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We provide a uniform law for the weak convergence of additive func-
tionals of partial sum processes to the local times of linear fractional stable
motions, in a setting sufficiently general for statistical applications. Our re-
sults are fundamental to the analysis of the global properties of nonparametric
estimators of nonlinear statistical models that involve such processes as co-
variates.

1. Introduction. Let xt = ∑t
s=1 vs be the partial sum of a scalar linear pro-

cess {vt }, for which the finite-dimensional distributions of d−1
n x�nr� converge

to those of X(r). Under certain regularity conditions, we then have the finite-
dimensional convergence

Lf
n (a,hn) := dn

nhn

n∑
t=1

f

(
xt − dna

hn

)
�

f.d.d.
L(a)

∫
R

f,(1.1)

where a ∈ R, f is Lebesgue integrable, hn = o(dn) is a deterministic sequence,
and L denotes the occupation density (or local time; see Remark 2.5 below) asso-
ciated to X. Convergence results of this kind are particularly well documented in
the case where {xt } is a random walk [see the monograph by Borodin and Ibrag-
imov (1995)], and have more recently been extended to cover generating mecha-
nisms that allow the increments of {xt } to exhibit significant temporal dependence
[Jeganathan (2004), Wang and Phillips (2009a)].

These more general theorems concerning (1.1) have, in turn, played a funda-
mental role in the study of nonparametric estimation and testing in the setting of
nonlinear cointegrating models. The simplest of these models takes the form

yt = m0(xt ) + ut ,(1.2)

where {xt } is as above, {ut } is a weakly dependent error process, and m0 is an
unknown function, assumed to possess a certain degree of smoothness (or be oth-
erwise approximable). In a series of recent papers, (1.1) has facilitated the de-
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velopment of a pointwise asymptotic distribution theory for kernel regression es-
timators of m0 under very general conditions: see especially Wang and Phillips
(2009a, 2009b, 2011, 2015), Kasparis and Phillips (2012) and Kasparis, Andreou
and Phillips (2012).1

However, there are definite limits to the range of problems that can be suc-
cessfully addressed with the aid of (1.1). In particular, since it concerns only the
finite-dimensional convergence of Lf

n (a,hn), (1.1) is suited only to studying the
local behavior of a nonparametric estimator: that is, its behavior in the vicinity of
a fixed spatial point. For the purpose of obtaining uniform rates of convergence
for kernel regression estimators on “wide” domains—that is, on domains having
a width of the same order as the range of {xt }nt=1—it is manifestly inadequate.
[See Duffy (2015), for a detailed account.] The situation is even worse with re-
gard to sieve nonparametric estimation in this setting—which initially motivated
the author’s research on this problem—since in this case the development of even
a pointwise asymptotic distribution theory requires a prior result on the uniform
consistency of the estimator, over the entire domain on which estimation is to be
performed.

The main purpose of this paper is thus to provide conditions under which the
finite-dimensional convergence in (1.1) can be strengthened to the weak conver-
gence

Lf
n (a,hn)� L(a)

∫
R

f,(1.3)

where Lf
n (a,hn) is regarded as a process indexed by (f, a) ∈ F ×R, and {hn} may

be random. Results of this kind are available in the existing literature, but only in
the random walk case, which requires that the increments of {xt } be independent,
and X to be an α-stable Lévy motion [see Borodin (1981, 1982); Perkins (1982);
and Borodin and Ibragimov (1995), Chapter V]. In contrast, we allow the incre-
ments of {xt } to be serially correlated, such that the associated limiting process
X may be a linear fractional stable motion, which subsumes the α-stable Lévy
motion and fractional Brownian motion as special cases. Further, we permit the
bandwidth sequence {hn} to be a random process, subject only to certain weak
asymptotic growth conditions: this is of considerable utility in statistical applica-
tions, where the assumption that {hn} is a “given” deterministic sequence seems
quite unrealistic. Crucial to the proof of (1.3) is a novel order estimate for Lf

n (a,1)

when
∫

f = 0, which is of interest in its own right.

1If {xt } is Markov, then this distribution theory may be developed by quite different arguments,
without the use of (1.1), see Karlsen and Tjøstheim (2001) and Karlsen, Myklebust and Tjøstheim
(2007), which have spawned a large literature. While we consider this approach to the problem to
be equally important, our results touch upon it only a little, since we work with a class of regressor
processes that are typically (excepting the random walk case) non-Markov.
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The remainder of this paper is organized as follows. Our assumptions on the data
generating mechanism are described in Section 2. The main result (Theorem 3.1) is
discussed in Section 3. An outline of the proof follows in Section 4, together with
the statement of two key auxiliary results (Propositions 4.1 and 4.2). A preliminary
application of our results to the kernel nonparametric estimation of m0 in (1.2) is
given in Section 5. The proof of Theorem 3.1 appears in Section 6, followed in
Section 7 by proofs of Propositions 4.1 and 4.2. A proof related to the application
appears in Section 8. The final two Sections 9 and 10 are of a more technical
nature, detailing the proofs of two lemmas required in Section 7, and so may be
skipped on a first reading.

1.1. Notation. For a complete listing of the notation used in this paper, see
Section H of the Supplement.2 The stochastic order notations op(·) and Op(·) have
the usual definitions, as given, for example, in van der Vaart (1998), Section 2.2.
For deterministic sequences {an} and {bn}, we write an ∼ bn if limn→∞ an/bn = 1,
and an � bn if limn→∞ an/bn ∈ (−∞,∞) \ {0}; for random sequences, an �p bn

denotes an = Op(bn). Xn � X denotes weak convergence in the sense of van der
Vaart and Wellner (1996), and Xn�f.d.d. X the convergence of finite-dimensional
distributions. For a metric space (Q,d), �∞(Q) [resp., �ucc(Q)] denotes the space
of uniformly bounded functions on Q, equipped with the topology of uniform
convergence (resp., uniform convergence on compacta). For p ≥ 1, X a random
variable, and f :R → R, ‖X‖p := (E|X|p)1/p and ‖f ‖p := (

∫
R

|f |p)1/p . BI de-
notes the space of bounded and Lebesgue integrable functions on R. �·� and �·�,
respectively, denote the floor and ceiling functions. C denotes a generic constant
that may take different values even at different places in the same proof; a � b

denotes a ≤ Cb.

2. Model and assumptions. Our assumptions on the generating mechanism
are similar to those of Jeganathan (2004)—who proves a finite-dimensional coun-
terpart to our main theorem—and are comparable to those made on the regressor
process in previous work on the estimation of nonlinear cointegrating regressions
[see, e.g., Park and Phillips (2001), Wang and Phillips (2009b, 2012, 2015); and
Kasparis and Phillips (2012)].

ASSUMPTION 1. (i) {εt } is a scalar i.i.d. sequence. ε0 lies in the domain of at-
traction of a strictly stable distribution with index α ∈ (0,2], and has characteristic
function ψ(λ) := Eeiλε0 satisfying ψ ∈ Lp0 for some p0 ≥ 1.

(ii) {xt } is generated according to

xt :=
t∑

s=1

vs, vt :=
∞∑

k=0

φkεt−k,(2.1)

2The Supplement is available as an addendum to arXiv:1501.05467.

http://arxiv.org/abs/1501.05467
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and either:

(a) α ∈ (1,2], ∑∞
k=0 |φk| < ∞ and φ := ∑∞

k=0 φk �= 0; or φk ∼ kH−1−1/απk for
some {πk}k≥0 strictly positive and slowly varying at infinity, with

(b) H > 1/α; or
(c) H < 1/α and

∑∞
k=0 φk = 0.

In both cases (b) and (c), H ∈ (0,1).

REMARK 2.1. Part (i) implies that there exists a slowly varying sequence {	k}
such that

1

n1/α	n

�nr�∑
t=1

εt �
f.d.d.

Zα(r),(2.2)

where Zα denotes an α-stable Lévy motion on R, with Zα(0) = 0. That is, the
increments of Zα are stationary, and for any r1 < r2 the characteristic function of
Zα(r2) − Zα(r1) has the logarithm

−(r2 − r1)c|λ|α
[
1 + iβ sgn(λ) tan

(
πα

2

)]
,

where β ∈ [−1,1] and c > 0; following Jeganathan (2004), page 1773, we impose
the further restriction that β = 0 when α = 1. We shall also require that {	k} be
chosen such that c = 1 here, which provides a convenient normalization for the
scale of Zα .

REMARK 2.2. To permit the alternative forms of (ii) to be more concisely
referenced, we shall refer to (a) as corresponding to the case where H = 1/α;
this designation may be justified by the manner in which the finite-dimensional
limit of d−1

n x�nr� depends on (H,α), as displayed in (2.6) below. The statement
that H < 1/α will also be used as a shorthand for (c), that is, it will always be
understood that

∑∞
k=0 φk = 0 in this case.

We shall treat the parameters (including H and α) describing the data generating
mechanism as “fixed” throughout, ignoring the dependence of any constants on
these. Let {ck} denote a sequence with c0 = 1 and

ck =
{

φ, if H = 1/α,

|H − 1/α|−1kH−1/απk, otherwise.
(2.3)

By Karamata’s theorem [Bingham, Goldie and Teugels (1987), Theorem 1.5.11],∑k
l=0 φk ∼ ck as k → ∞. Set

dk := k1/αck	k, ek := kd−1
k ,(2.4)

and note that the sequences {ck}, {dk} and {ek} are regularly varying with indices
H − 1/α, H and 1 −H , respectively. Theorems 5.1–5.3 in Kasahara and Maejima
(1988) yield
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PROPOSITION 2.1. Under Assumption 1,

Xn(r) := 1

dn

x�nr� �
f.d.d.

X(r), r ∈ [0,1],(2.5)

where X is the linear fractional stable motion (LFSM)

X(r) :=
∫ r

0
(r − s)H−1/α dZα(s)

(2.6)

+
∫ 0

−∞
[
(r − s)H−1/α − (−s)H−1/α]

dZα(s)

with the convention that X = Zα when H = 1/α; Zα is an α-stable Lévy motion
on R, with Zα(0) = 0.

REMARK 2.3. For a detailed discussion of the LFSM, see Samorodnitsky and
Taqqu (1994). When α = 2, Zα is a Brownian motion with variance 2; if addition-
ally H �= 1/α, X is thus a fractional Brownian motion.

REMARK 2.4. Excepting such cases as the following:

(i) α ∈ (1,2], H > 1/α [Astrauskas (1983), Theorem 2];
(ii) α = 2, H = 1/α and Eε2

0 < ∞ [Hannan (1979)]; and
(iii) α = 2, H < 1/α and E|ε0|q < ∞ for some q > 2 [Davidson and de Jong

(2000), Theorem 3.1];

it may not be possible to strengthen the convergence in (2.5) to weak convergence
on �∞[0,1]. Weak convergence may hold, however, with respect to a weaker topol-
ogy, and we shall be principally concerned with whether this topology is suffi-
ciently strong that

inf
r∈[0,1]Xn(r) � inf

r∈[0,1]X(r), sup
r∈[0,1]

Xn(r)� sup
r∈[0,1]

X(r),(2.7)

such as would follow from weak convergence in the Skorokhod M1 topology [see
Skorohod (1956), Section 2.2.10]. When H = 1/α, sufficient conditions for this
kind of convergence—which entail further restrictions on {φk} than are imposed
here—are given in Avram and Taqqu (1992), Theorem 2 and Tyran-Kamińska
(2010), Theorem 1 and Corollary 1. However, when H < 1/α and α ∈ (0,2),
the sample paths of X are unbounded, and thus (2.7) cannot possibly hold [see
Samorodnitsky and Taqqu (1994), Example 10.2.5]. In any case, (2.7) is not nec-
essary for the main results of this paper; it merely permits Theorem 3.1 below to
take a slightly strengthened form.

REMARK 2.5. In consequence of Theorem 3(i) in Jeganathan (2004), the con-
vergence in (2.5) occurs jointly with

Lf
n (a) := 1

en

n∑
t=1

f (xt − dna) �
f.d.d.

L(a)

∫
R

f, a ∈ R
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for every f ∈ BI. Here, {L(a)}a∈R denotes the occupation density (local time)
of X, a process which, almost surely, has continuous paths and satisfies∫

R

f (x)L(x)dx =
∫ 1

0
f

(
X(r)

)
dr(2.8)

for all Borel measurable and locally integrable f . (For the existence of L, see
Theorem 0 in Jeganathan (2004); the path continuity may be deduced from Theo-
rem 3.1 below.)

3. A uniform law for the convergence to local time. Our main result con-
cerns the convergence

Lf
n (a,hn) := 1

enhn

n∑
t=1

f

(
xt − dna

hn

)
� L(a)

∫
R

f,(3.1)

where Lf
n (a,hn) is regarded as a process indexed by (f, a) ∈ F × R. (F × R is

endowed with the product topology, F having the L1 topology, and R the usual
Euclidean topology.) {hn} is a measurable bandwidth sequence that may be func-
tionally dependent on {xt }, or indeed upon any other elements of the probability
space; it is required only to satisfy:

ASSUMPTION 2. hn ∈ Hn := [hn,hn] with probability approaching 1
(w.p.a.1), where hn = o(dn) and h−1

n = o(en log−2 n).

Define

BIβ :=
{
f ∈ BI|

∫
R

∣∣f (x)
∣∣|x|β dx < ∞

}
(3.2)

and let BILβ denote the subset of Lipschitz continuous functions in BIβ . In order to
state conditions on F ⊂ BI that are sufficient for (3.1) to hold, we first recall some
definitions familiar from the theory of empirical processes. A function F :R →R+
is termed an envelope for F , if supf ∈F |f (x)| ≤ F(x) for every x ∈ R. Given a
pair of functions l, u ∈ L1, define the bracket

[l, u] := {
f ∈ L1|l(x) ≤ f (x) ≤ u(x),∀x ∈ R

};
we say that [l, u] is an ε-bracket if ‖u − l‖1 < ε, and a continuous bracket if l

and u are continuous. Let N∗[ ](ε,F ) denote the minimum number of continuous
ε-brackets required to cover F .

ASSUMPTION 3. (i) F ⊂ BI has envelope F ∈ BILβ , for some β > 0; and
(ii) for each ε > 0, N∗[ ](ε,F ) < ∞.

We may now state our main result, the proof of which appears in Section 6.
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THEOREM 3.1. Suppose Assumptions 1–3 hold. Then:

(i) (3.1) holds in �ucc(F ×R);
and if additionally (2.7) holds, then

(ii) (3.1) holds in �∞(F ×R).

REMARK 3.1. The case where hn = 1, F = {f } and {xt } is a random walk—
which here entails H = 1/α and φi = 0 for all i ≥ 1—has been studied exten-
sively: see in particular Borodin (1981, 1982), Perkins (1982) and Borodin and
Ibragimov (1995), Chapter V. In those works, it is proved (under these more re-
strictive assumptions on {xt }) that

1

en

�nr�∑
t=1

f (xt − dna) � L(a; r)
∫
R

f

on �∞(R × [0,1]), where L(a; r) denotes the local time of X restricted to [0, r].
Theorem 3.1 could be very easily extended in this direction; we have refrained
from doing so only to keep the paper to a reasonable length. The principal con-
tribution of Theorem 3.1 is thus to extend this convergence in a direction more
suitable for statistical applications, by allowing {vt } to be serially correlated and
the bandwidth sequence {hn} to be data-dependent.

REMARK 3.2. After the manuscript of this paper had been completed, we ob-
tained a copy of an unpublished manuscript by Liu, Chan and Wang (2014) in
which, under rather different assumptions from those given here, a result similar
to Theorem 3.1 is proved (for a fixed f and a deterministic sequence {hn}). Re-
garding the differences between our main result and their Theorem 2.1, we may
note particularly their requirement that there exist a sequence of processes {X∗

n}
with X∗

n =d X, and a δ > 0 such that

sup
r∈[0,1]

∣∣Xn(r) − X∗
n(r)

∣∣ = oa.s.
(
n−δ),(3.3)

a condition which excludes a large portion of the processes considered in this pa-
per, in view of Remark 2.4 above. [The availability of (3.3) permits these authors
to prove their result by an argument radically different from that developed here.]
On the other hand, our results do not subsume theirs, since these authors do not
require vt to be a linear process.

Although Assumption 3 requires that F have a smooth envelope and smooth
brackets, it is perfectly consistent with F containing discontinuous functions. In-
deed, Assumption 3 is consistent with such cases as the following, as verified in
Section A of the Supplement. [We expect that boundedness and

∫ |f (x)||x|β dx <

∞ could also be relaxed through the use of a suitable truncation argument, such as
is employed in the proof of Theorem V.4.1 in Borodin and Ibragimov (1995).]
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EXAMPLE 3.1 (Single function). F = {f } where f ∈ BIβ , and is majorised
by another function F ∈ BILβ , in the sense that |f (x)| ≤ F(x) for all x ∈ R. This
obtains trivially if f is itself in BILβ (simply take F(x) := |f (x)|), but is also
consistent with f ∈ BIβ having finitely many discontinuities (at the points {ak}Kk=1,
where ak < ak+1), and being Lipschitz continuous on (−∞, a1)∪[aK,∞); all that
is really necessary here is for f to have one-sided Lipschitz approximants. Impor-
tantly, this includes the case where f (x) = 1{x ∈ I } for any bounded interval I .

EXAMPLE 3.2 (Parametric family). F = {g(x, θ)|θ ∈ } ⊂ BILβ , where 

is compact, and there exists a τ ∈ (0,1] and a ġ ∈ BILβ such that∣∣g(x, θ) − g
(
x, θ ′)∣∣ ≤ ġ(x)

∥∥θ − θ ′∥∥τ

for all θ, θ ′ ∈ .

EXAMPLE 3.3 (Smooth functions). F = {f ∈ Cτ (R)||f | ≤ F }, where F ∈
BILβ and

Cτ
L(R) := {

f ∈ BI| ∃Cf < L s.t.
∣∣f (x) − f

(
x′)∣∣ ≤ Cf

∣∣x − x′∣∣τ ∀x, x′ ∈ R
}

for some τ ∈ (0,1] and L < ∞.

4. Outline of proof and auxiliary results.

4.1. Outline of proof. The principal relationships between the results in this
paper are summarized in Figure 1. The proof of Theorem 3.1, depicted in the top
half of the figure, proceeds as follows. To reduce the difficulties arising by the
randomness of h = hn, we decompose

Lf
n (a,h) = Lϕ

n(a)

∫
R

f +
[
Lf

n (a,h) −Lϕ
n(a)

∫
R

f

]
,(4.1)

where

ϕ(x) := (
1 − |x|)1{|x| ≤ 1

}
(4.2)

denotes the triangular kernel function, and Lϕ
n(a) := Lϕ

n(a,1). (This choice of ϕ is
made purely for convenience; any compactly supported Lipschitz function would
serve our purposes equally well here.) It thus suffices to show that Lϕ

n � L in
�∞(R), and that the bracketed term on the right-hand side of (4.1) is uniformly
negligible over (f,h) ∈ F × Hn.

In view of Remark 2.5 above, the finite-dimensional distributions of Lϕ
n con-

verge to those of L. The asymptotic tightness of Lϕ
n will follow from the bound on

the spatial increments

Lϕ
n(a1) −Lϕ

n(a2) = 1

en

n∑
t=1

[
ϕ(xt − dna1) − ϕ(xt − dna2)

] =: 1

en

n∑
t=1

g1(xt ),
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FIG. 1. Outline of proofs.

given in Proposition 4.1 below. The bracketed term on the right-hand side of (4.1)
may be written as

1

en

n∑
t=1

[
1

h
f

(
xt − dna

h

)
− ϕ(xt − dna)

∫
R

f

]
=: 1

en

n∑
t=1

g2(xt ).(4.3)

Control of (4.3) over progressively denser subsets of F × Hn is provided by
Proposition 4.2 below; the conjunction of a bracketing argument and the conti-
nuity of the brackets suffices to extend this to the entirety of F × Hn.

By construction, both
∫

g1 = 0 and
∫

g2 = 0. The proofs of Propositions
4.1 and 4.2 may therefore be approached in a unified way, through the analysis
of sums of the form

Sng :=
n∑

t=1

g(xt ),(4.4)
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where g ranges over a class G , all members of which have the property that∫
g = 0. Such functions are termed zero energy functions [Wang and Phillips

(2011)]; we shall correspondingly term {Sng}g∈G a zero energy process. Such pro-

cesses are “centered” in the sense that e
−1/2
n Sng converges weakly to a mixed

Gaussian variate [Jeganathan (2008), Theorem 5]; whereas e−1
n Sng � L(0)

∫
g if∫

g �= 0.
Equation (4.4) will be handled by decomposing Sng as

Sng =
n−1∑
k=0

Mnkg +Nng,

where each Mnkg is a martingale; see (7.4) below. We provide order estimates
for the sums of squares and conditional variances of the Mnkg’s (Lemma 7.3); by
an application of either Burkholder’s inequality, or a tail bound due to Bercu and
Touati (2008), these translate into estimates for the Mnkg’s themselves. Proposi-
tions 4.1 and 4.2 then follow by standard arguments.

4.2. Key auxiliary results. To state these, we introduce the quantity

‖f ‖[β] := inf
{
c ∈ R+|∣∣f̂ (λ)

∣∣ ≤ c|λ|β,∀λ ∈ R
}

(4.5)

for f ∈ BI, β ∈ (0,1], and f̂ (λ) := ∫
eiλxf (x)dx. It is easily verified that ‖f ‖[β]

is indeed a norm on the space BI[β] := {f ∈ BI|‖f ‖[β] < ∞} (modulo equality
almost everywhere). Some useful properties of ‖f ‖[β] are collected in Lemma 9.1
below; in particular, it is shown that BI[β] contains all f ∈ BIβ for which

∫
f = 0.

Define

βH := 1 − H

2H
∧ 1,(4.6)

noting that βH ∈ (0,1] for all H ∈ (0,1), and let ‖ · ‖τ2/3 denote the Orlicz norm
associated to the convex and increasing function

τ2/3(x) :=
{

x(e − 1), if x ∈ [0,1],
ex2/3 − 1, if x ∈ (1,∞).

(4.7)

[See van der Vaart and Wellner (1996), page 95 for the definition of an Orlicz
norm.] A bound on the spatial increments of Lϕ

n is given by:

PROPOSITION 4.1. For every β ∈ (0, βH ), there exists Cβ < ∞ such that

sup
a1,a2∈R

∥∥Lϕ
n(a1) −Lϕ

n(a2)
∥∥
τ2/3

≤ Cβ |a1 − a2|β.

The next result shall be applied to prove that the recentered sums (4.3) are uni-
formly negligible. Since the order estimate given below is of interest in its own
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right [see Duffy (2015), for an example of how it may be used to determine the
uniform order of the first-order bias of a nonparametric regression estimator], we
shall state it at a slightly higher level of generality than is needed for our purposes
here. For F ⊂ BI[β], define

δn(β,F ) := ‖F‖∞ + e1/2
n

(‖F‖1 + ‖F‖2
) + end

−β
n ‖F‖[β],(4.8)

where ‖F‖ := supf ∈F ‖f ‖.

PROPOSITION 4.2. Suppose β ∈ (0, βH ) and Fn ⊂ BI[β] with #Fn � nC .
Then

max
f ∈Fn

|Snf |�p δn(β,Fn) logn.(4.9)

If also ‖Fn‖1 � 1, ‖Fn‖[β] = o(d
β
n ) and ‖Fn‖∞ = o(en log−2 n), then

max
f ∈Fn

|Snf | = op(en).

REMARK 4.1. As is clear from the proof, if β ∈ [βH ,1] then (4.9) holds in a
modified form, with end

−β
n ‖F‖[β] in (4.8) being replaced by[

n−1∑
k=1

d
−(1+β)
k + e1/2

n

n−1∑
k=1

k−1/2d
−(1+2β)/2
k

]
‖F‖[β].

The proofs of Propositions 4.1 and 4.2 are given in Section 7 below.

5. A preliminary application to nonparametric regression. Suppose that
we observe {(yt , xt )}nt=1 generated according to the nonlinear cointegrating re-
gression model

yt = m0(xt ) + ut ,

where {ut } is some weakly dependent disturbance process. As shown in Wang and
Phillips (2009b), under suitable smoothness conditions the unknown function m0
may be consistently estimated, at each fixed x ∈ R, by the Nadaraya–Watson esti-
mator

m̂(x) =
∑n

t=1 Khn(xt − x)yt∑n
t=1 Khn(xt − x)

(5.1)

= m0(x) +
∑n

t=1 Khn(xt − x)[(m0(xt ) − m0(x)) + ut ]∑n
t=1 Khn(xt − x)

,

where Kh(u) := h−1K(h−1u), and K ∈ BI is a positive, mean-zero kernel with∫
R

K = 1.
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Now consider the problem of determining the rate at which m̂ converges uni-
formly to m0. As a first step, we would need to obtain the uniform rate of diver-
gence of the denominator in (5.1); it is precisely this rate that the preceding results
allow us to compute. By Theorem 3.1,

1

en

n∑
t=1

Khn(xt − dna) � L(a)(5.2)

in �∞(R), provided P{hn ∈ Hn} → 1, and K satisfies the requirements of Exam-
ple 3.1 (which seems broad enough to cover any reasonable choice of K). Since
a �→ L(a) is random—being dependent on the trajectory of the limiting process
X—we now face the problem of identifying a sequence of sets on which the left
side of (5.2) can be uniformly bounded away from zero. A natural candidate is

Aε
n := {

x ∈ R|Ln

(
d−1
n x

) ≥ ε
}
,

where ε > 0. Ln is trivially bounded away from zero on this set, whence

sup
x∈Aε

n

[
n∑

t=1

Khn(xt − x)

]−1

�p e−1
n .(5.3)

More significantly, for any given δ > 0, we may choose ε > 0 such that

lim sup
n→∞

P

{
1

n

n∑
t=1

1
{
xt /∈ Aε

n

} ≥ δ

}
≤ δ;(5.4)

see Section 8 for the proof. That is, ε > 0 may be chosen such that Aε
n contains

as large a fraction of the observed trajectory {xt }nt=1 as is desired, in the limit as
n → ∞. [Were we to allow ε = εn → 0, we could permit δ = δn → 0 here, but the
order of (5.3) would necessarily be increased.]

Note that the sample-dependence of Aε
n is necessary for it fulfill two roles here,

by being both “small” enough for (5.3) to hold, but also “large” enough to be con-
sistent with (5.4). If Aε

n were replaced by a sequence of deterministic intervals (or
sets, more generally), then the maintenance of (5.3) would necessarily come at the
cost of violating (5.4). For example, when xt is a random walk with finite variance
(α = 2), the “widest” sequence of intervals [−an, an] for which (5.3) holds is one
for which an = o(n1/2): but in consequence, the fraction of any trajectory {xt }nt=1
falling within such an interval will converge to 0, as n → ∞ [see Remark 2.8 in
Duffy (2015)].

In this respect, the availability of Theorem 3.1 allows us to improve upon the
analysis provided in an earlier paper by Chan and Wang (2014)—and, in the ran-
dom walk case, that of Gao et al. (2015)—who obtain uniform convergence rates
for m̂n on precisely such intervals [see Duffy (2015) for further details]. We ex-
pect that it would also play a similarly important role in the derivation of uniform
convergence rates for series regression estimators in this setting, by ensuring the
eigenvalues of the design matrix diverge at an appropriate rate, when attempting to
estimate m0 on a sequence of domains that contains most of the observed {xt }nt=1.
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6. Proof of Theorem 3.1. We shall prove only part (i) of Theorem 3.1 here;
the relatively minor modifications required for the proof of part (ii) are detailed in
Section B of the Supplement. Let M < ∞ be given; it suffices to prove that (3.1)
holds in �∞[−M,M]. To simplify the exposition, we shall require that hn ∈ Hn

always; the proof in the general case (where this occurs w.p.a.1) requires no new
ideas. The proof involves three steps:

(i) show that Lϕ
n(a) � L(a), using Proposition 4.1;

(ii) deduce Lf
n (a,hn) � L(a)

∫
R

f for f ∈ BILβ , using a recentering, Propo-
sition 4.2 and the Lipschitz continuity of f ;

(iii) extend this to all f ∈ F ⊂ BI, where F satisfies Assumption 3, via a
bracketing argument.

(i) Let ϕ be the triangular kernel function, as defined in (4.2) above, and
set β0 := βH/2. Recall that Lf

n (a) := Lf
n (a,1). By Proposition 4.1 and Theo-

rem 2.2.4 in van der Vaart and Wellner (1996),∥∥∥ sup
{a,a′∈M||a−a′|≤δ}

∣∣Lϕ
n

(
a′) −Lϕ

n(a)
∣∣∥∥∥

1

�
∫ δ

0
log3/2(

Mε−1/β0
)

dε + δ log3/2(
Mδ−2/β0

)
� CMδ1/2,

whence Lϕ
n is tight in �∞[−M,M]. Thus, in view of Remark 2.5,

Lϕ
n(a) � L(a)(6.1)

in �∞[−M,M] [see van der Vaart and Wellner (1996), Example 2.2.12].
(ii) Now let f ∈ BILβ ; we may without loss of generality take f to be bounded

by unity, with a Lipschitz constant of unity. For the subsequent argument, it will
be more convenient to work with the inverse bandwidth b := h−1. Define

Bn := {
h−1|h ∈ Hn

} = [bn, bn] := [
h

−1
n , h−1

n

]
and let f(a,b)(x) := bf [b(x −dna)], for (a, b) ∈R×R+. Take Cn := [−nγ ,nγ ]×
Bn, let Cn ⊂ Cn be a lattice of mesh n−δ , and let pn(a, b) denote the projection
of (a, b) ∈ Cn onto a nearest neighbor in Cn (with some tie-breaking rule). The
following is a straightforward consequence of the Lipschitz continuity of f (see
Section C of the Supplement for the proof).

LEMMA 6.1. For every γ ≥ 1, there exists δ > 0 such that

sup
(a,b)∈Cn

1

en

n∑
t=1

∣∣f(a,b)(xt ) − fpn(a,b)(xt )
∣∣ = op(1).
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By taking γ ≥ 1, we may ensure that Cn ⊃ [−M,M]×Bn, for all n sufficiently
large. Thus, for ϕ(a) := ϕ(a,1) and μf := ∫

R
f ,

sup
(a,b)∈[−M,M]×Bn

∣∣Lf
n

(
a, b−1) − μfLϕ

n(a)
∣∣(6.2)

≤ sup
(a,b)∈Cn

1

en

∣∣∣∣∣
n∑

t=1

[
f(a,b)(xt ) − μf ϕ(a)(xt )

]∣∣∣∣∣
≤ sup

(a,b)∈Cn

1

en

∣∣∣∣∣
n∑

t=1

[
f(a,b)(xt ) − μf ϕ(a)(xt )

]∣∣∣∣∣ + op(1)

= sup
g∈Gn

1

en

∣∣∣∣∣
n∑

t=1

g(xt )

∣∣∣∣∣ + op(1),(6.3)

by Lemma 6.1, and we have defined Gn := {f(a,b) − μf ϕ(a)|(a, b) ∈ Cn}. It is
readily verified that ‖g‖1 = 1, #Gn = #Cn � n1+γ+2δ , and using Lemma 9.1(ii),

sup
g∈Gn

‖g‖[β] � b−β
n = o

(
dβ
n

)
, sup

g∈Gn

‖g‖∞ ≤ bn � en log−2 n.

Thus, Gn satisfies the requirements of Proposition 4.2, whence (6.3) is op(1).
Hence, in view of (6.1),

Lf
n (a,hn)� L(a)

∫
R

f(6.4)

in �∞[−M,M], for every f ∈ BILβ .

(iii) Finally, for f ∈ BI define the centered process

νn(f, a) := Lf
n (a,hn) −Lϕ

n(a)

∫
R

f.

For a given ε > 0, let {lk, uk}Kk=1 denote a collection of continuous L1 brackets that
cover F , with ‖uk − lk‖1 < ε; the existence of these is guaranteed by Assump-
tion 3. We first note (see Section C of the Supplement for the proof)

LEMMA 6.2. Under Assumption 3, the brackets {lk, uk}Kk=1 can be chosen so
as to lie in BILβ .

For each f ∈ F , there exists a k ∈ {1, . . . ,K} such that lk ≤ f ≤ uk ,
∫
R
(uk −

f ) < ε, and

νn(f, a) ≤ 1

en

n∑
t=1

[
1

hn

uk

(
xt − dnx

hn

)
− ϕ(xt )

∫
R

f

]

≤ νn(uk, a) +Lϕ
n(a)

∫
R

(uk − f ).
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Taking suprema,

sup
(f,a)∈F×[−M,M]

νn(f, a) ≤ max
1≤k≤K

sup
a∈[−M,M]

νn(uk, a) + ε sup
a∈[−M,M]

Lϕ
n(a)

= ε sup
a∈[−M,M]

Lϕ
n(a) + op(1)

with the second equality following by (6.4), since we may take uk ∈ BILβ by
Lemma 6.2. Applying a strictly analogous argument to the lower bracketing func-
tions, lk , we deduce that

sup
(f,a)∈F×[−M,M]

∣∣νn(f, a)
∣∣ ≤ ε sup

a∈[−M,M]
∣∣Lϕ

n(a)
∣∣ + op(1) = op(1),(6.5)

whence (3.1) holds in �∞[−M,M], in view of (6.1).

7. Controlling the zero energy process. The proofs of Propositions 4.1 and
4.2 rely on a telescoping martingale decomposition similar to that used to prove
maximal inequalities for mixingales [for a textbook exposition, see, e.g., Davidson
(1994), Sections 16.2–16.3], which reduces Snf to a sum of martingale compo-
nents. In order to pass from control over each of these components to an order
estimate for Snf itself, we shall need the following results, the first of which is a
straightforward consequence of Theorem 2.1 in Bercu and Touati (2008), and the
second of which is well known. For a martingale M := {Mt }nt=0 with associated
filtration G := {Gt }nt=0, define

[M] :=
n∑

t=1

(Mt − Mt−1)
2, 〈M〉 :=

n∑
t=1

E
[
(Mt − Mt−1)

2|Gt−1
]
.(7.1)

We say that M is initialised at zero if M0 = 0. Let ‖ · ‖τ1 denote the Orlicz norm
associated to τ1(x) := ex − 1.

LEMMA 7.1. Let {n} denote a sequence of index sets, and {Kn} a real se-
quence such that #n + Kn � nC . Suppose that for each n ∈ N, k ∈ {1, . . . ,Kn}
and θ ∈ n, Mnk(θ) is a martingale, initialised at zero, for which

ω2
nk := max

θ∈n

{∥∥[
Mnk(θ)

]∥∥
τ1

∨ ∥∥〈
Mnk(θ)

〉∥∥
τ1

}
< ∞.(7.2)

Then

max
θ∈n

∣∣∣∣∣
Kn∑
k=1

Mnk(θ)

∣∣∣∣∣ �p

(
Kn∑
k=1

ωnk

)
logn.

LEMMA 7.2. Let Z be a random variable. Then:

(i) ‖Z‖p � p!1/pσ for all p ∈ N, if and only if ‖Z‖τ1 � σ ;
(ii) ‖Z‖2p � (3p)!1/2pσ for all p ∈ N, if and only if ‖Z‖τ2/3 � σ .

The proofs of Lemmas 7.1 and 7.2 appear in Section D of the Supplement.



60 J. A. DUFFY

7.1. The martingale decomposition. For a fixed f ∈ BI[β], it follows from
Lemma 9.3(ii) below and the reverse martingale convergence theorem [Hall and
Heyde (1980), Theorem 2.6], that∥∥Et f (xt+k)

∥∥∞ � d
−(1+β)
k → 0, Et−kf (xt )

p→Ef (xt ) �= 0

for each t ≥ 0 as k → ∞; here Et f (xt+k) := E[f (xt+k)|F t−∞], for F t
s :=

σ({εr}tr=s). Because {f (xt )} is asymptotically unpredictable only in the “for-
wards” direction, we truncate the “usual” decomposition at t = 0, writing

f (xt ) =
t∑

k=1

[
Et−k+1f (xt ) −Et−kf (xt )

] +E0f (xt ).

Performing this for each 1 ≤ t ≤ n gives

n∑
t=1

f (xt ) = E0f (x1) + [
f (x1) −E0f (x1)

]

+E0f (x2) + [
f (x2) −E1f (x2)

] + [
E1f (x2) −E0f (x2)

] + · · ·
+E0f (xn) + [

f (xn) −En−1f (xn)
] + [

En−1f (xn) −En−2f (xn)
]

+ · · · + [
E1f (xn) −E0f (xn)

]
.

Defining

ξktf := Et f (xt+k) −Et−1f (xt+k)(7.3)

and collecting terms appearing in the same “column” of the preceding display, we
thus obtain

Snf =
n∑

t=1

f (xt ) =
n∑

t=1

E0f (xt ) +
n−1∑
k=0

n∑
t=k+1

[
Et−kf (xt ) −Et−k−1f (xt )

]

=
n∑

t=1

E0f (xt ) +
n−1∑
k=0

n−k∑
t=1

[
Et f (xt+k) −Et−1f (xt+k)

]
(7.4)

=
n∑

t=1

E0f (xt ) +
n−1∑
k=0

n−k∑
t=1

ξktf

= Nnf +
n−1∑
k=0

Mnkf,

where

Nnf :=
n∑

t=1

E0f (xt ), Mnkf :=
n−k∑
t=1

ξktf.
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A bound for ‖Nnf ‖∞ is provided by Lemma 9.3(ii) below. {ξktf,F t−∞}n−k
t=1 , by

construction, forms a martingale difference sequence for each k, and so control
over each of the martingale “pieces” Mnkf will follow from control over

Unkf := [Mnkf ] =
n−k∑
t=1

ξ2
ktf, Vnkf := 〈Mnkf 〉 =

n−k∑
t=1

Et−1ξ
2
ktf,

in combination with either Burkholder’s inequality [Hall and Heyde (1980), The-
orem 2.10] or Lemma 7.1 above, as appropriate.

7.2. Proofs of Propositions 4.1 and 4.2. Define

ςn(β,f ) := ‖f ‖∞ + ‖f ‖1 + ‖f ‖[β]
n∑

t=1

d
−(1+β)
t

and

σ 2
nk(β, f ) :=

⎧⎪⎪⎨
⎪⎪⎩

‖f ‖2∞ + ‖f ‖2
2en, if k ∈ {0, . . . , k0},

en

[
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1

]
,

if k ∈ {k0 + 1, . . . , n − 1}.
The following provides the requisite control over the components of (7.4).

LEMMA 7.3. For any β ∈ [0,1],
‖Nnf ‖∞ � ςn(β,f ),(7.5)

and for all 0 ≤ k ≤ n − 1,

‖Unkf ‖τ1 ∨ ‖Vnkf ‖τ1 � σ 2
nk(β, f ).(7.6)

The proof of (7.6), in turn, relies upon the following.

LEMMA 7.4. For every k ∈ {0, . . . , n − 1}, t ∈ {1, . . . , n − k} and β ∈ (0,1]
∥∥ξ2

ktf
∥∥∞ +

n−k−t∑
s=1

∥∥Et ξ
2
k,t+sf

∥∥∞ � σ 2
nk(β, f ).

The proofs of these results are deferred to Sections 9 and 10. We shall also need
the following, for which we recall the definition of δn(β,G ) given in (4.8) above.

LEMMA 7.5. If β ∈ (0, βH ) and G ⊂ BI[β], then there exists a Cβ < ∞ such
that

sup
f ∈G

ςn(β,f ) +
n−1∑
k=0

sup
f ∈G

σnk(β,f ) ≤ Cβδn(β,G ).
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The proof appears in Section D of the Supplement. We now turn to:

PROOF OF PROPOSITION 4.1. Let g ∈ BI[β]. Burkholder’s inequality, and
Lemmas 7.2(i) and 7.3 and give

‖Mnkg‖2p ≤ b
1/2p
2p ‖Unkg‖1/2

p � (b2p · p!)1/2pσnk(β, g) � (3p)!1/2pσnk(β, g)

for every p ∈N, where b2p depends on p in the manner prescribed by Burkholder’s
inequality. Hence, ‖Mnkg‖τ2/3 � σnk(β, g) by Lemma 7.2(ii). Then by (7.4),
Lemma 7.3 and Lemma 7.5 (taking G = {g})

‖Sng‖τ2/3 ≤ ‖Nng‖∞ +
n−1∑
k=0

‖Mnkg‖τ2/3 ≤ Cδn(β, g)(7.7)

for some C < ∞ depending on β .
For a1, a2 ∈ R, set � := |a1 − a2| and define

ϕ[a1,a2](x) := ϕ(x − dna1) − ϕ(x − dna2).

Let β ∈ (0, βH ). Since ϕ is bounded and Lipschitz,

‖ϕ[a1,a2]‖∞ ≤ (dn�) ∧ 1 ≤ dβ
n �β;

and further, since ϕ is bounded and compactly supported,

‖ϕ[a1,a2]‖p ≤ 2‖ϕ[a1,a2]‖β∞‖ϕ1−β‖p � dβ
n �β,

for p ∈ {1,2}. Finally, by Lemma 9.1(iii),

‖ϕ[a1,a2]‖[β] � dβ
n �β.

Then by (7.7) and the definition of δn(β,F ),∥∥Lϕ
n(a1) −Lϕ

n(a2)
∥∥
τ2/3

= e−1
n ‖Snϕ[a1,a2]‖τ2/3

≤ C
(
e−1/2
n · dβ

n �β + d−β
n · dβ

n �β)
� C�β,

for some C depending on β; here we have used the fact that since β < βH ≤ 1−H
2H

,

{e−1/2
n d

β
n } is regularly varying with index H(β − 1−H

2H
) < 0. �

PROOF OF PROPOSITION 4.2. In view of Lemmas 7.3 and 7.5, we have

max
f ∈Fn

|Nnf | ≤ max
f ∈Fn

ςn(β,f )�p δn(β,Fn),

and by an application of Lemma 7.1,

max
f ∈Fn

∣∣∣∣∣
n−1∑
k=0

Mnkf

∣∣∣∣∣ �p δn(β,Fn) logn.

Thus, (4.9) follows from (7.4).
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For the second part of the result, note that under the stated conditions on Fn,

‖Fn‖2 ≤ ‖Fn‖1/2∞ ‖Fn‖1/2
1 = o

[
e1/2
n log−1 n

]
,

whence

e−1
n δn(β,Fn) = op

(
log−1 n

) + d−β
n op

(
dβ
n

) = op(1)

whereupon the result follows by (4.9). �

8. Proof of (5.4). Let μn(a) := 1
n

∑n
t=1 1{d−1

n xt ≤ a} and μ(a) :=∫ a
−∞L(x)dx. It is shown in Section E of the Supplement that

μn � μ(8.1)

in �∞(R), jointly with the convergence in Theorem 3.1.
Let T (x) := 1{x < ε} and Ln(a) := LK

n (a,hn). We first note that

1

n

n∑
t=1

1
{
xt /∈ Aε

n

} = 1

n

n∑
t=1

1
{
Ln

(
d−1
n xt

)
< ε

} =
∫
R

T
(
Ln(a)

)
dμn(a)

by definition of Aε
n and μn. We shall now suppose that Ln

a.s.→ Ln in �ucc(R), and

μn
a.s.→ μ in �∞(R), as may be justified [in view of Theorem 3.1 and (8.1)] by

Theorem 1.10.3 in van der Vaart and Wellner (1996); let �0 ⊂ � denote a set,
having P�0 = 1, on which this convergence occurs. Define

T (x) =
⎧⎪⎨
⎪⎩

1, if x ≤ ε,

ε−1(2ε − x), if x ∈ (ε,2ε),

0, if x ≥ 2ε.

Then, fixing an ω ∈ �0,∫
R

T
(
Lω

n (a)
)

dμω
n (a) ≤

∫
R

T
(
Lω

n (a)
)

dμω
n (a) =

∫
R

Fn(a)dμω
n (a),

where Fn(a) := (T ◦ Lω
n )(a). Now let [c, d] be chosen such that μω(d) −

μω(c) < ε. Since T is uniformly continuous, Fn(a) → F(a) := (T ◦ Lω)(a) uni-
formly over a ∈ [c, d], whence∫
R

Fn(a)dμω
n (a) ≤

∫
[c,d]c

dμn(a) +
∫
[c,d]

F(a)dμω
n (a) + sup

a∈[c,d]
∣∣Fn(a) − F(a)

∣∣
→ ε +

∫
[c,d]

F(a)dμω(a)

≤ ε +
∫
R

F(a)dμω(a),

where the convergence follows by the Portmanteau theorem [van der Vaart and
Wellner (1996), Theorem 1.3.4], since F is continuous.
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Thus,

lim sup
n→∞

P

{
1

n

n∑
t=1

1
{
xt /∈ Aε

n

} ≥ δ

}
≤ lim sup

n→∞
P

{∫
R

T
(
Ln(a)

)
dμn(a) ≥ δ

}

≤ P

{
ε +

∫
R

T
(
L(a)

)
dμ(a) ≥ δ

}
(8.2)

≤ P

{
ε +

∫
R

1
{
L(a) ≤ 2ε

}
L(a)da ≥ δ

}
,

where noting that L is the density of μ, the final inequality follows from∫
R

T
(
L(a)

)
dμ(a) ≤

∫
R

1
{
L(a) ≤ 2ε

}
dμ(a) =

∫
R

1
{
L(a) ≤ 2ε

}
L(a)da.

Finally,

ε +
∫
R

1
{
L(a) ≤ 2ε

}
L(a)da

a.s.→
∫
R

1
{
L(a) = 0

}
L(a)da = 0

as ε → 0, by dominated convergence, and so ε > 0 may be chosen such that the
right side of (8.2) is less than δ.

9. Results preliminary to the proofs of Lemmas 7.3 and 7.4. Our argu-
ments shall rely heavily on the use of the inverse Fourier transform to anal-
yse objects of the form Et f (xt+k), similarly to Borodin and Ibragimov (1995),
Jeganathan (2004, 2008) and Wang and Phillips (2009b, 2011). Provided that
f ∈ BI and Y has an integrable characteristic function ψY , the “usual” inversion
formula

Ef (y0 + Y) = 1

2π

∫
R

f̂ (λ)e−iλy0Ee−iλY dλ(9.1)

for y0 ∈ R, is still valid, even when f̂ (λ) = ∫
f (x)eiλx dx is not integrable; these

conditions will always be met whenever the inversion formula is required below.
The following provides some useful bounds for f̂ .

LEMMA 9.1. For every f ∈ BI and β ∈ (0,1],
(i) |f̂ (λ)| ≤ (|λ|β‖f ‖[β]) ∧ ‖f ‖1;

(ii) if
∫

f = 0, then

‖f ‖[β] ≤ 21−β inf
y∈R

∫
R

∣∣f (x − y)
∣∣|x|β dx

and so BI[β] ⊇ {f ∈ BIβ | ∫ f = 0};
(iii) if f (x) := g(x − a1) − g(x − a2) for some a1, a2 ∈ R, then

‖f ‖[β] ≤ 21−β |a1 − a2|β‖g‖1.
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Let F t
s := σ({εr}tr=s), noting that F s2

s1 ⊥⊥ F s4
s3 for s1 ≤ s2 < s3 ≤ s4. For 0 <

s < t , we shall have frequent recourse to the following decomposition:

xt =
t∑

k=1

vt =
t∑

k=1

∞∑
l=0

φlεk−l =: x∗
s−1,t +

t−s∑
i=0

εt−i

i∑
j=0

φj =: x∗
s−1,t + x′

s,t,t ,(9.2)

where x∗
s−1,t ⊥⊥ x′

s,t,t and x∗
s−1,t is F s−1−∞-measurable.3 Defining ai := ∑i

j=0 φj ,
we may further decompose x′

s,t,t as

x′
s,t,t =

t∑
i=s

at−iεi =
r∑

i=s

at−iεi +
t∑

i=r+1

at−iεi =: x′
s,r,t + x′

r+1,t,t ,(9.3)

where x′
s,r,t is F r

s -measurable, and x′
r+1,t,t is F t

r+1-measurable. The following
property of the coefficients {ai} is particularly important: there exist 0 < a ≤
a < ∞, and a k0 ∈N such that

a ≤ inf
k0+1≤k

inf�k/2�≤l≤k
c−1
k |al| ≤ sup

k0+1≤k

sup
�k/2�≤l≤k

c−1
k |al| ≤ a.(9.4)

This is an easy consequence of Karamata’s theorem. Throughout the remainder of
the paper, k0 refers to the object of (9.4); it is also implicitly maintained k0 ≥ 8p0
for p0 as in Assumption 1(i).

Having decomposed xt into a sum of independent components, we shall proceed
to control such objects as the right-hand side of (9.1) with the aid of Lemma 9.1
and the following, which provides bounds on integrals involving the characteris-
tic functions of some of those components of xt . Recall that Assumption 1(i) is
equivalent to the statement that

logψ(λ) = −|λ|αG(λ)

[
1 + iβ sgn(λ) tan

(
πα

2

)]
(9.5)

for all λ in a neighborhood of the origin, where G is even and slowly varying
at zero [see Ibragimov and Linnik (1971), Theorem 2.6.5]. Here, as throughout
the remainder of this paper, a slowly varying (or regularly varying) function is
understood to take only strictly positive values, and have the property that G(λ) =
G(|λ|) for every λ ∈ R.

LEMMA 9.2. Let p ∈ [0,5], q ∈ (0,2] and z1, z2 ∈R+. Then:

(i) there exists a γ1 > 0 such that, for every t ≥ 0 and k ≥ k0 + 1,∫
R

(
z1|λ|p ∧ z2

)∣∣Ee−iλx′
t+1,t+k,t+k

∣∣ dλ � z1d
−(1+p)
k + z2e−γ1k

3x∗
s−1,t is weighted sum of {εt }s−1

t=−∞: since these weights are not important for our purposes, we
have refrained from giving an explicit formula for these here.
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and if F(u) � Gp/α(u) as u → 0,∫
R

(
z1|ak|p|λ|p+qF (akλ) ∧ z2

)∣∣Ee−iλx′
t+1,t+k,t+k

∣∣ dλ

� z1k
−p/αd

−(1+q)
k + z2e−γ1k;

(ii) for every t ≥ 1, k ≥ k0 + 1 and s ∈ {k0 + 1, . . . , t},∫
R

∣∣Ee−iλx′
t−s+1,t−1,t+k

∣∣ dλ � cs

ck+s

d−1
s .

The preceding summarizes and refines some of the calculations presented on
pages 15–21 of Jeganathan (2008). It further implies:

LEMMA 9.3. Let f ∈ BI. Then:

(i) for every t ≥ 0 and k ≥ k0 + 1

Et

∣∣f (xt+k)
∣∣ � d−1

k ‖f ‖1;
(ii) if in addition f ∈ BI[β], then for every t ≥ 0 and k ≥ k0 + 1,∣∣Et f (xt+k)

∣∣ � e−γ1k‖f ‖1 + d
−(1+β)
k ‖f ‖[β].

For the next result, define

ϑ(z1, z2) := E
[
e−iz1ε0 −Ee−iz1ε0

][
e−iz2ε0 −Ee−iz2ε0

]
.

LEMMA 9.4. Uniformly over z1, z2 ∈ R,∣∣ϑ(z1, z2)
∣∣ � [|z1|αG̃(z1) ∧ 1

]1/2[|z2|αG̃(z2) ∧ 1
]1/2

,

where G̃(u) � G(u) as u → 0.

Proofs of (9.1), (9.4) and the preceding lemmas are given in Section F of the
Supplement.

10. Proofs of Lemmas 7.3 and 7.4.

PROOF OF LEMMA 7.3. By Lemma 9.3(ii),

|Nnf | ≤
k0∑

t=1

∣∣E0f (xt )
∣∣+ n∑

t=k0+1

∣∣E0f (xt )
∣∣

� ‖f ‖∞ +
n∑

t=k0+1

[
e−γ1t‖f ‖1 + d

−(1+β)
t ‖f ‖[β]

]
,
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whence (7.5). Regarding (7.6), it follows from repeated application of the law of
iterated expectations that

E|Vnkf |p ≤ p! ·
n−k∑
t1=1

· · ·
n−k∑

tp−1=tp−2

E
[
Et1−1

(
ξ2
kt1

f
) · · ·Etp−1−1

(
ξ2
ktp−1

f
)]

(10.1)

×
(∥∥ξ2

ktp−1
f

∥∥∞ +
n−k−tp−1∑

s=1

∥∥Etp−1−1ξ
2
k,tp−1+sf

∥∥∞

)
,

more details of the calculations leading to (10.1) are given in Section G of the
Supplement. By Lemma 7.4, the final term on the right is bounded by Cσ 2

nk(β, f ).
Proceeding inductively, we thus obtain

E|Vnkf |p � p! · Cpσ
2p
nk (β,f ),

whence the required bound follows by Lemma 7.2(i). An analogous argument
yields the same bound for Unkf . �

PROOF OF LEMMA 7.4. We shall obtain the required bound for Et ξ
2
k,t+sf by

providing a bound for Et−sξ
2
ktf (for s ∈ {1, . . . , t}) that depends only on k and s

(and not t), separately considering the cases where:

(i) k ∈ {k0 + 1, . . . , n − t}; and
(ii) k ∈ {0, . . . , k0}.
(i) Recall the decomposition given in (9.2) and (9.3) above, applied here to

reduce xt+k to a sum of independent pieces,

xt+k = x∗
0,t+k + x′

1,t−1,t+k + x′
t,t,t+k + x′

t+1,t+k,t+k

= x∗
0,t+k + x′

1,t−1,t+k + akεt + x′
t+1,t+k,t+k

with the convention that x′
1,t−1,t+k = 0 if t = 1, so that by Fourier inversion,

ξktf = Et f (xt+k) −Et−1f (xt+k)

= 1

2π

∫
R

f̂ (λ)e−iλx∗
0,t+k e−iλx′

1,t−1,t+k(10.2)

× [
e−iλakεt −Ee−iλakεt

]
Ee−iλx′

t+1,t+k,t+k dλ.

Then

ξ2
ktf = 1

(2π)2

∫∫
R2

f̂ (λ1)f̂ (λ2)e
−i(λ1+λ2)x

∗
0,t+k e−i(λ1+λ2)x

′
1,t−1,t+k

× [
e−iλ1akεt −Ee−iλ1akεt

][
e−iλ2akεt −Ee−iλ2akεt

]
(10.3)

×Ee−iλ1x
′
t+1,t+k,t+kEe−iλ2x

′
t+1,t+k,t+k dλ1 dλ2.
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Now suppose s ∈ {k + 1, . . . , t}. Taking conditional expectations on both sides
of (10.3) gives

Et−sξ
2
ktf = 1

(2π)2

∫∫
R2

f̂ (λ1)f̂ (λ2)e
−i(λ1+λ2)x

∗
0,t+k e−i(λ1+λ2)x

′
1,t−s,t+k

×Ee−i(λ1+λ2)x
′
t−s+1,t−1,t+k · ϑ(λ1ak, λ2ak)

×Ee−iλ1x
′
t+1,t+k,t+kEe−iλ2x

′
t+1,t+k,t+k dλ1 dλ2,

where we have defined

ϑ(z1, z2) := E
[
e−iz1ε0 −Ee−iz1ε0

][
e−iz1ε0 −Ee−iz2ε0

]
for z1, z2 ∈R, and made the further decomposition

x′
1,t−1,t+k = x′

1,t−s,t+k + x′
t−s+1,t−1,t+k

with the convention that x′
1,t−s,t+k = 0 if s = t . Then, using (9.4), Lemma 9.4 and

|ab| � |a|2 + |b|2, we obtain

Et−sξ
2
ktf �

∫∫
R2

∣∣f̂ (λ1)f̂ (λ2)
∣∣

× [|akλ1|αG̃(akλ1) ∧ 1
]1/2[|akλ2|αG̃(akλ2) ∧ 1

]1/2

(10.4)
× ∣∣Ee−i(λ1+λ2)x

′
t−s+1,t−1,t+k

∣∣
× ∣∣Ee−iλ1x

′
t+1,t+k,t+k

∣∣∣∣Ee−iλ2x
′
t+1,t+k,t+k

∣∣ dλ1 dλ2

�
∫
R

∣∣f̂ (λ1)
∣∣2(|ak|α|λ1|αG̃(akλ1) ∧ 1

)∣∣Ee−iλ1x
′
t+1,t+k,t+k

∣∣
(10.5)

×
∫
R

∣∣Ee−i(λ1+λ2)x
′
t−s+1,t−1,t+k

∣∣ dλ2 dλ1,

where we have appealed to symmetry (in λ1 and λ2) to reduce the final bound to a
single term. By a change of variables and Lemma 9.2(ii),∫

R

∣∣Ee−i(λ1+λ2)x
′
t−s+1,t−1,t+k

∣∣ dλ2

(10.6)
=

∫
R

∣∣Ee−iλx′
t−s+1,t−1,t+k

∣∣ dλ � cs

ck+s

d−1
s ,

while Lemma 9.1(i) and then Lemma 9.2(i) give∫
R

∣∣f̂ (λ)
∣∣2(|ak|α|λ|αG̃(akλ) ∧ 1

)∣∣Ee−iλx′
t+1,t+k,t+k

∣∣ dλ

≤
∫
R

[(|ak|α|λ|α+2βG̃(akλ)‖f ‖2[β]
) ∧ ‖f ‖2

1
]∣∣Ee−iλx′

t+1,t+k,t+k
∣∣ dλ(10.7)

� k−1d
−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1.
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Together, (10.5)–(10.7) yield

Et−sξ
2
ktf � cs

ck+s

d−1
s

(
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1
)
.(10.8)

When s ∈ {1, . . . , k}, (10.4) continues to hold, whence

Et−sξ
2
ktf �

(∫
R

∣∣f̂ (λ)
∣∣(|λ|α/2G̃1/2(akλ) ∧ 1

)∣∣Ee−iλx′
t+1,t+k,t+k

∣∣ dλ

)2

�
(∫

R

[(|ak|α/2|λ|(α/2+β)G̃1/2(akλ)‖f ‖[β]
) ∧ ‖f ‖1

]

× ∣∣Ee−iλx′
t+1,t+k,t+k

∣∣ dλ

)2

(10.9)

�
(
k−1/2d

−(1+β)
k ‖f ‖[β] + e−γ1k‖f ‖1

)2

� d−1
s

(
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1
)

by Lemmas 9.1(i) and 9.2(i); in obtaining the final result, we have used the fact
that s ≤ k to replace a d−1

k by d−1
s . Since {ck} is regularly varying and k ≥ k0 + 1,

it follows from Potter’s inequality [Bingham, Goldie and Teugels (1987), Theo-
rem 1.5.6(iii)], that

k∑
s=1

d−1
s +

n∑
s=k+1

cs

ck+s

d−1
s �

n∑
s=1

d−1
s � nd−1

n = en,

with the final bound following by Karamata’s theorem. As noted above, since the
bounds (10.8) and (10.9) do not depend on t , they apply also to Et ξ

2
k,t+sf . Hence,

in view of the preceding,
n−k−t∑
s=1

Et ξ
2
k,t+sf �

(
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1
)[ k∑

s=1

d−1
s +

n−k−t∑
s=k+1

cs

ck+s

d−1
s

]

� en

(
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1
)
.

Turning now to ‖ξ2
ktf ‖∞, note that (10.2) still holds, with the convention that

x1,t−1,t+k = 0 if t = 1. Thus, again by Lemmas 9.1(i) and 9.2(i),

∥∥ξ2
ktf

∥∥∞ �
(∫

R

∣∣f̂ (λ)
∣∣∣∣Ee−iλx′

t+1,t+k,t+k
∣∣ dλ

)2

�
(∫

R

[|λ|β‖f ‖[β] ∧ ‖f ‖1
]∣∣Ee−iλx′

t+1,t+k,t+k
∣∣ dλ

)2

�
(‖f ‖[β]d−(1+β)

k + ‖f ‖1e−γ1k
)2

� d
−2(1+β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1

� en

(
k−1d

−(1+2β)
k ‖f ‖2[β] + e−γ1k‖f ‖2

1
);

where the final bound follows because k ≤ n, and so d−1
k � k−1nd−1

n = k−1en.
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(ii) When s ∈ {1, . . . , k0}, the crude bound Et−sξ
2
ktf � ‖f ‖2∞ suffices, since k0

is fixed and finite. On the other hand, if s ∈ {k0 + 1, . . . , t}, we have by Jensen’s
inequality and Lemma 9.3(i) that

Et−sξ
2
ktf ≤ Et−s

(
Et f (xt+k) −Et−1f (xt+k)

)2 � Et−sf
2(xt+k)� d−1

s ‖f ‖2
2.

Then, by Karamata’s theorem,

n−k−t∑
s=1

Et ξ
2
k,t+sf ≤

k0∑
s=1

Et ξ
2
k,t+sf +

n−k−t∑
s=k0+1

Et ξ
2
k,t+sf

� ‖f ‖2∞ + ‖f ‖2
2

n−k−t∑
s=k0+1

d−1
s

� ‖f ‖2∞ + ‖f ‖2
2en.

Regarding ‖ξ2
ktf ‖∞, the bound ‖ξ2

ktf ‖∞ � ‖f ‖2∞ obtains trivially. �
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TYRAN-KAMIŃSKA, M. (2010). Functional limit theorems for linear processes in the domain of
attraction of stable laws. Statist. Probab. Lett. 80 975–981. MR2638967

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Univ. Press, Cambridge.
MR1652247

VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer, New York. MR1385671

WANG, Q. and PHILLIPS, P. C. B. (2009a). Asymptotic theory for local time density estimation and
nonparametric cointegrating regression. Econometric Theory 25 710–738. MR2507529

WANG, Q. and PHILLIPS, P. C. B. (2009b). Structural nonparametric cointegrating regression.
Econometrica 77 1901–1948. MR2573873

WANG, Q. and PHILLIPS, P. C. B. (2011). Asymptotic theory for zero energy functionals with
nonparametric regression applications. Econometric Theory 27 235–259. MR2782038

WANG, Q. and PHILLIPS, P. C. B. (2012). A specification test for nonlinear nonstationary models.
Ann. Statist. 40 727–758. MR2933664

http://www.ams.org/mathscinet-getitem?mr=3396235
http://www.ams.org/mathscinet-getitem?mr=0624435
http://www.ams.org/mathscinet-getitem?mr=0562049
http://www.ams.org/mathscinet-getitem?mr=0322926
http://www.ams.org/mathscinet-getitem?mr=2073177
http://www.ams.org/mathscinet-getitem?mr=2332276
http://www.ams.org/mathscinet-getitem?mr=1863963
http://www.ams.org/mathscinet-getitem?mr=0940869
http://www.ams.org/mathscinet-getitem?mr=2923768
http://www.ams.org/mathscinet-getitem?mr=1806536
http://www.ams.org/mathscinet-getitem?mr=0665738
http://www.ams.org/mathscinet-getitem?mr=1280932
http://www.ams.org/mathscinet-getitem?mr=0084897
http://www.ams.org/mathscinet-getitem?mr=2638967
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2507529
http://www.ams.org/mathscinet-getitem?mr=2573873
http://www.ams.org/mathscinet-getitem?mr=2782038
http://www.ams.org/mathscinet-getitem?mr=2933664


72 J. A. DUFFY

WANG, Q. and PHILLIPS, P. C. B. (2015). Nonparametric cointegrating regression with endogeneity
and long memory. Econometric Theory. To appear. DOI:10.1017/S0266466614000917.

NUFFIELD COLLEGE

OXFORD

OX1 1NF
UNITED KINGDOM

E-MAIL: james.duffy@economics.ox.ac.uk

http://dx.doi.org/10.1017/S0266466614000917
mailto:james.duffy@economics.ox.ac.uk

	Introduction
	Notation

	Model and assumptions
	A uniform law for the convergence to local time
	Outline of proof and auxiliary results
	Outline of proof
	Key auxiliary results

	A preliminary application to nonparametric regression
	Proof of Theorem 3.1
	Controlling the zero energy process
	The martingale decomposition
	Proofs of Propositions 4.1 and 4.2

	Proof of (5.4)
	Results preliminary to the proofs of Lemmas 7.3 and 7.4
	Proofs of Lemmas 7.3 and 7.4
	Acknowledgments
	References
	Author's Addresses

