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THE VERTEX-CUT-TREE OF GALTON–WATSON TREES
CONVERGING TO A STABLE TREE

BY DAPHNÉ DIEULEVEUT

Université Paris-Sud

We consider a fragmentation of discrete trees where the internal vertices
are deleted independently at a rate proportional to their degree. Informally,
the associated cut-tree represents the genealogy of the nested connected com-
ponents created by this process. We essentially work in the setting of Galton–
Watson trees with offspring distribution belonging to the domain of attraction
of a stable law of index α ∈ (1,2). Our main result is that, for a sequence of
such trees Tn conditioned to have size n, the corresponding rescaled cut-trees
converge in distribution to the stable tree of index α, in the sense induced by
the Gromov–Prokhorov topology. This gives an analogue of a result obtained
by Bertoin and Miermont in the case of Galton–Watson trees with finite vari-
ance.

1. Introduction and main result. Fragmentations of random trees were first
introduced in the work of case of Meir and Moon [23] as a recursive random edge-
deletion process on discrete trees. Since then, it has been recognized that fragmen-
tations of discrete and continuous trees appear in several natural contexts; see, for
example, [11, 15] for a connection with forest fire models, [6, 8] for fragmentations
of the Brownian tree [5] and its relation to the additive coalescent, and [3, 24, 25]
for fragmentations of the stable tree of index α ∈ (1,2) [17]. The fragmentations
considered in the two last cases, which arise naturally in the setting of Brownian
and stable trees, are self-similar fragmentations as studied by Bertoin [9], whose
characteristics are explicitly known.

Several recent articles investigated the question of the asymptotic distribution
of the number of cuts needed to isolate a specific vertex, for various classes of
random trees. In specific cases, Panholzer [26] showed that the Rayleigh distri-
bution arises naturally as a limit in this context, and Janson [21] showed that this
limiting result holds for general Galton–Watson trees with a finite variance off-
spring distribution, using a method of moments. He also established a connection
to the Brownian tree, which is natural since the Rayleigh distribution is the law of
the distance between two uniformly chosen vertices in the CRT. Later, Addario-
Berry, Broutin and Holmgren [4] provided a different proof giving a more concrete
connection to the Brownian tree. Bertoin and Miermont [12] then studied the ge-
nealogy of the cutting procedure in itself, which is related to the problem of the
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isolation of several vertices rather than just the root (certain of these ideas were
implicitly present in former papers, including [4, 11]). This allows to code the dis-
crete cutting procedure in terms of a “cut-tree,” whose scaling limit is shown to be
a Brownian tree that describes in some sense the genealogy of the Aldous–Pitman
fragmentation [6].

Note that the results of [4], by introducing a reversible transformation of the
Brownian tree, can be understood as building the “first branch” of the limiting
cut-tree, the latter being a kind of iteration ad libitum of this transformation. This
transformation was extended in [2] in the context of a fragmentation of stable
trees. The main goal of the present work is to show that the approach of Bertoin
and Miermont [12] can also be adapted to Galton–Watson trees with offspring
distribution in the domain of attraction of a non-Gaussian stable law, showing the
convergence of the whole discrete cut-tree to a limiting stable tree. This gives in
passing a natural definition of the continuum cut-tree for the fragmentation studied
in [25].

Let us describe more precisely the result of [12] we are interested in. Consider
a sequence of Galton–Watson trees Tn, conditioned to have exactly n edges, with
critical offspring distribution having finite variance σ 2. The associated cut-trees
Cut(Tn) describe the genealogy of the fragments obtained by deleting the edges
in a uniform random order. It is well known that the rescaled trees (σ/

√
n) · Tn

converge in distribution to the Brownian tree T ; see [5] for the convergence of
the associated contour functions, which implies that this convergence holds for
the commonly used Gromov–Hausdorff topology, and for the Gromov–Prokhorov
topology. In the present work, we will mainly use the latter. Bertoin and Miermont
showed that there is in fact the joint convergence(

σ√
n
Tn,

1

σ
√

n
Cut(Tn)

)
(d)−→

n→∞
(
T ,Cut(T )

)
,

where Cut(T ) is the so-called cut-tree of T . Informally, Cut(T ) describes the
genealogy of the fragments obtained by cutting T at points chosen according to
a Poisson point process on its skeleton. Moreover, Cut(T ) has the same law as T .

Our goal is to show an analogue result in the case where the Tn are Galton–
Watson trees with offspring distribution belonging to the domain of attraction
of a stable law of index α ∈ (1,2), and T is the stable tree of index α. For the
stable tree, a self-similar fragmentation arises naturally by splitting at branching
points with a rate proportional to their “width,” as shown in [25]. This will lead
us to modify the edge-deletion mechanism for the discrete trees, so that the rate at
which internal vertices are removed increases with their degree. Therefore, we call
edge-fragmentation the fragmentation studied in [12], and vertex-fragmentation
our model. Note that more general fragmentations of the stable tree can be con-
structed by splitting both at branching points and at uniform points of the skeleton,
as in [3]. However, these fragmentations are not self-similar (see [25]), and will
not be studied here.
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In the rest of the Introduction, we will describe our setting more precisely and
give the exact definition of the cut-trees, both in the discrete and the continuous
cases. This will enable us to state our main results in Section 1.4.

1.1. Vertex-fragmentation of a discrete tree. We begin with some notation.
Let T be the set of all finite plane rooted trees. For every T ∈ T, we call E(T )

the set of edges of T , V (T ) the set of vertices of T , and ρ(T ) the root-vertex
of T . For each vertex v ∈ V (T ), deg(v, T ) denotes the number of children of v

in T (or degv, if this notation is not ambiguous), and for each edge e ∈ E(T ),
e− (resp., e+) denotes the extremity of e which is closest to (resp., furthest away
from) the root.

For any tree T with n edges, we label the vertices of T by v0, v1, . . . , vn, and
the edges of T by e1, . . . , en, in the depth-first order. Note that the planar structure
of T gives an order on the offspring of each vertex, say “from left to right,” hence
the depth-first order is well defined. With this notation, we have vj = e+

j for all
j ∈ {1, . . . , n}.

We let T ∈ T be a finite tree with n edges. We consider a discrete-time fragmen-
tation on T , which can be described as follows:

• at each step, we mark a vertex of T at random, in such a way that the probability
of marking a given vertex v is proportional to degv;

• when a vertex v is marked, we delete all the edges e such that e− = v.

Note that the total number of steps N is at most n. To keep track of the genealogy
induced by this edge-deletion process, we introduce a new structure called the cut-
tree of T , denoted by Cutv(T ).

For all r ∈ {1, . . . ,N}, we let v(r) be the vertex which receives a mark at step r ,
Er = {e ∈ E(T ) : e− = v(r)} be the set of the edges which are deleted at step r ,
kr = |Er |, and Dr = {i ∈ {1, . . . , n} : ei ∈ ⋃

r ′≤r Er ′ }. We say that j ∼r j ′ if and
only if ej and ej ′ are still connected in the forest obtained from T by deleting the
edges in Dr . Thus, ∼r is an equivalence relation on {1, . . . , n} \ Dr . The family
of the equivalence classes (without repetition) of the relations ∼r for r = 1, . . . ,N

forms the set of internal nodes of Cutv(T ). The initial block {1, . . . , n} is seen
as the root, and the leaves of Cutv(T ) are given by 1, . . . , n. We stress that we
distinguish the leaves i and the internal nodes {i}.

We now build the cut-tree Cutv(T ) inductively. At the r th step, we let B be the
equivalence class for ∼r−1 containing the indices i such that ei ∈ Er . Deleting the
edges in Er splits the block B into k′

r equivalence classes B1, . . . ,Bk′
r

for ∼r , with
k′
r ≤ kr + 1. We draw k′

r edges between B and the sets B1, . . . ,Bk′
r
, and kr edges

between B and the leaves i such that ei ∈ Er . Thus, the graph-distance between
the leaf i and the root in Cutv(T ) is the number of cuts in the component of T

containing the edge ei before ei itself is removed. Note that Cutv(T ) does not have
a natural planar structure, but that the actual embedding does not intervene in our
work. Figure 1 gives an example of this construction for a tree T with 16 edges.



2218 D. DIEULEVEUT

FIG. 1. The cut-tree Cutv(T ) of a tree T . The order of deletion of the internal vertices of T is
indicated in Roman numerals. The correspondence between the edges of T and the leaves of Cutv(T )

is indicated in Arabic numerals.

If T is a random tree, the fragmentation of T and the cut-tree Cutv(T ) are
defined similarly, by conditioning on T and performing the above construction.

Note that, equivalently, we could mark the edges of T in a uniform random
order, and delete all the edges e such that e− = e−

i , as soon as ei is marked. The
cut-tree Cutv(T ) would then be obtained by performing the same construction with
Er = {e ∈ E(T ) : e− = e−

ir
}. This procedure sometimes adds “neutral steps,” which

have no effect on the fragmentation, but this does not change the cut-tree. It will
sometimes be more convenient to work with this point of view, for example, in
Sections 2.1 and 4.

1.2. Fragmentation and cut-tree of the stable tree of index α ∈ (1,2). Follow-
ing Duquesne and Le Gall (see, e.g., [18]), we see stable trees as random rooted
R-trees.

DEFINITION 1.1. A metric space (T , d) is an R-tree if, for every u, v ∈ T :

• There exists a unique isometric map fu,v from [0, d(u, v)] into T such that
fu,v(0) = u and fu,v(d(u, v)) = v.

• For any continuous injective map f from [0,1] into T , such that f (0) = u and
f (1) = v, we have

f
([0,1]) = fu,v

([
0, d(u, v)

]) := [[u, v]].
A rooted R-tree is an R-tree (T , d, ρ) with a distinguished point ρ called the root.

The trees we will work with can be seen as R-trees coded by continuous func-
tions from [0,1] into R+, as in [18]. In particular, the stable tree (T , d) of index
α is the R-tree coded by the excursion of length 1 of the height process H(α), de-
fined as follows in [17]. Let X(α) be a stable spectrally positive Lévy process with
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parameter α, whose normalization will be prescribed in Section 2.2.1. For every
t > 0, let X̂(α,t) be the process defined by

X̂(α,t)
s =

⎧⎨⎩X
(α)
t − X

(α)

(t−s)−, if 0 ≤ s < t ,

X
(α)
t , if s = t ,

and write Ŝ
(α,t)
s = sup0≤r≤s X̂

(α,t)
r for all r ∈ [0, t].

DEFINITION 1.2. The height process H(α) is the real-valued process such
that H0 = 0 and, for every t > 0, Ht is the local time at level 0 at time t of the
process X̂(α,t) − Ŝ(α,t).

The normalization of local time, and the proof of the existence of a continuous
modification of this process, are given in [17], Section 1.2. This definition of T
allows us to introduce the canonical projection p : [0,1] → T . We endow T with
a probability mass-measure μ defined as the image of the Lebesgue measure on
[0,1] under p, and say that the rot of T is the unique point which has height 0.

For the fragmentation of the stable tree, we will use a process introduced and
studied by Miermont in [25], which consists in deleting the nodes of T in such a
way that the fragmentation is self-similar. We first recall that the multiplicity of a
point v in an R-tree T can be defined as the number of connected components of
T \{v}. To be consistent with the definitions of Section 1.1, we define the degree of
a point as its multiplicity minus 1, and say that a branching point of T is a point v

such that deg(v, T ) ≥ 2. Duquesne and Le Gall have shown in [18], Theorem 4.6,
that a.s. the branching points in T form a countable set, and that these branching
points have infinite degree. We let B denote the set of these branching points. For
any b ∈ B, one can define the local time, or width of b as the almost sure limit

L(b) = lim
ε→0+ ε−1μ

{
v ∈ T :b ∈ [[ρ, v]], d(b, v) < ε

}
,

where ρ is the root of the stable tree T . The existence of this quantity is justified
in [25], Proposition 2, (see also [18]).

We can now describe the fragmentation we are interested in. Conditionally
on T , we let (ti, bi)i∈I be the family (indexed by a countable set I ) of the atoms of
a Poisson point process with intensity dt ⊗ ∑

b∈B L(b)δb(dv) on R+ × B. Seeing
these atoms as marks on the branching points of T , we let �T (t) = T \ {bi : ti ≤ t}.

For every x ∈ T , we let Tx(t) be the connected component of �T (t) containing x,
with the convention that Tx(t) = ∅ if x /∈ �T (t). We also let μx(t) = μ(Tx(t)).
Adding a distinguished point 0 to T , we define a function δ from (T � {0})2 into
R+ ∪ {∞}, such that for all x, y ∈ T ,

δ(0,0) = 0, δ(0, x) = δ(x,0) =
∫ ∞

0
μx(t) dt,

δ(x, y) =
∫ ∞
t (x,y)

(
μx(t) + μy(t)

)
dt,
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where t (x, y) := inf{t ∈ R+ :Tx(t) �= Ty(t)} is a.s. finite. We think of δ as our new
“distance” in the cut-tree. This definition might seem surprising, but the results of
Section 2.1 will show that it provides an analogue of the distance we defined in
the discrete case, in terms of number of cuts; as will be explained in Section 3.1,
it also has a natural interpretation as a time-change between two fragmentation
processes of the stable tree, studied in [24] and [25]. The role of the extra point 0
in our (time-changed) fragmentation will be similar to the role played by the root
of T in the “fragmentation at heights” which will be introduced in Section 3.1.

A first idea would be to build the vertex-cut-tree Cutv(T ) as a completion of
(T � {0}, δ). However, making this idea rigorous is difficult, since it is not clear
whether δ is a.s. finite, and defines a distance on T � {0}. We will instead use an
approach introduced by Aldous, which consists in building a continuous random
tree such that the subtrees determined by k randomly chosen leaves have the right
distribution. To this end, we use the conditions given by Aldous in [5], Theorem 3.

Set ξ(0) = 0, and let (ξ(i))i∈N be an i.i.d. sequence distributed according to μ,
conditionally on T . The key argument of our construction is the identity in law(

δ
(
ξ(i), ξ(j)

))
i,j≥0

(d)= (
d
(
ξ(i + 1), ξ(j + 1)

))
i,j≥0,

which will be proven in Section 3.1. In particular, it implies that almost surely, for
all i, j ≥ 0, δ(ξ(i), ξ(j)) is finite, and that δ is a.s. a distance on {ξ(i), i ≥ 0}. This
allows us to see the spaces R(k) := ({ξ(i),0 ≤ i ≤ k}, δ), for all k ∈ N, as random
rooted trees with k leaves. Using the terminology of Aldous, (R(k), k ∈ N) forms
a consistent family of random rooted trees which satisfies the leaf-tight condition:

min
1≤j≤k

δ
(
ξ(0), ξ(j)

) P−→
k→∞ 0.

Indeed, the second part of Theorem 3 of [5] shows that these conditions hold
for the reduced trees ({ξ(i),1 ≤ i ≤ k + 1}, d). As a consequence, the family
(R(k), k ∈ N) can be represented as a continuous random tree Cutv(T ), and
(δ(ξ(i), ξ(j)))i,j≥0 is the matrix of mutual distances between the points of an
i.i.d. sample of Cutv(T ). This tree Cutv(T ) is called the cut-tree of T . Note that
Cutv(T ) depends on T and on the extra randomness of the Poisson process.

1.3. Fragmentation and cut-tree of the Brownian tree. We will also work on
the Brownian tree (T br, dbr, ρbr), which was defined by Aldous (see [5]) as the
R-tree coded by (Ht)0≤t≤1 = (2Bt)0≤t≤1, where B denotes the standard Brownian
excursion of length 1. This tree can be seen as the stable tree of index α = 2
(up to a scale factor, with the normalization we will use). In particular, we have
a probability mass-measure μbr on T br, defined as the image of the Lebesgue
measure on [0,1] under the canonical projection. We also define a length-measure l

on T br, which is the sigma-finite measure such that, for all u, v ∈ T br, l([[u, v]]) =
dbr(u, v).
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The fragmentation of the Brownian tree we consider is the same as in [12]:
conditionally on T br, we let (ti , bi)i∈I be the family of the atoms of a Poisson
point process with intensity dt ⊗ l(dv) on R+ × T br. As for the stable tree, we let
T br

x (t) be the connected component of T br \ {bi : ti ≤ t}, and μbr
x (t) = μbr(T br

x (t)),
for every x ∈ T br. Adding a distinguished point 0 to T br, we define a function δbr

on (T br � {0})2 such that for all x, y ∈ T br,

δbr(0,0) = 0, δbr(0, x) = δbr(x,0) =
∫ ∞

0
μbr

x (t) dt,

δbr(x, y) =
∫ ∞
tbr(x,y)

(
μbr

x (t) + μbr
y (t)

)
dt,

where tbr(x, y) := inf{t ∈R+ :T br
x (t) �= T br

y (t)} is a.s. finite. As shown in [12], we
can define a new tree Cut(T br) for which the matrix of mutual distances between
the points of an i.i.d. sample of Cut(T br) is (δ(ξ(i), ξ(j)))i,j≥0, where ξ(0) =
0 and (ξ(i))i∈N is an i.i.d. sequence distributed according to μbr, conditionally
on T br. Moreover, Cut(T br) has the same law as T br.

1.4. Main results. As stated in the Introduction, we mainly work in the setting
of Galton–Watson trees with critical offspring distribution ν, where ν is a prob-
ability distribution belonging to the domain of attraction of a stable law of index
α ∈ (1,2). We shall also assume that ν is aperiodic. Finally, for a technical reason,
we will need the additional hypothesis

sup
r≥1

(
rP(Ẑ = r)

P(Ẑ > r)

)
< ∞,(1)

where Ẑ is a random variable such that P(Ẑ = r) = rν({r}). For example, this is
the case if ν({r}) is equivalent to c/rα+1 as n → ∞, for a constant c ∈ (0,∞).
In all our work, we shall implicitly work for values of n such that, for a Galton–
Watson tree T with offspring distribution ν, P(|E(T )| = n) �= 0. We let Tn be a
ν-Galton–Watson tree, conditioned to have exactly n edges. We let δn denote the
graph-distance on {0,1, . . . , n} induced by Cutv(Tn). We will use the notation ρn

for the root of Tn, and μn for the uniform distribution on E(Tn) (by slight abuse,
μn will also sometimes be used for the uniform distribution on {1, . . . , n}).

Our main goal is to study the asymptotic behavior of Cutv(Tn) as n → ∞. To
this end, it will be convenient to see trees as pointed metric measure spaces, and
work with the Gromov–Prokhorov topology on the set of (equivalence classes of)
such spaces. Let us recall a few definitions and facts on these objects (see, e.g.,
[19] for details).

A pointed metric measure space is a quadruple (X,D,m,x), where m is a Borel
probability measure on the metric space (X,D), and x is a point of X. These
objects are considered up to a natural notion of isometry-equivalence. One says
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that a sequence (Xn,Dn,mn, xn) of pointed measure metric spaces converges in
the Gromov–Prokhorov sense to (X∞,D∞,m∞, x∞) if and only if the following
holds: for n ∈ N ∪ {∞}, set ξn(0) = xn and let ξn(1), ξn(2), . . . be a sequence
of i.i.d. random variables with law mn, then the vector (Dn(ξn(i), ξn(j)) : 0 ≤ i,

j ≤ k) converges in distribution to (D∞(ξ∞(i); ξ∞(j)) : 0 ≤ i, j ≤ k) for every
k ≥ 1. The space M of (isometry-equivalence classes of) pointed measure metric
spaces, endowed with the Gromov–Prokhorov topology, is a Polish space.

In this setting, the stable tree T with index α can be seen as a scaling limit
of the Galton–Watson trees Tn, n ∈ N. More precisely, we endow the discrete
trees Tn with the associated graph-distance dn and the uniform distribution mn

on V (Tn) \ {ρn}. Note that mn is uniform on {v1(Tn), . . . , vn(Tn)}; by slight abuse,
it will sometimes be identified with the uniform distribution on {1, . . . , n}. For
any pointed metric measure space X = (X,D,m,x) and any a ∈ (0,∞), we let
aX = (X,aD,m,x). With this formalism, there exists a sequence (an)n∈N such
that

an

n
Tn

(d)−→T ,(2)

in the sense of the Gromov–Prokhorov topology, and an = n1/αf (n) for a slowly-
varying function f . This is a consequence of the convergence of the contour func-
tions associated with the trees Tn, shown in [16], Theorem 3.1. We will give a
slightly more precise version of this result in Section 2.2.2.

We can now state our main result.

THEOREM 1.3. Let (an)n∈N be a sequence such that (2) holds. Then we have
the following joint convergence in distribution:(

an

n
Tn,

an

n
Cutv(Tn)

)
−→
n→∞

(
T ,Cutv(T )

)
,

where M is endowed with the Gromov–Prokhorov topology and M × M has the
associated product topology. Furthermore, the cut-tree Cutv(T ) has the same dis-
tribution as T .

Note that this generalizes Proposition 1.4 of [1], which gave the scaling limit of
the number of cuts needed to isolate the root in a stable Galton–Watson tree.

In the following sections, we fix the sequence (an). For some of the preliminary
results, we will use a particular choice of this sequence, detailed in Section 2.2.1.
Nevertheless, it is easy to check that the theorem holds for any equivalent se-
quence.

To complete this result, we will study the limit of the cut-tree obtained for the
vertex-fragmentation, in the case where the offspring distribution ν has finite vari-
ance (still assuming that ν is critical and aperiodic). More precisely, we will show
the following.
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THEOREM 1.4. If the offspring distribution ν has finite variance σ 2, then we
have the joint convergence in distribution(

σ√
n
Tn,

1√
n

(
σ + 1

σ

)
Cutv(Tn)

)
−→
n→∞

(
T br,Cut

(
T br))

in M×M.

Let us explain informally why we get a factor σ + 1/σ , instead of the 1/σ we
had in the case of the edge-fragmentation. In the vertex-fragmentation, the average
number of deleted edges at each step is roughly

∑
k kν(k) × k = σ 2 + 1. Thus, the

edge-deletions happen σ 2 + 1 times faster than for the edge-fragmentation. As a
consequence, (1/

√
n) · Cutv(Tn) behaves approximatively like (1/(σ 2 + 1)

√
n) ·

Cut(Tn), that is, (σ + 1/σ)−1(1/σ
√

n) · Cut(Tn).
Also note that we would need additional hypotheses to extend this result to the

more general case of an offspring distribution belonging to the domain of attraction
of a Gaussian distribution. Indeed, as will be seen in the Section 4, the proof of this
result relies on the convergence of the coefficients n/a2

n: if ν has finite variance,
we may and will take an = σ

√
n, but in the general case, this convergence is not

granted.
For both of these theorems, it is known that the first component converges in

the stronger sense of the Gromov–Hausdorff–Prokhorov topology. However, as
in the case studied by Bertoin and Miermont, the question of whether the joint
convergences hold in this sense remains open.

In the following sections, we will first work on the proof of Theorem 1.3: pre-
liminary results will be given in Section 2, and the proof will be completed in
Section 3. The global structure of this proof is close to that of [12], although the
technical arguments differ, especially in Section 2. Section 4 will be devoted to the
study of the finite variance case.

2. Preliminary results.

2.1. Modified distance on Cutv(Tn). We begin by introducing a new distance
δ′
n on Cutv(Tn), defined in a similar way as the distance δ for a continuous tree.

We show that this distance is “close” enough to (an/n) · δn, which will enable us
to work on the modified cut-tree Cut′v(Tn) := (Cutv(Tn), δ

′
n).

Recall the fragmentation of Tn introduced in Section 1.1. We now turn this pro-
cess into a continuous-time fragmentation, by saying that each vertex v ∈ V (T ) is
marked independently, with rate degv/an. Equivalently, this can be seen as mark-
ing each edge of T independently with rate 1/an, and deleting all the edges e such
that e− = e−

i as soon as ei is marked. Thus, we obtain a forest �Tn(t) at time t . For
every i ∈ {1, . . . , n}, we let Tn,i(t) denote the component of �Tn(t) containing the
edge ei , with the convention Tn,i(t) = ∅ if ei /∈ �Tn(t), and μn,i(t) = μn(Tn,i(t)).
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Note that nμn,i(t) is the number of edges in Tn,i(t). For all i, j ∈ {1, . . . , n}, we
now define

δ′
n(0,0) = 0, δ′

n(0, i) = δ′
n(i,0) =

∫ ∞
0

μn,i(t) dt,

δ′
n(i, j) =

∫ ∞
tn(i,j)

(
μn,i(t) + μn,j (t)

)
dt,

where tn(i, j) denotes the first time when the components Tn,i(t) and Tn,j (t) be-
come disjoint.

LEMMA 2.1. For all i, j ∈ {1, . . . , n}, we have

E

[∣∣∣∣an

n
δn(0, i) − δ′

n(0, i)

∣∣∣∣2] = an

n
E
[
δ′
n(0, i)

]
and

E

[∣∣∣∣an

n
δn(i, j) − δ′

n(i, j)

∣∣∣∣2] ≤ an

n
E
[
δ′
n(0, i) + δ′

n(0, j)
]
.

PROOF. We work conditionally on Tn. Fix i ∈ {1, . . . , n}. For all t ∈ R+, we
let Ni(t) be the number of cuts happening in the component containing ei up to
time t . Since each edge of Tn is marked independently with rate 1/an, the process
(Mi(t))t≥0, where

Mi(t) := an

n
Ni(t) −

∫ t

0
μi(s) ds,

is a purely discontinuous martingale. Its predictable quadratic variation can be
written as

〈Mi〉t = an

n

∫ t

0
μi(s) ds.

As a consequence, we have E[|Mi(∞)|2] = E[〈Mi〉∞]. Since

lim
t→∞Ni(t) = δn(0, i) and lim

t→∞

∫ t

0
μi(s) ds = δ′

n(0, i),

we get

E

[∣∣∣∣an

n
δn(0, i) − δ′

n(0, i)

∣∣∣∣2] = an

n
E
[
δ′
n(0, i)

]
.

For the second part, we use similar arguments. We fix i �= j ∈ {1, . . . , n}, and
we write tij instead of tn(i, j). For all t ≥ 0, let Ft denote the σ -algebra generated
by Tn and the atoms {(tr , eir ) : tr ≤ t} of the Poisson point process of marks on the
edges introduced in Section 1.1. Conditionally on Ftij ,

Mij (t) := Mi(tij + t) − Mi(tij ) + Mj(tij + t) − Mj(tij )
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defines a purely discontinuous martingale such that

lim
t→∞Mij (t) = an

n

(
δn(bij , i) + δn(bij , j)

)−
∫ ∞
tij

μi(s) ds −
∫ ∞
tij

μj (s) ds

= an

n
δn(i, j) − δ′

n(i, j),

where bij denotes the most recent common ancestor of the leaves i and j in
Cutv(Tn). Besides, since the edges of Tn,i and Tn,j are marked independently after
time tij , the predictable quadratic variation of Mij is

〈Mij 〉t = an

n
E

[∫ tij+t

tij

(
μi(s) + μj(s)

)
ds

]
.

Since δ′
n(i, j) = δ′

n(0, i) + δ′
n(0, j) − 2δ′

n(0, bij ), this yields

E

[∣∣∣∣an

n
δn(i, j) − δ′

n(i, j)

∣∣∣∣2] ≤ an

n
E
[
δ′
n(0, i) + δ′

n(0, j)
]
. �

2.2. A first joint convergence. In this section, we first state precisely the con-
vergence theorems we will rely on to prove the following lemmas. To this end, we
work in the setting of sums of i.i.d. random variable Sn = Z1 + · · · + Zn, where
the laws of the Zi are in the domain of attraction of a stable law. Under additional
hypotheses, Theorem 2.2 below gives a choice of scaling constants an for which
Sn/an converges in law to a stable variable, and a formulation of Gnedenko’s lo-
cal limit theorem in this setting. Next, we will recall a result of Duquesne which
shows, in particular, the convergence (2). The version we will use is a joint con-
vergence of three functions encoding the trees Tn and T . These results will allow
us to prove a first joint convergence for the fragmented trees in Proposition 2.5.

2.2.1. Local limit theorem. We say that a measure π on Z is lattice if there
exists integers b ∈ Z, d ≥ 2 such that supp(π) ⊂ b + dZ. We know from our hy-
potheses that ν is critical, aperiodic, and ν({0}) > 0, and these three conditions
imply that ν is nonlattice.

For any β ∈ (1,2), we let X(β) be a stable spectrally positive Lévy process with

parameter β , and p
(β)
t (x) the density of the law of X

(β)
t . Similarly, for β ∈ (0,1),

we let X(β) be a stable subordinator with parameter β , and q
(β)
t (x) be the density

of the law of X
(β)
t . We fix the normalization of these processes by setting, for all

λ ≥ 0,

E
[
e−λX

(β)
t

] = etλβ

if β ∈ (1,2),

E
[
e−λX

(β)
t

] = e−tλβ

if β ∈ (0,1).

We also introduce the set Rρ of regularly varying functions with index ρ.
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THEOREM 2.2. Let (Zi, i ∈ N) be an i.i.d. sequence of random variables in
N ∪ {−1,0}. We denote by Z a random variable having the same law as the Zi .
Suppose that the law of Z belongs to the domain of attraction of a stable law of
index β ∈ (0,2) \ {1}, and is nonlattice. If β ∈ (1,2), we also suppose that Z is
centered. We introduce

Sn =
n∑

i=1

Zi, n ≥ 0.

Then there exists an increasing function A ∈ Rβ and a constant c such that:

(i) It holds that

P(Z > r) ∼ c

A(r)
as r → ∞.(3)

(ii) Letting a be the inverse function of A, and an = a(n) for all n ∈ N, we have

lim
n→∞ sup

k∈N

∣∣∣∣anP(Sn = k) − p
(β)
1

(
k

an

)∣∣∣∣ = 0.(4)

PROOF. Theorem 8.3.1 of [13] shows that, since Z ≥ −1 a.s., the law of Z

belongs to the domain of attraction of a stable law of index β if and only if P(Z >

r) ∈ R−β . Using Theorem 1.5.3 of [13], we can take a monotone equivalent of
P(Z > r), hence the existence of A such that (3) holds with a constant c which
will be chosen hereafter.

The remarks following Theorem 8.3.1 in [13] give a characterization of the an

such that Sn/an converges in law to a stable variable of index β . In particular, it is
enough to take an such that n/A(an) converges, so a = A−1 is a suitable choice.
We now choose the constant c such that Sn/an converges to X

(β)
1 . The second point

of the theorem is given by Gnedenko’s local limit theorem (see, e.g., Theorem 4.2.1
of [20]). �

2.2.2. Coding the trees Tn and T . We now recall three classical ways of cod-
ing a tree T ∈ T, namely the associated contour function, height function and
Lukasiewicz path. Detailed descriptions and properties of these objects can be
found, for example, in [16].

To define the contour function C[n] of Tn, we see Tn as the embedded tree in
the oriented half-plane, with each edge having length 1. We consider a particle
that visits continuously all edges at unit speed, from the left to the right, starting
from the root. Then, for every t ∈ [0,2n], we let C

[n]
t be the height of the particle

at time t , that is, its distance to the root. The height function is defined by letting
H

[n]
j be the height of the vertex vj . Finally, for all i ∈ {0, . . . , n}, we let Z

[n]
i+1 be the

number of offspring of the vertex vi . Then the Lukasiewicz path of Tn is defined by

W
[n]
j =

j∑
i=1

Z
[n]
i − j, j = 0, . . . , n + 1.
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FIG. 2. The contour function (C
[n]
t ,0 ≤ t ≤ 2n + 2), height function (H

[n]
j , j = 0, . . . , n + 1) and

Lukasiewicz path (W
[n]
j , j = 0, . . . , n + 1) coding a realization of Tn.

With this definition, we have deg(vj ,Tn) = W
[n]
j+1 − W

[n]
j + 1. We extend C[n]

and H [n] by setting C
[n]
t = 0 for all t ∈ [2n,2n + 2] and H

[n]
n+1 = 0 (this will allow

us to keep similar scaling factors for the rescaled functions we introduce in The-
orem 2.3). Figure 2 gives the contour function, height function and Lukasiewicz
path associated to the tree we used in Figure 1.

We also use a random walk (Wj )j≥0 with jump distribution ν(k + 1):

Wj =
j∑

i=1

Zi − j, j ≥ 0,

where (Zi)i∈N are i.i.d. variables having law ν. Note that (W
[n]
j , j = 0, . . . , n + 1)

has the same law as (Wj , j = 0, . . . , n + 1) conditionally on Wn+1 = −1 and
Wj ≥ 0 for all j ≤ n. In other terms, (Wn)n≥0 has the same law as the Lukasiewicz
path associated with a sequence of Galton–Watson trees with offspring distribu-
tion ν. From now on, we let A and a be functions given by Theorem 2.2 for the
sequence of i.i.d. variables (Zi − 1)i∈N. Thus, we have the convergence

1

an

Wn
(d)−→

n→∞X
(α)
1 .(5)

Finally, let (Xt)0≤t≤1 be the excursion of length 1 of the Lévy process X(α),
and (Ht)0≤t≤1 be the excursion of length 1 of the process H(α) defined in Sec-
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tion 1.2. We will use the following adaptation of the results shown by Duquesne
in [16]:

THEOREM 2.3 (Duquesne). Consider the rescaled functions C(n), H(n)

and X(n), defined by

C
(n)
t = an

n
C

[n]
(2n+2)t , H

(n)
t = an

n
H

[n]
�(n+1)t�, X

(n)
t = 1

an

W
[n]
�(n+1)t�

for all t ∈ [0,1]. If ν is aperiodic and hypothesis (5) holds, then we have the joint
convergence (

C
(n)
t ,H

(n)
t ,X

(n)
t

)
0≤t≤1

(d)−→
n→∞ (Ht ,Ht ,Xt)0≤t≤1.

Proposition 4.3 of [16] shows the convergence of the corresponding bridges
(with a change of index which comes from the fact that we are working on trees
conditioned to have n edges instead of n vertices). Using the continuity of the
Vervaat transform as in the proof of [16], Theorem 3.1, then gives the result.

The fact that these convergences hold jointly will be used in the proof of
Lemma 2.4 below. Apart from this, we will mainly use the convergence of
the rescaled Lukasiewicz paths X(n), because of the following link between the
rates of our fragmentation and the jumps of X(n). Recall from Section 1.2 that
p : [0,1] → T denotes the canonical projection from [0,1] onto T . Now, the set
of the branching points of T is {p(t) : t ∈ [0,1] s.t. �Xt > 0}, and the associated
local times are L(p(t)) = �Xt (see [18], proof of Theorem 4.7, and [25], Propo-
sition 2). Similarly, we introduce the projection pn from Kn := {1/(n + 1), . . . ,1}
onto V (Tn), such that pn(j/(n + 1)) is the vertex vj−1 of Tn. Thus, for all t ∈ Kn,
we have

�X
(n)
t = 1

an

(
deg

(
pn(t),Tn

)− 1
)
.(6)

We conclude this part by showing another result of joint convergence, for the
Lukasiewicz paths of two symmetric sequences of trees. For all n ∈ N, we in-
troduce the symmetrized tree T̃n, obtained by reversing the order of the children
of each vertex of Tn. We let W̃ [n] denote the Lukasiewicz path of T̃n. (We would
obtain the same process by visiting the vertices of Tn “from right to left” in the
depth-first search.) Finally, we define the rescaled process X̃(n) by

X̃
(n)
t = 1

an

W̃
[n]
�(n+1)t� ∀t ∈ [0,1].

LEMMA 2.4. There exists a process (X̃t )0≤t≤1 such that there is the joint
convergence (

X(n), X̃(n)) (d)−→
n→∞ (X, X̃).(7)
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Moreover:

• The processes X̃ and X have the same law.
• For every jump-time t of X,

�X̃1−t−l(t) = �Xt a.s.,

where l(t) = inf{s > t :Xs = Xt−} − t .

PROOF. Since Tn and T̃n have the same law, X̃(n) converges in distribution
to an excursion of the Lévy process X(α) in the Skorokhod space D. Thus the se-
quence of the laws of the processes (X(n), X̃(n)) is tight in D×D. Up to extraction,
we can assume that (X(n), X̃(n)) converges in distribution to a couple of processes
(X, X̃).

For all n ∈N, j ∈ {0, . . . , n}, a simple computation shows that the vertex vj (Tn)

corresponds to v
j̃
(T̃n), where

j̃ = n − j + H
[n]
j − D

[n]
j ,

and D
[n]
j is the number of strict descendants of vj (Tn). Note that D

[n]
j is the largest

integer such that W
[n]
i ≥ W

[n]
j for all i ∈ [j, j +D

[n]
j ]. Then (6) shows that we have

�X̃
(n)

(n−j+H
[n]
j −D

[n]
j +1)/(n+1)

= �X
(n)
(j+1)/(n+1).(8)

For all n ∈ N∪{∞}, we let (s(n)
i )i∈N be the sequence of the times where X(n) has

a positive jump, ranked in such a way that the sequence of the jumps (�X
(n)

s
(n)
i

)i∈N is

nonincreasing. We define the (s̃
(n)
i )i∈N in a similar way for the X̃(n), n ∈ N∪ {∞}.

Fix i ∈ N. Then (8) can be translated into

s̃
(n)
i = 1 − s

(n)
i + 1

n + 1

(
1 + H

[n]
(n+1)s

(n)
i −1

− D
[n]
(n+1)s

(n)
i −1

)
.(9)

Using the Skorokhod representation theorem, we now work under the hypothesis(
H

(n)
t ,X

(n)
t

)
0≤t≤1 −→

n→∞ (Ht ,Xt)0≤t≤1 a.s.

Then the following convergences hold a.s., for all i ≥ 1:

s
(n)
i −→

n→∞ si,

�X
(n)

s
(n)
i

−→
n→∞ �Xsi ,

1

n + 1
H

[n]
(n+1)s

(n)
i −1

−→
n→∞ 0,

1

n + 1
D

[n]
(n+1)s

(n)
i −1

−→
n→∞ l(si).
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The first two convergences hold because the �Xsi are distinct, and the last one
uses the fact that a.s.

inf
0≤u≤ε

Xsi+l(si )+u < X(si)
− ∀ε > 0.

As a consequence, s̃
(n)
i converges a.s. to 1 − si − l(si). Thus, s̃i = 1 − si − l(si)

a.s., and �X̃s̃i = �Xsi a.s. (Since the discontinuity points are countable, this holds
jointly for all i.)

The Lévy–Itô representation theorem shows that X̃ can be written as a mea-
surable function of (s̃i ,�X̃s̃i )i∈N. This identifies uniquely the law of (X, X̃),
hence (7). �

2.2.3. Joint convergence of the subtree sizes. Recall from Section 1.2 that
(ξ(i), i ∈ N) is a sequence of i.i.d. variables in T , with distribution the mass-
measure μ, and ξ(0) = 0. For all n ∈ N, we introduce independent sequences
(ξn(i), i ∈ N) of i.i.d. uniform integers in {1, . . . , n}, and set ξn(0) = 0. Recall-
ing the notation of Section 2.1, we let τn(i, j) = tn(ξn(i), ξn(j)) be the first time
when the components Tn,ξn(i)(t) and Tn,ξn(j)(t) become disjoint. Similarly, τ(i, j)

will denote the first time when the components containing ξ(i) and ξ(j) become
disjoint in the fragmentation of T . Our goal is to prove the following result.

PROPOSITION 2.5. As n → ∞, we have the following weak convergences

an

n
Tn

(d)−→ T ,

(
τn(i, j)

)
i,j∈N

(d)−→ (
τ(i, j)

)
i,j∈N,(

μn,ξn(i)(t)
)
i∈N,t≥0

(d)−→ (
μξ(i)(t)

)
i∈N,t≥0,

where the three hold jointly.

For the proof of this proposition, it will be convenient to identify the ξn(i) with
vertices of Tn instead of edges. As noted in [12], proof of Lemma 2, this makes no
difference for the result we seek.

We let

t
(n)
i = ξn(i) + 1

n + 1
,

so that pn(t
(n)
i ) = vξn(i)(Tn). Furthermore, we may and will take ξ(i) = p(ti), with

a sequence (ti, i ∈ N) of independent uniform variables in [0,1]. The sequence
(t

(n)
i , i ∈ N) converges in distribution to (ti , i ∈ N). Since these sequences are in-

dependent of the trees Tn and T , the Skorokhod representation theorem allows us
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to assume ⎧⎪⎨⎪⎩
(
X(n), X̃(n)) −→

n→∞ (X, X̃) a.s.,(
t
(n)
i , i ∈ N

) −→
n→∞ (ti, i ∈ N) a.s.

(10)

We will sometimes write X
(∞)
t and t

(∞)
i for Xt and ti , when it makes notation

easier.
For any two vertices u, v of a discrete tree T , we introduce the notation

[[u, v]]V = [[u, v]] ∩ V (T ) and ]]u, v[[V = [[u, v]]V \ {u, v},
where [[u, v]] is the segment between u and v in T (seen as an R-tree).

DEFINITION 2.6. Fix T ∈ T. The shape of T is the discrete tree S(T ) such
that

V
(
S(T )

) = {
v ∈ V (T ) : degv �= 1

}
,

E
(
S(T )

) = {{u, v} ∈ V
(
S(T )

)2 :∀w ∈]]u, v[[V ,degw = 1
}
.

Note that this definition can easily be extended to the case of an R-tree
(T , d) having a finite number of leaves, by using the “convention” V (T ) = {v ∈
T : degv �= 1} in the previous definition.

For all n, k ∈N, we let Rn(k) denote the shape of the subtree of Tn spanned by
the vertices ξn(1), . . . , ξn(k) and the root. Similarly, R∞(k) will denote the shape
of the subtree of T spanned by ξ(1), . . . , ξ(k) and the root. For all n ∈ N∪{∞}, we
let Vn(k) be the set of the vertices of Rn(k), and we identify the edges of Rn(k)

with the corresponding segments in Tn. In particular, for any edge e = {u, v} of
Rn(k), we write w ∈ e if w ∈]]u, v[[V . We let Ln(v) denote the rate at which a
vertex v is deleted in Tn. Recall from Section 2.1 that Ln(v) = deg(v,Tn)/an.

LEMMA 2.7. Fix k ∈ N. Under (10), Rn(k) is a.s. constant for all n large
enough (say n ≥ N ). Identifying Vn(k) with V∞(k) for all n ≥ N , we have(

Ln(v), v ∈ Vn(k)
) −→
n→∞

(
L(v), v ∈ V∞(k)

)
a.s.

The above convergence can be written more rigorously by numbering the ver-
tices of Rn(k) and R∞(k), and indexing on i ∈ {1, . . . , |V∞(k)|}, but we keep this
form to make the notation easier.

PROOF OF LEMMA 2.7. For all n ∈N∪ {∞}, s < t ∈ [0,1], we let

I
(n)
s,t = inf

s<u<t
X(n)

u ,
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and for all i, j ∈ N,

t
(n)
ij = sup

{
s ∈ [

0, t
(n)
i ∧ t

(n)
j

]
: I (n)

s,t
(n)
i

= I
(n)

s,t
(n)
j

}
.

Note that pn(t
(n)
ij ) is the most recent common ancestor of the vertices ξn(i) and

ξn(j) in Tn. If, for example, t
(n)
i < t

(n)
j , we can rewrite t

(n)
ij as

sup
{
s ∈ [

0, t
(n)
i

]
:X(n)

s− ≤ I
(n)

t
(n)
i ,t

(n)
j

}
.

Besides, for n = ∞, we can replace the inequality in the broad sense by a strict
inequality:

tij = sup
{
s ∈ [0, ti] :Xs− < Iti,tj

}
.

With this notation, it is elementary to show that the following properties hold a.s.
for all i, j, i ′, j ′ ≥ 0:

(i) X is continuous at ti , and X
(n)

t
(n)
i

converges to Xti as n → ∞.

(ii) t
(n)
ij converges to tij as n → ∞.

(iii) X
(n)

t
(n)
ij

converges to Xtij and X
(n)

(t
(n)
ij )−

converges to X(tij )− as n → ∞.

(iv) If tij = ti′j ′ , then t
(n)
ij = t

(n)
i′j ′ for all n large enough.

We now fix k ∈ N. We introduce the set

Bn(k) = {
t
(n)
i : i ∈ {1, . . . , k}}∪ {

t
(n)
ij : i, j ∈ {1, . . . , k}}∪ {0}

of the times coding the vertices of Rn(k). We let Nn(k) be the number of ele-
ments of Bn(k), and b

(n,k)
i be the ith element of Bn(k). Properties (i)–(iv) can be

translated into the a.s. properties:

(i)′ For n large enough, Nn(k) is constant.
(ii)′ For all i ∈ {1, . . . ,N∞(k)},

b
(n,k)
i −→

n→∞ b
(∞,k)
i ,

X
(n)

b
(n,k)
i

−→
n→∞ X

b
(∞,k)
i

,

X
(n)

(b
(n,k)
i )−

−→
n→∞ X

(b
(∞,k)
i )− .

Moreover, Rn(k) and the Ln(v), v ∈ Vn(k), can be recovered in a simple way
using Bn(k) and the X

(n)
b , b ∈ Bn(k):

• Construct a graph with vertices labeled by Bn(k), the root having label 0.
• For every b ∈ Bn(k) \ {0}, let b′ denote the largest b′′ < b such that b′′ ∈ Bn(k)

and X
(n)
b′′ ≤ X

(n)
b , then draw an edge between the vertices labelled b and b′.
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• For each vertex v labeled by b ∈ Bn(k), let Ln(v) = �X
(n)
b + 1/an.

This entails the lemma. �

This first lemma allows us to control the rate at which fragmentations happen
at the vertices of Rn(k). We now need another quantity for the fragmentations
happening “on the branches” of Rn(k), that is, at vertices v ∈ V (Tn) \ Vn(k). For
every n ∈ N∪ {∞}, we let

σn(t) = ∑
0<s<t

X
(n)
s−<I

(n)
s,t

�X(n)
s ∀t ∈ [0,1].

If n ∈ N, the quantity anσn(t) is the sum of the quantities degv − 1 over all strict
ancestors v �= ρn of pn(t) in Tn. Similarly, σ(t) is the (infinite) sum of the L(v)

for all branching points v of T that are on the path [[p(t), ρ]].

LEMMA 2.8. With the preceding notation, in the setting of (10), for all i ∈
1, . . . ,N(k), we have the convergence

σn

(
b

(n,k)
i

) −→
n→∞σ∞

(
b

(∞,k)
i

)
a.s.

PROOF. We fix i ∈ N, and let bn = b
(n,k)
i to simplify the notation. For all

n ∈N∪ {∞}, we write σn(t) = σ−
n (t) + σ+

n (t), where

σ+
n (t) = ∑

0<s<t

X
(n)
s−<I

(n)
s,t

(
X(n)

s − I
(n)
s,t

)
,

σ−
n (t) = ∑

0<s<t

X
(n)
s−<I

(n)
s,t

(
I

(n)
s,t − X

(n)

s−
)
.

For any s, t such that 0 < s < t and X
(n)
s− < I

(n)
s,t , the term an(X

(n)
s − I

(n)
s,t ) cor-

responds to the number of children of pn(s) that are visited before pn(t) in the
depth-first search, and an(I

(n)
s,t − X

(n)

s− ) is the number of children of pn(s) that are
visited after pn(t). Writing the same decomposition σ̃n(t) = σ̃−

n (t)+ σ̃+
n (t) for the

trees T̃n, and recalling (9), we thus get

σ+
n (bn) = σ̃−

n (b̃n),

where

b̃n = 1 − bn + 1

n + 1

(
1 + H

[n]
(n+1)bn−1 − D

[n]
(n+1)bn−1

)
.
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Now we note that for all t ≥ 0, we have σ−
n (t) = X

(n)

t− and σ−∞(t) = Xt− . As a
consequence, using (10), we get

σ−
n (bn) −→

n→∞Xb− a.s.

The same relation for σ̃−
n and X̃(n), and the fact that b̃n converges a.s. to b̃ :=

1 − b − l(b), show that

σ+
n (bn) = σ̃−

n (b̃n) −→
n→∞ X̃

b̃− a.s.

Thus, σn(bn) converges a.s. to σ−∞(b) + σ̃−∞(b̃). To show that this quantity is equal
to σ∞(b), we introduce the “truncated” sums σn,ε(t), σ+

n,ε(t), σ−
n,ε(t), obtained by

taking into account only the s ∈ (0, t) such that X
(n)
s− < I

(n)
s,t and �X

(n)
s > ε. For all

n ∈ N∪ {∞}, these quantities are finite sums. Therefore, the a.s. convergence (10)
implies that for all ε > 0,

σ+∞,ε(b) = lim
n→∞σ+

n,ε(bn) = lim
n→∞ σ̃−

n,ε(b̃n) = σ̃−∞,ε(b̃).

Thus, σ∞,ε(b) = σ−∞,ε(b) + σ̃−∞,ε(b̃). By letting ε → 0, we get σ∞(b) = σ−∞(b) +
σ̃−∞(b̃). �

We now come back to the proof of Proposition 2.5.

PROOF OF PROPOSITION 2.5. For all n ∈ N ∪ {∞}, we add edge-lengths to
the discrete tree Rn(k) by letting

�n

({u, v}) = dn(u, v) if n ∈N,

�∞
({u, v}) = d(u, v),

for every edge {u, v}. Let R′
n(t) denote the resulting tree with edge-lengths. We

now write Rn(k, t) for the tree R′
n(t) endowed with point processes of marks on

its edges and vertices, defined as follows:

• The marks on the vertices of Rn(k) appear at the same time as the marks on the
corresponding vertices of Tn.

• Each edge receives a mark at its midpoint at the first time when a vertex v of Tn

such that v ∈ e is marked in Tn.

For each n, these two point processes are independent, and their rates are the fol-
lowing:

• Each vertex v ∈ Vn(k) is marked at rate Ln(v), independently of the other ver-
tices.
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• For each edge e of Rn(k), letting b, b′ denote the points of Bn(k) corresponding
to e−, e+ (as explained in the proof of Lemma 2.7), the edge e is marked at rate
�Ln(e), independently of the other edges, with

�Ln(e) = ∑
v∈V (Tn)∩e

Ln(v)

= σn

(
b′)− σn(b) + n

a2
n

(
H

(n)

(b′)− − H
(n)

b−
)− Ln

(
e−)

if n ∈ N, and

�L∞(e) = �L(e) = ∑
v∈V (T )∩e

L(v) = σ∞
(
b′)− σ∞(b) − L

(
e−)

.

Now Lemmas 2.7 and 2.8 show that Ln(v) and �Ln(e) converge to L(v) and
�L(e) (resp.) as n → ∞. Therefore, we have the convergence(

an

n
Rn(k, t), t ≥ 0

)
(d)−→

n→∞
(
R∞(k, t), t ≥ 0

)
,(11)

where (an/n) · Rn(k, t) and R∞(k, t) can be seen as random variables in T ×
(R+ ∪ {−1})N × {−1,0,1}N2

, for example,

(an/n) ·Rn(k, t) = (
Rn(k), (li)i≥1,

(
δV (i, t)

)
i≥0,

(
δE(i, t)

)
i≥1

)
,

where

li =
{

(an/n) · �(ei

(
Rn(k)

))
, if i < Nn(k),

−1, if i ≥ Nn(k),

δV (i, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if i < Nn(k) and the vertex vi

(
Rn(k)

)
has been marked before time t ,

0, if i < Nn(k) and the vertex vi

(
Rn(k)

)
has not been marked before time t ,

−1, if i ≥ Nn(k),

δE(i, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if i < Nn(k) and the edge ei

(
Rn(k)

)
has been marked before time t ,

0, if i < Nn(k) and the edge ei

(
Rn(k)

)
has not been marked before time t ,

−1, if i ≥ Nn(k)

[recall that Nn(k) is the number of vertices of Rn(k)]. Note that we could keep
working under (10) to get an a.s. convergence, but this is no longer necessary.

The rest of the proof goes as in [12]. For every i ∈ N, we let ηn(k, i, t) denote
the number of vertices among ξn(1), . . . , ξn(k) in the component of Rn(k) contain-
ing ξn(i) at time t . Similarly, denote by η∞(k, i, t) the number of vertices among
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ξ(1), . . . , ξ(k) in the component of R∞(k) containing ξ(i) at time t . It follows
from (11) that we have the joint convergences

an

n
Tn

(d)−→ T ,

(
ηn(k, i, t)

)
t≥0,i∈N

(d)−→ (
η∞(k, i, t)

)
t≥0,i∈N,(

τn(i, j)
)
i,j∈N

(d)−→ (
τ(i, j)

)
i,j∈N.

Besides, the law of large numbers gives that for each i ∈ N and t ≥ 0,

1

k
η∞(k, i, t) −→

n→∞μξ(i)(t) a.s.

Thus, for every fixed integer l and times 0 ≤ t1 ≤ · · · ≤ tl , we can construct a
sequence kn → ∞ sufficiently slowly, such that(

1

kn

ηn(kn, i, tj )

)
i,j∈{1,...,l}

(d)−→ (
μξ(i)(tj )

)
i,j∈{1,...,l},

or equivalently (see [6], Lemma 11)(
μn,ξn(i)(tj )

)
i,j∈{1,...,l}

(d)−→ (
μξ(i)(tj )

)
i,j∈{1,...,l},

both holding jointly with the preceding convergences. This entails the proposition.
�

2.3. Upper bound for the expected component mass. To get the convergence
of (Tn,Cutv(Tn)), we will finally need to control the quantities

E

[∫ ∞
2l

μn,ξn(t) dt

]
,

where ξn is a uniform random integer in {1, . . . , n}. Our main goal is to show
that these quantities converge to 0 as l tends to ∞, uniformly in n, as stated in
Corollary 2.15.

To this end, we will sometimes work under the size-biased measure GW∗, de-
fined as follows. We recall that a pointed tree is a pair (T , v), where T is a rooted
planar tree and v is a vertex of T . The measure GW∗ is the sigma-finite measure
such that, for every pointed tree (T , v),

GW∗(T , v) = P(T = T ),

where T is a Galton–Watson tree with offspring distribution ν. We let E∗ denote
the expectation under this “law.” In particular, the conditional law GW∗ given
|V (T )| = n+1 is well-defined, and corresponds to the distribution of a pair (Tn, v)

where given Tn, v is a uniform random vertex of Tn. Hereafter, T will denote a
ν-Galton–Watson tree, whose expectation will either be taken under the unbiased
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law or under a conditioned version of the law GW∗. Recall that we only consider
values of n such that Pn = P(|V (T )| = n + 1) �= 0.

For all m,n ∈N such that m ≤ n and Pm �= 0, for all t ∈ R+, we define

Em,n(t) = 1

m
E

[ ∑
e∈E(Tm)

exp
(
− ∑

u∈[[ρm,e−]]V
deg(u,Tm)

t

an

)]
,(12)

and En(t) = En,n(t). Equivalently, we can write

Em,n(t) = 1

m
E

∗
[ ∑
e∈E(T )

exp
(
− ∑

u∈[[ρ(T ),e−]]V
deg(u,T )

t

an

)∣∣∣∣∣V (T )
∣∣ = m + 1

]
.

For all m < n, we also use the notation

P ∗
m,n := P

∗(∣∣V (Tv)
∣∣ = m + 1|∣∣V (T )

∣∣ = n + 1
)
,

where Tv denotes the tree formed by v and its descendants. Our first step is to show
the following.

LEMMA 2.9. Let ξn be a uniform random edge of Tn. Using the previous
notation, we have

E
[
μn,ξn(t)

] ≤ 1

n
e−t/an + 2

(
En(t) +

n−1∑
m=1
Pm �=0

P ∗
m,n

m

n
Em,n(t)

)
.(13)

The proof of this lemma will use Proposition 2.10 below. Let us first introduce
some notation. For all v ∈ V (T ), we let T v be the subtree obtained by deleting all
the strict descendants of v in T , and as before, Tv be the tree formed by v and its
descendants. We define a new tree T̂ v̂ , constructed by taking T v and modifying it
as follows:

• we remove the edge e(v) between v and p(v);
• we add a new child v̂ to the root, and let êv̂ denote the edge between v̂ and the

root;
• we reroot the tree at p(v).

An example of this construction is given in Figure 3. Note that we have natural bi-
jective correspondences between V (T ), (V (T v)\{v})�V (Tv) and (V (T̂ v̂)\{v̂})�
V (Tv), and between E(T ), E(T v) � E(Tv) and E(T̂ v̂) � E(Tv). Furthermore, one
can easily check that for all u ∈ V (T̂ v̂)\ {v̂}, we have deg(u, T̂ v̂) = deg(u,T ), and
for all u ∈ V (Tv), deg(u,Tv) = deg(u,T ).

This transformation is the same as in [12], page 21, except that we work with
rooted trees instead of planted trees. In our case, adding the edge êv̂ and deleting
e(v) mimics the existence of a base edge. Thus, we can use Proposition 2 of [12].
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FIG. 3. The trees Tv , T v and T̂ v̂ obtained from a pointed tree (T , v).

PROPOSITION 2.10. Under GW∗, (T̂ v̂, Tv) and (T v, Tv) have the same
“law,” and the trees T v and Tv are independent, with Tv being a Galton–Watson
tree.

PROOF OF LEMMA 2.9. In this proof, we identify ξn with the edge eξn , to
make notation easier. We first note that for each edge e ∈ E(Tn), e belongs to
the component Tn,ξn(t) if and only if no vertex on the path [[e−, ξ−

n ]]V has been
removed at time t . Given Tn and ξn, this happens with probability

exp
(
− ∑

u∈[[e−,ξ−
n ]]V

degu · t

an

)

[for any vertex u, at time t , u has been deleted from the initial tree with probability
1 − exp(−degu · t/an)]. Thus,

E[nμn,ξn] = E

[ ∑
e∈E(Tn)

1e∈Tn,ξn (t)

]

= E

[ ∑
e∈E(Tn)

exp
(
− ∑

u∈[[e−,ξ−
n ]]V

degu · t

an

)]
.

Since the edge ξn is chosen uniformly in E(Tn), this yields

E[nμn,ξn] = 1

n
E

[ ∑
e,ξ∈E(Tn)

exp
(
− ∑

u∈[[e−,ξ−]]V
degu

t

an

)]

= 1

n
E

[ ∑
v∈V (Tn)

1v �=ρ(Tn)

∑
e∈E(Tn)

exp
(
− ∑

u∈[[e−,p(v)]]V
degu

t

an

)]
,
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where p(v) denotes the parent of vertex v. Hence, calling An(T ) the event
{|V (T )| = n + 1},

E[nμn,ξn] = n + 1

n
E

∗
[
1v �=ρ(T )

∑
e∈E(T )

exp
(
− ∑

u∈[[e−,p(v)]]V
degu

t

an

)∣∣∣An(T )

]
.

Distinguishing the cases for which e ∈ E(Tv), e ∈ E(T v) \ {e(v)} and e = e(v),
we split this quantity into three terms:

E[nμn,ξn] =
(

1 + 1

n

)(
�v + �v + εv

)
,(14)

where

�v = E
∗
[
1v �=ρ(T )

∑
e∈E(Tv)

exp
(
− ∑

u∈[[e−,v]]V

(
deg(u,Tv) + degp(v)

) t

an

)∣∣∣An(T )

]
,

�v = E
∗
[
1v �=ρ(T )

∑
e∈E(T v)\{e(v)}

exp
(
− ∑

u∈[[e−,p(v)]]V
deg

(
u,T v) t

an

)∣∣∣An(T )

]
and

εv = E
∗
[
1v �=ρ(T ) exp

(
−degp(v)

t

an

)∣∣∣An(T )

]
.

For the first term, we have

�v ≤ E
∗
[
1v �=ρ(T )

∑
e∈E(Tv)

exp
(
− ∑

u∈[[ρ(Tv),e−]]V
deg(u,Tv)

t

an

)∣∣∣An(T )

]
.

Since |V (T )| = |V (Tv)| + |V (T v)| − 1, this gives

�v ≤
n−1∑
m=1
Pm �=0

P ∗
m,nE

∗
⎡⎣ ∑

e∈E(Tv)

exp
(
− ∑

u∈[[ρ(Tv),e−]]V
deg(u,Tv)

t

an

)∣∣∣∣
∣∣V (Tv)

∣∣ = m + 1,∣∣V (
T v

)∣∣ = n − m + 1

]
[m = n would correspond to the case where v = ρ(T ), and m = 0 to the case where
E(Tv) = ∅]. Proposition 2.10 gives that the trees Tv and T v are independent, with
Tv being a Galton–Watson tree. Hence,

�v ≤
n−1∑
m=1
Pm �=0

P ∗
m,nE

∗
[ ∑
e∈E(T )

exp
(
− ∑

u∈[[ρ(T ),e−]]V
deg(u,T )

t

an

)∣∣∣Am(T )

]
(15)

≤
n−1∑
m=1
Pm �=0

P ∗
m,nmEm,n(t).
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For the second term, we use the correspondence between E(T v) \ {e(v)} and
E(T̂ v̂) \ {êv̂}, and the fact that ρ(T̂ v̂) = p(v):

�v = E
∗
[
1v �=ρ(T )

∑
e∈E(T̂ v̂)\{êv̂}

exp
(
− ∑

u∈[[ρ(T̂ v̂),e−]]V
deg

(
u, T̂ v̂) t

an

)∣∣∣An(T )

]
.

This gives

�v ≤ E
∗
[ ∑
e∈E(T̂ v̂)

exp
(
− ∑

u∈[[ρ(T̂ v̂),e−]]V
deg

(
u, T̂ v̂) t

an

)∣∣∣An(T )

]
.

Using the fact that T v and T̂ v̂ have the same law under GW∗, we get

�v ≤ E
∗
[ ∑
e∈E(T v)

exp
(
− ∑

u∈[[ρ(T v),e−]]V
deg

(
u,T v) t

an

)∣∣∣An(T )

]
.

Seeing E(T v) as a subset of E(T ), we can write

�v ≤ E
∗
[ ∑
e∈E(T )

exp
(
− ∑

u∈[[ρ(T ),e−]]V
deg(u,T )

t

an

)∣∣∣An(T )

]
= nEn(t).(16)

For the third term, we simply notice that

εv ≤ n

n + 1
e−t/an .(17)

Putting together (15), (16) and (17) into (14), we finally get

E
[
nμn,ξn(t)

] ≤ e−t/an +
(

1 + 1

n

)(
nEn(t) +

n−1∑
m=1
Pm �=0

P ∗
m,nmEm,n(t)

)
.

Thus,

E
[
μn,ξn(t)

] ≤ 1

n
e−t/an +

(
1 + 1

n

)(
En(t) +

n−1∑
m=1
Pm �=0

P ∗
m,n

m

n
Em,n(t)

)
.

�

Next, we compute Em,n(t). To this end, we introduce two new independent
sequences of i.i.d. variables:

• (Ẑi)i≥1 with law ν̂, where ν̂ is the size-biased version of ν;
• (Ni)i≥1, with same law as the number of vertices of a Galton–Watson tree with

offspring distribution ν.

For all k,h ∈ N, we also write

Ŝh =
h∑

i=1

Ẑi and Yk =
k∑

i=1

Ni.
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LEMMA 2.11. For every m,n ∈ N such that m ≤ n and Pm �= 0, one has

Em,n(t) = 1

mPm

∑
1≤h≤k≤m

e−kt/anP(Ŝh = k)P(Yk−h+1 = m − h + 1).(18)

PROOF. We first note that relation (12) can be written otherwise, using the
one-to-one correspondence e �→ e+ between E(T ) and V (T ) \ {ρ(T )}:

Em,n(t) = 1

m
E

[ ∑
v∈V (T )\ρ(T )

exp
(
− ∑

u∈[[ρ(T ),p(v)]]V
deg(u,T )

t

an

)∣∣∣∣∣E(T )
∣∣ = m

]
.

We thus have

Em,n(t) = 1

mPm

E

[ ∑
v∈V (T )\ρ(T )

exp
(
− ∑

u∈[[ρ(T ),p(v)]]V
deg(u,T )

t

an

)
,
∣∣E(T )

∣∣ = m

]

= 1

mPm

E
∗
[
1v �=ρ(T ) exp

(
− ∑

u∈[[ρ(T ),p(v)]]V
deg(u,T )

t

an

)
,
∣∣E(T )

∣∣ = m

]
.

We now use the following description of a typical pointed tree (T , v) under GW∗
(see the proof of Proposition 2 of [12] and [22]):

• The “law” under GW∗ of the distance h(v) of the pointed vertex v to the root is
the counting measure on N∪ {0}.

• Conditionally on h(v) = h, the subtrees Tv and T v are independent, with Tv

being a Galton–Watson tree with offspring distribution ν, and T v having GW∗
h

law, which can be described as follows. T v has a distinguished branch B =
{u1 = ρ(T v), u2, . . . , uh+1 = v} of length h. Every vertex of T v has an offspring
that is distributed independently of the other vertices, with offspring distribution
ν for the vertices in V (T v)\B , ν̂ for the vertices u1, . . . , uh, and uh+1 having no
descendants. The tree T v can thus be constructed inductively from the root u1,
by choosing the ith vertex ui of the distinguished branch uniformly at random
from the children of ui−1.

In this representation, conditionally on having h(v) = h, [[ρ(T ),p(v)]]V equals
{u1, . . . , uh} and, for every i ∈ {1, . . . , h},

deg(ui, T ) = Ẑi .

Besides, the total number of vertices of T is the sum of the number of vertices h of
B \ {v}, of |V (Tv)|, and of the |V (Tu)| for u such that p(u) ∈ B \ {v} and u /∈ B .
There are

∑h
i=1(Ẑi − 1) such trees Tu. Hence, under GW∗:∣∣E(T )

∣∣ = ∣∣V (T )
∣∣− 1

(d)= Y∑h
i=1(Ẑi−1)+1 + h − 1.



2242 D. DIEULEVEUT

Thus,

Em,n(t) = 1

mPm

∑
1≤h

E

[
exp

(
−

h∑
i=1

Ẑi

t

an

)
, Y∑h

i=1 Ẑi−h+1 = m − h + 1

]

= 1

mPm

∑
1≤h≤k≤m

e−kt/anP(Ŝh = k)P(Yk−h+1 = m − h + 1).
�

We now compute upper bounds for the terms P(Yk−h+1 = m−h+1), P(Ŝh = k)

and (mPm)−1.

Upper bound for P(Yk−h+1 = m − h + 1). Recalling the notation of Sec-
tion 2.2.2, we have

P(Yk = n) = P(Wn = −k and, ∀p < n,Wp > −k)

= k

n
P(Wn = −k).

The second equality is given by the cyclic lemma (see [27], Lemma 6.1). We will
now use the fact, given by Theorem 2.2, that

lim
n→∞ sup

k∈N

∣∣∣∣anP(Wn = −k) − p
(α)
1

(
− k

an

)∣∣∣∣ = 0.(19)

For all s, x ∈ (0,∞), we have

xp(α)
s (−x) = sq(1/α)

x (s)

(see, e.g., [7], Corollary VII.1.3). Taking s = 1 and x = k/an, this gives

k

an

p
(α)
1

(
− k

an

)
= q

(1/α)
k/an

(1).

Thus,

nP(Yn = k) − q
(1/α)
k/an

(1) = k

an

(
anP(Wn = −k) − p

(α)
1

(
− k

an

))
,

and we get

P(Yk = n) ≤ 1

n

(∣∣nP(Yn = k) − q
(1/α)
k/an

(1)
∣∣+ q

(1/α)
k/an

(1)
)

≤ k

nan

(∣∣∣∣anP(Wn = −k) − p
(α)
1

(
− k

an

)∣∣∣∣+ p
(α)
1

(
− k

an

))
.

Since p
(α)
1 is bounded and (19) holds, there exists a constant M ∈ (0,∞) such that,

for all k,n ∈ N,

P(Yk = n) ≤ k

nan

M.
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Thus, we have the following upper bound:

P(Yk−h+1 = m − h + 1) ≤ k − h + 1

(m − h + 1)am−h+1
M.(20)

Upper bound for P(Ŝh = k). We use Theorem 2.2 for the i.i.d. variables
(Ẑi)i∈N. Let Â ∈ Rα−1 be an increasing function given by (i), such that

P(Ẑ1 > r) ∼ 1

Â(r)
,

and â be the inverse function of Â. Then

lim
h→∞ sup

k∈N

∣∣∣∣âhP(Ŝh = k) − q
(α−1)
1

(
k

âh

)∣∣∣∣ = 0.

Using the fact that q
(α−1)
1 is bounded, and writing

P(Ŝh = k) ≤ 1

âh

(∣∣∣∣âhP(Ŝh = k) − q
(α−1)
1

(
k

âh

)∣∣∣∣+ q
(α−1)
1

(
k

âh

))
,

we get the existence of a constant M ′ ∈ (0,∞) such that, for all h, k ∈ N,

P(Ŝh = k) ≤ M ′

âh

.(21)

Furthermore, when h is small enough, we have a better bound for P(Ŝh = k):

LEMMA 2.12. Using the previous notation, if hypothesis (1) holds, then there
exist constants B,C such that for all k ∈N, for all h such that k/âh ≥ B ,

P(Ŝh = k) ≤ C
h

kÂ(k)
.

This result is an adaptation of a theorem by Doney [14]. The main ideas of the
proof, which is rather technical, will be given in the Appendix.

Besides, using the fact that A is regularly varying and an Abel transformation
of P(Ẑ > r), we get that

1

Â(r)
∼ αr

A(r)
as r → ∞.(22)

Upper bound for (mPm)−1. We have

Pm = P
(∣∣E(T )

∣∣ = m
) ∼ p

(α)
1 (0)

mam
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(this is a straightforward consequence of the cyclic lemma and the local limit the-
orem). This gives the existence of a constant K ∈ (0,∞) which verifies, for all m

such that Pm �= 0,

1

mPm

≤ Kam.(23)

Before coming back to the proof of Corollary 2.15, we give another useful result
on regularly varying functions.

LEMMA 2.13. Fix β ∈ (0,∞). Let f be a positive increasing function in Rβ

on R+, and x0 a positive constant. For every δ ∈ (0, β), there exists a constant
Cδ ∈ (0,∞) such that, for all x′ ≥ x ≥ x0,

C−1
δ

(
x′

x

)β−δ

≤ f (x′)
f (x)

≤ Cδ

(
x′

x

)β+δ

.

This result is a consequence of the Potter bounds (see, e.g., Theorem 1.5.6 of
Bingham et al. [13]). In particular, it implies that for all x bounded away from 0,
for all z ≥ 1,

C−1
δ zβ−δ ≤ f (xz)

f (x)
≤ Cδz

β+δ,(24)

and likewise, for all x ∈ (0,∞), z ≤ 1 such that xz is bounded away from 0,

C−1
δ zβ+δ ≤ f (xz)

f (x)
= f (xz)

f (xzz−1)
≤ Cδz

β−δ.(25)

We can finally state the following.

LEMMA 2.14. We have

lim
l→∞ sup

n∈N

∫ ∞
2l

En(t) dt = 0(26)

and

lim
l→∞ sup

n∈N
sup

1≤m≤n

Pm �=0

∫ ∞
2l

m

n
Em,n(t) dt = 0.

PROOF. For every n, l ∈ N, we let

In,l =
∫ ∞

2l
En(t) dt.

Putting together (18) and (23), we have

En(t) ≤ Kan

n∑
k=1

k∑
h=1

e−kt/anP(Ŝh = k)P(Yk−h+1 = n − h + 1).
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This yields

In,l ≤ Ka2
n

n∑
k=1

k∑
h=1

1

k
e−2lk/anP(Ŝh = k)P(Yk−h+1 = n − h + 1).

Writing h(n, k) = Â(k/B) ∧ �n/2� and h′(n, k) = k ∧ �n/2�, we split this sum
into three parts:

I 1
n,l = a2

n

n∑
k=1

h(n,k)∑
h=1

1

k
e−2lk/anP(Ŝh = k)P(Yk−h+1 = n − h + 1),

I 2
n,l = a2

n

n∑
k=1

h′(n,k)∑
h=h(n,k)+1

1

k
e−2lk/anP(Ŝh = k)P(Yk−h+1 = n − h + 1),

I 3
n,l = a2

n

n∑
k=1

k∑
h=h′(n,k)+1

1

k
e−2lk/anP(Ŝh = k)P(Yk−h+1 = n − h + 1).

Our first goal is to show that, for i = 1,2,3,

lim
l→∞ sup

n∈N
I i
n,l = 0.

Let us first examine I 1
n,l . Since a is increasing, the upper bound (20) gives, for

n − h + 1 ≥ n/2,

P(Yk−h+1 = n − h + 1) ≤ M
k − h + 1

(n − k + 1)an−k+1
(27)

≤ 2M
k

nan/2
.

Thus, we have

I 1
n,l ≤ 2M

a2
n

nan/2

n∑
k=1

e−2lk/an

h(n,k)∑
h=1

P(Ŝh = k).

Turning the first sum into an integral, and using the substitution y′ = y/an, we get

I 1
n,l ≤ 2M

a2
n

nan/2

∫ ∞
1

dy e−2l�y�/an

(h(n,�y�)∑
h=1

P
(
Ŝh = �y�))

= 2M
a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

(h(n,�any�)∑
h=1

P
(
Ŝh = �any�)).

Since â is increasing, for all h ≤ h(n, k), we have âh ≤ k/B . Therefore,
Lemma 2.12 gives

P(Ŝh = k) ≤ C
h

kÂ(k)
.
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This yields

I 1
n,l ≤ 2CM

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

(h(n,�any�)∑
h=1

h

anyÂ(any)

)

≤ 2CM
a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

(
Â(�any�/B)2

�any�Â(�any�)
)
.

We fix δ ∈ (0, (α − 1) ∧ (2 − α)). Since Â is regularly varying with index α − 1,
for all y ≥ 1/an, we have

Â(�any�/B)

Â(�any�) ≤ C−1
δ

Bα−1−δ

[we can use (24) because �any�/B ≥ 1/B for all y ∈ (1/an,∞), n ∈N]. As a con-
sequence, there exists a positive constant K1 such that

I 1
n,l ≤ K1

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

(
Â(�any�)

�any�
)

= K1Jn,l .

Therefore, it suffices to show that

lim
l→∞ sup

n∈N
Jn,l = 0.(28)

To this end, we use the upper bounds (24) and (25), with x = an and y = �any�/an

(x and xy being, resp., greater than a0 and 1):

Â(�any�)
Â(an)

≤ Cδ

((�any�
an

)α−1+δ

∨
(�any�

an

)α−1−δ)
.

Thus,

Jn,l ≤ a2
nÂ(an)

nan/2

∫ ∞
1/an

dy e−2l�any�/an

((
an

�any�
)2−α−δ

∨
(

an

�any�
)2−α+δ)

.

Using the fact that �any� ≥ any − 1, and the change of variable y′ = y − 1/an, we
get

Jn,l ≤ a2
nÂ(an)

nan/2

∫ ∞
0

dy e−2ly

(
1

y2−α−δ
∨ 1

y2−α+δ

)
.

Now (22) gives that Â(an)/n = Â(an)/A(an) ∼ 1/αan, so we have

a2
nÂ(an)

nan/2
∼ an

αan/2
.
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Since a is regularly varying with index 1/α, the right-hand term has a finite limit
as n goes to infinity. Therefore, a2

nÂ(an)/nan/2 is bounded uniformly in n. Hence,
there exists a constant K ∈ (0,∞) such that

sup
n∈N

Jn,l ≤ K

∫ ∞
0

dy e−2ly

(
1

y2−α−δ
∨ 1

y2−α+δ

)
.

This yields (28) by taking the limit as l goes to infinity.
For the second part, we can still use (27). As in the first step, we get

I 2
n,l ≤ 2M

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

( h′(n,�any�)∑
h=h(n,�any�)+1

P
(
Ŝh = �any�)).

Since the sum is null if Â(�any�/B) > �n/2�, we have

I 2
n,l ≤ 2M

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

( ∞∑
h=Â(�any�/B)+1

P
(
Ŝh = �any�)).

We now turn the remaining sum into an integral:

I 2
n,l ≤ 2M

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

∫ ∞
Â(�any�/B)

dx P
(
Ŝ�x+1� = �any�).

Using the change of variable x′ = Â(�any�/B)x and the upper bound (21), this
gives

I 2
n,l ≤ 2MM ′ a3

n

nan/2

∫ ∞
1/an

dy e−2l�any�/an

∫ ∞
1

dx
Â(�any�/B)

â(�Â(�any�/B)x + 1�) .

Since â is increasing, for all x, y, we have

â
(⌊

Â
(�any�/B)

x + 1
⌋) ≥ â

(
Â
(�any�/B)

x
)
.

Fix δ ∈ (0,1/(α − 1) − 1). Inequality (24) then gives, for all x ≥ 1, y ≥ 1/an,

â
(⌊

Â
(�any�/B)

x + 1
⌋) ≥ c−1

δ â
(
Â
(�any�/B))

x1/(α−1)−δ

= c−1
δ

�any�
B

x1/(α−1)−δ.

Thus, there exist constants K2,K
′
2 ∈ (0,∞) such that

I 2
n,l ≤ K2

a3
n

nan/2

∫ ∞
1/an

dy e−2l�any�/an
Â(�any�/B)

�any�
∫ ∞

1

dx

x1/(α−1)−δ
= K ′

2Jn,l,

and (28) also gives the conclusion.
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For the third part, since the terms with indices k ≤ �n/2� are null, we simply
use the bounds P(Yk−h+1 = n − h + 1) ≤ 1 and P(Ŝh = k) ≤ 1:

I 3
n,l ≤ a2

n

n∑
k=�n/2�+1

k∑
h=1

1

k
e−2l k/an

≤ a2
ne

−n2l/2an

n∑
k=�n/2�+1

1

≤ na2
ne

−n2l/2an.

This quantity tends to 0 as l goes to infinity, uniformly in n. Indeed, for any κ > 0,
the function gκ :x �→ xκe−x is bounded by a constant Gκ , hence

I 3
n,l ≤ Gκ

2κa2+κ
n

nκ−1 · 2−lκ .

For any ε > 0, there exists a constant Cε such that an ≤ Cεn
1/α+ε for all n ∈ N.

Therefore, the quantity a2+κ
n /nκ−1 is bounded as soon as κ > (2 + α)/(α − 1).

This completes the proof of (26).
For the second limit, we note that (18) yields∫ ∞

2l
Em,n(t) dt = an

am

∫ ∞
2l

Em(t) dt,

for all m ≤ n such that Pm �= 0. Thus,

sup
n∈N

sup
1≤m≤n

Pm �=0

∫ ∞
2l

m

n
Em,n(t) dt = sup

n∈N
sup

1≤m≤n

Pm �=0

man

nam

Im,l.

As a consequence, it is enough to show that man/nam is bounded over {(m,n) ∈
N

2 :m ≤ n}. Now,

sup
{
man

nam

:m,n ∈N,m ≤ n

}
≤ sup

{
maλm

λmam

:m ∈ N, λ ∈ (1,∞)

}
≤ sup

{
aλm

λam

:m ∈ N, λ ∈ (1,∞)

}
.

Fix δ ∈ (0,1−1/α). Since a is a positive increasing function in R1/α , Lemma 2.13
shows the existence of a constant such that, for all m ∈N, λ ∈ (1,∞),

aλm

am

≤ Cδλ
1/α+δ.

Hence, for all λ ∈ (1,∞),

sup
m∈N

aλm

λam

≤ Cδλ
1/α+δ−1 ≤ Cδ. �
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Key estimates for the proof of Theorem 1.3. We conclude this section by giving
two consequences of Lemma 2.14 which will be used in the proof of Theorem 1.3.

COROLLARY 2.15. It holds that

lim
l→∞ sup

n∈N
E

[∫ ∞
2l

μn,ξn(t) dt

]
= 0.

PROOF. Using (13), we get

sup
n∈N

E

[∫ ∞
2l

μn,ξn(t) dt

]
≤ sup

n∈N
an

n
e−2l/an + 2 sup

n∈N

∫ ∞
2l

En(t) dt

+ 2 sup
n∈N

sup
1≤m≤n

∫ ∞
2l

m

n
Em,n(t) dt.

Lemma 2.14 shows that the last two terms tend to 0 as l goes to infinity. For the
first term, we use again the fact that for any κ > 0, the function gκ :x �→ xκe−x is
bounded by a constant Gκ . Hence, for all n ∈ N,

an

n
e−2l/an ≤ Gκ

aκ+1
n

n
· 2−κl.

Taking κ < α − 1, we get that aκ+1
n /n is bounded, which completes the proof. �

COROLLARY 2.16. There exists a constant C such that, for all n ∈ N,

E
[
δ′
n(0, ξn)

] ≤ C.

PROOF. Recalling the definition of δ′
n, we get

E
[
δ′
n(0, ξn)

] = E

[∫ ∞
0

μn,ξn(t) dt

]
.

Now the upper bound (13) gives

E
[
δ′
n(0, ξn)

] ≤ 1 +E

[∫ ∞
1

μn,ξn(t) dt

]
≤ 1 + an

n
e−1/an + 2

∫ ∞
1

En(t) dt + 2 sup
1≤m≤n

∫ ∞
1

m

n
Em,n(t) dt.

The second term is bounded as n → ∞. Recall from the proof of Lemma 2.14 that∫ ∞
1

En(t) dt = In,0 ≤ I 1
n,0 + I 2

n,0 + I 3
n,0 ≤ (

K1 + K ′
2
)
Jn,0 + I 3

n,0.

Moreover, we have seen that for any δ > 0, there exists a constant K such that

sup
n∈N

Jn,0 ≤ K

∫ ∞
0

dy e−y

(
1

y2−α−δ
∧ 1

y2−α+δ

)
< ∞,
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and

I 3
n,0 ≤ 2na2

ne
−n/an

is bounded as n → ∞. Since we have seen at the end of the proof of Lemma 2.9
that there exists a constant K ′ such that for all n ∈N, m ≤ n such that Pm �= 0,∫ ∞

1

m

n
Em,n(t) dt ≤ K ′

∫ ∞
1

Em(t) dt,

this implies the corollary. �

3. Proof of Theorem 1.3.

3.1. Identity in law between Cutv(T ) and T . In this section, we show that the
semi-infinite matrices of the mutual distance of uniformly sampled points in T and
Cutv(T ) have the same law. This justifies the existence of Cutv(T ), as explained in
Section 1.2, and shows the identity in law between T and Cutv(T ). The structure
of the proof will be similar to that of Lemma 4 in [12]. Precise descriptions of the
fragmentation processes we consider can be found in [24] and [25].

Recall that (ξ(i))i∈N is a sequence of i.i.d. random variables in T , with law μ,
and ξ(0) = 0. Since the law of T is invariant under uniform rerooting (see, e.g.,
[18], Proposition 4.8), and the definition of δ does not depend on the choice of the
root of T , we may assume that ξ(1) = ρ.

PROPOSITION 3.1. It holds that(
δ
(
ξ(i), ξ(j)

))
i,j≥0

(d)= (
d
(
ξ(i + 1), ξ(j + 1)

))
i,j≥0.

PROOF. Here, it is convenient to work on fragmentation processes taking val-
ues in the set of the partitions of N.

First, we introduce a process � which corresponds to our fragmentation of T
by saying that i, j ∈ N belong to the same block of �(t) if and only if the path
[[ξ(i), ξ(j)]]V does not intersect the set {bk :k ∈ I, tk ≤ t} of the points marked
before time t . For every i ∈ N, we let Bi(t) be the block of the partition �(t)

containing i. Note that the partitions �(t) are exchangeable, which justifies the
existence of the asymptotic frequencies λ(Bi(t)) of the blocks Bi(t), where

λ(B) = lim
n→∞

1

n

∣∣B ∩ {1, . . . , n}∣∣.
Then we define

σi(t) = inf
{
u ≥ 0 :

∫ u

0
λ
(
Bi(s)

)
ds > t

}
.

We use σi as a time-change, letting �′(t) be the partition whose blocks are the sets
Bi(σi(t)) for i ∈ N. Note that this is possible because Bi(σi(t)) and Bj(σj (t)) are
either equal or disjoint.
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We define a second fragmentation �, which results from cutting the stable tree
T at its heights. For every x, y ∈ T , we let x ∧ y denote the branch-point between
x and y, that is, the unique point such that [[ρ,x ∧ y]]V = [[ρ,x]]V ∩ [[ρ,y]]V .
With this notation, we say that i, j ∈ N belong to the same block of �(t) if and
only if d(ρ, ξ(i + 1) ∧ ξ(j + 1)) > t .

Then we have the following link between the two fragmentations.

LEMMA 3.2. The fragmentation processes �′ and � have the same law.

PROOF. Miermont has shown in [25], Theorem 1, that the process � is a
self-similar fragmentation with index 1/α, erosion coefficient 0 and dislocation
measure �α known explicitly. Applying Theorem 3.3 in [10], we get that the
time-changed fragmentation �′ is still self-similar, with index 1/α − 1, erosion
coefficient 0 and the same dislocation measure �α . Now the process � is also self-
similar, with the same characteristics as �′ (see [24], Proposition 1, Theorem 1).
Thus, � and �′ have the same law. �

Using the law of large numbers, we note that λ(Bi(s)) = μξ(i)(s) almost surely.
As a consequence, σi(t) = ∞ for t = ∫∞

0 λ(Bi(s)) ds = δ(0, ξ(i)), which means
that δ(0, ξ(i)) can be seen as the first time when the singleton {i} is a block of �′.
Recalling that d(ρ, ξ(i + 1)) = d(ξ(1), ξ(i + 1)) is the first time when {i} is a
block of �, we get (

δ
(
0, ξ(i)

))
i≥1

(d)= (
d
(
ξ(1), ξ(i + 1)

))
i≥1.(29)

Similarly, for any i �= j ∈N,

δ
(
0, ξ(i) ∧ ξ(j)

) = 1

2

(
δ
(
0, ξ(i)

)+ δ
(
0, ξ(j)

)− δ
(
ξ(i), ξ(j)

))
=

∫ τ(i,j)

0
λ
(
Bi(s)

)
ds,

where τ(i, j) denotes the first time when a mark appears on the segment
[[ξ(i), ξ(j)]]V . Thus, δ(0, ξ(i) ∧ ξ(j)) is the first time when the blocks containing
i and j are separated in �′. In terms of the fragmentation �, this corresponds to
d(ρ, ξ(i + 1) ∧ ξ(j + 1)). Hence,(

δ
(
0, ξ(i) ∧ ξ(j)

))
i,j≥1

(d)= (
d
(
ξ(1), ξ(i + 1) ∧ ξ(j + 1)

))
i,j≥1,

and this holds jointly with (29). This entails the proposition. �

3.2. Weak convergence. We first establish the convergence for the cut-tree
Cut′v(Tn) endowed with the modified distance δ′

n, as defined in Section 2.1.
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PROPOSITION 3.3. There is the joint convergence(
an

n
Tn,Cut′v(Tn)

)
(d)−→

n→∞
(
T ,Cutv(T )

)
in M×M.

PROOF. Proposition 2.5 shows that for every fixed integer l, there is the joint
convergence

an

n
Tn

(d)−→
n→∞ T ,

(
2−l

4l∑
j=1

μn,ξn(i)

(
j2−l))

i∈N

(d)−→
n→∞

(
2−l

4l∑
j=1

μξ(i)

(
j2−l))

i∈N
.

Let

�n,l(i) = E

[∣∣∣∣∣
∫ ∞

0
μn,ξn(i)(t) dt − 2−l

4l∑
j=1

μn,ξn(i)

(
j2−l)∣∣∣∣∣

]
.

For any nonincreasing function f :R+ → [0,1], we have the upper bound∣∣∣∣∣
∫ ∞

0
f (t) dt − 2−l

4l∑
j=1

f
(
j2−l)∣∣∣∣∣ ≤ 2−l +

∫ ∞
2l

f (t) dt.(30)

Applying this inequality to μn,ξn(i) yields

�n,l(i) ≤ 2−l +E

[∫ ∞
2l

μn,ξn(t) dt

]
.

Corollary 2.15 now shows that

lim
l→∞ sup

n∈N
�n,l(i) = 0,

and �n,l(i) does not depend on i. Besides, Proposition 3.1 shows that

δ
(
0, ξ(i)

) =
∫ ∞

0
μξ(i)(t) dt

has the same law as d(0, ξ(i)) and, therefore, has finite mean. As a consequence,

E

[∣∣∣∣∣
∫ ∞

0
μξ(i)(t) dt − 2−l

4l∑
j=1

μξ(i)

(
j2−l)∣∣∣∣∣

]

≤ 2−l +E

[∫ ∞
2l

μξ(i)(t) dt

]
−→
l→∞ 0,
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and the left-hand side does not depend on i. We conclude that(
δ′
n

(
0, ξn(i)

))
i∈N

(d)−→
n→∞

(
δ
(
0, ξ(i)

))
i∈N,

jointly with (an/n) · Tn
(d)−→T .

Using in addition the convergence of the τn(i, j) shown in Proposition 2.5,
a similar argument shows that the preceding convergences also hold jointly with(

δ′
n

(
ξn(i), ξn(j)

))
i,j∈N

(d)−→
n→∞

(
δ
(
ξ(i), ξ(j)

))
i,j∈N.

This entails the proposition. �

The convergence stated in Theorem 1.3 now follows immediately. Indeed,
Lemma 2.1 and Corollary 2.16 show that

E

[∣∣∣∣an

n
δn(i, j) − δ′

n(i, j)

∣∣∣∣2] ≤ 2Can

n

for all i, j ≥ 0 [recalling that ξn(0) = 0]. Thus, the preceding proposition gives the
joint convergence (

an

n
Tn,

an

n
Cutv(Tn)

)
(d)−→

n→∞
(
T ,Cutv(T )

)
.

4. The finite variance case. In this section, we assume that the offspring dis-
tribution ν of the Galton–Watson trees Tn has finite variance σ 2. Theorem 23 of [5]
shows that (σ/

√
n) · Tn converges to the Brownian tree T br. More precisely, still

using the three processes described in Section 2.2.2 to encode the trees Tn, the
joint convergence stated in Theorem 2.3 holds with an = σ

√
n, and limit pro-

cesses defined by Xt = Bt and Ht = 2Bt for all t ∈ [0,1]. (Recall that B denotes
the excursion of length 1 of the standard Brownian motion.) Note that the normal-
ization of X is not exactly the same as the one we used for the stable tree, since
the Laplace transform of a standard Brownian motion B ′ is E[e−λB ′

t ] = eλ2t/2. The
fact that the height process H is equal to 2X can be seen from the definition of H

as a local time, as explained in [17], Section 1.2.
Given these results, the proof of Theorem 1.4 follows the same structure as

that of the main theorem. We first note that the results on the modified distance,
introduced in Section 2.1, still hold. In the next two sections, we will see that we
also have analogues for Proposition 2.5, and Corollaries 2.15 and 2.16.

4.1. Convergence of the component masses. We use the same notation as in
Section 2.2. Recall in particular that μn,ξn(i) denotes the mass of the component
Tn,ξn(i)(t), and that τn(i, j) denotes the first time when the components Tn,ξn(i)(t)

and Tn,ξn(j)(t) become disjoint. To simplify, we drop the superscript br for the
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quantities associated to the Brownian tree (e.g., the mass-measure, the mass of a
component, etc.), keeping the notation we used in the case of the stable tree. Our
first step is to prove the following result.

PROPOSITION 4.1. As n → ∞, we have the following weak convergences:

σ√
n
Tn

(d)−→ T br,

(
τn(i, j)

)
i,j≥0

(d)−→
((

1 + 1

σ 2

)−1

τ(i, j)

)
i,j≥0

,

(
μn,ξn(i)(t)

)
i≥0,t≥0

(d)−→
(
μξ(i)

((
1 + 1

σ 2

)
t

))
i≥0,t≥0

,

where the three hold jointly.

We begin by showing the same kind of property as in Lemma 2.4. For all n ∈ N,
we let X̃(n) and C̃(n) denote the rescaled Lukasiewicz path and contour function
of the symmetrized tree T̃n.

LEMMA 4.2. We have the joint convergence(
X(n),C(n), X̃(n), C̃(n)) (d)−→

n→∞ (X,H, X̃, H̃ ),

where H̃t = H1−t and X̃t = H̃t/2 for all t ∈ [0,1].

PROOF. Since Tn and T̃n have the same law, (X̃(n), C̃(n)) converges in distri-
bution to a couple of processes having the same law as (X,H) in D×D. Thus, the
sequence of the laws of the processes (X(n),C(n), X̃(n), C̃(n)) is tight in D

4. Up to
extraction, we can assume that (X(n),C(n), X̃(n), C̃(n)) converges in distribution to
(X,H, X̃, H̃ ).

Fix t ∈ [0,1]. The definition of the contour function shows that for all n ∈ N,
we have C̃

(n)
t = C

(n)
1−t . Since H and H̃ are a.s. continuous, taking the limit yields

H̃t = H1−t almost surely. Besides, since (X,H) and (X̃, H̃ ) have the same law,
we have X̃t = H̃t/2 a.s. for all t ∈ [0,1].

These equalities also hold a.s., simultaneously for a countable number of
times t , and the continuity of H , X, H̃ and X̃ give that a.s., they hold for all
t ∈ [0,1]. This identifies uniquely the law of (X,H, X̃, H̃ ), hence the lemma. �

This lemma shows that we can still work in the setting of⎧⎪⎨⎪⎩
(
X(n), X̃(n)) −→

n→∞ (X, X̃) a.s.,(
t
(n)
i , i ∈ N

) −→
n→∞ (ti, i ∈ N) a.s.,

(31)
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where t
(n)
i = (ξn(i) + 1)/(n + 1) for all n ∈ N, i ≥ 0, and (ti, i ∈ N) is a sequence

of independent uniform variables in [0,1] such that ξ(i) = p(ti).
Recall the notation Rn(k) for the shape of the subtree of Tn (or T br if n = ∞)

spanned by the root and the vertices ξn(1), . . . , ξn(k) [or ξ(1), . . . , ξ(k) if n = ∞].
We also keep the notation Ln(v) = deg(v,Tn)/an for the rate at which a vertex v

is deleted in Tn (if n ∈ N), and

σn(t) = ∑
0<s<t

X
(n)
s−<I

(n)
s,t

�X(n)
s ∀t ∈ [0,1],

where I
(n)
s,t = infs<u<t X

(n)
u , and X(∞) = X.

As in Section 2.2, we state two lemmas which allow us two control the rates at
which the fragmentations happen on the vertices and the edges of Rn(k).

LEMMA 4.3. Fix k ∈ N. Under (31), Rn(k) is a.s. constant for all n large
enough (say n ≥ N ). Identifying the vertices of Rn(k) with R∞(k) for all n ≥ N ,
we have the a.s. convergence

Ln(v) −→
n→∞ 0 ∀v ∈ V

(
R∞(k)

)
.

PROOF. The proof is the same as that of Lemma 2.7. In particular, we get that
if the b(n,k) are the times encoding the “same” vertex v of Rn(k), for n ≥ N , then
we have the a.s. convergences

b(n,k) −→
n→∞ b(∞,k),

X
(n)

b(n,k) −→
n→∞ Xb(∞,k) ,

X
(n)

(b(n,k))− −→
n→∞ X(b(∞,k))− .

Since X is now continuous, this yields

Ln(v) = �X
(n)

b(n,k) + 1

an

−→
n→∞�Xb(∞,k) = 0. �

LEMMA 4.4. Let (bn)n≥1 ∈ [0,1]N be a converging sequence in [0,1], and let
b denote its limit. Then

σn(bn) −→
n→∞Hb a.s.

PROOF. As in the proof of Lemma 2.8, for all n ∈ N∪ {∞}, we write σn(t) =
σ−

n (t) + σ+
n (t), where

σ+
n (t) = ∑

0<s<t

X
(n)
s−<I

(n)
s,t

(
X(n)

s − I
(n)
s,t

)
and σ−

n (t) = ∑
0<s<t

X
(n)
s−<I

(n)
s,t

(
I

(n)
s,t − X

(n)

s−
)
.
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For all t ≥ 0, n ∈ N, we have σ−
n (t) = X

(n)

t− . As a consequence, (31) gives

σ−
n (bn) −→

n→∞Xb a.s.

Besides, we still have σ+
n (bn) = σ̃−

n (b̃n), with

b̃n = 1 − bn + 1

n + 1

(
1 + H

[n]
(n+1)bn−1 − D

[n]
(n+1)bn−1

)
.

Now

b̃n −→
n→∞ 1 − b − l(b),

where l(b) = inf{s > b :Xs = Xb} − b. Using (31) again, we get

σ+
n (bn) −→

n→∞ X̃1−b−l(b) = Xb+l(b) = Xb a.s.

Thus, we have the a.s. convergence

σn(bn) −→
n→∞ 2Xb = Hb. �

We can now give the proof of Proposition 4.1.

PROOF OF PROPOSITION 4.1. Fix n ∈ N ∪ {∞}. As in the proof of Proposi-
tion 2.5, we write Rn(k, t) for the reduced tree with edge-lengths, endowed with
point processes of marks on its edges and vertices such that:

• The marks on the vertices of Rn(k) appear at the same time as the marks on the
corresponding vertices of Tn.

• Each edge receives a mark at its midpoint at the first time when a vertex v of Tn

such that v ∈ e is marked in Tn.

These two point processes are independent, and their rates are the following:

• If n ∈ N, each vertex v of Rn(k) is marked at rate Ln(v), independently of the
other vertices. If n = ∞, there are no marks on the vertices.

• For each edge e of Rn(k), letting b, b′ denote the points of Bn(k) corresponding
to e−, e+, the edge e is marked at rate �Ln(e), independently of the other edges,
with

�Ln(e) = ∑
v∈V (Tn)∩e

Ln(v)

= σn

(
b′)− σn(b) + n

a2
n

(
H

(n)

(b′)− − H
(n)

b−
)− Ln

(
e−)

if n ∈ N, and

�L∞(e) = Hb′ − Hb.
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We see from Lemmas 4.3 and 4.4 that Ln(v) converges to 0 as n → ∞, and that

�Ln(e) −→
n→∞

(
1 + 1

σ 2

)
�L∞(e).

As a consequence, we have the convergence(
an

n
Rn(k, t), t ≥ 0

)
(d)−→

n→∞

(
R∞

(
k,

(
1 + 1

σ 2

)
t

)
, t ≥ 0

)
.(32)

[As in the case α ∈ (1,2), (an/n) · Rn(k, t) and R∞(k, t) can be seen as random
variables in T× (R+ ∪ {−1})N × {−1,0,1}N2

.]
For all i ∈ N, we let ηn(k, i, t) denote the number of vertices among ξn(1), . . . ,

ξn(k) in the component of Rn(k) containing ξn(i) at time t , and similarly
η∞(k, i, t) the number of vertices among ξ(1), . . . , ξ(k) in the component
of R∞(k) containing ξ(i) at time t . It follows from (32) that we have the joint
convergences

an

n
Tn

(d)−→ T br,

(
ηn(k, i, t)

)
t≥0,i∈N

(d)−→
(
η∞

(
k, i,

(
1 + 1

σ 2

)
t

))
t≥0,i∈N

,

(
τn(i, j)

)
i,j∈N

(d)−→
((

1 + 1

σ 2

)−1

τ(i, j)

)
i,j∈N

.

The end of the proof is the same as for Proposition 2.5. �

4.2. Upper bound for the expected component mass. The second step is to
show that, as in Section 2.3, the following properties hold.

LEMMA 4.5. It holds that

lim
l→∞ sup

n∈N
E

[∫ ∞
2l

μn,ξn(t) dt

]
= 0.

Besides, there exists a constant C such that, for all n ∈ N,

E
[
δ′
n(0, ξn)

] ≤ C.

PROOF. We use the fact that there exists a natural coupling between the edge-
fragmentation and the vertex-fragmentation of Tn. Indeed, both can be obtained
by a deterministic procedure, given Tn and a uniform permutation (i1, . . . , in)

of {1, . . . , n}. More precisely, in the edge-fragmentation, we delete the edge
eik at each step k, thus splitting Tn into at most two connected components,
whereas in the vertex fragmentation, we delete all the edges such that e− = e−

ik
.

Thus, at each step, the connected component containing a given edge e for the
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vertex-fragmentation is included in the component containing e for the edge-
fragmentation.

Now consider the continuous-time versions of these fragmentations: each edge
is marked independently with rate an/n = σ/

√
n in our case, and 1/

√
n in [12].

We let T E
n,i(t) and T V

n,i(t) denote the connected components containing the edge
ei at time t , respectively, for the edge-fragmentation and the vertex-fragmentation.
Then the preceding remark shows that there exists a coupling such that T V

n,i(t) ⊂
T E

n,i(σ t) a.s., and thus μn(T V
n,i(t)) ≤ μn(T E

n,i(σ t)) almost surely.
Lemma 3 and Corollary 1 of [12] show that the two announced properties hold

for the case of the edge-fragmentation. Therefore, they also hold for the vertex-
fragmentation. �

4.3. Proof of Theorem 1.4. As before, the proof of Theorem 1.4 now relies
on showing a joint convergence for the rescaled versions of Tn and the modified
cut-tree Cutv(Tn):(

an

n
Tn,

(
1 + 1

σ 2

)
Cut′v(Tn)

)
(d)−→

n→∞
(
T br,Cut

(
T br))(33)

in M×M. Indeed, Lemma 2.1 and the second part of Lemma 4.5 show that

E

[∣∣∣∣an

n
δn(i, j) − δ′

n(i, j)

∣∣∣∣2] ≤ 2Can

n

for all i, j ≥ 0. Thus, (33) entails the joint convergence(
an

n
Tn,

an

n

(
1 + 1

σ 2

)
Cutv(Tn)

)
(d)−→

n→∞
(
T ,Cutv(T )

)
.

Since an = σ
√

n, this gives Theorem 1.4.
Let us finally justify why (33) holds. Proposition 4.1 shows that for every fixed

integer l, there is the joint convergence

an

n
Tn

(d)−→
n→∞ T br,

(
2−l

4l∑
j=1

μn,ξn(i)

(
j2−l))

i∈N

(d)−→
n→∞

(
2−l

4l∑
j=1

μξ(i)

(
Cσj2−l))

i∈N
,

where Cσ = 1+1/σ 2. Using the upper bound (30) and the first part of Lemma 4.5,
we get that

lim
l→∞ sup

n∈N
E

[∣∣∣∣∣
∫ ∞

0
μn,ξn(i)(t) dt − 2−l

4l∑
j=1

μn,ξn(i)

(
j2−l)∣∣∣∣∣

]
= 0,
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and these expectations do not depend on i. Proposition 3.1 of [12] shows that
δ(0, ξ(i)) has the same law as d(0, ξ(i)) and, therefore, has finite mean. Thus,∣∣∣∣∣

∫ ∞
0

μξ(i)(Cσ t) dt − 2−l
4l∑

j=1

μξ(i)

(
Cσj2−l)∣∣∣∣∣ ≤ 2−l +E

[∫ ∞
2l

μξ(i)(Cσ t) dt

]
︸ ︷︷ ︸

−→
l→∞ 0

,

and the left-hand side does not depend on i. Since∫ ∞
0

μξ(i)(Cσ t) dt = C−1
σ

∫ ∞
0

μξ(i)(t) dt = C−1
σ δ

(
0, ξ(i)

)
,

we conclude that (
Cσδ′

n

(
0, ξn(i)

))
i∈N

(d)−→
n→∞

(
δ
(
0, ξ(i)

))
i∈N,

jointly with (an/n) · Tn
(d)−→T . Using in addition the convergence of the τn(i, j)

shown in Proposition 2.5, we see that the preceding convergences also hold jointly
with (

Cσδ′
n

(
ξn(i), ξn(j)

))
i,j∈N

(d)−→
n→∞

(
δ
(
ξ(i), ξ(j)

))
i,j∈N,

and this gives the convergence (33).

APPENDIX: ADAPTATION OF DONEY’S RESULT

We rephrase Lemma 2.12 using the notation of [14].

LEMMA A.1. Let (Xi)i∈N be a sequence of i.i.d. variables in N ∪ {0}, whose
law belongs to the domain of attraction of a stable law of index α̂ ∈ (0,1), and
Sn = X1 +· · ·+Xn. We also let A ∈ Rα̂ be a positive increasing function such that

P(X > r) ∼ 1

A(r)
,(34)

and a the inverse function of A. Besides, we suppose that the additional hypothesis

sup
r≥1

(
rP(X = r)

P(X > r)

)
< ∞(35)

holds. Then there exist constants B,C such that for all r ∈ N, for all n such that
r/an ≥ B ,

P(Sn = r) ≤ C
n

rA(r)
.
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This result is an adaptation of a theorem shown by Doney in [14], which gives
an equivalent for P(Sn = r) as n → ∞, uniformly in n such that r/an → ∞, using
the slightly stronger hypothesis

P(X = r) ∼ 1

rA(r)
as r → ∞

instead of (35).

SKETCH OF THE PROOF. The main idea is to split up P(Sn = r) into four
terms, depending upon the values taken by Mn = max{Xi : i = 1, . . . , n} and Nn =
|{m ≤ n :Xm > z}|. More precisely, letting η and γ be constants in (0,1), w = r/an

and z = anw
γ , we have

P(Sn = r) =
3∑

i=0

P
({Sn = r} ∩ Ai

)
,

where Ai = {Mn ≤ ηr,Nn = i} for i = 0,1, A2 = {Mn ≤ ηr,Nn ≥ 2} and A3 =
{Mn > ηr}. For our purposes, it is enough to show that there exist constants ci

such that

qi := P
({Sn = r} ∩ Ai

) ≤ ci

n

rA(r)
∀i ∈ {0,1,2,3}.

The constants γ and η are fixed, with conditions that will be given later (see
the detailed version of the proof for explicit conditions). In the whole proof, we
suppose that w ≥ B , for B large enough (possibly depending on the values of η

and γ ). Note that hypotheses (34) and (35) imply the existence of a constant c such
that

pr = P(X = r) ≤ c

rA(r)
and �F(r) = P(X > r) ≤ c

A(r)
.(36)

The first calculations of [14] show that we have the following inequalities:

q3 ≤ n sup
l>ηr

pl,

q2 ≤ 1

2
n2 �F(z) sup

l>z

pl,

q1 ≤ nP
(
Mn−1 ≤ z, Sn−1 > (1 − η)r

)
sup
l>z

pl.

We now use (36), and apply Lemma 2.13 for the regularly varying function A. The
first inequality thus yields the existence of a constant c3 which only depends on the
value of η. Similarly, the second inequality gives the existence of c2, provided γ

is large enough (independently of B) and B ≥ 1.
To get the existence of c1, we first apply Lemma 2 of [14], which gives an upper

bound for the quantity P(Mn−1 ≤ z, Sn−1 > (1 − η)r) provided z is large enough
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and (1 − η)r ≥ z. Since a1w
γ ≤ z ≤ r/w1−γ , these conditions can be achieved by

taking B large enough. The lemma gives

q1 ≤ c
n

zA(z)
·
(

c′z
(1 − η)r

)(1−η)r/z

,

where c′ is a constant. Now, applying Lemma 2.13, we get the existence of a
constant c′

1 such that

q1 ≤ c′
1

n

rA(r)
· wκ,

where κ depends on the values of η, γ and B . For a given choice of η and γ , and
for B large enough, κ is negative, hence the existence of c1.

For q0, getting the upper bound goes by first showing that we can work un-
der the hypotheses r ≤ nz and r ≤ nan/2 (instead of the hypotheses n → ∞ and
r/nan → 0 of [14]). Indeed, if r > nz, then q0 = 0, and if r > nan/2, another ap-
plication of Lemma 2 of [14] and of Lemma 2.13 yields the result. The rest of the
proof relies on replacing the Xi by truncated variables X̂i , and using an exponen-
tially biased probability law. This last part is long and technical, but it is rather
easy to check that each step still holds with our hypotheses, for B large enough
and with an appropriate choice of η (independently of B). �
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