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A MODEL FOR A LARGE INVESTOR TRADING AT MARKET
INDIFFERENCE PRICES. II: CONTINUOUS-TIME CASE

BY PETER BANK1 AND DMITRY KRAMKOV2

Technische Universität Berlin and Carnegie Mellon University

We develop from basic economic principles a continuous-time model for
a large investor who trades with a finite number of market makers at their util-
ity indifference prices. In this model, the market makers compete with their
quotes for the investor’s orders and trade among themselves to attain Pareto
optimal allocations. We first consider the case of simple strategies and then,
in analogy to the construction of stochastic integrals, investigate the transi-
tion to general continuous dynamics. As a result, we show that the model’s
evolution can be described by a nonlinear stochastic differential equation for
the market makers’ expected utilities.

1. Introduction. A typical financial model presumes that the prices of traded
securities are not affected by an investor’s buy and sell orders. From a practical
viewpoint, this assumption is justified as long as his trading volume remains small
enough to be easily covered by market liquidity. An opposite situation occurs,
for instance, when an economic agent has to sell a large block of shares over a
short period of time; see, for example, Almgren and Chriss [1] and Schied and
Schöneborn [24]. This and other examples motivate the development of financial
models for a “large” trader, where the dependence of market prices on his strategy,
called a price impact or a demand pressure, is taken into account.

Hereafter, we assume that the interest rate is zero and, in particular, is not
affected by the large investor. As usual in mathematical finance, we describe a
(self-financing) strategy by a predictable process Q = (Qt)0≤t≤T where Qt is the
number of stocks held just before time t and T is a finite time horizon. The role
of a “model” is to define a predictable process X(Q) representing the evolution of
the cash balance for the strategy Q. We denote by S(Q) the marginal price process
of traded stocks, that is, St (Q) is the price at which one can trade an infinitesimal
quantity of stocks at time t . Recall that in the standard model of a “small” agent
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the price S does not depend on Q and

Xt(Q) =
∫ t

0
Qu dSu − QtSt .

In mathematical finance, a common approach is to specify the price impact of
trades exogenously, that is, to postulate it as one of the inputs. For example, Frey
and Stremme [13], Platen and Schweizer [23], Papanicolaou and Sircar [22] and
Bank and Baum [4] choose a stochastic field of reaction functions, which explicitly
state the dependence of the marginal prices on the investor’s current holdings,
Çetin, Jarrow and Protter in [8] start with a stochastic field of supply curves, which
define the prices in terms of traded quantities (changes in holdings), and Cvitanić
and Ma [10] make the drift and the volatility of the price process dependent on a
trading strategy; we refer the reader to the recent survey [17] by Gökay, Roch and
Soner for more details and additional references. Note that in all these models the
processes X(Q) and S(Q), of the cash balance and of the marginal stock price,
only depend on the “past” of the strategy Q, in the sense that

Xt(Q) = Xt

(
Qt ), St (Q) = St

(
Qt ),(1.1)

where Qt � (Qs∧t )0≤s≤T denotes the process Q “stopped” at t with s ∧ t �
min(s, t).

The exogenous nature of the above models facilitates their calibration to market
data; see, for example, [9] by Çetin, Jarrow and Protter. There are, however, some
disadvantages. For example, the models in [4, 8, 13, 22, 23] and [9] do not satisfy
the natural “closability” property for a large investor model:∣∣Qn

∣∣≤ 1

n
�⇒ XT

(
Qn)→ 0, n → ∞,(1.2)

while in Cvitanić and Ma [10] the stock price is not affected by a jump in investor’s
holdings: St (Qt + �Qt) = St (Qt).

In our project, we seek to derive the dependence of prices on strategies endoge-
nously by relying on the framework developed in financial economics. A starting
point here is the postulate that, at any given moment, a price reflects a balance
between demand and supply or, more formally, it is an output of an equilibrium.
In addition to the references cited below, we refer the reader to the book [21] by
O’Hara and the survey [2] by Amihud, Mendelson and Pedersen.

To be more specific, denote by ψ the terminal price of the traded security, which
we assume to be given exogenously, that is, ST (Q) = ψ for every strategy Q.
Recall that in a small agent model the absence of arbitrage implies the existence
of an equivalent probability measure Q such that

St = EQ[ψ |Ft ], 0 ≤ t ≤ T ,(1.3)

where Ft is the σ -field describing the information available at time t . This result is
often called the fundamental theorem of asset pricing; in full generality, it has been
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proved by Delbaen and Schachermayer in [11, 12]. The economic nature of this
pricing measure Q does not matter in the standard, small agent, setup. However,
it becomes important in an equilibrium-based construction of models for a large
trader where it typically originates from a Pareto optimal allocation of wealth and
is given by the expression (1.4) below.

We shall consider an economy formed by M market participants, called here-
after the market makers, whose preferences for terminal wealth are defined by util-
ity functions um = um(x), m = 1, . . . ,M , and an identical subjective probability
measure P. It is well known in financial economics that the Pareto optimality of the
market makers’ wealth allocation α = (αm)m=1,...,M yields the pricing measure Q

defined by

dQ

dP
= vmu′

m

(
αm), m = 1, . . . ,M,(1.4)

where vm > 0 is a normalizing constant.
It is natural to expect that in the case when the strategy Q is not anymore neg-

ligible an expression similar to (1.3) should still hold true for the marginal price
process:

St (Q) = EQt (Q)

[
ψ |Ft (Q)

]
, 0 ≤ t ≤ T .(1.5)

This indicates that the price impact at time t described by the mapping Q 	→ St (Q)

may be attributed to two common aspects of market’s microstructure:

1. Information: Q 	→ Ft (Q). Models focusing on information aspects naturally
occur in the presence of an insider, where Ft (Q), the information available to the
market makers at time t , is usually generated by the sum of Q and the cumulative
demand process of “noise” traders; see Glosten and Milgrom [16], Kyle [20] and
Back and Baruch [3], among others.

2. Inventory: Q 	→Qt (Q). In view of (1.4), this reflects how αt(Q), the Pareto
optimal allocation of the total wealth or “inventory” induced by Q, affects the
valuation of marginal trades. Note that the random variable αt(Q) is measurable
with respect to the terminal σ -field FT (Q) [not with respect to the current σ -field
Ft (Q)!].

In our study, we shall focus on the inventory aspect of price formation and dis-
regard the informational component. We assume that the market makers share the
same exogenously given filtration (Ft )0≤t≤T as the large trader and, in particular,
their information flow is not affected by his strategy Q:

Ft (Q) = Ft , 0 ≤ t ≤ T .

Note that this informational symmetry is postulated only regarding the externally
given random outcome. As we shall discuss below, in inventory based models, the
actual form of the map Q 	→ Qt (Q), or, equivalently, Q 	→ αt(Q) is implied by
game-theoretical features of the interaction between the market makers and the
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investor. In particular, it depends on the knowledge the market makers possess at
time t about the subsequent evolution (Qs)t≤s≤T of the investor’s strategy, condi-
tionally on the forthcoming random outcome on [t, T ].

For example, the models in Grossman and Miller [18], Garleanu, Pedersen and
Poteshman [14] and German [15] rely on a setup inspired by the Arrow–Debreu
equilibrium. Their framework implicitly assumes that right from the start the mar-
ket makers have full knowledge of the investor’s future strategy Q (of course,
contingent on the unfolding random scenario). In this case, the resulting pricing
measures and the Pareto allocations do not depend on time:

Qt (Q) =Q(Q), αt (Q) = α(Q), 0 ≤ t ≤ T ,(1.6)

and are determined by the budget equations:

EQ(Q)

[
αm(0)

]= EQ(Q)

[
αm(Q)

]
, m = 1, . . . ,M,

and the clearing condition:

M∑
m=1

αm(Q) =
M∑

m=1

αm(0) +
∫ T

0
Qt dSt (Q).

Here, Q(Q) and S(Q) are defined in terms of α(Q) by (1.4) and (1.5). The positive
sign in the clearing condition is due to our convention to interpret Q as the number
of stocks held by the market makers. It is instructive to note that in the case of
exponential utilities, when um(x) = − exp(−amx) with a risk-aversion am > 0,
the stock price in these models depends only on the “future” of the strategy:

St (Q) = St

(
(Qs)t≤s≤T

)
, 0 ≤ t ≤ T ,

which is just the opposite of (1.1).
In our model, the interaction between the market makers and the investor takes

place according to a Bertrand competition; a similar framework (but with a single
market maker and only in a one-period setting) was used in Stoll [25]. The key
economic assumptions can be summarized as follows:

1. After every trade, the market makers can redistribute new income to form a
Pareto allocation.

2. As a result of a trade, the expected utilities of the market makers do not
change.

The first condition assumes that the market makers are able to find the most effec-
tive way to share among themselves the risk of the resulting total endowment, thus
producing a Pareto optimal allocation. The second assumption is a consequence of
a Bertrand competition which forces the market makers to quote the most aggres-
sive prices without lowering their expected utilities; in the limit, these utilities are
left unchanged.
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Our framework implicitly assumes that at every time t the market makers have
no a priori knowledge about the subsequent trading strategy (Qs)t≤s≤T of the
economic agent (even conditionally on the future random outcome). As a conse-
quence, the marginal price process S(Q) and the cash balance process X(Q) are
related to Q as in (1.1). Similarly, the dependence on Q of the pricing measures
and of the Pareto optimal allocations is nonanticipative in the sense that

Qt (Q) = Qt

(
Qt ), αt (Q) = αt

(
Qt ), 0 ≤ t ≤ T ,

which is quite opposite to (1.6).
In [5], we studied the model in a static, one-step, setting. The current paper deals

with the general continuous-time framework. Building on the single-period case
in an inductive manner, we first define simple strategies, where the trades occur
only at a finite number of times; see Theorem 2.7. The main challenge is then to
show that this construction allows for a consistent passage to general predictable
strategies. For instance, it is an issue to verify that the cash balance process X(Q)

is stable with respect to uniform perturbations of the strategy Q and, in particular,
that the closability property (1.2) and its generalizations stated in Questions 2.9
and 2.10 hold.

These stability questions are addressed by deriving and analyzing a nonlinear
stochastic differential equation for the market makers’ expected utilities; see (4.20)
in Theorem 4.9. A key role is played by the fact, that together with the strategy Q,
these utilities form a “sufficient statistics” in the model, that is, they uniquely deter-
mine the Pareto optimal allocation of wealth among the market makers. The corre-
sponding functional dependencies are explicitly given as gradients of the stochastic
field of aggregate utilities and its saddle conjugate; here we rely on our companion
paper [6].

An outline of this paper is as follows. In Section 2, we define the model and
study the case when the investor trades according to a simple strategy. In Section 3,
we provide a conditional version of the well-known parameterization of Pareto
optimal allocations and recall basic results from [6] concerning the stochastic field
of aggregate utilities and its conjugate. With these tools at hand, we formally define
the strategies with general continuous dynamics in Section 4. We conclude with
Section 5 by showing that the construction of strategies in Section 4 is consistent
with the original idea based on the approximation by simple strategies. In the last
two sections, we restrict ourselves to a Brownian setting, due to convenience of
references to Kunita [19].

2. Model.

2.1. Market makers and the large investor. We consider a financial model
where M ∈ {1,2, . . .} market makers quote prices for a finite number of stocks.
Uncertainty and the flow of information are modeled by a filtered probability space
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(�,F, (Ft )0≤t≤T ,P) satisfying the standard conditions of right-continuity and
completeness; the initial σ -field F0 is trivial, T is a finite maturity and F = FT .

As usual, we identify random variables differing on a set of P-measure zero;
L0(Rd) stands for the metric space of such equivalence classes with values in Rd

endowed with the topology of convergence in probability; Lp(Rd), p ≥ 1, denotes
the Banach space of p-integrable random variables. For a σ -field A ⊂ F and a set
A ⊂ Rd denote L0(A,A) and Lp(A,A), p ≥ 1, the respective subsets of L0(Rd)

and Lp(Rd) consisting of all A-measurable random variables with values in A.
The way the market makers serve the incoming orders crucially depends on

their attitude toward risk, which we model in the classical framework of expected
utility. Thus, we interpret the probability measure P as a description of the common
beliefs of our market makers (same for all) and denote by um = (um(x))x∈R market
maker m’s utility function for terminal wealth.

ASSUMPTION 2.1. Each um = um(x), m = 1, . . . ,M , is a strictly concave,
strictly increasing, continuously differentiable, and bounded from above function
on the real line R satisfying

lim
x→∞um(x) = 0.(2.1)

The normalizing condition (2.1) is added only for notational convenience. Our
main results will be derived under the following additional condition on the utility
functions, which, in particular, implies their boundedness from above.

ASSUMPTION 2.2. Each utility function um = um(x), m = 1, . . . ,M , is twice
continuously differentiable and its absolute risk aversion coefficient is bounded
away from zero and infinity, that is, for some c > 0,

1

c
≤ am(x) �−u′′

m(x)

u′
m(x)

≤ c, x ∈ R.

The prices quoted by the market makers are also influenced by their initial en-
dowments α0 = (αm

0 )m=1,...,M ∈ L0(RM), where αm
0 is an F -measurable random

variable describing the terminal wealth of the mth market maker (if the large in-
vestor, introduced later, will not trade at all). We assume that the initial allocation
α0 is Pareto optimal in the sense of:

DEFINITION 2.3. Let G be a σ -field contained in F . A vector of F -measurab-
le random variables α = (αm)m=1,...,M is called a Pareto optimal allocation given
the information G or just a G-Pareto allocation if

E
[∣∣um

(
αm)∣∣|G]< ∞, m = 1, . . . ,M,(2.2)
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and there is no other allocation β ∈ L0(RM) with the same total endowment,

M∑
m=1

βm =
M∑

m=1

αm,(2.3)

leaving all market makers not worse and at least one of them better off in the sense
that

E
[
um

(
βm)|G]≥ E

[
um

(
αm)|G] for all m = 1, . . . ,M(2.4)

and

P
[
E
[
um

(
βm)|G]> E

[
um

(
αm)|G]]> 0 for some m ∈ {1, . . . ,M}.(2.5)

A Pareto optimal allocation given the trivial σ -field F0 is simply called a Pareto
allocation.

In other words, Pareto optimality is a stability requirement for an allocation of
wealth which ensures that there are no mutually beneficial trades that can be struck
between market makers.

Finally, we consider an economic agent or investor who is going to trade dy-
namically in the financial market formed by a bank account and J stocks. We
assume that the interest rate on the bank account is given exogenously and is not
affected by the investor’s trades; for simplicity of notation, we set it to be zero.
The stocks pay terminal dividends ψ = (ψj )j=1,...,J ∈ L0(RJ ). Their prices are
computed endogenously and depend on investor’s order flow.

As the result of trading with the investor, up to and including time t ∈ [0, T ],
the total endowment of the market makers may change from �0 �

∑M
m=1 αm

0 to

�(ξ, θ)��0 + ξ + 〈θ,ψ〉 = �0 + ξ +
J∑

j=1

θjψj ,(2.6)

where ξ ∈ L0(Ft ,R) and θ ∈ L0(Ft ,RJ ) are, respectively, the cash amount and
the number of assets acquired by the market makers from the investor; they are
Ft -measurable random variables with values in R and RJ , respectively. Our model
will assume that �(ξ, θ) is allocated among the market makers in the form of an
Ft -Pareto allocation. For this to be possible, we have to impose:

ASSUMPTION 2.4. For every x ∈ R and q ∈ RJ , there is an allocation β ∈
L0(RM) with total random endowment �(x, q) defined in (2.6) such that

E
[
um

(
βm)]> −∞, m = 1, . . . ,M.(2.7)

See (3.15) for an equivalent reformulation of this assumption in terms of the
aggregate utility function. For later use, we verify its conditional version.
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LEMMA 2.5. Under Assumptions 2.1 and 2.4, for every σ -field G ⊂ F and
random variables ξ ∈ L0(G,R) and θ ∈ L0(G,RJ ) there is an allocation β ∈
L0(RM) with total endowment �(ξ, θ) such that

E
[
um

(
βm)|G]> −∞, m = 1, . . . ,M.(2.8)

PROOF. Clearly, it is sufficient to verify (2.8) on each of the G-measurable
sets

An �
{
ω ∈ � :

∣∣ξ(ω)
∣∣+ ∣∣θ(ω)

∣∣≤ n
}
, n ≥ 1,

which shows that without loss of generality we can assume ξ and θ to be bounded
when proving (2.8). Then (ξ, θ) can be written as a convex combination of finitely
many points (xk, qk) ∈ R1+J , k = 1, . . . ,K with G-measurable weights λk ≥ 0,∑K

k=1 λk = 1. By Assumption 2.4, for each k = 1, . . . ,K there is an allocation βk

with the total endowment �(xk, qk) such that

E
[
um

(
βm

k

)]
> −∞, m = 1, . . . ,M.

Thus, the allocation

β �
K∑

k=1

λkβk

has the total endowment �(ξ, θ) and, by the concavity of the utility functions,
satisfies (2.7), and hence, also (2.8). �

2.2. Simple strategies. An investment strategy of the agent is described by a
predictable J -dimensional process Q = (Qt)0≤t≤T , where Qt = (Q

j
t )j=1,...,J is

the cumulative number of the stocks sold by the investor through his transactions
up to time t . For a strategy to be self-financing we have to complement Q by a cor-
responding predictable process X = (Xt)0≤t≤T describing the cumulative amount
of cash spent by the investor. Hereafter, we shall call such an X a cash balance
process.

REMARK 2.6. Our description of a trading strategy follows the standard prac-
tice of mathematical finance except for the sign: positive values of Q or X now
mean short positions for the investor in stocks or cash, and hence total long posi-
tions for the market makers. This convention makes future notation more simple
and intuitive.

To facilitate the understanding of the economic assumptions behind our model,
we consider first the case of a simple strategy Q where trading occurs only at a
finite number of times, that is,

Qt =
N∑

n=1

θn1(τn−1,τn](t), 0 ≤ t ≤ T ,(2.9)
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with stopping times 0 = τ0 ≤ · · · ≤ τN = T and random variables θn ∈
L0(Fτn−1,RJ ), n = 1, . . . ,N . It is natural to expect that, for such a strategy Q,
the cash balance process X has a similar form:

Xt =
N∑

n=1

ξn1(τn−1,τn](t), 0 ≤ t ≤ T ,(2.10)

with ξn ∈ L0(Fτn−1,R), n = 1, . . . ,N . In our model, these cash amounts will be
determined by (forward) induction along with a sequence of conditionally Pareto
optimal allocations (αn)n=1,...,N such that each αn is an Fτn−1 -Pareto allocation
with the total endowment

�(ξn, θn) = �0 + ξn + 〈θn,ψ〉.
Recall that at time 0, before any trade with the investor has taken place, the

market makers have the initial Pareto allocation α0 and the total endowment �0.
After the first transaction of θ1 stocks and ξ1 in cash, the total random endowment
becomes �(ξ1, θ1). The central assumptions of our model, which will allow us to
identify the cash amount ξ1 uniquely, are that, as a result of the trade:

1. The random endowment �(ξ1, θ1) is redistributed between the market mak-
ers to form a new Pareto allocation α1.

2. The market makers’ expected utilities do not change:

E
[
um

(
αm

1
)]= E

[
um

(
αm

0
)]

, m = 1, . . . ,M.

Proceeding by induction, we arrive at the re-balance time τn with the econ-
omy characterized by an Fτn−1 -Pareto allocation αn of the random endowment
�(ξn, θn). We assume that after exchanging θn+1 − θn securities and ξn+1 − ξn in
cash the market makers will hold an Fτn -Pareto allocation αn+1 of �(ξn+1, θn+1)

satisfying the key condition of the preservation of expected utilities:

E
[
um

(
αm

n+1
)|Fτn

]= E
[
um

(
αm

n

)|Fτn

]
, m = 1, . . . ,M.(2.11)

The fact that this inductive procedure indeed works is ensured by the following
result, established in a single-period framework in [5], Theorem 2.6.

THEOREM 2.7. Under Assumptions 2.1 and 2.4, every sequence of stock
positions (θn)n=1,...,N as in (2.9) yields a unique sequence of cash balances
(ξn)n=1,...,N as in (2.10) and a unique sequence of allocations (αn)n=1,...,N such
that, for each n = 1, . . . ,N , αn is an Fτn−1-Pareto allocation of �(ξn, θn) preserv-
ing the market makers’ expected utilities in the sense of (2.11).

PROOF. The proof follows from Lemma 2.5 above, Lemma 2.8 below and a
standard induction argument. �
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LEMMA 2.8. Let Assumption 2.1 hold and consider a σ -field G ⊂ F and ran-
dom variables γ ∈ L0(G, (−∞,0)M) and � ∈ L0(R). Suppose there is an alloca-
tion β ∈ L0(RM) which has the total endowment � and satisfies the integrability
condition (2.8).

Then there are a unique ξ ∈ L0(G,R) and a unique G-Pareto allocation α with
the total endowment � + ξ such that

E
[
um

(
αm)|G]= γ m, m = 1, . . . ,M.

PROOF. The uniqueness of such ξ and α is a consequence of the definition
of the G-Pareto optimality and the strict concavity and monotonicity of the utility
functions. Indeed, let ξ̃ and α̃ be another such pair. The allocation

βm �
(
α̃m + ξ − ξ̃

M

)
1{̃ξ<ξ} + αm1{̃ξ≥ξ}, m = 1, . . . ,M,

has the same total endowment � + ξ as α. If the G-measurable set {̃ξ < ξ} is
not empty, then because the utility functions (um) are strictly increasing, β domi-
nates α in the sense of Definition 2.3 and we get a contradiction with the G-Pareto
optimality of α. Hence, ξ̃ ≥ ξ and then, by symmetry, ξ̃ = ξ . In this case, the al-
location β̃ � (α + α̃)/2 has the same total endowment as α and α̃. If α̃ �= α then,
in view of the strict concavity of the utility functions, β̃ dominates both α and α̃,
contradicting their G-Pareto optimality.

To verify the existence, we shall use a conditional version of the argument from
the proof of Theorem 2.6 in [5]. To facilitate references, we assume hereafter that

|γ | �
√∑M

m=1(γ
m)2 is integrable, that is, γ ∈ L1(G, (−∞,0)M). This extra con-

dition does not restrict any generality as, if necessary, we can replace the reference
probability measure P with the equivalent measure Q such that

dQ

dP
= const

1

1 + |γ | .
Note that because γ is G-measurable this change of measure does not affect
G-Pareto optimality.

For η ∈ L0(G,R), denote by B(η) the family of allocations β ∈ L0(RM) with
total endowments less than or equal to � + η such that

E
[
um

(
βm)|G]≥ γ m, m = 1, . . . ,M.

Since the utility functions um = um(x) are increasing and converge to 0 as x → ∞
and because there is an allocation β of � satisfying (2.8), the set

H�
{
η ∈ L0(G,R) :B(η) �= ∅

}
is nonempty. For instance, it contains the random variable

η̃ �M

∞∑
n=1

n(1An − 1An−1),
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where, for n = 0,1, . . . ,

An �
{
ω ∈ � :E

[
um

(
βm + n

)|G](ω) ≥ γ m(ω),m = 1, . . . ,M
}
.

Indeed, by construction, η̃ is G-measurable and, as An ↑ �,

E
[
um

(
βm + η̃/M

)|G]≥ γ m, m = 1, . . . ,M.

Hence, the allocation (βm + η̃/M)m=1,...,M belongs to B(η̃).
If η ∈ H, then the set B(η) ∈ L0(RM) is convex (even with respect to

G-measurable weights) by the concavity of the utility functions. Moreover, this
set is bounded in L0(RM):

lim
z→∞ sup

β∈B(η)

P
[|β| ≥ z

]= 0.

Indeed, from the properties of utility functions in Assumption 2.1 we deduce that

x− � max(0,−x) ≤ −um(x)

u′
m(0)

, x ∈ R.

Hence, for β ∈ B(η),

E
[(

βm)−]≤ 1

u′
m(0)

E
[−um

(
βm)]≤ 1

u′
m(0)

E
[−γ m]< ∞,

implying that the set {((βm)−)m=1,...,M :β ∈ B(η)} is bounded in L1(RM). The
boundedness of B(η) in L0(RM) then follows after we recall that

M∑
m=1

βm ≤ � + η, β ∈ B(η).

Observe that if the random variables (ηi)i=1,2 belong to H, then so does their
minimum η1 ∧ η2. It follows that there is a decreasing sequence (ηn)n≥1 in H
such that its limit ξ is less than or equal to every element of H. Let βn ∈ B(ηn),
n ≥ 1. As βn ∈ B(η1), the family of all possible convex combinations of (βn)n≥1 is
bounded in L0(RM). By Lemma A1.1 in Delbaen and Schachermayer [11], we can
then choose convex combinations ζn of (βk)k≥n, n ≥ 1, converging almost surely
to a random variable α ∈ L0(RM). It is clear that

M∑
m=1

αm ≤ � + ξ.(2.12)

Since the utility functions are bounded above and, by the convexity of B(ηn), ζn ∈
B(ηn), an application of Fatou’s lemma yields

E
[
um

(
αm)|G]≥ lim sup

n→∞
E
[
um

(
ζm
n

)|G]≥ γ m, m = 1, . . . ,M.(2.13)
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It follows that α ∈ B(ξ). The minimality property of ξ then immediately implies
that in (2.12) and (2.13) we have, in fact, equalities and that α is a G-Pareto allo-
cation. �

In Section 4, we shall prove a more constructive version of Theorem 2.7,
namely, Theorem 4.1, where the cash balances ξn and the Pareto allocations αn

will be given as explicit functions of their predecessors and of the new position θn.
The main goal of this paper is to extend the definition of the cash balance pro-

cesses X from simple to general predictable strategies Q. This task has a number
of similarities with the construction of a stochastic integral with respect to a semi-
martingale. In particular, we are interested in the following questions.

QUESTION 2.9. For simple strategies (Qn)n≥1 that converge to another sim-
ple strategy Q in ucp, that is, such that(

Qn − Q
)∗
T � sup

0≤t≤T

∣∣Qn
t − Qt

∣∣→ 0,(2.14)

do the corresponding cash balance processes converge in ucp as well:(
Xn − X

)∗
T → 0?

QUESTION 2.10. For every sequence of simple strategies (Qn)n≥1 converg-
ing in ucp to a predictable process Q, does the sequence (Xn)n≥1 of their cash
balance processes converge to a predictable process X in ucp?

Naturally, when we have an affirmative answer to Question 2.10, the process X

should be called the cash balance process for the strategy Q. Note that a predictable
process Q can be approximated by simple processes as in (2.14) if and only if it
has LCRL (left-continuous with right limits) trajectories.

The construction of cash balance processes X and processes of Pareto alloca-
tions for general strategies Q will be accomplished in Section 4, while the answers
to Questions 2.9 and 2.10 will be given in Section 5. These results rely on the pa-
rameterization of Pareto allocations in Section 3.1 and the properties of sample
paths of the stochastic field of aggregate utilities established in [6] and recalled in
Section 3.2.

3. Random fields associated with Pareto allocations. Let us collect in this
section some notation and results which will allow us to work efficiently with
conditional Pareto allocations. We first recall some terminology. For a set A ⊂ Rd

a map ξ :A → L0(Rn) is called a random field; ξ is continuous, convex, etc., if its
sample paths ξ(ω) :A → Rn are continuous, convex, etc., for all ω ∈ �. A random
field X :A × [0, T ] → L0(Rn) is called a stochastic field if, for t ∈ [0, T ], Xt �
X(·, t) :A → L0(Ft ,Rn), that is, the random variable Xt is Ft -measurable.
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3.1. Parameterization of Pareto allocations. We begin by recalling the results
and notation from [5] concerning the classical parameterization of Pareto allo-
cations. As usual in the theory of such allocations, a key role is played by the
aggregate utility function

r(v, x)� sup
x1+···+xM=x

M∑
m=1

vmum

(
xm), v ∈ (0,∞)M, x ∈ R.(3.1)

We shall rely on the properties of this function stated in Section 3 of [6]. In partic-
ular, r is continuously differentiable and the upper bound in (3.1) is attained at the
unique vector x̂ = x̂(v, x) in RM determined by either

vmu′
m

(
x̂m)= ∂r

∂x
(v, x), m = 1, . . . ,M,(3.2)

or, equivalently,

um

(
x̂m)= ∂r

∂vm
(v, x), m = 1, . . . ,M.(3.3)

Following [5], we denote by

A � (0,∞)M × R × RJ ,(3.4)

the parameter set of Pareto allocations in our economy. An element a ∈ A will
often be represented as a = (v, x, q). Here, v ∈ (0,∞)M is a Pareto weight and
x ∈ R and q ∈ RJ stand for, respectively, a cash amount and a number of stocks
owned collectively by the market makers.

According to Lemma 3.2 in [5], for a = (v, x, q) ∈ A, the random vector π(a) ∈
L0(RM) defined by

vmu′
m

(
πm(a)

)= ∂r

∂x

(
v,�(x, q)

)
, m = 1, . . . ,M,(3.5)

forms a Pareto allocation and, conversely, for (x, q) ∈ R × RJ , every Pareto allo-
cation of the total endowment �(x, q) is given by (3.5) for some v ∈ (0,∞)M .
Moreover, π(v1, x, q) = π(v2, x, q) if and only if v1 = cv2 for some constant
c > 0 and, therefore, (3.5) defines a one-to-one correspondence between the Pareto
allocations with total endowment �(x, q) and the set

SM �
{
w ∈ (0,1)M :

M∑
m=1

wm = 1

}
,

the interior of the simplex in RM . Following [5], we denote by

π : A → L0(RM)
,
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the random field of Pareto allocations given by (3.5). Clearly, the sample paths
of this random field are continuous. From the equivalence of (3.2) and (3.3), we
deduce that the Pareto allocation π(a) can be equivalently defined by

um

(
πm(a)

)= ∂r

∂vm

(
v,�(x, q)

)
, m = 1, . . . ,M.(3.6)

In Corollary 3.2 below, we provide the description of the conditional Pareto
allocations in our economy, which is analogous to (3.5). The proof of this corollary
relies on the following general and well-known fact, which is a conditional version
of Theorem 3.1 in [5].

THEOREM 3.1. Consider the family of market makers with utility functions
(um)m=1,...,M satisfying Assumption 2.1. Let G ⊂F be a σ -field and α ∈ L0(RM).
Then the following statements are equivalent:

1. The allocation α is G-Pareto optimal.
2. Integrability condition (2.2) holds and there is a G-measurable random vari-

able λ with values in SM such that

λmu′
m

(
αm)= ∂r

∂x
(λ,�), m = 1, . . . ,M,(3.7)

where � �∑M
m=1 αm and the function r = r(v, x) is defined in (3.1).

Moreover, such a random variable λ is defined uniquely in L0(G,SM).

PROOF. 1 �⇒ 2: It is enough to show that

u′
m(αm)

u′
1(α

1)
∈ L0(G, (0,∞)

)
, m = 1, . . . ,M.(3.8)

Indeed, in this case, define

λm � 1/u′
m(αm)∑M

k=1 1/u′
k(α

k)
, m = 1, . . . ,M,

and observe that, as u′
m are strictly decreasing functions, (αm) is the only allocation

of � such that

λmu′
m

(
αm)= λ1u′

1
(
α1), m = 1, . . . ,M.

However, in view of (3.2), an allocation with such property is provided by (3.7).
Clearly, every λ ∈ L0(G,SM) obeying (3.7) also satisfies the equality above and,

hence, is defined uniquely.
Suppose (3.8) fails to hold for some index m, for example, for m = 2. Then we

can find a random variable ξ such that

|ξ | ≤ 1,
(
u′

1
(
α1 − 1

)+ u′
2
(
α2 − 1

))|ξ | ∈ L1(R),(3.9)
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and the set

A�
{
ω ∈ � :E

[
u′

1
(
α1)ξ |G](ω) < 0 < E

[
u′

2
(
α2)ξ |G](ω)

}
has positive probability. For instance, we can take

ξ � ζ − Ẽ[ζ |G]
1 + u′

1(α
1 − 1) + u′

2(α
2 − 1)

,

where

ζ � u′
2(α

2)

u′
1(α

1) + u′
2(α

2)

and Ẽ is the expectation under the probability measure P̃ with the density

dP̃

dP
= const

u′
1(α

1) + u′
2(α

2)

1 + u′
1(α

1 − 1) + u′
2(α

2 − 1)
.

Indeed, in this case, (3.9) holds easily, while, as direct computations show

A = {
ω ∈ � : Ẽ

[(
ζ − Ẽ

[
ζ |G])2|G](ω) > 0

}
and P[A] > 0 because ζ is not G-measurable.

From the continuity of the first derivatives of the utility functions, we deduce
the existence of 0 < ε < 1 such that the set

B �
{
ω ∈ � :E

[
u′

1
(
α1 − εξ

)
ξ |G](ω) < 0 < E

[
u′

2
(
α2 + εξ

)
ξ |G](ω)

}
also has positive probability. Denoting η � εξ1B and observing that, by the con-
cavity of utility functions,

u1
(
α1)≤ u1

(
α1 − η

)+ u′
1
(
α1 − η

)
η,

u2
(
α2)≤ u2

(
α2 + η

)− u′
2
(
α2 + η

)
η,

we obtain that the allocation

β1 = α1 − η, β2 = α2 + η, βm = αm, m = 3, . . . ,M,

satisfies (2.3), (2.4) and (2.5), thus contradicting the G-Pareto optimality of α.
2 �⇒ 1: For every allocation β ∈ L0(RM) with the same total endowment �

as α, we have

M∑
m=1

λmum

(
βm)≤ r(λ,�) =

M∑
m=1

λmum

(
αm),(3.10)

where the last equality is equivalent to (3.7) in view of (3.2). Granted integrability
as in (2.2), this clearly implies the G-Pareto optimality of α. �
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From Theorem 3.1 and the definition of the random field π = π(a) in (3.5), we
obtain the following corollary.

COROLLARY 3.2. Let Assumptions 2.1 and 2.4 hold and consider a σ -field
G ⊂ F and random variables ξ ∈ L0(G,R) and θ ∈ L0(G,RJ ).

Then for every λ ∈ L0(G, (0,∞)M) the random vector π(λ, ξ, θ) forms a
G-Pareto allocation. Conversely, every G-Pareto allocation of the total endowment
�(ξ, θ) is given by π(λ, ξ, θ) for some λ ∈ L0(G, (0,∞)M).

PROOF. The only delicate point is to show that the allocation

αm � πm(λ, ξ, θ), m = 1, . . . ,M,

satisfies the integrability condition (2.2). Lemma 2.5 implies the existence of an
allocation β of �(ξ, θ) satisfying (2.8). The result now follows from inequal-
ity (3.10) which holds true by the properties of r = r(v, x). �

3.2. Stochastic field of aggregate utilities and its conjugate. A key role in the
construction of the general investment strategies will be played by the stochastic
field F of aggregate utilities and its saddle conjugate stochastic field G given by

Ft(a) � E
[
r
(
v,�(x, q)

)|Ft

]
, a = (v, x, q) ∈ A,(3.11)

Gt(b) � sup
v∈(0,∞)M

inf
x∈R

[〈v,u〉 + xy − Ft(v, x, q)
]
,

(3.12)
b = (u, y, q) ∈ B,

where t ∈ [0, T ], the aggregate utility function r = r(v, x) is given by (3.1), the
parameter set A is defined in (3.4), and

B � (−∞,0)M × (0,∞) × RJ .

These stochastic fields are studied in [6]. For the convenience of future references,
we recall below some of their properties.

First, we need to introduce some notation. For a nonnegative integer m and
an open subset U of Rd denote by Cm = Cm(U) the Fréchet space of m-times
continuously differentiable maps f :U → R with the topology generated by the
semi-norms

‖f ‖m,C �
∑

0≤|k|≤m

sup
x∈C

∣∣Dkf (x)
∣∣.(3.13)

Here, C is a compact subset of U , k = (k1, . . . , kd) is a multi-index of nonnegative
integers, |k| �∑d

i=1 ki , and

Dk � ∂ |k|

∂x
k1
1 · · · ∂x

kd

d

.(3.14)



2724 P. BANK AND D. KRAMKOV

In particular, for m = 0, D0 is the identity operator and ‖f ‖0,C � supx∈C |f (x)|.
For a metric space X, we denote by D([0, T ],X) the space of RCLL (right-

continuous with left limits) maps of [0, T ] to X.
Suppose now that Assumptions 2.1 and 2.4 hold. Note that in [6] instead of

Assumption 2.4 we used the equivalent condition:

E
[
r
(
v,�(x, q)

)]
> −∞, (v, x, q) ∈ A;(3.15)

see Lemma 3.2 in [5] for the proof of equivalence. Theorem 4.1 and Corollary 4.3
in [6] describe in detail the properties of the sample paths of the stochastic fields
F and G. In particular, these sample paths belong to D([0, T ],C1) and for every
t ∈ [0, T ], a = (w,x, q) ∈ SM × R × RJ , and b = (u,1, q) with u ∈ (−∞,0)M

we have the invertibility relations

w = ∂Gt

∂u

(
∂Ft

∂v
(a, t),1, q

)/( M∑
m=1

∂Gt

∂um

(
∂Ft

∂v
(a),1, q

))
,(3.16)

x = Gt

(
∂Ft

∂v
(a),1, q

)
,(3.17)

u = ∂Ft

∂v

(
∂Gt

∂u
(b),G(b), q

)
(3.18)

= ∂Ft

∂v

(
∂Gt

∂u
(b)

/( M∑
m=1

∂G

∂um
(b)

)
,G(b), q

)
.

Moreover, the left-limits Ft−(·) and Gt−(·) are conjugate to each other in a sense
analogous to (3.12) and they also satisfy the corresponding versions of the invert-
ibility relations (3.16)–(3.18).

Theorem 4.1 in [6] also states that

∂Ft

∂ai
(a) = E

[
∂FT

∂ai
(a)

∣∣∣Ft

]
, t ∈ [0, T ], a ∈ A,

which, in view of (3.6), implies that the derivatives of F with respect to v equal to
the expected utilities of the market markers given the Pareto allocation π(a):

∂Ft

∂vm
(a) = E

[
um

(
πm(a)

)|Ft

]
, m = 1, . . . ,M.(3.19)

By (3.17), the random variable Gt(u,1, q) then defines the collective cash amount
of the market makers at time t when their current expected utilities are given by u

and they jointly own q stocks.
If Assumption 2.2 holds as well, then by Theorem 4.2 in [6], the sample paths

of F and G get an extra degree of smoothness; they now belong to D([0, T ],C2).
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4. Continuous-time strategies. We proceed now with the main topic of the
paper, which is the construction of trading strategies with general continuous-time
dynamics. Recall that the key economic assumption of our model is that the large
investor can re-balance his portfolio without changing the expected utilities of the
market makers.

4.1. Simple strategies revisited. To facilitate the transition from the discrete
evolution in Section 2.2 to the continuous dynamics below, we begin by revisiting
the case of a simple strategy

Qt =
N∑

n=1

θn1(τn−1,τn](t), 0 ≤ t ≤ T ,(4.1)

with stopping times 0 = τ0 ≤ · · · ≤ τN = T and random variables θn ∈
L0(Fτn−1,RJ ), n = 1, . . . ,N .

The following result is an improvement over Theorem 2.7 in the sense that the
forward induction for cash balances and Pareto optimal allocations is now made
explicit through the use of the parameterization π = π(a) of Pareto allocations
from (3.5) and the stochastic fields F = Ft(a) = F(a, t) and G = Gt(b) = G(b, t)

defined in (3.11) and (3.12).
Denote by λ0 ∈ SM the weight of the initial Pareto allocation α0. This weight is

uniquely determined by Theorem 3.1.

THEOREM 4.1. Let Assumptions 2.1 and 2.4 hold and consider a simple strat-
egy Q given by (4.1). Then the sequence of conditionally Pareto optimal alloca-
tions (αn)n=0,...,N constructed in Theorem 2.7 takes the form

αn = π(ζn), n = 0, . . . ,N,(4.2)

where ζ0 � (λ0,0,0) and the random vectors ζn � (λn, ξn, θn) ∈ L0(SM × R ×
RJ ,Fτn−1), n = 1, . . . ,N , with λn and ξn uniquely determined by

λn = ∂G

∂u

(
∂F

∂v
(ζn−1, τn−1),1, θn, τn−1

)
(4.3) /( M∑

m=1

∂G

∂um

(
∂F

∂v
(ζn−1, τn−1),1, θn, τn−1

))
,

ξn = G

(
∂F

∂v
(ζn−1, τn−1),1, θn, τn−1

)
.(4.4)

PROOF. The recurrence relations (4.3) and (4.4) clearly determine λn and ξn,
n = 1, . . . ,N , uniquely. In view of the identity (3.19), for conditionally Pareto
optimal allocations (αn)n=0,...,N defined by (4.2) the indifference condition (2.11)
can be expressed as

∂F

∂v
(ζn, τn−1) = ∂F

∂v
(ζn−1, τn−1), n = 1, . . . ,N,(4.5)
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which, by the invertibility relations (3.16) and (3.17) and the fact that λn has values
in SM , is, in turn, equivalent to (4.3) and (4.4). �

In the setting of Theorem 4.1, let A� (W,X,Q), where

Wt = λ01[0](t) +
N∑

n=1

λn1(τn−1,τn](t),(4.6)

Xt =
N∑

n=1

ξn1(τn−1,τn](t).(4.7)

Then A is a simple predictable process with values in A:

At = ζ01[0](t) +
N∑

n=1

ζn1(τn−1,τn](t), 0 ≤ t ≤ T ,(4.8)

with ζn belonging to L0(Fτn−1,A) and defined in Theorem 4.1. It was shown in the
proof of this theorem that the main condition (2.11) of the preservation of expected
utilities is equivalent to (4.5). Observe now that (4.5) can also be expressed as

∂F

∂v
(At , t) = ∂F

∂v
(A0,0) +

∫ t

0

∂F

∂v
(As, ds), 0 ≤ t ≤ T ,(4.9)

where, for a simple process A as in (4.8),∫ t

0

∂F

∂v
(As, ds)�

N∑
n=1

(
∂F

∂v
(ζn, τn ∧ t) − ∂F

∂v
(ζn, τn−1 ∧ t)

)

denotes its nonlinear stochastic integral against the random field ∂F
∂v

. Note that,
contrary to (2.11) and (4.5), the condition (4.9) also makes sense for predictable
processes A which are not necessarily simple, provided that the nonlinear stochas-
tic integral

∫
∂F
∂v

(As, ds) is well defined. This will be key for extending our model
to general predictable strategies in the next section.

4.2. Extension to general predictable strategies. For a general predictable
process A, the construction of

∫
∂F
∂v

(As, ds) requires additional conditions on the
stochastic field ∂F

∂v
= ∂F

∂v
(a, t); see, for example, Sznitman [26] and Kunita [19],

Section 3.2. We choose to rely on [19], where the corresponding theory of stochas-
tic integration is developed for continuous semi-martingales. To simplify notation,
we shall work in a finite-dimensional Brownian setting. We assume that, for every
a ∈ A, the martingale F(a) of (3.11) admits an integral representation of the form

Ft(a) = F0(a) +
∫ t

0
Hs(a) dBs, 0 ≤ t ≤ T ,(4.10)
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where B is a d-dimensional Brownian motion and H(a) is a predictable process
with values in Rd . Of course, the integral representation (4.10) holds automati-
cally if the filtration (Ft )0≤t≤T is generated by B . To use the construction of the
stochastic integral

∫
∂F
∂v

(As, ds) from [19], we have to impose an additional regu-
larity condition on the integrand H with respect to the parameter a.

ASSUMPTION 4.2. There exists a stochastic field H = Ht(a) such that for
every a ∈ A the process H(a) = (Ht(a))t∈[0,T ] is predictable and satisfies the in-
tegral representation (4.10). In addition, for every t ∈ [0, T ], the random field Ht(·)
has sample paths in C1(A,Rd), and for every compact set C ⊂ A∫ T

0
‖Ht‖2

1,C dt < ∞,

where the semi-norm ‖ · ‖m,C is given by (3.13).

See Remark 4.10 below regarding the verification of this assumption in terms
of the primal inputs to our model.

Hereafter, we shall work under Assumptions 2.1, 2.4 and 4.2. For convenience
of future references, we formulate an easy corollary of the properties of the sam-
ple paths of F and G stated in Section 3.2. For a metric space X denote by
C([0, T ],X), the space of continuous maps of [0, T ] to X. Recall the definition
of the Fréchet space Cm from Section 3.2.

LEMMA 4.3. Under Assumptions 2.1, 2.4 and 4.2, the stochastic fields F =
Ft(a) and G = Gt(b) have sample paths in C([0, T ],C1). If, in addition, Assump-
tion 2.2 holds, then F and G have sample paths in C([0, T ],C2).

PROOF. As we recalled in Section 3.2, Theorem 4.1 in [6] implies that un-
der Assumptions 2.1 and 2.4 the stochastic fields F and G have sample paths in
the space D([0, T ],C1) of RCLL maps and that their left-limits satisfy conjugacy
relations analogous to (3.12). Moreover, under the additional Assumption 2.2, The-
orem 4.2 in [6] implies that the sample paths of F and G belong to D([0, T ],C2).
These results readily imply the assertions of the lemma as soon as we observe
that, in view of (4.10), for every a ∈ A, the trajectories of the martingale F(a) are
continuous. �

We also need the following elementary fact. Recall that if ξ and η are stochastic
fields on A then η is a modification of ξ if ξ(x) = η(x) for every x ∈ A.

LEMMA 4.4. Let m be a nonnegative integer, U be an open set in Rn, and
ξ :U → L0(R) be a random field with sample paths in Cm = Cm(U) such that for
every compact set C ⊂ U

E
[‖ξ‖m,C

]
< ∞.(4.11)
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Assume also that there are a Brownian motion B with values in Rd and a stochastic
field H = Ht(x) :U × [0, T ] → Rd such that for every t ∈ [0, T ] the random field
Ht(·) has sample paths in Cm(U,Rd) and such that for every x ∈ U the process
H(x) is predictable with

Mt(x) � E
[
ξ(x)|Ft

]= M0(x) +
∫ t

0
Hs(x) dBs.(4.12)

Suppose finally that for every compact set C ⊂ U∫ T

0
‖Ht‖2

m,C dt < ∞.(4.13)

Then M has a modification with sample paths in C([0, T ],Cm(U)) and for t ∈
[0, T ], x ∈ U , and a multi-index k = (k1, . . . , kn) with |k| ≤ m,

DkMt(x) = DkM0(x) +
∫ t

0
DkHs(x) dBs,(4.14)

where the differential operator Dk is given by (3.14).

PROOF. Observe first that (4.11) implies that M has a modification with sam-
ple paths in D([0, T ],Cm(U)); see Lemma C.1 in [6]. We shall work with this
modification. As, for every x ∈ U , the martingale M(x) is continuous, we deduce
that the sample paths of M belong to C([0, T ],Cm(U)).

To verify (4.14), it is sufficient to consider the case m = 1 and k = (1,0, . . . ,0).
Denote e1 � (1,0, . . . ,0) ∈ Rn. By (4.11),

lim
ε→0

E

[
1

ε

∣∣∣∣ξ(x + εe1) − ξ(x) − ε
∂ξ

∂x1
(x)

∣∣∣∣]= 0

and then, by Doob’s inequality,

lim
ε→0

1

ε

(
M(x + εe1) − M(x) − ε

∂M

∂x1
(x)

)∗

T

= 0,

where X∗
T � supt∈[0,T ] |Xt |. Observe also that by (4.13)

lim
ε→0

∫ T

0

∣∣∣∣1ε
(
H(x + εe1) − H(x) − ε

∂H

∂x1
(x)

)∣∣∣∣2 dt = 0.

The result now follows from the fact that for a sequence of continuous local mar-
tingales (Nn)n≥1 its maximal elements (Nn)∗T � supt∈[0,T ] |Nn

t | converge to 0 in
probability if and only if the initial values Nn

0 and the quadratic variations 〈Nn〉T
converge to 0 in probability. �

REMARK 4.5. If the filtration is generated by a d-dimensional Brownian mo-
tion B , then the integral representation (4.12) holds automatically. In this case, the
results of [26], based on Sobolev’s embeddings and Itô’s isometry, show that (4.13)
with m = m1 follows from (4.11) with m = m2 provided that m1 < m2 − d/2; see
our companion paper [7].
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From Lemma 4.4, we deduce

∂Ft

∂v
(a) = ∂F0

∂v
(a) +

∫ t

0

∂Hs

∂v
(a) dBs.

Following Section 3.2 in [19], we say that a predictable process A with values in A
is integrable with respect to the kernel ∂F

∂v
(·, dt) or, equivalently, that the stochastic

integral
∫

∂F
∂v

(As, ds) is well defined if∫ T

0

∣∣∣∣∂Ht

∂v
(At )

∣∣∣∣2 dt < ∞.

In this case, we set∫ t

0

∂F

∂v
(As, ds)�

∫ t

0

∂Hs

∂v
(As) dBs, 0 ≤ t ≤ T .

We are now in a position to give a formal definition of a general trading strategy.
Recall that processes X and Y are indistinguishable if (X−Y)∗T � supt∈[0,T ] |Xt −
Yt | = 0.

DEFINITION 4.6. A predictable process Q with values in RJ is called a strat-
egy if there are unique (in the sense of indistinguishability) predictable processes
W and X with values in SM and R, respectively, such that, for A � (W,X,Q), the
initial Pareto allocation is given by

α0 = π(A0),(4.15)

the stochastic integral
∫

∂F
∂v

(As, ds) is well defined and (4.9) holds.

REMARK 4.7. From now on, the term “strategy” will always be used in the
sense of Definition 4.6. Note that, at this point, it is still an open question whether
a simple predictable process Q is a (valid) strategy, as in Theorem 4.1 the unique-
ness of W and X, such that A � (W,X,Q) solves (4.9), was proved only in the
class of simple processes. The affirmative answer to this question will be given
in Theorem 4.19 below, where in addition to the standing Assumptions 2.1, 2.4
and 4.2, we shall also require Assumptions 2.2 and 4.15.

The predictable processes W and X in Definition 4.6 will be called the Pareto
weights and cash balance processes for the strategy Q. We remind the reader, that
the bookkeeping in our model is done from the collective point of view of the
market makers; see Remark 2.6. In other words, for a strategy Q, the number of
shares and the amount of cash owned by the large investor at time t are given by
−Qt and −Xt .

Accounting for (3.19), we call

Ut �
∂Ft

∂v
(At), 0 ≤ t ≤ T ,(4.16)
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the process of expected utilities for the market makers. Observe that, as U < 0
and U − U0 is a stochastic integral with respect to a Brownian motion, U is a
local martingale and a (global) sub-martingale. The invertibility relations (3.16)
and (3.17) imply the following expressions for W and X in terms of U and Q:

Wt = ∂Gt

∂u
(Ut ,1,Qt)

/( M∑
m=1

∂Gt

∂um
(Ut ,1,Qt)

)
,(4.17)

Xt = Gt(Ut ,1,Qt).(4.18)

We also call

Vt �−Gt(Ut ,1,0) = −Gt

(
∂Ft

∂v
(At ),1,0

)
, 0 ≤ t ≤ T ,(4.19)

the cumulative gain process for the large trader. This term is justified as, by (4.18),
Vt represents the cash amount the agent will hold at t if he liquidates his position
in stocks. Of course, at maturity

VT = −(
XT + 〈QT ,ψ〉).

It is interesting to observe that, contrary to the standard, small agent, model of
mathematical finance, no further “admissibility” conditions on a strategy Q are
needed to exclude an arbitrage.

LEMMA 4.8. Let Assumptions 2.1, 2.4 and 4.2 hold and Q be a strategy such
that the terminal gain of the large trader is nonnegative: VT ≥ 0. Then, in fact,
VT = 0.

PROOF. Recall the notation λ0 ∈ SM for the weights and �0 ∈ L0(RM) for
the total endowment of the initial Pareto allocation α0 and r = r(v, x) for the
aggregate utility function from (3.1). Denote by α1 the terminal wealth distribu-
tion between the market makers at maturity resulting from the strategy Q. From
the characterization of Pareto allocations in Theorem 3.1 and the sub-martingale
property of the process U of expected utilities, we obtain

E
[
r(λ0,�0)

]= E

[
m∑

m=1

λm
0 um

(
αm

0
)]= 〈λ0,U0〉 ≤ E

[〈λ0,UT 〉]

= E

[
m∑

m=1

λm
0 um

(
αm

1
)]≤ E

[
r(λ0,�0 − VT )

]
.

Since r(λ0, ·) is a strictly increasing function, the result follows. �

We state now a key result of the paper where we reduce the question whether a
predictable process Q is a strategy to the unique solvability of a stochastic differ-
ential equation parameterized by Q.
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THEOREM 4.9. Under Assumptions 2.1, 2.4 and 4.2, a predictable process Q

with values in RJ is a strategy if and only if the stochastic differential equation

Ut = U0 +
∫ t

0
Ks(Us,Qs) dBs,(4.20)

has a unique strong solution U with values in (−∞,0)M on [0, T ], where

Um
0 � E

[
um

(
αm

0
)]

, m = 1, . . . ,M,

and, for u ∈ (−∞,0)M , q ∈ RJ and t ∈ [0, T ],

Kt(u, q)� ∂Ht

∂v

(
∂Gt

∂u
(u,1, q),Gt(u,1, q), q

)
.(4.21)

In this case, U is the process of expected utilities, and the processes of Pareto
weights W and cash balance X are given by (4.17) and (4.18).

PROOF. Observe that the stochastic field F = Ft(v, x, q) is positive homoge-
neous with respect to v:

Ft(cv, x, q) = cFt (v, x, q), c > 0,

and that the integrand H = Ht(v, x, q), clearly, shares same property. It follows
that

∂Ht

∂v
(cv, x, q) = ∂Ht

∂v
(v, x, q), c > 0,

and, therefore, that the stochastic field K from (4.21) can also be written as

Kt(u, q) = ∂Ht

∂v

(
∂Gt

∂u
(u,1, q)

/( M∑
m=1

∂Gt

∂um
(u,1, q)

)
,Gt(u,1, q), q

)
.

After this observation, the result is an immediate consequence of the definition of
a strategy and the expressions (4.17) and (4.18) for the processes of Pareto weights
W and cash balance X. �

REMARK 4.10. In the follow-up paper [7], we provide sufficient conditions
for a locally bounded predictable process Q with values in RJ to be a strategy, or
equivalently, for (4.20) to have a unique strong solution, in terms of the “original”
inputs to the model: the utility functions (um)m=1,...,M , the initial endowment �0,
and the dividends ψ . In particular, these conditions also imply Assumptions 4.2
and 4.15 on H = Ht(a).

As an illustration, we give an example where (4.20) is a linear equation, and,
hence, can be solved explicitly.
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EXAMPLE 4.11 (Bachelier model with price impact). Consider an economy
with a single market maker and one stock. The market maker’s utility function is
exponential:

u(x) = − 1

γ
e−γ x, x ∈ R,

where the constant γ > 0 is the absolute risk-aversion coefficient. The initial en-
dowment of the market maker and the payoff of the stock are given by

�0 = α0 = b + μ

γσ
BT ,

ψ = s + μT + σBT ,

where the constants b,μ, s ∈ R and σ > 0. Note that the initial Pareto pricing
measure Q= Q0 and the stock price S have the expressions

dQ

dP
� constu′(�0) = e−(μ/σ)BT −(μ2/(2σ 2))T ,

St � EQ0[ψ |Ft ] = s + μt + σBt , t ∈ [0, T ],
and coincide with the martingale measure and the stock price in the classical
Bachelier model for a “small” investor.

Direct computations show that, for a = (v, x, q) ∈ A,

Ft(a) = ve−γ xNt(q),

where the martingale N(q) evolves as

dNt(q) = −
(

μ

σ
+ γ σq

)
Nt(q) dBt .(4.22)

For the integrand H = Ht(a) in (4.10) and the stochastic field G = Gt(b), we
obtain

∂Ht

∂v
(a) = −

(
μ

σ
+ γ σq

)
e−γ xNt (q),

u = e−γGt (u,1,q)Nt (q), u ∈ (−∞,0),

where the second equality follows from (3.18). The stochastic field K = Kt(u, q)

in (4.21) is then given by

Kt(u, q) = −
(

μ

σ
+ γ σq

)
u, u ∈ (−∞,0).

From Theorem 4.9, we obtain that a predictable process Q is a strategy if and
only if ∫ T

0
Q2

t dt < ∞,



CONTINUOUS-TIME MODEL FOR A LARGE INVESTOR 2733

and that, in this case, the expected utility process U for the market maker evolves
as

dUt = −
(

μ

σ
+ γ σQt

)
Ut dBt .(4.23)

Observe now that, by (4.19), the cumulative gain Vt of the large trader satisfies

Ut = eγVt Nt (0).

From (4.22) and (4.23) and the fact that V0 = 0, we deduce

Vt =
∫ t

0

[
(−Qr)(μdr + σ dBr) − γ σ 2

2
Q2

r dr

]

=
∫ t

0

[
(−Qr)dSr − γ σ 2

2
Q2

r dr

]
.

Recall that −Q denotes the number of shares owned by the large investor and then
observe that the first, linear with respect to Q, term yields the wealth evolution
in the classical Bachelier model. The second, quadratic, term thus describes the
feedback effect of the large trader’s actions on stock prices, with the risk-aversion
coefficient γ > 0 playing the role of a price impact coefficient.

4.3. Maximal local strategies. For a stochastic process X and a stopping time
σ with values in [0, T ], recall the notation Xσ � (Xt∧σ )0≤t≤T for X “stopped”
at σ . The following localization fact for strategies will be used later on several
occasions.

LEMMA 4.12. Let Assumptions 2.1, 2.4 and 4.2 hold, σ be a stopping time
with values in [0, T ], Q be a strategy and W , X, V and U be its processes of Pareto
weights, cash balance, cumulative gain and expected utilities. Then Qσ is also a
strategy and Wσ and Xσ are its processes of Pareto weights and cash balance.
The processes of cumulative gain, V (Qσ ), and of expected utilities, U(Qσ ), for
the strategy Qσ coincide with V and U on [0, σ ], while on (σ, T ] they are given by

U
(
Qσ )

t = ∂Ft

∂v
(Wσ ,Xσ ,Qσ ),

V
(
Qσ )

t = −Gt

(
U
(
Qσ )

t ,1,0
)
.

PROOF. The proof follows directly from Definition 4.6 and the construction
of U and V in (4.16) and (4.19). �

Let τ be a stopping time with values in (0, T ] ∪ {∞} and U be a process with
values in (−∞,0)M defined on [0, τ )∩ [0, T ]. Recall that, for the equation (4.20),
τ and U are called the explosion time and the maximal local solution if for every
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stopping time σ with values in [0, τ )∩[0, T ] the process Uσ is the unique solution
to (4.20) on [0, σ ] and

lim sup
t↑τ

∣∣log(−Ut)
∣∣= ∞ on {τ < ∞}.(4.24)

Observe that, for m = 1, . . . ,M , the sub-martingale property of Um < 0 insures the
existence of the limit: limt↑τ Um

t and prevents it from being −∞. Hence, (4.24) is
equivalent to

lim
t↑τ

max
m=1,...,M

Um
t = 0 on {τ < ∞}.

For convenience of future references, we introduce a similar localized concept
for strategies.

DEFINITION 4.13. A predictable process Q with values in RJ is called a max-
imal local strategy if there are a stopping time τ with values in (0, T ] ∪ {∞} and
processes V , W and X on [0, τ )∩[0, T ] with values in R, SM and R, respectively,
such that

lim
t↑τ

Vt = −∞ on {τ < ∞}(4.25)

and for every stopping time σ with values in [0, τ ) ∩ [0, T ] the process Qσ is
a strategy with Pareto weights Wσ and cash balance Xσ whose cumulative gain
equals V on [0, σ ].

Similar to the “global” case we call V , W and X from Definition 4.13 the
processes of cumulative gain, Pareto weights and cash balance, respectively; the
process U of expected utilities is defined on [0, τ ) ∩ [0, T ] as in (4.16). In view
of (4.25), we call τ the explosion time for V . Note that, by Lemma 4.12, the class
of maximal local strategies contains the class of (global) strategies.

THEOREM 4.14. Let Assumptions 2.1, 2.4 and 4.2 hold and τ be a stopping
time with values in (0, T ] ∪ {∞}. A predictable process Q with values in RJ is
a maximal local strategy and τ is the explosion time for its cumulative gain pro-
cess V if and only if the stochastic differential equation (4.20) admits the unique
maximal local solution U with the explosion time τ .

If, in addition, Q is locally bounded, then τ is also the explosion time for its
cash balance process:

lim
t↑τ

Xt = ∞ on {τ < ∞}.

PROOF. By Theorem 4.1 in [6], for every t ∈ [0, T ] the random field Gt(·) has
sample paths in a certain space G̃1 of continuously differentiable saddle functions
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on B. Among other properties, a function g = g(b) = g(u, y, q) in G̃1 is convex
with respect to q , strictly increasing with respect to u, and

lim
n→∞g(un,1, q) = ∞(4.26)

for every sequence (un)n≥1 in (−∞,0)M converging to a boundary point of
(−∞,0)M ; see the properties (G2), (G3) and (G6) of the elements of G̃1 in [6].

These properties readily imply that if (gn)n≥1 is a sequence in G̃1 which con-
verges to g ∈ G̃1 in C1(B), then

lim
n→∞ inf

q∈C
gn(un,1, q) = ∞(4.27)

for every compact set C ⊂ RJ and every sequence (un)n≥1 in (−∞,0)M converg-
ing to a boundary point of (−∞,0)M . Indeed, because of the q-convexity and the
u-monotonicity, it is sufficient to consider the case when C is a singleton and the
sequence (un)n≥1 is increasing. Then, for q ∈ RJ ,

lim inf
n→∞ gn(un,1, q) ≥ lim

k→∞ lim inf
n→∞ gn(uk,1, q) = lim

k→∞g(uk,1, q) = ∞,

where the last equality follows from (4.26).
Since, by Lemma 4.3, the stochastic field G = Gt(b) has sample paths in

C([0, T ],C1(B)), the property (4.27) readily yields the result as soon as we recall
the constructions of V and X in (4.19) and (4.18). Observe that in the argument
concerning X we can assume, by localization, that Q is (globally) bounded and,
hence, takes values in some compact set C ⊂ RJ . �

To establish the existence of a maximal local strategy or, equivalently, the ex-
istence and uniqueness of a maximal local solution to (4.20) we shall also require
Assumption 2.2 and a stronger version of Assumption 4.2.

ASSUMPTION 4.15. For every t ∈ [0, T ], the random field Ht(·) from As-
sumption 4.2 has sample paths in C2(A,Rd) and, for every compact set C ⊂ A,∫ T

0
‖Ht‖2

2,C dt < ∞.

The role of these additional assumptions is to guarantee the local Lipschitz prop-
erty with respect to u for the stochastic field K in (4.21).

LEMMA 4.16. Let Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15 hold and K be
the stochastic field defined in (4.21). Then for every t ∈ [0, T ] the random field
Kt(·) has sample paths in C1((−∞,0)M × RJ ,RM×d) and, for every compact set
C ⊂ (−∞,0)M × RJ , ∫ T

0
‖Kt‖2

1,C dt < ∞.
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PROOF. This follows from Assumption 4.15 and the fact that by Lemma 4.3,
the stochastic field G = Gt(b) has sample paths in C([0, T ],C2(B)). �

THEOREM 4.17. Let Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15 hold and Q be
a predictable process with values in RJ such that, for every compact set C ⊂
(−∞,0)M , ∫ T

0

∥∥Kt(·,Qt)
∥∥2

1,C dt < ∞.(4.28)

Then Q is a maximal local strategy.

PROOF. It is well known (see, e.g., Theorem 3.4.5 in [19]) that (4.28) implies
the existence of a unique maximal local solution to (4.20). The result now follows
from Theorem 4.14. �

THEOREM 4.18. Under Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15 every locally
bounded predictable process Q is a maximal local strategy.

PROOF. This follows from Theorem 4.17 if we observe that, by Lemma 4.16,
a locally bounded Q satisfies (4.28). �

The preceding result allows us to finally reconcile Definition 4.6 with the con-
struction of simple strategies in Theorems 2.7 and 4.1 since it resolves the unique-
ness issue raised in Remark 4.7.

THEOREM 4.19. Under Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15 every sim-
ple predictable process Q with values in RJ is a strategy and its processes of
Pareto weights W and cash balance X are simple and given by (4.6)–(4.7) and
(4.3)–(4.4).

PROOF. The fact, that, for W and X given by (4.6)–(4.7) and (4.3)–(4.4), the
process A � (W,X,Q) satisfies (4.15) and (4.9) has been already established
in our discussion following Theorem 4.1. The uniqueness follows from Theo-
rem 4.18. �

5. Approximation by simple strategies. In this final section, we provide a
justification for the construction of the general strategies in Definition 4.6 by dis-
cussing approximations based on simple strategies. To simplify the presentation,
we restrict ourselves to the case of locally bounded processes.

For measurable stochastic processes, in addition to the ucp convergence defined
by the metric

ducp(X,Y ) � E
[

sup
t∈[0,T ]

|Xt − Yt | ∧ 1
]
,
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we also consider the convergence in the space L0(dP× dt) with the metric

dL0(X,Y )� E

[∫ T

0

(|Xt − Yt | ∧ 1
)
dt

]
.

We call a sequence of stochastic processes (Xn)n≥1 uniformly locally bounded
from above if there is an increasing sequence of stopping times (σn)n≥1 such that
P[σn < T ] → 0, n → ∞ and Xk

t ≤ n on [0, σn] for k ≥ 1. The sequence (Xn)n≥1

is called uniformly locally bounded if the sequence of its absolute values (|Xn|)n≥1

is uniformly locally bounded from above.
We begin with a general convergence result:

THEOREM 5.1. Let Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15 hold and con-
sider a sequence of strategies (Qn)n≥1 which is uniformly locally bounded and
converges to a strategy Q in L0(dP× dt).

Then the processes (Un,V n)n≥1, of expected utilities and cumulative gains,
converge to (U,V ) in ucp, the processes (Wn,Xn)n≥1, of Pareto weights and
cash balance, converge to (W,X) in L0(dP × dt), and the sequence (Xn)n≥1 is
uniformly locally bounded. If, in addition, the sequence (Qn)n≥1 converges to Q

in ucp, then the sequence (Wn,Xn)n≥1 also converges to (W,X) in ucp.

PROOF. By standard localization arguments, we can assume the existence of
constants a > 0 and b > 0 such that

max
(∣∣ln(−U)

∣∣, |Q|, sup
n≥1

∣∣Qn
∣∣)≤ a,

and, in view of Lemma 4.16, such that∫ T

0

∥∥Ks(·)
∥∥2

1,C(a) ds ≤ b,(5.1)

where

C(a) �
{
(u, q) ∈ (−∞,0)M × RJ : max

(∣∣ln(−u)
∣∣, |q|)≤ 2a

}
.

Define the stopping times

σn � inf
{
t ∈ [0, T ] :

∣∣ln(−Un
t

)∣∣≥ 2a
}
, n ≥ 1,

where we follow the convention that inf∅�∞. Observe that the ucp convergence
of (Un)n≥1 to U holds if(

U − Un)∗
T ∧σn

→ 0, n → ∞.(5.2)
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To prove (5.2), note first that for every two stopping times 0 ≤ τ∗ ≤ τ ∗ ≤ σn we
have using Doob’s inequality

E
[

sup
τ∗≤t≤τ∗

∣∣Ut − Un
t

∣∣2]

≤ E

[
2
∣∣Uτ∗ − Un

τ∗
∣∣2 + 2 sup

τ∗≤t≤τ∗

∣∣∣∣∫ t

τ∗

(
Ks(Us,Qs) − Ks

(
Un

s ,Qn
s

))
dBs

∣∣∣∣2]

≤ 2E
∣∣Uτ∗ − Un

τ∗
∣∣2 + 8E

[∫ τ∗

τ∗

∣∣Ks(Us,Qs) − Ks

(
Un

s ,Qn
s

)∣∣2 ds

]
≤ 2E

∣∣Uτ∗ − Un
τ∗
∣∣2

+ 8E
[∫ τ∗

τ∗

∥∥Ks(·)
∥∥2

1,C(a)

(∣∣Us − Un
s

∣∣2 + ∣∣Qs − Qn
s

∣∣2)ds

]

≤ 2E
∣∣Uτ∗ − Un

τ∗
∣∣2 + 8E

[∫ τ∗

τ∗

∥∥Ks(·)
∥∥2

1,C(a) ds sup
τ∗≤t≤τ∗

∣∣Ut − Un
t

∣∣2]

+ 8E
[∫ τ∗

τ∗

∥∥Ks(·)
∥∥2

1,C(a)

∣∣Qs − Qn
s

∣∣2 ds

]
.

Rearranging terms, we thus obtain

E

[(
1 − 8

∫ τ∗

τ∗

∥∥Ks(·)
∥∥2

1,C(a) ds

)
sup

τ∗≤t≤τ∗

∣∣Ut − Un
t

∣∣2]
(5.3)

≤ 2E
∣∣Uτ∗ − Un

τ∗
∣∣2 + 8E

[∫ τ∗

τ∗

∥∥Ks(·)
∥∥2

1,C(a)

∣∣Qs − Qn
s

∣∣2 ds

]
.

Now choose τ0 � 0 and, for i = 1,2, . . . , let

τi � inf
{
t ≥ τi−1 : 8

∫ t

τi−1

∥∥Ks(·)
∥∥2

1,C(a) ds ≥ 1

2

}
∧ T .

Note that because of (5.1) we have τi = T for i ≥ i0, where i0 is the smallest
integer greater than 16b. Hence, to establish (5.2), it suffices to prove

E
[

sup
τi−1∧σn≤s≤τi∧σn

∣∣Us − Un
s

∣∣2]→ 0, n → ∞ for i = 1, . . . , i0.

For i = 1, this follows from estimate (5.3) with τ∗ � τ0 = 0 and τ ∗ � τ1 ∧ σn

because U0 = Un
0 and because of our assumption on the sequence (Qn)n≥1. For

i = 2,3, . . . this convergence holds by induction, since with τ∗ � τi−1 ∧ σn and
τ ∗ � τi ∧ σn the first term on the right-hand side of (5.3) vanishes for n → ∞
because of the validity of our claim for i − 1 and the second term disappears again
by assumption on (Qn)n≥1. This completes the proof of the ucp convergence of
(Un)n≥1 to U .
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The rest of the assertions follows from the representations (4.17), (4.18)
and (4.19) for Pareto weights, cash balances and cumulative gains in terms of the
stochastic field G = Gt(b) and the fact that, by Lemma 4.3, G has sample paths in
C(C1(B), [0, T ]). �

THEOREM 5.2. Under Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15, a predictable
locally bounded process Q with values in RJ is a strategy if and only if there
is a sequence (Qn)n≥1 of simple strategies, which is uniformly locally bounded,
converges to Q in L0(dP × dt), and for which the sequence of associated cash
balances (Xn)n≥1 is uniformly locally bounded from above.

For the proof, we need a lemma.

LEMMA 5.3. Under Assumptions 2.1, 2.2, 2.4 and 4.2, for every strategy Q

and every t ∈ [0, T ]
M∑

m=1

(
1

c
log

((−Um
t

)∨ 1
)+ c log

((−Um
t

)∧ 1
))

≤ Gt(−1,1,Qt) − Xt(5.4)

≤
M∑

m=1

(
1

c
log

((−Um
t

)∧ 1
)+ c log

((−Um
t

)∨ 1
))

,

where c > 0 is taken from Assumption 2.2, 1 � (1, . . . ,1) ∈ RM , and X and U are
the processes of cash balance and expected utilities for Q.

PROOF. Theorem 4.2 in [6] implies that under Assumptions 2.1, 2.2 and 2.4,
for every t ∈ [0, T ] the random field Gt(·) has sample paths in a certain space
G̃2(c) of twice-differentiable saddle functions on B. The property (G7) of the ele-
ments of G̃2(c) states that

1

c
≤ −um ∂Gt

∂um
(u,1, q) ≤ c, m = 1, . . . ,M.

This yields the result if we account for the representation (4.18) for X. �

PROOF OF THEOREM 5.2. The “only if” part follows from Theorem 5.1 and
the fact that every locally bounded predictable process Q can be approximated
in L0(dP × dt) by a sequence of simple predictable processes (Qn)n≥1 which is
uniformly locally bounded. Hereafter, we shall focus on sufficiency.

By Theorem 4.18, Q is a maximal local strategy. Denote by U and X its pro-
cesses of expected utilities and cash balance and by τ the explosion time of X; see
Theorem 4.14. We have to show that τ = ∞.
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For a > 0 and b > a, define the stopping times

τ(a) � inf
{
t ∈ [0, T ] : max

m=1,...,M
Um

t > −a
}
,

τn(a) � inf
{
t ∈ [0, T ] : sup

k≥n

max
m=1,...,M

U
k,m
t > −a

}
, n ≥ 1,

σ (b) � inf
{
t ∈ [0, T ] : min

m=1,...,M
Um

t < −b
}
,

σn(b) � inf
{
t ∈ [0, T ] : inf

k≥n
min

m=1,...,M
U

k,m
t < −b

}
, n ≥ 1,

where Un is the process of expected utilities for Qn and where we let inf∅� ∞.
Note that, by Theorem 4.14, τ(a) → τ , a → 0, and hence, τ = ∞ if and only if

lim
a→0

P
[
τ(a) ≤ T

]= 0.(5.5)

From Theorem 4.14 and Lemma 4.12, we deduce that Qτ(a)∧T is a strategy
whose expected utility process coincides with U on [0, τ (a) ∧ T ]. Hence, by The-
orem 5.1, (

Un − U
)∗
τ(a)∧T → 0, n → ∞.(5.6)

Hereafter, we shall assume that a is rational and that, for every such a, the conver-
gence above takes place almost surely. This can always be arranged by passing to
a subsequence.

Since {
τ(a) < τn(2a)

}⊂ ⋂
k≥n

{(
Uk − U

)∗
τ(a)∧T ≥ a

}
,

we obtain

lim
n→∞P

[
τ(a) < τn(2a)

]= 0.(5.7)

Similarly, as{
σn(2b) ∧ τ(a) < σ(b) ∧ τ(a)

}⊂ ⋃
k≥n

{(
Uk − U

)∗
τ(a)∧T ≥ b

}
,

and since the convergence in (5.6) takes place almost surely, we deduce

lim
n→∞P

[
σn(2b) ∧ τ(a) < σ(b) ∧ τ(a)

]= 0.

The latter convergence implies that

lim sup
n→∞

P
[
σn(2b) < τ(a)

]≤ P
[
σ(b) < τ(a)

]≤ P
[
σ(b) < τ

]
.(5.8)

From (5.7) and (5.8), we deduce

P
[
τ(a) ≤ T

]≤ P
[
σ(b) < τ

]+ lim sup
n→∞

P
[
τn(2a) ≤ σn(2b) ∧ T

]
.
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Therefore, (5.5) holds if

lim
b→∞P

[
σ(b) < τ

]= 0,(5.9)

and, for every b > 0,

lim
a→0

lim sup
n→∞

P
[
τn(a) ≤ σn(b) ∧ T

]= 0.(5.10)

The verification of (5.9) is straightforward due to the sub-martingale property
of U . The uniform local boundedness conditions on (Qn)n≥1 and (Xn)n≥1 (from
above) and the fact that G has trajectories in C(C(B), [0, T ]) imply that the process

Yt � inf
n≥1

(
G
(−1,1,Qn

t , t
)− Xn

t

)
, 0 ≤ t ≤ T ,

is locally bounded from below. The convergence (5.10) follows now from the sec-
ond inequality in (5.4) of Lemma 5.3. �

We conclude this section with affirmative answers to our Questions 2.9 and 2.10
from Section 2.2. Recall that the acronym LCRL means left-continuous with right
limits.

THEOREM 5.4. Under Assumptions 2.1, 2.2, 2.4, 4.2 and 4.15, a predictable
process Q with values in RJ and LCRL trajectories is a strategy if and only if
there is a predictable process X with values in R and a sequence of simple strate-
gies (Qn)n≥1 converging to Q in ucp such that the sequence of its cash balances
(Xn)n≥1 converges to X in ucp. In this case, X is the cash balance process for Q.

PROOF. This follows from Theorems 5.1 and 5.2 and the fact that every pre-
dictable process with LCRL trajectories is a limit in ucp of a sequence of simple
processes which then necessarily is also uniformly locally bounded. �
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[10] CVITANIĆ, J. and MA, J. (1996). Hedging options for a large investor and forward-backward
SDE’s. Ann. Appl. Probab. 6 370–398. MR1398050

[11] DELBAEN, F. and SCHACHERMAYER, W. (1994). A general version of the fundamental theo-
rem of asset pricing. Math. Ann. 300 463–520. MR1304434

[12] DELBAEN, F. and SCHACHERMAYER, W. (1998). The fundamental theorem of asset pricing
for unbounded stochastic processes. Math. Ann. 312 215–250. MR1671792

[13] FREY, R. and STREMME, A. (1997). Market volatility and feedback effects from dynamic
hedging. Math. Finance 7 351–374. MR1482708

[14] GARLEANU, N., PEDERSEN, P. L. and POTESHMAN, A. M. (2009). Demand-based option
pricing. Rev. Financ. Stud. 22 4259–4299.

[15] GERMAN, D. (2011). Pricing in an equilibrium based model for a large investor. Math. Financ.
Econ. 4 287–297. MR2800383

[16] GLOSTEN, L. R. and MILGROM, P. R. (1985). Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders. J. Financ. Econ. 14 71–100.

[17] GÖKAY, S., ROCH, A. F. and SONER, H. M. (2011). Liquidity models in continuous and
discrete time. In Advanced Mathematical Methods for Finance (G. Di Nunno and B. Øk-
sendal, eds.) 333–365. Springer, Heidelberg. MR2792086

[18] GROSSMAN, S. J. and MILLER, M. H. (1988). Liquidity and market structure. J. Finance 43
617–633.

[19] KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Stud-
ies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge. MR1070361

[20] KYLE, A. S. (1985). Continuous auctions and insider trading. Econometrica 53 1315–1335.
[21] O’HARA, M. (1995). Market Microstructure Theory. Blackwell, Oxford.
[22] PAPANICOLAOU, G. and SIRCAR, R. (1998). General Black–Scholes models accounting for

increased market volatility from hedging strategies. Appl. Math. Finance 5 45–82.
[23] PLATEN, E. and SCHWEIZER, M. (1998). On feedback effects from hedging derivatives. Math.

Finance 8 67–84. MR1613291
[24] SCHIED, A. and SCHÖNEBORN, T. (2009). Risk aversion and the dynamics of optimal liqui-

dation strategies in illiquid markets. Finance Stoch. 13 181–204. MR2482051
[25] STOLL, H. R. (1978). The supply of dealer services in securities markets. J. Finance 33 1133–

1151.
[26] SZNITMAN, A.-S. (1981). Martingales dépendant d’un paramètre: Une formule d’Itô. C. R.

Acad. Sci. Paris Sér. I Math. 293 431–434. MR0641104

INSTITUT FÜR MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN

STRASSE DES 17. JUNI 136
10623 BERLIN

GERMANY

E-MAIL: bank@math.tu-berlin.de

DEPARTMENT OF MATHEMATICAL SCIENCES

CARNEGIE MELLON UNIVERSITY

5000 FORBES AVENUE

PITTSBURGH, PENNSYLVANIA 15213-3890
USA
E-MAIL: kramkov@cmu.edu

http://www.ams.org/mathscinet-getitem?mr=2213255
http://www.ams.org/mathscinet-getitem?mr=1398050
http://www.ams.org/mathscinet-getitem?mr=1304434
http://www.ams.org/mathscinet-getitem?mr=1671792
http://www.ams.org/mathscinet-getitem?mr=1482708
http://www.ams.org/mathscinet-getitem?mr=2800383
http://www.ams.org/mathscinet-getitem?mr=2792086
http://www.ams.org/mathscinet-getitem?mr=1070361
http://www.ams.org/mathscinet-getitem?mr=1613291
http://www.ams.org/mathscinet-getitem?mr=2482051
http://www.ams.org/mathscinet-getitem?mr=0641104
mailto:bank@math.tu-berlin.de
mailto:kramkov@cmu.edu

	Introduction
	Model
	Market makers and the large investor
	Simple strategies

	Random ﬁelds associated with Pareto allocations
	Parameterization of Pareto allocations
	Stochastic ﬁeld of aggregate utilities and its conjugate

	Continuous-time strategies
	Simple strategies revisited
	Extension to general predictable strategies
	Maximal local strategies

	Approximation by simple strategies
	References
	Author's Addresses

