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OPTIMAL STOPPING UNDER MODEL UNCERTAINTY:
RANDOMIZED STOPPING TIMES APPROACH

BY DENIS BELOMESTNY∗,† AND VOLKER KRÄTSCHMER∗

Duisburg-Essen University∗ and Higher School of Economics†

In this work, we consider optimal stopping problems with conditional
convex risk measures of the form

ρ�
t (X) = sup

Q∈Qt

(
EQ[−X|Ft ] −E

[
�

(
dQ

dP

)∣∣∣Ft

])
,

where � : [0,∞[→ [0,∞] is a lower semicontinuous convex mapping and
Qt stands for the set of all probability measures Q which are absolutely con-
tinuous w.r.t. a given measure P and Q = P on Ft . Here, the model uncer-
tainty risk depends on a (random) divergence E[�(

dQ
dP )|Ft ] measuring the

distance between a hypothetical probability measure we are uncertain about
and a reference one at time t . Let (Yt )t∈[0,T ] be an adapted nonnegative,
right-continuous stochastic process fulfilling some proper integrability con-
dition and let T be the set of stopping times on [0, T ]; then without assuming
any kind of time-consistency for the family (ρ�

t ), we derive a novel repre-
sentation

sup
τ∈T

ρ�
0 (−Yτ ) = inf

x∈R
{

sup
τ∈T

E
[
�∗(x + Yτ ) − x

]}
,

which makes the application of the standard dynamic programming based
approaches possible. In particular, we generalize the additive dual represen-
tation of Rogers [Math. Finance 12 (2002) 271–286] to the case of optimal
stopping under uncertainty. Finally, we develop several Monte Carlo algo-
rithms and illustrate their power for optimal stopping under Average Value at
Risk.

1. Introduction. In this paper, we study the optimal stopping problems in
an uncertain environment. The classical solution to the optimal stopping prob-
lems based on the dynamic programming principle assumes that there is a unique
subjective prior distribution driving the reward process. However, for example, in
incomplete financial markets, we have to deal with multiple equivalent martin-
gale measures not being sure which one underlies the market. In fact, under the
presence of the multiple possible distributions, a solution of the optimal stopping
problem by maximization with respect to some subjective prior cannot be reliable.
Instead, it is reasonable to view the multitude of possible distributions as a kind
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of model uncertainty risk which should be taken into account while formulating
an optimal stopping problem. Here, one may draw on concepts from the theory
of risk measures. As the established generic notion for static risk assessment at
present time 0, convex risk measures are specific functionals ρ0 on vector spaces
of random variables viewed as financial risks (see [26] and [27]). They typically
have the following type of robust representation:

ρ0(X) = sup
Q∈Q(P)

{
EQ[−X] − γ0(Q)

}
,(1.1)

where Q(P) denotes the set of probability measures which are absolutely continu-
ous w.r.t. a given reference probability measure P, and γ0 is some penalty function
(see, e.g., [14] and [25]). In this way, model uncertainty is incorporated, as no
specific probability measure is assumed. Moreover, the penalty function scales the
plausibility of models.

Turning over from static to dynamic risk assessment, convex risk measures have
been extended to the concept of conditional convex risk measures ρt at a future
time t , which are specific functions on the space of financial risks with random
outcomes (see [11, 18] and [15]). Under some regularity conditions, they have a
robust representation of the form (see, e.g., [17, 24] or [25], Chapter 11)

ρt (X) = sup
Q∈Qt

{
EQ[−X|Ft ] − γt (Q)

}
,(1.2)

where γt is a (random) penalty function and Qt consists of all Q ∈ Q(P) with
Q = P on Ft . As in (1.1), the robust representation (1.2) mirrors the model uncer-
tainty, but now at a future time t .

In recent years, the optimal stopping with families (ρt )t∈[0,T ] of conditional
convex risk measures was subject of several studies. For example, the works [33]
and [30] are settled within a time-discrete framework, where in addition the latter
one provides some dual representations extending the well-known ones from the
classical optimal stopping. Optimal stopping in continuous time was considered in
[5–7, 13]. All these contributions restrict their analysis to the families (ρt )t∈[0,T ]
satisfying the property of time consistency, sometimes also called recursiveness,
defined to mean

ρs(−ρt ) = ρs, 0 ≤ s < t ≤ T .

Hence, the results of the above papers cannot be, for example, used to solve op-
timal stopping problems under such very popular convex risk measure as Aver-
age Value at Risk. The only paper which tackled the case of nontime-consistent
families of conditional convex risk measures so far is [37], where the authors con-
sidered the so-called distorted mean payoff functionals. However, the analysis of
[37] excludes the case of Average Value at Risk as well. Moreover, the class of
processes to be stopped is limited to the functions of a one-dimensional geomet-
ric Brownian motion. The main probabilistic tool used in [37] is the Skorokhod
embedding.
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In this paper, we consider a rather general class of conditional convex risk mea-
sures having representation (1.2) with γt (Q) = E[�(dQ/dP)|Ft ] for some lower
semicontinuous convex mapping � : [0,∞[→ [0,∞]. The related class of risk
measures ρ0 known as the class of divergence risk measures or optimized cer-
tainty equivalents was first introduced in [9, 10]. Any divergence risk measure has
the representation

ρ0(X) = inf
x∈RE

[
�∗(x − X) − x

]
with

�∗ :R → [0,∞], y �→ sup
x≥0

(
xy − �(x)

)
(cf. [9, 10, 16], or Appendix A). Here, we study the problem of optimally stop-
ping the reward process ρ0(−Yt ), where (Yt )t∈[0,T ] is an adapted nonnegative,
right-continuous stochastic process with supt∈[0,T ] Yt satisfying some suitable in-
tegrability condition. We do not assume any time-consistency for the family ρt and
basically impose no further restrictions on (Yt ). Our main result is the representa-
tion

sup
τ∈T

ρ0(−Yτ ) = inf
x∈R

{
sup
τ∈T

E
[
�∗(x + Yτ ) − x

]}
,(1.3)

which allows one to apply the well-known methods from the theory of ordinary
optimal stopping problems. In particular, we derive the so-called additive dual rep-
resentation of the form:

inf
x∈R inf

M∈M0
E

[
sup

t∈[0,T ]
(
�∗(x + Yt ) − x − Mt

)]
,(1.4)

where M0 is the class of adapted martingales vanishing at time 0. This dual rep-
resentation generalizes the well-known dual representation of Rogers, [35]. The
representation (1.4) together with (1.3) can be used to efficiently construct lower
and upper bounds for the optimal value (1.3) by Monte Carlo, see, for example,
[8] and references therein.

The paper is organized as follows. In Section 2, we introduce notation and set up
the optimal stopping problem. The main results are presented in Section 3 where in
particular a criterion ensuring the existence of a saddle-point in (1.3) is formulated.
Section 4 contains some discussion on the main results and on their relation to
the previous literature. A Monte Carlo algorithm for computing lower and upper
bounds for the value function is formulated in Section 5, where also an example of
optimal stopping under Average Value at Risk is numerically analyzed.

The crucial idea to derive representation (1.3) is to consider the optimal stopping
problem

maximize ρ0(−Yτr ) over τ r ∈ T r ,

where T r denotes the set of all randomized stopping times on [0, T ]. It will be
studied in Section 6, where in particular it will turn out that this optimal stopping
problem has the same optimal value as the original one. Finally, the proofs are
collected in Section 7.
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2. The set-up. Let (�,F,P) be a probability space and denote by L0 :=
L0(�,F,P) the class of all finitely-valued random variables (modulo the P-a.s.
equivalence). Let � be a Young function, that is, a left-continuous, nondecreas-
ing convex function � : R+ → [0,∞] such that 0 = �(0) = limx→0 �(x) and
limx→∞ �(x) = ∞. The Orlicz space associated with � is defined as

L� := L�(�,F,P) = {
X ∈ L0 : E[

�
(
c|X|)] < ∞ for some c > 0

}
.

It is a Banach space when endowed with the Luxemburg norm

‖X‖� := inf
{
λ > 0 : E[

�
(|X|/λ)] ≤ 1

}
.

The Orlicz heart is

H� := H�(�,F,P) = {
X ∈ L0 : E[

�
(
c|X|)] < ∞ for all c > 0

}
.

For example, if �(x) = xp/p for some p ∈ [1,∞[, then H� = L� = Lp :=
Lp(�,F,P) is the usual Lp-space. In this case ‖Y‖� = p−1/p‖Y‖p , where ‖ · ‖p

stands for Lp-norm. If � takes the value +∞, then H� = {0} and L� = L∞ :=
L∞(�,F,P) is defined to consist of all P-essentially bounded random variables.
By Jensen inequality, we always have H� ⊆ L1. In the case of finite � , we see that
L∞ is a linear subspace of H� , which is dense w.r.t. ‖ · ‖� (see Theorem 2.1.14
in [20]).

Let 0 < T < ∞ and let (�,F, (Ft )0≤t≤T ,P) be a filtered probability space,
where (Ft )t∈[0,T ] is a right-continuous filtration with F0 containing only the
sets with probability 0 or 1 as well as all the null sets of F . Furthermore,
consider a lower semicontinuous convex mapping � : [0,∞[→ [0,∞] satisfy-
ing �(x0) < ∞ for some x0 > 0, infx≥0 �(x) = 0, and limx→∞ �(x)

x
= ∞. Its

Fenchel–Legendre transform

�∗ : R→R∪ {∞}, y �→ sup
x≥0

(
xy − �(x)

)
is a finite nondecreasing convex function whose restriction �∗|[0,∞[ to [0,∞[ is
a finite Young function (cf. Lemma A.1 in Appendix A). We shall use H�∗

to
denote the Orlicz heart w.r.t. �∗|[0,∞[. Then we can define a conditional convex
risk measure (ρ�

t )t∈[0,T ] via

ρ�
t (X) = ess sup

Q∈Q�,t

(
EQ[−X|Ft ] −E

[
�

(
dQ

dP

)∣∣∣Ft

])

for all X ∈ H�∗
, where Q�,t , denotes the set of all probability measures Q which

are absolutely continuous w.r.t. P such that �(dQ
dP ) is P-integrable and Q = P on Ft .

Note that dQ
dP X is P-integrable for every Q ∈ Q�,0 and any X ∈ H�∗

due to the
Young’s inequality. Consider now a right-continuous nonnegative stochastic pro-
cess (Yt ) adapted to (Ft ). Furthermore, let T contain all finite stopping times
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τ ≤ T w.r.t. (Ft ). The main object of our study is the following optimal stopping
problem:

sup
τ∈T

ρ�
0 (−Yτ ).(2.1)

If we set �(x) = 0 for x ≤ 1, and �(x) = ∞ otherwise, we end up with the clas-
sical stopping problem

sup
τ∈T

E[Yτ ].(2.2)

It is well known that the optimal value of the problem (2.2) may be viewed as a
risk neutral price of the American option with the discounted payoff (Yt )t∈[0,T ]
at time t = 0. However, in face of incompleteness, it seems to be not appropri-
ate to assume the uniqueness of the risk neutral measure. Instead, the uncertainty
about the stochastic process driving the payoff Yt should be taken into account.
Considering the optimal value of the problem (2.1) as an alternative pricing rule,
model uncertainty risk is incorporated by taking the supremum over Q�,t , where
the penalty function is used to assess the plausibility of possible models. The more
plausible is the model, the lower is the value of the penalty function.

EXAMPLE 2.1. Let us illustrate our setup in the case of the so-called Average
Value at Risk risk measure. The Average Value at Risk risk measure at level α ∈
]0,1] is defined as the following functional:

AV@Rα : X �→ − 1

α

∫ α

0
F←

X (β)dβ,

where X ∈ L1 and F←
X denotes the left-continuous quantile function of the distri-

bution function FX of X defined by F←
X (α) = inf{x ∈ R|FX(x) ≥ α} for α ∈]0,1[.

Note that AV@R1(X) = E[−X] for any X ∈ L1. Moreover, it is well known that

AV@Rα(X) = sup
Q∈Q�α,0

EQ[−X] for X ∈ L1,

where �α is the Young function defined by �α(x) = 0 for x ≤ 1/α, and �α(x) =
∞ otherwise (cf. [25], Theorem 4.52, and [28]). Observe that the set Q�α,0 con-
sists of all probability measures on F with dQ

dP ≤ 1/α P-a.s. Hence, the optimal
stopping problem (2.1) reads as follows:

sup
τ∈T

AV@Rα(−Yτ ) = sup
τ∈T

{
1

α

∫ 1

1−α
F←

Yτ
(β) dβ

}
.(2.3)

The family (ρ
�α
t )t∈[0,T ] of conditional convex risk measure associated with �α is

also known as the conditional AV@R (AV@Rα(·|Ft ))t∈[0,T ] at level α (cf. [25],
Definition 11.8).
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EXAMPLE 2.2. Let us consider, for any γ > 0, the continuous convex map-
ping �[γ ] : [0,∞[→ R defined by �[γ ](x) = (x ln(x) − x + 1)/γ for x > 0 and
�[γ ](0) = 1/γ . The Fenchel–Legendre transform of �[γ ] is given by �∗[γ ](y) =
(exp(γy) − 1)/γ for y ∈ R. In view of Lemma A.1 (cf. Appendix A), the corre-

sponding risk measure ρ
�[γ ]
0 has the representation

ρ
�[γ ]
0 (X) = inf

x∈RE
[

exp(γ x − γX) − 1

γ
− x

]
= ln(E[exp(−γX)])

γ
(2.4)

for X ∈ H
�∗[γ ] . This is the well-known entropic risk measure. Optimal stopping

with the entropic risk measures is easy to handle, since they can be reduced to the
standard optimal stopping problems via

sup
τ∈T

ρ
�[γ ]
0 (−Yτ ) = 1

γ
· ln

(
sup
τ∈T

E
[
exp(γ Yτ )

])
.(2.5)

EXAMPLE 2.3. Set �[p] = xp/p for any p ∈]1,∞[, then the set Q�[p],0 con-

tains all probability measures Q on F with dQ
dP ∈ Lp , and

ρ�[p]
(X) = sup

Q∈Q
�[p],0

(
EQ[−X] − 1

p
E

[(
dQ

dP

)p])
for X ∈ Lp/(p−1).

3. Main results. Let int(dom(�)) denote the topological interior of the effec-
tive domain of the mapping � : [0,∞[→ [0,∞]. We shall assume � to be a lower
semicontinuous convex function satisfying

1 ∈ int
(
dom(�)

)
, inf

x≥0
�(x) = 0 and lim

x→∞
�(x)

x
= ∞.(3.1)

3.1. Primal representation. The following theorem is our main result.

THEOREM 3.1. Let (�,Ft ,P|Ft ) be atomless with countably generated Ft

for every t > 0. Furthermore, let (3.1) be fulfilled, and let supt∈[0,T ] Yt ∈ H�∗
,

then

sup
τ∈T

ρ�
0 (−Yτ ) = sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
= inf

x∈R sup
τ∈T

E
[
�∗(x + Yτ ) − x

]
< ∞.

REMARK 3.2. The functional

ρ�∗ : H�∗ →R, X �→ inf
x∈RE

[
�∗(x + X) − x

]
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is known as the optimized certainty equivalent w.r.t. �∗ (cf. [9, 10]). Thus, the
relationship

sup
τ∈T

inf
x∈RE

[
�∗(x + Yτ ) − x

] = inf
x∈R sup

τ∈T
E
[
�∗(x + Yτ ) − x

]
(3.2)

may also be viewed as a representation result for optimal stopping with optimized
certainty equivalents.

Let us illustrate Theorem 3.1 for the case � = �α with some α ∈]0,1]. The
Young function �α satisfies the conditions of Theorem 3.1 if and only if α < 1.
The Fenchel–Legendre transform �∗

α of � is given by �∗
α(x) = x+/α and it ful-

fills the inequality �∗
α(x + y) − x ≥ �∗

α(y) for x, y ≥ 0. Then, as an immediate
consequence of Theorem 3.1, we obtain the following primal representation for
the optimal stopping problem (2.3).

COROLLARY 3.3. Let (�,Ft ,P|Ft ) be atomless with countably generated Ft

for every t > 0. If supt∈[0,T ] Yt ∈ L1, then it holds for α ∈]0,1[

sup
τ∈T

AV@Rα(−Yτ ) = inf
x∈R sup

τ∈T
E

[
1

α
(x + Yτ )

+ − x

]

= inf
x≤0

sup
τ∈T

E

[
1

α
(x + Yτ )

+ − x

]
< ∞.

Let us now consider the case � = �[p] for some p ∈]1,∞[. This mapping
meets all requirements of Theorem 3.1, and �[p]∗(x) = �[p/(p−1)](x+). Then by
Theorem 3.1, we have the following primal representation of the corresponding
optimal stopping problem.

COROLLARY 3.4. Let (�,Ft ,P|Ft ) be atomless with countably generated Ft

for every t > 0. If supt∈[0,T ] Yt ∈ Lp/(p−1) for some p ∈]1,∞[, then

sup
τ∈T

ρ�[p]
(−Yτ ) = inf

x∈R sup
τ∈T

E

[
(p − 1)((x + Yτ )

+)p/(p−1)

p
− x

]
< ∞.

3.2. The existence of solutions. A natural question is whether we can find a
real number x∗ and a (Ft )-stopping time τ ∗ which solve (3.2). We may give a fairly
general answer within the context of discrete time optimal stopping problems. In
order to be more precise, let TT denote all stopping times from T with values in T,
where T is any finite subset of [0, T ] containing {0, T }. Consider now the stopping
problem

maximize ρ�
0 (−Yτ ) over τ ∈ TT.(3.3)

Turning over to the filtration (FT)t∈[0,T ] defined by FT
t := F[t] with [t] :=

max{s ∈ T|s ≤ t}, we see that (YT)t∈[0,T ] with YT
t := Y[t] describes some
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(FT
t )-adapted process. Hence, we can apply Theorem 3.1 to get

sup
τ∈TT

ρ�
0 (−Yτ ) = sup

τ∈TT
inf
x∈RE

[
�∗(x + Yτ ) − x

]
(3.4)

= inf
x∈R sup

τ∈TT
E
[
�∗(x + Yτ ) − x

]
.

In this section, we want to find conditions which guarantee the existence of a saddle
point for the optimization problems

maximize inf
x∈RE

[
�∗(x + Yτ ) − x

]
over τ ∈ TT(3.5)

and

minimize sup
τ∈TT

E
[
�∗(x + Yτ ) − x

]
over x ∈ R.(3.6)

To this end, we shall borrow some arguments from the theory of Lyapunoff’s the-
orem for infinite-dimensional vector measures. A central concept in this context
is the notion of thin subsets of integrable mappings. So let us first recall it. For a
fixed probability space (�,F,P), a subset M ⊆ L1(�,F,P) is called thin if for
any A ∈ F with P(A) > 0, there is some nonzero g ∈ L∞(�,F,P) vanishing out-
side A and satisfying E[g · Z] = 0 for every Z ∈ M (cf. [29], or [1]). Best known
examples are finite subsets of L1(�,F,P) or finite-dimensional linear subspaces
of L1(�,F,P) if (�,F,P) is atomless (cf. [29], or [1]).

PROPOSITION 3.5. Let the assumptions of Theorem 3.1 be fulfilled, and let
T := {t0, . . . , tr+1} with t0 = 0 < t1 < · · · < tr+1 = T . Moreover, let {E[1A ·
�∗(x + Ys)|Ft ]|x ∈ R} be a thin subset of L1(�,Ft ,P|Ft ) for s, t ∈ T with t ≤ s

and A ∈ FT . Then there are τ ∗ ∈ TT and x∗ ∈ R satisfying

inf
x∈RE

[
�∗(x + Yτ∗) − x

] = sup
τ∈TT

inf
x∈RE

[
�∗(x + Yτ ) − x

]
= inf

x∈R sup
τ∈TT

E
[
�∗(x + Yτ ) − x

]
= sup

τ∈TT
E
[
�∗(x∗ + Yτ

) − x∗].
In particular, it holds

E
[
�∗(x∗ + Yτ

) − x∗] ≤ E
[
�∗(x∗ + Yτ∗

) − x∗] ≤ E
[
�∗(x + Yτ∗) − x

]
for any x ∈ R and τ ∈ TT.

The proof of Proposition 3.5 can be found in Section 7.5.

EXAMPLE 3.6. Let the mapping �∗
e : R → R be defined by �∗

e(y) :=∑n
k=1 αk(exp(βky) − 1) for some α1, . . . , αn,β1, . . . , βn > 0. Obviously, �∗

e is
convex, nondecreasing and satisfies limy→∞(�∗

e(y)− y) = ∞ as well as �∗
e(0) =

0. Hence, �e(x) := supy∈R(xy − �∗
e(y)) defines a lower semicontinuous convex
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function which satisfies (3.1), and whose Fenchel–Legendre transform coincides
with �∗

e , since �∗
e is continuous. Moreover, for any s, t ∈ T such that t ≤ s,

and A ∈ FT , the set {E[1A · �∗
e(x + Ys)|Ft ]|x ∈ R} is contained in the finite-

dimensional linear subspace of L1(�,Ft ,P|Ft ) spanned by the sequence of r.v.{
E
[
1A · exp(βkYs)|Ft

]|k = 0, . . . , n
}
,

where by definition β0 := 0. As a result, {E[1A · �∗
e(x + Ys)|Ft ]|x ∈ R} is a thin

subset of L1(�,Ft ,P|Ft ) in the case of atomless (�,Ft ,P|Ft ) (cf. e.g., [1], Propo-
sition 2.6).

3.3. Additive dual representation. In this section, we generalize the celebrated
additive dual representation for optimal stopping problems (see [35]) to the case
of optimal stopping under uncertainty. The result in [35] is formulated in terms
of martingales M with M0 = 0 satisfying supt∈[0,T ] |Mt | ∈ L1. The set of all such
adapted martingales will be denoted by M0.

THEOREM 3.7. Let Vt := ess supτ∈T ,τ≥t E[Zτ |Ft ] be the Snell envelope of
an integrable right-continuous stochastic process (Zt )t∈[0,T ] adapted to (�,F,

(Ft )0≤t≤T ,P). If supt∈[0,T ] |Zt | ∈ Lp for some p > 1, then

V0 = sup
τ∈T

E[Zτ ] = inf
M∈M0

E

[
sup

t∈[0,T ]
(Zt − Mt)

]
,

where the infimum is attained for M = M∗ with M∗ being the martingale part of
the Doob–Meyer decomposition of (Vt )t∈[0,T ]. Even more it holds

sup
τ∈T

E[Zτ ] = sup
t∈[0,T ]

(
Zt − M∗

t

)
P-a.s.

REMARK 3.8. By inspection of the proof of Theorem 2.1 in [35], one can see
that the assumption supt∈[0,T ]E[Zt ] ∈ Lp for some p > 1 is only used to guarantee
the existence of the Doob–Meyer decomposition of the Snell envelope (Vt )t∈[0,T ].
Therefore, this assumption may be relaxed, if we consider discrete time optimal
stopping problems on the set T for some finite T ⊆ [0, T ] containing {0, T }. In
this case, the Doob–Meyer decomposition always exists if (Zt )t∈T is integrable,
and Theorem 3.7 holds with T replaced by TT and [0, T ] replaced by T (see also
[30], Theorem 5.5).

Theorem 3.1 allows us to extend the additive dual representation to the case
of stopping problems (2.1). We shall use the following notation. For a fixed �

and x ∈ R, we shall denote by V �,x = (V
�,x
t )t∈[0,T ] the Snell-envelope w.r.t. to

(�∗(x + Yt ) − x)t∈[0,T ] defined via

V
�,x
t := ess sup

τ∈T ,τ≥t

E
[(

�∗(x + Yτ ) − x
)|Ft

]
.

The application of Theorem 3.1 together with Theorem 3.7 provides us with the
following additive dual representation of the stopping problem (2.1).
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THEOREM 3.9. Under assumptions on � and (Ft ) of Theorem 3.1 and under
the condition supt∈[0,T ] |�∗(x + Yt )| ∈ Lp for some p > 1 and any x ∈ R, the
following dual representation holds

sup
τ∈T

ρ�
0 (−Yτ ) = inf

x∈R inf
M∈M0

E

[
sup

t∈[0,T ]
(
�∗(x + Yt ) − x − Mt

)]
= inf

x∈RE
[

sup
t∈[0,T ]

(
�∗(x + Yt ) − x − M

∗,�,x
t

)]
= ess inf

x∈R sup
t∈[0,T ]

(
�∗(x + Yt ) − x − M

∗,�,x
t

)
P-a.s.

Here, M∗,�,x stands for the martingale part of the Doob–Meyer decomposition of
the Snell-envelope V �,x .

REMARK 3.10. Under the assumptions of Theorem 3.1, we have that
supt∈[0,T ] Yt ∈ H�∗

. Furthermore, �∗ is convex and nondecreasing with �∗(0) =
0 (see Lemma A.1 in Appendix A) so that for any y < 0∣∣�∗(y)

∣∣ = ∫ 0

y
�∗′

(z) dz ≤ �∗′
(0)|y| ≤

∫ |y|
0

�∗′
(z) dz = �∗(|y|),

where �∗′
denotes the right-sided derivative of �∗. Using the monotonicity of �∗

again, we conclude that∣∣�∗(x + Yt )
∣∣ ≤ �∗(|x| + Yt

) ≤ �∗(|x| + sup
t∈[0,T ]

Yt

)
∈ L1

for all x ∈ R and t ∈ [0, T ]. Hence, the application of Theorem 3.9 to (3.3) is
already possible under the assumptions of Theorem 3.1.

The dual representation for the optimal stopping problem under Average Value
at Risk reads as follows.

COROLLARY 3.11. Let the assumptions on � and (Ft ) be as in Theorem 3.1.
If supt∈[0,T ] Yt ∈ Lp for some p > 1, then it holds P-a.s.

sup
τ∈T

AV@Rα(−Yτ )

= inf
x∈R inf

M∈M0
E

[
sup

t∈[0,T ]

(
1

α
(x + Yt )

+ − x − Mt

)]
(3.7)

= inf
x≤0

E

[
sup

t∈[0,T ]

(
1

α
(x + Yt )

+ − x − M
∗,α,x
t

)]

= ess inf
x≤0

sup
t∈[0,T ]

(
1

α
(x + Yt )

+ − x − M
∗,α,x
t

)
P-a.s.
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Here, M∗,α,x denotes the martingale part of the Doob–Meyer decomposition of the
Snell-envelope V �α,x .

REMARK 3.12. Let us consider a discrete time optimal stopping problem
supτ∈TT AV@Rα(−Yτ ) for some finite T ⊆ [0, T ] with {0, T } ∈ T. In view of Re-
mark 3.10, the assumptions of Theorem 3.1 are already sufficient to obtain the dual
representation (3.7) with T replaced by TT and [0, T ] replaced by T.

4. Discussion. In [30], the optimal stopping problems of the type

sup
τ∈T

U0(Yτ )(4.1)

were studied, where for any t ≥ 0, the functional Ut maps a linear subspace X
of the space L0 into X ∩ L0(�,Ft ,P|Ft ) and satisfies Ut (X) ≤ Ut (Y ) for X ≤ Y

P-a.s. In fact, there is a one-to-one correspondence between conditional convex
risk measures (ρt )t∈[0,T ] and dynamic utility functionals U := (Ut )t∈[0,T ] satisfy-
ing the following two properties:

• conditional translation invariance:
Ut (X + Y) = Ut (X) + Y for Y ∈ X ∩ L0(�,Ft ,P|Ft ) and X ∈ X ,

• conditional concavity:
Ut (λX + (1 − λ)Y ) ≥ λUt (X) + (1 − λ)Ut (Y ) for X,Y ∈ X and λ ∈ X ∩

L0(�,Ft ,P|Ft ) with 0 ≤ λ ≤ 1.

More precisely, any conditionally translation invariant and conditionally concave
dynamic utility functional (Ut )t∈[0,T ] defines a family (ρU

t )t∈[0,T ] of conditional
convex risk measures via ρU

t (X) = −Ut (X) and vice versa. The results of [30]
essentially rely on the following additional assumptions:

• regularity:
Ut (1AX) = 1A · Ut (X) for A ∈ Ft and X ∈ X ,

• recursiveness:
Us ◦ Ut = Us for s ≤ t .

Recursiveness is often also referred to as time consistency. Obviously, the dynamic
utility functional (U�α

t )t∈[0,T ], defined by Uφα
t (X) := AV@Rα(−X|Ft ), satisfies

the regularity and the conditional translation invariance, but it fails to be recur-
sive (cf. [25], Example 11.13). Even worse, according to Theorem 1.10 in [32]
for any α < 1, there is in general no regular conditionally translation invariant and
recursive dynamic utility functional U such that U0 = U�α

0 . This means that we
cannot in general reduce the stopping problem (2.3) to the stopping problem (4.1)
with a regular, conditionally translation invariant and recursive dynamic utility
functional U . Note that this conclusion can be drawn from Theorem 1.10 of [32],
because AV@Rα is law-invariant, that is, AV@Rα(X) = AV@Rα(Y ) for identi-
cally distributed X and Y , and satisfies the properties AV@Rα(0) = 0 as well as
AV@Rα(−ε1A) > 0 for any ε > 0 and A ∈ F with P(A) > 0.
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The stopping problem (2.3) may also be viewed as a special case of the follow-
ing stopping problem:

sup
τ∈T

∫ ∞
0

w
(
P(Yτ > x)

)
dx,(4.2)

where w : [0,1] �→ [0,1] is the so-called distortion function, that is, w is nonde-
creasing and satisfies w(0) = 0, w(1) = 1. Indeed, if for α ∈]0,1[ the distortion
function wα is defined by wα(u) := u

α
∧ 1, then the stopping problems (2.3) and

(4.2) coincide. Recalling Theorem 1.10 of [32] again, we see that the stopping
problem (4.2) is not in general representable in the form (4.1) with some regular,
conditionally translation invariant and recursive dynamic utility functional. The
stopping problem (4.2) was recently considered by [37]. However, the analysis in
[37] relies on some additional assumptions. First of all, the authors allow for all
finite stopping times w.r.t. to some filtered probability space (�,F, (Ft )t≥0,P)

instead of restricting to those which are bounded by a fixed number. Second,
they assume a special structure for the process (Yt )t≥0, namely it is supposed that
Yt = u(St ) for an absolutely continuous nonnegative function u on [0,∞[ and for
a one-dimensional geometric Brownian motion (St )t≥0. Third, the authors focus
on strictly increasing absolutely continuous distortion functions w so that their
analysis does not cover the case of Average Value at Risk. More precisely, in [37]
the optimal stopping problems of the form

sup
τ∈T ∞

Dw

(
u(Sτ )

) = sup
τ∈T ∞

∫ ∞
0

w
(
P
(
u(Sτ ) > x

))
dx,(4.3)

are studied, where T ∞ denotes the set of all finite stopping times. A crucial step
in the authors’ argumentation is the reformulation of the optimal stopping prob-
lem (4.3) as

sup
τ∈T ∞

Dw

(
u(Sτ )

) = sup
F∈D

∫ ∞
0

w
(
1 − F(x)

)
u′(x) dx

= sup
F∈D

∫ 1

0
u
(
F←(u)

)
w′(1 − u)du,

where u′ and w′ are derivatives of u and w, respectively, and D denotes the
set of all distribution functions F with a nonnegative support such that

∫ ∞
0 (1 −

F(x)) dx ≤ S0. The main idea of the approach in [37] is that any such distribu-
tion function may be described as the distribution function of Sτ for some finite
stopping time τ ∈ T ∞ and this makes the application of the Skorokhod embed-
ding technique possible. Hence, the results essentially rely on the special structure
of the stochastic process (Yt )t≥0 and seem to be not extendable to stochastic pro-
cesses of the form Yt = U(Xt), where (Xt)t≥0 is a multivariate Markov process.
Moreover, it remains unclear whether the analysis of [37] can be carried over to the
case of bounded stopping times, as the Skorokhod embedding cannot be applied
to the general sets of stopping times T (see, e.g., [3]).
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5. Numerical example. In this section, we illustrate how our results can be
used to price Bermudan-type options in uncertain environment. Specifically, we
consider the model with d identically distributed assets, where each underlying
has dividend yield δ. The dynamic of assets is given by

dXi
t

Xi
t

= (r − δ) dt + σ dWi
t , i = 1, . . . , d,(5.1)

where Wi
t , i = 1, . . . , d , are independent one-dimensional Brownian motions and

r, δ, σ are constants. At any time t ∈ {t0, . . . , tJ } the holder of the option may
exercise it and receive the payoff

Yt = G(Xt) = e−rt (max
(
X1

t , . . . ,X
d
t

) − K
)+

.

If we are uncertain about our modelling assumption and if the Average Value at
Risk is used to measure the risk related to this uncertainty, then the risk-adjusted
price of the option is given by

sup
τ∈T [t0,...,tJ ]

AV@Rα(−Yτ ) = sup
τ∈T

sup
Q∈Q�α,0EQ[−Yτ ]

(5.2)

= inf
x≤0

sup
τ∈T [t0,...,tJ ]

E

[
1

α
(x + Yτ )

+ − x

]
,

where Q�α,t consists of all probability measures Q on F with

dQ

dP

∣∣∣∣
Ft

≤ 1/α, P|Ft -a.s.(5.3)

If we restrict our attention to the class of generalized Black–Scholes models of the
type

dXi
t = Xi

t

(
αi

t dt + σ i
t dWi

t

)
, i = 1, . . . , d

with adapted processes (αi
t ), (σ i

t ) and independent Brownian motions W 1
t , . . . ,

Wd
t , then

dQ

dP

∣∣∣∣
Ft

= exp

(
−

d∑
i=1

∫ t

0
θi
s dWi

s − 1

2

d∑
i=1

∫ t

0

(
θi
s

)2
ds

)

with θi
t = (αi

t − r + δ)/σ i
t and the condition (5.3) transforms to

exp

(
−

d∑
i=1

∫ t

0
θi
s dWi

s − 1

2

d∑
i=1

∫ t

0

(
θi
s

)2
ds

)
≤ 1/α, P|Ft -a.s.

Due to Corollary 3.3, one can use the standard methods based on dynamic pro-
gramming principle to solve (5.2). Indeed, for any fixed x, the optimal value of the
stopping problem

V = sup
τ∈T [t0,...,tJ ]

E

[
1

α
(x + Yτ )

+ − x

]
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can be, for example, numerically approximated via the well-known regression
methods like Longstaff–Schwartz method. In this way, one can get a (suboptimal)
stopping rule

τ̂x := inf
{
0 ≤ j ≤ J : (x + Ytj )

+/α − x ≥ Ĉj (Xtj , x)
}
,

where Ĉ1, . . . , ĈJ are continuation values estimates. Then

V l
N := inf

x≤0

{
1

N

N∑
n=1

(
x + Y

(n)
t
τ̂
(n)
x

)+
/α − x

}
(5.4)

is a low-biased estimate for V . Note that the infimum in (5.4) can be easily com-
puted using a simple search algorithm. An upper-biased estimate can be con-
structed using the well-known Andersen–Broadie dual approach (see [2]). For any
fixed x ≤ 0, this approach would give us a discrete time martingale (Mx

j )j=0,...,J

which in turn can be used to build an upper-biased estimate via the representa-
tion (3.7):

V u
N := inf

x≤0

{
N∑

n=1

[
sup

j=0,...,J

(
1

α

(
x + Y

(n)
tj

)+ − x − M
x,(n)
j

)]}
.(5.5)

Note that (5.5) remains upper biased even if we replace the infimum of the ob-
jective function in (5.5) by its value at a fixed point x. In Table 1, we present the
bounds V l

N and V u
N together with their standard deviations for different values of α.

As to implementation details, we used 12 basis functions for regression (see [2])
and 104 training paths to compute Ĉ1, . . . , ĈJ . In the dual approach of Andersen
and Broadie, 103 inner simulations were done to approximate Mx. In both cases,
we simulated N = 104 testing paths to compute the final estimates.

For comparison, let us consider a problem of pricing the above Bermudan op-
tion under entropic risk measure (2.4). Due to (2.5), we need to solve the optimal
stopping problem

V γ = sup
τ∈T [t0,...,tJ ]

E
[
exp(γ Yτ )

]
.

TABLE 1
Bounds (with standard deviations) for 2-dimensional Bermudan
max-call with parameters K = 100, r = 0.05, σ = 0.2, δ = 0.1

under AV@R at level α

α Lower bound V l
N Upper bound V u

N

0.33 23.64 (0.026) 23.92 (0.108)
0.50 16.06 (0.019) 16.12 (0.045)
0.67 12.05 (0.014) 12.09 (0.034)
0.75 10.71 (0.013) 10.75 (0.030)
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TABLE 2
Bounds (with standard deviations) for 2-dimensional Bermudan
max-call with parameters K = 100, r = 0.05, σ = 0.2, δ = 0.1

under entropic risk measure with parameter γ

γ Lower bound Upper bound

0.0025 8.218979 (0.011) 8.262082 (0.029)
0.005 8.399141 (0.015) 8.454748 (0.032)
0.01 8.797425 (0.017) 8.888961 (0.041)
0.02 9.698094 (0.020) 10.03958 (0.058)
0.03 12.72327 (0.020) 12.74784 (0.072)
0.04 17.47090 (0.022) 17.50481 (0.095)

The latter problem can be solved via the standard dynamic programming combined
with regression as described above. In Table 2, the upper and lower MC bounds
for log(V )/γ are presented for different values of the parameter γ. Unfortunately,
for larger values of γ, the corresponding MC estimates become unstable due to the
presence of exponent in (2.5). In Figure 1, the lower bounds for AV@R and the
entropic risk measure are shown graphically. As can be seen the quality of upper
and lower bounds are quite similar. However, due to above mentioned instability,
AV@R should be preferred under higher uncertainty.

FIG. 1. Lower and upper bounds for Bermudan option prices under AV@R (left) and entropic risk
(right) measures.



OPTIMAL STOPPING UNDER MODEL UNCERTAINTY 1275

6. The optimal stopping problem with randomized stopping times. In or-
der to prove Theorem 3.1, we shall proceed as follows. First, by Lemma A.1 (cf.
Appendix A), we obtain immediately

sup
τ∈T

sup
Q∈Q�,0

(
EQ[Yτ ] −E

[
�

(
dP

dQ

)])
= sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
.(6.1)

The proof of Theorem 3.1 would be completed, if we can show that

sup
τ∈T

inf
x∈RE

[
�∗(x + Yτ ) − x

] = inf
x∈R sup

τ∈T
E
[
�∗(x + Yτ ) − x

]
.(6.2)

Using Fubini’s theorem, we obtain for any τ ∈ T and every x ∈ R

E
[
�∗((x + Yτ )

+) − x
] =

∫ ∞
x−

�∗′
(x + z)

[
1 − FYτ (z)

]
dz + �∗(x+) − x,

where FYτ stands for the distribution function of Yτ and �∗′
denotes the right-sided

derivative of the convex function �∗. In the same way, we may also find

E
[
�∗(−(x + Yτ )

−)] = −
∫ x−

0
�∗′

(x + z)FYτ (z) dz.

Hence, the property �∗(x) = �∗(x+) + �∗(−x−) for x ∈ R yields

E
[
�∗(x + Yτ ) − x

] =
∫ ∞

0
�∗′

(x + z)
[
1 − FYτ (z)

]
dz + �∗(x) − x(6.3)

for τ ∈ T and x ∈ R. Since the set F := {FYτ |τ ∈ T } of distribution functions FYτ

of Yτ is not, in general, a convex subset of the set of distribution functions on R,
we cannot apply the known minimax results. The idea is to first establish (6.2) for
the larger class of randomized stopping times, and then to show that the optimal
value coincides with the optimal value supτ∈T infx∈R E[�∗(x + Yτ ) − x].

Let us recall the notion of randomized stopping times. By definition (see,
e.g., [19]), a randomized stopping time w.r.t. (�,F, (Ft )0≤t≤T ,P) is a mapping
τ r : �×[0,1] → [0,∞] which is nondecreasing and left-continuous in the second
component such that τ r(·, u) is a stopping time w.r.t. (Ft )t∈[0,T ] for any u ∈ [0,1].
Notice that any randomized stopping time τ r is also an ordinary stopping time
w.r.t. the enlarged filtered probability space (� × [0,1],F ⊗ B([0,1]), (Ft ⊗
B([0,1]))t∈[0,T ],P ⊗ PU). Here, PU denotes the uniform distribution on [0,1], de-
fined on B([0,1]), the usual Borel σ -algebra on [0,1]. We shall call a randomized
stopping time τ r to be degenerated if τ r(ω, ·) is constant for every ω ∈ �. There
is an obvious one-to-one correspondence between stopping times and degenerated
randomized stopping times.

Consider the stochastic process (Y r
t )t≥0, defined by

Y r
t : � × [0,1] → R, (ω,u) �→ Yt (ω),
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which is adapted w.r.t. the enlarged filtered probability space. Denoting by T r the
set of all randomized stopping times τ r ≤ T , we shall study the following new
stopping problem:

maximize inf
x∈RE

[
�∗(x + Y r

τr

) − x
]

over τ r ∈ T r .(6.4)

Obviously, infx∈R E[�∗(x + Yτ ) − x] = infx∈R E[�∗(x + Y r
τr ) − x] is valid for

every stopping time τ ∈ T , where τ r ∈ T r is the corresponding degenerated ran-
domized stopping time such that τ r(ω,u) = τ(ω), u ∈ [0,1]. Thus, in general
the optimal value of the stopping problem (6.4) is at least as large as the one of
the original stopping problem (2.1) due to (6.1). One reason to consider the new
stopping problem (6.4) is that it has a solution under fairly general conditions.

PROPOSITION 6.1. Let (Yt )t∈[0,T ] be quasi-left-continuous, defined to mean
Yτn → Yτ P-a.s. whenever (τn)n∈N is a sequence in T satisfying τn ↗ τ for some
τ ∈ T . If supt∈[0,T ] Yt ∈ H�∗

and if FT is countably generated, then there exists a
randomized stopping time τ r∗ ∈ T r such that

inf
x∈RE

[
�∗(x + Y r

τr∗
) − x

] = sup
τ r∈T r

inf
x∈RE

[
�∗(x + Y r

τr

) − x
]
.

Moreover, the following important minimax result for the stopping prob-
lem (6.4) holds.

PROPOSITION 6.2. If (3.1) is fulfilled, and if supt∈[0,T ] Yt ∈ H�∗
, then

sup
τ r∈T r

inf
x∈RE

[
�∗(x + Y r

τr

) − x
] = inf

x∈R sup
τ r∈T r

E
[
�∗(x + Y r

τr

) − x
]
.

Moreover, if (Yt )t∈[0,T ] is quasi-left-continuous and if FT is countably generated,
then there exist τ r∗ ∈ T r and x∗ ∈ R such that

E
[
�∗(x∗ + Y r

τr

) − x∗] ≤ E
[
�∗(x∗ + Y r

τr∗
) − x∗] ≤ E

[
�∗(x + Y r

τr∗
) − x

]
for x ∈ R and τ ∈ T r .

The proof of Proposition 6.2 can be found in Section 7.2. In the next step, we
shall provide conditions ensuring that the stopping problems (2.1) and (6.4) have
the same optimal value.

PROPOSITION 6.3. Let (�,Ft ,P|Ft ) be atomless with countably generated
Ft for every t > 0. If (3.1) is fulfilled, and if supt∈[0,T ] Yt belongs to H�∗

, then

sup
τ r∈T r

inf
x∈RE

[
�∗(x + Y r

τr

) − x
] = sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
= sup

τ∈T
sup

Q∈Q�,0

(
EQ[Yτ ] −E

[
�

(
dP

dQ

)])
.

The proof of Proposition 6.3 is delegated to Section 7.3.
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7. Proofs. We shall start with some preparations which also will turn out to be
useful later on. Let us recall (cf. [19]) that every τ r ∈ T r induces a stochastic ker-
nel Kτr : � × B([0, T ]) → [0,1] with Kτr (ω, ·) being the distribution of τ r(ω, ·)
under PU for any ω ∈ �. Here B([0, T ]) stands for the usual Borel σ -algebra on
[0, T ]. This stochastic kernel has the following properties:

Kτr

(·, [0, t]) is Ft -measurable for every t ≥ 0,

Kτr

(
ω, [0, t]) = sup

{
u ∈ [0,1]|τ r(ω,u) ≤ t

}
.

The associated stochastic kernel Kτr is useful to characterize the distribution func-
tion FYr

τr
of Y r

τr .

LEMMA 7.1. For any τ r ∈ T r with associated stochastic kernel Kτr , the dis-
tribution function FYr

τr
of Y r

τr may be represented in the following way:

FYr
τr

(x) = E
[
Kτr

(·, {t ∈ [0, T ]|Yt ≤ x
})]

for x ∈ R.

PROOF. Let τ r ∈ T r , and let us fix x ∈ R. Then

FYr
τr

(x) = E
[
1]−∞,x]

(
Y r

τr

)] =
∫ 1

0
E
[
1]−∞,x]

(
Y r

τr (·,u)

)]
du

= E

[∫ 1

0
1]−∞,x]

(
Y r

τr (·,u)

)
du

]
holds (cf. [19], Theorem 4.5), where the last equation on the right-hand side is
due to the Fubini–Tonelli theorem. Then by definition of Kτr , we obtain for every
ω ∈ � ∫ 1

0
1]−∞,x]

(
Y r

τr (ω,u)
)
du = EPU

[
1]−∞,x]

(
Y r

τr (ω,·)(ω)
)]

= PU ({
Y r

τr (ω,·)(ω) ≤ x
})

= Kτr

(
ω,

{
t ∈ [0, T ]|Yt (ω) ≤ x

})
.

This completes the proof. �

7.1. Proof of Proposition 6.1. Let us introduce the filtered probability space
(�,F, (F̃t )0≤t≤∞,P) defined by

F̃t =
{Ft , t ≤ T ,
FT , t > T .

We shall denote by T̃ r the set of randomized stopping times according to
(�,F, (F̃t )0≤t≤∞,P). Furthermore, we may extend the processes (Yt )t∈[0,T ] and
(Y r

t )t∈[0,T ] to right-continuous processes (Ỹt )t∈[0,∞] and (Ỹ r
t )t∈[0,T ] in the follow-

ing way:

Ỹt =
{

Yt , t ≤ T ,
YT , t > T

and Ỹ r
t =

{
Y r

t , t ≤ T ,
Y r

T , t > T .
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Recall that we may equip T̃ r with the so called Baxter–Chacon topology which is
compact in general, and even metrizable within our setting because FT is assumed
to be countably generated (cf. Theorem 1.5 in [4] and discussion afterwards).

Next, consider the mapping

h̃ : T̃ r ×R→R,
(
τ̃ r , x

) �→ E
[
�∗(x + Ỹ r

τ̃ r

) − x
]
.

By assumption on (Yt )t∈[0,T ], the processes (Ỹt )t∈[0,∞] and (Ỹ r
t )t∈[0,T ] are quasi-

left-continuous. Moreover, �∗ is continuous due to Lemma A.1, (i) in Appendix A,
so that (�∗(x + Ỹ r

t ) − x)t∈[0,T ] is a quasi-left-continuous and right-continuous
adapted process. Hence, in view of [19], Theorem 4.7, the mapping h̃(·, x) is con-
tinuous w.r.t. the Baxter–Chacon topology for every x ∈ R, and thus infx∈R h(·, x)

is upper semicontinuous w.r.t. the Baxter–Chacon topology. Then by compact-
ness of the Baxter–Chacon topology, we may find some randomized stopping time
τ̃ r ∈ T̃ r such that

inf
x∈Rh

(
τ̃ r , x

) = sup
τ̃ r∈T̃ r

inf
x∈Rh

(
τ̃ r , x

)
.

This completes the proof because Ỹ r
τ̃ r = Y r

τ̃ r∧T
and τ̃ r ∧T belongs to T r for every

τ̃ r ∈ T̃ r . �

7.2. Proof of Proposition 6.2. Let us define the mapping h : T r ×R →R by

h
(
τ r , x

) := E
[
�∗(x + Y r

τr

) − x
]
.

Since supt∈[0,T ] Yt is assumed to belong to H�∗
, the mapping supτ r∈T r h(τ r , ·) is

finite and convex, and thus continuous. Moreover, by Lemma A.1 (cf. Appendix A)

lim
x→−∞ sup

τ r∈T r
h
(
τ r , x

) ≥ lim
x→−∞

(
�∗(x) − x

) = ∞ = lim
x→∞

(
�∗(x) − x

)
≤ lim

x→∞ sup
τ r∈T r

h
(
τ r , x

)
.

Hence, infx∈R supτ r∈T r h(τ r , x) = infx∈[−ε,ε] supτ r∈T r h(τ r , x) for some ε > 0.
Thus, supτ r∈T r h(τ r , ·) attains its minimum at some x∗ due to continuity of
supτ r∈T r h(τ r , ·). Moreover, if (Yt )t∈[0,T ] is quasi-left-continuous and if FT is
countably generated, then infx∈R h(τ r∗, x) = supτ r∈T r infx∈R h(τ r , x) for some
τ r∗ ∈ T r due to Proposition 6.1. It remains to show that supτ r∈T r infx∈R h(τ r , x) =
infx∈R supτ r∈T r h(τ r , x). Following the same line of reasoning as for the deriva-
tion of (6.3), we may rewrite h in the following way.

h
(
τ r , x

) =
∫ ∞

0
�∗′

(x + z)
[
1 − FYr

τr
(z)

]
dz + �∗(x) − x,(7.1)

where FYr
τr

stands for the distribution function of Y r
τr , and �∗′

denotes the right-
sided derivative of the convex function �∗. Obviously, we have

h
(
τ r , ·) is convex and, therefore, continuous for every τ r ∈ T r .(7.2)
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Set β := infx∈R supτ r∈T r E[�∗(x + Y r
τr ) − x] + 1 = infx∈R supτ r∈T r h(τ r , x) +

1 which is a real number because supτ r∈T r h(τ r , ·) has been already proved to
be a finite function which attains its minimum on some compact interval of R.
Furthermore, we may conclude from h(τ r , x) ≥ �∗(x) − x for x ∈ R that

Iβ := {
x ∈ R|�∗(x) − x ≤ β

}
is a compact interval,(7.3)

and

h
(
τ r , x

)
> β for τ r ∈ T r and x ∈ R \ Iβ.(7.4)

By (7.4), we verify

sup
τ r∈T r

inf
x∈Rh

(
τ r , x

) = sup
τ r∈T r

inf
x∈Iβ

h
(
τ r , x

)
and

inf
x∈R sup

τ r∈T r
h
(
τ r , x

) = inf
x∈Iβ

sup
τ r∈T r

h
(
τ r , x

)
.

We want to apply Fan’s minimax theorem (cf. [22], Theorem 2 or [12]) to h|T r×Iβ .
In view of (7.2) and (7.3), it remains to show that for every τ r

1 , τ r
2 ∈ T r , and any

λ ∈]0,1[ there exists some τ r ∈ T r such that

λh
(
τ r

1 , x
) + (1 − λ)h

(
τ r

2 , x
) ≤ h

(
τ r , x

)
for all x ∈R.(7.5)

To this end, let τ r
1 , τ r

2 ∈ T r with associated stochastic kernels Kτr
1
,Kτr

2
, and λ ∈

]0,1[. First, K := λKτr
1
+ (1−λ)Kτr

2
: �×B([0, T ]) → [0,1] defines a stochastic

kernel satisfying

K
(·, [0, t]) is Ft -measurable for every t ∈ [0, T ],

K
(
ω, [0, T ]) = 1.

Then

τ r(ω,u) := inf
{
t ∈ [0, T ]|K(

ω, [0, t]) ≥ u
}

defines some τ r ∈ T r with Kτr = K . Furthermore, we obtain

FYr
τr

= λFYr
τr
1

+ (1 − λ)FYr
τr
2

due to Lemma 7.1. In view of (7.1) this implies (7.5) and the proof of Proposi-
tion 6.2 is completed. �
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7.3. Proof of Proposition 6.3. The starting idea for proving Proposition 6.3
is to reduce the stopping problem (6.4) to suitably discretized random stopping
times. The choice of the discretized randomized stopping times is suggested by
the following lemma.

LEMMA 7.2. For τ r ∈ T r , the construction

τ r [j ](ω,u) := min
{
k/2j |k ∈ N, τ r(ω,u) ≤ k/2j } ∧ T

defines a sequence (τ r [j ])j∈N in T r satisfying the following properties.

(i) τ r [j ] ↘ τ r pointwise, in particular it follows:

lim
j→∞Y r

τr [j ](ω,u)(ω,u) = Y r
τr (ω,u)(ω,u)

for any ω ∈ � and every u ∈ [0,1].
(ii) limj→∞ FYr

τr [j ](x) = F r
Yτr

(x) holds for any continuity point x of FYτr .

(iii) For any x ∈R and every j ∈ N, we have

FYr
τr [j ](x) = E

[
Ŷ x

t1j
Kτr

(·, [0, t1j ])] +
∞∑

k=2

E
[
Ŷ x

tkj
Kτr

(·, ]t(k−1)j , tkj ])],
where tkj := (k/2j ) ∧ T for k ∈ N, and Ŷ x

t := 1]−∞,x] ◦ Yt for t ∈ [0, T ].

PROOF. Statements (i) and (ii) are obvious, so it remains to show (iii). To this
end, recall from Lemma 7.1

FYτr [j ](x) = E
[
Kτr [j ]

(·, {t ∈ [0, T ]|Yt ≤ x
})]

for x ∈ R.(7.6)

Since Kτr [j ](ω, ·) is a probability measure, we also have

Kτr [j ]
(
ω,

{
t ∈ [0, T ]|Yt (ω) ≤ x

})
= Kτr [j ]

(
ω,

{
t ∈ [0, t1j ]|Yt (ω) ≤ x

})
+

∞∑
k=2

Kτr [j ]
(
ω,

{
t ∈]t(k−1)j , tkj ]|Yt (ω) ≤ x

})
(7.7)

= Kτr [j ]
(
ω,

{
t ∈ [0, t1j ]|Ŷ x

t (ω) = 1
})

+
∞∑

k=2

Kτr [j ]
(
ω,

{
t ∈]t(k−1)j , tkj ]|Ŷ x

t (ω) = 1
})

for every ω ∈ �. Then by definitions of Kτr [j ] and Kτr ,

Kτr [j ]
(
ω,

{
t ∈]t(k−1)j , tkj ]|Ŷ x

t (ω) = 1
})

= PU ({
τ r [j ](ω, ·) ∈]t(k−1)j , tkj ], Ŷ x

τ r [j ](ω,·)(ω) = 1
})

(7.8)
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= PU ({
τ r [j ](ω, ·) = tkj , Ŷ

x
tkj

(ω) = 1
})

= Ŷ x
tkj

(ω)PU ({
τ r [j ](ω, ·) = tkj

})
= Ŷ x

tkj
(ω)PU ({

τ r(ω, ·) ∈]t(k−1)j , tkj ]})
= Ŷ x

tkj
(ω)Kτr

(
ω, ]t(k−1)j , tkj ])

for ω ∈ � and k ∈ N with k ≥ 2. Analogously, we also obtain

Kτr [j ]
(
ω,

{
t ∈ [0, t1j ]|Ŷ x

t (ω) = 1
}) = Ŷt1j

(ω)Kτr

(
ω, [0, t1j ]).(7.9)

Then statement (iii) follows from (7.6) combining (7.7) with (7.8) and (7.9). The
proof is completed. �

We shall use the discretized randomized stopping times, as defined in Lem-
ma 7.2, to show that we can restrict ourselves to discrete randomized stopping
times in the stopping problem (6.4).

COROLLARY 7.3. If (3.1) is fulfilled, then for any τ r ∈ T r , we have:

(i) limj→∞E[�∗(xj + Y r
τr [j ]) − xj ] = E[�∗(x + Y r

τr ) − x] for any sequence

(xj )j∈N in R
N converging to some x ∈ R;

(ii) limj→∞ infx∈R E[�∗(x + Y r
τr [j ]) − x] = infx∈R E[�∗(x + Y r

τr ) − x].
PROOF. Let the mapping h : T r × R be defined by h(τ r, x) = E[�∗(x +

Y r
τr )− x]. For every τ r ∈ T r , the mapping h(τ r , ·) is convex, and thus continuous.

Recalling that supt≥0 Yt ∈ H�∗
(�,F,P), a direct application of Lemma 7.2, (i),

along with the dominated convergence theorem yields part (i). Using terminology
from [34] (see also [36]), statement (i) implies that the sequence (h(τ r [j ], ·))j∈N
of continuous mappings h(τ r [j ], ·) epi-converges to the continuous mapping
h(τ r , ·). Moreover, in view of (7.3) and (7.4), we may conclude

lim
j→∞ inf

x∈Rh
(
τ r [j ], x) = inf

x∈Rh
(
τ r , x

)
,

drawing on Theorem 7.31 in [34] (see also Satz B 2.18 in [36]). �

The following result provides the remaining missing link to prove Proposi-
tion 6.3.

LEMMA 7.4. Let (3.1) be fulfilled. Furthermore, let τ r ∈ T r , and let us for
any j ∈ N denote by T [j ] the set containing all nonrandomized stopping times
from T taking values in {(k/2j ) ∧ T |k ∈ N} with probability 1. If (�,Ft ,P|Ft ) is
atomless with countably generated Ft for every t > 0, and if Yt ∈ H�∗

for t > 0,
then

inf
x∈RE

[
�∗(x + Y r

τr [j ]
) − x

] ≤ sup
τ∈T [j ]

inf
x∈RE

[
�∗(x + Yτ ) − x

]
.(7.10)
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PROOF. Let mj := min{k ∈ N|k/2j ≥ T }. If mj = 1, then the statement of
Lemma 7.4 is obvious. So let us assume mj ≥ 2. Set tkj := (k/2j ) ∧ T and let
the mapping h : T r ×R → R be defined via h(τ r, x) := E[�∗(x + Yτr ) − x]. We
already know from Lemma 7.2 that

FYr
τr [j ](x) = E

[
Ŷ x

t1j
Kτr

(·, [0, t1j ])] +
mj∑
k=2

E
[
Ŷ x

tkj
Kτr

(·, ]t(k−1)j , tkj ])](7.11)

holds for any x ∈ R. Here, Ŷ x
t := 1]−∞,x] ◦ Yt for t ∈ [0, T ]. Next,

Zk :=
{

Kτr

(·, [0, t1j ]), k = 1,

Kτr

(·, ]t(k−1)j , tkj ]), k ∈ {2, . . . ,mj }
defines a random variable on (�,Ftkj ,P|Ftkj

) which satisfies 0 ≤ Zk ≤ 1 P-a.s.

In addition, we may observe that
∑mj

k=1 Zk = 1 holds P-a.s. Since the probabil-
ity spaces (�,Ftk ,P|Ftk

) (k = 1, . . . ,mj ) are assumed to be atomless and count-
ably generated, we may draw on Corollary C.4 (cf. Appendix C) along with
Lemma C.1 (cf. Appendix C) and Proposition B.1 (cf. Appendix B) to find a se-
quence ((B1n, . . . ,Bmjn))n∈N in ×mj

k=1 Ftkj such that B1n, . . . ,Bmjn is a partition
of � for n ∈ N, and

lim
n→∞E[1Bkn

· g] = E[Zk · g]
holds for g ∈ L1(�,Ftkj ,P|Ftkj

) and k ∈ {1, . . . ,mj }. In particular, we have
by (7.11)

FYr
τr [j ](x) = lim

n→∞

mj∑
k=1

E
[
Ŷ x

tkj
1Bkn

]
for x ∈R.

So by Fatou’s lemma along with (7.1),

h
(
τ r [j ], x)

(7.12)

≤ lim inf
n→∞

∫ ∞
0

�∗′
(x + z)

(
1 −

mj∑
k=1

E
[
Ŷ z

tkj
1Bkn

])
dz + �∗(x) − x

for x ∈ R. Here, �∗′
denotes the right-sided derivative of �∗. Next, we can define

a sequence (τn)n∈N of nonrandomized stopping times from T [j ] via

τn :=
mj∑
k=1

tkj1Bkn
.

The distribution function FYτn
of Yτn satisfies

FYτn
(x) =

mj∑
k=1

E
[
Ŷ x

tkj
1Bkn

]
for x ∈ R
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so that by (7.1)

h(τn, x) =
∫ ∞

0
�∗′

(x + z)

(
1 −

mj∑
k=1

E
[
Ŷ z

tkj
1Bkn

])
dz + �∗(x) − x(7.13)

for x ∈ R. The crucial point now is to show that:

H := {
h(τ, ·)|Iβ |τ ∈ T [j ]} is equicontinuous,(�)

where Iβ is the interval defined in (7.3). Note that (h(τn, ·)|Iβ )n∈N is a sequence
in H, and that {h(τ, x)|τ ∈ T [j ]} is bounded for every x ∈ R. Thus, in view of (7.3)
the statement (�) together with Arzela–Ascoli theorem implies that we can find a
subsequence (h(τi(n), ·)|Iβ )n∈N such that

lim
n→∞ sup

x∈Iβ

∣∣h(τi(n), x) − g(x)
∣∣ = 0

for some continuous mapping g : Iβ → R. Hence, we may conclude from (7.13)
and (7.12)

g(x) = lim inf
n→∞ h(τi(n), x) ≥ h

(
τ r [j ], x) for x ∈ Iβ.(7.14)

For any ε > 0, we may find some n0 ∈ N such that supx∈Iβ
|h(τi(n0), x) − g(x)| <

ε, which implies by (7.14) together with (7.4):

inf
x∈Rh(τi(n0), x)

(7.4)= inf
x∈Iβ

h(τi(n0), x)
(7.14)≥ inf

x∈Iβ

h
(
τ r [j ], x) − ε

≥ inf
x∈Rh

(
τ r [j ], x) − ε

and (7.10) is proved. Therefore, it remains to show the statement (�).

Proof of (�). First, observe that for τ ∈ T [j ] and real numbers x < y, the
inequality h(τ, x) + x ≤ h(τ, y) + y holds. Hence,∣∣h(τ, x) − h(τ, y)

∣∣
≤ E

[
�∗(y + Yτ )

] −E
[
�∗(x + Yτ )

] + |x − y|

=
mj∑
k=1

E
[
1{tkj } ◦ τ

(
�∗(y + Ytkj ) − �∗(x + Ytkj )

)︸ ︷︷ ︸
≥0

] + |x − y|(7.15)

≤
mj∑
k=1

E
[
�∗(y + Ytkj ) − �∗(x + Ytkj )

] + |x − y|

≤
mj∑
k=1

∣∣h(tkj , x) − h(tkj , y)
∣∣ + (mj + 1)|x − y|.
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By convexity, the mappings h(tkj , ·), k = 1, . . . ,mj , are also locally Lipschitz con-
tinuous. Thus, in view of (7.15), it is easy to verify that H is equicontinuous at
every x ∈ Iβ . This proves (�). �

Now, we are ready to prove Proposition 6.3. By (6.1) we have

sup
τ r∈T r

inf
x∈RE

[
�∗(x + Y r

τr

) − x
] ≥ sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
= sup

τ∈T
sup

Q∈Q�,0

(
EQ[Yτ ] −E

[
�

(
dP

dQ

)])
.

Moreover, due to (ii) of Corollary 7.3 and Lemma 7.4 we conclude that for any
τ r ∈ T r

inf
x∈RE

[
�∗(x + Y r

τr

) − x
] = lim

j→∞ inf
x∈RE

[
�∗(x + Y r

τr [j ]
) − x

]
≤ sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

Thus, Proposition 6.3 is proved. �

7.4. Proof of Theorem 3.1. First, we get from Propositions 6.2 and 6.3

inf
x∈R sup

τ r∈T r
E
[
�∗(x + Y r

τr

) − x
] = sup

τ r∈T r
inf
x∈RE

[
�∗(x + Y r

τr

) − x
]

= sup
τ∈T

inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

Furthermore,

inf
x∈R sup

τ r∈T r
E
[
�∗(x + Y r

τr

) − x
] ≥ inf

x∈R sup
τ∈T

E
[
�∗(x + Yτ ) − x

]
≥ sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

Thus,

sup
τ∈T

inf
x∈RE

[
�∗(x + Yτ ) − x

] = inf
x∈R sup

τ∈T
E
[
�∗(x + Yτ ) − x

]
which completes the proof of Theorem 3.1. �

7.5. Proof of Proposition 3.5. Just simplifying notation, we assume that T =
{0,1, . . . , T } with T being a positive integer. By (3.4) we have

sup
τ∈TT

inf
x∈RE

[
�∗(x + Yτ ) − x

] = inf
x∈R sup

τ∈TT
E
[
�∗(x + Yτ ) − x

]
.

So it is left to show that there exists a solution τ ∗ of the maximization problem
(3.5) and a solution x∗ of the minimization problem (3.6). Indeed such a pair
(τ ∗, x∗) would be as required.
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In view of (7.4), we may find some compact interval I of R such that

sup
τ∈TT

inf
x∈RE

[
�∗(x + Yτ ) − x

] = sup
τ∈TT

inf
x∈I

E
[
�∗(x + Yτ ) − x

]
.(7.16)

Let C(I ) denote the space of continuous real-valued mappings on I . This space
will be equipped with the sup-norm ‖ · ‖∞, whereas the product C(I )T is
viewed to be endowed with the norm ‖ · ‖∞,T , defined by ‖(f1, . . . , fT )‖∞,T :=∑T

t=1 ‖ft‖∞. The key in solving the maximization problem (3.5) is to show that

K := {
(G1,A1, . . . ,GT,An)|(A1, . . . ,AT ) ∈ PT

}
(7.17)

is a weakly compact subset of C(I )T w.r.t. the norm ‖ · ‖∞,T . Here, PT stands
for the set of all (A1, . . . ,AT ) satisfying At ∈ Ft for t ∈ {1, . . . , T } as well as
P(At ∩ As) = 0 for t �= s, and P(

⋃T
t=1 At) = 1. Furthermore, define

Gt,At : I →R, x �→ E
[
1At · (�∗(x + Yt ) − x

)]
for t ∈ {1, . . . , T },At ∈Ft .

Notice that any mapping Gt,At is convex and, therefore, also continuous.
Before proceeding, we need some further notation, namely P∞

T denoting the
set of all (f1, . . . , fT ) satisfying ft ∈ L∞(�,Ft ,P|Ft ) with ft ≥ 0 P-a.s. for t ∈
{1, . . . , T }, and

∑T
t=1 ft = 1 P-a.s. Obviously, the subset {(1A1, . . . ,1AT

)|(A1, . . . ,

AT ) ∈ PT } consists of extreme points of P∞
T . Any ft ∈ L∞(�,Ft ,P|Ft ) may be

associated with the mapping

Ht,ft : I →R, x �→ E
[
ft · (�∗(x + Yt ) − x

)] (
t ∈ {1, . . . , T }).

It is convex, and thus also continuous. Hence, the mapping

� :
T×

t=1

L∞(�,Ft ,P|Ft ) → C(I )T , (f1, . . . , fT ) �→ (H1,f1, . . . ,HT,fT
)

is well-defined, and obviously linear. In addition, it satisfies the following conve-
nient continuity property.

LEMMA 7.5. Let ×T
t=1 σ(L∞

t ,L1
t ) be the product topology of σ(L∞

t ,L1
t )

(t = 1, . . . , T ) on ×T
t=1 L∞(�,Ft ,P|Ft ), where σ(L∞

t ,L1
t ) denotes the weak*

topology on L∞(�,Ft ,P|Ft ).
Then P∞

T is compact w.r.t. ×T
t=1 σ(L∞

t ,L1
t ), and the mapping � is continuous

w.r.t. ×T
t=1 σ(L∞

t ,L1
t ) and the weak topology induced by ‖ · ‖∞,T . In particular,

the image �(P∞
T ) of P∞

T under � is weakly compact w.r.t. ‖ · ‖∞,T .

PROOF. The continuity of � follows in nearly the same way as in the proof
of Proposition 3.1 from [21]. Moreover, P∞

T is obviously closed w.r.t. the product
topology ×T

t=1 σ(L∞
t ,L1

t ), and even compact due to Banach–Alaoglu theorem.
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Then by continuity of �, the set �(P∞
T ) is weakly compact w.r.t. ‖ · ‖∞,T . This

completes the proof. �

We need some further preparation to utilize Lemma 7.5.

LEMMA 7.6. Let s, t ∈ {1, . . . , T } with t ≤ s, and let A ∈ FT . If (�,Ft ,P|Ft )

is atomless and if {E[1A · �∗(x + Ys)|Ft ]|x ∈ R} is a thin subset of L1(�,Ft ,

P|Ft ), then {E[1A ·(�∗(x+Ys)−x)|Ft ]|x ∈R} is a thin subset of L1(�,Ft ,P|Ft ).

PROOF. Let A ∈ Ft with P(A) > 0. Since (�,Ft ,P|Ft ) is atomless, we may
find disjoint B1,B2 ∈ Ft contained in A with P(B1),P(B2) > 0. Then by assump-
tion there exist nonzero f1, f2 ∈ L∞(�,Ft ,P|Ft ) such that fi vanishes outside Bi

as well as E[fi ·E[1A · �∗(x + Ys)|Ft ]] = 0 for x ∈R and i ∈ {1,2}.
Moreover, we may choose λ1, λ2 ∈ R with λi �= 0 for at least one i ∈ {1,2} and

E[(λ1f1 + λ2f2) · 1A] = 0. Finally, λ1f1 + λ2f2 ∈ L∞(�,Ft ,P|Ft ) \ {0}, and,
setting f := λ1f1 + λ2f2,

E
[
f ·E[

1A · (�∗(x + Ys) − x
)|Ft

]]
=

2∑
i=1

λiE
[
fi ·E[

1A · �∗(x + Ys)|Ft

]] − xE
[
(λ1f1 + λ2f2) · 1A

] = 0

for x ∈ R. This completes the proof. �

The missing link in concluding the desired compactness of the set K from (7.17)
is provided by the following auxiliary result.

LEMMA 7.7. Let (�,Ft ,P|Ft ) be atomless for t ∈ {1, . . . , T }, and further-
more let the subset {E[1A · �∗(x + Ys)|Ft ]|x ∈ R} of L1(�,Ft ,P|Ft ) be thin for
arbitrary s, t ∈ {1, . . . , T } with t ≤ s and A ∈ FT .

Then for any (f1, . . . , fT ) ∈ P∞
T , there exist (A1, . . . ,AT ) ∈ PT and mappings

gt ∈ L∞(�,Ft ,P|Ft ) (t = 1, . . . , T ) such that �(g1, . . . , gT ) ≡ 0, and

(f1, . . . , fT ) = (1A1, . . . ,1AT
) + (g1, . . . , gT ) P-a.s.

PROOF. Let s, t ∈ {1, . . . , T } with t ≤ s and A ∈ FT . We may draw on
Lemma 7.6 to observe that {E[1A · (�∗(x + Ys) − x)|Ft ]|x ∈ R} is a thin subset
of L1(�,Ft ,P|Ft ). Then the statement of Lemma 7.7 follows immediately from
Proposition C.3 (cf. Appendix C) applied to the sets Mt (t = 1, . . . , T ), where
Mt := {�∗(x + Yt ) − x|x ∈ R}. �

Under the assumptions of Lemma 7.7, the set K defined in (7.17) coincides with
�(P∞

T ), which in turn is weakly compact w.r.t. ‖ · ‖∞,T due to Lemma 7.5.



OPTIMAL STOPPING UNDER MODEL UNCERTAINTY 1287

COROLLARY 7.8. Under the assumptions of Lemma 7.7, the set K [cf. (7.17)]
is weakly compact w.r.t. ‖ · ‖∞,T .

Now we are ready to select a solution of the maximization problem (3.5).

Existence of a solution of maximization problem (3.5): Let the assumptions of
Proposition 3.5 be fulfilled. In view of (7.16), it suffices to solve

maximize inf
x∈I

E
[
�∗(x + Yτ ) − x

]
over τ ∈ TT.

Let us assume that supτ∈TT infx∈I E[�∗(x + Yτ ) − x] > infx∈I E[�∗(x + Y0) − x]
because otherwise τ ≡ 0 would be optimal. Since P(A) ∈ {0,1} for A ∈ F0 by
assumption, any stopping time τ ∈ T \ {0} is concentrated on {1, . . . , T }.

By Corollary 7.8, the set K [cf. (7.17)] is weakly compact w.r.t. the norm
‖ · ‖∞,T . Furthermore, the concave mapping L : C(I )T →R, defined by L(r1, . . . ,

rT ) := infx∈I

∑T
t=1 rt (x), is continuous w.r.t. ‖ · ‖∞,T . This means that −L is con-

vex as well as ‖ ·‖∞,T -continuous, and thus also weakly lower semicontinuous be-
cause ‖ · ‖∞,T -closed convex subsets are also weakly closed. Hence, L is weakly
upper semicontinuous and, therefore, its restriction to K attains a maximum. In
particular, the set{

inf
x∈I

E
[
�∗(x + Yτ ) − x

]∣∣τ ∈ TT \ {0}
}

= L(K)

has a maximum. This shows that we may find a solution of (3.5).
Existence of a solution of problem (3.6): By l(x) := supτ∈TT E[�∗(x + Yτ ) −

x], we may define a convex and, therefore, also continuous mapping l : R → R.
Moreover, by Lemma A.1 (cf. Appendix A),

lim
x→−∞ l(x) ≥ lim

x→−∞
(
�∗(x) − x

) = ∞ = lim
x→∞

(
�∗(x) − x

) ≤ lim
x→∞ l(x).

This means that infx∈R l(x) = infx∈[−ε,ε] l(x) for some ε > 0. Hence, l attains its
minimum at some x∗ ∈ [−ε, ε] because l is continuous. Any such x∗ is a solution
of the problem (3.6).

APPENDIX A

LEMMA A.1. Let � : [0,∞[→ [0,∞] be a lower semicontinuous, con-
vex mapping satisfying infx≥0 �(x) = 0, and limx→∞ �(x)

x
= ∞. Furthermore,

let Q�,0 denotes the set of all probability measures Q on F which are abso-
lutely continuous w.r.t. P such that the Radon–Nikodym derivative dQ

dP satisfies

E[�(dQ
dP )] < ∞. Then the following statements hold true.

(i) If �(x0) < ∞ for some x0 > 0, then the Fenchel–Legendre transform �∗ :
R → R ∪ {∞} of � is a nondecreasing, convex finite mapping. In particular, its
restriction �∗|[0,∞[ to [0,∞[ is a finite Young-function, which in addition satisfies
the condition limx→∞(�∗(x)−x) = ∞ if x0 > 1, and limx→−∞(�∗(x)−x) = ∞
in the case of x0 < 1.
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(ii) If �(x0),�(x1) < ∞ for some x0 < 1 < x1, then for any X from H�∗ :=
H

�∗|[0,∞[ , we obtain

sup
Q∈Q�,0

(
EQ[X] −E

[
�

(
dQ

dP

)])
= inf

x∈RE
[
�∗(x + X) − x

]
,

where the supremum on the left-hand side of the equality is attained for some
Q ∈ Q�,0.

PROOF. Obviously, �∗ is a nondecreasing convex function satisfying the
properties

�∗(0) = − inf
x≥0

�(x) = 0 and

(A.1)
lim

y→∞�∗(y) ≥ lim
y→∞

(
x0y − �(x0)

) = ∞.

Next, we want to verify the finiteness of �∗. Since �∗ is nondecreasing, and
�∗(y) ≥ x0y − �(x0) > −∞ holds for any y ∈ R, it suffices to show that
�∗(y) < ∞ for every y ≥ 0. For that purpose, consider the mapping

β : [0,∞[×[0,∞[→ [−∞,∞[, (y, x) �→ xy − �(x).

By assumption on �, we have

lim
x→∞β(y, x) = lim

x→∞x

(
y − �(x)

x

)
= −∞ < β(y, x0) for y ≥ 0.

Hence for any y ≥ 0, we may find some zy ∈ [x0,∞[ such that we obtain
�∗(y) = sup0≤x≤zy

β(y, x). Moreover, � is nonnegative, β(y, ·) is upper semi-
continuous for y ≥ 0. Hence, for every y ≥ 0, there is some x ∈ [0, zy] with
�∗(y) = sup0≤x≤zy

β(y, x) = β(y, x) < ∞.
As a finite convex function �∗ is continuous. Since it is also nondecreasing, we

may conclude from (A.1) that its restriction to [0,∞[ is a finite Young function.
Let us now assume that x0 > 1. Then

lim
y→∞

(
�∗(y) − y

) ≥ lim
y→∞

(
(x0 − 1)y − �(x0)

) = ∞.

Analogously, limy→−∞(�∗(y) − y) = ∞ may be derived in the case of x0 < 1.
Thus, we have proved the full statement (i).

Let us turn over to the proof of statement (ii), and let us consider the mapping

ρ : H�∗ → [−∞,∞[, X �→ inf
x∈RE

[
�∗(x − X) − x

]
.

Then, due to convexity of �∗, we may apply Jensen’s inequality along with state-
ment (i) to conclude

lim
x→−∞E

[
�∗(x−X)−x

] ≥ lim
x→−∞

(
E
[
�∗(x−E[X])]−x

) = ∞ for X ∈ H�∗
,



OPTIMAL STOPPING UNDER MODEL UNCERTAINTY 1289

and

lim
x→∞E

[
�∗(x − X) − x

] ≥ lim
x→∞

[
�∗(x −E[X]) − x

] = ∞ for X ∈ H�∗
.

Thus, for any X ∈ H�∗
, we find some δX > 0 such that

ρ(X) = inf
x∈[−δX,δX]E

[
�∗(x − X) − x

]
.

In addition, for X ∈ H�∗
, the mapping x �→ E[�∗(x − X) − x] is a convex map-

ping on R, hence its restriction to [−δX, δX] is continuous. This implies that ρ is
a real-valued function.

Moreover, it is easy to check that ρ is a so called convex risk measure, defined
to mean that it satisfies the following properties.

• monotonicity: ρ(X) ≥ ρ(Y ) for all X,Y ∈ H�∗
with X ≤ Y ,

• cash-invariance: ρ(X + m) = ρ(X) − m for all X ∈ H�∗
and m ∈ R,

• convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for all X,Y ∈ H�∗
, λ ∈

[0,1].
Then we obtain from Theorem 4.3 in [16] that

ρ(X) = max
Q∈Q�,0

(
EQ[−X] − ρ∗(Q)

)
holds for all X ∈ H�∗

, where

ρ∗(Q) := sup
X∈H�∗

(
EQ[−X] − ρ(X)

)
.

By routine procedures, we may verify

ρ∗(Q) = sup
X∈H�∗

(
EQ[X] −E

[
�∗(X)

])
for Q ∈ Q�,0. Since limx→−∞[�∗(x) − x] = limx→∞[�∗(x) − x] = ∞ due to
statement (i), we may conclude from [16]

ρ∗(Q) = sup
X∈H�∗

(
EQ[X] −E

[
�∗(X)

]) = E

[
�

(
dQ

dP

)]
for all Q ∈ Q�,0.

This completes the proof. �

APPENDIX B

Let (�,F, (F)i∈{1,...,m},P) be a filtered probability space, and let the product
space ×m

i=1 L∞(�,F i ,P|F i
) be endowed with the product topology×m

i=1 σ(L∞
i ,L1

i ) of the weak* topologies σ(L∞
i ,L1

i ) on L∞(�,F i ,P|F i
) (for

i = 1, . . . ,m).
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PROPOSITION B.1. Let L1(�,F i ,P|F i
) be separable w.r.t. the weak topology

σ(L1
i ,L

∞
i ) for i ∈ {1, . . . ,m}, and let A ⊆ ×m

i=1 L∞(�,F i ,P|F i
) be relatively

compact w.r.t. ×m
i=1 σ(L∞

i ,L1
i ).

Then for any X from the ×m
i=1 σ(L∞

i ,L1
i )-closure of A, we may find a se-

quence (Xn)n∈N in A which converges to X w.r.t. the ×m
i=1 σ(L∞

i ,L1
i ).

PROOF. Setting E := ×m
i=1 L∞(�,F i ,P|F i

), we shall denote by E′ the
topological dual of E w.r.t. ×m

i=1 σ(L∞
i ,L1

i ). It is easy to check that

�(g1, . . . , gm)(f1, . . . , fm) :=
m∑

i=1

E[fi · gi],

where gi ∈ L1(�,F i ,P|F i
) and fi ∈ L∞(�,F i ,P|F i

) (for i = 1, . . . ,m) de-
fines a linear operator from ×m

i=1 L1(�,F i ,P|F i
) onto E′ which is con-

tinuous w.r.t. the product topology ×m
i=1 σ(L1

i ,L
∞
i ) of the weak topologies

σ(L1
1,L

∞
1 ), . . . , σ (L1

m,L∞
m ) and the weak topology σ(E′,E).

Since ×m
i=1 σ(L1

i ,L
∞
i ) is separable by assumption, we may conclude that

σ(E′,E) is separable, too. Then the statement of the Proposition B.1 follows im-
mediately from [23], page 30. �

APPENDIX C

Let for m ∈ N denote by (�,F, (F i )i∈{1,...,m},P) a filtered probability space,
and let the set Pm gather all sets (A1, . . . ,Am) from ×m

i=1 F i satisfying
P(Ai ∩ Aj) = 0 for i �= j and P(

⋃m
i=1 Ai) = 1. We shall endow, respec-

tively, the product spaces ×m
i=k L∞(�,F i ,P|F i

) with the product topologies×m
i=k σ (L∞

i ,L1
i ) of the weak* topologies σ(L∞

i ,L1
i ) on L∞(�,F i ,P|F i

)

(for k ∈ {1, . . . ,m} and i = k, . . . ,m). Fixing k ∈ {1, . . . ,m} and nonnegative
h ∈ L∞(�,Fk,P|Fk

), the subset P∞
mk(h) ⊆ ×m

i=k L∞(�,F i ,P|F i
) is defined

to consist of all (fk, . . . , fm) ∈ ×m
i=k L∞(�,F i ,P|F i

) such that fi ≥ 0 P-a.s. for
any i ∈ {k, . . . ,m} and

∑m
i=k fi = h P-a.s. For abbreviation, we shall use notation

P∞
m := P∞

m1(1).

LEMMA C.1. P∞
mk(h) is a compact subset of ×m

i=k L∞(�,F i ,P|F i
) w.r.t.

the topology ×m
i=k σ (L∞

i ,L1
i ) for k ∈ {1, . . . ,m} and arbitrary nonnegative h ∈

L∞(�,Fk,P|Fk
).

PROOF. The statement of Lemma C.1 is obvious in view of the Banach–
Alaoglu theorem. �
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PROPOSITION C.2. Let Mi ⊆ L1(�,F i ,P|F i
) be nonvoid for i = 1, . . . ,m

such that {E[1A · f |F i]|f ∈ Mj } is a thin subset of L1(�,F i ,P|F i
) for i, j ∈

{1, . . . ,m} with i ≤ j and any A ∈ Fm. Furthermore, let us fix (f1, . . . , fm) ∈ P∞
m

and consider the set N1 consisting of all (h1, . . . , hm) from ×m
i=1 L∞(�,F i ,

P|F i
) satisfying E[hi · ϕi] = E[fi · ϕi] for any ϕi ∈ Mi , i = 1, . . . ,m. Then the set

N1 ∩P∞
m has extreme points, and for each extreme point (h∗

1, . . . , h
∗
m), there exists

some (A1, . . . ,Am) ∈ Pm such that h∗
i = 1Ai

P-a.s. holds for i = 1, . . . ,m.

PROOF. We shall use ideas from the proof of Proposition 6 in [31].
First, let us, for any k ∈ {1, . . . ,m}, denote by Nk the set of all (hk, . . . , hm)

from ×m
i=k L∞(�,F i ,P|F i

) satisfying E[hi · ϕi] = E[fi · ϕi] for ϕi ∈ Mi and
i = k, . . . ,m. It is closed w.r.t. ×m

i=k σ (L∞
i ,L1

i ). Hence, by Lemma C.1, the set
Kk(h) := Nk ∩ P∞

mk(h) is compact w.r.t. ×m
i=k σ (L∞

i ,L1
i ) for every nonnega-

tive h ∈ L∞(�,Fk,P|Fk
). Since it is also convex, we may use the Krein–Milman

theorem to conclude that each set Kk(h) has some extreme point if it is nonvoid.
Notice that K1(1) contains at least (f1, . . . , fm) so that it has some extreme point.
We shall now show by backward induction that for any k ∈ {1, . . . ,m} and any
nonnegative h ∈ L∞(�,Fk,P|Fk

) with nonvoid Kk(h)

each of its extreme points (h∗
k, . . . , h

∗
m) satisfies h∗

i = h · 1Ai
P-a.s.

(i = k, . . . ,m) for some (A1, . . . ,Am) ∈ Pm with Ai = ∅ if i < k.
(��)

Obviously, this would imply the statement of Proposition C.2.
For k = m, the set Km(h) is nonvoid iff E[h · ϕm] = E[fm · ϕm] holds for every

ϕm ∈ Mm. In this case, h is the only extreme point, which has trivial representation
h = h · 1� corresponding to (∅, . . . ,∅,�) ∈ Pm.

Now let us assume that for some k ∈ {2, . . . ,m} and every nonvoid Kk(h)

statement (��) is satisfied. Let h ∈ L∞(�,Fk−1,P|Fk−1
) be nonnegative with

Kk−1(h) �= ∅, and select any extreme point (h∗
k−1, . . . , h

∗
m) of Kk−1(h). Then h−

h∗
k−1 belongs to L∞(�,Fk−1,P|Fk−1

) and is nonnegative. Moreover,
(h∗

k, . . . , h
∗
m) ∈ Kk(h − h∗

k−1), and it is easy to check that (h∗
k, . . . , h

∗
m) is even

an extreme point of Kk(h − h∗
k−1). Hence, by assumption, there exists some

(A1, . . . ,Am) ∈ Pm satisfying Ai = ∅ if i ≤ k − 1 and h∗
i = (h − h∗

k−1) · 1Ai

P-a.s. for i = k, . . . ,m.
Setting D := {h∗

k−1 > 0}∩{h−h∗
k−1 > 0}, we want to show P(D) = 0. This will

be done by contradiction assuming P(D) > 0. Then P(Dε) > 0 for some ε > 0,
where Dε := {h∗

k−1 > ε} ∩ {h − h∗
k−1 > ε}.

We may observe by assumption that {E[1Ai
· ϕi |Fk−1]|ϕi ∈ Mi} (with i =

k, . . . ,m) as well as Mk−1 are all thin subsets of L1(�,Fk−1,P|Fk−1
). Since fi-

nite unions of thin subsets are thin subsets again (cf. [1], Proposition 2.1), we may
find some nonzero g ∈ L∞(�,Fk−1,P|Fk−1

) vanishing outside Dε , and satisfying
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E[g · ϕk−1] = 0 for ϕk−1 ∈ Mk−1 as well as

E[g · 1Ai
· ϕi] = E

[
g ·E[1Ai

· ϕi |Fk−1]] = 0
(
ϕi ∈ Mi, i ∈ {k, . . . ,m}).

According to Theorem 2.4 in [1], we may choose g such that

P
({|g| = 1

} ∩ Dε

) = P(Dε)

holds. Now, define (ĥk−1, . . . , ĥm) and (hk−1, . . . , hm) by

ĥi :=
{

h∗
i + εg, i = k − 1,

h∗
i − εg1Ai

, otherwise and hi :=
{

h∗
i − εg, i = k − 1,

h∗
i + εg1Ai

, otherwise.

Since P(Ai ∩ Aj) = 0 for i �= j and P(
⋃m

i=k Ai) = 1, we obtain
∑m

i=k g · 1Ai
= g

P-a.s. So by construction, (ĥk−1, . . . , ĥm), (hk−1, . . . , hm) differ, and belong both
to Kk−1(h). Moreover, h∗

i = ĥi/2 + hi/2 for i = k − 1, . . . ,m. This contradicts
the fact that (h∗

k−1, . . . , h
∗
m) is an extreme point of Kk−1(h). Therefore, P(D) = 0.

Now define (B1, . . . ,Bm) ∈ ×m
i=1 F i by

Bi :=
⎧⎨⎩

{
h∗

k−1 > 0, h = h∗
k−1

}
, i = k − 1,

Ai ∩ {
h∗

k−1 = 0
}
, i ∈ {k, . . . ,m},

∅, otherwise.

Obviously, P(Bi ∩ Bj) = 0 for i �= j follows from P(Ai ∩ Aj) = 0 for i �= j .
Moreover, P(

⋃m
i=1 Bi) ≥ P(� \ D ∩ ⋃m

i=k Ai) = 1. In particular, (B1, . . . ,Bm) ∈
Pm. Finally, it may be verified easily that h∗

i = h · 1Bi
P-a.s. holds for i = k −

1, . . . ,m. Hence, Kk−1(h) fulfills statement (��) completing the proof. �

PROPOSITION C.3. Let Mi ⊆ L1(�,F i ,P|F i
) be nonvoid for i = 1, . . . ,m

such that {E[1A · f |F i]|f ∈ Mj } is a thin subset of L1(�,F i ,P|F i
) for i, j ∈

{1, . . . ,m} with i ≤ j and any A ∈ Fm.
Then for any (f1, . . . , fm) ∈ P∞

m , there exist (A1, . . . ,Am) ∈ Pm and gi ∈
L∞(�,F i ,P|F i

) (i = 1, . . . ,m) such that

E[gi · ϕi] = 0 for ϕi ∈ Mi with i = 1, . . . ,m,

and

(f1, . . . , fm) = (1A1, . . . ,1Am) + (g1, . . . , gm) P-a.s.

PROOF. Let us fix any (f1, . . . , fT ) ∈ P∞
m , and let N1 denote the set consisting

of all (h1, . . . , hm), where hi ∈ L∞(�,F i ,P|F i
) such that E[hi · ϕi] = E[fi · ϕi]

for ϕi ∈ Mi . By Proposition C.2, we may select an extreme point (h1, . . . , hm)

of N1 ∩ P∞
m and some (A1, . . . ,Am) ∈ Pm such that hi = 1Ai

P-a.s. holds for
i = 1, . . . ,m. Then (g1, . . . , gm) := (f1 − h1, . . . , fm − hm) and (A1, . . . ,Am) are
as required. �
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COROLLARY C.4. If (�,F i ,P|F i
) is atomless for every i ∈ {1, . . . ,m}, then

P∞
m is the ×m

i=1 σ(L∞
i ,L1

i )-closure of{
(1A1, . . . ,1Am)|(A1, . . . ,Am) ∈ Pm

}
.

PROOF. Let (f1, . . . , fm) ∈P∞
m be arbitrary. Consider the subsets

Uiε(Mi) := {
ϕ ∈ L∞(�,F i ,P|F i

)|∣∣E[
(fi − ϕ) · f ]∣∣ < ε for f ∈ Mi

}
= {fi} + {

φ ∈ L∞(�,F i ,P|F i
)|∣∣E[φ · f ]∣∣ < ε for f ∈ Mi

}
,

where ε > 0, and Mi any nonvoid, finite subset of L1(�,F i ,P|F i
). The sets×m

i=1 Uiε(Mi) constitute a basis of the ×m
i=1 σ(L∞

i ,L1
i )-neighbourhoods of

(f1, . . . , fm). So let us select any ε > 0 and nonvoid finite subsets Mi of
L1(�,F i ,P|F i

) for i = 1, . . . ,m.

Let i, j ∈ {1, . . . ,m} with i ≤ j , and A ∈ Fm. Then the set consisting of all
E[1A · f |F i] with f ∈ Mj is a nonvoid finite subset of L1(�,F i ,P|F i

), in partic-

ular it is thin because (�,F i ,P|F i
) is assumed to be atomless (cf. [29], Lemma 2).

Hence, we may apply Proposition C.3 to select some (A1, . . . ,Am) ∈ Pm satisfy-
ing E[(fi − 1Ai

) · f ] = 0 for f ∈ Mi and i ∈ {1, . . . ,m}. This means

(1A1, . . . ,1Am) ∈
m×

i=1

Uiε(Mi),

and completes the proof. �
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