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THE MEAN EULER CHARACTERISTIC AND EXCURSION
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Let X = {X(t), t ∈ R
N } be a centered Gaussian random field with

stationary increments and X(0) = 0. For any compact rectangle T ⊂ R
N

and u ∈ R, denote by Au = {t ∈ T :X(t) ≥ u} the excursion set. Under
X(·) ∈ C2(RN) and certain regularity conditions, the mean Euler character-
istic of Au, denoted by E{ϕ(Au)}, is derived. By applying the Rice method, it
is shown that, as u → ∞, the excursion probability P{supt∈T X(t) ≥ u} can
be approximated by E{ϕ(Au)} such that the error is exponentially smaller
than E{ϕ(Au)}. This verifies the expected Euler characteristic heuristic for a
large class of Gaussian random fields with stationary increments.

1. Introduction. Let X = {X(t), t ∈ T } be a real-valued Gaussian random
field on probability space (�,F,P), where T is the parameter set. The study of the
excursion probability P{supt∈T X(t) ≥ u} is a classical but very important prob-
lem in probability theory and has many applications in statistics and related ar-
eas. Many authors have developed various methods for precise approximations of
P{supt∈T X(t) ≥ u}. These include the double sum method [Piterbarg (1996a)], the
tube method [Sun (1993)], the Euler characteristic method [Adler (2000), Taylor
and Adler (2003), Taylor, Takemura and Adler (2005), Adler and Taylor (2007)]
and the Rice method [Azaïs, Bardet and Wschebor (2002), Azaïs and Delmas
(2002), Azaïs and Wschebor (2005, 2008, 2009)].

For a centered, unit-variance smooth Gaussian random field X = {X(t), t ∈ T }
parameterized on a manifold T , Adler and Taylor [(2007), Theorem 14.3.3]
proved, under certain conditions on the regularity of X and topology of T , the
following approximation:

P

{
sup
t∈T

X(t) ≥ u
}

= E
{
ϕ(Au)

}(
1 + o

(
e−αu2))

as u → ∞,(1.1)

where ϕ(Au) is the Euler characteristic of excursion set Au = {t ∈ T :X(t) ≥ u}
and α > 0 is a constant which relates to the curvature of the boundary of T and
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the second-order partial derivatives of X. This verifies the “Expected Euler Char-
acteristic Heuristic” for unit-variance smooth Gaussian random fields. We refer to
Takemura and Kuriki (2002), Taylor and Adler (2003) and Taylor, Takemura and
Adler (2005) for similar results in special cases. It should be mentioned that Taylor,
Takemura and Adler (2005) were able to provide an explicit form of α in (1.1).

The approximation (1.1) is remarkable and very accurate, since E{ϕ(Au)} is
computable and the error is exponentially smaller than this principal term. It
has been applied for P -value approximation in many statistical applications to
brain imaging, cosmology and environmental sciences. We refer to Adler and
Taylor (2007) and its forthcoming companion Adler, Taylor and Worsley (2012)
for further information. However, the above requirement of “constant variance”
on the Gaussian random fields is too restrictive for many applications and ex-
cludes some important Gaussian random fields such as those with stationary incre-
ments (see Section 2 below), or more generally, Gaussian random intrinsic func-
tions [Matheron (1973), Stein (1999, 2013)]. If the constant variance condition on
X is not satisfied, then several important properties [e.g., X(t) and its gradient
∇X(t) are independent for every t] are not available and the formulas for com-
puting E{ϕ(Au)} [cf. Theorems 12.4.1 and 12.4.2 in Adler and Taylor (2007)]
cannot be applied. Little had been known on whether the approximation (1.1) still
holds. The only exception is Azaïs and Wschebor [(2008), Theorem 5], where they
proved (1.1) for a centered smooth Gaussian random field X whose maximum vari-
ance is attained in the interior of T .

In this paper, let X = {X(t), t ∈R
N } be a centered real-valued Gaussian random

field with stationary increments and X(0) = 0, and let T ⊂ R
N be a rectangle.

Our objectives are to compute the expected Euler characteristic E{ϕ(Au)} and to
show that it can be applied to give an accurate approximation for the excursion
probability P{supt∈T X(t) ≥ u}. In particular, we prove that (1.1) holds for a large
class of smooth Gaussian random fields with stationary increments and X(0) = 0.
In this generality, our main results in Sections 3 and 4 are new even for the case of
N = 1.

The paper is organized as follows. In Section 2, we provide some preliminaries
on Gaussian random fields with stationary increments and prove some basic lem-
mas. These are derived from the spectral representation of the random fields and
will be useful for proving the main results in Sections 3 and 4.

In Section 3, we compute the mean Euler characteristic E{ϕ(Au)} by applying
the Kac–Rice metatheorem in Adler and Taylor [(2007), Theorem 11.2.1] [see also
Adler and Taylor (2011), Theorem 4.1.1]. The computation of E{ϕ(Au)} involves
the conditional expectation of the determinant of the Hessian ∇2X(t) given X(t)

and ∇X(t), which is more complicated for random fields with nonconstant vari-
ance function. For Gaussian random fields with stationary increments, we are able
to make use of the properties of ∇X and ∇2X (e.g., their stationarity) to provide
an explicit formula in Theorem 3.2 for E{ϕ(Au)}, using only derivatives of up to
second order of the covariance function.
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Section 4 is the core part of this paper. Theorems 4.6 and 4.8 provide approx-
imations to the excursion probability which are analogous to (1.1) for Gaussian
random fields with stationary increments and X(0) = 0. Since these random fields
do not have constant variance, it is not clear if the original method for proving The-
orem 14.3.3 in Adler and Taylor (2007) is still applicable. Instead, our argument is
based on the Rice method in Azaïs and Delmas (2002) [see also Adler and Taylor
(2007), pages 96–99]. More specifically, we decompose the rectangle T into sev-
eral faces of lower dimensions and then apply the idea of Piterbarg (1996b) and the
Bonferroni inequality to derive upper and lower bounds for P{supt∈T X(t) ≥ u}
in terms of the number of extended outward maxima [see (4.1), (4.2)] and local
maxima [see (4.3)], respectively. The main idea is to show that, in both cases, the
upper bound makes the major contribution for estimating P{supt∈T X(t) ≥ u} and
the last two terms in the lower bounds in (4.2) and (4.3) are super-exponentially
small. Under a mild technical condition on the variogram of X, we apply (4.3) to
obtain in Theorem 4.6 an expansion of the excursion probability which is, in spirit,
similar to the case of stationary Gaussian fields [cf. (14.0.3) in Adler and Taylor
(2007)]. Theorem 4.8 establishes a general approximation to P{supt∈T X(t) ≥ u}
in terms of E{ϕ(Au)}, which verifies the “Expected Euler Characteristic Heuris-
tic” for smooth Gaussian random fields with stationary increments and X(0) = 0.
For the purpose of comparison, we mention that, if Z = {Z(t), t ∈ R

N } is a real-
valued, centered stationary Gaussian random field, then the random field X de-
fined by X(t) = Z(t) − Z(0) has stationary increments with X(0) = 0. Conse-
quently, Theorems 4.6 and 4.8 provide approximations to the excursion probability
P{supt∈T Z(t) − Z(0) ≥ u}.

Section 5 provides further remarks on the main results and some examples
where significant simplifications can be made. In Remarks 5.3 and 5.5, we show
that if the variance function of the random field attains its maximum at a unique
point, then one can apply the Laplace method to derive a first-order approximation
for the excursion probability explicitly. Finally, the Appendix contains proofs of
some auxiliary lemmas.

2. Gaussian fields with stationary increments.

2.1. Spectral representation. Let X = {X(t), t ∈ R
N } be a real-valued cen-

tered Gaussian random field with stationary increments. That is, for any h ∈ R
N ,

{X(t + h) − X(h), t ∈ R
N } d= {X(t) − X(0), t ∈ R

N }, where d= means equality
in finite dimensional distributions. We assume that X has continuous covariance
function C(t, s) = E{X(t)X(s)}. Then it is known [cf. Yaglom (1957)] that

C(t, s) − C(t,0) − C(0, s) + C(0,0)
(2.1)

=
∫
RN

(
ei〈t,λ〉 − 1

)(
e−i〈s,λ〉 − 1

)
F(dλ) + 〈t,�s〉,
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where 〈x, y〉 is the ordinary inner product in R
N , � is an N × N nonnegative

definite matrix and F is a nonnegative symmetric measure on R
N \ {0} which

satisfies ∫
RN

‖λ‖2

1 + ‖λ‖2 F(dλ) < ∞.(2.2)

Similar to stationary random fields, the measure F and its density (if it exists) f (λ)

are called the spectral measure and spectral density of X, respectively. It is known
that many probabilistic, analytic and geometric properties of {X(t), t ∈ R

N } can
be described in terms of its spectral measure F and, on the other hand, various
interesting Gaussian random fields can be constructed by choosing their spectral
measures appropriately. See Xiao (2009), Xue and Xiao (2011) and the references
therein for more information.

By (2.1), we see that X has the following stochastic integral representation:

X(t) − X(0)
d=

∫
RN

(
ei〈t,λ〉 − 1

)
W(dλ) + 〈Y, t〉,(2.3)

where Y is an N -dimensional Gaussian random vector and W is a complex-valued
Gaussian random measure (independent of Y) with F as its control measure. Note
that in (2.3) there is no restriction on X(0) other than that all joint distributions of
{X(t), t ∈ R

N } are Gaussian.
For simplicity, we assume throughout this paper that Y = 0. It follows from

(2.1) or (2.3) that the variogram ν of X is given by

ν(h) := E
(
X(t + h) − X(t)

)2 = 2
∫
RN

(
1 − cos〈h,λ〉)F(dλ).(2.4)

Mean-square directional derivatives and sample path differentiability of Gaus-
sian random fields have been well studied. See, for example, Adler (1981), Adler
and Taylor (2007), Potthoff (2010), Xue and Xiao (2011). In particular, general
sufficient conditions for a Gaussian random field to have a modification whose
sample functions are in Ck(RN) are given by Adler and Taylor (2007). For a
Gaussian random field X = {X(t), t ∈ R

N } with stationary increments, Xue and
Xiao (2011) provided conditions for its sample path differentiability in terms of
the spectral density function f (λ). A similar argument can be applied to give the
following spectral condition for the sample functions of X to be in Ck(RN), whose
proof is given in Cheng (2013) and is omitted here.

PROPOSITION 2.1. Let X = {X(t), t ∈ R
N } be a real-valued centered Gaus-

sian random field with stationary increments and let ki (1 ≤ i ≤ N) be nonnegative
integers. If there is a constant ε > 0 such that∫

{‖λ‖≥1}

N∏
i=1

|λi |2ki+εF (dλ) < ∞,(2.5)
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then X has a modification X̃ such that the partial derivative ∂kX̃(t)

∂t
k1
1 ···∂t

kN
N

is continu-

ous on R
N almost surely, where k = ∑N

i=1 ki . Moreover, for any compact rectangle
T ⊂ R

N and any ε′ ∈ (0, ε ∧ 1), there exists a constant c1 such that

E

(
∂kX̃(t)

∂t
k1
1 · · · ∂t

kN

N

− ∂kX̃(s)

∂s
k1
1 · · · ∂s

kN

N

)2

≤ c1‖t − s‖ε′ ∀t, s ∈ T .(2.6)

For notational simplicity, we will not distinguish X from its modification X̃. As
a consequence of Proposition 2.1, we see that, if X = {X(t), t ∈ R

N } has a spectral
density f (λ) which satisfies

f (λ) = O

(
1

‖λ‖N+2k+H

)
as ‖λ‖ → ∞,(2.7)

for some integer k ≥ 1 and H ∈ (0,1), then the sample functions of X are in
Ck(RN) a.s. Further examples of anisotropic Gaussian random fields which may
have different smoothness along different directions can be found in Xue and Xiao
(2011).

When X(·) ∈ C2(RN) almost surely, we write ∂X(t)
∂ti

= Xi(t) and ∂2X(t)
∂ti ∂tj

=
Xij (t). We will use the same notation for the partial derivatives of deterministic
functions such as ν(·) in Theorem 4.6.

Denote by ∇X(t) and ∇2X(t) the column vector (X1(t), . . . ,XN(t))T and the
N × N matrix (Xij (t))i,j=1,...,N , respectively. It follows from (2.1) that for every
t ∈R

N ,

λij :=
∫
RN

λiλjF (dλ) = ∂2C(t, s)

∂ti ∂sj

∣∣∣∣
s=t

= E
{
Xi(t)Xj (t)

}
.(2.8)

Let 
 = (λij )i,j=1,...,N , then (2.8) shows that 
 = Cov(∇X(t)) for all t . In partic-
ular, the distribution of ∇X(t) is independent of t . Let

λij (t) :=
∫
RN

λiλj cos〈t, λ〉F(dλ), 
(t) := (
λij (t)

)
i,j=1,...,N .

Then we have

λij (t) − λij =
∫
RN

λiλj

(
cos〈t, λ〉 − 1

)
F(dλ)

(2.9)

= ∂2C(t, s)

∂si ∂sj

∣∣∣∣
s=t

= E
{(

X(t) − X(0)
)
Xij (t)

}
,

or equivalently, 
(t) − 
 = E{(X(t) − X(0))∇2X(t)}.
In studies of a Gaussian random field X with stationary increments in the litera-

ture, it is often assumed that X(0) = 0. In this case, 
(t) − 
 = E{X(t)∇2X(t)}.
With little loss of generality, we will follow this convention by assuming X(0) = 0
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in the rest of this paper. The general case can be dealt with by first applying the
result of this paper to the random field {X(t)−X(0), t ∈R

N } and then taking into
consideration of the available information on X(0) [an interesting special case is
when X(0) is independent of {X(t) − X(0), t ∈ R

N }].

2.2. Hypotheses and some important properties. Let T = ∏N
i=1[ai, bi] be a

compact rectangle in R
N , where ai < bi for all 1 ≤ i ≤ N and 0 /∈ T (the case of

0 ∈ T will be discussed in Remark 5.1). In addition to assuming that the Gaussian
random field X = {X(t), t ∈R

N } has stationary increments and X(0) = 0, we will
make use of the following conditions:

(H1) X(·) ∈ C2(T ) almost surely and its second derivatives satisfy the uniform
mean-square Hölder condition: there exist constants L > 0 and η ∈ (0,1] such that

E
(
Xij (t) − Xij (s)

)2 ≤ L‖t − s‖2η ∀t, s ∈ T , i, j = 1, . . . ,N.(2.10)

(H2) For every t ∈ T , the matrix 
 − 
(t) is nondegenerate.
(H3) For every pair (t, s) ∈ T 2 with t �= s, the Gaussian random vector(

X(t),∇X(t),Xij (t),X(s),∇X(s),Xij (s),1 ≤ i ≤ j ≤ N
)

is nondegenerate.
(H3′) For every t ∈ T , (X(t),∇X(t),Xij (t),1 ≤ i ≤ j ≤ N) is nondegenerate.

Clearly, by Proposition 2.1, condition (H1) is satisfied if (2.7) holds for k = 2.
Also note that (H3) implies (H3′). We shall use conditions (H1), (H2) and (H3) to
prove Theorems 4.6 and 4.8 on the excursion probability. Condition (H3′) will be
used for computing E{ϕ(Au)} in Theorem 3.2.

We point out that the nondegeneracy conditions (H3) and (H3′) are standard for
studying crossing problems when N = 1, excursion sets and excursion probabili-
ties of smooth Gaussian random fields. In the case where N = 1 and X is a sta-
tionary Gaussian process, Cramér and Leadbetter [(1967), pages 203–204] showed
that (H3′) is automatically satisfied if X has second-order mean square derivatives
and the spectral measure of X is not purely discrete. See Exercises 3.4 and 3.5 in
Azaïs and Wschebor [(2009), page 87] for similar results. Notice that (H3) and
(H3′) are equivalent to saying that the corresponding covariance matrices are non-
degenerate which, in turn, can be verified by establishing positive lower bounds
for the conditional variances. Thus, (H3) and (H3′) are related to the properties
of local nondeterminism [cf. Cuzick (1977), Xiao (2009)]. Hence, for a general
Gaussian random field X with stationary increments, it is possible to provide suf-
ficient conditions in terms of the spectral measure F for (H3) and (H3′) to hold. In
order not to make this paper too lengthy, we do not give details here.

The following lemma shows that for Gaussian fields with stationary increments
and X(0) = 0, (H2) is equivalent to 
 − 
(t) being positive definite.
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LEMMA 2.2. For every t ∈ R
N , 
 − 
(t) is nonnegative definite. Hence, un-

der (H2), 
 − 
(t) is positive definite for every t ∈ T .

PROOF. Let t ∈ R
N be fixed. It follows from (2.9) that for any (a1, . . . , aN) ∈

R
N \ {0},

N∑
i,j=1

aiaj

(
λij − λij (t)

) =
∫
RN

(
N∑

i=1

aiλi

)2(
1 − cos〈t, λ〉)F(dλ).(2.11)

Since (
∑N

i=1 aiλi)
2(1−cos〈t, λ〉) ≥ 0 for all λ ∈R

N , (2.11) is always nonnegative,
which implies that 
 − 
(t) is nonnegative definite. If (H2) is satisfied, then, for
every t ∈ T , all the eigenvalues of 
−
(t) are positive. This completes the proof.

�

It follows from (2.11) that, if the spectral measure F is full [i.e., not supported
on any (N − 1)-dimensional hyperplane], then (H2) holds. Hence, (H2) is in fact
a mild condition for smooth Gaussian fields with stationary increments.

Lemma 2.2 and the following two lemmas indicate some significant properties
of Gaussian fields with stationary increments. They will play important roles in
later sections.

LEMMA 2.3. Let t ∈ R
N be fixed. Then for all i, j, k, the random variables

Xi(t) and Xjk(t) are independent. Moreover, E{Xij (t)Xkl(t)} is symmetric in i,
j , k, l.

PROOF. By (2.1), one can verify that for t, s ∈R
N ,

E
{
Xi(t)Xjk(s)

} = ∂3C(t, s)

∂ti ∂sj ∂sk
=

∫
RN

λiλjλk sin〈t − s, λ〉F(dλ).

Letting s = t we see that Xi(t) and Xjk(t) are independent. Similarly, we have

E
{
Xij (t)Xkl(s)

} = ∂4C(t, s)

∂ti ∂tj ∂sk ∂sl
=

∫
RN

λiλjλkλl cos〈t − s, λ〉F(dλ).

This implies the second conclusion. �

The following lemma is a consequence of Lemma 2.3.

LEMMA 2.4. Let A = (aij )1≤i,j≤N be a symmetric matrix. Then for any fixed
t ∈R

N ,

St (i, j, k, l) = E
{(

A∇2X(t)A
)
ij

(
A∇2X(t)A

)
kl

}
is a symmetric function of i, j , k, l.
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3. The mean Euler characteristic.

3.1. Related existing results and notation. The rectangle T = ∏N
i=1[ai, bi] can

be decomposed into several faces of lower dimensions. We use the same notation
as in Adler and Taylor [(2007), page 134].

A face J of dimension k, is defined by fixing a subset σ(J ) ⊂ {1, . . . ,N} of
size k [if k = 0, we have σ(J ) = ∅ by convention] and a subset ε(J ) = {εj , j /∈
σ(J )} ⊂ {0,1}N−k of size N − k, so that

J = {
t = (t1, . . . , tN ) ∈ T :aj < tj < bj ifj ∈ σ(J ),

tj = (1 − εj )aj + εjbj ifj /∈ σ(J )
}
.

Denote by ∂kT the collection of all k-dimensional faces in T , then the in-

terior of T is given by
◦
T = ∂NT and the boundary of T is given by ∂T =⋃N−1

k=0
⋃

J∈∂kT
J . For J ∈ ∂kT , denote by ∇X|J (t) and ∇2X|J (t) the column vec-

tor (Xi1(t), . . . ,Xik (t))
T
i1,...,ik∈σ(J ) and the k × k matrix (Xmn(t))m,n∈σ(J ), respec-

tively.
If X(·) ∈ C2(RN) and it is a Morse function a.s. [cf. Definition 9.3.1 in

Adler and Taylor (2007)], then according to Corollary 9.3.5 or pages 211–212
in Adler and Taylor (2007), the Euler characteristic of the excursion set Au = {t ∈
T :X(t) ≥ u} is given by

ϕ(Au) =
N∑

k=0

∑
J∈∂kT

(−1)k
k∑

i=0

(−1)iμi(J )(3.1)

with

μi(J ) := #
{
t ∈ J :X(t) ≥ u,∇X|J (t) = 0, index

(∇2X|J (t)
) = i,

(3.2)
ε∗
jXj (t) ≥ 0 for all j /∈ σ(J )

}
,

where ε∗
j = 2εj − 1 and the index of a matrix is defined as the number of its

negative eigenvalues. We also define

μ̃i(J ) := #
{
t ∈ J :X(t) ≥ u,∇X|J (t) = 0, index

(∇2X|J (t)
) = i

}
.(3.3)

It follows from (2.4) that ν(t) = Var(X(t)). Let σ 2
T = supt∈T ν(t) be the maxi-

mum variance. For any t ∈ T and J ∈ ∂kT , where k ≥ 1, let


J = (λij )i,j∈σ(J ) = Cov
(∇X|J (t)

)
,


J (t) = (
λij (t)

)
i,j∈σ(J ),

θ2
J,t = Var

(
X(t)|∇X|J (t)

)
, γ 2

t = Var
(
X(t)|∇X(t)

)
,(3.4)

{J1, . . . , JN−k} = {1, . . . ,N} \ σ(J ),

E(J ) = {
(tJ1, . . . , tJN−k

) ∈ R
N−k : tj ε

∗
j ≥ 0, j = J1, . . . , JN−k

}
.
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Note that θ2
J,t ≥ γ 2

t for all t ∈ T and θ2
J,t = γ 2

t if J = ∂NT . If J = {τ } ∈ ∂0T

is a vertex, then ∇X|J (t) is not defined and we set θ2
J,t as ν(t) by convention.

Moreover, if J = {τ } ∈ ∂0T , then E({τ }) is a quadrant of RN decided by the cor-
responding ε({τ }) ∈ {0,1}N . In the sequel, we will write θ2

J,t as θ2
t for simplicity

of notation. This will not cause any confusion because θ2
t always appears together

with t ∈ J .
For t ∈ T , let Cj(t) be the (1, j + 1) entry of (Cov(X(t),∇X(t)))−1, that is,

Cj(t) = M1,j+1(t)/detCov
(
X(t),∇X(t)

)
,

where M1,j+1(t) is the cofactor of the (1, j + 1) entry, E{X(t)Xj (t)}, in the co-
variance matrix Cov(X(t),∇X(t)). If {X(t), t ∈ R

N } is replaced by a Gaussian
field {Z(t), t ∈ R

N } with constant variance, the independence of Z(t) and ∇Z(t)

for each t implies that M1,j+1(t) and hence Cj(t) is zero for all j ≥ 1.
Denote by Hk(x) the Hermite polynomial of order k, that is, Hk(x) =

(−1)kex2/2 dk

dxk (e
−x2/2). Then it can be verified directly [cf. Adler and Taylor

(2007), page 289] that∫ ∞
u

Hk(x)e−x2/2 dx = Hk−1(u)e−u2/2,(3.5)

where u > 0 and k ≥ 1. For a matrix A, let |A| denote its determinant. Let R+ =
[0,∞), R− = (−∞,0] and let �(u) = (2π)−1/2 ∫ ∞

u e−x2/2 dx.

3.2. Computing the mean Euler characteristic. The following lemma is
an extension of Lemma 11.7.1 in Adler and Taylor (2007). It provides a
key step for computing the mean Euler characteristic in Theorem 3.2 be-
low, and has a close connection with Theorem 4.6. It follows from (3.6) that
(−1)kE{∑k

i=0(−1)iμ̃i(J )} is always positive. This fact will be used to approx-
imate the expected number of local maxima above level u; see Lemma 4.1.

LEMMA 3.1. Let X = {X(t), t ∈ R
N } be a centered Gaussian random field

with stationary increments and X(0) = 0. Suppose conditions (H1), (H2) and
(H3′) hold. Then for each J ∈ ∂kT with k ≥ 1,

E

{
k∑

i=0

(−1)iμ̃i(J )

}
(3.6)

= (−1)k

(2π)(k+1)/2|
J |1/2

∫
J

|
J − 
J (t)|
θk
t

Hk−1

(
u

θt

)
e−u2/(2θ2

t ) dt.

PROOF. Let Di be the collection of all k × k matrices with index i. Recall the
definition of μ̃i(J ) in (3.3), and thanks to (H1) and (H3′), we can apply the Kac–
Rice metatheorem [cf. Theorem 11.2.1 or Corollary 11.2.2 in Adler and Taylor
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(2007)] to get that the left-hand side of (3.6) becomes∫
J

p∇X|J (t)(0) dt

(3.7)

×
k∑

i=0

(−1)iE
{∣∣det∇2X|J (t)

∣∣1{∇2X|J (t)∈Di}1{X(t)≥u}|∇X|J (t) = 0
}
.

Note that on the set Di , the matrix ∇2X|J (t) has i negative eigenvalues, which im-
plies (−1)i |det∇2X|J (t)| = det∇2X|J (t). Also,

⋃k
i=0{∇2X|J (t) ∈ Di} = � a.s.,

hence (3.7) equals∫
J

p∇X|J (t)(0) dt E
{
det∇2X|J (t)1{X(t)≥u}|∇X|J (t) = 0

}
=

∫
J

dt

∫ ∞
u

dx
e−x2/(2θ2

t )

(2π)(k+1)/2|
J |1/2θt

(3.8)

×E
{
det∇2X|J (t)|X(t) = x,∇X|J (t) = 0

}
.

Now we turn to computing E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0} in (3.8).
By Lemma 2.2, under (H2), 
−
(t), and hence 
J −
J (t) are positive definite
for every t ∈ J . Thus, there exists a k × k positive definite matrix Qt such that

Qt

(

J − 
J (t)

)
Qt = Ik,(3.9)

where Ik is the k × k identity matrix. It follows from (2.9) that 
J (t) − 
J =
E{X(t)∇2X|J (t)}. Hence,

E
{
X(t)

(
Qt∇2X|J (t)Qt

)
ij

} = −(
Qt

(

J − 
J (t)

)
Qt

)
ij = −δij ,

where δij is the Kronecker delta function. We write

E
{
det

(
Qt∇2X|J (t)Qt

)|X(t) = x,∇X|J (t) = 0
} = E

{
det�(t, x)

}
,(3.10)

where �(t, x) = (�ij (t, x))i,j∈σ(J ) with all elements �ij (t, x) being Gaussian
variables. To study �(t, x), we only need to find the mean and covariance of
�ij (t, x). Note that ∇X(t) and ∇2X(t) are independent by Lemma 2.3, thus

E
{
�ij (t, x)

} = E
{(

Qt∇2X|J (t)Qt

)
ij |X(t) = x,∇X|J (t) = 0

}
= (

E
{
X(t)

(
Qt∇2X|J (t)Qt

)
ij

}
,0, . . . ,0

)
× (

Cov
(
X(t),∇X|J (t)

))−1
(x,0, . . . ,0)T(3.11)

= (−δij ,0, . . . ,0)
(
Cov

(
X(t),∇X|J (t)

))−1
(x,0, . . . ,0)T

= − x

θ2
t

δij ,
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where the last equality comes from the fact that the (1,1) entry of (Cov(X(t),

∇X|J (t)))−1 is detCov(∇X|J (t))/detCov(X(t),∇X|J (t)) = 1/θ2
t . For the covari-

ance, we have

E
{(

�ij (t, x) −E
{
�ij (t, x)

})(
�kl(t, x) −E

{
�kl(t, x)

})}
= E

{(
Qt∇2X|J (t)Qt

)
ij

(
Qt∇2X|J (t)Qt

)
kl

}
− (

E
{
X(t)

(
Qt∇2X|J (t)Qt

)
ij

}
,0, . . . ,0

)
× (

Cov
(
X(t),∇X|J (t)

))−1(
E

{
X(t)

(
Qt∇2X|J (t)Qt

)
kl

}
,0, . . . ,0

)T
= St (i, j, k, l) − (−δij ,0, . . . ,0)

(
Cov

(
X(t),∇X|J (t)

))−1
(−δkl,0, . . . ,0)T

= St (i, j, k, l) − δij δkl

θ2
t

,

where St is a symmetric function of i, j , k, l by Lemma 2.4 with A replaced by Qt .
Therefore, (3.10) becomes

E

{
1

θk
t

det
(
θtQt

(∇2X|J (t)
)
Qt

)∣∣∣∣X(t) = x,∇X|J (t) = 0
}

= 1

θk
t

E

{
det

(
�̃(t) − x

θt

Ik

)}
,

where �̃(t) = (�̃ij (t))i,j∈σ(J ) and all entries �̃ij (t) are Gaussian variables satis-
fying

E
{
�̃ij (t)

} = 0, E
{
�̃ij (t)�̃kl(t)

} = θ2
t St (i, j, k, l) − δij δkl.

By Corollary 11.6.3 in Adler and Taylor (2007), (3.10) is equal to (−1)kθ−k
t ×

Hk(x/θt ), hence

E
{
det∇2X|J (t)|X(t) = x,∇X|J (t) = 0

}
= E

{
det

(
Q−1

t Qt∇2X|J (t)QtQ
−1
t

)|X(t) = x,∇X|J (t) = 0
}

= ∣∣
J − 
J (t)
∣∣E{

det
(
Qt∇2X|J (t)Qt

)|X(t) = x,∇X|J (t) = 0
}

= (−1)k

θk
t

∣∣
J − 
J (t)
∣∣Hk

(
x

θt

)
.

Plugging this into (3.8) and applying (3.5), we obtain the desired result. �

The following is the main theorem of this section, which is an extension of The-
orem 11.7.2 of Adler and Taylor (2007) to Gaussian random fields with stationary
increments. Notice that in (3.12), for every {t} ∈ ∂0T , ∇X(t) ∈ E({t}) specifies
the signs of the partial derivatives Xj(t) (j = 1, . . . ,N ) and, for J ∈ ∂kT , the set
{J1, . . . , JN−k} is defined in (3.4).
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THEOREM 3.2. Let X = {X(t), t ∈ R
N } be a centered Gaussian random field

with stationary increments and X(0) = 0. Suppose conditions (H1), (H2) and
(H3′) hold. Then

E
{
ϕ(Au)

} = ∑
{t}∈∂0T

P
(
X(t) ≥ u,∇X(t) ∈ E

({t})) +
N∑

k=1

∑
J∈∂kT

1

(2π)k/2|
J |1/2

×
∫
J

dt

∫ ∞
u

dx

∫
· · ·

∫
E(J )

dyJ1 · · · dyJN−k

|
J − 
J (t)|
γ k
t

(3.12)

× Hk

(
x

γt

+ γtCJ1(t)yJ1 + · · · + γtCJN−k
(t)yJN−k

)
× pX(t),XJ1 (t),...,XJN−k

(t)

(
x, yJ1, . . . , yJN−k

|∇X|J (t) = 0
)
.

REMARK 3.3. If Z = {Z(t), t ∈ R
N } is a smooth centered stationary Gaussian

random field, then the mean Euler characteristic of the excursion set {t ∈ T :Z(t) ≥
u} is given by Theorem 11.7.2 in Adler and Taylor (2007). Applying Theorem 3.2
to X(t) = Z(t) − Z(0), (3.12) computes the mean Euler characteristic of Au =
{t ∈ T :Z(t) − Z(0) ≥ u}.

PROOF OF THEOREM 3.2. According to Corollary 11.3.2 in Adler and Taylor
(2007), (H1) and (H3′) imply that X is a Morse function a.s. It follows from (3.1)
that

E
{
ϕ(Au)

} =
N∑

k=0

∑
J∈∂kT

(−1)kE

{
k∑

i=0

(−1)iμi(J )

}
.(3.13)

If J ∈ ∂0T , say J = {t}, it turns out that E{μ0(J )} = P(X(t) ≥ u,∇X(t) ∈
E({t})). If J ∈ ∂kT with k ≥ 1, we apply the Kac–Rice metatheorem in Adler
and Taylor (2007) to obtain that the expectation on the right-hand side of (3.13)
becomes∫

J
p∇X|J (t)(0) dt

×
k∑

i=0

(−1)iE
{∣∣det∇2X|J (t)

∣∣1{∇2X|J (t)∈Di}1{(XJ1 (t),...,XJN−k
(t))∈E(J )}

× 1{X(t)≥u}|∇X|J (t) = 0
}

= 1

(2π)k/2|
J |1/2

∫
J

dt

∫ ∞
u

dx

∫
· · ·

∫
E(J )

dyJ1 · · · dyJN−k
(3.14)

×E
{
det∇2X|J (t)|X(t) = x,XJ1(t) = yJ1, . . . ,XJN−k

(t) = yJN−k
,

∇X|J (t) = 0
}

× pX(t),XJ1 (t),...,XJN−k
(t)

(
x, yJ1, . . . , yJN−k

|∇X|J (t) = 0
)
.
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For fixed t , let Qt be the positive definite matrix in (3.9). Then, similar to the proof
in Lemma 3.1, we can write

E
{
det

(
Qt∇2X|J (t)Qt

)|X(t) = x,XJ1(t) = yJ1, . . . ,XJN−k
= yJN−k

,

∇X|J (t) = 0
}

as E{det�(t, x)}, where �(t, x) is a matrix consisting of Gaussian entries
�ij (t, x) with mean

E
{(

Qt∇2X|J (t)Qt

)
ij |X(t) = x,XJ1(t) = yJ1, . . . ,XJN−k

= yJN−k
,

∇X|J (t) = 0
}

= (−δij ,0, . . . ,0)
(
Cov

(
X(t),XJ1(t), . . . ,XJN−k

(t),∇X|J (t)
))−1(3.15)

× (x, yJ1, . . . , yJN−k
,0, . . . ,0)T

= −δij

γ 2
t

(
x + γ 2

t CJ1(t)yJ1 + · · · + γ 2
t CJN−k

(t)yJN−k

)
,

and covariance

E
{(

�ij (t, x) −E
{
�ij (t, x)

})(
�kl(t, x) −E

{
�kl(t, x)

})}
= St (i, j, k, l) − δij δkl

γ 2
t

.

Following the same procedure in the proof of Lemma 3.1, we obtain that the last
conditional expectation in (3.14) is equal to

(−1)k|
J − 
J (t)|
γ k
t

(3.16)

× Hk

(
x

γt

+ γtCJ1(t)yJ1 + · · · + γtCJN−k
(t)yJN−k

)
.

Plugging this into (3.14) and (3.13) yields the desired result. �

REMARK 3.4. Usually, for a nonstationary (including constant-variance)
Gaussian field X on R

N , its mean Euler characteristic involves at least the
third-order derivatives of the covariance function. For Gaussian random fields
with stationary increments, as shown in Lemma 2.3, E{Xij (t)Xk(t)} = 0 and
E{Xij (t)Xkl(t)} is symmetric in i, j , k, l. Hence, the mean Euler characteristic
becomes simpler, containing only up to second-order derivatives of the covariance
function. This can also be seen from the spectral representation (2.3) which im-
plies that ∇X and ∇2X are stationary. In various practical applications, (3.12) can
be simplified with only an exponentially smaller difference. See the discussions in
Section 5.
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4. Excursion probability.

4.1. Preliminaries. As in Section 3.1, we decompose T into its faces as
T = ⋃N

k=0
⋃

J∈∂kT
J . For k ≥ 1 and any J ∈ ∂kT , define the number of extended

outward maxima above level u as

ME
u (J ) := #

{
t ∈ J :X(t) ≥ u,∇X|J (t) = 0, index

(∇2X|J (t)
) = k,

ε∗
jXj (t) ≥ 0 for allj /∈ σ(J )

}
.

In fact, ME
u (J ) is the same as μk(J ) defined in (3.2) with i = k. For k = 0 and any

{t} ∈ ∂0T , let

ME
u

({t}) := 1{X(t)≥u,∇X(t)∈E({t})} = 1{X(t)≥u,ε∗
j Xj (t)≥0,∀j=1,...,N}.

One can show easily that, under conditions (H1) and (H3′),

{
sup
t∈T

X(t) ≥ u
}

=
N⋃

k=0

⋃
J∈∂kT

{
ME

u (J ) ≥ 1
}

a.s.

It follows that

P

{
sup
t∈T

X(t) ≥ u
}

≤
N∑

k=0

∑
J∈∂kT

P
{
ME

u (J ) ≥ 1
} ≤

N∑
k=0

∑
J∈∂kT

E
{
ME

u (J )
}
.(4.1)

On the other hand, by the Bonferroni inequality,

P

{
sup
t∈T

X(t) ≥ u
}

≥
N∑

k=0

∑
J∈∂kT

P
{
ME

u (J ) ≥ 1
}− ∑

J �=J ′
P

{
ME

u (J ) ≥ 1,ME
u

(
J ′) ≥ 1

}
.

Note that [cf. Piterbarg (1996b)]

E
{
ME

u (J )
} − P

{
ME

u (J ) ≥ 1
} ≤ 1

2E
{
ME

u (J )
(
ME

u (J ) − 1
)}

,

together with the obvious bound P{ME
u (J ) ≥ 1,ME

u (J ′) ≥ 1} ≤ E{ME
u (J ) ×

ME
u (J ′)}, we obtain the following lower bound for the excursion probability

P

{
sup
t∈T

X(t) ≥ u
}

≥
N∑

k=0

∑
J∈∂kT

(
E

{
ME

u (J )
} − 1

2
E

{
ME

u (J )
(
ME

u (J ) − 1
)})

(4.2)
− ∑

J �=J ′
E

{
ME

u (J )ME
u

(
J ′)}.

Define the number of local maxima above level u as

Mu(J ) := #
{
t ∈ J :X(t) ≥ u,∇X|J (t) = 0, index

(∇2X|J (t)
) = k

}
.
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Then obviously Mu(J ) ≥ ME
u (J ) and Mu(J ) is the same as μ̃k(J ) defined in (3.3)

with i = k. It follows similarly that

N∑
k=0

∑
J∈∂kT

E
{
Mu(J )

} ≥ P

{
sup
t∈T

X(t) ≥ u
}

≥
N∑

k=0

∑
J∈∂kT

(
E

{
Mu(J )

} − 1

2
E

{
Mu(J )

(
Mu(J ) − 1

)})
(4.3)

− ∑
J �=J ′

E
{
Mu(J )Mu

(
J ′)}.

We will use (4.1) and (4.2) to estimate the excursion probability for the general
case in Theorem 4.8. Inequalities in (4.3) provide another method to approximate
the excursion probability in some special cases; see Theorem 4.6. The advantage
of (4.3) is that the principal term induced by

∑N
k=0

∑
J∈∂kT

E{Mu(J )} is much
easier to compute compared with the one induced by

∑N
k=0

∑
J∈∂kT

E{ME
u (J )}.

4.2. Estimating the moments: Major terms and error terms. The following
two lemmas provide the estimations for the principal terms in approximating the
excursion probability.

LEMMA 4.1. Let X be a Gaussian field as in Theorem 3.2. Then for each
J ∈ ∂kT with k ≥ 1, there exists some constant α > 0 such that

E
{
Mu(J )

}
= 1

(2π)(k+1)/2|
J |1/2(4.4)

×
∫
J

|
J − 
J (t)|
θk
t

Hk−1

(
u

θt

)
e−u2/(2θ2

t ) dt
(
1 + o

(
e−αu2))

.

PROOF. Following the notation in the proof of Lemma 3.1, we obtain similarly
that

E
{
Mu(J )

}
=

∫
J

p∇X|J (t)(0) dtE
{∣∣det∇2X|J (t)

∣∣1{∇2X|J (t)∈Dk}1{X(t)≥u}|∇X|J (t) = 0
}

(4.5)

=
∫
J

dt

∫ ∞
u

dx
(−1)ke−x2/(2θ2

t )

(2π)(k+1)/2|
J |1/2θt

×E
{
det∇2X|J (t)1{∇2X|J (t)∈Dk}|X(t) = x,∇X|J (t) = 0

}
.
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Recall that Qt is the k × k positive definite matrix in (3.9). We write (3.11) as

E
{
Qt∇2X|J (t)Qt |X(t) = x,∇X|J (t) = 0

} = − x

θ2
t

Ik.

Make change of variables

V (t) = Qt∇2X|J (t)Qt + x

θ2
t

Ik.

Then (V (t)|X(t) = x,∇X|J (t) = 0) is a Gaussian matrix whose mean is 0
and covariance is the same as that of (Qt∇2X|J (t)Qt |X(t) = x,∇X|J (t) =
0). Write V (t) = (Vij (t))1≤i,j≤k and denote the density of Gaussian vectors
((Vij (t))1≤i≤j≤k|X(t) = x,∇X|J (t) = 0) by ht (v), where v = (vij )1≤i≤j≤k ∈
R

k(k+1)/2. Then

E
{
det

(
Qt∇2X|J (t)Qt

)
1{∇2X|J (t)∈Dk}|X(t) = x,∇X|J (t) = 0

}
= E

{
det

(
Qt∇2X|J (t)Qt

)
1{Qt∇2X|J (t)Qt∈Dk}|X(t) = x,∇X|J (t) = 0

}
(4.6)

=
∫
{v : (vij )−(x/θ2

t )Ik∈Dk}
det

(
(vij ) − x

θ2
t

Ik

)
ht (v) dv,

where (vij ) is the abbreviation for the matrix (vij )1≤i,j≤k . Since {θ2
t : t ∈ T } is

bounded, there exists a constant c > 0 such that

(vij ) − x

θ2
t

Ik ∈ Dk ∀∥∥(vij )
∥∥ :=

(
k∑

i,j=1

v2
ij

)1/2

<
x

c
.

Thus, we can write (4.6) as∫
Rk(k+1)/2

det
(
(vij ) − x

θ2
t

Ik

)
ht (v) dv

−
∫
{v : (vij )−(x/θ2

t )Ik /∈Dk}
det

(
(vij ) − x

θ2
t

Ik

)
ht (v) dv(4.7)

= E
{
det

(
Qt∇2X|J (t)Qt

)|X(t) = x,∇X|J (t) = 0
} + Z(t, x),

where Z(t, x) is the second integral in the first line of (4.7) and it satisfies∣∣Z(t, x)
∣∣ ≤

∫
‖(vij )‖≥x/c

∣∣∣∣det
(
(vij ) − x

θ2
t

Ik

)∣∣∣∣ht (v) dv.

Denote by G(t) the covariance matrix of ((Vij (t))1≤i≤j≤k|X(t) = x,∇X|J (t) =
0). Then by Lemma A.1 in the Appendix, the eigenvalues of G(t) and those of
(G(t))−1 are bounded for all t ∈ T . It follows that there exists some constant
α′ > 0 such that ht (v) = o(e−α′‖(vij )‖2

) and hence |Z(t, x)| = o(e−αx2
) for some

constant α > 0 uniformly for all t ∈ T . Combining this with (4.5), (4.6), (4.7) and
the proof of Lemma 3.1 yields (4.4). �
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LEMMA 4.2. Let X be a Gaussian field as in Theorem 3.2. Then for each
J ∈ ∂kT with k ≥ 1, there exists some constant α > 0 such that

E
{
ME

u (J )
}

= 1

(2π)k/2|
J |1/2

∫
J

dt

∫ ∞
u

dx

∫
· · ·

∫
E(J )

dyJ1 · · · dyJN−k

(4.8)

× |
J − 
J (t)|
γ k
t

Hk

(
x

γt

+ γtCJ1(t)yJ1 + · · · + γtCJN−k
(t)yJN−k

)
× pX(t),XJ1 (t),...,XJN−k

(t)

(
x, yJ1, . . . , yJN−k

|∇X|J (t) = 0
)(

1 + o
(
e−αu2))

.

PROOF. Similar to the proof in Theorem 3.2, we see that E{ME
u (J )} is equal

to ∫
J

(−1)k|
J − 
J (t)|
(2π)k/2|
J |1/2 dt

∫ ∞
u

dx

∫
· · ·

∫
E(J )

dyJ1 · · · dyJN−k

×E
{
det

(
Qt∇2X|J (t)Qt

)
1{Qt∇2X|J (t)Qt∈Dk}|

X(t) = x,XJ1(t) = yJ1, . . . ,XJN−k
(t) = yJN−k

,∇X|J (t) = 0
}

× pX(t),XJ1 (t),...,XJN−k
(t)

(
x, yJ1, . . . , yJN−k

|∇X|J (t) = 0
)

:=
∫
J

(−1)k|
J − 
J (t)|
(2π)k/2|
J |1/2 dt

∫ ∞
u

dxK(t, x),

where Qt is the positive definite matrix in (3.9). Then, by using a similar argument
as in the proof of Lemma 4.1 to estimate K(t, x), we obtain the desired result. �

We call a function h(u) super-exponentially small [when compared with
P(supt∈T X(t) ≥ u)], if there exists a constant α > 0 such that h(u) =
o(e−αu2−u2/(2σ 2

T )) as u → ∞.
The following lemma is Lemma 4 in Piterbarg (1996b). It will be used to show

that the factorial moments of Mu(J ) and ME
u (J ) are usually super-exponentially

small.

LEMMA 4.3. Let {X(t) : t ∈ R
N } be a centered Gaussian field satisfying (H1)

and (H3). Then for any ε > 0, there exists ε1 > 0 such that for any J ∈ ∂kT and u

large enough,

E
{
Mu(J )

(
Mu(J ) − 1

)} ≤ e−u2/(2β2
J +ε) + e−u2/(2σ 2

J −ε1),

where σ 2
J = supt∈J Var(X(t)) and β2

J = supt∈J supe∈Sk−1 Var(X(t)|∇X|J (t),

∇2X|J (t)e). Here and in the sequel, Sk−1 is the unit sphere in R
k .
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COROLLARY 4.4. Let X = {X(t), t ∈ R
N } be a centered Gaussian random

field with stationary increments satisfying (H1), (H2) and (H3). Then for all J ∈
∂kT , E{Mu(J )(Mu(J )−1)} and E{ME

u (J )(ME
u (J )−1)} are super-exponentially

small.

PROOF. Since ME
u (J ) ≤ Mu(J ), we only need to show that E{Mu(J ) ×

(Mu(J ) − 1)} is super-exponentially small. If k = 0, then Mu(J ) is either 0 or
1 and hence E{Mu(J )(Mu(J ) − 1)} = 0. If k ≥ 1, then, thanks to Lemma 4.3, it
suffices to show that β2

J is strictly less than σ 2
T .

Clearly, Var(X(t)|∇X|J (t),∇2X|J (t)e) ≤ σ 2
T for every e ∈ S

k−1 and t ∈ T . On
the other hand,

Var
(
X(t)|∇X|J (t),∇2X|J (t)e

) = σ 2
T �⇒ E

{
X(t)

(∇2X|J (t)e
)} = 0.(4.9)

Note that, by (2.9), the right-hand side of (4.9) is equivalent to (
J (t) − 
J )e =
0. However, by (H2), 
J (t) − 
J is negative definite, which implies (
J (t) −

J )e �= 0 for all e ∈ S

k−1. Thus

Var
(
X(t)|∇X|J (t),∇2X|J (t)e

)
< σ 2

T

for all e ∈ S
k−1 and t ∈ T . This and the continuity of Var(X(t)|∇X|J (t),

∇2X|J (t)e) in (e, t) imply β2
J < σ 2

T . �

The following lemma shows that the cross terms in (4.2) and (4.3) are super-
exponentially small if the two faces are not adjacent. For the case when the faces
are adjacent, the proof is more technical. See the proofs in Theorems 4.6 and 4.8.

LEMMA 4.5. Let X = {X(t), t ∈ R
N } be a centered Gaussian random field

with stationary increments satisfying (H1) and (H3). Let J and J ′ be two faces
of T such that their distance is positive, that is, inft∈J,s∈J ′ ‖s − t‖ > δ0 for some
δ0 > 0. Then E{Mu(J )Mu(J

′)} is super-exponentially small.

PROOF. We first consider the case when dim(J ) = k ≥ 1 and dim(J ′) = k′ ≥
1. By the Kac–Rice metatheorem for higher moments [the proof is the same as that
of Theorem 11.5.1 in Adler and Taylor (2007)],

E
{
Mu(J )Mu

(
J ′)}

=
∫
J

dt

∫
J ′

dsE
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣

× 1{X(t)≥u,X(s)≥u}
× 1{∇2X|J (t)∈Dk,∇2X|J ′ (s)∈Dk′ }|
X(t) = x,X(s) = y,∇X|J (t) = 0,∇X|J ′(s) = 0

}
× pX(t),X(s),∇X|J (t),∇X|J ′ (s)(x, y,0,0)(4.10)
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≤
∫
J

dt

∫
J ′

ds

∫ ∞
u

dx

∫ ∞
u

dy

E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|

× X(t) = x,X(s) = y,∇X|J (t) = 0,∇X|J ′(s) = 0
}
pX(t),X(s)(x, y)

×p∇X|J (t),∇X|J ′ (s)
(
0,0|X(t) = x,X(s) = y

)
.

Note that the following two inequalities hold: For constants ai and bj ,

k∏
i=1

|ai |
k′∏

j=1

|bj | ≤ 1

k + k′

(
k∑

i=1

|ai |k+k′ +
k′∑

j=1

|bj |k+k′
)
;

and for any Gaussian variable ξ and positive integer l,

E|ξ |l ≤ E
(|Eξ |+|ξ −Eξ |)l ≤ 2l(|Eξ |l +E|ξ −Eξ |l) = 2l(|Eξ |l +Kl

(
Var(ξ)

)l/2)
,

where the constant Kl depends only on l. It follows from these two inequalities
that there exist some positive constants C1 and N1 such that for large x and y,

sup
t∈J,s∈J ′

E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|X(t) = x,X(s) = y,∇X|J (t) = 0,

∇X|J ′(s) = 0
}

(4.11)

≤ C1x
N1yN1 .

Also, there exists a positive constant C2 such that

sup
t∈J,s∈J ′

p∇X|J (t),∇X|J ′ (s)
(
0,0|X(t) = x,X(s) = y

)
≤ sup

t∈J,s∈J ′
(2π)−(k+k′)/2

(4.12)
× [

detCov
(∇X|J (t),∇X|J ′(s)|X(t) = x,X(s) = y

)]−1/2

≤ C2.

Let ρ(δ0) = sup‖s−t‖>δ0

|E{X(t)X(s)}|√
ν(t)ν(s)

which is strictly less than 1 due to (H3), then

∀ε > 0, there exists a positive constant C3 such that for all t ∈ J , s ∈ J ′ and u large
enough, ∫ ∞

u

∫ ∞
u

xN1yN1pX(t),X(s)(x, y) dx dy

= E
{[

X(t)X(s)
]N11{X(t)≥u,X(s)≥u}

}
(4.13)

≤ E
{[

X(t) + X(s)
]2N11{X(t)+X(s)≥2u}

}
≤ C3 exp

(
εu2 − u2

(1 + ρ(δ0))σ
2
T

)
.
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Combining (4.10) with (4.11), (4.12) and (4.13) yields that E{Mu(J )Mu(J
′)} is

super-exponentially small.
When only one of the faces, say J , is a singleton, then let J = {t0} and we have

E
{
Mu(J )Mu

(
J ′)}

≤
∫
J ′

ds

∫ ∞
u

dx

∫ ∞
u

dypX(t0),X(s),∇X|J ′ (s)(x, y,0)(4.14)

×E
{∣∣det∇2X|J ′(s)

∣∣|X(t0) = x,X(s) = y,∇X|J ′(s) = 0
}
.

Following the previous discussion yields that E{Mu(J )Mu(J
′)} is super-

exponentially small.
Finally, if both J and J ′ are singletons, then E{Mu(J )Mu(J

′)} becomes the
joint probability of two Gaussian variables exceeding level u, and hence is trivial.

�

4.3. Main results and their proofs. Now we are ready to prove our main results
on approximating the excursion probability P{supt∈T X(t) ≥ u}. Theorem 4.6 con-
tains a mild technical condition (4.15) which specifies the way that the variogram
ν(t) attains its maximum on the boundary of T . In particular, it implies that, at
each point on ∂T where ν(t) achieves σ 2

T := supt∈T ν(t), ∇ν(t) is not zero. In the
case of N = 1 and T = [a, b], if ν(t) attains its maximum σ 2

T at the end point a

or b, then (4.15) requires that ν(t) is strictly monotone in a neighborhood of that
end point. Notice that, if ν(t) only attains its maximum in ∂NT , the interior of T ,
then (4.15) is satisfied automatically. In this sense, (4.15) is more general than the
corresponding condition in Theorem 5 of Azaïs and Wschebor (2008).

THEOREM 4.6. Let X = {X(t) : t ∈R
N } be a centered Gaussian random field

with stationary increments such that (H1), (H2) and (H3) are fulfilled. Suppose
that for any face J ,{

t ∈ J :ν(t) = σ 2
T , νj (t) = 0 for some j /∈ σ(J )

} = ∅.(4.15)

Then there exists some constant α > 0 such that

P

{
sup
t∈T

X(t) ≥ u
}

=
N∑

k=0

∑
J∈∂kT

E
{
Mu(J )

} + o
(
e−αu2−u2/(2σ 2

T ))
(4.16)

= ∑
{t}∈∂0T

�

(
u√
ν(t)

)
+

N∑
k=1

∑
J∈∂kT

1

(2π)(k+1)/2|
J |1/2

×
∫
J

|
J − 
J (t)|
θk
t

Hk−1

(
u

θt

)
e−u2/(2θ2

t ) dt + o
(
e−αu2−u2/(2σ 2

T )).
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REMARK 4.7. It should be mentioned that, for Gaussian random fields with
constant variance, Taylor, Takemura and Adler (2005) provided an explicit form
for the constant α in (1.1). However, in Theorems 4.6 and 4.8, we are not able to
give explicit information on the value(s) of α.

PROOF OF THEOREM 4.6. Since the second equality in (4.16) follows from
Lemma 4.1 directly, we only need to prove the first one. By (4.3) and Corollary 4.4,
it suffices to show that the last term in (4.3) is super-exponentially small. Thanks
to Lemma 4.5, we only need to consider the case when the distance of J and J ′
is 0, that is, I := J̄ ∩ J̄ ′ �= ∅. Without loss of generality, we assume

σ(J ) = {1, . . . ,m,m + 1, . . . , k},
(4.17)

σ
(
J ′) = {

1, . . . ,m, k + 1, . . . , k + k′ − m
}
,

where 0 ≤ m ≤ k ≤ k′ ≤ N and k′ ≥ 1. Recall that, if k = 0, then σ(J ) = ∅. Under
assumption (4.17), we have J ∈ ∂kT , J ′ ∈ ∂k′T and dim(I ) = m.

Case 1: k = 0, that is, J is a singleton, say J = {t0}. If ν(t0) < σ 2
T , then by

(4.14), it is trivial to show that E{Mu(J )Mu(J
′)} is super-exponentially small.

Now we consider the case ν(t0) = σ 2
T . Due to (4.15), E{X(t0)X1(t0)} �= 0, and

hence by continuity, there exists δ > 0 such that E{X(s)X1(s)} �= 0 for all ‖s −
t0‖ ≤ δ. It follows from (4.14) that E{Mu(J )Mu(J

′)} is bounded from above by∫
s∈J ′ : ‖s−t0‖>δ

ds

∫ ∞
u

dx

∫ ∞
u

dy

×E
{∣∣det∇2X|J ′(s)

∣∣|X(t0) = x,X(s) = y,∇X|J ′(s) = 0
}

× pX(t0),X(s),∇X|J ′ (s)(x, y,0)

+
∫
s∈J ′ : ‖s−t0‖≤δ

ds

∫ ∞
u

dy

×E
{∣∣det∇2X|J ′(s)

∣∣|X(s) = y,∇X|J ′(s) = 0
}
pX(s),∇X|J ′ (s)(y,0)

:= I1 + I2.

Following the proof of Lemma 4.5, we can show that I1 is super-exponentially
small. Note that there exists a constant ε0 > 0 such that

sup
s∈J ′ : ‖s−t0‖≤δ

Var
(
X(s)|∇X|J ′(s)

) ≤ sup
s∈J ′ : ‖s−t0‖≤δ

Var
(
X(s)|X1(s)

) ≤ σ 2
T − ε0.

This implies that I2, and hence E{Mu(J )Mu(J
′)} are super-exponentially small.

Case 2: k ≥ 1. For all t ∈ I with ν(t) = σ 2
T , by assumption (4.15),

E{X(t)Xi(t)} �= 0, ∀i = m + 1, . . . , k + k′ − m. Since I is a compact set, we
see that there exist constants ε1, δ1 > 0 such that

sup
t∈B,s∈B ′

Var
(
X(t)|Xm+1(t), . . . ,Xk(t),Xk+1(s), . . . ,Xk+k′−m(s)

)
(4.18)

≤ σ 2
T − ε1,
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where B = {t ∈ J : dist(t, I ) ≤ δ1} and B ′ = {s ∈ J ′ : dist(s, I ) ≤ δ1}. It follows
from (4.10) that E{Mu(J )Mu(J

′)} is bounded by∫ ∫
(J×J ′)\(B×B ′)

dt ds

∫ ∞
u

dx

∫ ∞
u

dypX(t),X(s),∇X|J (t),∇X|J ′ (s)(x, y,0,0)

×E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|X(t) = x,X(s) = y,∇X|J (t) = 0,

∇X|J ′(s) = 0
}

+
∫ ∫

B×B ′
dt ds

∫ ∞
u

dxpX(t)

(
x|∇X|J (t) = 0,∇X|J ′(s) = 0

)
× p∇X|J (t),∇X|J ′ (s)(0,0)

×E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0

}
:= I3 + I4.

Note that(
J × J ′) \ (

B × B ′)
(4.19)

= (
(J \ B) × B ′) ∪ (

B × (
J ′ \ B ′)) ∪ (

(J \ B) × (
J ′ \ B ′)).

Since each product set on the right-hand side of (4.19) consists of two sets with
positive distance, following the proof of Lemma 4.5 we can verify that I3 is super-
exponentially small.

For I4, taking into account (4.18), one has

sup
t∈B,s∈B ′

Var
(
X(t)|∇X|J (t),∇X|J ′(s)

) ≤ σ 2
T − ε1.(4.20)

For any t ∈ B, s ∈ B ′ with s �= t , in order to estimate

p∇X|J (t),∇X|J ′ (s)(0,0)
(4.21)

= (2π)−(k+k′)/2(
detCov

(∇X|J (t),∇X|J ′(s)
))−1/2

,

we write the determinant on the right-hand side of (4.21) as

detCov
(
Xm+1(t), . . . ,Xk(t),Xk+1(s), . . . ,Xk+k′−1(s)|

X1(t), . . . ,Xm(t),X1(s), . . . ,Xm(s)
)

(4.22)

× detCov
(
X1(t), . . . ,Xm(t),X1(s), . . . ,Xm(s)

)
,

where the first determinant in (4.22) is bounded away from zero due to (H3).
By (H1), as shown in Piterbarg (1996b), applying Taylor’s formula, we can write

∇X(s) = ∇X(t) + ∇2X(t)(s − t)T + ‖s − t‖1+ηYt,s,(4.23)
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where Yt,s = (Y 1
t,s , . . . , Y

N
t,s)

T is a Gaussian vector field with bounded variance
uniformly for all t ∈ J , s ∈ J ′. Hence as ‖s − t‖ → 0, the second determinant
in (4.22) becomes

detCov
(
X1(t), . . . ,Xm(t),X1(t) + 〈∇X1(t), s − t

〉 + ‖s − t‖1+ηY 1
t,s , . . . ,

Xm(t) + 〈∇Xm(t), s − t
〉 + ‖s − t‖1+ηYm

t,s

)
= detCov

(
X1(t), . . . ,Xm(t),

〈∇X1(t), s − t
〉 + ‖s − t‖1+ηY 1

t,s , . . . ,
(4.24) 〈∇Xm(t), s − t

〉 + ‖s − t‖1+ηYm
t,s

)
= ‖s − t‖2m detCov

(
X1(t), . . . ,Xm(t),

〈∇X1(t), et,s

〉
, . . . ,

〈∇Xm(t), et,s

〉)
× (

1 + o(1)
)
,

where et,s = (s − t)T /‖s − t‖ and due to (H3), the last determinant in (4.24) is
bounded away from zero uniformly for all t ∈ J and s ∈ J ′. It then follows from
(4.22) and (4.24) that

detCov
(∇X|J (t),∇X|J ′(s)

) ≥ C1‖s − t‖2m(4.25)

for some constant C1 > 0. Similar to (4.11), there exist constants C2,N1 > 0 such
that

sup
t∈J,s∈J ′

E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|

X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0
}

(4.26)

≤ C2
(
1 + xN1

)
.

Combining (4.20) with (4.21), (4.25) and (4.26), and noting that m < k′ im-
plies 1/‖s − t‖m is integrable on J × J ′, we conclude that I4, and hence
E{Mu(J )Mu(J

′)} are finite and super-exponentially small. �

THEOREM 4.8. Let X = {X(t) : t ∈ R
N } be a centered Gaussian random field

with stationary increments and X(0) = 0. Assume that (H1), (H2) and (H3) are
fulfilled. Then there exists a constant α > 0 such that

P

{
sup
t∈T

X(t) ≥ u
}

=
N∑

k=0

∑
J∈∂kT

E
{
ME

u (J )
} + o

(
e−αu2−u2/(2σ 2

T ))
(4.27)

= E
{
ϕ(Au)

} + o
(
e−αu2−u2/(2σ 2

T )),
where E{ϕ(Au)} is the mean Euler characteristic of Au formulated in Theorem 3.2.

The main idea for the proof of Theorem 4.8 comes from Azaïs and Delmas
(2002) (especially their Theorem 4). Before showing the proof, we list the follow-
ing two lemmas whose proofs are given in the Appendix.
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LEMMA 4.9. Under (H2), there exists a constant α0 > 0 such that〈
e,

(

 − 
(t)

)
e
〉 ≥ α0 ∀t ∈ T , e ∈ S

N−1.

LEMMA 4.10. Let {ξ1(t) : t ∈ T1} and {ξ2(t) : t ∈ T2} be two centered Gaus-
sian random fields. Let

σ 2
i (t) = Var

(
ξi(t)

)
, σ i = sup

t∈Ti

σi(t), σ i = inf
t∈Ti

σi(t),

ρ(t, s) = E{ξ1(t)ξ2(s)}
σ1(t)σ2(s)

, ρ = sup
t∈T1,s∈T2

ρ(t, s), ρ = inf
t∈T1,s∈T2

ρ(t, s),

and assume 0 < σi ≤ σ i < ∞ for i = 1,2. If 0 < ρ ≤ ρ < 1, then for any N1,N2 >

0, there exists a constant α > 0 such that as u → ∞,

sup
t∈T1,s∈T2

E
{(

1 + ∣∣ξ1(t)
∣∣N1 + ∣∣ξ2(s)

∣∣N2
)
1{ξ1(t)≥u,ξ2(s)<0}

} = o
(
e−αu2−u2/(2σ 2

1)
)
.

Similarly, if −1 < ρ ≤ ρ < 0, then

sup
t∈T1,s∈T2

E
{(

1 + ∣∣ξ1(t)
∣∣N1 + ∣∣ξ2(s)

∣∣N2
)
1{ξ1(t)≥u,ξ2(s)>0}

} = o
(
e−αu2−u2/(2σ 2

1)
)
.

PROOF OF THEOREM 4.8. Note that the second equality in (4.27) follows
from Theorem 3.2 and Lemma 4.2, and similar to the proof in Theorem 4.6, we
only need to show that E{ME

u (J )ME
u (J ′)} is super-exponentially small when J

and J ′ are neighboring. Let I := J̄ ∩ J̄ ′ �= ∅. We follow the assumptions in (4.17)
and assume also that all elements in ε(J ) and ε(J ′) are 1, which implies E(J ) =
R

N−k+ and E(J ′) = R
N−k′
+ .

We first consider the case k ≥ 1. By the Kac–Rice metatheorem, E{ME
u (J ) ×

ME
u (J ′)} is bounded from above by∫

J
dt

∫
J ′

ds

∫ ∞
u

dx

∫ ∞
u

dy

∫ ∞
0

dzk+1 · · ·

×
∫ ∞

0
dzk+k′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0
dwk

×E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|

X(t) = x,X(s) = y,∇X|J (t) = 0,Xk+1(t) = zk+1, . . . ,
(4.28)

Xk+k′−m(t) = zk+k′−m,∇X|J ′(s) = 0,

Xm+1(s) = wm+1, . . . ,Xk(s) = wk

}
× pt,s(x, y,0, zk+1, . . . , zk+k′−m,0,wm+1, . . . ,wk)

:=
∫ ∫

J×J ′
A(t, s) dt ds,
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where pt,s(x, y,0, zk+1, . . . , zk+k′−m,0,wm+1, . . . ,wk) is the density of(
X(t),X(s),∇X|J (t),Xk+1(t), . . . ,Xk+k′−m(t),∇X|J ′(s),Xm+1(s), . . . ,Xk(s)

)
evaluated at (x, y,0, zk+1, . . . , zk+k′−m,0,wm+1, . . . ,wk).

Let {e1, e2, . . . , eN } be the standard orthonormal basis of R
N . For t ∈ J and

s ∈ J ′, let et,s = (s − t)T /‖s − t‖ and let αi(t, s) = 〈ei, (
 − 
(t))et,s〉, then

(

 − 
(t)

)
et,s =

N∑
i=1

〈
ei,

(

 − 
(t)

)
et,s

〉
ei =

N∑
i=1

αi(t, s)ei .(4.29)

By Lemma 4.9, there exists some α0 > 0 such that〈
et,s,

(

 − 
(t)

)
et,s

〉 ≥ α0(4.30)

for all t and s. Under the assumptions (4.17) and that all elements in ε(J ) and
ε(J ′) are 1, we have the following representation:

t = (t1, . . . , tm, tm+1, . . . , tk, bk+1, . . . , bk+k′−m,0, . . . ,0),

s = (s1, . . . , sm, bm+1, . . . , bk, sk+1, . . . , sk+k′−m,0, . . . ,0),

where ti ∈ (ai, bi) for all i ∈ σ(J ) and sj ∈ (aj , bj ) for all j ∈ σ(J ′). Therefore,

〈ei, et,s〉 ≥ 0 ∀m + 1 ≤ i ≤ k,

〈ei, et,s〉 ≤ 0 ∀k + 1 ≤ i ≤ k + k′ − m,(4.31)

〈ei, et,s〉 = 0 ∀k + k′ − m < i ≤ N.

Let

Di = {
(t, s) ∈ J × J ′ :αi(t, s) ≥ βi

}
if m + 1 ≤ i ≤ k,

Di = {
(t, s) ∈ J × J ′ :αi(t, s) ≤ −βi

}
if k + 1 ≤ i ≤ k + k′ − m,(4.32)

D0 =
{
(t, s) ∈ J × J ′ :

m∑
i=1

αi(t, s)〈ei, et,s〉 ≥ β0

}
,

where β0, β1, . . . , βk+k′−m are positive constants such that β0 + ∑k+k′−m
i=m+1 βi <

α0. It follows from (4.31) and (4.32) that, if (t, s) does not belong to any of
D0,Dm, . . . ,Dk+k′−m, then by (4.29),

〈(

 − 
(t)

)
et,s, et,s

〉 = N∑
i=1

αi(t, s)〈ei, et,s〉 ≤ β0 +
k+k′−m∑
i=m+1

βi < α0,

which contradicts (4.30). Thus, D0 ∪ ⋃k+k′−m
i=m+1 Di is a covering of J × J ′, by

(4.28),

E
{
ME

u (J )ME
u

(
J ′)} ≤

∫ ∫
D0

A(t, s) dt ds +
k+k′−m∑
i=m+1

∫ ∫
Di

A(t, s) dt ds.
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We first show that
∫∫

D0
A(t, s) dt ds is super-exponentially small. Similar to the

proof of Theorem 4.6, applying (4.21), (4.25) and (4.26), we obtain∫ ∫
D0

A(t, s) dt ds

≤
∫ ∫

D0

dt ds

∫ ∞
u

dxp∇X|J (t),∇X|J ′ (s)(0,0)

× pX(t)

(
x|∇X|J (t) = 0,∇X|J ′(s) = 0

)
×E

{∣∣det∇2X|J (t)
∣∣∣∣det∇2X|J ′(s)

∣∣|(4.33)

X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0
}

≤ C′
1

∫ ∫
D0

dt ds

∫ ∞
u

dx
(
1 + xN1

)‖s − t‖−m

× pX(t)

(
x|∇X|J (t) = 0,∇X|J ′(s) = 0

)
,

for some positive constants C′
1 and N1. Due to Lemma 4.5, we only need to con-

sider the case when ‖s − t‖ is small. It follows from Taylor’s formula (4.23) that
as ‖s − t‖ → 0,

Var
(
X(t)|∇X|J (t),∇X|J ′(s)

)
≤ Var

(
X(t)|X1(t), . . . ,Xm(t),X1(s), . . . ,Xm(s)

)
= Var

(
X(t)|X1(t), . . . ,Xm(t),X1(t) + 〈∇X1(t), s − t

〉
+ ‖s − t‖1+ηY 1

t,s , . . . ,

Xm(t) + 〈∇Xm(t), s − t
〉 + ‖s − t‖1+ηYm

t,s

)
(4.34)

= Var
(
X(t)|X1(t), . . . ,Xm(t),

〈∇X1(t), et,s

〉 + ‖s − t‖ηY 1
t,s , . . . ,〈∇Xm(t), et,s

〉 + ‖s − t‖ηYm
t,s

)
≤ Var

(
X(t)|〈∇X1(t), et,s

〉 + ‖s − t‖ηY 1
t,s , . . . ,

〈∇Xm(t), et,s

〉
+ ‖s − t‖ηYm

t,s

)
= Var

(
X(t)|〈∇X1(t), et,s

〉
, . . . ,

〈∇Xm(t), et,s

〉) + o(1).

By Lemma A.1, the eigenvalues of [Cov(〈∇X1(t), et,s〉, . . . , 〈∇Xm(t), et,s〉)]−1

are bounded uniformly in t and s. Note that E{X(t)〈∇Xi(t), et,s〉} = −αi(t, s).
Applying these facts to the last line of (4.34), we see that there exist constants
C4 > 0 and ε0 > 0 such that for ‖s − t‖ sufficiently small,

Var
(
X(t)|∇X|J (t),∇X|J ′(s)

) ≤ σ 2
T − C4

m∑
i=1

α2
i (t, s) + o(1)

(4.35)
< σ 2

T − ε0,
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where the last inequality is due to the fact that (t, s) ∈ D0 implies

m∑
i=1

α2
i (t, s) ≥

m∑
i=1

α2
i (t, s)

∣∣〈ei, et,s〉
∣∣2 ≥ 1

m

(
m∑

i=1

αi(t, s)〈et,s, ei〉
)2

≥ β2
0

m
.

Plugging (4.35) into (4.33) and noting that 1/‖s − t‖m is integrable on J × J ′, we
conclude that

∫∫
D0

A(t, s) dt ds is finite and super-exponentially small.
Next we show that

∫∫
Di

A(t, s) dt ds is super-exponentially small for i = m +
1, . . . , k. It follows from (4.28) that

∫∫
Di

A(t, s) dt ds is bounded by∫ ∫
Di

dt ds

∫ ∞
u

dx

∫ ∞
0

dwipX(t),∇X|J (t),Xi(s),∇X|J ′ (s)(x,0,wi,0)

×E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|(4.36)

X(t) = x,∇X|J (t) = 0,Xi(s) = wi,∇X|J ′(s) = 0
}
.

We can write

pX(t),Xi(s)

(
x,wi |Xi(t) = 0

)
= 1

2πσ1(t)σ2(t, s)(1 − ρ2(t, s))1/2

× exp
{
− 1

2(1 − ρ2(t, s))

(
x2

σ 2
1 (t)

+ w2
i

σ 2
2 (t, s)

− 2ρ(t, s)xwi

σ1(t)σ2(t, s)

)}
,

where

σ 2
1 (t) = Var

(
X(t)|Xi(t) = 0

)
, ρ(t, s) = E{X(t)Xi(s)|Xi(t) = 0}

σ1(t)σ2(t, s)
,

σ 2
2 (t, s) = Var

(
Xi(s)|Xi(t) = 0

) = detCov(Xi(s),Xi(t))

λii

,

and ρ2(t, s) < 1 due to (H3). Therefore,

pX(t),∇X|J (t),Xi(s),∇X|J ′ (s)(x,0,wi,0)

= p∇X|J ′ (s),X1(t),...,Xi−1(t),Xi+1(t),...,Xk(t)

× (
0|X(t) = x,Xi(s) = wi,Xi(t) = 0

)
(4.37)

× pX(t),Xi(s)

(
x,wi |Xi(t) = 0

)
pXi(t)(0)

≤ C5 exp
{
− 1

2(1 − ρ2(t, s))

(
x2

σ 2
1 (t)

+ w2
i

σ 2
2 (t, s)

− 2ρ(t, s)xwi

σ1(t)σ2(t, s)

)}
× (

detCov
(
X(t),∇X|J (t),Xi(s),∇X|J ′(s)

))−1/2
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for some positive constant C5. Also, by an argument that is similar to the proof of
Theorem 4.6, we can show that there exist positive constants C6,N2 and N3 such
that

detCov
(∇X|J (t),Xi(s),∇X|J ′(s)

) ≥ C−1
6 ‖s − t‖2(m+1),(4.38)

C−1
6 ‖s − t‖2 ≤ σ 2

2 (t, s) ≤ C6‖s − t‖2(4.39)

and

E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|

X(t) = x,∇X|J (t) = 0,Xi(s) = wi,∇X|J ′(s) = 0
}

= E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|X(t) = x,∇X|J (t) = 0,(4.40) 〈∇Xi(t), et,s

〉 = wi/‖s − t‖ + o(1),∇X|J ′(s) = 0
}

≤ C7
(
xN2 + (

wi/‖s − t‖)N3 + 1
)
.

Combining (4.36) with (4.37), (4.38) and (4.40), and making change of variable
w = wi/‖s − t‖, we obtain that for some positive constant C8,∫ ∫

Di

A(t, s) dt ds

≤ C8

∫ ∫
Di

dt ds‖s − t‖−m−1
∫ ∞
u

dx

∫ ∞
0

dwi

× (
xN2 + (

wi/‖s − t‖)N3 + 1
)

(4.41)

× exp
{
− 1

2(1 − ρ2(t, s))

(
x2

σ 2
1 (t)

+ w2
i

σ 2
2 (t, s)

− 2ρ(t, s)xwi

σ1(t)σ2(t, s)

)}

= C8

∫ ∫
Di

dt ds‖s − t‖−m
∫ ∞
u

dx

∫ ∞
0

dw
(
xN2 + wN3 + 1

)
× exp

{
− 1

2(1 − ρ2(t, s))

(
x2

σ 2
1 (t)

+ w2

σ̃ 2
2 (t, s)

− 2ρ(t, s)xw

σ1(t)σ̃2(t, s)

)}
,

where σ̃2(t, s) = σ2(t, s)/‖s − t‖ is bounded by (4.39). Applying Taylor’s for-
mula (4.23) to Xi(s) and noting that E{X(t)〈∇Xi(t), et,s〉} = −αi(t, s), we obtain

ρ(t, s) = 1

σ1(t)σ2(t, s)

(
E

{
X(t)Xi(s)

} − 1

λii

E
{
X(t)Xi(t)

}
E

{
Xi(s)Xi(t)

})

= ‖s − t‖
σ1(t)σ2(t, s)

(
−αi(t, s) + ‖s − t‖η

E
{
X(t)Y i

t,s

}
− ‖s − t‖η

λii

E
{
X(t)Xi(t)

}
E

{
Xi(t)Y

i
t,s

})
.
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By (4.39) and the fact that (t, s) ∈ Di implies αi(t, s) ≥ βi > 0 for i = m +
1, . . . , k, we conclude that ρ(t, s) ≤ −δ0 for some δ0 > 0 uniformly for t ∈ J ,
s ∈ J ′ with ‖s − t‖ sufficiently small. Then applying Lemma 4.10 to (4.41) yields
that

∫∫
Di

A(t, s) dt ds is super-exponentially small.
It is similar to prove that

∫∫
Di

A(t, s) dt ds is super-exponentially small for i =
k + 1, . . . , k + k′ − m. In fact, in such case,

∫∫
Di

A(t, s) dt ds is bounded by∫ ∫
Di

dt ds

∫ ∞
u

dx

∫ ∞
0

dzipX(t),∇X|J (t),Xi(t),∇X|J ′ (s)(x,0, zi,0)

×E
{∣∣det∇2X|J (t)

∣∣∣∣det∇2X|J ′(s)
∣∣|

X(t) = x,∇X|J (t) = 0,Xi(t) = zi,∇X|J ′(s) = 0
}
.

We can follow the proof in the previous stage by exchanging the positions of Xi(s)

and Xi(t) and replacing wi with zi . The details are omitted since the procedure is
very similar.

If k = 0, then m = 0 and σ(J ′) = {1, . . . , k′}. Since J becomes a singleton, we
may let J = {t0}. By the Kac–Rice metatheorem, E{Mu(J )Mu(J

′)} is bounded by∫
J ′

ds

∫ ∞
u

dx

∫ ∞
u

dy

∫ ∞
0

dz1 · · ·
∫ ∞

0
dzk′pt0,s(x, y, z1, . . . , zk′,0)

×E
{∣∣det∇2X|J ′(s)

∣∣|
X(t0) = x,X(s) = y,X1(t0) = z1, . . . ,Xk′(t0) = zk′,∇X|J ′(s) = 0

}
:=

∫
J ′

Ã(t0, s) ds,

where pt0,s(x, y, z1, . . . , zk′,0) is the density of (X(t0),X(s),X1(t0), . . . ,Xk′(t0),
∇X|J ′(s)) evaluated at (x, y, z1, . . . , zk′,0). Similarly, J ′ could be covered by⋃k′

i=1 D̃i with D̃i = {s ∈ J ′ :αi(t0, s) ≤ −β̃i} for some positive constants β̃i ,
1 ≤ i ≤ k′. On the other hand,∫

D̃i

Ã(t0, s) ds ≤
∫
D̃i

ds

∫ ∞
u

dx

∫ ∞
0

dzipX(t0),Xi(t0),∇X|J ′ (s)(x, zi,0)

×E
{∣∣det∇2X|J ′(s)

∣∣|X(t0) = x,Xi(t0) = zi,∇X|J ′(s) = 0
}
.

By similar discussions, we obtain that E{ME
u (J )ME

u (J ′)} is super-exponentially
small, and hence complete the proof. �

5. Further remarks and examples.

REMARK 5.1 (The case when T contains the origin). We now show that the
conclusions of Theorems 4.6 and 4.8 still hold when T contains the origin. In such
case, condition (H3) is actually not satisfied since X(0) = 0 is degenerate [this is
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in contrast with the case when X = {X(t), t ∈ R
N } is assumed to have constant

variance]. We will in fact prove a more general result. Let T0 ⊂ T be a finite union
of compact rectangles such that supt∈T0

ν(t) < σ 2
T , then according to the Borell–

TIS inequality, P{supt∈T0
X(t) ≥ u} is super-exponentially small. Let T̂ = T \ T0,

then

P

{
sup
t∈T̂

X(t) ≥ u
}

≤ P

{
sup
t∈T

X(t) ≥ u
}

(5.1)
≤ P

{
sup
t∈T̂

X(t) ≥ u
}

+ P

{
sup
t∈T0

X(t) ≥ u
}
.

To estimate P{supt∈T̂ X(t) ≥ u}, similar to the rectangle T , we decompose T̂ into
several faces by lower dimensions such that T̂ = ⋃N

k=0 ∂kT̂ = ⋃N
k=0

⋃
L∈∂kT̂

L.
Then we can get the bounds similar to (4.3) with T replaced with T̂ and J replaced
with L. Following the proof of Theorem 4.6 yields

P

{
sup
t∈T̂

X(t) ≥ u
}

=
N∑

k=0

∑
L∈∂kT̂

E
{
Mu(L)

} + o
(
e−αu2−u2/(2σ 2

T )).
Because supt∈T0

ν(t) < σ 2
T , we can show that terms E{Mu(L)} are super-

exponentially small for all faces L such that L ⊂ ∂kT̄0 with 0 ≤ k ≤ N − 1. The
same reasoning yields that for 1 ≤ k ≤ N , L ∈ ∂kT̂ , J ∈ ∂kT such that L ⊂ J , the
difference between E{Mu(L)} and E{Mu(J )} is super-exponentially small. Hence,
we obtain

P

{
sup
t∈T̂

X(t) ≥ u
}

= ∑
{t}∈∂0T

�

(
u√
ν(t)

)
+

N∑
k=1

∑
J∈∂kT

1

(2π)(k+1)/2|
J |1/2(5.2)

×
∫
J

|
J − 
J (t)|
θk
t

Hk−1

(
u

θt

)
e−u2/(2θ2

t ) dt + o
(
e−αu2−u2/(2σ 2

T )).
Here, by convention, if θt = 0, we regard e−u2/(2θ2

t ) as 0. Combining (5.1)
with (5.2), we conclude that Theorem 4.6 still holds when T contains the origin.
The argument for Theorem 4.8 is similar.

REMARK 5.2. Based on the proofs of Theorems 4.6 and 4.8, one may ex-
pect that the approximation (1.1) holds for a much wider class of smooth Gaussian
fields (not necessarily with stationary increments). Meanwhile, the argument for
the parameter set could go far beyond the rectangle case. These further develop-
ments are in Cheng (2013).
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REMARK 5.3 (Refinements of Theorem 4.6). Let X be a Gaussian field as in
Theorem 4.6. Suppose that ν(t0) = σ 2

T for some t0 ∈ J ∈ ∂kT (k ≥ 0) and ν(t) <

σ 2
T for all t ∈ T \ {t0}.

(i) If k = 0, then, due to (4.15), supt∈T \{t0} θ
2
t ≤ σ 2

T − ε0 for some ε0 > 0. This
implies that E{Mu(J

′)} are super-exponentially small for all faces J ′ other than
{t0}. Therefore, there is a constant α > 0 such that

P

{
sup
t∈T

X(t) ≥ u
}

= �

(
u

σT

)
+ o

(
e−αu2−u2/(2σ 2

T )) as u → ∞.(5.3)

For example, let Y be a stationary isotropic Gaussian field with covariance ρ(t) =
e−‖t‖2

and define X(t) = Y(t) − Y(0). Then X is a smooth Gaussian field with
stationary increments satisfying conditions (H1)–(H3). Let T = [0,1]N , then we
can apply (5.3) to approximate the excursion probability of X with t0 = (1, . . . ,1).

(ii) If k ≥ 1, then similarly, E{Mu(J
′)} are super-exponentially small for all

faces J ′ �= J . It follows from Theorem 4.6 that

P

{
sup
t∈T

X(t) ≥ u
}

= uk−1

(2π)(k+1)/2|
J |1/2

∫
J

|
J − 
J (t)|
θ2k−1
t

e−u2/(2θ2
t ) dt

(
1 + o(1)

)
.

Let τ(t) = θ2
t , then ∀i ∈ σ(J ), τi(t0) = 0, since t0 is a local maximum point of τ

restricted on J . Assume additionally that the Hessian matrix

�J (t0) := (
τij (t0)

)
i,j∈σ(J )(5.4)

(here τij = ∂2τ/∂ti ∂tj ) is negative definite, then the Hessian matrix of 1/(2θ2
t ) at

t0 restricted on J ,

�̃J (t0) = − 1

2τ 2(t0)

(
τij (t0)

)
i,j∈σ(J ) = − 1

2σ 4
T

�J (t0),

is positive definite. Let g(t) = |
J − 
J (t)|/θ2k−1
t and h(t) = 1/(2θ2

t ), applying
Lemma A.2 in the Appendix with T replaced by J yields that as u → ∞,

P

{
sup
t∈T

X(t) ≥ u
}

= uk−1|
J − 
J (t0)|
(2π)(k+1)/2|
J |1/2θ2k−1

t0

(2π)k/2

uk|�̃J (t0)|1/2
e
−u2/(2θ2

t0
)(1 + o(1)

)
(5.5)

= 2k/2|
J − 
J (t0)|
|
J |1/2| − �J (t0)|1/2 �

(
u

σT

)(
1 + o(1)

)
.

EXAMPLE 5.4 (The cosine field). We consider the cosine random field Z on
R

2 [cf. Adler and Taylor (2007), page 382]:

Z(t) = 1√
2

2∑
i=1

(
ξi cos ti + ξ ′

i sin ti
)
, t = (t1, t2) ∈ R

2,
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where ξ1, ξ ′
1, ξ2, ξ ′

2 are independent, standard Gaussian variables. Clearly Z is
a centered, unit-variance and smooth stationary Gaussian field. Moreover, Z is
periodic and Z(t) = −Z11(t) − Z22(t). Let X(t) = Z(t) − Z(0) for all t ∈ T ⊂
[0,2π)2. Then X is a centered and smooth Gaussian field with stationary incre-
ments with X(0) = 0. The variogram and covariance of X are given respectively
by

ν(t) = 2 − cos t1 − cos t2,
(5.6)

C(t, s) = 1 + 1

2

2∑
i=1

[
cos(ti − si) − cos ti − cos si

]
.

Taking the partial derivatives of C gives

E
{
X(t)∇X(t)

} = 1
2(sin t1, sin t2)

T , 
 = Cov
(∇X(t)

) = 1
2I2,

(5.7)

 − 
(t) = −E

{
X(t)∇2X(t)

} = 1
2

[
I2 − diag(cos t1, cos t2)

]
,

where I2 is the 2 × 2 identity matrix and diag denotes the diagonal matrix. There-
fore, X satisfies conditions (H1) and (H2) on T ⊂ (0,2π)2. Even though condition
(H3) is not fully satisfied [because X12(t) ≡ 0 and X(t) = −2X11(t) − 2X22(t)

when t = (π,π)], it can be shown that this does not affect the validity of Theo-
rems 3.2, 4.6 and 4.8 for the random field {Z(t)−Z(0), t ∈ R

2} with T ⊂ (0,2π)2.
(i) Let T = [0, π/2]2. Then by (5.6), ν(t) attains its maximum 2 only at the

upper-right vertex (π/2, π/2), where both partial derivatives of ν are positive.
By Remark 5.1 (with T0 = [0, ε] × [0, π/2] ∪ [0, π/2] × [0, ε], where ε > 0 is
sufficiently small) and the result (i) in Remark 5.3, we obtain P{supt∈T X(t) ≥
u} = �(u/

√
2)(1 + o(e−αu2

)).
(ii) Let T = [0,3π/2] × [0, π/2]. Then ν(t) attains its maximum 3 only at the

boundary point t∗ = (π,π/2), where ν2(t
∗) > 0 so that condition (4.15) is satis-

fied. In this case, t∗ ∈ J = (0,3π/2) × {π/2}. By (5.7), we obtain 
J = 1
2 and


J − 
J (t∗) = 1
2(1 − cos t∗1 ) = 1. On the other hand, for t ∈ J , by (5.7),

τ(t) = θ2
t = Var

(
X(t)|X1(t)

) = 2 − cos t1 − cos t2 − 1
2 sin2 t1.(5.8)

Therefore, �J (t∗) = τ11(t
∗) = −2. By plugging these into (5.5) with k = 1, we

have P{supt∈T X(t) ≥ u} = √
2�(u/

√
3)(1 + o(1)).

(iii) Let T = [0,3π/2]2. Then ν(t) attains its maximum 4 only at the interior
point t∗ = (π,π). In this case, t∗ ∈ J = (0,3π/2)2. By (5.7), we obtain 
J = 1

2I2
and 
J − 
J (t∗) = I2. On the other hand, for t ∈ J , by (5.7),

τ(t) = θ2
t = Var

(
X(t)|X1(t),X2(t)

)
(5.9)

= 2 − cos t1 − cos t2 − 1
2 sin2 t1 − 1

2 sin2 t2.

Therefore, �J (t∗) = (τij (t
∗))i,j=1,2 = −2I2. By plugging these into (5.5) with

k = 2, we obtain P{supt∈T X(t) ≥ u} = 2�(u/2)(1 + o(1)).
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REMARK 5.5 (Refinements of Theorem 4.8). Let X be a Gaussian field as in
Theorem 4.8. Suppose t0 ∈ J ∈ ∂kT is the only point in T such that ν(t0) = σ 2

T .
Assume σ(J ) = {1, . . . , k}, all elements in ε(J ) are 1, νk′(t0) = 0 for all k + 1 ≤
k′ ≤ N . Then by Theorem 4.8,

P

{
sup
t∈T

X(t) ≥ u
}

(5.10)

= E
{
ME

u (J )
} +

N∑
k′=k+1

∑
J ′∈∂k′T ,J̄ ′∩J̄ �=∅

E
{
ME

u

(
J ′)} + o

(
e−αu2−u2/(2σ 2

T )).
Lemma 4.2 indicates E{ME

u (J )} = (−1)kE{∑k
i=0(−1)iμi(J )}(1 + o(e−αx2

)).
Therefore,

E
{
ME

u (J )
} = (−1)k

∫
J

p∇X|J (t)(0) dt

×E
{
det∇2X|J (t)1{(Xk+1(t),...,XN(t))∈RN−k+ }

× 1{X(t)≥u}|∇X|J (t) = 0
}(

1 + o
(
e−αx2))

=
∫ ∞
u

dx

∫
J

dt
(−1)ke−x2/(2θ2

t )

(2π)(k+1)/2|
J |1/2θt

(5.11)

×E
{
det∇2X|J (t)1{(Xk+1(t),...,XN(t))∈RN−k+ }|

X(t) = x,∇X|J (t) = 0
}(

1 + o
(
e−αu2))

:=
∫ ∞
u

AJ (x) dx
(
1 + o

(
e−αu2))

.

Similarly, we have

E
{
ME

u

(
J ′)}

=
∫ ∞
u

dx

∫
J ′

dt
(−1)k

′
e−x2/(2θ2

t )

(2π)(k
′+1)/2|
J ′ |1/2θt

×E
{
det∇2X|J ′(t)1{(XJ ′

1
(t),...,XJ ′

N−k′ (t))∈R
N−k′
+ }|

X(t) = x,∇X|J ′(t) = 0
}(

1 + o
(
e−αu2))

.

(i) First, we consider the case k ≥ 1. We use the same notation τ(t), �J (t) and
�̃J (t) in Remark 5.3. Let h(t) = 1/(2θ2

t ) and

gx(t) = (−1)k

(2π)(k+1)/2|
J |1/2θt

E
{
det∇2X|J (t)1{(Xk+1(t),...,XN(t))∈RN−k+ }|

X(t) = x,∇X|J (t) = 0
}
.
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Note that supt∈T |gx(t)| = o(xN1) for some N1 > 0 as x → ∞, which implies

that the growth of gx(t) can be dominated by the exponential decay e−x2h(t),
hence both Lemmas A.2 and A.3 in the Appendix are still applicable. Applying
Lemma A.2 with T replaced by J and u replaced by x2, we obtain that as x → ∞,

AJ (x) = (2π)k/2

xk(det �̃J (t0))1/2
gx(t0)e

−x2/(2σ 2
T )(1 + o(1)

)
.(5.12)

On the other hand, it follows from (3.16) that

gx(t) = 1

(2π)(k+1)/2|
J |1/2θt

∫
· · ·

∫
R

N−k+
dyk+1 · · · dyN

× |
J − 
J (t)|
γ k
t

Hk

(
x

γt

+ γtCk+1(t)yk+1 + · · · + γtCN(t)yN

)
× pXk+1(t),...,XN(t)

(
yk+1, . . . , yN |X(t) = x,∇X|J (t) = 0

)
.

Note that, under the assumptions on X at the beginning of Remark 5.5, X(t0) and
∇X(t0) are independent, and Cj(t0) = 0 for all 1 ≤ j ≤ N . Therefore,

gx(t0) = |
J − 
J (t0)|
(2π)(k+1)/2|
J |1/2σk+1

T

Hk

(
x

σT

)
× P

{(
Xk+1(t0), . . . ,XN(t0)

) ∈ R
N−k+ |∇X|J (t0) = 0

}
.

Plugging this and (5.12) into (5.11), we obtain

E
{
ME

u (J )
}

= 2k/2|
J − 
J (t0)|
|
J |1/2| − �J (t0)|1/2 �

(
u

σT

)
(5.13)

× P
{(

Xk+1(t0), . . . ,XN(t0)
) ∈ R

N−k+ |∇X|J (t0) = 0
}(

1 + o(1)
)
.

For J ′ ∈ ∂k′T with J̄ ′ ∩ J̄ �= ∅, we apply Lemma A.3 with T replaced by J ′ to
obtain

E
{
ME

u

(
J ′)}

= 2k′/2|
J ′ − 
J ′(t0)|
|
J ′ |1/2| − �J ′(t0)|1/2 �

(
u

σT

)
P

{
ZJ ′(t0) ∈R

k′−k−
}

(5.14)

× P
{(

XJ ′
1
(t0), . . . ,XJ ′

N−k′ (t0)
) ∈R

N−k′
+ |∇X|J ′(t0) = 0

}(
1 + o(1)

)
,

where ZJ ′(t0) is a centered (k′ − k)-dimensional Gaussian vector with covariance
matrix −(τij )i,j∈σ(J ′)\σ(J ). Plugging (5.13) and (5.14) into (5.10), we obtain the
asymptotic result.
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(ii) k = 0, say J = {t0}. Note that X(t0) and ∇X(t0) are independent, therefore,

E
{
ME

u (J )
} = �

(
u

σT

)
P

{∇X(t0) ∈ R
N+

}
.(5.15)

For J ′ ∈ ∂k′T with J̄ ′ ∩ J̄ �= ∅, then E{ME
u (J ′)} is given by (5.14) with k = 0.

Plugging (5.15) and (5.14) into (5.10), we obtain the asymptotic formula for the
excursion probability.

EXAMPLE 5.6 (Continued: The cosine field). We consider the Gaussian field
X = {X(t), t ∈ R

2} defined in Example 5.4.
(i) Let T = [0, π]2. Then ν(t) attains its maximum 4 only at the corner t∗ =

(π,π), where ∇ν(t∗) = 0 so that the condition (4.15) is not satisfied. Instead, we
will use the result (ii) in Remark 5.5 with J = {t∗} and k = 0. Let J ′ = (0, π) ×
{π}, J ′′ = {π} × (0, π). Combining the results in Example 5.4 with (5.15) and
(5.14), and noting that 
 = 1

2I2 implies X1(t) and X2(t) are independent for all t ,
we obtain

E
{
ME

u (J )
} = 1

4�(u/2), E
{
ME

u (∂2T )
} = 1

2�(u/2)
(
1 + o(1)

)
,

E
{
ME

u

(
J ′)} = E

{
ME

u

(
J ′′)} =

√
2

4 �(u/2)
(
1 + o(1)

)
.

Summing these up, we have P{supt∈T X(t) ≥ u} = [(3 + 2
√

2)/4]�(u/2)(1 +
o(1)).

(ii) Let T = [0,3π/2] × [0, π]. Then ν(t) attains its maximum 4 only at the
boundary point t∗ = (π,π), where ν2(t

∗) = 0. Applying the result (i) in Re-
mark 5.5 with J = (0,3π/2) × {π} and k = 1, we obtain

E
{
ME

u (J )
} =

√
2

2 �(u/2), E
{
ME

u (∂2T )
} = �(u/2)

(
1 + o(1)

)
,

which implies that P{supt∈T X(t) ≥ u} = [(2 + √
2)/2]�(u/2)(1 + o(1)).

REMARK 5.7. Note that we only provide the first-order approximation for
the examples in this section. However, as shown in the theory of the approxima-
tions of integrals [see, e.g., Wong (2001)], the integrals in (4.16) and (4.27) can
be expanded with more terms once the covariance function of the Gaussian field
is smooth enough. Hence, for the examples above, higher-order approximation is
available. Since the procedure is similar and the computation is tedious, we omit
such argument here.

APPENDIX

This appendix contains proofs of Lemmas 4.9, 4.10 and some other auxiliary
facts.
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PROOF OF LEMMA 4.9. Let MN×N be the set of all N × N matrices. Define
a mapping φ : RN × MN×N → R by (ξ,A) �→ 〈ξ,Aξ 〉. Then φ is continuous.
Since 
 − 
(t) is positive definite, we have φ(e,
 − 
(t)) > 0 for all t ∈ T

and e ∈ S
N−1. The conclusion of the lemma follows from this and the fact that

{(e,
 − 
(t)) : t ∈ T , e ∈ S
N−1} is a compact subset of R

N × MN×N and φ is
continuous. �

PROOF LEMMA 4.10. We only prove the first case, since the second case fol-
lows from the first one. By elementary computation on the joint density of ξ1(t)

and ξ2(s), we obtain

sup
t∈T1,s∈T2

E
{(

1 + ∣∣ξ1(t)
∣∣N1 + ∣∣ξ2(s)

∣∣N2
)
1{ξ1(t)≥u,ξ2(s)<0}

}
≤ 1

2πσ 1σ 2(1 − ρ2)1/2

∫ ∞
u

exp
{
− x2

1

2σ 2
1

}
dx1

×
∫ 0

−∞
(
1 + |x1|N1 + |x2|N2

)
exp

{
− 1

2σ 2
2(1 − ρ2)

(
x2 − σ 2ρx1

σ 1

)2}
dx2

= o

(
exp

{
− u2

2σ 2
1

− σ 2
2ρ

2u2

2σ 2
2(1 − ρ2)σ 2

1

+ εu2
})

,

as u → ∞, for any ε > 0. �

A similar argument for proving Lemma 4.9 yields the following result.

LEMMA A.1. Let {A(t) = (aij (t))1≤i,j≤N : t ∈ T } be a family of positive def-
inite matrices such that all elements aij (·) are continuous. Denote by x and x the
infimum and supremum of the eigenvalues of A(t) over t ∈ T , respectively, then
0 < x ≤ x < ∞.

The following two formulas state the results on the Laplace approximation
method. Lemma A.2 can be found in many books on the approximations of in-
tegrals; here we refer to Wong (2001). Lemma A.3 can be derived by following
similar arguments in the proof of the Laplace method for the case of boundary
point in Wong (2001).

LEMMA A.2 (Laplace method for interior point). Let t0 be an interior point
of T . Suppose the following conditions hold: (i) g(t) ∈ C(T ) and g(t0) �= 0; (ii)
h(t) ∈ C2(T ) and attains its unique minimum at t0; and (iii) ∇2h(t0) is positive
definite. Then as u → ∞,∫

T
g(t)e−uh(t) dt = (2π)N/2

uN/2(det∇2h(t0))1/2 g(t0)e
−uh(t0)

(
1 + o(1)

)
.
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LEMMA A.3 (Laplace method for boundary point). Let t0 ∈ J ∈ ∂kT with
0 ≤ k ≤ N − 1. Suppose that conditions (i), (ii) and (iii) in Lemma A.2 hold, and
additionally ∇h(t0) = 0. Then as u → ∞,∫

T
g(t)e−uh(t) dt = (2π)N/2

P{ZJ (t0) ∈ (−E(J ))}
uN/2(det∇2h(t0))1/2 g(t0)e

−uh(t0)
(
1 + o(1)

)
,

where ZJ (t0) is a centered (N − k)-dimensional Gaussian vector with covariance
matrix (hij (t0))J1≤i,j≤JN−k

, −E(J ) = {x ∈ R
N :−x ∈ E(J )}, and the definitions

of J1, . . . , JN−k and E(J ) are in (3.4).
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