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We consider the random walk Metropolis algorithm on R
n with Gaus-

sian proposals, and when the target probability measure is the n-fold product
of a one-dimensional law. In the limit n → ∞, it is well known (see [Ann.
Appl. Probab. 7 (1997) 110–120]) that, when the variance of the proposal
scales inversely proportional to the dimension n whereas time is accelerated
by the factor n, a diffusive limit is obtained for each component of the Markov
chain if this chain starts at equilibrium. This paper extends this result when
the initial distribution is not the target probability measure. Remarking that
the interaction between the components of the chain due to the common ac-
ceptance/rejection of the proposed moves is of mean-field type, we obtain a
propagation of chaos result under the same scaling as in the stationary case.
This proves that, in terms of the dimension n, the same scaling holds for
the transient phase of the Metropolis–Hastings algorithm as near stationarity.
The diffusive and mean-field limit of each component is a diffusion process
nonlinear in the sense of McKean. This opens the route to new investigations
of the optimal choice for the variance of the proposal distribution in order to
accelerate convergence to equilibrium (see [Optimal scaling for the transient
phase of Metropolis–Hastings algorithms: The longtime behavior Bernoulli
(2014) To appear]).

1. Introduction. Many Markov Chain Monte Carlo (MCMC) methods are
based on the Metropolis–Hastings algorithm [11, 15]. Let us recall this well-known
sampling technique. Let us consider a target probability distribution on R

n with
density p. Starting from an initial random variable X0, the Metropolis–Hastings
algorithm generates iteratively a Markov chain (Xk)k≥0 in two steps. At time k,
given Xk , a candidate Yk+1 is sampled using a proposal distribution with density
q(Xk, y). Then the proposal Yk+1 is accepted with probability α(Xk,Yk+1), where

α(x, y) = 1 ∧ p(y)q(y, x)

p(x)q(x, y)
.
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Here and in the following, we use the standard notation a ∧ b = min(a, b). If the
proposed value is accepted, then Xk+1 = Yk+1 otherwise Xk+1 = Xk . The Markov
chain (Xk)k≥0 is by construction reversible with respect to the target density p,
and thus admits p(x)dx as an invariant distribution. The efficiency of this algo-
rithm highly depends on the choice of the proposal distribution q . One common
choice is a Gaussian proposal centered at the current position x ∈ R

n with vari-
ance σ 2 Idn×n:

q(x, y) = 1

(2πσ 2)n/2 exp
(
−|x − y|2

2σ 2

)
.

Since the proposal is symmetric (q(x, y) = q(y, x)), the acceptance probability
reduces to

α(x, y) = 1 ∧ p(y)

p(x)
.(1.1)

Metropolis–Hastings algorithms with symmetric kernels are called random walk
Metropolis (RWM) algorithms.

The choice of the variance σ 2 is crucial for the performance of the RWM al-
gorithm. It should be sufficiently large to ensure a good exploration of the state
space, but not too large otherwise the rejection rate becomes typically very high
since the proposed moves fall in low probability regions, in particular in high di-
mension. It is expected that the higher the dimension, the smaller the variance of
the proposal should be. The first theoretical results to optimize the choice of σ 2 in
terms of the dimension n are due to Roberts, Gelman and Gilks in [21]. The au-
thors study the RWM algorithm under two fundamental (and somewhat restrictive)
assumptions: (i) the target probability distribution is the n-fold tensor product of a
one-dimensional density:

p(x) =
n∏

i=1

exp(−V (xi))

Z
,(1.2)

where x = (x1, . . . , xn) and Z = ∫
R

exp(−V ), and (ii) the initial distribution is the
target probability:

Xn
0 ∼ p(x)dx.

The superscript n in the Markov chain (Xn
k )k≥0 explicitly indicates the dependency

on the dimension n. Then, under additional regularity assumptions on V , the au-
thors prove that for a proper scaling of the variance as a function of the dimension,
namely

σ 2
n = l2

n
,
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where l is a fixed constant, the Markov process (X
1,n
�nt	)t≥0 (where X

1,n
k ∈ R de-

notes the first component of Xn
k ∈R

n) converges in law to a diffusion process:

dXt =√
h(l) dBt − h(l)1

2V ′(Xt) dt,(1.3)

where (Bt )t≥0 is a standard Brownian motion,

h(l) = 2l2�

(
− l

√
I

2

)
and I =

∫
R

(
V ′)2 exp(−V )

Z
.(1.4)

Here and in the following, �·	 denotes the integer part (for y ∈ R, �y	 ∈ Z and
�y	 ≤ y < �y	 + 1) and � is the cumulative distribution function of the normal
distribution [�(x) = 1√

2π

∫ x
−∞ exp(−y2/2) dy]. The scaling as a function of the

dimension of the variance and of the time are indications on how to make the
RWM algorithm efficient in high dimension. Moreover, a practical counterpart of
this result is that l should be chosen such that h(l) is maximum (the optimal value
of l is l∗ = 2.38√

I
), in order to optimize the time scaling in (1.3). This optimal value

of l corresponds equivalently to an average acceptance rate 0.234 (independently
of the value of I ): for l = l∗,∫ ∫

α(x, y)p(x)q(x, y) dx dy = 2�

(
− l∗

√
I

2

)
� 0.234.

Thus, the practical way to choose σ 2 is to scale it in such a way that the average
acceptance rate is roughly 1/4.

There exist several extensions of such results for various Metropolis–Hastings
algorithms, see [3–5, 16, 17, 22, 23], and some of them relax in particular the first
main assumption mentioned above about the product form of the target distribu-
tion; see [1, 2, 6–8]. Extensions to infinite-dimensional settings have also been
explored; see [6, 14, 18].

All these results assume stationarity: the initial measure is the target probabil-
ity measure. To the best of the authors’ knowledge, the only works which deal
with a nonstationary case are [9] where partial scaling results are obtained for
the RWM algorithm with a Gaussian target and [19]. In the latter paper, the tar-
get measure is assumed to be absolutely continuous with respect to the law of an
infinite-dimensional Gaussian random field and this measure is approximated in a
space of dimension n where the MCMC algorithm is performed. The authors con-
sider a modified RWM algorithm (called preconditioned Crank–Nicolson walk)
started at a deterministic initial condition and prove that when σn tends to 0 as n

tends to ∞ (with no restriction on the rate of convergence of σn to 0), the rescaled
algorithm converges to a stochastic partial differential equation, started at the same
initial condition.

The aim of the present article is to show that, for the RWM algorithm, using
the same scaling for the variance and the time as in the stationary case [namely
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σ 2
n = l2

n
and considering (X

1,n
�nt	)t≥0], one obtains in the limit n goes to infinity the

nonlinear (in the sense of McKean) diffusion process:

dXt = �1/2(
E
[(

V ′(Xt)
)2]

,E
[
V ′′(Xt)

])
dBt

(1.5)
− G

(
E
[(

V ′(Xt)
)2]

,E
[
V ′′(Xt)

])
V ′(Xt) dt,

where, for a ∈ [0,+∞] and b ∈ R,

�(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l2�

(
− lb

2
√

a

)
+ l2e(l2(a−b))/2�

(
l

(
b

2
√

a
− √

a

))
,

if a ∈ (0,+∞),

l2

2
, if a = +∞,

l2e−(l2b+)/2, if a = 0,

(1.6)

where b+ = max(b,0), and

G(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l2e(l2(a−b))/2�

(
l

(
b

2
√

a
− √

a

))
, if a ∈ (0,+∞),

0, if a = +∞,

1{b>0}l2e−(l2b)/2, if a = 0.

(1.7)

Notice that we will assume V ′′ to be bounded, so that the coefficients in (1.5)
are well defined. This convergence result is precisely stated in Theorem 1 below
and can be seen as a mean-field limit combined with a diffusion approximation.
We would like to mention that another (different in nature) mean-field limit is
considered in [7] in the context of optimal scaling: the limit is obtained, under the
stationarity assumption, for a target measure which admits some mean-field limit
as n → ∞.

Our convergence result generalizes the previous analysis in [21] which was lim-
ited to the stationary case [namely Xn

0 is distributed according to p(x)dx]. In par-
ticular, in the stationary case, we recover the dynamics (1.3). It also generalizes
results from [9] to non-Gaussian targets.

The proof is based on a classical technique to prove propagation of chaos [24].
We first show the tightness of the empirical distribution. Then we pass to the limit
in a martingale problem, which is the weak formulation of (1.5). Notice that such
a weak formulation has also recently been used in [14] to deal with the stationary
case.

This new result opens the route to new investigations of the optimal choice
for the variance of the proposal distribution, by precisely taking into account the
transient regime (when the Markov chain is not yet at equilibrium). It shows, for
example, how to scale properly the variance and the number of samples as a func-
tion of the dimension, at least for a product target. A more detailed analysis of the
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longtime behavior of the nonlinear diffusion (1.5) and of the practical counterparts
of this convergence result are the subject of a companion paper [12].

The paper is organized as follows. In Section 2, we state our main convergence
result, we present a formal derivation of the limiting diffusion process and we
explain the three main steps of its rigorous proof. Sections 3, 4 and 5 are, respec-
tively, devoted to each of these main steps: uniqueness for the stochastic differ-
ential equation (1.5) and its weak formulation as a martingale problem, tightness
of the laws of the processes (X

1,n
�nt	)t≥0 and identification of the limit probability

measures on the path space thanks to the martingale problem. Last, in Section 6,
we prove the convergence of the acceptance probability in the RWM algorithm to
1
l2

�(E[(V ′(Xt))
2],E[V ′′(Xt)]).

2. The main convergence result. Let us first present the precise statement for
the main convergence result. Then we will give a formal derivation of the limiting
process before sketching the rigorous proof.

2.1. Notation and convergence to the diffusion process. We consider a random
walk Metropolis algorithm using Gaussian proposal with variance σ 2

n = l2

n
, and

with target p defined by (1.2). The Markov chain generated using this algorithm
writes

X
i,n
k+1 = X

i,n
k + l√

n
Gi

k+11Ak+1, 1 ≤ i ≤ n(2.1)

with

Ak+1 = {
Uk+1 ≤ e

∑n
i=1(V (X

i,n
k )−V (X

i,n
k +(l/

√
n)Gi

k+1))
}
,

where (Gi
k)i,k≥1 is a sequence of independent and identically distributed (i.i.d.)

normal random variables, independent from a sequence (Uk)k≥1 of i.i.d. random
variables uniform on [0,1]. We assume that the initial positions (X

1,n
0 , . . . ,X

n,n
0 )

are exchangeable (namely the law of the vector is invariant under permutation
of the indices) and independent from (Gi

k)i,k≥1 and (Uk)k≥1. Exchangeability

is preserved by the dynamics: for all k ≥ 1, (X
1,n
k , . . . ,X

n,n
k ) are exchange-

able. We denote by Fn
k the sigma field generated by (X

1,n
0 , . . . ,X

n,n
0 ) and

(G1
l , . . . ,G

n
l ,Ul)1≤l≤k .

In all the following, we also assume that{
V is a C3 function on R

with bounded second- and third-order derivatives.
(2.2)

For t > 0 and i ∈ {1, . . . , n}, let

Y
i,n
t = (�nt� − nt

)
X

i,n
�nt	 + (

nt − �nt	)Xi,n
�nt�

= X
i,n
�nt	 + (

nt − �nt	) l√
n
Gi�nt�1A�nt�
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be the linear interpolation of the Markov chain obtained by rescaling time (the
characteristic time scale is 1/n, and Y

i,n
k/n = X

i,n
k , ∀k ∈ Z). Here and in the follow-

ing �·� is the upper integer part (for y ∈ R, �y� ∈ Z and �y� − 1 < y ≤ �y�).
Let us define the notion of convergence (namely the propagation of chaos)

that will be useful to study the convergence of the interacting particle system
((Y

1,n
t , . . . , Y

n,n
t )t≥0)n≥1 in the limit n goes to infinity.

DEFINITION 1. Let E be a separable metric space. A sequence (χn
1 , . . . ,

χn
n )n≥1 of exchangeable En-valued random variables is said to be ν-chaotic where

ν is a probability measure on E if for fixed j ∈ N
∗, the law of (χn

1 , . . . , χn
j ) con-

verges in distribution to ν⊗j as n goes to ∞.

We are now in position to state the main convergence result.

THEOREM 1. Assume (2.2) and let m be a probability measure on R such
that

∫
R
(V ′)4(x)m(dx) < +∞. If the initial positions (X

1,n
0 , . . . ,X

n,n
0 )n≥1 are ex-

changeable, m-chaotic and such that supnE[(V ′(X1,n
0 ))4] < +∞, then the pro-

cesses ((Y
1,n
t , . . . , Y

n,n
t )t≥0)n≥1 are P -chaotic where P denotes the law [on the

space C(R+,R) of continuous functions with values in R] of the solution to the
nonlinear stochastic differential equation in the sense of McKean (for which strong
and weak existence and uniqueness hold)

Xt = ξ +
∫ t

0
�1/2(

E
[(

V ′(Xs)
)2]

,E
[
V ′′(Xs)

])
dBs

(2.3)

−
∫ t

0
G
(
E
[(

V ′(Xs)
)2]

,E
[
V ′′(Xs)

])
V ′(Xs) ds,

where � and G are, respectively, defined by (1.6) and (1.7) and (Bt )t≥1 is a Brow-
nian motion independent from the initial position ξ distributed according to m.

Let us make a few remarks on this result. First, concerning the assumption on the
initial positions (X

1,n
0 , . . . ,X

n,n
0 )n≥1, we note that it is satisfied, for instance, when

the random variables X
1,n
0 , . . . ,X

n,n
0 are i.i.d. according to the probability mea-

sure m on R. Second, notice that the results of Theorem 1 do not require exp(−V )

to be integrable. Finally, according to [10] (see Proposition 10.4, page 149 and
Theorem 10.2, page 148), under the assumptions of Theorem 1, the piecewise
constant processes ((X

1,n
�nt	, . . . ,X

n,n
�nt	)t≥0)n≥1 are also P -chaotic when the space

of càdlàg sample paths from [0,+∞) is endowed with the topology of uniform
convergence on compact sets.

In addition to the previous convergence result, we are able to identify the limit-
ing average acceptance rate.
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PROPOSITION 1. Under the assumptions of Theorem 1, the function

t �→ E

∣∣∣∣P(A�nt	+1|Fn�nt	
)− 1

l2 �
(
E
[(

V ′(Xt)
)2]

,E
[
V ′′(Xt)

])∣∣∣∣
converges locally uniformly to 0 and in particular, the average acceptance
rate t �→ P(A�nt	+1) converges locally uniformly to t �→ acc(E[(V ′(Xt))

2],
E[V ′′(Xt)]) where for any a ≥ 0 and b ∈ R,

acc(a, b) = �(a, b)

l2 .(2.4)

In the following, we will also need the infinitesimal generator associated
to (2.3). For a probability measure μ on R, 〈μ,V ′′〉 is well defined by boundedness
of V ′′, and 〈μ, (V ′)2〉 is also well defined in [0,+∞]. Here and in the following,
the bracket notation refers to the duality bracket for probability measures on R:
for μ a probability measure and φ a bounded or positive measurable function,

〈μ,φ〉 =
∫
R

φ(x)μ(dx).

The infinitesimal generator associated to (2.3) is Lμ defined by

Lμϕ(x) = 1
2�

(〈
μ,

(
V ′)2〉, 〈μ,V ′′〉)ϕ′′(x)

(2.5)
− G

(〈
μ,

(
V ′)2〉, 〈μ,V ′′〉)V ′(x)ϕ′(x).

More precisely, if (Xt)t≥0 satisfies (2.3) and Pt denotes the law of Xt , then

for any test function ϕ,
(2.6) (

ϕ(Xt) −
∫ t

0
LPsϕ(Xs) ds

)
t≥0

is a martingale.

Equivalently, for any s < t ,

E

(
ϕ(Xt) −

∫ t

s
LPr ϕ(Xr) dr

∣∣∣Fs

)
= ϕ(Xs),(2.7)

where Fs = σ(Xr, r ≤ s). Actually, as explained in Section 3 below, this mar-
tingale representation characterizes the distribution [over C(R+,R)] of solutions
to (2.3): probability measures under which (2.6) holds are distributions of solutions
to (2.3), and reciprocally.

2.2. Relation to previous results in the literature. Let us discuss how this theo-
rem is related to previous results in the literature. First, when Z = ∫

R
e−V (x) dx <

+∞, our convergence result generalizes the scaling limit for the random walk
Metropolis–Hastings algorithm stated in the early paper [21] under the restric-
tive assumption that the vector of initial positions (X

1,n
0 , . . . ,X

n,n
0 ) is distributed

according to the target distribution p(x)dx. In this case, it is clear that for all
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n, k ∈ N, (X
1,n
k , . . . ,X

n,n
k ) is distributed according to p(x)dx. Moreover, we have

the following result.

LEMMA 1. Assume that (2.2) holds, and that
∫
R

e−V (x) dx < ∞. Then∫
R

(
V ′(x)

)2
e−V (x) dx =

∫
R

V ′′(x)e−V (x) dx < +∞.

PROOF. The integrability of e−V implies that lim inf|x|→∞ |x|e−V (x) = 0.
Since |V ′(x)| ≤ |V ′(0)| + ‖V ′′‖∞|x|, one deduces the existence of a sequence
(xn)n of negative numbers tending to −∞ and a sequence (yn)n of positive num-
bers tending to +∞ such that limn→+∞ |V ′(xn)|e−V (xn) + |V ′(yn)|e−V (yn) = 0.
By integration by parts,∫ yn

xn

(
V ′(x)

)2
e−V (x) dx

= V ′(xn)e
−V (xn) − V ′(yn)e

−V (yn) +
∫ yn

xn

V ′′(x)e−V (x) dx.

Taking the limit n → ∞ thanks to monotone convergence in the left-hand side and
thanks to Lebesgue’s theorem and boundedness of V ′′ in the integral in the right-
hand side, one concludes that

∫
R
(V ′(x))2e−V (x) dx = ∫

R
V ′′(x)e−V (x) dx < +∞.

�

One deduces that for each t ≥ 0 the solution Xt of (2.3) is distributed according
to Z−1 exp(−V (x)) dx so that (Xt)t≥0 also solves the stochastic differential equa-
tion (1.3)–(1.4) with time-homogeneous coefficients [here, we use the fact that
�(I, I ) = 2G(I, I ) = h(l) where I = ∫

R
(V ′(x))2e−V (x) dx

Z
= ∫

R
V ′′(x)e−V (x) dx

Z
].

Notice that our convergence result requires more regularity but less integrability
than in [21], Theorem 1.1, where the log-density −V is assumed to be C2 with a
bounded second-order derivative and such that

∫
R
(V ′)8 exp(−V ) < +∞.

Second, we also recover results from [9], where the authors consider a nonsta-
tionary case, but restrict their analysis to Gaussian distributions: V (x) = x2

2 . In
this case, the function V ′′ is constant equal to 1 and, for Xt solution to (2.3), one
obtains that

d

dt
E
[
X2

t

]= �
(
E
[
X2

t

]
,1
)− 2E

[
X2

t

]
G
(
E
[
X2

t

]
,1
)

= l2�

(
− l

2
√
E[X2

t ]

)

+ (
1 − 2E

(
X2

t

))
l2e(l2(E[X2

t ]−1))/2�

(
l

(
1

2
√
E[X2

t ]
−
√
E
[
X2

t

]))
.

This is indeed the ordinary differential equation satisfied by the deterministic func-
tion obtained as the limit (when n → ∞) of the processes ( 1

n

∑n
i=1(X

i,n
�nt	)2)t≥0
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in [9], Theorem 1. More precisely, the proof of our Proposition 1 ensures that
E| 1

n

∑n
i=1(X

i,n
�nt	)2 −E[X2

t ]| converges to 0 locally uniformly in t as n → ∞.

2.3. A formal derivation. Before going into the details of a rigorous proof, let
us explain how this limit diffusion process can be formally derived.

First, let us make precise how to choose the scaling of σn as a function of n.
The idea (see [23]) is to choose σn in such a way that the limiting acceptance rate
(when n → ∞) is neither zero nor one. In the first case, this would mean that the
variance of the proposal is too large, so that all proposed moves are rejected. In the
second case, the variance of the proposal is too small, and the rate of convergence
to equilibrium is thus not optimal. In particular, it is easy to check that σn should
go to zero as n goes to infinity. Now, notice that the limiting acceptance rate is

E
(
1Ak+1 |Fn

k

)= E
(
e
∑n

i=1(V (X
i,n
k )−V (X

i,n
k +σnGi

k+1)) ∧ 1|Fn
k

)
= E

(
e−∑n

i=1(V
′(Xi,n

k )σnGi
k+1+V ′′(Xi,n

k )(σ 2
n /2)) ∧ 1|Fn

k

)
+O

(
nσ 3

n

)+O
(√

nσ 2
n

)
(2.8)

= exp
(

an − bn

2

)
�

(
bn

2
√

an

− √
an

)
+ �

(
− bn

2
√

an

)

+O
(
nσ 3

n

)+O
(√

nσ 2
n

)
= 1

l2 �(an, bn) +O
(
nσ 3

n

)+O
(√

nσ 2
n

)
,

where an = σ 2
n

l2

∑n
i=1(V

′(Xi,n
k ))2 and bn = σ 2

n

l2

∑n
i=1 V ′′(Xi,n

k ). To obtain (2.8), we
used an explicit computation of the expectation with respect to the Gaussian mea-
sure; see (A.5) below (with α = 0). From this expression, assuming a propagation
of chaos (law of large number) result on the random variables (X

i,n
k )1≤i≤n, one

can check that the correct scaling for the variance is σ 2
n = l2

n
in order to obtain

a nontrivial limiting acceptance rate (see Proposition 1 above). More precisely, if
an → 0 and bn → 0, then the acceptance rate goes to 1 [by continuity of � at point
(0,0), see Lemma 2 below]. If an ∼ αnε and bn ∼ βnε (for some ε > 0), then the
acceptance rate goes to 0 if β > 0 and to 1 if β < 0.

Using the scaling σ 2
n = l2

n
, we observe that, for a test function ϕ :R→R,

E
(
ϕ
(
X

1,n
k+1

)|Fn
k

)= E

(
ϕ

(
X

1,n
k + l√

n
G1

k+11Ak+1

)∣∣∣Fn
k

)

= ϕ
(
X

1,n
k

)+ ϕ′(X1,n
k

) l√
n
E
(
G1

k+11Ak+1 |Fn
k

)
(2.9)

+ l2

2n
ϕ′′(X1,n

k

)
E
((

G1
k+1

)21Ak+1 |Fn
k

)+O
(
n−3/2).
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We compute

E
(
G1

k+11Ak+1 |Fn
k

)
= E

(
G1

k+1
(
e
∑n

i=1(V (X
i,n
k )−V (X

i,n
k +(l/

√
n)Gi

k+1)) ∧ 1
)|Fn

k

)
= E

(
G1

k+1
(
e−∑n

i=1(V
′(Xi,n

k )(l/
√

n)Gi
k+1+V ′′(Xi,n

k )(l2/(2n))) ∧ 1
)|Fn

k

)
(2.10)

+O
(
n−1/2)

= −V ′(X1,n
k

) 1

l
√

n
G
(〈
νn
k ,
(
V ′)2〉, 〈νn

k ,V ′′〉)+O
(
n−1/2),

where

νn
k = 1

n

n∑
i=1

δ
X

i,n
k

denotes the empirical distribution associated to the interacting particle system.
Equation (2.10) is a consequence of (A.3) below. A more detailed analysis (see
Lemma 5 below) shows that the remainder is of order O(n−3/4). This is one of the
most crucial estimate to prove rigorously the convergence result. For the diffusion
term, we get

E
((

G1
k+1

)21Ak+1 |Fn
k

)
= E

((
G1

k+1
)2(

e
∑n

i=1(V (X
i,n
k )−V (X

i,n
k +(l/

√
n)Gi

k+1)) ∧ 1
)|Fn

k

)
= E

((
G1

k+1
)2(

e−∑n
i=1(V

′(Xi,n
k )(l/

√
n)Gi

k+1+V ′′(Xi,n
k )(l2/(2n))) ∧ 1

)|Fn
k

)
(2.11)

+O
(
n−1/2)

= 1

l2 �
(〈
νn
k ,
(
V ′)2〉, 〈νn

k ,V ′′〉)+O
(
n−1/2).

To obtain (2.11), we again used an explicit computation; see (A.5) below.
By plugging (2.10) [with the remainder of order O(n−3/4)] and (2.11) into (2.9),

we see that the correct scaling in time is to consider Y
i,n
t such that Y

i,n
k/n = X

i,n
k ,

and we get

E
(
ϕ
(
Y

1,n
(k+1)/n

)|Fn
k

)
= ϕ

(
Y

1,n
k/n

)− ϕ′(Y 1,n
k/n

)1

n
V ′(Y 1,n

k/n

)
G
(〈
μn

k/n,
(
V ′)2〉, 〈μn

k/n,V
′′〉)

(2.12)

+ 1

2n
ϕ′′(Y 1,n

k/n

)
�
(〈
μn

k/n,
(
V ′)2〉, 〈μn

k/n,V
′′〉)+O

(
n−5/4)

= ϕ
(
Y

1,n
k/n

)+ 1

n
(Lμn

k/n
ϕ)
(
Y

1,n
k/n

)+O
(
n−5/4),
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where Lμ is defined by (2.5), and μn
t denotes the time-marginal of μn defined

by (2.13) below (for k ∈ N, μn
k/n = νn

k ). This can be seen as a discrete-in-time
version (over a timestep of size 1/n) of the martingale property (2.7) [which is
actually a characterization in law of a solution to (2.5), as explained below]. Thus,
by sending n to infinity and assuming that a law of large number holds for the
empirical measure νn

k , we expect Y
1,n
t to converge to a solution to (2.3). The aim

of Section 2.4 is to sketch the rigorous proof of this result.

2.4. Sketch of the rigorous proof. The next sections are, respectively, devoted
to the three steps of the proof of Theorem 1. In Section 3, we first introduce a
nonlinear martingale problem which is a weak formulation of (2.3): the law of any
solution to this stochastic differential equation solves the martingale problem. We
check uniqueness for the martingale problem by proving trajectorial uniqueness for
the stochastic differential equation (2.3). Then, in Section 4, we check the tightness
of the sequence of laws of the processes (Y

1,n
t )t≥0. Because of the exchangeability

of the processes ((Y
1,n
t , . . . , Y

n,n
t )t≥0)n≥1 and according to [24], this is equivalent

to the tightness of the sequence (πn)n of the laws of the empirical measures

μn = 1

n

n∑
i=1

δY i,n(2.13)

considered as random variables valued in the space P(C) of probability measure on
the set C of continuous paths from [0,+∞) to R. The space C is endowed with the
topology of uniform convergence on compact sets and P(C) with the correspond-
ing topology for convergence in distribution. The third and last step, performed in
Section 5, consists in checking that the limit π∞ of any convergent subsequence
of (πn)n is concentrated on the solutions of the martingale problem, which, in par-
ticular, provides existence of a solution P to this problem. A probability measure
Q on C with initial marginal Q0 = m solves the martingale problem if and only
if F(Q) = 0 for a countable set of functionals F of the form (5.1) below. Since
the chaoticity of the initial conditions implies that π∞({Q ∈P(C) :Q0 = m}) = 1,
checking that Eπ∞|F(Q)| = 0 for all F in this countable set is enough to con-
clude that π∞ = δP . Combined with the results of the two first steps, this en-
sures that the whole sequence (πn)n converges weakly to δP where P denotes the
unique solution of the martingale problem, namely the law of the unique solution
to the stochastic differential equation (2.3). According to [24], this is equivalent to
the P -chaoticity of the processes ((Y

1,n
t , . . . , Y

n,n
t )t≥0)n≥1 and this completes the

proof of Theorem 1.
Finally, Section 6 is devoted to the proof of Proposition 1.
As already mentioned, our main result combines a diffusion approximation

and a mean-field limit. Mean-field limits apply to systems of n interacting par-
ticles (here the components Y i,n) when the interaction between two particles is
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of order 1/n. At first sight, it is not obvious that this is the case for the sys-
tem considered in the paper. Nevertheless, from the above formal computation
of E(ϕ(Y

1,n
(k+1)/n)|Fn

k ), we see in equation (2.12) that the interaction is actually

of mean-field type: the other components influence the evolution of Y
1,n
(k+1)/n only

through the empirical measure μn
k/n = 1

n

∑n
i=1 δ

Y
i,n
k/n

. The mean-field limit is a law

of large numbers for the empirical measure μn on the path-space: we prove that μn

converges to the unique solution P of the martingale problem. In the same time,
we have to deal with the diffusion approximation.

Notice that in previous scaling results given in the literature, the assumption
that the vector of initial positions (X

1,n
0 , . . . ,X

n,n
0 ) is distributed according to the

target density makes the derivation of both the mean-field limit and the diffusion
approximation much easier: since at subsequent times, (X

1,n
k , . . . ,X

n,n
k ) remains

distributed according to the target density, it is enough to identify the limiting in-
finitesimal generator at the initial time. Moreover, under this stationarity assump-
tion and when the target density is the n-fold product of a fixed probability density,
the mean-field limit is obtained by the standard law of large numbers.

We end this section with the following lemma which states some basic proper-
ties of the functions � and G.

LEMMA 2. The function � is continuous on [0,+∞] ×R and such that

inf
(a,b)∈[0,+∞]×[infV ′′,supV ′′]�(a, b) > 0,(2.14)

∃C < +∞,∀(a, b) and
(
a′, b′) ∈ [0,+∞] ×R,

(2.15) ∣∣�(a, b) − �
(
a′, b′)∣∣≤ C

(∣∣b′ − b
∣∣+ ∣∣a′ − a

∣∣+ ∣∣√a′ − √
a
∣∣).

The function G is continuous on {[0,+∞] ×R} \ {(0,0)} and such that

∀(a, b) ∈ [0,+∞] ×R,
√

aG(a, b) ≤
(
l2

√
b+ ∨ 2l√

2π

)
,(2.16)

∃C < +∞,∀(a, b) and
(
a′, b′) ∈ [0,+∞] × [

infV ′′, supV ′′],(2.17) (√
a ∧ √

a′)∣∣G(a, b) − G
(
a′, b′)∣∣

≤ C
(∣∣b′ − b

∣∣+ ∣∣a′ − a
∣∣+ ∣∣√a′ − √

a
∣∣).

Last,

∀(a, b) ∈ [0,+∞] ×R, 0 ≤ G(a, b) ≤ �(a, b) ≤ l2.(2.18)

Notice that G is indeed discontinuous at point (0,0) since limb→0+ G(0, b) �=
G(0,0). The proof of this lemma is given in the Appendix.
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3. Uniqueness for the limiting diffusion. In the present section, we are go-
ing to prove trajectorial uniqueness for the stochastic differential equation (2.3)
nonlinear in the sense of McKean and deduce uniqueness for the following weak
formulation of this dynamics.

DEFINITION 2. Let (Yt )t≥0 denote the canonical process on C and recall
the definition (2.5) of Lμ. A probability measure P ∈ P(C) with time-marginals
(Pt )t≥0 solves the nonlinear martingale problem (MP) if P0 = m and for any
ϕ :R →R C2 with compact support,(

M
ϕ
t

def= ϕ(Yt ) −
∫ t

0
LPsϕ(Ys) ds

)
t≥0

is a P -martingale.

This martingale problem is the weak formulation of the nonlinear stochastic
differential equation (2.3). Indeed, the law of any solution of (2.3) solves (MP).
Conversely, when P solves (MP), one easily checks by Paul Lévy’s characteriza-
tion (see [13], Theorem 3.16, page 157) that(

βt =
∫ t

0

dYs + G(〈Ps, (V
′)2〉, 〈Ps,V

′′〉)V ′(Ys) ds√
�(〈Ps, (V ′)2〉, 〈Ps,V ′′〉)

)
t≥0

is a P -Brownian motion. Thus, this implies the existence of a weak solution with
law P for the stochastic differential equation

XP
t = ξ +

∫ t

0
�1/2(〈Ps,

(
V ′)2〉, 〈Ps,V

′′〉)dBs

(3.1)

−
∫ t

0
G
(〈
Ps,

(
V ′)2〉, 〈Ps,V

′′〉)V ′(XP
s

)
ds.

For fixed time-dependent coefficients �1/2(〈Ps, (V
′)2〉, 〈Ps,V

′′〉) and
G(〈Ps, (V

′)2〉, 〈Ps,V
′′〉), by boundedness of G on [0,+∞]×[infV ′′, supV ′′] (see

Lemma 2 above) and Lipschitz continuity of V ′, it is standard to check that trajec-
torial uniqueness holds for this (linear in the sense of McKean) stochastic differ-
ential equation. As a consequence, by the Yamada–Watanabe theorem (see [13],
Proposition 3.20, page 309, Corollary 3.23, page 310), this linear stochastic differ-
ential equation admits a unique strong solution and the law of this solution is P .
In conclusion, one may associate a strong solution to (2.3) with law P , to any
solution P of the nonlinear martingale problem (MP).

Notice that the two next sections will ensure existence for (MP) and (2.3).
Uniqueness is ensured by the following proposition.

PROPOSITION 2. For any probability measure m on R, uniqueness holds for
the nonlinear martingale problem (MP) and trajectorial uniqueness holds for the
stochastic differential equation (2.3).
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To prove Proposition 2, we need the following technical lemma.

LEMMA 3. For any solution (Xt)t≥0 of (2.3),

∀0 ≤ s ≤ t, E
[
(Xt − Xs)

2]≤ 2l2
[
(t − s) +

(
l2 sup

(
V ′′)+ ∨ 2

π

)
(t − s)2

]
.

Moreover, if 〈m, (V ′)2〉 < +∞, then t �→ E[(V ′(Xt))
2] is locally bounded. If

〈m, (V ′)2〉 = +∞, then ∀t ≥ 0, E[(V ′(Xt))
2] = +∞.

PROOF. Let (Xt)t≥0 solve (2.3). Then for 0 ≤ s ≤ t ,

E
[
(Xt − Xs)

2]≤ 2E
[(∫ t

s
�1/2(

E
[(

V ′(Xr)
)2]

,E
[
V ′′(Xr)

])
dBr

)2]

+ 2(t − s)

∫ t

s
G2(

E
[(

V ′(Xr)
)2]

,E
[
V ′′(Xr)

])
E
[(

V ′(Xr)
)2]

dr

≤ 2l2(t − s) + 2
(
l4 sup

(
V ′′)+ ∨ 2l2

π

)
(t − s)2,

where we used the boundedness properties of � and
√

aG(a, b) stated in Lemma 2.
One easily deduces the properties of t �→ E[(V ′(Xt))

2] since
(
V ′(Xt)

)2 ≥ 1
2

(
V ′(X0)

)2 − (
V ′(Xt) − V ′(X0)

)2
≥ 1

2

(
V ′(ξ)

)2 − ∥∥V ′′∥∥2
∞(Xt − X0)

2,(
V ′(Xt)

)2 ≤ 2
(
V ′(X0)

)2 + 2
(
V ′(Xt) − V ′(X0)

)2
≤ 2

(
V ′(ξ)

)2 + 2
∥∥V ′′∥∥2

∞(Xt − X0)
2,

with ξ distributed according to m. �

We are now in position to prove Proposition 2.

PROOF OF PROPOSITION 2. By the discussion following Definition 2, we
know that, for a given Brownian motion Bt and initial condition ξ , one may as-
sociate a strong solution to (2.3) with law P to any solution P of the nonlinear
martingale problem (MP). Therefore, to get uniqueness of solutions to (MP), it
is enough to prove trajectorial uniqueness for (2.3). Let (Xt)t≥0 and (X̃t )t≥0 de-
note two solutions of this nonlinear stochastic differential equation, with the same
initial condition, and driven by the same Brownian motion. If 〈m, (V ′)2〉 = +∞,
then by Lemma 3 and since �(∞, b) = l2

2 and G(∞, b) = 0, these two processes
are equal to (X0 + lBt√

2
)t≥0. This proves trajectorial uniqueness.
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Let us now assume that 〈m, (V ′)2〉 < +∞. By Lemma 3, t �→ E[(Xt − X̃t )
2] =

E[(Xt − X0 − (X̃t − X̃0))
2] and t �→ E[(V ′(Xt))

2] ∨ E[(V ′(X̃t ))
2] are locally

bounded. In order to simplify the notation, let us denote

�s = �
(
E
[(

V ′(Xs)
)2]

,E
[
V ′′(Xs)

])
,

�̃s = �
(
E
[(

V ′(X̃s)
)2]

,E
[
V ′′(X̃s)

])
and

Gs = G
(
E
[(

V ′(Xs)
)2]

,E
[
V ′′(Xs)

])
,

G̃s = G
(
E
[(

V ′(X̃s)
)2]

,E
[
V ′′(X̃s)

])
.

Computing (Xt − X̃t )
2 by Itô’s formula and taking expectations, one obtains

E
[
(Xt − X̃t )

2]=
∫ t

0

(
�1/2

s − �̃1/2
s

)2
ds

(3.2)

+ 2E
[∫ t

0

(
GsV

′(Xs) − G̃sV
′(X̃s)

)
(X̃s − Xs)ds

]
.

One has, using (2.18) and the Cauchy–Schwarz inequality,

E
[(
GsV

′(Xs) − G̃sV
′(X̃s)

)
(X̃s − Xs)

]
= GsE

[(
V ′(Xs) − V ′(X̃s)

)
(X̃s − Xs)

]+ (Gs − G̃s)E
[
V ′(X̃s)(X̃s − Xs)

]
≤ l2∥∥V ′′∥∥∞E

[
(Xs − X̃s)

2]+ |Gs − G̃s |E1/2[(V ′(X̃s)
)2]

E
1/2[(X̃s − Xs)

2]
which, combined with the similar inequality obtained by exchanging X̃ and X,
yields

E
[(
GsV

′(Xs) − G̃sV
′(X̃s)

)
(X̃s − Xs)

]
≤ l2∥∥V ′′∥∥∞E

[
(Xs − X̃s)

2]
+ |Gs − G̃s |(E[(V ′(Xs)

)2]∧E
[(

V ′(X̃s)
)2])1/2

E
1/2[(Xs − X̃s)

2].
Using this inequality to deal with the second term on the right-hand side of (3.2)
and (2.14) to deal with the first one then using the boundedness of V ′′ and (2.15),
(2.17) and Young’s inequality, one obtains that

E
[
(Xt − X̃t )

2]
≤ 1

4 infa≥0,b∈[infV ′′,supV ′′] �(a, b)

∫ t

0
(�s − �̃s)

2 ds

+ 2l2∥∥V ′′∥∥∞
∫ t

0
E
[
(Xs − X̃s)

2]ds

+ 2
∫ t

0
|Gs − G̃s |(E[(V ′(Xs)

)2]∧E
[(

V ′(X̃s)
)2])1/2

E
1/2[(Xs − X̃s)

2]ds
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≤ C

∫ t

0
E
[
(Xs − X̃s)

2]+E
2[V ′′(Xs) − V ′′(X̃s)

]
+E

2[(V ′(Xs)
)2 − (

V ′(X̃s)
)2]

+ (
E

1/2[(V ′(Xs)
)2]−E

1/2[(V ′(X̃s)
)2])2

ds.

Now, since∣∣E[V ′′(Xs) − V ′′(X̃s)
]∣∣≤ ∥∥V (3)

∥∥∞E
1/2[(Xs − X̃s)

2],∣∣E[(V ′(Xs)
)2 − (

V ′(X̃s)
)2]∣∣

≤ ∥∥V ′′∥∥∞E
1/2[(Xs − X̃s)

2](
E

1/2[(V ′(Xs)
)2]+E

1/2[(V ′(X̃s)
)2])

,∣∣E1/2[(V ′(Xs)
)2]−E

1/2[(V ′(X̃s)
)2]∣∣

≤ E
1/2[(V ′(Xs) − V ′(X̃s)

)2]
≤ ∥∥V ′′∥∥∞E

1/2[(Xs − X̃s)
2],

the local boundedness of t �→ E[(V ′(Xt))
2] ∨ E[(V ′(X̃t ))

2], the local inte-
grability of t �→ E[(Xt − X̃t )

2] and Gronwall’s lemma ensure that ∀t ≥ 0,
E[(Xt − X̃t )

2] = 0. �

REMARK 1. When 〈m, (V ′)2〉 = +∞, we have already shown uniqueness of
solutions to (2.3), and it is actually easy to build a strong solution. Indeed, since(

V ′
(
ξ + lBt√

2

))2

≥ 1

2

(
V ′(ξ)

)2 − l2‖V ′′‖2∞B2
t

2
,

one has E[(V ′(ξ + lBt√
2
))2] = +∞ for all t ≥ 0. As a consequence (ξ + lBt√

2
)t≥0

solves (2.3).

4. Tightness. According to [24], because of exchangeability, the tightness of
the sequence (πn)n is equivalent to the tightness of the laws of the processes
(Y

1,n
t )t≥0. As a consequence, the following proposition ensures that the sequence

(πn)n is tight under the assumptions of Theorem 1.

PROPOSITION 3. Assume that the laws of the random variables (X
1,n
0 )n≥1 are

tight and that supnE[(V ′(X1,n
0 )4)] < +∞. Then the laws of the linearly interpo-

lated processes (Y
1,n
t = (�nt� − nt)X

1,n
�nt	 + (nt − �nt	)X1,n

�nt�, t ≥ 0)n≥1 are tight
in C. Moreover,

t �→ sup
n≥1

E
[(

V ′(Y 1,n
t

))4] is locally bounded.(4.1)
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The proof of this proposition relies on the following estimate; the proof of which
is given after the one of the proposition.

LEMMA 4. Assume that supnE[(V ′(X1,n
0 ))4] < +∞. Then there exists a finite

constant C depending on this supremum but not on n such that

∀0 ≤ k ≤ k, E
((

X
1,n

k
− X

1,n
k

)4)≤ C

(
(k − k)2

n2 + eC(k
4
/n4) (k − k)4

n4

)
.(4.2)

PROOF OF PROPOSITION 3. Since the laws of the initial random variables
(X

1,n
0 )n≥1 are supposed to be tight, Kolmogorov criterion ensures the desired tight-

ness property as soon as there exists a nondecreasing function γ :R+ → R+ such
that

∀n ≥ 1,∀0 ≤ s ≤ t, E
((

Y
1,n
t − Y 1,n

s

)4)≤ γ (t)(t − s)2.(4.3)

Combining this estimation with the inequality

E
[(

V ′(Y 1,n
t

))4]≤ 8E
[(

V ′(X1,n
0

))4]+ 8
∥∥V ′′∥∥4

∞E
[(

Y
i,n
t − Y

i,n
0

)4]
one also easily checks that t �→ supn≥1 E[(V ′(Y 1,n

t ))4] is locally bounded. Let us
show how to deduce (4.3) from (4.2). For t > s ≥ 0 with �nt	 ≥ �ns�, using (4.2)
for the second inequality, one obtains

E
((

Y
1,n
t − Y 1,n

s

)4)

≤ 27E
((l(nt − �nt	)G1�nt�)4

n2 + (
X

1,n
�nt	 − X

1,n
�ns�

)4 + (l(�ns� − ns)G1�ns�)4

n2

)

≤ C̃

(
(nt − �nt	)2

n2

+
(

(�nt	 − �ns�)2

n2 + eCt4 (�nt	 − �ns�)4

n4

)
+ (�ns� − ns)2

n2

)

≤ C
(
1 + t2eCt4)

(t − s)2.

For t > s ≥ 0 with �ns	 = �nt	, one has (nt − ns)4 ≤ (nt − ns)2 and, therefore,

E
((

Y
1,n
t − Y 1,n

s

)4)= l4(nt − ns)4

n2 E
((

G1�nt�
)4)≤ C(t − s)2. �

The proof of Lemma 4 relies on the second inequality in the next lemma, the
proof of which is postponed to the Appendix.
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LEMMA 5. Let x = (x1, . . . , xn) ∈ R
n and νn = 1

n

∑n
i=1 δxi

. There exists a
finite constant C not depending on n and x such that

E
[(

e
∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)) ∧ 1
(4.4)

− e−∑n
i=1((l/

√
n)V ′(xi )G

i+(l2/(2n))V ′′(xi )) ∧ 1
)2]≤ C

n
,

∣∣E(G1(1 − e
∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)))+)∣∣≤ C

( |V ′(x1)|√
n

+ 1

n

)
,(4.5)

∣∣∣∣E(G1(e∑n
i=1(V (xi)−V (xi+(l/

√
n)Gi)) ∧ 1

))+ V ′(x1)

l
√

n
G
(〈
νn,

(
V ′)2〉, 〈νn,V

′′〉)∣∣∣∣
(4.6)

≤ C

(
1 + |V ′(x1)|

n
+ |V ′(x1)|

n3/4〈νn, (V ′)2〉1/4 + |V ′(x1)|3/2

n3/4
√

〈νn, (V ′)2〉

)
.

PROOF OF LEMMA 4. Let k > k ≥ 0. One has

E
((

X
1,n

k
− X

1,n
k

)4)

≤ 8l4

n2 E

((
k∑

k=k+1

G1
k

)4)
+ 8l4

n2 E

((
k∑

k=k+1

G1
k1Ac

k

)4)

(4.7)

= 24l4(k − k)2

n2 + 8l4

n2

∑
k+1≤k1,k2,k3,k4≤k

E

( 4∏
j=1

G1
kj

1Ac
kj

)

= 24l4(k − k)2

n2 + 8l4

n2 (T1,1,1,1 + T2,1,1 + T3,1 + T2,2 + T4),

where the sum has been separated into five disjoint terms:

• T1,1,1,1 corresponds to the restriction of the summation to indexes k1, k2, k3 and
k4 taking distinct values,

• T2,1,1 to the restriction to indexes such that the cardinality of {k1, k2, k3, k4} is
equal to 3,

• T3,1 to three indexes equal and the last one different,
• T2,2 to two pairs of equal indexes taking different values,
• T4 to four equal indexes.

One has

T4 + T2,2 + T3,1 ≤ (k − k)E
((

G1
1
)4)+ 3(k − k)(k − k − 1)E

((
G1

1
)2(

G1
2
)2)

+ 4(k − k)(k − k − 1)E
(∣∣G1

1
∣∣3)E∣∣G1

2
∣∣(4.8)

= 3(k − k)2 + 16(k − k)(k − k − 1)

π
.
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Let us now estimate T1,1,1,1 and T2,1,1. For fixed k1, k2, k3 and k4 (four integers
in {k + 1, . . . , k}), let us define (X̃

i,n
k , k ≥ 0)1≤i≤n such that (X̃

1,n
0 , . . . , X̃

n,n
0 ) =

(X
1,n
0 , . . . ,X

n,n
0 ) and, for k ≥ 0 and 1 ≤ i ≤ n,

X̃
i,n
k+1 = X̃

i,n
k + 1{k /∈{k1−1,k2−1,k3−1,k4−1}}

× l√
n
Gi

k+11
{Uk+1≤e

∑n
i=1(V (X̃

i,n
k

)−V (X̃
i,n
k

+(l/
√

n)Gi
k+1))}

.

Let us also denote by F the sigma-field generated by these processes which are ex-
changeable, independent of (Uk, (G

1
k, . . . ,G

n
k))k∈{k1,k2,k3,k4} and equal to the orig-

inal processes (X
i,n
k , k ≥ 1)1≤i≤n on the event

4⋂
j=1

Ac
kj

=
4⋂

j=1

{
Ukj

> e

∑n
i=1(V (X

i,n
kj −1)−V (X

i,n
kj −1+(l/

√
n)Gi

kj
))}

.

When the indices k1, k2, k3 and k4 are distinct (namely for T1,1,1,1), by conditional
independence of the vectors ((G1

kj
, . . . ,Gn

kj
,Ukj

))1≤j≤4 given F , one has

∣∣∣∣∣E
( 4∏

j=1

G1
kj

1Ac
kj

)∣∣∣∣∣
=
∣∣∣∣∣E
( 4∏

j=1

G1
kj

1
{Ukj

>e

∑n
i=1(V (X̃

i,n
kj −1)−V (X̃

i,n
kj −1+(l/

√
n)Gi

kj
))}

)∣∣∣∣∣
=
∣∣∣∣∣E
( 4∏

j=1

E
(
G1

kj

(
1 − e

∑n
i=1(V (X̃

i,n
kj −1)−V (X̃

i,n
kj −1+(l/

√
n)Gi

kj
)))+|F)

)∣∣∣∣∣
≤ E

[ 4∏
j=1

∣∣E(G1
kj

(
1 − e

∑n
i=1(V (X̃

i,n
kj −1)−V (X̃

i,n
kj −1+(l/

√
n)Gi

kj
)))+|F)∣∣

]

≤ CE

[ 4∏
j=1

(
1

n
+

|V ′(X̃1,n
kj−1)|√
n

)]

≤ C

(
1

n4 + 1

n2E

[ 4∑
j=1

∣∣V ′(X̃1,n
kj−1

)∣∣4]),

where we used (4.5) for the last but one inequality and Young’s inequality for
the last one. Now for k1 < k2 < k3 < k4, according to the above definition of
(X̃

i,n
k , k ≥ 0)1≤i≤n, the random vector (X̃

1,n
kj−1)1≤j≤4 has the same distribution as
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(X
1,n
kj−j )1≤j≤4. Therefore,

T1,1,1,1 ≤ 4!C ∑
k+1≤k1<k2<k3<k4≤k

(
1

n4 + 1

n2E

[ 4∑
j=1

∣∣V ′(X1,n
kj−j

)∣∣4])

= 4!C
((k−k

4

)
n4 +

(k−k
3

)
n2

k−4∑
k=k

E
[∣∣V ′(X1,n

k

)∣∣4]).

To deal with T2,1,1 we remark that if, for instance, k2, k3 and k4 are distinct
and k1 = k2, then reasoning like above, and using that E[(G1

k1
)21Ac

k1
|F] ≤

E[(G1
k1

)2|F] = 1, one obtains

∣∣∣∣∣E
( 4∏

j=1

G1
kj

1Ac
kj

)∣∣∣∣∣
≤ E

[ 4∏
j=3

∣∣E(G1
kj

(
1 − e

∑n
i=1(V (X̃

i,n
kj −1)−V (X̃

i,n
kj −1+(l/

√
n)Gi

kj
)))+|F)∣∣

]

≤ C

(
1

n2 + 1

n
E

[ 4∑
j=3

∣∣V ′(X̃1,n
kj−1

)∣∣2]).

One deduces that

T2,1,1 ≤ C

(
4
2

)(
(k − k)(k − k − 1)(k − k − 2)

n2 + 4
(k−k

2

)
n

k−3∑
k=k

E
[(

V ′(X1,n
k

))2])
.

By combining the estimations of T3,1 + T2,2 + T4, T1,1,1,1 and T2,1,1 with Young’s
and Jensen’s inequalities, one obtains that

E
((

X
1,n

k
− X

1,n
k

)4)
(4.9)

≤ C

(
(k − k)2

n2 + (k − k)4

n6 + (k − k)3

n4

k−1∑
k=k

E
[(

V ′(X1,n
k

))4])
.

For the choice k = 0 and using supnE[(V ′(X1,n
0 ))4] < +∞,

E
[(

V ′(X1,n
k

))4]≤ 8E
[(

V ′(X1,n
0

))4]+ 8
∥∥V ′′∥∥4

∞E
[(

X
1,n
k − X

1,n
0

)4]
,(4.10)

one obtains that

E
((

X
1,n

k
− X

1,n
0

)4)≤ C

(
k

2

n2 + k
4

n4 + k
3

n4

k−1∑
k=0

E
((

X
1,n
k − X

1,n
0

)4))
.
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By a discrete version of Gronwall’s lemma, one deduces that

∀k ≥ 0, E
((

X
1,n
k − X

1,n
0

)4)≤ CeC(k4/n4)

(
k2

n2 ∨ k4

n4

)
≤ CeC(k4/n4).

With (4.9) and (4.10), one concludes that (4.2) holds. �

5. Identification of the limits of converging subsequences of (πn)n≥1.
From the previous section, we know that the sequence (πn)n is tight. Let π∞
denote the limit of a converging subsequence of (πn)n that we still index by n

for notational simplicity. We want to prove that π∞ gives full weight to the solu-
tions of the nonlinear martingale problem (MP) (see Definition 2). To do so, for
ϕ :R → R C3 with compact support, p ∈ N, g :Rp → R continuous and bounded
and 0 ≤ s1 ≤ s2 ≤ · · · ≤ sp ≤ s ≤ t , we define

F :Q ∈P(C) �→
〈
Q,

(
ϕ(Yt ) − ϕ(Ys) −

∫ t

s
LQr ϕ(Yr) dr

)
g(Ys1, . . . , Ysp)

〉
.(5.1)

Since the chaoticity of the initial conditions implies that π∞({Q ∈ P(C) :Q0 =
m}) = 1, to prove that π∞ gives full weight to the solutions of (MP), it is enough
to check that Eπ∞|F(Q)| = 0. Indeed, taking g in a countable subset of the space
of continuous functions with compact support on R

p dense for the uniform con-
vergence and (s1, . . . , sp) in a countable dense subset of [0, s], one obtains

π∞
({

Q ∈ P(C) :EQ

(
ϕ(Yt ) − ϕ(Ys) −

∫ t

s
LQr ϕ(Yr) dr

∣∣∣(Yu)u∈[0,s]
)

= 0
})

= 1.

Then taking s, t in a countable dense subset of R+ and ϕ in a countable subset
of C3 functions with compact support on R dense in the space C2

c (R) of C2 func-
tions with compact support on R for the uniform convergence of the function and
its derivatives up to the order 2, one concludes that

π∞
({

Q :∀ϕ ∈ C2
c (R),

(
ϕ(Yt ) −

∫ t

0
LQr ϕ(Yr) dr

)
t≥0

is a Q-martingale
})

= 1.

In Section 5.1, we present the main steps of the proof. Then, in Sections 5.2
and 5.3, we provide the proofs of the technical propositions stated and used in
Section 5.1.

5.1. Proof of Eπ∞|F(Q)| = 0. By combining the two next propositions, one
first obtains the asymptotic behavior of Eπn |F(Q)| = E|F(μn)| as n → ∞.

PROPOSITION 4. Let

M
i,n
k = l√

n

k−1∑
j=0

ϕ′(Xi,n
j

)(
Gi

j+11Aj+1 −E
[
Gi

j+11Aj+1 |Fn
j

])

+ l2

2n

k−1∑
j=0

ϕ′′(Xi,n
j

)((
Gi

j+1
)21Aj+1 −E

[(
Gi

j+1
)21Aj+1 |Fn

j

])
.
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Under the assumptions of Theorem 1, for all s < t,∃C < ∞,∀n ≥ 1,

sup
1≤i≤n

E

∣∣∣∣ϕ(Y i,n
t

)− ϕ
(
Y i,n

s

)−
∫ t

s
Lμn

r
ϕ
(
Y i,n

r

)
dr − (

M
i,n
�nt� − M

i,n
�ns�

)∣∣∣∣≤ C

n1/4 ,

where μn
r denotes the marginal at time r of μn [defined by (2.13)].

PROPOSITION 5. Under the assumptions of Theorem 1,

∃C < ∞,∀n ≥ 1, E

[(
1

n

n∑
i=1

(
M

i,n
�nt� − M

i,n
�ns�

)
g
(
Y i,n

s1
, . . . , Y i,n

sp

))2]
≤ C√

n
.

Since

F
(
μn)= 1

n

n∑
i=1

(
ϕ
(
Y

i,n
t

)− ϕ
(
Y i,n

s

)−
∫ t

s
Lμn

r
ϕ
(
Y i,n

r

)
dr

)
g
(
Y i,n

s1
, . . . , Y i,n

sp

)
,

one has

E
∣∣F (μn)∣∣

≤ ‖g‖∞
n

n∑
i=1

E

∣∣∣∣ϕ(Y i,n
t

)− ϕ
(
Y i,n

s

)−
∫ t

s
Lμn

r
ϕ
(
Y i,n

r

)
dr − (

M
i,n
�nt� − M

i,n
�ns�

)∣∣∣∣

+E
1/2

[(
1

n

n∑
i=1

(
M

i,n
�nt� − M

i,n
�ns�

)
g
(
Y i,n

s1
, . . . , Y i,n

sp

))2]
.

One deduces that

lim
n→∞E

πn ∣∣F(Q)
∣∣= 0.(5.2)

Since g, G, � and V ′ϕ′ are bounded, the function F is bounded. Unfortunately,
when V ′ is not bounded, the lack of continuity of μ ∈ P(R) �→ 〈μ, (V ′)2〉 implies
that F is not continuous and the weak convergence of πn to π∞ does not directly
ensure that Eπ∞|F(Q)| = 0.

To overcome this difficulty, for k ∈N, we introduce the second-order differential
operator Lk

μ defined like Lμ in (2.5) but with 〈μ, (V ′)2 ∧ k〉 replacing 〈μ, (V ′)2〉.
We also define Fk like F but with LQr replaced by Lk

Qr
. The functions Fk are uni-

formly bounded and converge pointwise to F by the properties of G and � stated
in Lemma 2. Moreover, Fk is continuous. Indeed, to deal with the discontinuity
of G at (0,0), it is enough to remark that for ν,μ ∈ P(R),〈

ν,
∣∣G(〈ν,

(
V ′)2 ∧ k

〉
,
〈
ν,V ′′〉)− G

(〈
μ,

(
V ′)2 ∧ k

〉
,
〈
μ,V ′′〉)∣∣× ∣∣V ′ϕ′∣∣〉

≤ 1{〈μ,(V ′)2∧k〉>0}
∥∥V ′ϕ′∥∥∞

× ∣∣G(〈ν,
(
V ′)2 ∧ k

〉
,
〈
ν,V ′′〉)− G

(〈
μ,

(
V ′)2 ∧ k

〉
,
〈
μ,V ′′〉)∣∣

+ 1{〈μ,(V ′)2∧k〉=0}2l2〈ν − μ,
∣∣V ′ϕ′∣∣〉,
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where we used in the last line the fact that 1{〈μ,(V ′)2∧k〉=0}〈μ, |V ′ϕ′|〉 = 0. As a
consequence,

E
π∞ ∣∣F(Q)

∣∣= lim
k→∞E

π∞ ∣∣Fk(Q)
∣∣= lim

k→∞ lim
n→∞E

πn ∣∣Fk(Q)
∣∣

≤ lim sup
k→∞

lim sup
n→∞

E
πn ∣∣Fk(Q) − F(Q)

∣∣,
where we used (5.2) for the inequality. One concludes that Eπ∞|F(Q)| = 0 by the
next proposition.

PROPOSITION 6. Under the assumptions of Theorem 1,

lim
k→∞ sup

n≥1
E
∣∣Fk

(
μn)− F

(
μn)∣∣= 0.

5.2. Proof of Proposition 4. This section is devoted to the proof of Proposi-
tion 4. As already pointed out in Section 2.3, the main difficulty is the identification
of the drift term.

PROOF OF PROPOSITION 4. One has dY
i,n
t = l

√
nGi�nt�1A�nt� dt . As a conse-

quence,

ϕ
(
Y

i,n
t

)− ϕ
(
Y i,n

s

)=
∫ t

s
l
√

nϕ′(Y i,n
r

)
Gi�nr�1A�nr� dr.

Using the Taylor expansion,

ϕ′(Y i,n
r

)= ϕ′(Xi,n
�nr	

)+ ϕ′′(Xi,n
�nr	

)(
nr − �nr	) l√

n
Gi�nr�1A�nr�

+ ϕ(3)(χi,n
r

)(
nr − �nr	)2 l2

2n

(
Gi�nr�

)21A�nr�,

with χi,n
r ∈ [Xi,n

�nr	, Y i,n
r ], one deduces that

ϕ
(
Y

i,n
t

)− ϕ
(
Y i,n

s

)
−
∫ t

s

(
l
√

nϕ′(Xi,n
�nr	

)
Gi�nr�1A�nr� + l2

2
ϕ′′(Xi,n

�nr	
)(

Gi�nr�
)21A�nr�

)
dr

= l3

2
√

n

∫ t

s
ϕ(3)(χi,n

r

)(
nr − �nr	)2(Gi�nr�

)31A�nr� dr

+ l2(ns − �ns	)(�ns� − ns)

2n
ϕ′′(Xi,n

�ns	
)(

Gi�ns�
)21A�ns�

− l2(nt − �nt	)(�nt� − nt)

2n
ϕ′′(Xi,n

�nt	
)(

Gi�nt�
)21A�nt� .
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By the boundedness of ϕ′′ and ϕ(3), one easily concludes that

E

∣∣∣∣ϕ(Y i,n
t

)− ϕ
(
Y i,n

s

)−
∫ t

s
l
√

nϕ′(Xi,n
�nr	

)
Gi�nr�1A�nr�

(5.3)

+ l2

2
ϕ′′(Xi,n

�nr	
)(

Gi�nr�
)21A�nr� dr

∣∣∣∣≤ C√
n
.

To complete the proof, we now consider the decomposition

∫ t

s
l
√

nϕ′(Xi,n
�nr	

)
Gi�nr�1A�nr� + l2

2
ϕ′′(Xi,n

�nr	
)(

Gi�nr�
)21A�nr� dr

−
∫ t

s
Lμn

r
ϕ
(
Y i,n

r

)
dr − (

M
i,n
�nt� − M

i,n
�ns�

)
(5.4)

= T
i,n
1 + T

i,n
2 + T

i,n
3 − T

i,n
4 + T

i,n
5 ,

where

T
i,n
1 =

∫ t

s
ϕ′(Xi,n

�nr	
)(

l
√

nE
[
Gi�nr�1A�nr� |Fn�nr	

]
+ G

(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉)V ′(Xi,n
�nr	

))
dr,

T
i,n
2 = 1

2

∫ t

s
ϕ′′(Xi,n

�nr	
)(

l2
E
[(

Gi�nr�
)21A�nr� |Fn�nr	

]
− �

(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉))dr,

T
i,n
3 =

∫ t

s
Lμn�nr	/n

ϕ
(
Y

i,n
�nr	/n

)− Lμn
r
ϕ
(
Y i,n

r

)
dr,

T
i,n
4 =

(
l(�nt� − nt)√

n
ϕ′(Xi,n

�nt	
)(

Gi�nt�1A�nt� −E
[
Gi�nt�1A�nt� |Fn�nt	

])

+ l2(�nt� − nt)

2n
ϕ′′(Xi,n

�nt	
)((

Gi�nt�
)21A�nt� −E

[(
Gi�nt�

)21A�nt� |Fn�nt	
]))

and

T
i,n
5 =

(
l(�ns� − ns)√

n
ϕ′(Xi,n

�ns	
)(

Gi�ns�1A�ns� −E
[
Gi�ns�1A�ns� |Fn�ns	

])

+ l2(�ns� − ns)

2n
ϕ′′(Xi,n

�ns	
)((

Gi�ns�
)21A�ns� −E

[(
Gi�ns�

)21A�ns� |Fn�ns	
]))

.

The boundedness of ϕ′ and ϕ′′ implies that

E
(∣∣T i,n

4

∣∣+ ∣∣T i,n
5

∣∣)≤ C√
n
.(5.5)
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By (4.6), Hölder’s inequality and the equality

E

[ (V ′(Y i,n
�nr	/n))

2

〈μn�nr	/n, (V
′)2〉

]
= 1(5.6)

deduced from exchangeability, one obtains

E
∣∣T i,n

1

∣∣≤ C

∫ t

s

1 +E|V ′(Y i,n
�nr	/n)|√

n
+ 1

n1/4E

∣∣∣∣ V ′(Y i,n
�nr	/n)

〈μn�nr	/n, (V
′)2〉1/4

∣∣∣∣
+ 1

n1/4E

( |V ′(Y i,n
�nr	/n)|3/2

〈μn�nr	/n, (V
′)2〉1/2

)
dr

(5.7)

≤ C

∫ t

s

1 +E|V ′(Y i,n
�nr	/n)|√

n
+ E

3/4(|V ′(Y i,n
�nr	/n)|2/3)

n1/4

+ E
1/2|V ′(Y i,n

�nr	/n)|
n1/4 dr.

Concerning T
i,n
2 , by Cauchy–Schwarz inequality and (4.4), one easily checks that∣∣E[(Gi�nr�
)21A�nr� |Fn�nr	

]
−E

[(
Gi�nr�

)2(
e
−∑n

l=1(V
′(Xl,n

�nr	)(l/
√

n)Gl�nr�+(l2/(2n))V ′′(Xl,n
�nr	)) ∧ 1

)|Fn�nr	
]∣∣

≤ C√
n
.

Moreover, by (A.5) and (A.6),

E
[
Gi�nr�G

j
�nr�

(
e
−∑n

l=1(V
′(Xl,n

�nr	)(l/
√

n)Gl�nr�+(l2/(2n))V ′′(Xl,n
�nr	)) ∧ 1

)|Fn�nr	
]

= 1{i=j}
l2 �

(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉)
(5.8)

+ V ′(Xi,n
�nr	)V ′(Xj,n

�nr	)
n

(
G
(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉)

− l2e
−(((l/2)〈μn�nr	/n,V ′′〉)2)/(2〈μn�nr	/n,(V ′)2〉)√

2πl2〈μn�nr	/n, (V
′)2〉

)
.

(We will need this expression for i �= j below.) With the boundedness of G
and (5.6), this implies that

E
∣∣T i,n

2

∣∣≤ C√
n

+ C

n

∫ t

s
E
[(

V ′(Y i,n
�nr	/n

))2]+E
1/2[(V ′(Y i,n

�nr	/n

))2]
dr.(5.9)
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To deal with T
i,n
3 , one remarks that by exchangeability, boundedness of G, ϕ′

and (V ′ϕ′)′, then by (2.17)

E
∣∣G(〈μn

r ,
(
V ′)2〉, 〈μn

r ,V
′′〉)V ′ϕ′(Y i,n

r

)
− G

(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉)V ′ϕ′(Y i,n
�nr	/n

)∣∣
≤ E

(∣∣G(〈μn
r ,
(
V ′)2〉, 〈μn

r ,V
′′〉)

− G
(〈
μn�nr	/n,

(
V ′)2〉, 〈μn�nr	/n,V

′′〉)∣∣(〈μn
r ,
∣∣V ′ϕ′∣∣〉∧ 〈

μn�nr	/n,
∣∣V ′ϕ′∣∣〉))

+ CE
∣∣Y i,n

r − Y
i,n
�nr	/n

∣∣
≤ CE

(∣∣〈μn
r − μn�nr	/n,V

′′〉∣∣+ ∣∣〈μn
r − μn�nr	/n,

(
V ′)2〉∣∣

+ ∣∣〈μn
r − μn�nr	/n,

(
V ′)2〉∣∣1/2 + ∣∣Y i,n

r − Y
i,n
�nr	/n

∣∣).
By exchangeability, E|〈μn

r − μn�nr	/n,V
′′〉| ≤ ‖V (3)‖∞E|Y i,n

r − Y
i,n
�nr	/n|. More-

over, |Y i,n
r − Y

i,n
�nr	/n| ≤ l√

n
|Gi�nr�|. Dealing in the same way with the diffusion

term by boundedness of � and ϕ(3) and (2.15), one deduces that

E
∣∣T i,n

3

∣∣≤ C√
n

+
∫ t

s
E
∣∣〈μn

r − μn�nr	/n,
(
V ′)2〉∣∣

(5.10)
+E

1/2∣∣〈μn
r − μn�nr	/n,

(
V ′)2〉∣∣dr.

One has

E
∣∣〈μn

r − μn�nr	/n,
(
V ′)2〉∣∣

≤ √
2
∥∥V ′′∥∥∞E

1/2[(V ′(Y i,n
r

))2 + (
V ′(Y i,n

�nr	/n

))2]
(5.11)

×E
1/2[(Y i,n

r − Y
i,n
�nr	/n

)2]
≤ C√

n
E

1/2[(V ′(Y i,n
r

))2 + (
V ′(Y i,n

�nr	/n

))2]
.

Plugging this inequality in (5.10) and inserting the resulting inequality together
with (5.5), (5.7) and (5.9) into (5.4), one concludes with (5.3) and the local bound-
edness of r �→ supn≥1 sup1≤i≤nE[(V ′(Y i,n

r ))2] deduced from (4.1) and exchange-
ability. �

This completes the proof of Proposition 4.

5.3. Proofs of Propositions 5 and 6. Finally, it remains to prove Propositions 5
and 6.
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PROOF OF PROPOSITION 5. Since for 1 ≤ i ≤ n, (M
i,n
k ) is a Fn

k -martingale
and g(Y i,n

s1
, . . . , Y i,n

sp
) is Fn�ns�-measurable, one has

E

[(
1

n

n∑
i=1

(
M

i,n
�nt� − M

i,n
�ns�

)
g
(
Y i,n

s1
, . . . , Y i,n

sp

))2]

= 1

n2

n∑
i,j=1

�nt�−1∑
k=�ns�

E
[
E
[(

M
i,n
k+1 − M

i,n
k

)(
M

j,n
k+1 − M

j,n
k

)|Fn
k

]
(5.12)

× g
(
Y i,n

s1
, . . . , Y i,n

sp

)
g
(
Y j,n

s1
, . . . , Y j,n

sp

)]
.

Using the boundedness of ϕ′ and ϕ′′, then (4.4), (5.8) and the equality

E
[
Gi

k+1
(
e−∑n

l=1(V
′(Xl,n

k )(l/
√

n)Gl
k+1+(l2/(2n))V ′′(Xl,n

k )) ∧ 1
)|Fn

k

]

= −V ′(Xi,n
k )

l
√

n
G
(〈
μn

k/n,
(
V ′)2〉, 〈μn

k/n,V
′′〉)

deduced from (A.3), one obtains∣∣E[(Mi,n
k+1 − M

i,n
k

)(
M

j,n
k+1 − M

j,n
k

)|Fn
k

]∣∣
≤ C

n

∣∣E[Gi
k+1G

j
k+11Ak+1 |Fn

k

]−E
[
Gi

k+11Ak+1 |Fn
k

]
E
[
G

j
k+11Ak+1 |Fn

k

]∣∣
≤ C

n3/2

+ C

n

∣∣∣∣E[Gi
k+1G

j
k+1

(
e−∑n

l=1(V
′(Xl,n

k )(l/
√

n)Gl
k+1+(l2/(2n))V ′′(Xl,n

k )) ∧ 1
)|Fn

k

]

−E
[
Gi

k+1
(
e−∑n

l=1(V
′(Xl,n

k )(l/
√

n)Gl
k+1+(l2/(2n))V ′′(Xl,n

k )) ∧ 1
)|Fn

k

]
×E

[
G

j
k+1

(
e−∑n

l=1(V
′(Xl,n

k )(l/
√

n)Gl
k+1+(l2/(2n))V ′′(Xl,n

k )) ∧ 1
)|Fn

k

]∣∣∣∣
≤ C

(
1

n3/2 + 1{i=j}
n

+ |V ′(Xi,n
k )V ′(Xj,n

k )|
n2 + |V ′(Xi,n

k )V ′(Xj,n
k )|

n2
√

〈μn
k/n, (V

′)2〉
)
.

Plugging this estimate into (5.12) and using the boundedness of g and (5.6), one
concludes that

E

[(
1

n

n∑
i=1

(
M

i,n
�nt� − M

i,n
�ns�

)
g
(
Y i,n

s1
, . . . , Y i,n

sp

))2]

≤ C

(�nt� − �ns�
n3/2 + 1

n2

�nt�−1∑
k=�ns�

(
E
[(

V ′(Y i,n
k/n

))2]+
√
E
[(

V ′(Y i,n
k/n

))2]))
.
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One concludes with the local boundedness of r �→ supn≥1 sup1≤i≤nE[(V ′(Y i,n
r ))2]

deduced from (4.1) and exchangeability. �

PROOF OF PROPOSITION 6. Since the function ϕ is compactly supported
and V ′ is continuous, one may suppose that k is large enough so that ∀x ∈ R,
|V ′ϕ′(x)| ≤ ‖ϕ′‖∞

√
(V ′(x))2 ∧ k and, therefore,〈
μn

r ,
∣∣V ′ϕ′∣∣〉≤ ∥∥ϕ′∥∥∞

√〈
μn

r ,
(
V ′)2 ∧ k

〉
.

By boundedness of g and ϕ′′, then using (2.15) and (2.17), one deduces

E
∣∣Fk

(
μn)− F

(
μn)∣∣

≤ C

∫ t

s
E

[∣∣�(〈μn
r ,
(
V ′)2 ∧ k

〉
,
〈
μn

r ,V
′′〉)− �

(〈
μn

r ,
(
V ′)2〉, 〈μn

r ,V
′′〉)∣∣

+ ∣∣G(〈μn
r ,
(
V ′)2 ∧ k

〉
,
〈
μn

r ,V
′′〉)− G

(〈
μn

r ,
(
V ′)2〉, 〈μn

r ,V
′′〉)∣∣(5.13)

×
√〈

μn
r ,
(
V ′)2 ∧ k

〉]
dr

≤ C

∫ t

s
E

[√〈
μn

r ,
((

V ′)2 − k
)+〉+ 〈

μn
r ,
((

V ′)2 − k
)+〉]

dr.

Since |V ′(Y 1,n
r )| ≤ |V ′(X1,n

0 )|+‖V ′′‖∞|Y 1,n
r −Y

1,n
0 |, using the Cauchy–Schwarz

and the Markov inequalities, one obtains that

E
[〈
μn

r ,
((

V ′)2 − k
)+〉]

≤ E
[(

V ′(Y 1,n
r

))21{|V ′(Y 1,n
r )|≥√

k}
]

≤ 2E
[((

V ′(X1,n
0

))2 + ∥∥V ′′∥∥2
∞
∣∣Y 1,n

r − Y
1,n
0

∣∣2)
× (1{|V ′(X1,n

0 )|≥(
√

k/2)} + 1{|Y 1,n
r −Y

1,n
0 |≥(

√
k/(2‖V ′′‖∞))})

]

≤ C

k

(
E
[(

V ′(X1,n
0

))4]
+E

1/2[∣∣Y 1,n
r − Y

1,n
0

∣∣4]E1/2[(V ′(X1,n
0

))4]+E
[∣∣Y 1,n

r − Y
1,n
0

∣∣4]).
Therefore, by (4.3),

lim
k→∞ sup

n≥1
sup

r∈[0,t]
E
[〈
μn

r ,
((

V ′)2 − k
)+〉]= 0.(5.14)

One concludes by plugging this result into (5.13). �

6. Proof of Proposition 1. By (4.4) and [21], Proposition 2.4, which is also a
consequence of (A.5) for the choice α = 0, there is a finite deterministic constant C

not depending on t such that∣∣∣∣P(A�nt	+1|Fn�nt	
)− 1

l2 �
(〈
μn�nt	/n,

(
V ′)2〉, 〈μn�nt	/n,V

′′〉)∣∣∣∣≤ C√
n
.
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With (2.15), one deduces that

E

∣∣∣∣P(A�nt	+1|Fn�nt	
)− 1

l2 �
(
E
[(

V ′(Xt)
)2]

,E
[
V ′′(Xt)

])∣∣∣∣
≤ C

(
1√
n

+ (
E+E

1/2)∣∣〈μn�nt	/n,
(
V ′)2〉−E

[(
V ′(Xt)

)2]∣∣(6.1)

+E
∣∣〈μn�nt	/n,V

′′〉−E
[
V ′′(Xt)

]∣∣).

One has for k ∈N,

E
∣∣〈μn�nt	/n,

(
V ′)2〉−E

[(
V ′(Xt)

)2]∣∣
≤ E

∣∣〈μn�nt	/n − μn
t ,
(
V ′)2〉∣∣+E

〈
μn

t ,
((

V ′)2 − k
)+〉

+E
∣∣〈μn

t ,
(
V ′)2 ∧ k

〉−E
[(

V ′(Xt)
)2 ∧ k

]∣∣+E
[((

V ′)2 − k
)+

(Xt)
]
.

By the end of the proof of Proposition 4 [see in particular (5.11)], the first term in
the right-hand side converges to 0 locally uniformly in t as n → ∞. By (5.14) and
Theorem 1, the sum of the second and last terms in the right-hand side converges
to 0 as k → ∞ uniformly in n and locally uniformly in t . Last, for fixed k, the
third term converges to 0 as n → ∞ locally uniformly in t by Theorem 1. One
deduces that E|〈μn�nt	/n, (V

′)2〉 −E[(V ′(Xt))
2]| converges to 0 as n → ∞ locally

uniformly in t . Dealing with the other expectation in the right-hand side of (6.1) in
a similar but easier way (since V ′′ is bounded), one completes the proof.

APPENDIX: PROOFS OF TECHNICAL RESULTS

In this section, we first give a proof of Lemma 2 which gives basic properties of
the functions � and G. Then we give some explicit formulas for some expectations
involving Gaussian random variables.

PROOF OF LEMMA 2. The functions G and � are clearly continuous on
(0,+∞) ×R. We recall the usual tail estimate for the Normal law: ∀x > 0,

�(−x) =
∫ +∞
x

e−y2/2 dy√
2π

≤
∫ +∞
x

y

x
e−y2/2 dy√

2π
= e−x2/2

x
√

2π
.(A.1)

One deduces that for a > b+,

�

(
l

(
b

2
√

a
− √

a

))
≤ 2

l
√

2πa
e−(l2(b−2a)2)/(8a) and

(A.2)

G(a, b) ≤ 2l√
2πa

e−(l2b2)/(8a).

Since for 0 ≤ a ≤ b, G(a, b) ≤ l2 × 1 × 1, one deduces (2.16). Moreover,
(A.2) implies that G is continuous on {(0,+∞] × R} ∪ {{0} × (−∞,0)}.
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With the continuity of (a, b) �→ b√
a

on (0,+∞] × R under the convention
b√∞ = 0, one deduces that � is continuous on (0,+∞] × R. For β > 0,

lima→0+,b→β �( b
2
√

a
− √

a) = 1 and, therefore, lima→0+,b→β G(a, b) = G(0, β),

which completes the proof of the continuity properties of G. Since for (a, b) ∈
(0,+∞) × R, ∂b�(a, b) = − l4

2 e(l2(a−b))/2�(l( b
2
√

a
− √

a)) < 0, for fixed a ∈
(0,+∞), the function b �→ �(a, b) is decreasing. One easily checks that for fixed
b < 0, lima→0+ �(a, b) = l2 +0 = �(0, b) and for fixed b > 0, lima→0+ �(a, b) =
0 + l2e−(l2b)/2 = �(0, b). With the previous monotonicity property, one de-
duces that lima→0+ �(a,0) = l2 = �(0,0). The continuity of b �→ �(0, b)

and Dini’s lemma implies that b �→ �(a, b) converges locally uniformly to
b �→ �(0, b) as a → 0+ and that � is continuous on [0,+∞] × R. Since
� is positive on [0,+∞] × R, one deduces that (2.14) holds. For a > 0,
by (A.2), limb→−∞ G(a, b) = 0. Since limb→−∞ �(− lb

2
√

a
) = 1, one deduces

that limb→−∞ �(a, b) = l2. By monotonicity of b �→ �(a, b), one deduces that
∀(a, b) ∈ (0,+∞) × R, �(a, b) ≤ l2. This bound still holds for a ∈ {0,+∞} by
continuity (or using the explicit expression of �). For (a, b) ∈ (0,+∞) × R, one
has

∂b�(a, b) = − l2

2
G(a, b),

∂a�(a, b) = l2

2
G(a, b) − l3

2
√

2πa
e−(l2b2)/(8a),

∂bG(a, b) = − l2

2
G(a, b) + l3

2
√

2πa
e−(l2b2)/(8a),

∂aG(a, b) = l2

2
G(a, b) − l3

2
√

2π

(
1√
a

+ b

2a3/2

)
e−(l2b2)/(8a).

The boundedness of G then implies (2.15). Concerning (2.17), let us give some
details for the inequality(√

a ∧ √
a′)∣∣G(a, b) − G

(
a′, b

)∣∣≤ C
(∣∣a′ − a

∣∣+ ∣∣√a′ − √
a
∣∣).

Let us assume that 0 ≤ a < a′ and b ∈ [infV ′′, supV ′′]. Then we have(√
a ∧ √

a′)∣∣G(a, b) − G
(
a′, b

)∣∣
= √

a

∣∣∣∣
∫ a′

a
∂aG(x, b) dx

∣∣∣∣
= √

a

∣∣∣∣
∫ a′

a

l2

2
G(x, b) − l3

2
√

2π

(
1√
x

+ b

2x3/2

)
e−(l2b2)/(8x) dx

∣∣∣∣
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≤ C
√

a

∫ a′

a

(
1√
x

+ 1

x

)
dx ≤ C

((
a′ − a

)+
∫ a′

a

√
a

x
dx

)

≤ C

((
a′ − a

)+
∫ a′

a

1√
x

dx

)
≤ C

((
a′ − a

)+ (√
a′ − √

a
))

,

where we used (2.16) and the boundedness of (x, b) ∈ (0,+∞] × R �→
b

2
√

x
e−(l2b2)/(8x) for the first inequality. �

LEMMA 6. For α,β, γ, δ ∈ R and independent normal random variables G,
G̃ and Ĝ, one has

E
(
G
(
eαG+βG̃+γ ∧ 1

))
(A.3)

= αeγ+((α2+β2)/2)�

(
−γ + α2 + β2√

α2 + β2

)
= α

l2G
(

α2 + β2

l2 ,−2γ

l2

)
,

∣∣E(G(
1 − eαG+βG̃+γ )+)∣∣≤ (√

2

π
+
√

2γ −
)√

α2

α2 + β2 ,(A.4)

E
(
G2(eαG+βG̃+γ ∧ 1

))
= (

1 + α2)eγ+((α2+β2)/2)�

(
−γ + α2 + β2√

α2 + β2

)
(A.5)

+ �

(
γ√

α2 + β2

)
− α2√

2π(α2 + β2)
e−(γ 2/(2(α2+β2)),

E
(
GĜ

(
eαG+βG̃+δĜ+γ ∧ 1

))
= αδ

(
eγ+((α2+β2+δ2)/2)�

(
−γ + α2 + β2 + δ2√

α2 + β2 + δ2

)
(A.6)

− e−(γ 2/(2(α2+β2+δ2)))√
2π(α2 + β2 + δ2)

)
,

∀a ∈ [0,+∞), E
(
G(a,αG + β)

)= G
(
a + l2α2

4
, β

)
.(A.7)

PROOF. In this proof, the identity E(f (G)eαG−α2/2) = E(f (α + G)) is re-
peatedly used. Let us start with (A.3). By the symmetry of the normal law,
α �→ E(G(eαG+βG̃+γ ∧ 1)) is an odd function and we only need to check (A.3)
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for α > 0. Conditioning by G̃ for the third equality, we get

E
(
G
(
eαG+βG̃+γ ∧ 1

))
= E

(
eγ+(α2/2)eαG−(α2/2)eβG̃G1{G≤−(γ+βG̃)/α} + G1{G>(γ+βG̃)/α}

)
= eγ+(α2/2)

E
(
eβG̃(α + G)1{α+G≤−(γ+βG̃)/α}

)+E(G1{G>(γ+βG̃)/α})

= αeγ+((α2+β2)/2)
P

(
αG + β(β + G̃)√

α2 + β2
≤ − γ + α2√

α2 + β2

)

− eγ+(α2/2)

√
2π

E
(
eβG̃e−(γ+α2+βG̃)2/(2α2))

+ 1√
2π

E
(
e−(γ+βG̃)2/(2α2)).

We deduce (A.3) by remarking that the two last terms compensate each other since

γ + α2

2
+ βG̃ − (γ + α2 + βG̃)2

2α2 = −(γ + βG̃)2

2α2 .

To obtain the inequality (A.4), we notice that

E
(
G
(
1 − eαG+βG̃+γ )+)
= E

(
G
(
1 − eαG+βG̃+γ )+)−E(G)

= −E
(
G
(
eαG+βG̃+γ ∧ 1

))

= − α

l

√
α2 + β2

×
√

α2 + β2

l2 G
(

α2 + β2

l2 ,−2γ

l2

)

and conclude using (2.16). To derive (A.5), one obtains by conditioning by G for
the second equality

E
(
G2(eαG+βG̃+γ ∧ 1

))
= e((α2+β2)/2)+γ

E
(
G2eαG+βG̃−((α2+β2)/2)1{αG+βG̃≤−γ }

)
+E

(
G2�

(
γ + αG

|β|
))

(A.8)

= e((α2+β2)/2)+γ
E

((
G2 + 2αG + α2)�(

−γ + αG + α2 + β2

|β|
))

+E

(
G2�

(
γ + αG

|β|
))

.
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By integration by parts,

E

(
G2�

(
γ + αG

|β|
))

= 1√
2π

∫
R

x2�

(
γ + αx

|β|
)
e−x2/2 dx

= 1√
2π

∫
R

�

(
γ + αx

|β|
)
e−x2/2 dx

+ α

2π |β|
∫
R

xe−(x2/2)−((γ+αx)2/(2β2)) dx(A.9)

= P
(|β|G̃ − αG ≤ γ

)

+ αe−γ 2/(2(α2+β2))

2π |β|
∫
R

xe−((α2+β2)(x+((γ α)/(α2+β2)))2)/(2β2) dx

= �

(
γ√

α2 + β2

)
− e−γ 2/(2(α2+β2)) α2γ√

2π(α2 + β2)3

and

E

(
G�

(
−γ + αG + α2 + β2

|β|
))

= − α

2π |β|
∫
R

e−(x2/2)−((αx+γ+α2+β2)2/(2β2)) dx(A.10)

= − α√
2π(α2 + β2)

e−(γ+α2+β2)2/(2(α2+β2)).

One obtains (A.5) by plugging this last equality together with (A.9) also written
with (α, γ ) replaced by (−α,−(γ + α2 + β2)) in (A.8).

To prove (A.6), conditioning by Ĝ, using (A.3) and then (A.10), one obtains

E
(
GĜ

(
eαG+βG̃+δĜ+γ ∧ 1

))
= αeγ+((α2+β2)/2)

E

(
ĜeδĜ�

(
−γ + δĜ + α2 + β2√

α2 + β2

))

= αeγ+((α2+β2+δ2)/2)
E

(
(Ĝ + δ)�

(
−γ + δĜ + α2 + β2 + δ2√

α2 + β2

))

= αδeγ+((α2+β2+δ2)/2)

×
(
�

(
−γ + α2 + β2 + δ2√

α2 + β2 + δ2

)
− e−(γ+α2+β2+δ2)2/(2(α2+β2+δ2))√

2π(α2 + β2 + δ2)

)
.
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Last,

1

l2E
(
G(a,αG + β)

)

= e(l2(a+l2α2/4−β))/2
P

(
G̃ ≤ l

(
αG − l2α2/2 + β

2
√

a
− √

a

))

= e(l2(a+l2α2/4−β))/2
P

(√a + l2α2/4√
a

Ĝ ≤ l
β − 2(a + l2α2/4)

2
√

a

)
,

which yields (A.7). �

To prove Lemma 5, we need the following lemma.

LEMMA 7. Let X, Y denote two real random variables with respective cumu-
lative distribution functions FX and FY and f :R → R be a bounded function,
Lipschitz continuous with constant L(f ) outside [−ε, ε] for some constant ε > 0.
If X admits a bounded density pX with respect to the Lebesgue measure on R, then∣∣E[f (X)

]−E
[
f (Y )

]∣∣
≤ L(f )W1(X,Y ) + 2(supf − inff )

(√
2‖pX‖∞W1(X,Y ) + ‖pX‖∞ε

)
,

where W1(X,Y ) = inf
(Z,W) : Z

(d)=X,W
(d)=Y

E|Z − W | denotes the Wasserstein dis-

tance between the laws of X and Y .

PROOF. Let for u ∈ (0,1), F−1
X (u) = inf{x ∈ R :FX(x) ≥ u} denote the càg

pseudo-inverse of FX and F−1
Y be defined in the same way. Then ∀x ∈ R,

∀u ∈ (0,1), F−1
X (u) ≤ x ⇔ u ≤ FX(x). Moreover, if U is uniformly distributed

on [0,1], then F−1
X (U)

(d)= X, F−1
Y (U)

(d)= Y and according to [20], pages 107–109,
W1(X,Y ) = E|F−1

X (U) − F−1
Y (U)|. As a consequence,∣∣E[f (X)

]−E
[
f (Y )

]∣∣
= ∣∣E[f (F−1

X (U)
)− f

(
F−1

Y (U)
)]∣∣

≤ ∣∣E[(f (F−1
X (U)

)− f
(
F−1

Y (U)
))

× (1{F−1
X (U)∨F−1

Y (U)≤−ε} + 1{F−1
X (U)∧F−1

Y (U)>ε})
]∣∣

+ ∣∣E[(f (F−1
X (U)

)− f
(
F−1

Y (U)
))

× (1{F−1
X (U)≤−ε<F−1

Y (U)} + 1{F−1
X (U)>ε≥F−1

Y (U)})
]∣∣

+ ∣∣E[(f (F−1
X (U)

)− f
(
F−1

Y (U)
))

1{−ε<F−1
X (U)≤ε}

]∣∣
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≤ L(f )E
∣∣F−1

X (U) − F−1
Y (U)

∣∣
+ (supf − inff )

(
P
(
FY (−ε) < U ≤ FX(−ε)

)
+ P

(
FX(ε) < U ≤ FY (ε)

)
+ P

(
FX(−ε) < U ≤ FX(ε)

))
= L(f )W1(X,Y )

+ (supf − inff )

((
FX(−ε) − FY (−ε)

)+ + (
FY (ε) − FX(ε)

)+
+
∫ ε

−ε
pX(x) dx

)
.

One concludes by using the inequality

sup
x∈R

∣∣FX(x) − FY (x)
∣∣≤√

2‖pX‖∞W1(X,Y ).

This inequality is stated in [14], Lemma 5.4, with the factor 2 replaced by 4 but a
careful look at the proof of this lemma shows that it holds with the factor 2. �

PROOF OF LEMMA 5. By Lipschitz continuity of x �→ ex ∧ 1 and the Taylor
expansion

V

(
xi + l√

n
Gi

)
= V (xi) + lV ′(xi)√

n
Gi + l2V ′′(xi)

2n

(
Gi)2 + l3V (3)(χi)

6n3/2

(
Gi)3

with χi ∈ [xi, xi + l√
n
Gi], one obtains

E
[(

e
∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)) ∧ 1 − e−∑n
i=1((l/

√
n)V ′(xi )G

i+(l2/(2n))V ′′(xi )) ∧ 1
)2]

≤ E

[(
n∑

i=1

(
l2V ′′(xi)

2n

((
Gi)2 − 1

)+ l3V (3)(χi)

6n3/2

(
Gi)3))2]

.

Developing the square and remarking that for i �= j , E[((Gi)2 − 1)((Gj )2 − 1)] =
0 = E[((Gi)2 −1)V (3)(χj )(G

j )3], one easily deduces (4.4) using the boundedness
of V ′′ and V (3).

The proof of the two other inequalities is inspired by [14], Section 5, where

the authors first replace V (x1) − V (x1 + l√
n
G1) by − lV ′(x1)√

n
G1 in the exponential

factor at a cost O( 1
n
). Then they explicitly compute the conditional expectation

given (G2, . . . ,Gn) to improve the regularity of the function in the expectation.
Next, they replace

∑n
i=2(V (xi + l√

n
Gi)−V (xi)) by the Gaussian random variable∑n

i=2(
lV ′(xi )√

n
Gi + l2V ′′(xi )

2n
) and control the resulting error by some Wasserstein

distance estimate between these two random variables. To preserve symmetry in
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the estimate and in particular to obtain 〈νn, (V
′)2〉 instead of 1

n

∑n
i=2(V

′(xi))
2 in

the denominators, we write G1 as the sum of two independent variables distributed
according to N (0, 1

2).

Let G̃1 = G1√
2
, G̃i = Gi for i ≥ 2 and Ĝ1 ∼ N (0, 1

2) be independent from

(G1, . . . ,Gn). One has

E
(
G1(e∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)) ∧ 1
))

= 2E
(
Ĝ1(eV (x1)−V (x1+(l/

√
n)(G̃1+Ĝ1))+∑n

i=2(V (xi)−V (xi+(l/
√

n)G̃i)) ∧ 1
))

.

As in the above derivation of (4.4), one deduces from the Lipschitz continuity of
y �→ ey ∧ 1 and the boundedness of V ′′ that

∣∣E(G1(e∑n
i=1(V (xi)−V (xi+(l/

√
n)Gi)) ∧ 1

))− E
∣∣≤ C

n
,

where, by conditioning by (G̃1, . . . , G̃n) and using (A.3),

E
def= 2E

(
Ĝ1(e−((lV ′(x1))/

√
n)Ĝ1+∑n

i=1(V (xi)−V (xi+(l/
√

n)G̃i )) ∧ 1
))

= −V ′(x1)

l
√

n
E

[
G
(

(V ′(x1))
2

2n
,

2

l2

n∑
i=1

(
V

(
xi + l√

n
G̃i

)
− V (xi)

))]
.

By boundedness of G and since

E
[
G1{(e∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)) ∧ 1
)+ (

1 − e
∑n

i=1(V (xi)−V (xi+(l/
√

n)Gi)))+}]
= E[G1] = 0,

one deduces (4.5).
Moreover, when V ′(x1) = 0, E = 0 and (4.6) holds. To deal with the case

V ′(x1) �= 0, we let

X
def=

n∑
i=1

(
lV ′(xi)√

n
G̃i + l2V ′′(xi)

2n

)

∼ N
(

l2

2

〈
νn,V

′′〉, l2〈νn,
(
V ′)2〉− l2(V ′(x1)

)2
/2
)
,

Y
def=

n∑
i=1

(
V

(
xi + l√

n
G̃i

)
− V (xi)

)

= X + l2

2n

n∑
i=1

V ′′(xi)
((

G̃i)2 − 1
)+ l3

6n3/2

n∑
i=1

V (3)(χi)
(
G̃i)3

with χi ∈ [xi, xi + l√
n
G̃i]. By boundedness of V ′′ and V (3) and since E[((G̃i)2 −

1)((G̃j )2 −1)] = 0 as soon as j �= i and E[V (3)(χi)(G̃
i)3((G̃j )2 −1)] = 0 as soon
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as j /∈ {1, i}, E[(X − Y)2] ≤ C
n

which implies that W1(X,Y ) ≤ C√
n

. The density

of X is bounded by (l2π〈νn, (V
′)2〉)−1/2. By Lemma 2, the function G takes its

values in [0, l2]. Moreover,

∂bG(a, b) = − l2

2
G(a, b) + l3

2
√

2πa
e−(l2b2)/(8a)

which ensures that sup(a,b) : |b|≥a1/4 |∂bG(a, b)| < +∞. Lemma 7 applied with ε =√|V ′(x1)|
(2n)1/4 implies that

∣∣∣∣∣E
[
G
(

(V ′(x1))
2

2n
,

2

l2

n∑
i=1

(
V

(
xi + l√

n
G̃i

)
− V (xi)

))]

−E

[
G
(

(V ′(x1))
2

2n
,

2X

l2

)]∣∣∣∣∣
≤ C√

n
+ C

(n〈νn, (V ′)2〉)1/4 + C
√|V ′(x1)|

n1/4
√

〈νn, (V ′)2〉
,

where C depends neither on x nor on n. One concludes by remarking that,
by (A.7),

E

[
G
(

(V ′(x1))
2

2n
,

2X

l2

)]
= G

(〈
νn,

(
V ′)2〉, 〈νn,V

′′〉). �
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