 t̃3

n

(1/n)
∑N

i=1(R
1/2
n TnR

1/2
n )ii(R

1/2
n T 2

n R
1/2
n )ii

1 − z2 t̃2
n(1/n) trR2

nT
2
n

.(2.21)

The previous discussion on the terms �1,n and �2,n also applies to the terms B1,n

and B2,n (whose expressions are established in Section 5) which are likely not to
converge for similar reasons.
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2.5. Gaussian processes and the central limit theorem. A priori, the mean Bn

and covariance �n of (trQn − Ntn) do not converge. Hence, we shall express the
Gaussian fluctuations of the linear statistics (2.17) in the following way: we first
prove the existence of a family (Gn(z), z ∈ C)n∈N of tight Gaussian processes with
mean and covariance

EGn(z) = Bn(z),

cov
(
Gn(z1),Gn(z2)

)= �n(z1, z2).

We then express the fluctuations of the centralized trace as

dLP
((

trQn(z) − Ntn(z)
)
,Gn(z)

) −→
N,n→∞ 0,

with dLP the Lévy–Prohorov distance between P and Q probability measures over
borel sets of R,Rd,C or Cd :

dLP(P,Q) = inf
{
ε > 0,P (A) ≤ Q

(
Aε)+ ε for all Borel sets A

}
,(2.22)

where Aε is an ε-blow up of A (cf. [19], Section 11.3, for more details). If X is a
random variable and L(X) its distribution, denote (with a slight abuse of notation)

by dLP(X,Y )

= dLP(L(X),L(Y )).

Similarly, we will express the fluctuations of Ln(f ) as

dLP
(
Ln(f ),Nn(f )

) −→
N,n→∞ 0,

where Nn(f ) is a well-identified Gaussian random variable.

2.6. A meta-model argument. As we need to cope with a sequence of Gaussian
processes (Gn) instead of a single one, it will be necessary to establish various
properties uniform in n,N such as:

1. the tightness of the sequence (Gn) (cf. Section 5.2);
2. a uniform bound over the variances of (TrGn(z)) (cf. Section 6.2), needed

to extend the CLT to nonanalytic functionals;
3. a uniform bound over the biases of (TrGn(z)) (cf. Section 7.1.1), needed to

compute the bias for nonanalytic functionals.

A direct approach based on the mere definition of process Gn’s parameters
seems difficult, mainly due to the definitions of �n and Bn which rely on quan-
tities (tn and t̃n) defined as solutions of fixed-point equations. Since the previous
properties will be established for the processes (TrQn − Ntn) anyway, the idea is
to transfer them to Gn by means of the following matrix meta-model.

Let N , n and Rn be fixed and consider the NM × NM matrix

Rn(M) =
⎛⎜⎝Rn 0 · · ·

0
. . . 0

· · · 0 Rn

⎞⎟⎠ .(2.23)
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Matrix Rn(M) is a block matrix with N × N diagonal blocks equal to Rn, and
zero blocks elsewhere; for all M ≥ 1 the spectral norm of Rn(M) is equal to the
spectral norm of Rn (which is fixed). In particular, the sequence (Rn(M);M ≥ 1)

with N,n fixed satisfies Assumption A-2 with (Rn(M);M ≥ 1) instead of (Rn).
Consider now the random matrix model

�n(M) = 1√
Mn

Rn(M)1/2Xn(M),(2.24)

where Xn(M) is a MN × Mn matrix with i.i.d. random entries with the same dis-
tribution as the Xij ’s and satisfying Assumption A-1. The interest of introducing
matrix �n(M) lies in the fact that matrices �n(M)�n(M)∗ and �n�

∗
n have loosely

speaking the same deterministic equivalents. Denote by tn, Tn and t̃n the determin-
istic equivalents of �n�

∗
n as defined in (2.3), (2.4) and (3.1), and by tn(M), Tn(M)

and t̃n(M) their counterparts for the model �n(M)�n(M)∗. Taking advantage of
the block structure of Rn(M), a straightforward computation yields (N,n fixed)

∀M ≥ 1, tn(M) = tn, t̃n(M) = t̃n and Tn(M) =
⎛⎜⎝ Tn 0 · · ·

. . .

· · · 0 Tn

⎞⎟⎠ .

Similarly, denote by Bn,M and �n,M the quantities given by formulas (2.19)
and (2.9) when replacing N , tn, Tn and t̃n by NM , tn(M), Tn(M) and t̃n(M).
Straightforward computation yields

∀M ≥ 1, Bn,M = Bn and �n,M = �n.

An interesting feature of this meta-model lies in the fact that all the quantities
associated to �n(M)�n(M)∗ converge as M → ∞ to the deterministic equivalents
tn, t̃n, etc. As a consequence, one can easily transfer all the estimates obtained for(

Tr
(
�n(M)�n(M)∗ − zINM

)−1 − NMtn
)

to the process (Gn).

3. Statement of the CLT for the trace of the resolvent.

3.1. Further notation. If A is a N × N matrix with real eigenvalues, denote
by FA the empirical distribution of the eigenvalues (δi(A), i = 1 : N ) of A, that is,

FA(dx) = 1

n

N∑
i=1

δλi(A)(dx).

Recall the definitions of Qn, tn, Tn and t̃n [cf. (2.1), (2.3), (2.4) and (2.7)]. The
following relations hold true (see, e.g., [7]):

Tn(z) = −1

z

(
IN + t̃n(z)Rn

)−1 and t̃n(z) = − 1

z(1 + (1/n) trRnTn(z))
.(3.1)
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Recall the definition of Fn in (2.16) and let similarly F̃n be the probability
distribution associated to t̃n. The central object of study is the signed measure

N
(
F�n�∗

n −Fn

)= n
(
F�∗

n�n − F̃n

)
,

and its Stieltjes transform

Mn(z) = N
(
fn(z) − tn(z)

)= n
(
f̃n(z) − t̃n(z)

)
.(3.2)

Denote by oP (1) any random variable which converges to zero in probability as
N,n → ∞.

3.2. Truncation. In this section, we closely follow Bai and Silverstein [7]. We
recall the framework developed there and introduce some additional notation.

Consider a sequence of positive numbers (δn) which satisfies

δn → 0, δnn
1/4 → ∞ and δ−4

n

∫
{|X11|≥δn

√
N}

|X11|4 → 0

as N,n → ∞. Let �̂n = n−1/2R
1/2
n X̂n where X̂n is a N ×n matrix having (i, j)th

entry Xij 1{|Xij |<δn

√
N}. This truncation step yields

P
(
�n�

∗
n �= �̂n�̂

∗
n

) −→
N,n→∞ 0(3.3)

from which we deduce

tr
(
�n�

∗
n − zIN

)−1 − tr
(
�̂n�̂

∗
n − zIN

)−1 P−→
N,n→∞ 0,(3.4)

where →P stands for the convergence in probability. Define �̃n = n−1/2R
1/2
n X̃n

where X̃n is a N × n matrix having (i, j)th entry (X̂ij − EX̂ij )/σn, where σ 2
n =

E|X̂ij − EX̂ij |2. Using the fact that λ(∈ R) �→ 1
λ−z

is Lipschitz with Lipschitz
constant |z|−2, we obtain

E
∣∣tr(�̂n�̂

∗
n − zIN

)−1 − tr
(
�̃n�̃

∗
n − zIN

)−1∣∣≤ 1

|z|2
N∑

i=1

E|λ̃i − λ̂i | (a)−→
N,n→∞ 0,

where λ̃i = λi(�̃n�̃
∗
n), λ̂i = λi(�̂n�̂

∗
n) and (a) follows from similar arguments as

in [5], Section 9.7.1. Hence,

tr
(
�̂n�̂

∗
n − zIN

)−1 − tr
(
�̃n�̃

∗
n − zIN

)−1 P−→
N,n→∞ 0.(3.5)

Combining (3.4) and (3.5), we obtain

tr
(
�n�

∗
n − zIN

)−1 − tr
(
�̃n�̃

∗
n − zIN

)−1 P−→
N,n→∞ 0.

Moreover, the moments are asymptotically not affected by these different steps:

max
(∣∣EX̃2

ij −EX2
ij

∣∣; (E|X̃ij |2 − 1
); (E|X̃ij |4 −E|Xij |4)) −→

N,n→∞ 0.(3.6)
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Note in particular that the fourth cumulant of X̃ij converges to that of Xij . Hence,
it is sufficient to consider variables truncated at δn

√
n, centralized and renormal-

ized. This will be assumed in the sequel (we shall simply write Xij and all related
quantities with Xij ’s truncated, centralized, renormalized with no superscript any
more).

3.3. The central limit theorem for the resolvent. We extend below Bai and
Silverstein’s master lemma [7], Lemma 1.1. Let A be such that

A > λ+
R

(
1 +

√
�+)2.

Denote by D, D+ and Dε the domains

D = [0,A] + i[0,1],
D+ = [0,A] + i(0,1],(3.7)

Dε = [0,A] + i[ε,1] (ε > 0).

THEOREM 1. Assume that Assumption A-1 and Assumption A-2 hold true,
then:

1. The process {Mn(·)} as defined in (3.2) forms a tight sequence on Dε , more
precisely,

sup
z1,z2∈Dε,n≥1

E|Mn(z1) − Mn(z2)|2
|z1 − z2|2 < ∞.

2. There exists a sequence (Gn(z), z ∈ D+) of two-dimensional Gaussian pro-
cesses with mean

EGn(z) = |V|2B1,n(z) + κB2,n(z),(3.8)

where B1,n(z) and B2,n(z) are defined in (2.20) and (2.21), and covariance

cov
(
Gn(z1),Gn(z2)

)= E
(
Gn(z1) −EGn(z1)

)(
Gn(z2) −EGn(z2)

)
= �0,n(z1, z2) + |V|2�1,n(z1, z2) + κ�2,n(z1, z2),

and

cov
(
Gn(z1),Gn(z2)

)= cov
(
Gn(z1),Gn(z2)

)
,

with z1, z2 ∈ D+ ∪ D+ with D+ = {z̄, z ∈ D+} and where �0,n, �1,n and �2,n

are defined in (2.9), (2.10)–(2.12). Moreover, (Gn(z), z ∈ Dε) is tight.
3. For any continuous functional F from C(Dε;C) to C,

EF(Mn) −EF(Gn) −→
N,n→∞ 0.
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REMARK 3.1. 1. The tightness of the process {Mn} immediately follows from
Bai and Silverstein’s lemma as this result has been proved in [7], Lemma 1.1, under
Assumption A-1 with no extra conditions on the moments of the entries.

2. Differences between Theorem 1 and [7], Lemma 1.1, appear in the bias and
in the covariance where there are respectively two terms instead of one and three
terms instead of one in [7], Lemma 1.1.

3. Since the extra terms may not converge, we need to consider a sequence of
Gaussian processes instead of a single Gaussian process as in [7], Lemma 1.1.

4. In order to prove that the sequence of Gaussian processes is tight, we in-
troduce a meta-matrix model to transfer the tightness of {Mn} to {Gn} (see, e.g.,
Section 5.2.1).

5. Following Bai and Silverstein [7], it is relatively straightforward with the
help of Cauchy’s formula to describe the fluctuations of Ln(f ) for f analytic with
Theorem 1 at hand. We skip this step since we will directly extend the CLT to
nonanalytic functions f in Section 4.

REMARK 3.2. A closer look to Bai and Silverstein’s proof [7], Section 2,
page 578, yields the following alternative expression for the term �0,n:

�0,n(z1, z2) = ∂

∂z2

{
∂A0,n(z1, z2)

∂z1

1

1 −A0,n(z1, z2)

}
,(3.9)

with

A0,n(z1, z2) = z1z2

n
t̃n(z1)t̃n(z2) tr

{
RnTn(z1)RnTn(z2)

}
.(3.10)

Such an expression will be helpful in Section 6.2. As an interesting consequence:
In the case where Rn and Xn have real entries [in particular V = E(Xij )

2 = 1],
then A0,n = An and �0,n = �1,n.

REMARK 3.3. A closer look to the proof below [see, e.g., (5.21)] yields the
following formula for �2,n which will be of help in the sequel:

�2,n(z1, z2) = 1

n

N∑
i=1

∂

∂z1

[
z1Tn(z1)

]
ii

∂

∂z2

[
z2Tn(z2)

]
ii .(3.11)

The proof of Theorem 1 is postponed to Section 5.
The end of the section is devoted to various specializations of Theorem 1 in the

case where matrix Rn is diagonal. In this case, the results are simpler to express
and comparisons can easily be made with related works.

3.4. Covariance and bias in the special case of diagonal matrices (Rn). This
case partially falls into the framework developed in Pan and Zhou [45] (note that
the case V �= 0 and 1 is not handled there). Matrix Rn being nonnegative definite
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Hermitian, its entries are real positive if Rn is assumed to be diagonal. In this case,
matrix Tn is diagonal as well [cf. (2.4)], Tn = T T

n and simplifications occur for the
following terms:

An(z1, z2) = z1z2

n
t̃n(z1)t̃n(z2) trRnTn(z1)RnTn(z2),

�2,n(z1, z2) = z2
1z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n
tr
(
R2

nT
2
n (z1)T

2
n (z2)

)
,

B1,n(z) = −z3 t̃3
n

(1/n) trR2
nT

3
n

(1 − z2 t̃2
n(1/n)TrR2

nT
2
n )(1 − |V|2z2 t̃2

n(1/n)TrR2
nT

2
n )

,

B2,n(z) = −z3 t̃3
n

(1/n) trR2
nT

3
n

1 − z2 t̃2
n(1/n) trR2

nT
2
n

.

As one may notice, all the terms in the variance and the bias now only depend on
the spectrum of Rn. Hence, the following convergence holds true under the extra
assumption (2.14):

An(z1, z2) −→
N,n→∞ A(z1, z2) = ct̃(z1)t̃(z2)

∫
λ2F R(dλ)

(1 + λt̃(z1))(1 + λt̃(z2))
,

�1,n(z1, z2) −→
N,n→∞ �1(z1, z2) = ∂

∂z2

{
∂A(z1, z2)

∂z1

1

1 − |V|2A(z1, z2)

}
,

�2,n(z1, z2) −→
N,n→∞ �2(z1, z2) = ct̃ ′(z1)t̃

′(z2)

∫
λ2F R(dλ)

(1 + λt̃(z1))2(1 + λt̃(z2))2 ,

B1,n(z) −→
N,n→∞ B1(z) = − cz3 t̃3(z)

(1 −A(z, z))(1 − |V|2A(z, z))

∫
λ2F R(dλ)

(1 + λt̃(z))3
,

B2,n(z) −→
N,n→∞ B2(z) = − cz3 t̃3(z)

1 −A(z, z)

∫
λ2F R(dλ)

(1 + λt̃(z))3
,

where t̃ , t̃ ′ are the limits of t̃n, t̃
′
n under (2.14). This can be packaged into the fol-

lowing result.

COROLLARY 3.1. Assume that Assumptions A-1 and A-2 hold true. Assume
moreover that Rn is diagonal and that the convergence assumption (2.14) holds
true. Then Mn(·) converges weakly on Dε [defined in (3.7)] to a two-dimensional
Gaussian process N(·) satisfying

EN(z) = B(z) where B = |V|2B1 + κB2, z ∈ Dε

and B1 and B2 are defined above and covariance

cov
(
N(z1),N(z2)

)= �(z1, z2)

where � = �0 + |V|2�1 + κ�2, z1, z2 ∈ Dε ∪ Dε

and �0 defined in (2.15) and �1,�2 defined above.
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3.5. Additional computations in the case where Rn is the identity. In this sec-
tion, we assume that Rn = IN .

The term proportional to |V|2. In this case, the quantity A(z1, z2) takes the
simplified form

A(z1, z2) = ct̃1 t̃2

(1 + t̃1)(1 + t̃2)
,

where we denote t̃i = t̃ (zi), i = 1,2. Straightforward computations yield

∂

∂zi

A(z1, z2) = t̃ ′i
(1 + t̃i )t̃i

A(z1, z2), i = 1,2

and

�1(z1, z2) = ct̃ ′1 t̃ ′2
(1 + t̃1)2(1 + t̃2)2(1 − |V|2A(z1, z2))2

= ct̃ ′1 t̃ ′2
((1 + t̃1)(1 + t̃2) − |V|2ct̃1 t̃2)2

.

This formula is in accordance with [9], formula (2.2) (use [9], equation (3.4), to
equate both). If needed, one can then use the explicit expression of the Stieltjes
transform of Marčenko–Pastur distribution (cf. also Proposition 4.2 below).

4. Statement of the CLT for nonanalytic functionals. In order to lift the
CLT from the trace of the resolvent to a smooth function f , the key ingredient is
Helffer–Sjöstrand’s formula (1.7). Let

Ln(f )
(a)= Trf

(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ)

= (
Trf

(
�n�

∗
n

)−ETrf
(
�n�

∗
n

))
(4.1)

+
(
ETrf

(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ)

)

= L1

n(f ) + L2
n(f ),

where Fn in (a) is defined in (2.16). We describe the fluctuations of L1
n(f ) for

nonanalytic functions f in Section 4.1 and study the bias L2
n(f ) in Section 4.3.

4.1. Fluctuations for the linear spectral statistics. Denote by C∞
c (Rd) [resp.,

Cm
c (Rd)] the set of infinitely differentiable (resp., Cm) functions from R

d to R

with compact support; by C
mp
c (R2) the set of functions from R

2 to R m times
differentiable with respect to the first coordinate and p times with respect to the
second one. As usual, if the subscript c is removed in the sets above, then the
corresponding functions may no longer have a compact support.
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THEOREM 2. Assume that A-1 and A-2 hold true. Let f1, . . . , fk be in C3
c (R).

Consider the centered Gaussian random vector Z1
n(f)


= (Z1
n(f1), . . . ,Z

1
n(fk))

with covariance

cov
(
Z1

n(f ),Z1
n(g)

)
= 1

2π2 Re
∫
(C+)2

∂�2(f )(z1)∂�2(g)(z2)�n(z1, z̄2)�2(dz1)�2(dz2)(4.2)

+ 1

2π2 Re
∫
(C+)2

∂�2(f )(z1)∂�2(g)(z2)�n(z1, z2)�2(dz1)�2(dz2),

for f,g ∈ {f1, . . . , fk}, where �2(f ) and �2(g) are defined as in (1.6), and where
�n is defined in (2.9); let

L1
n(f) = (

L1
n(f1), . . . ,L

1
n(fk)

)
with L1

n(f ) = trf
(
�n�

∗
n

)−E trf
(
�n�

∗
n

)
.

Then the sequence of Rk-valued random vectors Z1
n(f) is tight and the following

convergence holds true:

dLP
(
L1

n(f),Z
1
n(f)

) −→
N,n→∞ 0,(4.3)

or equivalently for every continuous bounded function F : Rk →C,

EF
(
L1

n(f)
)−EF

(
Z1

n(f)
) −→
N,n→∞ 0.(4.4)

The proof of Theorem 2 is postponed to Section 6.
We provide hereafter some information on the covariance operator.
Let N1,N2 ∈ N and f ∈ C

N1+1,N2+1
c (R2); denote by z1 = x + iu, z2 = y + iv

and let �N1,N2(f ) be defined as

�N1,N2(f )(z1, z2) = ∑
n1=0:N1
n2=0:N2

∂n1+n2

∂xn1∂yn2
f (x, y)

(iu)n1

n1!
(iv)n2

n2! χ(u)χ(v),(4.5)

where χ :R→R
+ is smooth, compactly supported with value 1 in a neighborhood

of the origin. Denote by ∂1 = ∂x + i∂u and ∂2 = ∂y + i∂v .

PROPOSITION 4.1. For every f ∈ C3,3
c (R2), denote by

ϒ(f ) = 1

2π2 Re
∫
(C+)2

∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

+ 1

2π2 Re
∫
(C+)2

∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2).
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Then ϒ(f ) is a distribution (in the sense of L. Schwartz) on C3,3
c (R2). Moreover,

ϒ admits the following boundary value representation:

ϒ(f ) = − 1

4π2 lim
ε↘0

∫
R2

f (x, y)
{
�n(x + iε, y + iε) + �n(x − iε, y − iε)

(4.6)
− �n(x − iε, y + iε) − �n(x + iε, y − iε)

}
dx dy.

Notice that for every f,g ∈ C3
c (R) then f ⊗ g ∈ C3,3

c (R2) [where (f ⊗ g)(x, y) =
f (x)g(y)] and

ϒ(f ⊗ g) = cov
(
Z1

n(f ),Z1
n(g)

)
.

The proof of Proposition 4.1 is postponed to Section 6.3.

REMARK 4.1. By relying on Tillmann’s results [54], one may prove that the
support of ϒ (as a distribution) is included in Sn × Sn. We provide a more direct
approach in a slightly simpler case in Section 4.2.

4.2. More covariance formulas. We provide here more explicit formulas for
the variance than those given in Theorem 2 and Proposition 4.1; we also verify that
these formulas are in agreement with other formulas available in the literature.

Recall that by [51], Theorem 1.1, the limit limε↘0 t̃n(x + iε) denoted by t̃n(x)

exists for all x ∈ R, x �= 0; the same holds true for tn.

PROPOSITION 4.2. Assume that Assumptions A-1 and A-2 hold true and let
f,g ∈ C3

c (R); assume moreover for simplicity that V = EX2
ij is either equal to

0 or 1 and that Rn has real entries. Then the covariance of (Zn(f ),Zn(g)) in
Theorem 2 writes

cov
(
Z1

n(f ),Z1
n(g)

)= 1 + |V|2
2π2

∫
S2

n

f ′(x)g′(y) ln
∣∣∣∣ t̃n(x) − t̃n(y)

t̃n(x) − t̃n(y)

∣∣∣∣dx dy

(4.7)

+ κ

π2n

N∑
i=1

(∫
Sn

f ′(x) Im
(
xTn(x)

)
ii dx

)(∫
Sn

g′(y) Im
(
yTn(y)

)
ii dy

)
.

The proof for Proposition 4.2 is postponed to Section 6.4.

REMARK 4.2. Notice that the first term in the RHS matches with the expres-
sion provided in [7], equation (1.17) (see also [5], equation (9.8.8)).

REMARK 4.3. Concerning the cumulant term, we shall compare it with the
explicit formula provided in [40] (see also [46]) in the case where Rn = IN . Recall
that in the context of Marčenko–Pastur’s theorem where Rn = IN , we have Sn =
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[λ−, λ+] where λ− = (1 − √
cn)

2, λ+ = (1 + √
cn)

2 and (Tn(x))ii = tn(x). We
will prove hereafter that

κcn

π2

(∫ λ+

λ−
f ′(x) Im

{
xtn(x)

}
dx

)(∫ λ+

λ−
g′(y) Im

{
ytn(y)

}
dy

)

= κ

4cnπ2

(∫ λ+

λ−
f (x)

x − (1 + cn)√
(λ+ − x)(x − λ−)

dx

)
(4.8)

×
(∫ λ+

λ−
g(y)

y − (1 + cn)√
(λ+ − y)(y − λ−)

dy

)
.

Notice that the LHS of the equation above is the cumulant term as provided in (4.7)
if Rn = IN while the RHS is the cumulant term as provided6 in [40].

In the case where Rn = IN , the Stieltjes transform of Marčenko–Pastur’s distri-
bution has an explicit form given by (see, e.g., [46], Chapter 7)

tn(z) = 1

2cnz

{√(
z − (1 + cn)

)2 − 4cn − (
z − (1 − cn)

)}
,

where the branch of the square root is fixed by its asymptotics: z − (1 + c) + o(1)

as z → ∞. In particular, if x ∈ [λ−, λ+] then√(
z − (1 + c)

)2 − 4c|z=x+i0 = i
√(

λ+ − x
)(

x − λ−).
Hence,

Im
{
xtn(x)

}=
√

(λ+ − x)(x − λ−)

2cn

.

It remains to perform an integration by parts to get∫ λ+

λ−
f ′(x) Im

{
xtn(x)

}
dx = −

∫ λ+

λ−
f ′(x)

√
(λ+ − x)(x − λ−)

2cn

dx

= 1

2cn

∫ λ+

λ−
f (x)

(1 + cn) − x√
(λ+ − x)(x − λ−)

dx

which yields (4.8).
As a corollary of Proposition 4.2, we obtain the following extension of Theo-

rem 2.
Recall that Sn is the support of the probability measure Fn. Due to Assump-

tion A-2, it is clear that

Sn ⊂ S∞

= [

0,λ+
R

(
1 +

√
�+)2],(4.9)

6Denote by the superscript LP the quantities in [40] and use the correspondence cLP ↔ 1/c, aLP ↔
c and κLP4 ↔ (aLP)4κ = c2κ to check that the RHS of (4.8) equates the formula provided in [40].
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uniformly in n. Denote by h ∈ C∞
c (R) a function whose value is 1 on a η-

neighborhood Sη∞ of S∞.

COROLLARY 4.3. Assume that Assumptions A-1 and A-2 hold true and let
f� ∈ C3(R) with 1 ≤ � ≤ k; assume moreover that V = EX2

ij is either equal to 0
or 1 and that Rn has real entries. Let h ∈ C∞

c (R) be as above. Then (4.3)–(4.4)
remain true with L1

n(f) replaced by

L1,h
n (f) = (

trf�

(
�n�

∗
n

)−E tr(f�h)
(
�n�

∗
n

);1 ≤ � ≤ k
)

and with the Gaussian random vector Z1
n(fh) as in Theorem 2.

The proof of Corollary 4.3 is postponed to Section 6.5.

4.3. First-order expansions for the bias in the case of nonanalytic functionals.

THEOREM 3. Assume Assumptions A-1 and A-2 hold true and let f ∈
C18

c (R). Denote by

Z2
n(f ) = 1

π
Re

∫
C+

∂�17(f )(z)Bn(z)�2(dz),(4.10)

where Bn is defined in (2.19). Then

ETr(f )
(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ) − Z2

n(f ) −→
N,n→∞ 0.

The proof of Theorem 3 is postponed to Section 7.

REMARK 4.4 (Why eighteen?). A quick sketch of the proof of Theorem 3
provides some hints. Let f have a bounded support. By Gaussian interpolation
(whose cost is f ∈ C8), we only need to prove

ETrf
(
�C

n

(
�C

n

)∗)− N

∫
f (λ)Fn(dλ) → 0,

where �C
n is the counterpart of �n with NC(0,1) i.i.d. entries. The proof of the

latter is based on Helffer–Sjöstrand’s formula

ETrf
(
�C

n

(
�C

n

)∗)− N

∫
f (λ)Fn(dλ) = 1

π
Re

∫
C+

∂�k(f )
{
TrEQC

n − Ntn
}
d�2,

where QC
n = (�C

n (�C
n )∗ − zIN)−1, and on the following estimate, stated in Propo-

sition 7.2:∣∣ETr
(
�C

n

(
�C

n

)∗ − zIN

)−1 − Ntn(z)
∣∣≤ 1

n
P12

(|z|)P17
(∣∣Im(z)

∣∣−1)
,(4.11)

where Pk denotes a polynomial with degree k and positive coefficients. In view of
Proposition 6.2, f needs to be of class C18. If one can improve estimate (4.11) and
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decrease the powers of | Im(z)|−1, then one will automatically lower the regular-
ity assumption over f . Notice that in the case of the Gaussian unitary ensemble,
counterpart of (4.11) features | Im(z)|−7 on its RHS (cf. [25], Lemma 6.1), hence
the needed regularity is f ∈ C8 in this case.

PROPOSITION 4.4. Let Z2
n(f ) be defined as in (4.10), then Z2

n is a distribution
(in the sense of L. Schwartz) on C18

c (R) and

Z2
n(f ) = −i

2π
lim
ε↘0

∫
R

f (x)
{
Bn(x + iε) − Bn(x − iε)

}
dx.(4.12)

Moreover, the singular points of Bn(z) are included in Sn and so is the support of
Z2

n (as a distribution). In particular, one can extend Z2
n to C18(R) by

Ž2
n(f ) = Z2

n(f h), f ∈ C18(R),

where Ž2
n is the extension to C18(R) and h ∈ C∞

c (R) has value 1 on Sn.

The proof of Proposition 4.4 is postponed to Section 7.2.

COROLLARY 4.5. Assume Assumptions A-1 and A-2 hold true. Let f ∈
C18(R) and h ∈ C∞

c (R) be a function whose value is 1 on a neighborhood of
S∞, then the following convergence holds true:

ETr(f h)
(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ) − Ž2

n(f ) −→
N,n→∞ 0.

The proof is straighforward and is therefore omitted.

5. Proof of Theorem 1 (CLT for the trace of the resolvent). Recall that
Mn(z) = trQn(z) − Ntn(z). It will be convenient to decompose Mn(z) as

Mn(z) = M1
n(z) + M2

n(z) where

{
M1

n(z) = trQn(z) − trEQn(z),

M2
n(z) = N

(
Efn(z) − tn(z)

)
.

(5.1)

Denote by ξj the N × 1 vector

ξj = �·j = 1√
n
R1/2X·j

and by Ej the conditional expectation with respect to Gj , the σ -field generated by
ξ1, . . . , ξj :

Ej = E(·|Gj ).(5.2)

By convention, E0 = E. We split Theorem 1 into intermediate results. Recall the
definitions of Dε,D

+ and D in (3.7). Let

� = D+ ∪ D+ where D+ = {
z̄, z ∈ D+}.
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PROPOSITION 5.1. Assume that Assumptions A-1 and A-2 hold true; let
z1, z2 ∈ �, then

M1
n(z) =

n∑
j=1

Zn
j (z) + oP (1),

where the Zn
j ’s are martingale increments with respect to the σ -field Gi and

n∑
j=1

Ej−1Z
n
j (z1)Z

n
j (z2) − �n(z1, z2)

P−→
N,n→∞ 0,(5.3)

n∑
j=1

Ej−1Z
n
j (z1)Z

n
j (z2) − �n(z1, z2)

P−→
N,n→∞ 0,(5.4)

where �n is defined in (2.9). Moreover,

M2
n(z) −Bn(z) −→

N,n→∞ 0,

where Bn is defined in (2.19).

PROPOSITION 5.2. There exists a sequence (Gn(z), z ∈ �) of two-dimensional
Gaussian processes with mean EGn(z) = Bn(z) and covariance

cov
(
Gn(z1),Gn(z2)

)= E
(
Gn(z1) −EGn(z1)

)(
Gn(z2) −EGn(z2)

)
= �n(z1, z2).

Moreover, (Gn(z), z ∈ Dε) is tight.

5.1. Proof for Proposition 5.1. The fact that (Mn) is a tight sequence has al-
ready been established in [7] (regardless of the assumption κ = 0 and |V| = 0/1).
In order to proceed, we shall rely heavily on the proof of [7], Lemma 1.1, which is
the crux of Bai and Silverstein’s paper. In Section 5.1.1, we recall the main steps
of Bai and Silverstein’s computations of the variance/covariance. In Sections 5.1.2
and 5.1.3, we compute the extra terms in the limiting variance. In Section 5.1.4,
we compute the limiting bias. In Section 5.3, we finally conclude the proof of
Theorem 1 and address various subtleties which appear due to the existence of a
sequence of Gaussian limiting processes.

In the sequel, we shall drop subscript n and write Q and R instead of Qn and
Rn. Denote by Qj(z) the resolvent of matrix ��∗ − ξj ξ

∗
j , that is,

Qj(z) = (−zI + ��∗ − ξj ξ
∗
j

)−1
.

The following quantities will be needed:

βj (z) = 1

1 + ξ∗
j Qj (z)ξj

,
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β̄j (z) = 1

1 + (1/n) trRnQj(z)
,

bn(z) = 1

1 + (1/n)E trRnQ1(z)
,

εj (z) = ξ∗
j Qj (z)ξj − (1/n) trRnQj(z),

δj (z) = ξ∗
j Q2

j (z)ξj − 1

N
trRnQ

2
j (z) = d

dz
εj (z).

5.1.1. Preliminary variance computations. We briefly review in this section
the main steps related to the computation of the variance/covariance as presented
in [7]. These standard steps will finally lead to equation (5.8) which will be the
starting point of the computations associated to the |V|2- and κ-terms of the vari-
ance.

Let z ∈ �:

N
(
fn(z) −Efn(z)

)= −
n∑

j=1

(Ej −Ej−1)βj (z)ξ
∗
j Q2

j (z)ξj

= −
n∑

j=1

Ej

(
β̄j (z)δj (z) − β̄2

j (z)εj (z)
1

n
trRQ2

j

)
+ oP (1),

where Ej is introduced in (5.2). Denote by

Zn
j (z) = −Ej

(
β̄j (z)δj (z) − β̄2

j (z)εj (z)
1

n
trRQ2

j (z)

)
= −Ej

d

dz

(
β̄j (z)εj (z)

)
.

Hence,

M1
n(z) = N

(
fn(z) −Efn(z)

)= n∑
j=1

Zn
j (z) + oP (1).

The RHS appears as a sum of martingale increments. Such a decomposition is
important since it will enable us to rely on powerful CLTs for martingales (see
[11], Theorem 35.12, and the variations below in Lemmas 5.5 and 5.6). These
CLTs rely on the study of the terms

n∑
j=1

Ej−1Z
n
j (z1)Z

n
j (z2) and

n∑
j=1

Ej−1Z
n
j (z1)Z

n
j (z2).

Notice that since Zn
j (z) = Zn

j (z̄), we have Ej−1Z
n
j (z1)Z

n
j (z2) = Ej−1Z

n
j (z1) ×

Zn
j (z2). Since the set � is stable by complex conjugation, it is sufficient to study

the limiting behavior of
n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2), z1, z2 ∈ �
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in order to prove (5.3) and (5.4). Now,
n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2)

(5.5)

= ∂2

∂z1∂z2

{
n∑

j=1

Ej−1
[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̄j (z2)εj (z2)

)]}
.

Following the same arguments as in [7], page 571, one can prove that it is sufficient
to study the convergence in probability of

n∑
j=1

Ej−1
[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̄j (z2)εj (z2)

)]
.

Moreover,
n∑

j=1

Ej−1
[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̄j (z2)εj (z2)

)]

=
n∑

j=1

bn(z1)bn(z2)Ej−1
[
Ej εj (z1)Ej εj (z2)

]+ oP (1)(5.6)

=
n∑

j=1

z1 t̃n(z1)z2 t̃n(z2)Ej−1
[
Ej εj (z1)Ej εj (z2)

]+ oP (1).

Hence, it is finally sufficient to study the limiting behavior (in terms of conver-
gence in probability) of the quantity

n∑
j=1

Ej−1
(
Ej εj (z1)Ej εj (z2)

)
, z1, z2 ∈ �.(5.7)

Denote by AT the transpose matrix of A. Applying (2.6) yields
n∑

j=1

Ej−1
(
Ej εj (z1)Ej εj (z2)

)

= 1

n2

n∑
j=1

tr
(
R1/2

EjQj (z1)REjQj (z2)R
1/2)

(5.8)

+ |V|2
n2

n∑
j=1

tr
(
R1/2

EjQj (z1)R
1/2(R1/2

EjQj (z2)R
1/2)T )

+ κ

n2

n∑
j=1

N∑
i=1

(
R1/2

EjQj (z1)R
1/2)

ii

(
R1/2

EjQj (z2)R
1/2)

ii .
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The limiting behavior of the first term of the RHS has been completely described
in [7] where it has been shown that

∂2

∂z1∂z2

{
z1z2 t̃n(z1)t̃n(z2)

1

n2

n∑
j=1

tr
(
R1/2

EjQj (z1)REjQj (z2)R
1/2)}

(5.9)
= �0,n(z1, z2) + oP (1),

with �0,n(z1, z2) defined in (2.10).
We shall focus on the second and third terms.

5.1.2. The term proportional to |V|2 in the variance. Notice first that the value
of tn and t̃n is the same whether R is replaced by �R in (2.3) and (3.1) since tn and
t̃n only depend on the spectrum of R (which is the same as the spectrum of �R).
Notice also that (R1/2)T = �R1/2, hence(

R1/2
EjQj (z2)R

1/2)T = �R1/2
EjQ

T
j (z2)�R1/2.

Recall the definition of T T
n (z) given by (2.8). Taking into account the fact that for

a deterministic matrix A,

EξT
j Aξj = V

n
tr
(�R1/2AR1/2) and Eξ∗

j Aξ̄j = �V
n

tr
(
R1/2A�R1/2),(5.10)

and following closely [7], Section 2, it is a matter of bookkeeping to establish that

|V|2z1z2

n2 t̃n(z1)t̃n(z2)

n∑
j=1

tr
(
R1/2

EjQj (z1)R
1/2(R1/2

EjQj (z2)R
1/2)T )

= |V|2An(z1, z2) × 1

n

n∑
j=1

1

1 − ((j − 1)/n)|V|2An(z1, z2)
+ oP (1)(5.11)

=
∫ |V|2An(z1,z2)

0

dz

1 − z
+ oP (1),

where

An(z1, z2) = z1z2

n
t̃n(z1)t̃n(z2) tr

{
R1/2Tn(z1)R

1/2 �R1/2T T
n (z2)�R1/2}.

Finally,

∂2

∂z1∂z2
(5.11) = |V|2�1,n(z1, z2) + oP (1)

(5.12)

= |V|2 ∂

∂z2

{
∂An(z1, z2)/∂z1

1 − |V|2An(z1, z2)

}
+ oP (1).
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5.1.3. The cumulant term in the variance. We now handle the term propor-
tional to κ in (5.8):

1

n2

n∑
j=1

N∑
i=1

(
R1/2

EjQj (z1)R
1/2)

ii

(
R1/2

EjQj (z2)R
1/2)

ii .(5.13)

The objective is to prove that EjQj (z) can be replaced by Tn(z) in the for-
mula above, which boils down to prove a convergence of quadratic forms of the
type (2.5). Such a convergence has already been established in [30] for large co-
variance matrices based on a noncentered matrix model with separable variance
profile.

Let δz be the distance between the point z ∈ C and the real nonnegative axis
R

+:

δz = dist
(
z,R+).(5.14)

PROPOSITION 5.3. Assume that Assumptions A-1 and A-2 hold true and let
un be a deterministic N × 1 vector, then

E
∣∣u∗

nQ(z)un − u∗
nEQ(z)un

∣∣2 ≤ 1

n
�
(|z|)�( 1

δz

)
‖un‖2,

where � and � are fixed polynomials with coefficients independent from N,n, z

and (un).

Proof of Proposition 5.3 is an easy adaptation of [30], Proposition 2.7; see also
the proof of Proposition 6.4 below. It is therefore omitted.

PROPOSITION 5.4. Assume that Assumptions A-1 and A-2 hold true, then the
following convergence holds true:

1

n2

n∑
j=1

N∑
i=1

(
R1/2

EjQj (z1)R
1/2)

ii

(
R1/2

EjQj (z2)R
1/2)

ii

− 1

n

N∑
i=1

(
R1/2T (z1)R

1/2)
ii

(
R1/2T (z2)R

1/2)
ii

P−→
n,N→∞ 0.

The proof below has been suggested by a referee whom we thank; it substan-
tially simplifies the initial one.

PROOF OF PROPOSITION 5.4. We first transform the sum to be calculated:

1

n2

n∑
j=1

N∑
i=1

(
R1/2

EjQj (z1)R
1/2)

ii

(
R1/2

EjQj (z2)R
1/2)

ii .(5.15)
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Using Proposition 5.3 enables us to replace the conditional expectation Ei by the
true expectation in every term (R1/2

EjQj (z)R
1/2)ii . Now using the fact that

Q = Qj − Qjξj ξ
∗
j Qj

1 + ξ∗
j Qjξj

,(5.16)

one can replace EQj by EQ. We now prove the following estimate:∣∣Eu∗Q(z)v − u∗T (z)v
∣∣≤ C√

n Imk(z)
‖u‖‖v‖,(5.17)

where neither K nor k depend on N,n. Clearly, Proposition 5.4 follows
from (5.17).

Using (5.16) and the associated fact that (Q(z)ξj )i = βj (z)(Qj (z)ξj )i , we get

Eu∗Q(z)��∗T (z)v = ∑
j

Eβj

(
u∗Qj(z)ξj ξ

∗
j T (z)v

)
(a)= −zt̃n(z)

∑
j

E
(
u∗Qj(z)ξj ξ

∗
j T (z)v

)+ O

(
1√

n Imk(z)

)
(5.18)

= −z
t̃n(z)

n

∑
j

E
(
u∗Qj(z)RT (z)v

)+ O

(
1√

n Imk(z)

)
(b)= −zt̃n(z)Eu∗Q(z)RT (z)v + O

( ‖u‖‖v‖√
n Imk(z)

)
,

where we used that E|βj (z) + zt̃n(z)|2 ≤ Kn−1| Im−k(z)| (see, e.g., [7]) to prove
(a) and we used (5.16) to replace Qj by Q in (b).

On the other hand,

Eu∗Q(z)��∗T (z)v = Eu∗Q(z)
(
��∗ − zIN + zIN

)
T (z)v

(5.19)
= u∗T (z)v + zEu∗Q(z)T (z)v.

Taking into account that by Definitions (2.4) and (2.7)

T (z) = (−zt̃n(z)cnR − zIN

)−1
,

we get

u∗T (z)v − u∗
EQ(z)v

= u∗T (z)v −Eu∗Q(z)
(−zt̃n(z)cnR − zIN

)
T (z)v

= u∗T (z)v + zt̃n(z)cnEu∗Q(z)RT (z)v + zEu∗Q(z)T (z)v

(a)= Eu∗Q(z)��∗T (z)v + zt̃n(z)cnEu∗Q(z)RT (z)v

(b)= O

( ‖u‖‖v‖√
n Imk(z)

)
,
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where (a) follows from (5.19) and (b) from (5.18). This completes the proof
of (5.17), hence the proof of Proposition 5.4. �

Combining the result in Proposition 5.4 together with (5.6) and (5.8), we have
proved so far that

∂2

∂z1∂z2

{
z1z2 t̃n(z1)t̃n(z2)

n2

×
n∑

j=1

N∑
i=1

(
R1/2

EjQj (z1)R
1/2)

ii

(
R1/2

EjQj (z2)R
1/2)

ii

}
(5.20)

= 1

n

N∑
i=1

∂2

∂z1∂z2

{
z1z2 t̃n(z1)t̃n(z2)

(
R1/2

n Tn(z1)R
1/2
n

)
ii

(
R1/2

n Tn(z2)R
1/2
n

)
ii

}
+ oP (1).

Taking into account (3.1) and the matrix identity U(I + V U)−1V = 1 − (I +
UV )−1, we obtain

(5.20) = 1

n

N∑
i=1

∂2

∂z1∂z2

(
IN − (

IN + t̃n(z1)Rn

)−1)
ii

(
IN − (

IN + t̃n(z2)Rn

)−1)
ii

+ oP (1)

= 1

n

N∑
i=1

∂

∂z1

[
z1Tn(z1)

]
ii

∂

∂z2

[
z2Tn(z2)

]
ii + oP (1)(5.21)

= z2
1z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n

N∑
i=1

(
R1/2

n T 2
n (z1)R

1/2
n

)
ii

(
R1/2

n T 2
n (z2)R

1/2
n

)
ii + oP (1)

= �2,n(z1, z2) + oP (1),

where �2,n is given by formula (2.12).
Now gathering (5.9), (5.12) and (5.21), we have established so far:

n∑
j=1

Ej−1Z
n
j (z1)Z

n
j (z2) = �n(z1, z2) + oP (1)

which is the first part of Proposition 5.1.

5.1.4. Computations for the bias. In this section, we are interested in the com-
putation of N(Efn(z) − tn(z)). As

f̃n(z) = −(1 − cn)

z
+ cnfn(z) and t̃n(z) = −(1 − cn)

z
+ cntn(z),
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we immediately obtain N(Efn(z) − tn(z)) = n(Ef̃n(z) − t̃n(z)). Combining (2.7)
and (3.1) yields

−z − 1

t̃n(z)
+ 1

n
trRn

(
IN + t̃n(z)Rn

)−1 = 0.(5.22)

Following Bai and Silverstein [7], Section 4, we introduce the quantity An(z) de-
fined as

An(z) = zEf̃n(z) + 1 + 1

n
tr
(
IN +Ef̃n(z)Rn

)−1 − cn

= zEf̃n(z) + 1 + 1

n
tr
(
IN +Ef̃n(z)Rn

)−1 − 1

n
tr I−1

N

= −Ef̃n(z)

(
−z − 1

Ef̃n(z)
+ 1

n
trRn

(
IN +Ef̃n(z)Rn

)−1
)
,

hence

− An(z)

Ef̃n(z)
= −z − 1

Ef̃n(z)
+ 1

n
trRn

(
IN +Ef̃n(z)Rn

)−1
.(5.23)

Subtracting (5.22) to (5.23) finally yields

Ef̃n(z) − t̃n(z)

= −An(z)t̃n(z)

×
[
1 − t̃n(z)Ef̃n(z)

n
trR2

n

(
IN +Ef̃n(z)Rn

)−1(
IN + t̃n(z)Rn

)−1
]−1

,

which is the counterpart of [7], equation (4.12). The same arguments as in [7] now
yield

n
(
Ef̃n(z) − t̃n(z)

)
(5.24)

= −nAn(z)t̃n(z)

[
1 − t̃2

n(z)

n
trR2

n

(
IN + t̃n(z)Rn

)−2
]−1

+ o(1).

It remains to study the behavior of nAn(z). Following [7], equation (4.10), we
obtain

nAn(z)

= b2
n

n
E trQ1(Ef̃nRn + IN)−1RnQ1Rn − b2

nnE

[(
ξ∗

1 Q1ξ1 − 1

n
trQ1Rn

)
×
(
ξ∗

1 Q1(Ef̃nRn + IN)−1ξ1 − 1

n
trQ1(Ef̃nRn + IN)−1Rn

)]
+ o(1).
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Applying (2.6) to the right term to the RHS of the previous equation (recall that
RT = �R), we obtain

nAn(z) = −|V|2 b2
n

n
E trR1/2

n Q1(Ef̃nRn + IN)−1R1/2
n

�R1/2
n QT

1
�R1/2

n

(5.25)

− κ
b2
n

n

N∑
i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1(Ef̃nRn + IN)−1R1/2
n

)
ii + o(1).

The first term of the RHS has been fully analyzed in [7] in the case where Rn and
Xn are real matrices. We can adapt these computations to the general case and get
the following identity7:

−|V|2 b2
n

n
E trR1/2

n Q1(Ef̃nRn + IN)−1R1/2
n

�R1/2
n QT

1
�R1/2

n

(5.26)

= |V|2
z3 t̃2

n

n
trR1/2

n T 2
n (z)R

1/2
n

�R1/2
n T T

n (z)�R1/2
n

1 − |V|2z2 t̃2
n

n
trR1/2

n Tn(z)R
1/2
n

�R1/2
n T T

n (z)�R1/2
n

+ o(1),

where T T
n (z) is defined in (2.8). The term proportional to the cumulant in (5.25)

can be analyzed as in Section 5.1.3, and one can prove that

−κ
b2
n

n

N∑
i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1(Ef̃nRn + IN)−1R1/2
n

)
ii

(5.27)

= −κ
z2 t̃2

n

n

N∑
i=1

(
R1/2

n TnR
1/2
n

)
ii

(
R1/2

n Tn(t̃nRn + IN)−1R1/2
n

)
ii + o(1).

We now plug (5.26) and (5.27) into (5.24) to conclude

n
(
Ef̃n(z) − t̃n(z)

)
= −|V|2 z3 t̃3

n

n

trR1/2
n T 2

n (z)R
1/2
n

�R1/2
n T T

n (z)�R1/2
n

(1 − |V|2z2 t̃2
n

n
trR1/2

n Tn(z)R
1/2
n

�R1/2
n T T

n (z)�R1/2
n )(1 − t̃2

n

n
trR2

nT
2
n )

− κ
z3 t̃3

n

n

N∑
i=1

(R
1/2
n TnR

1/2
n )ii(R

1/2
n T 2

n R
1/2
n )ii

1 − z2 t̃2
n

n
trR2

nT
2
n

+ o(1).

The proof of Proposition 5.1 is completed.

5.2. Proof of Proposition 5.2. Recall the meta-model introduced in Sec-
tion 2.6.

7 Details can be found in the previous version of this article, arxiv:1309.3728v3.

http://arxiv.org/abs/arxiv:1309.3728v3
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5.2.1. The Gaussian process Gn. Let

Mn,M(z) = tr
(
�n(M)�n(M)∗ − zINM

)−1 − MNtn(z).

Applying Proposition 5.1 to the matrix model �n(M)�n(M)∗ yields

∀z ∈ �, M1
n,M(z) =

nM∑
j=1

ZM
j (z) + oP (1),

where the ZM
j ’s are martingale increments and

nM∑
j=1

Ej−1Z
M
j (z1)Z

M
j (z2)

P−−−−−−−−−→
N,n fixed,M→∞ �n(z1, z2),

M2
n,M(z) −−−−−−−−−→

N,n fixed,M→∞ Bn(z).

Notice that there is a genuine limit in the previous convergence. Applying the
central limit theorem for martingales [11], Theorem 35.12, plus the tightness ar-
gument for (Mn,M(z), z ∈ �) provided by Proposition 5.1 immediately yields the
fact that Mn,M converges in distribution to a Gaussian process (Gn(z), z ∈ �) with
mean Bn(z) and covariance function �n(z1, z2).

5.2.2. Tightness of the sequence of Gaussian processes (Gn). In order to
prove that the sequence of Gaussian processes (Gn) is tight, we shall prove, ac-
cording to Prohorov’s theorem, that it is relatively compact in distribution. Con-
sider the set of matrices{(

Rn(M),M ≥ 1
);Rn is a N × n matrix,N = N(n);n ≥ 1

}
,

where Rn(M) is defined in (2.23). Since ‖Rn(M)‖ = ‖Rn‖ for all M ≥ 1, we have

sup
M≥1,N,n→∞

∥∥Rn(M)
∥∥= sup

N,n→∞
‖Rn‖ < ∞

by Assumption A-2. Hence, by Proposition 5.1, the family {Mn,M;M ≥ 1}N,n→∞
is tight, hence relatively compact in distribution. As the distribution L(Gn) of the
Gaussian process Gn is the limit (in M) of the distribution L(Mn,M) of Mn,M ,
L(Gn) belongs to the closure of {L(Mn,M)}, which is compact. Finally, {L(Gn)}
is included in a compact set, hence is relatively compact. In particular, the family
of Gaussian processes (Gn) is tight.

5.3. Proof of Theorem 1. The two propositions below are minor variations of
known results. They will be helpful to conclude the proof of Theorem 1.
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LEMMA 5.5 (CLT for martingales I). Suppose that for each n Yn1, Yn2, . . . ,

Ynrn is a real martingale difference sequence with respect to the increasing σ -
field {Gn,j } having second moments. Assume moreover that (�2

n) is a sequence of
nonnegative real numbers, uniformly bounded. If

rn∑
j=1

E
(
Y 2

nj |Gn,j−1
)− �2

n

P−→
n→∞ 0,

and for each ε > 0,
rn∑

j=1

E
(
Y 2

nj 1|Ynj |>ε

) −→
n→∞ 0,

then, for every bounded continuous function f :R →R,

Ef

(
rn∑

j=1

Ynj

)
−Ef (Zn) −→

n→∞ 0,(5.28)

where Zn is a centered Gaussian random variable with variance �2
n.

Hereafter is the multidimensional and complex extension of Lemma 5.5 we
shall rely on in the sequel.

LEMMA 5.6 (CLT for martingales II). Suppose that for each n (Ynj ;1 ≤ j ≤
rn) is a C

d -valued martingale difference sequence with respect to the increasing
σ -field {Gn,j ;1 ≤ j ≤ rn} having second moments. Write

YT
nj = (

Y 1
nj , . . . , Y

d
nj

)
.

Assume moreover that (�n(k, �))n and (�̃n(k, �))n are uniformly bounded se-
quences of complex numbers, for 1 ≤ k, � ≤ d . If

rn∑
j=1

E
(
Y k

nj
�Yd

nj |Gn,j−1
)− �n(k, �)

P−→
n→∞ 0,(5.29)

rn∑
j=1

E
(
Y k

njY
�
nj |Gn,j−1

)− �̃n(k, �)
P−→

n→∞ 0,(5.30)

and for each ε > 0,
rn∑

j=1

E
(|Ynj |21|Ynj |>ε

) −→
n→∞ 0,(5.31)

then, for every bounded continuous function f :Cd →R,

Ef

(
rn∑

j=1

Ynj

)
−Ef (Zn) −→

n→∞ 0,(5.32)
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where Zn is a C
d -valued centered Gaussian random vector with parameters

EZnZ
∗
n = (

�n(k, �)
)
k,� and EZnZ

T
n = (

�̃n(k, �)
)
k,�.

Lemmas 5.5 and 5.6 are variations around the central limit theorem for martin-
gales (see Billingsley [11], Theorem 35.12) which enables us to prove (in the real
case)

∀t ∈ R, Ee
it
∑rn

j=1 Ynj − e−(t2�2
n)/2 → 0

and Lévy theorem for the weak convergence criterion via characteristic functions
(see Kallenberg [36], Theorems 5.3 and 5.5) which yields (5.32) from the above
convergence. Details of the proof are omitted.

LEMMA 5.7 (Tightness and weak convergence). Let K be a compact set in C;
let X1,X2, . . . and Y1, Y2, . . . be random elements in C(K,C). Assume that for all
d ≥ 1, for all z1, . . . , zd ∈ K , for all f ∈ C(Cd,C) we have

Ef
(
Xn(z1), . . . ,Xn(zd)

)−Ef
(
Yn(z1), . . . , Yn(zd)

) −→
n→∞ 0.

Assume moreover that (Xn) and (Yn) are tight, then for every continuous and
bounded functional F : C(K,C) →C, we have

EF(Xn) −EF(Yn) −→
n→∞ 0.

Lemma 5.7 can be proved as [36], Lemma 16.2; the proof is therefore omitted.
We are now in position to conclude.
In order to apply Lemma 5.6, it remains to check that �n as defined in (2.9) is

uniformly bounded for z1, z2 ∈ � fixed but this is an easy byproduct of Proposi-
tion 5.2.

Proposition 5.1 together with Lemma 5.6 (notice that condition (5.31) can be
proved as in [7]) yield the fact that for every z1, . . . , zd ∈ � and for every bounded
continuous function f : �d →C

Ef
(
Mn(z1), . . . ,Mn(zd)

)−Ef
(
Gn(z1), . . . ,Gn(zd)

) −→
N,n→∞ 0,

where Gn is well defined by Proposition 5.2. Now the tightness of Mn and Gn

together with Lemma 5.7 yield the last statement of Theorem 1.

6. Proof of Theorem 2 (fluctuations for nonanalytic functionals). In this
section, we will assume that the random variables (Xn

ij ) are truncated, centered
and normalized, following Section 3.2.



GAUSSIAN FLUCTUATIONS FOR LARGE COVARIANCE MATRICES 1871

6.1. Useful properties. Recall that Sn ⊂ S∞

= [0,λ+

R(1 + √
�+)2] uniformly

in n. Denote by h ∈ C∞
c (R) a function whose value is 1 on a η-neighborhood Sη∞

of S∞.

PROPOSITION 6.1. 1. Assume that Assumptions A-1 and A-2 hold true; let
the random variables (Xn

ij ) be truncated as in Section 3.2, function h be defined
as above and f :R →R be a continuous function. Then

trf
(
�n�

∗
n

)− tr(f h)
(
�n�

∗
n

) a.s.−→
N,n→∞ 0.

2. Let hn be a smooth function on R with compact support and whose value is 1
on a η-neighborhood Sη

n of Sn; then∫
R

f (λ)Fn(dλ) =
∫
R

(f hn)(λ)Fn(dλ).

The proof of Proposition 6.1 is straightforward and is based on the fact that
almost surely

lim sup
N,n→∞

∥∥�n�
∗
n

∥∥< λ+
R

(
1 +

√
�+)2 + η,

a fact that can be found in [5] for instance. Details are left to the reader.
The following proposition underlines how a sufficient regularity of function f

compensates the singularity in Im(z)−1 near the real axis.

PROPOSITION 6.2. Let μ,ν be two probability measures on R and gμ and gν

their associated Stieltjes transforms. Assume that∣∣gμ(z) − gν(z)
∣∣≤ |h(z)|

Im(z)k
, z ∈ C

+,

where h is a continuous function over cl(C+), the closure of C+.
Let f : R → R be a function of order Ck+1 with bounded support; recall the

definition of �k(f ) in (1.6) and denote by

‖f ‖k+1 = sup
0≤�≤k+1

∥∥f (�)
∥∥∞ where ‖g‖∞ = sup

x∈R
∣∣g(x)

∣∣.
Then ∣∣∣∣∫ f dμ −

∫
f dν

∣∣∣∣≤ 1

π

∣∣∣∣∫
C+

∂�k(f )(z)
{
gμ(z) − gν(z)

}
�2(dz)

∣∣∣∣
≤ K‖f ‖k+1

∫
supp(f )×supp(χ)

∣∣h(z)
∣∣�2(dz)(6.1)

≤ K ′‖f ‖k+1.
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PROOF. Write

∂�k(f )(x + iy) = ∂x�k(f )(x + iy) + i∂y�k(f )(x + iy)

= (iy)kf (k+1)(x)

k! χ(y) + i
k∑

�=0

(iy)�f (�)(x)

�! χ ′(y).

From this and the fact that χ is equal to 1 for y small enough, we deduce that

∂�k(f )(x + iy) = (iy)kf (k+1)(x)

k!
near the real axis. Hence, |∂�k(f )(x + iy)| ≤ 1supp(f )×supp(χ)(x, y)K‖f ‖k+1y

k

near the real axis, which yields (6.1). �

6.2. Proof of Theorem 2. Recall the definition of the sets D, D+ and Dε given
in (3.7) and the fact that constant A > λ+

R(1 + √
�+)2.

LEMMA 6.3. Let (ϕn(z), z ∈ D+ ∪D+)n∈N and (ψn(z), z ∈ D+ ∪D+)n∈N be
centered complex-valued continuous random processes and such that ϕ(z̄) = ϕ(z)

and ψ(z̄) = ψ(z). Assume that:

(i) The following convergence in distribution holds true: for all d ≥ 1 and
(z1, . . . , zd) ∈ D+,

dLP
((

ϕn(z1), . . . , ϕn(zd)
)
,
(
ψn(z1), . . . ,ψn(zd)

)) −→
n→∞ 0.

(ii) For all ε > 0, ϕn(z) and ψn(z) are tight on Dε .
(iii) The process (ψn(z)) is Gaussian with covariance matrix κn(z1, z2),

(z1, z2 ∈ D+ ∪ D+).
(iv) The following estimates hold true:

∀n ∈ N,∀z ∈ D+, varϕn(z) ≤ 1

Im(z)2k
and varψn(z) ≤ 1

Im(z)2k
.

(v) Let functions g� : R→R (1 ≤ � ≤ L) be Ck+1 and have compact support.

Then

dLP

(
1

π
Re

∫
C+

∂�k(g)(z)ϕn(z)�2(dz),
1

π
Re

∫
C+

∂�k(g)(z)ψn(z)�2(dz)

)
−→
n→∞ 0,

where

∂�k(gj )(z) = (∂x + i∂y)

k∑
�=0

(iy)�

�! g
(�)
j (x)χ(y) and

∂�k(g) = (
∂�k(gj );1 ≤ j ≤ L

)
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with χ being smooth, compactly supported with value 1 in a neighborhood of 0.
Moreover,

1

π
Re

∫
C+

∂�k(g)(z)ψn(z)�2(dz)

is centered Gaussian with covariance matrix

cov
(

1

π
Re

∫
C+

∂�k(gk)(z)ψn(z)�2(dz),
1

π
Re

∫
C+

∂�k(g�)(z)ψn(z)�2(dz)

)
= 1

2π2 Re
∫
(C+)2

∂�k(gk)(z1)∂�k(g�)(z2)κn(z1, z̄2)�2(dz1)�2(dz2)(6.2)

+ 1

2π2 Re
∫
(C+)2

∂�k(gk)(z2)∂�k(g�)(z2)κn(z1, z2)�2(dz1)�2(dz2),

for 1 ≤ k, � ≤ L.

The proof of Lemma 6.3 is provided in Appendix A.1.
The strategy to prove Theorem 2 closely follows this lemma. Denote by

ϕn(z) = trQn(z) −E trQn(z) and ψn(z) = Gn(z) −EGn(z),

the process Gn being defined in Theorem 1, then conditions (i), (ii) and (iii) are im-
mediate consequences of Theorem 1. In order to check condition (iv), we establish
the following proposition.

PROPOSITION 6.4. Assume that Assumptions A-1 and A-2 hold true, then:

(i) (Bordenave [12], Hachem et al. [29], Lemma 6.3, Shcherbina [49]). For all
z ∈ C

+,

var trQn(z) ≤ C

Im(z)4 .

(ii) For all z ∈C
+,

varGn(z) ≤ C

Im(z)4 ,

where C is a constant that may depend polynomially on |z|.

The first part of the proposition is classical and its proof is omitted (for the
details, see footnote 7). Proof of Proposition 6.4(ii) is postponed to Appendix A.2.

Taking into account the estimates established in Proposition 6.4 immediately
yields the first part of Theorem 2 in the case where functions (g�) have a bounded
support and satisfy (v) with k = 2, that is, are C3. It remains to prove the equiva-
lence between (4.3) and (4.4), but this immediately follows from the following.
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PROPOSITION 6.5. Let (Xn) and (Yn) be C
d -valued random variables and

assume that both sequences are tight, then the following are equivalent:

(i) the following convergence holds true: dLP(Xn,Yn) −→
n→∞ 0;

(ii) for every continuous bounded function f : C
d → C, Ef (Xn) −

Ef (Yn) −→
n→∞ 0.

Proposition 6.5 can be proved easily by contradiction using the fact that dLP
meterizes the convergence of laws; its proof is hence omitted.

6.3. Proof of Proposition 4.1. Let f ∈ C∞
c (R2). A simple but lengthy compu-

tation yields the fact that

∂2∂1�N1,N2(f )(x + iu,y + iv)
(6.3)

= ∂N1+N2+2

∂xN1+1∂yN2+1 f (x, y) × (iu)N1

N1!
(iv)N2

N2!
for u, v small enough. Let now N1 = N2 = 2. Since |�n(z1, z2)| ≤ K|z1z2|−2

for any z1, z2 ∈ C
+ and z1, z2 in a compact set (use Cauchy–Schwarz and apply

Proposition 6.4), ϒ(f ) is well defined. Let K be a compact set in R
2 and let

f ∈ C∞
c (R2) with support included in K , then one can easily prove that∣∣ϒ(f )

∣∣≤ CK‖f ‖3,3 with ‖f ‖3,3 = sup
�,p≤3

(x,y)∈K

∥∥∂�
x∂p

y f (x, y)
∥∥∞.

This in particular implies that ϒ is a distribution on C∞
c (R2), of finite order (3,3),

and hence uniquely extends as a distribution on C3,3
c (R2).

Moreover, ϒ(f ) can be written as

ϒ(f ) = lim
ε↓0

1

2π2 Re
∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

+ lim
ε↓0

1

2π2 Re
∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2),

where C
+
ε = {z ∈ C, Im(z) ≥ ε}. Taking into account the facts that

∂2∂1�n1,n2(f )(z1, z2) = ∂2∂1�n1,n2(f )(z1, z2) and �n(z1, z2) = �n(z1, z2),

we can expand ϒ(f ) as

ϒ(f ) = lim
ε↓0

1

4π2

∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

+ lim
ε↓0

1

4π2

∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)
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+ lim
ε↓0

1

4π2

∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

+ lim
ε↓0

1

4π2

∫
(C+

ε )2
∂2∂1�2,2(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2).

We now apply twice Green’s formula to each integral and obtain

ϒ(f ) = − lim
ε↓0

1

4π2

∫
R2

�2,2(f )(x1 + iε, x2 + iε)�n(x1 + iε, x2 + iε) dx1 dx2

− lim
ε↓0

1

4π2

∫
R2

�2,2(f )(x1 − iε, x2 − iε)�n(x1 − iε, x2 − iε) dx1 dx2

+ lim
ε↓0

1

4π2

∫
R2

�2,2(f )(x1 + iε, x2 − iε)�n(x1 + iε, x2 − iε) dx1 dx2

+ lim
ε↓0

1

4π2

∫
R2

�2,2(f )(x1 − iε, x2 + iε)�n(x1 − iε, x2 + iε) dx1 dx2.

Notice that the sign changes in the two last integrals follow from the contour ori-
entations in Green’s formula. We now prove

lim
ε↓0

∫
R2

�2,2(f )(x1 + iε, x2 + iε)�n(x1 + iε, x2 + iε) dx1 dx2

(6.4)
= lim

ε↓0

∫
R2

f (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2.

The three other integrals can be handled similarly, and this will achieve the bound-
ary value representation (4.6) for ϒ(f ).

Using the mere definition of �N1,N2(f ) [cf. (4.5)] and Green’s formula, we get∫
(C+

ε )2
∂2∂1�1,0(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

= −
∫
R2

�1,0(f )(x1 + iε, x2 + iε)�n(x1 + iε, x2 + iε) dx1 dx2

= −
∫
R2

f (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2

− iε
∫
R2

∂xf (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2.

We extract the first term of the RHS from the equation above. Taking into ac-
count (6.3) and the fact that |�n(z1, z2)| ≤ |z1z2|−2 for z1, z2 in a compact set of
C \R, we obtain

lim sup
ε↓0

∣∣∣∣ε3
∫
R2

f (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2

∣∣∣∣< ∞.
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By applying the same argument to the quantity∫
(C+

ε )2
∂2∂1�4−�,0(f )(z1, z2)�n(z1, z2)�2(dz1)�2(dz2)

for � = 2 then � = 1 and � = 0, we can similarly prove that

lim sup
ε↓0

∣∣∣∣ε�
∫
R2

f (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2

∣∣∣∣< ∞

for � = 2,1,0.

We finally obtain

lim sup
ε↓0

∣∣∣∣∫
R2

f (x1, x2)�n(x1 + iε, x2 + iε) dx1 dx2

∣∣∣∣< ∞.

Expanding �2,2(f ) into (6.4) and using the above estimate immediately
yields (6.4).

The proof of Proposition 4.1 is complete.

6.4. Proof of Proposition 4.2. The covariance writes (in short)

cov
(
Z1

n(f ),Z1
n(g)

)
= − 1

4π2 lim
ε↓0

∑
±1,±2

(±1±2)

∫
f (x)g(y)�n(x ±1 iε, y ±2 iε) dx dy,

where ±1,±2 ∈ {+,−} and ±1±2 is the sign resulting from the product ±11 by
±21. Unfolding �n = �0,n + |V|2�1,n + κ�2,n, we have three terms to compute.
According to the assumptions of Proposition 4.2, either |V|2 equals 1 or 0. In the
latter case, the term corresponding to �1,n vanishes; if |V|2 = 1, then the quantities
An and A0,n [resp., defined in (2.13) and (3.10)] are equal, and so are �0,n and
�1,n. We first establish

− 1

4π2 lim
ε↓0

∑
±1,±2

(±1±2)

∫
f (x)g(y)�0,n(x ±1 iε, y ±2 iε) dx dy

(6.5)

= 1

2π2

∫
S2

n

f ′(x)g′(y) ln
∣∣∣∣ t̃n(x) − t̃n(y)

t̃n(x) − t̃n(y)

∣∣∣∣dx dy.

The proof relies on formula (3.9) and the following expression of A0,n:

1 −A0,n(z1, z2) = (z1 − z2)t̃n(z1)t̃n(z2)

t̃n(z1) − t̃n(z2)
(6.6)

which can be obtained using (3.1). Using (3.9) and performing a double integration
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by parts yields∫
f (x)g(y)�0,n(x + iε, y + iε) dx dy

=
∫

f ′(x)g′(y) ln
∣∣1 −A0,n(x + iε, y + iε)

∣∣dx dy

+ i
∫

f ′(x)g′(y)Arg
(
1 −A0,n(x + iε, y + iε)

)
dx dy.

Following [7], Section 5, we need only to consider the logarithm term and show
its convergence since the Arg term will eventually disappear (functions f and g

being real, the covariance will be real as well). Using (6.6), we obtain∫
f ′(x)g′(y) ln

∣∣1 −A0,n(x + iε, y + iε)
∣∣dx dy

=
∫

f ′(x)g′(y) ln
∣∣∣∣(x − y)t̃n(x + iε)t̃n(y + iε)

t̃n(x + iε) − t̃n(y + iε)

∣∣∣∣dx dy

and the sum writes∑
±1,±2

(±1±2)

∫
f (x)g(y)�n(x ±1 iε, y ±2 iε) dx dy

= 2
∫

f ′(x)g′(y) ln
{∣∣∣∣(x − y)t̃n(x + iε)t̃n(y + iε)

t̃n(x + iε) − t̃n(y + iε)

∣∣∣∣
×
∣∣∣∣ t̃n(x + iε) − t̃n(y − iε)
(x − y + 2iε)t̃n(x + iε)t̃n(y − iε)

∣∣∣∣}dx dy

(a)= 2
∫

f ′(x)g′(y)

{
ln
∣∣∣∣ x − y

x − y + 2iε

∣∣∣∣+ ln
∣∣∣∣ t̃n(x + iε) − t̃n(y − iε)
t̃n(x + iε) − t̃n(y + iε)

∣∣∣∣}dx dy,

where (a) follows from the fact that t̃n(z̄) = t̃n(z) and |z| = |z̄|. It is straightfor-
ward to prove that the first integral of the RHS vanishes as ε → 0. Using similar
arguments as in [7], Section 5, one can prove that∑

±1,±2

(±1±2)

∫
f (x)g(y)�n(x ±1 iε, y ±2 iε) dx dy

= 2
∫

f ′(x)g′(y) ln
∣∣∣∣ t̃n(x) − t̃n(y)

t̃n(x) − t̃n(y)

∣∣∣∣dx dy,

which is the desired result. We now establish

− κ

4π2 lim
ε↓0

∑
±1,±2

(±1±2)

∫
f (x)g(y)�2,n(x ±1 iε, y ±2 iε) dx dy

(6.7)

= κ

π2n

N∑
i=1

(∫
Sn

f ′(x) Im
(
xTn(x)

)
ii dx

)(∫
Sn

g′(y) Im
(
yTn(y)

)
ii dy

)
.



1878 J. NAJIM AND J. YAO

Due to formula (3.11), we only need to prove

i
2π

lim
ε↓0

∑
±∈{+,−}

±
∫

f (x)
∂

∂x

[
(x ± iε)Tn(x ± iε)

]
ii dx

(6.8)

= 1

π

∫
Sn

f ′(x) Im
(
xTn(x)

)
ii dx.

Performing an integration by parts and taking into account the fact that Tn(z̄) =
Tn(z) yields

i
2π

lim
ε↓0

∑
±∈{+,−}

±
∫

f (x)
∂

∂x

[
(x ± iε)Tn(x ± iε)

]
ii dx

= − i
2π

lim
ε↓0

∫
f ′(x)2i Im

[
(x + iε)Tn(x + iε)

]
ii dx

(a)= 1

π

∫
Sn

f ′(x) Im
(
xTn(x)

)
ii dx,

where step (a) follows from the fact that

inf
1≤i≤N,

z∈(0,A]×(0,B]

∣∣(1 + t̃n(z)λi

)∣∣> 0,(6.9)

where the λi’s stand for Rn’s eigenvalues. In fact, assume that (6.9) holds true,
then using the spectral decomposition of Rn, the pointwise convergence of t̃n(z) to
t̃n(x) as C+ � z → x ∈ R (see, e.g., [51]) and formula (3.1), then one obtains the
pointwise convergence

Im
[
(x + iε)Tn(x + iε)

]
ii −→

ε→0
Im
[
xTn(x)

]
ii

for x > 0. Since Im(t̃(x)) = 0 outside Sn, so is Im[xTn(x)]ii . Finally, (6.9) pro-
vides a uniform bound for Im[(x + iε)Tn(x + iε)]ii and (a) follows from the dom-
inated convergence theorem. It remains to prove (6.9). Assume that the infimum
is zero, then there exists λ∗ ∈ {λ1, . . . , λN } with λ∗ �= 0 and a sequence (z�) such
that t̃n(z�) → − 1

λ∗ and z� → x∗ ∈ R. Formula (3.1) yields

∀z ∈C
+, t̃n(z) = 1

−z + 1
n

∑N
i=1

λi

1+t̃n(z)λi

⇔ 1

n

N∑
i=1

λi

1 + t̃n(z)λi

= 1

t̃n(z)
+ z.

Taking z = z� yields a contradiction since the LHS goes to infinity while the RHS
remains bounded. Necessarily, (6.9) holds true and (6.7) is proved.

The proof of Proposition 4.2 is complete by gathering (6.5), (6.7) and using the
fact that �0,n = �1,n.
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6.5. Proof of Corollary 4.3. In order to establish the fluctuations in the case
where functions (f�) are C3 in a neighborhood of S∞ but may not have a bounded
support, we proceed as following: Write

trf�

(
�n�

∗
n

)−E tr(f�h)
(
�n�

∗
n

)
= trf�

(
�n�

∗
n

)− tr(f�h)
(
�n�

∗
n

)︸ ︷︷ ︸
�1

�

+ tr(f�h)
(
�n�

∗
n

)−E tr(f�h)
(
�n�

∗
n

)︸ ︷︷ ︸
�2

�

.

By Proposition 6.1, the vector (�1
�) almost surely converges to zero while

the fluctuations for vector (�2
�) are described by Theorem 2 with covariance

given by Proposition 4.2, where functions fk and f� must be replaced by
(fkh) and (f�h). The variance formula provided in this proposition shows that
cov(Zn

1 (f�h),Zn
1 (f�′h)) does not depend on function h as long as h has value 1

on Sn.

7. Proof of Theorem 3 (bias for nonanalytic functionals).

7.1. Proof of Theorem 3. Denote by XC
n a N × n matrix whose entries are

independent standard complex circular Gaussian r.v. [i.e., XC
ij = U + iV where

U,V are independent N (0,2−1) random variables]; denote accordingly �C
n =

n−1/2R1/2XC
n , ξCj = (�C

n )·j and

QC
n (z) = (−zIN + �C

n

(
�C

n

)∗)−1
.

We split the bias into two terms:

ETrf
(
�n�

∗
n

)− N

∫
f (λ)Fn(dλ)

= ETrf
(
�n�

∗
n

)−ETrf
(
�C

n

(
�C

n

)∗)
+ETrf

(
�C

n

(
�C

n

)∗)− N

∫
f (λ)Fn(dλ)


= T1 + T2.

We will prove the following. Provided that function f is of class C8 with bounded
support, then

ETrf
(
�n�

∗
n

)−ETrf
(
�C

n

(
�C

n

)∗)− 1

π
Re

∫
C+

∂�7(f )(z)Bn(z)�2(dz)

(7.1)
−→

N,n→∞ 0.

Provided that function f is of class C18 with bounded support, then

ETrf
(
�C

n

(
�C

n

)∗)− N

∫
f (λ)Fn(dλ) −→

N,n→∞ 0.(7.2)
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As one can check, it is much more demanding in terms of assumptions to prove
(7.2) than (7.1). Convergence in (7.2) should be compared to the results in
Haagerup and Thørbjornsen [25] (counterpart in the GUE case), Schultz [48]
(GOE), Capitaine and Donati-Martin [15], Loubaton et al. [55] (“signal plus noise”
model), etc.

7.1.1. Proof of (7.1). The heart of the proof lies in Helffer–Sjöstrand’s for-
mula, in Theorem 1 (bias part) and in a dominated convergence argument. By
Theorem 1,

ETr
(
�n�

∗
n − zIN

)−1 − Ntn(z) −Bn(z) −→
N,n→∞ 0.

The same argument yields

ETr
(
�C

n

(
�C

n

)∗ − zIN

)−1 − Ntn(z) −→
N,n→∞ 0,

because in the later case V = κ = 0, hence the bias is zero for the matrix model
�C

n (�C
n )∗. Subtracting yields

ETrQn(z) −ETrQC
n (z) −Bn(z) −→

N,n→∞ 0.

The following proposition will be of help.

PROPOSITION 7.1. Assume that Assumptions A-1 and A-2 hold true, then∣∣ETrQ(z) −ETrQC(z)
∣∣≤ K

|z|3
Im(z)7 ,(7.3)

where K is independent from N,n, z.

The proof is based on classical rank-one perturbation arguments and is omitted
(details can be found in Section 5.1.3 of the previous version of this article—see
footnote 7).

In order to transfer this bound to Bn(z), we invoke a meta-model argument
(cf. Section 2.6): Consider matrix �n(M) and its counterpart �C

n (M) as defined
in (2.24) and recall that in this case, we have a genuine limit:

ETr
(
�n(M)�∗

n(M) − zINM

)−1 −ETr
(
�C

n (M)
(
�C

n (M)
)∗ − zINM

)−1

−→
M→∞

N,n fixed

Bn(z).

Since the estimate (7.3) remains true for all M ≥ 1, we obtain∣∣Bn(z)
∣∣= lim

M→∞
∣∣ETr

(
�n(M)�n(M)∗ − zIMN

)−1

−ETr
(
�C(M)n

(
�C

n (M)
)∗ − zINM

)−1∣∣(7.4)

≤ K
|z|3

Im(z)7 .
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Write

ETrf
(
�n�

∗
n

)−ETrf
(
�C

n

(
�C

n

)∗)− 1

π
Re

∫
C+

∂�(f )(z)Bn(z)�2(dz)

(7.5)

= 1

π
Re

∫
C+

∂�(f )(z)
{
ETrQn(z) −ETrQC

n (z) −Bn(z)
}
�2(dz).

In view of (7.5), we need a dominated convergence argument in order to
prove (7.1); such an argument follows from Proposition 6.2, (7.3) and (7.4) as
long as f is of class C8 with large but bounded support. This completes the proof
of (7.1).

7.1.2. Proof of (7.2). The gist of the proof lies in the following proposition.

PROPOSITION 7.2. Denote by P�(X) a polynomial in X with degree � and
positive coefficients, then∣∣ETr

(
�C

n

(
�C

n

)∗ − zIN

)−1 − Ntn(z)
∣∣≤ 1

n
P12

(|z|)P17
(∣∣Im(z)

∣∣−1)
.

The proof of Proposition 7.2 builds upon techniques borrowed from [25, 55] and
is omitted. Details can be found in the previous version of this article; see footnote
7 and [57].

Using Helffer–Sjöstrand’s formula, Proposition 7.2 together with Proposi-
tion 6.2 immediately yield (7.2) for any f of class C18 with large but bounded
support.

7.2. Proof of Proposition 4.4. One can easily prove that Z2
n is a distribution on

C18
c (R) following the lines of proof of Proposition 4.1. Similarly, one can estab-

lish the boundary value representation (4.12). It remains to prove that the singular
points of Bn(z) are included in Sn. Following the definitions of B1,n and B2,n [cf.
(2.20) and (2.21)], we simply need to prove that the quantities(

1 − z2 t̃2
n

1

n
TrR2

nT
2
n

)
and

(
1 − |V|2z2 t̃2

n

1

n
TrR1/2

n Tn(z)R
1/2
n

�R1/2
n T T

n (z)�R1/2
n

)
are invertible for z /∈ Sn. We focus on the first one. Assume first that z ∈ C \ R.
Using the inequality | tr(AB)| ≤ (tr(AA∗) tr(BB∗))1/2 yields∣∣∣∣z2 t̃2

n(z)
1

n
TrR2

nT
2
n (z)

∣∣∣∣≤ |z|2|t̃n(z)|2
n

trRnTn(z)RnT
∗
n (z).

Since T ∗
n (z) = Tn(z̄), we can assume without loss of generality that z1, z2 ∈ C

+:∣∣∣∣1 − z2 t̃2
n(z)

1

n
TrR2

nT
2
n (z)

∣∣∣∣ ≥ 1 − |z|2|t̃n(z)|2
n

trRnTn(z)RnT
∗
n (z)

(7.6)

= ∣∣t̃n(z)∣∣2 Im(z)

Im(t̃n(z))
,
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where the last identity can be found in the previous version of this article [equa-
tion (A.15)]; see footnote 7. In order to extend the previous estimate to z ∈ R \Sn,
let z = x + iy with x ∈ R \ Sn; then a direct computation yields

Im(t̃n(z))

Im(z)
=
∫

F̃n(dλ)

|λ − z|2 −→
y↘0

∫
F̃n(dλ)

|λ − x|2 �= 0.

Therefore, by continuity (z) �→ 1−z2 t̃2
n(z) 1

n
TrR2

nT
2
n (z) does not vanish on C\Sn

and B1,n is analytic on this set. We can similarly prove that B2,n is also analytic
on the same set. Consider now a function f ∈ C18

c (R) whose support is disjoint
from Sn, then it is straightforward to check that Z2

n(f ) = 0 and the proof of the
proposition is completed.

APPENDIX: REMAINING PROOFS

A.1. Proof of Lemma 6.3. By Proposition 6.2,

E

∣∣∣∣∫
D

∂�(g)(z)ϕn(z)�2(dz)

∣∣∣∣ ≤ ∫
D

∣∣∂�(g)(z)
∣∣E∣∣ϕn(z)

∣∣�2(dz)

≤ ‖g‖k+1,∞
∫
D

Im(z)k
{
varϕn(z)

}1/2
�2(dz)

< ∞,

by (iii) and (iv). Hence, 1
π

Re
∫
D ∂�(g)(z)ϕn(z)�2(dz) is a well-defined a.s. finite

random variable. This estimate, uniform in n, readily implies the tightness of(
1

π
Re

∫
D

∂�(g)(z)ϕn(z)�2(dz);n ∈ N

)
.

Notice that the integrals with ψn instead of ϕn are similarly well defined and tight.
By conditions (i) and (ii), we obtain

dLP

(
1

π
Re

∫
Dε

∂�(g)(z)ϕn(z)�2(dz),
1

π
Re

∫
Dε

∂�(g)(z)ψn(z)�2(dz)

)
(A.1)

−→
N,n→∞ 0

(apply Lemma 5.7).
Let g = (g�;1 ≤ � ≤ L) and f :CL →C be bounded and continuous. Consider

the following notation:

ξn = 1

π
Re

∫
D

∂�(g)(z)ϕn(z)�2(dz), ξε
n = 1

π
Re

∫
Dε

∂�(g)(z)ϕn(z)�2(dz),

ηn = 1

π
Re

∫
D

∂�(g)(z)ψn(z)�2(dz), ηε
n = 1

π
Re

∫
Dε

∂�(g)(z)ψn(z)�2(dz).
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We have∣∣Ef (ξn) −Ef (ηn)
∣∣

(A.2)
≤ ∣∣Ef (ξn) −Ef

(
ξε
n

)∣∣+ ∣∣Ef
(
ξε
n

)−Ef
(
ηε

n

)∣∣+ ∣∣Ef
(
ηε

n

)−Ef (ηn)
∣∣.

Given ρ > 0, we first prove that for all n ≥ 1,∣∣Ef (ξn) −Ef
(
ξε
n

)∣∣≤ (
4‖f ‖∞ + 1

)
ρ(A.3)

for ε small enough.
We have

P
{∣∣ξn − ξε

n

∣∣> δ
}≤ 1

δ

(∫
[0,A]+i[0,ε]

∣∣∂�(g)(z)
∣∣E∣∣ϕn(z)

∣∣�2(dz)

)
(A.4)

which can be made arbitrarily small if ε is small enough, independently from n.
Now, ∣∣Ef (ξn) −Ef

(
ξε
n

)∣∣≤ ∣∣Ef (ξn) −Ef
(
ξε
n

)∣∣1{|ξn−ξε
n |>η}

+ ∣∣Ef (ξn) −Ef
(
ξε
n

)∣∣1{|ξn−ξε
n |≤η,|ξn|∨|ξε

n |>K}
+ ∣∣Ef (ξn) −Ef

(
ξε
n

)∣∣1{|ξn−ξε
n |≤η,|ξn|∨|ξε

n |≤K}.

First, invoke the tightness of |ξn| ∨ |ξε
n | and choose K large enough so that the

second term of the RHS is lower than 2‖f ‖∞ρ; then choose η > 0 small enough
so that f being absolutely continuous over {z ∈ C

+, |z| ≤ K}, the third term of
the RHS is lower that ρ; finally for such K and η, take advantage of (A.4) and
choose ε small enough so that the first term of the RHS is lower than 2‖f ‖∞ρ.
Equation (A.3) is proved.

One can similarly prove that |Ef (ηn) − Ef (ηε
n)| ≤ (4‖f ‖∞ + 1)ρ for ε > 0

small enough. Such ε being fixed, it remains to control the second term of the
RHS of (A.2), but this immediately follows from (A.1).

In order to prove that ηn is multivariate Gaussian with prescribed covari-
ance (6.2), we first consider ηε

n. Approximating the integral in ηε
n by Riemann

sums and using the fact that weak limits of Gaussian vectors are Gaussian imme-
diately yields that ηε

n is a Gaussian vector with covariance matrix[
cov

(
ηε

n

)]
k�

= 1

π2E

{
Re

∫
Dε

∂�(gk)(z)ψn(z)�2(dz)Re
∫
Dε

∂�(g�)(z)ψn(z)�2(dz)

}
for 1 ≤ k, � ≤ L. Using the elementary identity

Re(z)Re
(
z′)= Re(zz′) + Re(zz′)

2
,
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we obtain[
cov

(
ηε

n

)]
k�

= 1

2π2 Re
∫
(Dε)2

∂�(gk)(z1)∂�(g�)(z2)Eψn(z1)ψn(z2)�2(dz1)�2(dz2)

+ 1

2π2 Re
∫
(Dε)2

∂�(gk)(z1)∂�(g�)(z2)Eψn(z1)ψn(z2)�2(dz1)�2(dz2).

Using the fact that ψn(z2) = ψn(z2) yields[
cov

(
ηε

n

)]
k�

= 1

2π2 Re
∫
(Dε)2

∂�(gk)(z1)∂�(g�)(z2)κn(z1, z2)�2(dz1)�2(dz2)

+ 1

2π2 Re
∫
(Dε)2

∂�(gk)(z1)∂�(g�)(z2)κn(z1, z2)�2(dz1)�2(dz2).

In order to lift the Gaussianity from ηε
n to ηn and to extend the covariance formula

from the one above to formula (6.2), we rely on the approximation theorem [36],
Theorem 4.28, and on assumptions (iv) and (v) on the variance estimates and on
the regularity of functions gk, g� in Lemma 6.3.

The proof of Lemma 6.3 is complete.

A.2. Proof of Proposition 6.4(ii). We rely on a meta-model argument (cf.
Section 2.6). Denote by

M1
n,M(z) = Tr

(
�n(M)�∗

n(M) − zIN

)−1 −ETr
(
�n(M)�∗

n(M) − zIN

)−1
,

then by Proposition 6.4(i), we get

var
{
tr
(
�n(M)�∗

n(M) − zIN

)−1}≤ C

Im(z)4 ,

moreover M1
n,M(z) converges in distribution to ψn(z) as M → ∞, N and n be-

ing fixed (see, e.g., the details in Section 5.2). Consider the continuous bounded
function hK(x) = |x|2 ∧ K , then

EhK

(
ψn(z)

)= lim
M→∞EhK

(
M1

n,M(z)
)≤ lim sup

M→∞
E
∣∣M1

n,M(z)
∣∣2 ≤ C

Im(z)4 .

Now letting K → ∞ yields the desired bound by monotone convergence theorem.
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