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CRITICAL POPULATION AND ERROR THRESHOLD ON THE
SHARP PEAK LANDSCAPE FOR THE WRIGHT–FISHER MODEL

BY RAPHAËL CERF

Université Paris Sud and IUF

We pursue the task of developing a finite population counterpart to
Eigen’s model. We consider the classical Wright–Fisher model describing
the evolution of a population of size m of chromosomes of length � over an
alphabet of cardinality κ . The mutation probability per locus is q. The repli-
cation rate is σ > 1 for the master sequence and 1 for the other sequences.
We study the equilibrium distribution of the process in the regime where

� → +∞, m → +∞, q → 0,

�q → a ∈]0,+∞[, m

�
→ α ∈ [0,+∞].

We obtain an equation αψ(a) = lnκ in the parameter space (a,α) separat-
ing the regime where the equilibrium population is totally random from the
regime where a quasispecies is formed. We observe the existence of a crit-
ical population size necessary for a quasispecies to emerge, and we recover
the finite population counterpart of the error threshold. The result is the twin
brother of the corresponding result for the Moran model. The proof is more
complex, and it relies on the Freidlin–Wentzell theory of random perturba-
tions of dynamical systems.

1. Introduction. In 1971, Eigen studied a population of macromolecules,
evolving under replication and mutation [7]. He considered the situation where
one specific sequence, called the master sequence, replicates faster than the others.
A fundamental discovery of Eigen is the existence of an error threshold. If the mu-
tation rate exceeds a critical value, called the error threshold, then, at equilibrium,
the population is completely random. If the mutation rate is below the error thresh-
old, then, at equilibrium, the population contains a positive fraction of the master
sequence and a cloud of mutants which are quite close to the master sequence.
This specific distribution of individuals is called a quasispecies. Since then, the
notions of error threshold and quasispecies have been widely used to understand
the evolution of populations in biology. However, biological populations are finite,
and Eigen’s model cannot be directly applied in this context because it is formu-
lated for an infinite population of macromolecules. A crucial task is therefore to
reformulate and to understand the notions of error threshold and quasispecies in
biological models describing the evolution of a finite population.
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The Wright–Fisher model is one of the most studied models in mathematical
population genetics. In this work, we apply to a basic Wright–Fisher model the
ideas presented in [3] for the Moran model, thereby pursuing the task of devel-
oping a finite population counterpart to Eigen’s model. Numerous works have at-
tacked this issue [1, 5, 11, 17, 21, 25]. Using different techniques, Saakian, Deem
and Hu [24], Park, Muñoz and Deem [23], Musso [20] and Dixit, Srivastava and
Vishnoi [6] considered finite population models which approximate Eigen’s model
when the population size goes to infinity. These models are variants or generaliza-
tions of the classical Wright–Fisher model of population genetics. The problem
is to understand how the error threshold phenomenon present in Eigen’s model in
the infinite population limit shows up in the finite population model. We refer to
the introduction of [3] for a detailed discussion of this question and the heuristics
guiding our strategy. We consider here the classical Wright–Fisher model describ-
ing the evolution of a population of size m of chromosomes of length � over an
alphabet of cardinality κ . The mutation probability per locus is q . The replication
rate is σ > 1 for the master sequence and 1 for the other sequences. We study the
equilibrium distribution of the process in the regime where

� → +∞, m → +∞, q → 0,

�q → a ∈]0,+∞[, m

�
→ α ∈ [0,+∞].

We obtain an equation αψ(a) = lnκ in the parameter space (a,α) separating
the regime where the equilibrium population is totally random from the regime
where a quasispecies is formed. We observe the existence of a critical population
size necessary for a quasispecies to emerge, and we recover the finite population
counterpart of the error threshold. It is a classical fact that the Moran model and
the Wright–Fisher model have similar dynamics. Indeed, the main result here is
the twin brother of the main result of [3], the only difference being the equation
of the critical curve. While we could compute exactly the critical curve for the
Moran model, here the critical curve is defined through a variational problem de-
pending on the parameter a. Apart from this point, the scaling and the associated
exponents are the same in both cases. This confirms a conjecture of [3], and it
sustains the hope that this kind of analysis is robust.

A potential application of the result concerns genetic algorithms. Indeed, the
Wright–Fisher model is identical to the genetic algorithm without crossover. In her
Ph.D. thesis [22], Ochoa investigated the role of the error threshold phenomenon
for genetic algorithms, and she concluded that there exists a relationship between
the optimal mutation rate and the error threshold. The result proved here provides
a theoretical basis for some heuristics to control efficiently the genetic algorithms
proposed in [2].

On the technical side, the Wright–Fisher model is much more difficult to han-
dle than the Moran model. In the Moran model, the estimates of the selection drift
relied on a birth and death model introduced by Nowak and Schuster [21]. In the
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Wright–Fisher model, the bounding processes are more complicated; they involve
three dependent binomial laws. As the size of the population grows, their transition
probabilities satisfy a large deviation principle, derived with the help of the classi-
cal Cramér theorem. In the set of the populations containing the master sequence,
the process can be seen as the random perturbation of a discrete dynamical system.
This discrete dynamical system is simply the sequence of the iterates of a rational
map F : [0,1] → [0,1]. Depending on the parameters, this map has either one sta-
ble fixed point or two fixed points, one stable and the other unstable. This opens the
way to the application of the general scheme developed by Freidlin and Wentzell
[10] to study the random perturbations of dynamical systems. Originally, Frei-
dlin and Wentzell studied diffusion processes arising as Brownian perturbations
of a differential equation. These processes are continuous time Markov processes
with a continuous state space. However, their approach is robust, and it can be
applied in other contexts. Kifer [14, 15] reworked this theory in the discrete time
case. Unfortunately, our bounding processes do not fit the hypothesis of Kifer’s
model, for the following two reasons. In Kifer’s model, the large deviation rate
function of the transition probabilities is not allowed to be infinite, and the large
deviation principle for the transition probabilities is assumed to be uniform with
respect to the starting point. Certainly the general framework considered by Kifer
could be adjusted to include our case, with the help of some relaxed hypothesis.
Yet in our case, we have only two attractors, one unstable and one stable, and we
need only two specific estimates from the general theory, which is concerned with
a finite number of attractors of any type. In fact, the kind of estimates we need
have been computed in two other works handling closely related models. In an
unpublished work [4] (transmitted to me by courtesy of Gregory Morrow), Darden
analyzed a Wright–Fisher model with two alleles and no mutation with the help of
the Freidlin–Wentzell theory. What we have to do essentially is to obtain results
analogous to Darden for the model with mutations. Morrow and Sawyer [19] con-
sidered a more general model of Markov chains evolving in a convex subset of Rd

around one stable attractor. Our bounding processes would fit this framework, were
it for the uniform assumption on the variance of the transition probabilities. In our
case, this condition is violated close to the unstable attractor 0. We can apply their
results outside a neighborhood of 0, but this would lead to a messy construction.
It appears that, in any case, if we try to apply the results of Kifer or of Morrow
and Sawyer, we have to make a specific study of our process in the vicinity of
the unstable fixed point 0. In the end, it seems that the most efficient presentation
consists in deriving from scratch the required estimates, following the initial ideas
of Freidlin and Wentzell. The techniques involved in the proof are classical and go
back to the seminal work of Freidlin and Wentzell. However, there is an important
simplifying feature in our case. Indeed, the bounding processes are monotone. This
allows us to avoid uniform large deviation estimates and to provide substantially
simpler proofs.
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We describe the model in the next section, and we present the main result in
Section 3. The rest of the paper is devoted to the proofs. The global strategy is
identical to the case of the Moran model. The lumping is performed in Section 4.
In Section 5, we build a coupling and we prove the monotonicity of the occu-
pancy process. This allows us to define simple bounding processes in Section 6.
Section 7, which analyzes the dynamics of the bounding processes, is much more
complicated than for the Moran model. Section 8 presents the estimates in the neu-
tral region. These estimates were derived in [3] for the Moran model, and they can
be easily adapted to the Wright–Fisher model, so most of the proofs are omitted.

2. The Wright–Fisher model. Let A be a finite alphabet, and let κ = cardA
be its cardinality. Let � ≥ 1 be an integer. We consider the space A� of sequences
of length � over the alphabet A. Elements of this space represent the chromosome
of an haploid individual, or equivalently its genotype. In our model, all the genes
have the same set of alleles, and each letter of the alphabet A is a possible allele.
Typical examples are A = {A,T ,G,C} to model standard DNA, or A = {0,1} to
deal with binary sequences. Generic elements of A� will be denoted by the letters
u, v,w. A population is an m-tuple of elements of A�. Generic populations will be
denoted by the letters x, y, z. Thus a population x is a vector

x =
⎛
⎜⎝

x(1)
...

x(m)

⎞
⎟⎠

whose components are chromosomes. For i ∈ {1, . . . ,m}, we denote by

x(i,1), . . . , x(i, �)

the letters of the sequence x(i). This way a population x can be represented as an
array

x =
⎛
⎜⎝

x(1,1) · · · x(1, �)
...

...

x(m,1) · · · x(m,�)

⎞
⎟⎠

of size m × � of elements of A, the ith line being the ith chromosome. The evo-
lution of the population is random and it is driven by two antagonistic forces:
replication and mutation.

Replication. The replication favors the development of fit chromosomes. The
fitness of a chromosome is encoded in a fitness function

A :A� → [0,+∞[.
With the help of the fitness function A, we define a selection function F :A� ×
(A�)m → [0,1] by setting

∀u ∈ A�, ∀x ∈ (
A�)m F(u, x) = A(u)

A(x(1)) + · · · + A(x(m))

∑
1≤i≤m

1x(i)=u.
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The population x being fixed, the values F(u, x), u ∈ A�, define a probability
distribution over A�. The value F(u, x) is the probability of choosing u when
sampling from the population x.

Mutation. The mutation mechanism is the same for all the loci, and mutations
occur independently. We denote by q ∈]0,1 − 1/κ[ the probability that a muta-
tion occurs at one particular locus. If a mutation occurs, then the letter is replaced
randomly by another letter, chosen uniformly over the κ −1 remaining letters. Mu-
tations are rare, and the most likely outcome for a given letter is to stay unaltered;
this is why we impose that q ≤ 1 − 1/κ . We encode this mechanism in a mutation
matrix

M(u,v), u, v ∈ A�,

where M(u,v) is the probability that the chromosome u is transformed by muta-
tion into the chromosome v. The analytical formula for M(u,v) is

M(u,v) =
�∏

j=1

(
(1 − q)1u(j)=v(j) + q

κ − 1
1u(j) �=v(j)

)
.

Transition matrix. We consider the classical Wright–Fisher model. In this
model, generations do not overlap. The mechanism to build a new generation is
divided in two steps. In the first step, m chromosomes are sampled with replace-
ment from the population. The sampling law is given by the selection function.
In the second step, each chromosome mutates according to the law specified by
the mutation matrix. For n ≥ 0, we denote by Xn the nth generation. The Wright–
Fisher model is the Markov chain (Xn)n∈N on the space (A�)m whose transition
matrix is given by

∀n ∈ N, ∀x, y ∈ (
A�)m

P (Xn+1 = y|Xn = x) = ∏
1≤i≤m

( ∑
u∈A�

F (u, x)M
(
u,y(i)

))
.

3. Main results. We present the main results in this section.

Sharp peak landscape. We will consider only the sharp peak landscape defined
as follows. We fix a specific sequence, denoted by w∗, called the wild type or the
master sequence. Let σ > 1 be a fixed real number. The fitness function A is given
by

∀u ∈ A� A(u) =
{

1, if u �= w∗,
σ, if u = w∗.

Density of the master sequence. We denote by N(x) the number of copies of the
master sequence w∗ present in the population x:

N(x) = card
{
i : 1 ≤ i ≤ m,x(i) = w∗}.
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We are interested in the expected density of the master sequence in the steady state
distribution of the process, that is,

Master(σ, �,m,q) = lim
n→∞E

(
1

m
N(Xn)

)
,

as well as the variance

Variance(σ, �,m,q) = lim
n→∞E

((
1

m
N(Xn) − Master(σ, �,m,q)

)2)
.

The ergodic theorem for Markov chains ensures that the above limits exist. We
denote by I (p, t) the rate function governing the large deviations of the binomial
law of parameter p ∈ [0,1], given by

∀t ∈ [0,1] I (p, t) = t ln
t

p
+ (1 − t) ln

1 − t

1 − p
.

We define, for a ∈]0,+∞[,

ρ∗(a) =
⎧⎨
⎩

σe−a − 1

σ − 1
, if σe−a > 1,

0, if σe−a ≤ 1,

ψ(a) = inf
l∈N inf

{
l−1∑
k=0

I

(
σρk

(σ − 1)ρk + 1
, γk

)
+ γkI

(
e−a,

ρk+1

γk

)
:

ρ0 = ρ∗(a), ρl = 0, ρk, γk ∈ [0,1] for 0 ≤ k < l

}
.

Since I (p,0) = − ln(1 − p), we have

ψ(a) ≤ I

(
σρ∗(a)

(σ − 1)ρ∗(a) + 1
,0

)
= ln

(σ − 1)ρ∗(a) + 1

1 − ρ∗(a)
.

Thus the function ψ is finite on ]0, lnσ [, and it vanishes on [lnσ,+∞[. We will
prove in Lemma 7.4 that ψ is positive on ]0, lnσ [.

THEOREM 3.1. We suppose that

� → +∞, m → +∞, q → 0,

in such a way that

�q → a ∈]0,+∞[, m

�
→ α ∈ [0,+∞].

We have the following dichotomy:

• If αψ(a) < lnκ , then Master(σ, �,m,q) → 0.
• If αψ(a) > lnκ , then Master(σ, �,m,q) → ρ∗(a).
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In both cases, we have Variance(σ, �,m,q) → 0.

The statement of the theorem holds also in the case where α is null or infinite,
but a must belong to ]0,+∞[. This result is very similar to the result for the Moran
model. Therefore all the comments made for the Moran model apply here as well.
The main difference is that the function ψ(a) is more complicated. While we could
obtain an explicit formula in the case of the Moran model, here the function ψ(a)

is the solution of a complicated variational problem. The general structure of the
proof is similar to the one for the Moran model. We use the lumping theorem to
reduce the size of the state space. We couple the lumped processes with different
initial conditions. The coupling for the occupancy process turns out to be mono-
tone. We construct then a lower and an upper process. These processes behave like
the original process in the neutral region and like a Wright–Fisher model with two
alleles whenever the master sequence is present in the population. The dynamics of
these models is analyzed with a specific implementation of the Freidlin–Wentzell
theory. We compute estimates of the persistence time of the master sequence, as
well as its equilibrium density. Although the results are similar to the case of the
Moran model, this part is much more technical in the case of the Wright–Fisher
model. Indeed, in the case of the Moran model, we needed simply to estimate some
explicit formula associated to the birth and death model introduced by Nowak and
Schuster [21]. The approach used here to handle the Wright–Fisher model is quite
robust, and it should work for other variants of the model. In the final section we
analyze the discovery time of the master sequence. This part is similar to the case
of the Moran model. It is even simpler, so most proofs are omitted.

4. Lumping. We denote by dH the Hamming distance between two chromo-
somes

∀u, v ∈ A� dH (u, v) = card
{
j : 1 ≤ j ≤ �,u(j) �= v(j)

}
.

We define a function H :A� → {0, . . . , �} by setting

∀u ∈ A� H(u) = dH

(
u,w∗).

We define further a vector function H : (A�)m → {0, . . . , �}m by setting

∀x =
⎛
⎜⎝

x(1)
...

x(m)

⎞
⎟⎠ ∈ (

A�)m
H(x) =

⎛
⎜⎝

H
(
x(1)

)
...

H
(
x(m)

)
⎞
⎟⎠ .

Mutation. We state some results on the mutation matrix that have been proved
in [3]. The mutation matrix is lumpable with respect to the function H . Let b, c ∈
{0, . . . , �}, and let u ∈ A� such that H(u) = b. The sum∑

w∈A�

H(w)=c

M(u,w)
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does not depend on u in H−1({b}). It is a function of b and c only, which we
denote by MH(b, c). The coefficient MH(b, c) is equal to

∑
0≤k≤�−b

0≤l≤b

k−l=c−b

(
� − b

k

)(
b

l

)
qk(1 − q)�−b−k

(
q

κ − 1

)l(
1 − q

κ − 1

)b−l

.

Replication. The fitness function A of the sharp peak landscape can be factor-
ized through H . If we define

∀b ∈ {0, . . . , �} AH(b) =
{

σ, if b = 0,
1, if b ≥ 1,

then we have

∀u ∈A� A(u) = AH

(
H(u)

)
.

Distance process. We define the distance process (Dn)n≥0 by

∀n ≥ 0 Dn = H(Xn).

As in [3], it can be checked that the Markov chain (Xn)n≥0 is lumpable with re-
spect to the partition of (A�)m induced by the map H, so that the distance process
(Dn)n≥0 is a genuine Markov chain. Its transition matrix pH is given by

∀d, e ∈ {0, . . . , �}m

pH(d, e) = ∏
1≤i≤m

( ∑
1≤j≤m

AH(j)MH(d(j), e(i))

AH (d(1)) + · · · + AH(d(m))

)
.

Occupancy process. We denote by Pm
�+1 the set of the ordered partitions of the

integer m in at most � + 1 parts,

Pm
�+1 = {(

o(0), . . . , o(�)
) ∈ N

�+1 :o(0) + · · · + o(�) = m
}
.

These partitions are interpreted as occupancy distributions. The partition (o(0),

. . . , o(�)) corresponds to a population in which o(l) chromosomes are at Ham-
ming distance l from the master sequence, for any l ∈ {0, . . . , �}. Let O be the
map which associates to each population x its occupancy distribution O(x) =
(o(x,0), . . . , o(x, �)), defined by

∀l ∈ {0, . . . , �} o(x, l) = card
{
i : 1 ≤ i ≤ m,dH

(
x(i),w∗) = l

}
.

For d ∈ {0, . . . , �}m, we set

oH (d, l) = card
{
i : 1 ≤ i ≤ m,d(i) = l

}
,

and we define a map OH : {0, . . . , �}m → Pm
�+1 by setting

OH (d) = (
oH (d,0), . . . , oH (d, �)

)
.
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We define the occupancy process (On)n≥0 by setting

∀n ≥ 0 On = O(Xn) =OH (Dn).

As in [3], it can be checked that the Markov chain (Dn)n≥0 is lumpable with re-
spect to the partition of {0, . . . , �}m induced by the map OH , so that the occupancy
process (On)n≥0 is a genuine Markov chain. Its transition matrix pO is given by

∀o, o′ ∈ Pm
�+1 pO

(
o, o′) = ∏

0≤h≤�

(∑
k∈{0,...,�} o(k)AH (k)MH (k,h)∑

0≤h≤� o(h)AH (h)

)o′(h)

.

5. Monotonicity. A crucial property for comparing the Wright–Fisher model
with other processes is monotonicity. We will realize a coupling of the lumped
Wright–Fisher processes with different initial conditions, and we will deduce the
monotonicity from the coupling construction. All the processes will be built on a
single large probability space. We consider a probability space (	,F,P ) contain-
ing the following collection of independent random variables, all of them following
the uniform law on the interval [0,1]:

Ui,j
n , n ≥ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ �,

Si
n, n ≥ 1, 1 ≤ i ≤ m.

5.1. Coupling of the lumped processes. We build here a coupling of the
lumped processes. We set

∀n ≥ 1 Rn =
⎛
⎜⎝

S1
n,U1,1

n , . . . ,U1,�
n

...
... · · · ...

Sm
n ,Um,1

n , . . . ,Um,�
n

⎞
⎟⎠ .

The matrix Rn is the random input which is used to perform the nth step of the
Markov chains. We denote by R the set of the matrices of size m × (� + 1) with
coefficients in [0,1]. The sequence (Rn)n≥1 is a sequence of independent identi-
cally distributed random matrices with values in R.

Mutation. We define a map

MH : {0, . . . , �} × [0,1]� → {0, . . . , �}
in order to couple the mutation mechanism starting with different chromosomes.
Let b ∈ {0, . . . , �}, and let u1, . . . , u� ∈ [0,1]�. The map MH is defined by setting

MH(b,u1, . . . , u�) = b −
b∑

k=1

1uk<q/(κ−1) +
�∑

k=b+1

1uk>1−q .

The map MH is built in such a way that, if U1, . . . ,U� are random variables
with uniform law on the interval [0,1], all being independent, then for any
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b ∈ {0, . . . , �}, the law of MH(b,U1, . . . ,U�) is given by the line of the mutation
matrix MH associated to b, that is,

∀c ∈ {0, . . . , �} P
(
MH(b,U1, . . . ,U�) = c

) = MH(b, c).

Selection for the distance process. We realize the replication mechanism with
the help of a selection map

SH : {0, . . . , �}m × [0,1] → {1, . . . ,m}.
Let d ∈ {0, . . . , �}m, and let s ∈ [0,1[. We define SH (d, s) = i where i is the unique
index in {1, . . . ,m} satisfying

AH(d(1)) + · · · + AH(d(i − 1))

AH (d(1)) + · · · + AH(d(m))
≤ s <

AH(d(1)) + · · · + AH(d(i))

AH (d(1)) + · · · + AH(d(m))
.

The map SH is built in such a way that, if S is a random variable with uniform law
on the interval [0,1], then for any d ∈ {0, . . . , �}m, the law of SH (d,S) is given by

∀i ∈ {1, . . . ,m} P
(
SH (d,S) = i

) = AH(d(i))

AH (d(1)) + · · · + AH(d(m))
.

Coupling for the distance process. We build a deterministic map


H : {0, . . . , �}m ×R → {0, . . . , �}m

in order to realize the coupling between distance processes with various initial
conditions. The coupling map 
H is defined by

∀r ∈R, ∀d ∈ {0, . . . , �}m


H(d, r) =
⎛
⎜⎝

MH

(
d
(
SH

(
d, r(1,1)

))
, r(1,2), . . . , r(1, � + 1)

)
...

MH

(
d
(
SH

(
d, r(m,1)

))
, r(m,2), . . . , r(m, � + 1)

)
⎞
⎟⎠ .

The coupling is then built in a standard way with the help of the i.i.d. sequence
(Rn)n≥1 and the map 
H . Let d ∈ {0, . . . , �}m be the starting point of the process.
We build the distance process (Dn)n≥0 by setting D0 = d and

∀n ≥ 1 Dn = 
H(Dn−1,Rn).

A routine check shows that the process (Dn)n≥0 is a Markov chain starting from
d with the adequate transition matrix. This way we have coupled the distance pro-
cesses with various initial conditions.

Selection for the occupancy process. We realize the replication mechanism with
the help of a selection map

SO :Pm
�+1 × [0,1] → {0, . . . , �}.
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Let o ∈ Pm
�+1, and let s ∈ [0,1[. We define SO(o, s) = l where l is the unique index

in {0, . . . , �} satisfying

o(0)AH (0) + · · · + o(l − 1)AH (l − 1)

o(0)AH (0) + · · · + o(�)AH (�)
≤ s <

o(0)AH (0) + · · · + o(l)AH (l)

o(0)AH (0) + · · · + o(�)AH (�)
.

The map SO is built in such a way that, if S is a random variable with uniform law
on the interval [0,1], then for any o ∈ Pm

�+1, the law of SO(o,S) is given by

∀l ∈ {0, . . . , �} P
(
SO(o,S) = l

) = o(l)AH (l)

o(0)AH (0) + · · · + o(�)AH (�)
.

Coupling for the occupancy process. We build a deterministic map


O :Pm
�+1 ×R → Pm

�+1

in order to realize the coupling between occupancy processes with various initial
conditions. The coupling map 
O is defined by

∀r ∈ R, ∀o ∈ Pm
�+1


O(o, r) =OH

⎛
⎜⎝

MH

(
SO

(
o, r(1,1)

)
, r(1,2), . . . , r(1, � + 1)

)
...

MH

(
SO

(
o, r(m,1)

)
, r(m,2), . . . , r(m, � + 1)

)
⎞
⎟⎠ .

Let o ∈ Pm
�+1 be the starting point of the process. We build the occupancy process

(On)n≥0 by setting O0 = o and

∀n ≥ 1 On = 
O(On−1,Rn).

A routine check shows that the process (On)n≥0 is a Markov chain starting from o

with the adequate transition matrix. This way we have coupled the occupancy pro-
cesses with various initial conditions.

5.2. Monotonicity of the model. We first recall some standard definitions con-
cerning monotonicity and coupling for stochastic processes. A classical reference
is Liggett’s book [16], especially for applications to particle systems. In the next
two definitions, we consider a discrete time Markov chain (Xn)n≥0 with values in
a space E . We suppose that the state space E is finite and that it is equipped with a
partial order ≤. A function f :E →R is nondecreasing if

∀x, y ∈ E x ≤ y ⇒ f (x) ≤ f (y).

DEFINITION 5.1. The Markov chain (Xn)n≥0 is said to be monotone if, for
any nondecreasing function f , the function

x ∈ E �→ E
(
f (Xn)|X0 = x

)
is nondecreasing.
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A natural way to prove monotonicity is to construct an adequate coupling.

DEFINITION 5.2. A coupling for the Markov chain (Xn)n≥0 is a family of
processes (Xx

n)n≥0 indexed by x ∈ E , which are all defined on the same probability
space, and such that, for x ∈ E , the process (Xx

n)n≥0 is the Markov chain (Xn)n≥0
starting from X0 = x. The coupling is said to be monotone if

∀x, y ∈ E x ≤ y ⇒ ∀n ≥ 1 Xx
n ≤ Xy

n.

If there exists a monotone coupling, then the Markov chain is monotone.
We try next to apply these definitions to our model. The space {0, . . . , �}m is

naturally endowed with a partial order

d ≤ e ⇐⇒ ∀i ∈ {1, . . . ,m} d(i) ≤ e(i).

The map MH is nondecreasing with respect to the Hamming class, that is,

∀b, c ∈ {0, . . . , �}, ∀u1, . . . , u� ∈ [0,1]
b ≤ c ⇒ MH(b,u1, . . . , u�) ≤ MH(c,u1, . . . , u�);

see [3] for a detailed proof. In the neutral case σ = 1, the map SH does not depend
on the population, in fact,

∀d ∈ {0, . . . , �}m, ∀s ∈ [0,1] SH (d, s) = �ms�.
As a consequence, we have

∀d, e ∈ {0, . . . , �}m, ∀s ∈ [0,1] d ≤ e ⇒ d
(
SH(d, s)

) ≤ e
(
SH(e, s)

)
.

LEMMA 5.3. In the neutral case σ = 1, the map 
H is nondecreasing with
respect to the distances, that is,

∀d, e ∈ {0, . . . , �}m, ∀r ∈ R d ≤ e ⇒ 
H(d, r) ≤ 
H(e, r).

PROOF. Let r ∈ R, and let d, e ∈ {0, . . . , �}m, d ≤ e. Let i ∈ {1, . . . ,m}. Since

SH

(
d, r(i,1)

) = SH

(
e, r(i,1)

) = ⌊
mr(i,1)

⌋
,

we have

d
(
SH

(
d, r(i,1)

)) ≤ e
(
SH

(
e, r(i,1)

))
.

This inequality and the monotonicity of the map MH imply that

MH

(
d
(
SH

(
d, r(i,1)

))
, r(i,2), . . . , r(i, � + 1)

)
≤ MH

(
e
(
SH

(
e, r(i,1)

))
, r(i,2), . . . , r(i, � + 1)

)
.

Therefore 
H(d, r) ≤ 
H(e, r) as requested. �
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COROLLARY 5.4. In the neutral case σ = 1, the distance process (Dn)n≥0 is
monotone.

Unfortunately, the map 
H is not monotone for σ > 1. Indeed, suppose that

κ = 3, σ = 2, m = 3, � ≥ 2,

2
3 < s1 < 3

4 , 3
4 < s2 < 1, 3

4 < s3 < 1,

∀i ∈ {1,2,3}, ∀j ∈ {1, . . . , �} ui,j ∈
[
q

3
,1 − q

]
.

Recall that

r =
⎛
⎝ s1, u1,1, . . . , u1,�

s2, u2,1, . . . , u2,�

s3, u3,1, . . . , u3,�

⎞
⎠ .

We have then


H

⎛
⎝0

2
1

⎞
⎠ =

⎛
⎝2

1
1

⎞
⎠ , 
H

⎛
⎝1

2
1

⎞
⎠ =

⎛
⎝1

1
1

⎞
⎠ .

This creates a serious complication. To get around this problem, we lump further
the distance process in order to build the occupancy process. It turns out that the
occupancy process is monotone even in the nonneutral case. We define an order
� on Pm

�+1 as follows. Let o = (o(0), . . . , o(�)) and o′ = (o′(0), . . . , o′(�)) belong
to Pm

�+1. We say that o is smaller than or equal to o′, which we denote by o � o′, if

∀l ≤ � o(0) + · · · + o(l) ≤ o′(0) + · · · + o′(l).
As shown in [3], the map SO is nonincreasing with respect to the occupancy dis-
tribution, that is,

∀o, o′ ∈ Pm
�+1, ∀s ∈ [0,1] o � o′ ⇒ SO(o, s) ≥ SO

(
o′, s

)
.

LEMMA 5.5. The map 
O is nondecreasing with respect to the occupancy
distribution, that is,

∀o, o′ ∈Pm
�+1, ∀r ∈R o � o′ ⇒ 
O(o, r) � 
O

(
o′, r

)
.

PROOF. Let r ∈ R, and let o, o′ ∈ Pm
�+1 be such that o � o′. Using the mono-

tonicity of the map SO , we have

∀i ∈ {1, . . . ,m} SO

(
o, r(i,1)

) ≥ SO

(
o′, r(i,1)

)
.

This inequality and the monotonicity of the map MH imply that

∀i ∈ {1, . . . ,m} MH

(
SO

(
o, r(i,1)

)
, r(i,2), . . . , r(i, � + 1)

)
≥ MH

(
SO

(
o′, r(i,1)

)
, r(i,2), . . . , r(i, � + 1)

)
.

Therefore 
O(o, r) ≤ 
O(o′, r) as requested. �

COROLLARY 5.6. The occupancy process (On)n≥0 is monotone.
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5.3. The FKG inequality. We consider the product space {0, . . . , �}m equipped
with the natural product order

d ≤ e ⇐⇒ ∀i ∈ {1, . . . ,m} d(i) ≤ e(i).

DEFINITION 5.7. A probability measure μ on {0, . . . , �}m is said to have pos-
itive correlations if for any functions f,g : {0, . . . , �}m →R which are nondecreas-
ing, we have

∑
d∈{0,...,�}m

f (d)g(d)μ(d) ≥
( ∑

d∈{0,...,�}m
f (d)μ(d)

)( ∑
d∈{0,...,�}m

g(d)μ(d)

)
.

The Harris inequality, or the FKG inequality in this context, says that any prod-
uct probability measure on {0, . . . , �}m has positive correlations. The FKG inequal-
ity is in fact true for any product probability measure on a product of the interval
[0,1]; see Section 2.2 of Grimmett’s book [12]. As far as correlations are con-
cerned, there is not much to do with the original Wright–Fisher model because its
state space is not partially ordered. So we examine the distance process.

PROPOSITION 5.8. Suppose that we are in the neutral case σ = 1. If the law
of D0 has positive correlations, then for any n ≥ 0, the law of Dn has positive
correlations.

PROOF. The Wright–Fisher model (Xn)n≥0 can be seen as a probabilistic cel-
lular automaton. Indeed, given the population Xn = x at time n, the individu-
als (Xn+1(i),1 ≤ i ≤ m) of the population at time n + 1 are independent. This
still holds for the distance process. By Corollary 5.4, the neutral distance process
(Dn)n≥0 is monotone. Monotone probabilistic cellular automata preserve the FKG
inequality. This is explained in detail by Mezić [18], and it was first observed by
Harris [13] at the very end of his article on continuous time processes. Because
the argument is very short, we reproduce it here. Suppose that the initial law μ

of D0 has positive correlations. Let f,g : {0, . . . , �}m → R be two nondecreasing
functions. For any d ∈ {0, . . . , �}m, the conditional law of D1 knowing that D0 = d

is a product measure on {0, . . . , �}m, thus it satisfies the FKG inequality, whence

∀d ∈ {0, . . . , �}m
E
(
f (D1)g(D1)|D0 = d

) ≥ E
(
f (D1)|D0 = d

)
E
(
g(D1)|D0 = d

)
.

We integrate the inequality with respect to the initial law μ:∑
d∈{0,...,�}m

E
(
f (D1)g(D1)|D0 = d

)
μ(d)

≥ ∑
d∈{0,...,�}m

E
(
f (D1)|D0 = d

)
E
(
g(D1)|D0 = d

)
μ(d).
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Since (Dn)n≥0 is monotone, the maps

d ∈ {0, . . . , �}m �→ E
(
f (D1)|D0 = d

)
,

d ∈ {0, . . . , �}m �→ E
(
g(D1)|D0 = d

)
,

are nondecreasing. By hypothesis, the initial law μ has positive correlations, there-
fore∑
d∈{0,...,�}m

E
(
f (D1)|D0 = d

)
E
(
g(D1)|D0 = d

)
μ(d)

≥
( ∑

d∈{0,...,�}m
E
(
f (D1)|D0 = d

)
μ(d)

)( ∑
d∈{0,...,�}m

E
(
g(D1)|D0 = d

)
μ(d)

)
.

The two above inequalities imply that the law of D1 has positive correlations. We
conclude by iterating the argument. �

6. Stochastic bounds. In this section, we take advantage of the monotonicity
of the map 
O to compare the process (On)n≥0 with simpler processes.

6.1. Lower and upper processes. We shall build a lower process (O�
n)n≥0 and

an upper process (O1
n)n≥0 satisfying

∀n ≥ 0 O�
n � On � O1

n.

Loosely speaking, the upper process evolves as follows. As long as there is no
master sequence present in the population, the process (O1

n)n≥0 evolves exactly
as the initial process (On)n≥0. When the first master sequence appears, all the
other chromosomes are set in the Hamming class 1; that is, the process jumps
to the state (1,m − 1,0, . . . ,0). As long as the master sequence is present, the
mutations on nonmaster sequences leading to nonmaster sequences are suppressed,
and any mutation of a master sequence leads to a chromosome in the first Hamming
class. The dynamics of the lower process is similar, except that the chromosomes
distinct from the master sequence are sent to the last Hamming class � instead
of the first one. We shall next construct precisely these dynamics. We define two
maps π�,π1 :Pm

�+1 → Pm
�+1 by setting

∀o ∈ Pm
�+1 π�(o) = (

o(0),0, . . . ,0,m − o(0)
)
,

π1(o) = (
o(0),m − o(0),0, . . . ,0

)
.

Obviously,

∀o ∈ Pm
�+1 π�(o) � o � π1(o).

We denote by W∗ the set of the occupancy distributions containing the master
sequence, that is,

W∗ = {
o ∈Pm

�+1 :o(0) ≥ 1
}
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and by N the set of the occupancy distributions which do not contain the master
sequence, that is,

N = {
o ∈ Pm

�+1 :o(0) = 0
}
.

Let 
O be the coupling map defined in Section 5.1. We define a lower map 
�
O by

setting, for o ∈ Pm
�+1 and r ∈ R,


�
O(o, r) =

⎧⎪⎨
⎪⎩


O(o, r), if o ∈ N and 
O(o, r) /∈ W∗,

π�

(

O(o, r)

)
, if o ∈ N and 
O(o, r) ∈ W∗,

π�

(

O

(
π�(o), r

))
, if o ∈ W∗.

Similarly, we define an upper map 
1
O by setting, for o ∈Pm

�+1 and r ∈R,


1
O(o, r) =

⎧⎪⎨
⎪⎩


O(o, r), if o ∈ N and 
O(o, r) /∈W∗,

π1
(

O(o, r)

)
, if o ∈ N and 
O(o, r) ∈W∗,

π1
(

O

(
π1(o), r

))
, if o ∈ W∗.

A direct application of Lemma 5.5 yields that the map 
�
O is below the map 
O

and the map 
1
O is above the map 
O in the following sense:

∀r ∈ R, ∀o ∈ Pm
�+1 
�

O(o, r) � 
O(o, r) � 
1
O(o, r).

We define a lower process (O�
n)n≥0 and an upper process (O1

n)n≥0 with the help
of the i.i.d. sequence (Rn)n≥1 and the maps 
�

O , 
1
O as follows. Let o ∈ Pm

�+1 be
the starting point of the process. We set O�

0 = O1
0 = o and

∀n ≥ 1 O�
n = 
�

O

(
O�

n−1,Rn

)
, O1

n = 
1
O

(
O1

n−1,Rn

)
.

PROPOSITION 6.1. Suppose that the three processes (O�
n)n≥0, (On)n≥0,

(O1
n)n≥0, start from the same occupancy distribution o. We have

∀n ≥ 0 O�
n � On � O1

n.

The proof is similar to the proof of Proposition 8.1 in [3].

6.2. Dynamics of the bounding processes. We study next the dynamics of the
processes (O�

n)n≥0 and (O1
n)n≥0 in W∗. The computations are the same for both

processes. Throughout the section, we fix θ to be either 1 or �, and we denote by
(Oθ

n)n≥0 the corresponding process. For the process (Oθ
n)n≥0, the states

T θ = {
o ∈ Pm

�+1 :o(0) ≥ 1 and o(0) + o(θ) < m
}

are transient, while the populations in N ∪ (W∗ \ T θ ) form a recurrent class. Let
us look at the transition mechanism of the process restricted to W∗ \ T θ . Since

W∗ \ T θ = {
o ∈ Pm

�+1 :o(0) ≥ 1 and o(0) + o(θ) = m
}
,
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we see that a state of W∗ \ T θ is completely determined by the first occu-
pancy number, which is equal to the number of copies of the master sequence
present in the population. From the previous observations, we conclude that,
whenever (Oθ

n)n≥0 starts in W∗ \ T θ , the dynamics of the number of master se-
quences (Oθ

n(0))n≥0 is Markovian until the time of exit from W∗ \ T θ . We denote
by (Zθ

n)n≥0 a Markov chain on {0, . . . ,m} with the following transition probabili-
ties: for h ∈ {1, . . . ,m} and k ∈ {0, . . . ,m},

∀n ≥ 0 P
(
Zθ

n+1 = k|Zθ
n = h

) = P
(
Oθ

n+1(0) = k|Oθ
n(0) = h

)
,

and for h = 0 and k ∈ {0, . . . ,m},
∀n ≥ 0 P

(
Zθ

n+1 = k|Zθ
n = 0

) =
(

m

k

)
MH(θ,0)k

(
1 − MH(θ,0)

)m−k
.

Let us denote by pθ(h, k) the above transition probability, and let us compute its
value. We use the definition of the transition mechanism of (Oθ

n)n≥0 to get

pθ(h, k) = ∑
i∈{0,...,m}

i∑
j=0

pθ(h, i, j, k)

where pθ(h, i, j, k) is given by

pθ(h, i, j, k) = P

⎛
⎜⎜⎝

i master sequences are selected,
j master sequences do not mutate,

k − j nonmaster sequences
mutate into a master sequence

∣∣∣∣∣∣∣Z
θ
n = h

⎞
⎟⎟⎠

=
(

m

i

)
(σh)i(m − h)m−i

((σ − 1)h + m)m

(
i

j

)
MH(0,0)j

(
1 − MH(0,0)

)i−j

×
(

m − i

k − j

)
MH(θ,0)k−j (1 − MH(θ,0)

)m−i−k+j
.

The Markov chain (Zθ
n)n≥0 corresponds to the evolution of the number of master

sequences in a Wright–Fisher model with two types, the master type having fit-
ness σ and the other type having fitness 1, and with the following mutation matrix
between the two types:

P(the master type mutates into the nonmaster type) = 1 − MH(0,0),

P (the nonmaster type mutates into the master type) = MH(θ,0).

We can also realize the Markov chain (Zθ
n)n≥0 on our common probability space.

We define two maps 
�,
1 : {0, . . . ,m} → Pm
�+1 by setting

∀i ∈ {0, . . . ,m} 
�(i) = (i,0, . . . ,0,m − i),


1(i) = (i,m − i,0, . . . ,0).
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Let i ∈ {0, . . . ,m} be the starting point of the process. We set Zθ
0 = i and

∀n ≥ 1 Zθ
n = 
θ

O

(

θ (Zθ

n−1
)
,Rn

)
(0).

This construction yields a Markov chain (Zθ
n)n≥0 starting from i with the adequate

transition matrix. Moreover the maps 
�, 
1 are nondecreasing. By Lemma 5.5,
the map 
O is also nondecreasing with respect to the occupancy distribution. We
conclude that the above coupling is monotone, and the Markov chain (Zθ

n)n≥0 is
monotone.

6.3. Invariant probability measures. Our goal is to estimate the law ν of the
fraction of the master sequence in the population at equilibrium. The probability
measure ν is the probability measure on the interval [0,1] satisfying the following
identities. For any function f : [0,1] → R,∫

[0,1]
f dν = lim

n→∞E

(
f

(
1

m
N(Xn)

))
= ∑

x∈(A�)m

f

(
1

m
N(x)

)
μ(x),

where μ is the invariant probability measure of the Markov chain (Xn)n≥0. In fact,
the probability measure ν is the image of μ through the map

x ∈ (
A�)m �→ 1

m
N(x) ∈ [0,1].

We denote by μ�
O , μO , μ1

O the invariant probability measures of the Markov
chains (O�

n)n≥0, (On)n≥0, (O1
n)n≥0. The probability ν is also the image of μO

through the map

o ∈ Pm
�+1 �→ 1

m
o(0) ∈ [0,1].

Thus, for any function f : [0,1] → R,∫
[0,1]

f dν = ∑
o∈Pm

�+1

f

(
o(0)

m

)
μO(o) = lim

n→∞E

(
f

(
1

m
On(0)

))
.

We fix now a nondecreasing function f : [0,1] → R such that f (0) = 0. Proposi-
tion 6.1 yields the inequalities

∀n ≥ 0 f

(
1

m
O�

n(0)

)
≤ f

(
1

m
On(0)

)
≤ f

(
1

m
O1

n(0)

)
.

Taking the expectation and sending n to ∞, we get
∑

o∈Pm
�+1

f

(
o(0)

m

)
μ�

O(o) ≤
∫
[0,1]

f dν ≤ ∑
o∈Pm

�+1

f

(
o(0)

m

)
μ1

O(o).

We seek next estimates on the above sums. The strategy is the same for the lower
and the upper sum. Thus we fix θ to be either 1 or �, and we study the invariant
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probability measure μθ
O . For the Markov chain (Oθ

n)n≥0, the states of T θ are tran-
sient, while the populations in N ∪ (W∗ \ T θ ) form a recurrent class. Let oθ

exit be
the occupancy distribution having m chromosomes in the Hamming class θ ,

∀l ∈ {0, . . . , �} oθ
exit(l) =

{
m, if l = θ ,
0, otherwise.

The process (Oθ
n)n≥0 always exits W∗ \ T θ at oθ

exit. This allows us to estimate the
invariant measure with the help of the following renewal result.

PROPOSITION 6.2. Let (Xn)n≥0 be a discrete time Markov chain with values
in a finite state space E which is irreducible and aperiodic. Let μ be the invariant
probability measure of the Markov chain (Xn)n≥0. Let W∗ be a subset of E , and
let e be a point of E \W∗. Let f be a map from E to R which vanishes on E \W∗.
Let

τ ∗ = inf
{
n ≥ 0 :Xn ∈ W∗}, τ = inf

{
n ≥ τ ∗ :Xn = e

}
.

We have ∑
x∈E

f (x)μ(x) = 1

E(τ |X0 = e)
E

(
τ∑

n=τ∗
f (Xn)

∣∣∣∣X0 = e

)
.

This result is proved in detail in [3]. We apply the renewal result of Proposi-
tion 6.2 to the process (Oθ

n)n≥0 restricted to N ∪ (W∗ \ T θ ), the set W∗ \ T θ , the
occupancy distribution oθ

exit and the function o �→ f (o(0)/m). Setting

τ ∗ = inf
{
n ≥ 0 :Oθ

n ∈ W∗}, τ = inf
{
n ≥ τ ∗ :Oθ

n = oθ
exit

}
,

we have ∑
o∈Pm

�+1

f

(
o(0)

m

)
μθ

O(o) = E(
∑τ

n=τ∗ f ((Oθ
n(0))/m)|Oθ

0 = oθ
exit)

E(τ |Oθ
0 = oθ

exit)
.

Yet, whenever the process (Oθ
n)n≥0 is in W∗ \ T θ , the dynamics of the number

of master sequences (Oθ
n(0))n≥0 is the same as the dynamics of the Markov chain

(Zθ
n)n≥0 defined in Section 6.2. Let τ0 be the hitting time of 0, defined by

τ0 = inf
{
n ≥ 0 :Zθ

n = 0
}
.

The process (Oθ
n)n≥0 always exits W∗ \ T θ at oθ

exit. Therefore τ coincides with
the exit time of W∗ \ T θ after τ ∗. Let i ∈ {1, . . . ,m}. From the previous elements,
we see that, conditionally on the event {Oθ

τ∗(0) = i}, the trajectory (Oθ
n(0), τ ∗ ≤

n ≤ τ) has the same law as the trajectory (Zθ
n,0 ≤ n ≤ τ0) starting from Zθ

0 = i,
whence

E
(
τ − τ ∗|Oθ

τ∗(0) = i
) = E

(
τ0|Zθ

0 = i
)
,

E

(
τ∑

n=τ∗
f

(
Oθ

n(0)

m

)∣∣∣Oθ
τ∗(0) = i

)
= E

(
τ0∑

n=0

f

(
Zθ

n

m

)∣∣∣Zθ
0 = i

)
.
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Conditioning with respect to Oθ
τ∗(0) and reporting in the formula for the invariant

probability measure μθ
O , we get

∑
o∈Pm

�+1

f

(
o(0)

m

)
μθ

O(o)

=
∑m

i=1 E(
∑τ0

n=0 f (Zθ
n/m)|Zθ

0 = i)P (Oθ
τ∗(0) = i|Oθ

0 = oθ
exit)

E(τ ∗|Oθ
0 = oθ

exit) + ∑m
i=1 E(τ0|Zθ

0 = i)P (Oθ
τ∗(0) = i|Oθ

0 = oθ
exit)

.

We must next estimate these expectations. In Section 7, we deal with the terms
involving the Markov chain (Zθ

n)n≥0. In Section 8, we deal with the discovery
time τ ∗.

7. Approximating processes. This section is devoted to the study of the dy-
namics of the Markov chains (Z�

n)n≥0 and (Z1
n)n≥0. The estimates are carried out

exactly in the same way for both Markov chains. As we said before, the Markov
chain (Zθ

n)n≥0 corresponds to the evolution of the number of master sequences in
a Wright–Fisher model with two types. Throughout the section, we fix θ = 1 or
θ = �, and we remove θ from the notation in most places, writing simply p,Zn

instead of pθ ,Zθ
n .

Asymptotic regime. We shall derive estimates in the regime where

� → +∞, m → +∞, q → 0, �q → a ∈]0,+∞[.
Several inequalities will be valid only when the parameters are sufficiently close
to their limits. We will say that a property holds asymptotically to express that it
holds for �,m large enough, q small enough and �q close enough to a.

7.1. Large deviations for the transition matrix. For p ∈ [0,1] and t ≥ 0, we
define

I (p, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t ln
t

p
+ (1 − t) ln

1 − t

1 − p
, 0 < p < 1, 0 ≤ t ≤ 1,

0, t = p = 0 or t = p = 1,

+∞,
(
p ∈ {0,1}, t �= p

)
or t > 1.

The function I (p, ·) is the rate function governing the large deviations of the bino-
mial distribution B(n,p) with parameters n and p. We recall a basic estimate for
the binomial coefficients.

LEMMA 7.1. For any n ≥ 1, any k ∈ {0, . . . , n}, we have∣∣∣∣ln n!
k!(n − k)! + k ln

k

n
+ (n − k) ln

n − k

n

∣∣∣∣ ≤ 2 lnn + 3.
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PROOF. The proof is standard; see, for instance, [8]. Setting, for n ∈ N,
φ(n) = lnn! − n lnn + n, we have

ln
n!

k!(n − k)! = lnn! − lnk! − ln(n − k)!

= n lnn − n + φ(n) − (
k lnk − k + φ(k)

)
− (

(n − k) ln(n − k) − (n − k) + φ(n − k)
)

= −k ln
k

n
− (n − k) ln

n − k

n
+ φ(n) − φ(k) − φ(n − k).

Comparing the discrete sum lnn! = ∑
1≤k≤n lnk to the integral

∫ n
1 lnx dx, we see

that 1 ≤ φ(n) ≤ lnn + 2 for all n ≥ 1. On one hand,

φ(n) − φ(k) − φ(n − k) ≤ lnn;
on the other hand,

φ(n) − φ(k) − φ(n − k) ≥ 1 − (lnk + 2) − (
ln(n − k) + 2

) ≥ −3 − 2 lnn,

and we have the desired inequalities. �

We define a function f : [0,1] → [0,1] by

f (r) = σr

(σ − 1)r + 1

and a function I� : [0,1]4 → [0,+∞] by

I�(r, s, β, t) = I
(
f (r), s

) + sI

(
MH(0,0),

β

s

)
+ (1 − s)I

(
MH(θ,0),

t − β

1 − s

)
.

The function I� depends on � through the mutation probabilities MH(0,0) and
MH(θ,0). Using Lemma 7.1 and the expression of pθ , we see that

∀h, i, j, k ∈ {0, . . . ,m}
lnp(h, i, j, k) = −mI

(
f

(
h

m

)
,

i

m

)
− iI

(
MH(0,0),

j

i

)

− (m − i)I

(
MH(θ,0),

k − j

m − i

)
+ �(h, i, j, k,m)

= −mI�

(
h

m
,

i

m
,

j

m
,

k

m

)
+ �(h, i, j, k,m),

where the error term �(h, i, j, k,m) satisfies

∀h, i, j, k ∈ {0, . . . ,m} ∣∣�(h, i, j, k,m)
∣∣ ≤ 6 lnm + 9.
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In the asymptotic regime, for θ = 1 or θ = �, we have MH(0,0) → e−a ,
MH(θ,0) → 0, so that, for r, s, β, t ∈ [0,1]4,

I�(r, s, β, t) →
{

I (r, s, t), if β = t ,
+∞, if β �= t ,

where the function I (r, s, t) is given by

∀r, s, t ∈ [0,1]3 I (r, s, t) = I
(
f (r), s

) + sI

(
e−a,

t

s

)
.

PROPOSITION 7.2. We define a function V1 on [0,1] × [0,1] by

∀r, t ∈ [0,1] V1(r, t) = inf
{
I (r, s, t) : s ∈ [0,1]}.

The one step transition probabilities of (Zn)n≥0 satisfy the large deviation prin-
ciple governed by V1: for r ∈ [0,1] and any subset U of [0,1], we have, for any
n ≥ 0,

− inf
{
V1(r, t) : t ∈ U

o}
≤ lim inf

�,m→∞,q→0
�q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = �rm�),

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = �rm�) ≤ − inf

{
V1(r, t) : t ∈ U

}
.

PROOF. Let r ∈ [0,1], and let U be a subset of [0,1]. For any n ≥ 0,

P
(
Zn+1 ∈ mU |Zn = �rm�) = ∑

k∈mU∩{0,...,m}
p
(�rm�, k)

= ∑
k∈{0,...,m}

k∈mU

m∑
i=0

i∑
j=0

p
(�rm�, i, j, k).

From the previous inequalities, we have

P
(
Zn+1 ∈ mU |Zn = �rm�)

≤ (m + 1)3 max
{
p
(�rm�, i, j, k) : 0 ≤ i ≤ m,0 ≤ j ≤ i, k ∈ mU

}
≤ m11 exp

(
−mmin

{
I�

(�rm�
m

,
i

m
,

j

m
,

k

m

)
: 0 ≤ j ≤ i ≤ m,k ∈ mU

})
.

For each m ≥ 1, let im, jm, km be three integers in {0, . . . ,m} which realize the
above minimum. By compactness of [0,1], up to the extraction of a subsequence,
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we can suppose that, as m goes to ∞, im/m → s, jm/m → β , km/m → t . If β < t ,
then

lim sup
�,m→∞,q→0

�q→a

−I�

(�rm�
m

,
im

m
,
jm

m
,
km

m

)

≤ lim sup
�,m→∞,q→0

�q→a

−
(

1 − im

m

)
I

(
MH(θ,0),

(km/m) − (jm/m)

1 − (im/m)

)
= −∞

because

lim sup
�,m→∞,q→0

�q→a

−km − jm

m
ln

(km − jm)/m

(1 − (im/m))MH (θ,0)
= −∞.

Thus we need only to consider the case where β = t . We have then

lim sup
�,m→∞,q→0

�q→a

−I�

(�rm�
m

,
im

m
,
jm

m
,
km

m

)
≤ −I

(
f (r), s

) − sI

(
e−a,

t

s

)
.

This implies the large deviation upper bound

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = �rm�) ≤ − inf

{
I (r, s, t) : s ∈ [0,1], t ∈ U

}
.

Conversely, let s, t ∈ [0,1]. We have

P
(
Zn+1 = �tm�|Zn = �rm�)

≥ p
(�rm�, �sm�, �tm�, �tm�)

≥ 1

m7 exp
(
−mI�

(�rm�
m

,
�sm�

m
,
�tm�
m

,
�tm�
m

))

≥ 1

m7 exp
(
−mI

(
f

(�rm�
m

)
,
�sm�

m

)
− �sm�I

(
MH(0,0),

�tm�
�sm�

)

− (
m − �sm�) ln

1

1 − MH(θ,0)

)
.

Taking ln and sending m,� to ∞, we obtain

lim inf
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+1 = �tm�|Zn = �rm�) ≥ −I (r, s, t).
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Suppose now that t belongs to U
o
, the interior of U . For m large enough, the integer

�tm� belongs to mU . From the previous estimate, we have

lim inf
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = �rm�) ≥ −I (r, s, t).

Optimizing over s, t , we get the large deviation lower bound

lim inf
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+1 ∈ mU |Zn = �rm�) ≥ − inf

{
I (r, s, t) : s ∈ [0,1], t ∈ U

o}
.

This finishes the proof of the large deviation principle. �

Proceeding in the same way, we can prove that the l-step transition probabilities
satisfy a large deviation principle. For l ≥ 1, we define a function Vl on [0,1] ×
[0,1] by

Vl(r, t) = inf

{
l−1∑
k=0

I (ρk, γk, ρk+1) :ρ0 = r, ρl = t, ρk, γk ∈ [0,1] for 0 ≤ k < l

}
.

COROLLARY 7.3. For l ≥ 1, the l-step transition probabilities of (Zn)n≥0
satisfy the large deviation principle governed by Vl : for any subset U of [0,1], any
r ∈ [0,1], we have, for any n ≥ 0,

− inf
{
Vl(r, t) : t ∈ U

o}
≤ lim inf

�,m→∞,q→0
�q→a

1

m
lnP

(
Zn+l ∈ mU |Zn = �rm�),

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Zn+l ∈ mU |Zn = �rm�) ≤ − inf

{
Vl(r, t) : t ∈ U

}
.

Let us examine when the rate function I (r, s, t) vanishes. We see that

I (r, s, t) = 0 ⇐⇒ s = f (r), e−a = t

s
.

Let us define a function F : [0,1] → [0,1] by

∀r ∈ [0,1] F(r) = e−af (r) = σre−a

(σ − 1)r + 1
.

The Markov chain (Zn)n≥0 can be considered as a random perturbation of the
dynamical system associated to the map F

z0 ∈ [0,1], ∀n ≥ 1 zn = F(zn−1).
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Let us set

ρ∗(a) =
⎧⎪⎨
⎪⎩

σe−a − 1

σ − 1
, if σe−a > 1,

0, if σe−a ≤ 1.

Since F is nondecreasing, the sequence (zn)n∈N is monotonous and it converges
to a fixed point of F . If σe−a ≤ 1, the function F admits only one fixed point, 0,
and (zn)n∈N converges to 0. If σe−a > 1, the function F admits two fixed points,
0 and ρ∗(a). If z0 > 0, then (zn)n∈N converges to ρ∗(a).

The natural strategy to study the Markov chain (Zn)n≥0 is to use the Freidlin–
Wentzell theory [10]. The crucial quantity to analyze the dynamics is the following
cost function V . We define, for s, t ∈ [0,1],

V (s, t) = inf
l≥1

Vl(s, t)

= inf
l≥1

inf

{
l−1∑
k=0

I (ρk, γk, ρk+1) :ρ0 = s, ρl = t, ρk, γk ∈ [0,1]

for 0 ≤ k < l

}
.

LEMMA 7.4. Suppose that σe−a > 1. For s, t ∈ [0,1], we have V (s, t) = 0 if
and only if:

• either s = t = 0,
• or there exists l ≥ 1 such that t = F l(s),
• or s �= 0, t = ρ∗(a).

PROOF. Throughout the proof we write ρ∗ instead of ρ∗(a). Let s, t ∈ [0,1]
be such that V (s, t) = 0. Suppose first that s = 0. Since I (0, γ, ρ) = +∞ unless
γ = ρ = 0, any sequence (ρ0, γ0, . . . , γl) such that ρ0 = s = 0 and

l−1∑
k=0

I (ρk, γk, ρk+1) < +∞

has to be the null sequence, so that necessarily t = 0. We suppose next that s > 0.
For each n ≥ 1, let (ρn

0 , γ n
0 , . . . , ρn

l(n)) be a sequence of length l(n) in [0,1] such
that

ρn
0 = s, ρn

l(n) = t,

l(n)−1∑
k=0

I
(
ρn

k , γ n
k , ρn

k+1
) ≤ 1

n
.

We consider two cases. If the sequence (l(n))n≥1 is bounded, then we can extract
a subsequence (

ρ
φ(n)
0 , γ

φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)



CRITICAL POPULATION AND ERROR THRESHOLD 1961

such that l(φ(n)) = l does not depend on n, and for any k ∈ {0, . . . , l − 1}, the
following limits exist:

lim
n→∞ρ

φ(n)
k = ρk, lim

n→∞γ
φ(n)
k = γk.

The map I being continuous, we have then

∀k ∈ {0, . . . , l − 1} I (ρk, γk, ρk+1) = 0,

whence

∀k ∈ {0, . . . , l} ρk = Fk(ρ0).

Since in addition ρ0 = s and ρl = t , we conclude that t = F l(s). Suppose next
that the sequence (l(n))n≥1 is not bounded. Our goal is to show that t = ρ∗. Using
Cantor’s diagonal procedure, we can extract a subsequence(

ρ
φ(n)
0 , γ

φ(n)
0 , . . . , ρ

φ(n)
l(φ(n))

)
such that, for any k ≥ 0, the following limits exist:

lim
n→∞ρ

φ(n)
k = ρk, lim

n→∞γ
φ(n)
k = γk.

The map I being continuous, we have then

∀k ≥ 0 I (ρk, γk, ρk+1) = 0,

whence

∀k ≥ 0 ρk = Fk(ρ0).

We have I (ρ∗, f (ρ∗), ρ∗) = 0. Let ε > 0. The map I being continuous, there
exists a neighborhood U of ρ∗ such that

∀ρ ∈ U V1
(
ρ∗, ρ

) ≤ I
(
ρ∗, f

(
ρ∗), ρ)

< ε.

Since s > 0, the sequence (F n(s))n∈N converges to ρ∗ and Fh(s) ∈ U for some
h ≥ 1. In particular,

lim
n→∞ρ

φ(n)
h = Fh(s) ∈ U,

so that, for n large enough, ρ
φ(n)
h is in U and

V
(
ρ∗, t

) ≤ V1
(
ρ∗, ρφ(n)

h

) + V
(
ρ

φ(n)
h , t

) ≤ ε + 1

n
.

Letting successively n go to ∞ and ε go to 0, we obtain that V (ρ∗, t) = 0. Let
δ ∈]0, ρ∗/2[, and let U =]ρ∗ − δ, ρ∗ + δ[. Let α be the infimum

α = inf
{
I (ρ0, γ0, ρ1) :ρ0 ∈ U,γ0 ∈ [0,1], ρ1 /∈ U

}
.
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Since I is continuous on the compact set U × [0,1] × ([0,1] \ U), then

∃(ρ∗
0 , γ ∗

0 , ρ∗
1
) ∈ U × [0,1] × ([0,1] \ U

)
α = I

(
ρ∗

0 , γ ∗
0 , ρ∗

1
)
.

The function F is nondecreasing and continuous, therefore

F(U) = F
([

ρ∗ − δ, ρ∗ + δ
]) = [

F
(
ρ∗ − δ

)
,F

(
ρ∗ + δ

)]
.

Moreover we have

ρ∗ − δ < F
(
ρ∗ − δ

) ≤ F
(
ρ∗ + δ

)
< ρ∗ + δ.

Thus F(U) ⊂ U and necessarily ρ∗
1 �= F(ρ∗

0 ) and α > 0. It follows that any se-
quence (ρ0, γ0, . . . , ρl) such that

ρ0 ∈ U,

l−1∑
k=0

I (ρk, γk, ρk+1) < α

is trapped in U . As a consequence, a point t satisfying V (ρ∗, t) = 0 must belong
to U . This is true for any δ > 0, hence for any neighborhood of ρ∗, thus t = ρ∗.

�

7.2. Persistence time. We recall that

τ0 = inf{n ≥ 0 :Zn = 0}.
In this section, we will estimate the expected hitting time τ0 starting from a point
of {1, . . . ,m}. This quantity approximates the persistence time of the master se-
quence w∗.

PROPOSITION 7.5. Let a ∈]0,+∞[ and let i ∈ {1, . . . ,m}. The expected hit-
ting time τ0 of 0 starting from i satisfies

lim
�,m→∞

q→0,�q→a

1

m
lnE(τ0|Z0 = i) = V

(
ρ∗(a),0

)
.

PROOF. Before proceeding to the proof, let us explain the general strategy,
which comes directly from the theory of Freidlin and Wentzell. To obtain the upper
bound on the persistence time, we show that, starting from any point in {1, . . . ,m},
the probability to reach a neighborhood of 0 in a finite number of steps is larger
than

exp
(−mV

(
ρ∗,0

) − mε
)
.

This way we can bound from above τ0 by a geometric law with this parameter;
see Lemma 7.6. To obtain the lower bound on the persistence time, we first show
in Lemma 7.7 that, starting from any point, the process has a reasonable proba-
bility of reaching any neighborhood of ρ∗ before visiting 0. This estimate is quite
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tedious because the process might start from Z0 = 1, which is close to the unsta-
ble fixed point of F . Since we need to control the hitting time of 0 starting from
any point, such an estimate seems to be indispensable, and it cannot be done in
the more general situations considered by Kifer [14] or Morrow and Sawyer [19]
without adding some extra assumptions. So we give a lower bound on the prob-
ability of following the iterates of a discrete approximation of F . With a Poisson
fluctuation, the process jumps away from 0, then, because F is expanding in the
neighborhood of 0, it reaches the point ηm after lnm steps, for some η > 0, and
with a finite number of additional steps, it lands in a neighborhood of ρ∗. We study
then the excursions of the process outside a neighborhood of 0 and ρ∗. Whenever
the process is outside such a neighborhood, it reenters the neighborhood in a fi-
nite number of steps with probability larger than 1 − exp(−cm) for some c > 0
depending on the neighborhood. Thus the process is very unlikely to stay a long
time outside a neighborhood of the two attractors {0, ρ∗}. In fact, the length of
an excursion outside a neighborhood of {0, ρ∗} is bounded by a constant, up to a
very unlikely event. We consider the hitting time τδ of the δ-neighborhood of 0.
Obviously we have τ0 ≥ τδ . We focus on the portion of the trajectory which starts
at the last visit to a neighborhood of ρ∗ before reaching a neighborhood of 0. Such
an excursion occurs at a given time with probability less than

exp
(−mV

(
ρ∗,0

) + mε
)
,

and therefore it is unlikely to occur before time exp(mV (ρ∗,0) − mε).
We start now with the implementation of this scheme. Throughout the proof

we write ρ∗ instead of ρ∗(a). We start by proving an upper bound on the hitting
time. The next argument works in both cases σe−a ≤ 1 and σe−a > 1. In the case
σe−a ≤ 1, we have ρ∗ = 0 and V (ρ∗,0) = 0, and the proof becomes simpler, so
there is no need to consider a path from ρ∗ to 0. We have I (ρ∗, f (ρ∗), ρ∗) = 0.
Let ε > 0. The map I being continuous, there exists δ > 0 such that

∀ρ ∈ ]
ρ∗ − δ, ρ∗ + δ

[
I
(
ρ,f (ρ), ρ∗) < ε.

Moreover the sequence (F n(1))n∈N converges to ρ∗, thus

∃h ≥ 1 Fh(1) ∈ ]
ρ∗ − δ, ρ∗ + δ

[
.

Let l ≥ 1 and let (ρ0, γ0, . . . , ρl) be a sequence in [0,1] such that

ρ0 = ρ∗, ρl = 0,

l−1∑
k=0

I (ρk, γk, ρk+1) ≤ V
(
ρ∗,0

) + ε.

We consider the sequence obtained by concatenating the two previous sequences

t0 = 1, s0 = f (1), t1 = F(1), . . . , th−1 = Fh−1(1),

sh−1 = f (th−1),

th = Fh(1), sh = f (th), th+1 = ρ∗, sh+1 = γ0,

th+2 = ρ1, . . . , th+l = ρl−1, sh+l = γl−1, th+l+1 = ρl = 0.
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We set j = h + l + 1. This sequence satisfies

t0 = 1, tj = 0,

j−1∑
k=0

I (tk, sk, tk+1) ≤ V
(
ρ∗,0

) + 3ε.

We have then

P(Zj = 0|Z0 = m) ≥
j−1∏
k=0

p
(�mtk�, �msk�, �mtk+1�, �mtk+1�).

Taking ln, sending m to ∞ and using the estimate on the transition probabilities
obtained in the proof of Proposition 7.2, we have

lim inf
�,m→∞,q→0

�q→a

1

m
lnP(Zj = 0|Z0 = m) ≥ −

j−1∑
k=0

I (tk, sk, tk+1) ≥ −V
(
ρ∗,0

) − 3ε.

Thus, asymptotically, we have

P(Zj = 0|Z0 = m) ≥ exp
(−mV

(
ρ∗,0

) − 4mε
)
.

Using the monotonicity of the Markov chain (Zn)n≥0, we conclude that, asymp-
totically,

∀i ∈ {1, . . . ,m} P(Zj = 0|Z0 = i) ≥ exp
(−mV

(
ρ∗,0

) − 4mε
)
.

We have thus a lower bound on the probability of reaching 0 in j steps starting
from any point in {1, . . . ,m}. For any n ≥ 0, we have, using the Markov property,

P
(
τ0 > (n + 1)j |Z0 = m

)
=

m∑
h=1

P
(
τ0 > (n + 1)j,Znj = h|Z0 = m

)

=
m∑

h=1

P(τ0 > nj,Znj = h,Znj+1 �= 0, . . . ,Z(n+1)j �= 0|Z0 = m)

=
m∑

h=1

P(Znj+1 �= 0, . . . ,Z(n+1)j �= 0|τ0 > nj,Znj = h,Z0 = m)

× P(τ0 > nj,Znj = h|Z0 = m)

=
m∑

h=1

P(τ0 > j |Z0 = h)P (τ0 > nj,Znj = h|Z0 = m)

≤ (
1 − exp

(−mV
(
ρ∗,0

) − 4mε
))

P(τ0 > nj |Z0 = m).

Iterating this inequality, we obtain the following result.
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LEMMA 7.6. For any ε > 0, there exists j ≥ 1 such that

∀n ≥ 0 P(τ0 > nj |Z0 = m) ≤ (
1 − exp

(−mV
(
ρ∗,0

) − 4mε
))n

.

It follows that

E(τ0|Z0 = m) = ∑
n≥0

(n+1)j∑
k=nj+1

P(τ0 ≥ k|Z0 = m)

≤ ∑
n≥0

jP (τ0 > nj |Z0 = m) ≤ j exp
(
mV

(
ρ∗,0

) + 4mε
)
,

whence

lim sup
�,m→∞,q→0

�q→a

1

m
lnE(τ0|Z0 = m) ≤ V

(
ρ∗,0

) + 4ε.

Letting ε go to 0 yields the desired upper bound.
We compute next a lower bound on the hitting time. If σe−a ≤ 1, then ρ∗ = 0,

V (ρ∗,0) = 0, and obviously,

lim inf
�,m→∞,q→0

�q→a

1

m
lnE(τ0|Z0 = m) ≥ V

(
ρ∗,0

) = 0.

Thus we need only to consider the case σe−a > 1. We start by estimating from
below the probability of going from 1 to a neighborhood of ρ∗ without visiting 0.
Before proceeding with the mathematical details, let us explain the strategy to
get this lower bound. When Z0 = 1, the binomial law involved in the replication
mechanism can be approximated by a Poisson law of parameter σ , and the process
(Zn)n≥0 can jump to any fixed h ∈ N with a probability larger than a positive
quantity independent of m. Using a simple estimate on the central term of the
binomial law, we have that

P
(
Zn+1 = G(h)|Zn = h

) ≥ 1

(m + 1)2 ,

where G is a map from {0, . . . ,m} to {0, . . . ,m} such that

1

m
G(h) ≥ F

(
h

m

)
− 1

m
.

We study then the iterates of the function F(x) − 1/m. This function, which is
a small perturbation of F , has two fixed points, one unstable close to 0, of order
1/m, and one stable close to ρ∗. We take h large enough so that h/m is larger than
the unstable fixed point. Then the repulsive dynamics of F(x) − 1/m will bring
the point h/m close to a value η > 0 (independent of m) in a number of iterates of
order lnm. Once the process (Zn)n≥0 is at �ηm�, a finite number of iterates leads
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into the neighborhood of ρ∗. The lower bound is obtained by combining the three
steps

P(1 → h)P (h → ηm)P
(
ηm → (

ρ∗ − δ
)
m
) ≥ c

(
1

(m + 1)2

)c lnm+c

,

where c is a constant independent of m. This is the idea of the proof of the next
lemma.

LEMMA 7.7. For any δ > 0, there exists c > 0, depending on δ, such that,
asymptotically,

P
(
Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� > m

(
ρ∗ − δ

)|Z0 = 1
) ≥ 1

mc lnm
.

PROOF. The binomial law B(n,p) of parameters n ≥ 0 and p < 1 is maximal
at �(n + 1)p�, therefore(

n⌊
(n + 1)p

⌋)p�(n+1)p�(1 − p)n−�(n+1)p� ≥ 1

n + 1
.

See, for instance, Chapter VI in Feller’s book [9]. We shall use this inequality to
bound from below the transition probabilities of the Markov chain (Zn)n≥0. Let us
define a map G : {0, . . . ,m} → {0, . . . ,m} by

∀h ∈ {0, . . . ,m − 1} G(h) =
⌊(⌊

(m + 1)f

(
h

m

)⌋
+ 1

)
MH(0,0)

⌋
,

G(m) = ⌊
(m + 1)MH(0,0)

⌋
.

The map G depends on the parameters m,� and q . Applying the previous lower
bound to the binomial laws involved in the transition step of (Zn)n≥0, we obtain

∀n,h ≥ 0 P
(
Zn+1 ≥ G(h)|Zn = h

)
≥ ∑

k≥G(h)

p

(
h,

⌊
(m + 1)f

(
h

m

)⌋
,G(h), k

)

≥ 1

(m + 1)2 .

It follows that for n,h ≥ 0,

P
(
Z1 ≥ G1(h), . . . ,Zn ≥ Gn(h)|Z0 = h

)
= ∑

l≥Gn−1(h)

P
(
Z1 ≥ G1(h), . . . ,Zn−1 = l,Zn ≥ Gn(h)|Z0 = h

)

= ∑
l≥Gn−1(h)

P
(
Zn ≥ Gn(h)|Zn−1 = l

)
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× P
(
Z1 ≥ G1(h), . . . ,Zn−1 = l|Z0 = h

)
≥ P

(
Zn ≥ Gn(h)|Zn−1 = Gn−1(h)

)
× P

(
Z1 ≥ G1(h), . . . ,Zn−1 ≥ Gn−1(h)|Z0 = h

)
≥ 1

(m + 1)2 P
(
Z1 ≥ G1(h), . . . ,Zn−1 ≥ Gn−1(h)|Z0 = h

)
.

Iterating this inequality, we obtain, for n,h ≥ 0,

P
(
Z1 ≥ G1(h), . . . ,Zn ≥ Gn(h)|Z0 = h

) ≥ 1

(m + 1)2n
.

The map G is nondecreasing. Moreover, for h ∈ {0, . . . ,m},
G(h) ≥

⌊
(m + 1)f

(
h

m

)
MH(0,0)

⌋
≥ mf

(
h

m

)
MH(0,0) − 1.

Let us define a map H : [0,1] → [0,1] by

∀x ∈ [0,1] H(x) = eaMH(0,0)F (x) − 1

m
.

We can rewrite the previous inequality as

∀h ∈ {0, . . . ,m} G(h) ≥ mH

(
h

m

)
.

Iterating this inequality, we get, thanks to the fact that both G and H are nonde-
creasing,

∀n ≥ 0, ∀h ∈ {0, . . . ,m} Gn(h) ≥ mHn

(
h

m

)
.

The map H , which is a small perturbation of the map F , has two fixed points
ρ′ < ρ′′, whose expansion is given by

ρ′ = 1

m(σMH(0,0) − 1)
+ o

(
1

m

)
,

ρ′′ = σMH(0,0) − 1

σ − 1
− σMH(0,0)

m(σMH (0,0) − 1)
+ o

(
1

m

)
.

Notice that MH(0,0) converges to e−a , so ρ′ is close to 0 and ρ′′ is close to ρ∗.
Let η > 0. If x ≤ η, we have F(x) ≥ αx, where

α = σe−a

(σ − 1)η + 1
.

For η sufficiently small, we have α > 1 and the map F restricted to [0, η] is ex-
panding. Let β = (1 + α)/2. Asymptotically, we have αeaMH(0,0) ≥ β . Let us
study the iterates of x through the map H . We set

N = inf
{
n ≥ 0 :Hn(x) > η

}
.
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For 1 ≤ n < N , we have then

Hn(x) = H
(
Hn−1(x)

) ≥ βHn−1(x) − 1

m
,

which we rewrite as
1

βn
Hn(x) ≥ 1

βn−1 Hn−1(x) − 1

mβn−1 .

Summing from n = 1 to N − 1, we get

HN−1(x) ≥ βN−1

(
x − 1

m

N−2∑
n=0

1

βn

)
≥ βN−1

(
x − β

m(β − 1)

)
.

Let h be an integer such that

h ≥ 2
β

β − 1
.

Notice that this condition does not depend on m. We suppose that m > h. We
take x = h/m, and we denote by N(h) the associated integer. From the previous
inequalities, we have then

η ≥ HN(h)−1
(

h

m

)
≥ βN(h)−1 h

2m
.

Thus N(h) satisfies

N(h) ≤ 1 + 1

lnβ
ln

2mη

h
,

and we have, asymptotically,

P(Z1 > 0, . . . ,ZN(h)−1 > 0,ZN(h) > mη|Z0 = h)

≥ P

(
Z1 ≥ mH 1

(
h

m

)
, . . . ,ZN(h) ≥ mHN(h)

(
h

m

)∣∣∣Z0 = h

)

≥ P
(
Z1 ≥ G1(h), . . . ,ZN(h) ≥ GN(h)(h)|Z0 = h

)
≥ 1

(m + 1)2N(h)
.

We control next the probability to go from 1 to h. We have

P(Z1 ≥ h|Z0 = 1) ≥
(

m

h

)
σh(m − 1)m−h

(σ − 1 + m)m
MH(0,0)h.

In this regime, where h is fixed and m is large, the binomial law involved in the
replication mechanism can be approximated by a Poisson law of parameter σ ,
whence, asymptotically,

P(Z1 ≥ h|Z0 = 1) ≥ 1

2
exp(−σ)

σh

h! exp(−ah).
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We control finally the probability to go from ηm to the neighborhood of ρ∗. We
do this by following the iterates of F starting from η, and by controlling the error
term with respect to the iterates of H .

LEMMA 7.8. We suppose that σe−a > 1. For n ≥ 0, x ∈ [0,1], we have

Hn(x) ≥ (
eaMH(0,0)F

)n
(x) − 1

m

(σMH(0,0))n+1

σMH(0,0) − 1
.

PROOF. We have

∀x ∈ [0,1] ∣∣F ′(x)
∣∣ ≤ σe−a,

and, for any n ≥ 0,

Hn+1(x) = H
(
Hn(x)

) = eaMH(0,0)F
(
Hn(x)

) − 1

m
.

We shall prove the following inequality by induction on n:

Hn(x) ≥ (
eaMH(0,0)F

)n
(x) − 1

m

n∑
k=1

(
σMH(0,0)

)k
.

The inequality is true for n = 0,1. Suppose that the inequality holds for some
n ≥ 0. Since F is nondecreasing, we deduce from the inequality on F ′ and the
mean value theorem that

Hn+1(x) ≥ eaMH(0,0)F

((
eaMH(0,0)F

)n
(x) − 1

m

n∑
k=1

(
σMH(0,0)

)k) − 1

m

≥ (
eaMH(0,0)F

)n+1
(x) − σMH(0,0)

1

m

n∑
k=1

(
σMH(0,0)

)k − 1

m

≥ (
eaMH(0,0)F

)n+1
(x) − 1

m

n+1∑
k=1

(
σMH(0,0)

)k
,

and the inequality is proved at rank n+1. Summing the geometric series, we obtain
the inequality stated in the lemma. �

Let δ > 0. The sequence (F n(η))n∈N converges to ρ∗, thus F t(η) > ρ∗ − δ for
some t ≥ 1. For m large enough, we have also

(
eaMH(0,0)F

)t
(η) − 1

m

(σMH(0,0))t+1

σMH(0,0) − 1
> ρ∗ − δ,
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and Lemma 7.8 implies that Ht(η) > ρ∗ − δ. Let i be an integer strictly larger
than ηm. We have

P
(
Z1 > 0, . . . ,Zt−1 > 0,Zt > m

(
ρ∗ − δ

)|Z0 = i
)

≥ P
(
Z1 ≥ mH 1(η), . . . ,Zt ≥ mHt(η)|Z0 = i

)
≥ P

(
Z1 ≥ mH 1

(
i

m

)
, . . . ,Zt ≥ mHt

(
i

m

)∣∣∣Z0 = i

)

≥ P
(
Z1 ≥ G1(i), . . . ,Zt ≥ Gt(i)|Z0 = i

)
≥ 1

(m + 1)2t
.

To conclude, we use the monotonicity of (Zn)n≥0, and we combine the three pre-
vious estimates. The values h, t do not depend on m, and there exists a positive
constant c depending on η,h such that, asymptotically,

N(h) + t + 1 < c lnm,(
1

2
exp(−σ)

σh

h! exp(−ah)

)c lnm 1

(m + 1)2N(h)+2t
≥ 1

mc lnm
.

Let us set s = �c lnm� − (N(h) + t). Recall that t depends on η, δ and h depends
on η. We have

P
(
Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� > m

(
ρ∗ − δ

)|Z0 = 1
)

≥ ∑
j≥h

∑
i>mη

P
(
Z1 ≥ h, . . . ,Zs−1 ≥ h,Zs = j,Zs+1 > 0, . . . ,Zs+N(h)−1 > 0,

Zs+N(h) = i,Zs+N(h)+1 > 0, . . . ,Zs+N(h)+t−1 > 0,

Zs+N(h)+t > m
(
ρ∗ − δ

)|Z0 = 1
)

≥ ∑
j≥h

∑
i>mη

P (Z1 ≥ h, . . . ,Zs−1 ≥ h,Zs = j |Z0 = 1)

× P(Zs+1 > 0, . . . ,Zs+N(h)−1 > 0,Zs+N(h) = i|Zs = j)

× P
(
Zs+N(h)+1 > 0, . . . ,Zs+N(h)+t−1 > 0,

Zs+N(h)+t > m
(
ρ∗ − δ

)|Zs+N(h) = i
)

≥ P(Z1 ≥ h, . . . ,Zs ≥ h|Z0 = 1)

× ∑
i>mη

P (Z1 > 0, . . . ,ZN(h)−1 > 0,ZN(h) = i|Z0 = h)

× P
(
Z1 > 0, . . . ,Zt−1 > 0,Zt > m

(
ρ∗ − δ

)|Z0 = i
)

≥ (
P(Z1 ≥ h|Z0 = 1)

)s
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× P(Z1 > 0, . . . ,ZN(h)−1 > 0,ZN(h) > mη|Z0 = h)
1

(m + 1)2t

≥
(

1

2
exp(−σ)

σh

h! exp(−ah)

)s 1

(m + 1)2N(h)+2t
≥ 1

mc lnm
.

This is the required lower bound. �

Whenever the starting point is far away from 0, the estimate of Lemma 7.7 can
be considerably enhanced, as shown in the next lemma.

LEMMA 7.9. We suppose that σe−a > 1. For any δ > 0, there exist h ≥ 1 and
c > 0, depending on δ, such that, asymptotically,

P
(
Z1 > 0, . . . ,Zh−1 > 0,Zh > m

(
ρ∗ − δ

)|Z0 = �mδ�) ≥ 1 − exp(−cm).

PROOF. Let δ > 0. The sequence (F n(δ))n∈N converges to ρ∗. Thus there
exists h ≥ 1 such that Fh(δ) > ρ∗ − δ. By continuity of the map F , there exist
ρ0, ρ1, . . . , ρh > 0 such that ρ0 = δ, ρh > ρ∗ − δ and

∀k ∈ {1, . . . , h} F(ρk−1) > ρk.

Now,

P
(
Z1 > 0, . . . ,Zh−1 > 0,Zh > m

(
ρ∗ − δ

)|Z0 = �mδ�)
≥ P

(∀k ∈ {1, . . . , h},Zk ≥ mρk|Z0 = �mδ�).
Passing to the complementary event, we have

P
(∃k ∈ {1, . . . , h − 1},Zk = 0 or Zh ≤ m

(
ρ∗ − δ

)|Z0 = �mδ�)
≤ P

(∃k ∈ {1, . . . , h},Zk < mρk|Z0 = �mδ�)
≤ ∑

1≤k≤h

P
(
Z1 ≥ mρ1, . . . ,Zk−1 ≥ mρk−1,Zk < mρk|Z0 = �mδ�)

≤ ∑
1≤k≤h

∑
i≥mρk−1

P
(
Zk−1 = i,Zk < mρk|Z0 = �mδ�)

≤ ∑
1≤k≤h

∑
i≥mρk−1

P(Zk < mρk|Zk−1 = i)P
(
Zk−1 = i|Z0 = �mδ�)

≤ ∑
1≤k≤h

P
(
Z1 < mρk|Z0 = �mρk−1�).

The large deviation principle for the transition probabilities of the Markov chain
(Zn)n≥0 stated in Proposition 7.2 implies that for k ∈ {1, . . . , h},

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Z1 < mρk|Z0 = �mρk−1�)

≤ − inf
{
I (ρk−1, s, t) : s ∈ [0,1], t ≤ ρk

}
< 0.
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Since h is fixed, we conclude that

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(∃k ∈ {1, . . . , h − 1},Zk = 0

or Zh ≤ m
(
ρ∗ − δ

) ∣∣∣Z0 = �mδ�
)

< 0,

and this yields the desired estimate. �

With the estimate of Lemma 7.9, we show that the process is very unlikely to
stay a long time in [mδ,m(ρ∗ − δ)].

COROLLARY 7.10. We suppose that σe−a > 1. Let δ > 0. There exist h ≥ 1
and c > 0 such that, asymptotically,

∀k ∈ [
mδ,m

(
ρ∗ − δ

)]
, ∀n ≥ 0

P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ n|Z0 = k

) ≤ exp
(
−cm

⌊
n

h

⌋)
.

PROOF. Let k ∈ [mδ,m(ρ∗ − δ)]. Let δ > 0, and let h ≥ 1 and c > 0 be asso-
ciated to δ as in Lemma 7.9. We divide the interval {0, . . . , n} into subintervals of
length h, and we use repeatedly the estimate of Lemma 7.9. Let i ≥ 0. We write

P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ (i + 1)h|Z0 = k

)
= ∑

δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)

for 0 ≤ t ≤ (i + 1)h,Zih = j |Z0 = k
)

= ∑
δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ ih,Zih = j |Z0 = k

)

× P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for ih ≤ t ≤ (i + 1)h|Zih = j

)
≤ ∑

δm≤j≤(ρ∗−δ)m

P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ ih,Zih = j |Z0 = k

)

× P
(
Zh ≤ m

(
ρ∗ − δ

)|Z0 = �mδ�)
≤ P

(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ ih|Z0 = k

)
exp(−cm).

Iterating this inequality, we obtain

∀i ≥ 0 P
(
mδ ≤ Zt ≤ m

(
ρ∗ − δ

)
for 0 ≤ t ≤ ih|Z0 = k

) ≤ exp(−cmi).

The claim of the corollary follows by applying this inequality with i equal to the
integer part of n/h. �

We have computed the relevant estimates to reach the neighborhood of ρ∗. Our
next goal is to study the hitting time τ0 starting from a neighborhood of ρ∗. Since
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we need only a lower bound, we shall study the hitting time of a neighborhood
of 0. For δ > 0, we define

τδ = inf{n ≥ 0 :Zn < mδ}.
Let i > (ρ∗ − δ)m. We shall estimate the expectation of τδ starting from i. The
strategy consists of looking at the portion of the trajectory starting at the last visit
to the neighborhood of ρ∗ before reaching the neighborhood of 0. Accordingly,
we define

S = max
{
n ≤ τδ :Zn >

(
ρ∗ − δ

)
m
}
.

Notice that S is not a Markov time. We write, for n, k ≥ 1,

P(τδ ≤ n|Z0 = i)

= ∑
1≤s<t≤n

P (τδ = t, S = s|Z0 = i)

= ∑
1≤s<t≤n

s<t≤s+k

P (τδ = t, S = s|Z0 = i) + ∑
1≤s<n

s+k<t≤n

P (τδ = t, S = s|Z0 = i).

Let h ≥ 1 and c > 0 be associated to δ as in Corollary 7.10. For 1 ≤ s < n and
t > s + k,

P(τδ = t, S = s|Z0 = i)

= ∑
mδ≤j≤(ρ∗−δ)m

P (τδ = t, S = s,Zs+1 = j |Z0 = i)

≤ ∑
mδ≤j≤(ρ∗−δ)m

P

(
δm ≤ Zr ≤ (

ρ∗ − δ
)
m

for s + 1 ≤ r ≤ t − 1

∣∣∣Zs+1 = j

)

≤ m exp
(
−cm

⌊
t − s − 2

h

⌋)
,

whence ∑
1≤s<n

s+k<t≤n

P (τδ = t, S = s|Z0 = i) ≤ n
∑
t≥k

m exp
(
−cm

⌊
t − 1

h

⌋)
.

For 1 ≤ s < t ≤ n and t ≤ s + k,

P(τδ = t, S = s|Z0 = i)

≤ ∑
j>(ρ∗−δ)m

P (τδ = t, S = s,Zs = j |Z0 = i)

≤ ∑
j>(ρ∗−δ)m

P (Zt < δm|Zs = j)

≤ mP
(
Zt−s < δm|Z0 = ⌊(

ρ∗ − δ
)
m
⌋)

,
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whence∑
1≤s<n

s<t≤s+k

P (τδ = t, S = s|Z0 = i) ≤ n
∑

1≤t≤k

mP
(
Zt < δm|Z0 = ⌊(

ρ∗ − δ
)
m
⌋)

.

Putting together the previous inequalities, we obtain

P(τδ ≤ n|Z0 = i) ≤ n
∑
t≥k

m exp
(
−cm

⌊
t − 1

h

⌋)

+ n
∑

1≤t≤k

mP
(
Zt < δm|Z0 = ⌊(

ρ∗ − δ
)
m
⌋)

.

We choose k large enough so that

lim sup
�,m→∞,q→0

�q→a

1

m
ln
(∑

t≥k

m exp
(
−cm

⌊
t − 1

h

⌋))
< −V

(
ρ∗ − δ, δ

)
,

and we use the large deviation principle stated in Corollary 7.3 to estimate the
second sum,

lim sup
�,m→∞,q→0

�q→a

1

m
ln
( ∑

1≤t≤k

mP
(
Zt < δm|Z0 = ⌊(

ρ∗ − δ
)
m
⌋))

≤ − min
1≤t≤k

Vt

(
ρ∗ − δ, δ

) ≤ −V
(
ρ∗ − δ, δ

)
.

Applying the previous inequalities with n = exp(mV (ρ∗ − δ, δ) − mδ), we con-
clude that

lim
�,m→∞,q→0

�q→a

P
(
τδ ≤ exp

(
mV

(
ρ∗ − δ, δ

) − mδ
)|Z0 = i

) = 0

and therefore

lim inf
�,m→∞,q→0

�q→a

1

m
lnE(τδ|Z0 = i) ≥ V

(
ρ∗ − δ, δ

) − δ.

To derive a lower bound on the expectation of τ0 starting from 1, we combine the
previous estimates as follows. By Lemma 7.7, asymptotically,

P
(
Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� > m

(
ρ∗ − δ

)|Z0 = 1
) ≥ 1

mc lnm
.

Thus, letting i = �(ρ∗ − δ)m� + 1, for any n ≥ �c lnm�,

P(τ0 > n|Z0 = 1)

≥ ∑
j≥i

P (Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� = j, τ0 > n|Z0 = 1)
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≥ ∑
j≥i

P (Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� = j |Z0 = 1)

× P(Z�c lnm�+1 > 0, . . . ,Zn > 0|Z�c lnm� = j)

≥ P
(
Z1 > 0, . . . ,Z�c lnm�−1 > 0,Z�c lnm� > m

(
ρ∗ − δ

)|Z0 = 1
)

× P(Z�c lnm�+1 > 0, . . . ,Zn > 0|Z�c lnm� = i)

≥ 1

mc lnm
P
(
τ0 > n − �c lnm�|Z0 = i

)
.

Summing from n = �c lnm� to +∞, we get

E(τ0|Z0 = 1) ≥ 1

mc lnm
E(τ0|Z0 = i).

The very definition of τδ implies that τ0 ≥ τδ , whence

E(τ0|Z0 = i) ≥ E(τδ|Z0 = i).

From the lower bound on τδ and the previous inequalities, we deduce that

lim inf
�,m→∞,q→0

�q→a

1

m
lnE(τ0|Z0 = 1) ≥ V

(
ρ∗ − δ, δ

) − δ.

The conclusion follows by letting δ go to 0. �

7.3. Concentration near ρ∗. In this section, we estimate the numerator of the
last formula of Section 6.3. As usual, we drop the superscript θ from the notation
when it is not necessary, and we put it back when we need to emphasize the differ-
ences between the cases θ = � and θ = 1. Let f : [0,1] → R be a nondecreasing
continuous function such that f (0) = 0. Our goal here is to estimate the expected
value of the sum

τ0∑
n=0

f

(
Zn

m

)
.

The Markov chain (Zn)n≥0 is a perturbation of the dynamical system associated
to the map F , and therefore it spends most of its time in the neighborhood of the
stable fixed point ρ∗. On very large time intervals, the process visits points far
away from ρ∗, and then it returns quickly to ρ∗. From this picture, we conclude
that the fraction of the time spent away from ρ∗ is negligible. We will show that the
above sum is, on average, comparable to f (ρ∗)τ0.

PROPOSITION 7.11. We suppose that σe−a > 1. We have, uniformly with re-
spect to i ∈ {1, . . . ,m},

lim
�,m→∞

q→0,�q→a

E(
∑τ0

n=0 f (Zn/m)|Z0 = i)

E(τ0|Z0 = i)
= f

(
ρ∗).
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PROOF. Before proceeding to the proof, let us explain the general strategy,
which comes directly from the theory of Freidlin and Wentzell. For δ > 0, we
denote by U(δ) the δ-neighborhood of ρ∗,

U(δ) = ]
ρ∗ − δ, ρ∗ + δ

[
.

We choose δ small enough, so that when the process is in U(2δ), the value
f (Zn/m) is approximated by f (ρ∗). When the process is outside of {0} ∪ U(2δ),
it reenters U(δ) in �c lnm� steps with probability at least m−c lnm, for some
c > 0; see Lemma 7.14. Therefore the average length of an excursion is bounded
by mc lnm. At a given time, the probability to start an excursion from U(δ) reaching
the outside of U(2δ) is less than exp(−cm), for some c > 0. With this estimate we
can control the number of these excursions (see Lemma 7.13), and we show that,
typically, their total length until the time τ0 is negligible compared to τ0.

We start now the detailed proof. Let ε > 0. Since f is continuous, there exists
δ > 0 such that

∀ρ ∈ U(2δ)
∣∣f (ρ) − f

(
ρ∗)∣∣ < ε.

We define then a sequence of stopping times in order to track the excursions of
(Zn)n≥0 outside U(δ). More precisely, we set T0 = 0 and

T ∗
1 = inf

{
n ≥ 0 :

Zn

m
∈ U(δ)

}
, T1 = inf

{
n ≥ T ∗

1 :
Zn

m
/∈ U(2δ)

}
,

...

T ∗
k = inf

{
n ≥ Tk−1 :

Zn

m
∈ U(δ)

}
, Tk = inf

{
n ≥ T ∗

k :
Zn

m
/∈ U(2δ)

}
,

...

Next, we decompose the sum over the intervals [Tk−1, T
∗
k [, [T ∗

k , Tk[, k ≥ 1. De-
noting by s ∧ t the minimum min(s, t), we have

τ0∑
n=0

f

(
Zn

m

)
− f

(
ρ∗)τ0

= ∑
k≥1

T ∗
k ∧τ0−1∑

n=Tk−1∧τ0

(
f

(
Zn

m

)
− f

(
ρ∗)) + ∑

k≥1

Tk∧τ0−1∑
n=T ∗

k ∧τ0

(
f

(
Zn

m

)
− f

(
ρ∗)).

We bound next the absolute value as follows:∣∣∣∣∣
τ0∑

n=0

f

(
Zn

m

)
− f

(
ρ∗)τ0

∣∣∣∣∣ ≤ 2f (1)
∑
k≥1

(
T ∗

k ∧ τ0 − Tk−1 ∧ τ0
) + ετ0.

It remains to deal with the sum. We define, for n ≥ 0,

K(n) = max{k ≥ 1 :Tk−1 < n},
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and the sum becomes

∑
k≥1

(
T ∗

k ∧ τ0 − Tk−1 ∧ τ0
) =

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
)
.

Let η > 0. We set

tηm = exp
(
m
(
V
(
ρ∗,0

) + η
))

.

We decompose the sum as follows:

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
) ≤ 1τ0>t

η
m
τ0 + 1τ0≤t

η
m

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
)
.

We suppose that the process starts from i ∈ {1, . . . ,m}. The estimates are carried
out exactly in the same way for any value of i, therefore, to alleviate the notation,
we remove the starting point from the notation. Throughout the proof the expecta-
tion E and the probability P are meant with respect to the initial condition Z0 = i.
Taking expectation in the previous inequalities, we get∣∣∣∣∣E

(
τ0∑

n=0

f

(
Zn

m

))
− f

(
ρ∗)E(τ0)

∣∣∣∣∣
≤ εE(τ0) + 2f (1)E(1τ0>t

η
m
τ0) + 2f (1)E

(
1τ0≤t

η
m

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
))

.

Next, we take care of the second term.

LEMMA 7.12. For any N,j ≥ 1,

E(τ01τ0>Nj ) ≤ NjP (τ0 > Nj) + ∑
n≥N

jP (τ0 > nj).

PROOF. We compute

E(τ01τ0>Nj ) = ∑
k>Nj

kP (τ0 = k) = ∑
k>Nj

∑
n≥0

1n<kP (τ0 = k)

= ∑
n≥0

∑
k>Nj

k>n

P (τ0 = k) = ∑
n≥0

P
(
τ0 > max(Nj,n)

)

≤ NjP (τ0 > Nj) + ∑
n≥Nj

P (τ0 > n).

Next,

∑
n≥Nj

P (τ0 > n) = ∑
n≥N

j−1∑
k=0

P(τ0 > nj + k) ≤ ∑
n≥N

jP (τ0 > nj),
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and we have the desired inequality. �

We apply Lemma 7.6 with ε = η/8: there exists j ≥ 1 such that

∀n ≥ 0 P(τ0 > nj |Z0 = m) ≤ (
1 − exp

(−mV
(
ρ∗,0

) − mη/2
))n

.

We apply Lemma 7.12 with this j and

N = ⌊
tηm/j

⌋ =
⌊

1

j
exp

(
mV

(
ρ∗,0

) + mη
)⌋

,

and we use the previous inequality

E(τ01τ0>t
η
m
)

≤ E(τ01τ0>Nj ) ≤ NjP (τ0 > Nj) + ∑
n≥N

jP (τ0 > nj)

≤ (
Nj + j exp

(
mV

(
ρ∗,0

) + mη/2
))(

1 − exp
(−mV

(
ρ∗,0

) − mη/2
))N

≤ (1 + j) exp
(
mV

(
ρ∗,0

) + mη
)

exp
(−N exp

(−mV
(
ρ∗,0

) − mη/2
))

.

Thanks to the choice of N , this last quantity goes to 0 as m goes to ∞. Thus

lim
m→∞E(1τ0>t

η
m
τ0) = 0.

We deal now with the last sum in the inequality before Lemma 7.12. We give first
an upper bound on K .

LEMMA 7.13. We suppose that σe−a > 1. There exists c > 0, depending on δ,
such that, asymptotically,

∀k,n ≥ 0 P
(
K(n) > k

) ≤ nk

k! exp(−cmk).

PROOF. For k ≥ 0, we define

Sk = sup
{
T ∗

k ≤ n < Tk :
Zn

m
∈ U(δ)

}
.

For k,n ≥ 0, we have

P
(
K(n) > k

) = P(Tk < n) = ∑
t∗≤s<t<n

P
(
T ∗

k = t∗, Sk = s, Tk = t
)
.

Let h ≥ 1 and c > 0 be associated to δ as in Corollary 7.10. We can suppose that
h ≥ 2. For given values of t∗ and s, we split the sum over t in two parts,∑

t : s<t<n

P
(
T ∗

k = t∗, Sk = s, Tk = t
) = ∑

t : t>s+h+1

· · · + ∑
t : s<t≤s+h+1

· · · .
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We study next the first sum, when t > s + h + 1. We condition on the state at
time s + 1∑

t : t>s+h+1

· · · = ∑
t : t>s+h+1

j∈mU(2δ)\mU(δ)

P
(
T ∗

k = t∗, Sk = s,Zs+1 = j, Tk = t
)

≤ ∑
t : t>s+h+1

j∈mU(2δ)\mU(δ)

P

(
T ∗

k = t∗,Zs+1 = j,Zt /∈ mU(2δ)

Zs+1, . . . ,Zt−1 ∈ mU(2δ) \ mU(δ)

)

= ∑
t : t>s+h+1

j∈mU(2δ)\mU(δ)

P
(
Zs+1, . . . ,Zt−1 ∈ mU(2δ) \ mU(δ),

Zt /∈ mU(2δ)|Zs+1 = j
)

× P
(
T ∗

k = t∗,Zs+1 = j
)
.

For 0 ≤ s < n and t > s + h + 1,

P
(
Zs+1, . . . ,Zt−1 ∈ mU(2δ) \ mU(δ),Zt /∈ mU(2δ)|Zs+1 = j

)
≤ P

(
mδ ≤ Zr ≤ m

(
ρ∗ − δ

)
for s + 1 ≤ r ≤ t − 1

∣∣∣Zs+1 = j

)

+ P

(
Zr ≥ m

(
ρ∗ + δ

)
for s + 1 ≤ r ≤ t − 1

∣∣∣Zs+1 = j

)

≤ exp
(
−cm

⌊
t − s − 2

h

⌋)
.

In fact, in Corollary 7.10, we gave an upper bound on the first probability. Yet the
second probability can be handled in exactly the same way. Thus

∑
t : t>s+h+1

· · · ≤
( ∑

t≥h+1

exp
(
−cm

⌊
t − 1

h

⌋))
P
(
T ∗

k = t∗
)
.

Let us focus on the second sum. We condition on the state at time s∑
t : s<t≤s+h+1

· · · = ∑
t : s<t≤s+h+1

j∈mU(δ)

P
(
T ∗

k = t∗, Sk = s,Zs = j, Tk = t
)

≤ ∑
t : s<t≤s+h+1

j∈mU(δ)

P
(
Zt /∈ mU(2δ)|Zs = j

)
P
(
T ∗

k = t∗,Zs = j
)

≤ ∑
t : 1≤t≤h+1
j∈mU(δ)

P
(
Zt /∈ mU(2δ)|Z0 = j

)
P
(
T ∗

k = t∗,Zs = j
)
.
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For any j ∈ mU(δ), using the monotonicity of (Zn)n≥0,

P
(
Zt /∈ mU(2δ)|Z0 = j

)
≤ P

(
Zt ≤ m

(
ρ∗ − 2δ

)|Z0 = j
) + P

(
Zt ≥ m

(
ρ∗ + 2δ

)|Z0 = j
)

≤ P
(
Zt ≤ m

(
ρ∗ − 2δ

)|Z0 = ⌊(
ρ∗ − δ

)
m
⌋)

+ P
(
Zt ≥ m

(
ρ∗ + 2δ

)|Z0 = ⌊(
ρ∗ + δ

)
m
⌋)

.

We use the large deviation principle stated in Corollary 7.3 to estimate the last two
terms. For any t ∈ {1, . . . , h + 1},

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Zt ≤ m

(
ρ∗ − 2δ

)|Z0 = ⌊(
ρ∗ − δ

)
m
⌋)

≤ − inf
{
Vt

(
ρ∗ − δ, ρ

)
:ρ ≤ ρ∗ − 2δ

}
,

lim sup
�,m→∞,q→0

�q→a

1

m
lnP

(
Zt ≥ m

(
ρ∗ + 2δ

)|Z0 = ⌊(
ρ∗ + δ

)
m
⌋)

≤ − inf
{
Vt

(
ρ∗ + δ, ρ

)
:ρ ≥ ρ∗ + 2δ

}
.

By compactness, the infima are realized. Because of the constraints on ρ, the point
ρ realizing the infimum

inf
{
Vt

(
ρ∗ − δ, ρ

)
:ρ ≤ ρ∗ − 2δ

}
is not an iterate of ρ∗ − δ through F . Hence by Lemma 7.4, the above infimum is
positive. We argue in the same way for the second infimum, and we conclude that
there exists c′ > 0, depending on δ, such that, asymptotically,

∀j ∈ mU(δ)
∑

t : 1≤t≤h+1

P
(
Zt /∈ mU(2δ)|Z0 = j

) ≤ exp
(−c′m

)
,

whence ∑
t : s<t≤s+h+1

· · · ≤ exp
(−c′m

)
P
(
T ∗

k = t∗
)
.

Let c′′ > 0 be such that, asymptotically,

∑
t≥h+1

exp
(
−cm

⌊
t − 1

h

⌋)
+ exp

(−c′m
) ≤ exp

(−c′′m
)
.

Reporting in the initial equality, we obtain that, asymptotically, for any n, k ≥ 0,

P(Tk < n) ≤ ∑
t∗≤s<n

exp
(−c′′m

)
P
(
T ∗

k = t∗
)
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≤ ∑
s<n

exp
(−c′′m

)
P
(
T ∗

k ≤ s
)

≤ ∑
s<n

exp
(−c′′m

)
P(Tk−1 < s).

Iterating this inequality, we obtain

P(Tk < n) ≤ ∑
0≤n0<···<nk−1<n

exp
(−c′′mk

) ≤ nk

k! exp
(−c′′mk

)

as required. �

We estimate now the last sum in the inequality before Lemma 7.12. By the
Cauchy–Schwarz inequality, we have

E

(
1τ0≤t

η
m

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
))

= ∑
k≥1

E
(
1τ0≤t

η
m

1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
))

(©)
≤ ∑

k≥1

P
(
τ0 ≤ tηm,K(τ0) ≥ k

)1/2(
E
(
1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
)2))1/2

≤ ∑
k≥1

P
(
K

(
tηm

) ≥ k
)1/2(

E
(
1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
)2))1/2

.

If 1 ≤ k ≤ K(τ0), then Tk−1 < τ0 and ZTk−1 > 0, so that, using the Markov prop-
erty,

E
(
1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
)2)

= ∑
1≤j≤m

E
(
1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
)2|ZTk−1 = j

)
P(ZTk−1 = j)

≤ ∑
1≤j≤m

E
((

T ∗
1 ∧ τ0

)2|Z0 = j
)
P(ZTk−1 = j).

We will next bound the time T ∗
1 ∧ τ0, starting from j ∈ {1, . . . ,m}.

LEMMA 7.14. We suppose that σe−a > 1. For any δ > 0, there exists c > 0,
depending on δ, such that, asymptotically, for j ∈ {1, . . . ,m},

P
(
m
(
ρ∗ − δ

)
< Z�c lnm� < m

(
ρ∗ + δ

)|Z0 = j
) ≥ 1

mc lnm
.

PROOF. Using Lemma 7.7, there exists c > 0 such that, asymptotically,

P
(
Z�c lnm� ≤ m

(
ρ∗ − δ

)|Z0 = 1
) ≤ 1 − 1

mc lnm
.
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Proceeding as in Lemma 7.9, we obtain that there exist h, c′ > 0 such that, asymp-
totically,

P
(
Zh ≥ m

(
ρ∗ + δ

)|Z0 = m
) ≤ exp

(−c′m
)
.

We have then

P
(
Z�c lnm� ≥ m

(
ρ∗ + δ

)|Z0 = m
)

= ∑
j∈{1,...,m}

P
(
Z�c lnm� ≥ m

(
ρ∗ + δ

)
,Z�c lnm�−h = j |Z0 = m

)

= ∑
j∈{1,...,m}

P
(
Zh ≥ m

(
ρ∗ + δ

)|Z0 = j
)
P(Z�c lnm�−h = j |Z0 = m)

≤ exp
(−c′m

)
.

Using the monotonicity of (Zn)n≥0, we have

P
(
Z�c lnm� /∈ ]

m
(
ρ∗ − δ

)
,m

(
ρ∗ + δ

)[ |Z0 = j
)

≤ P
(
Z�c lnm� ≤ m

(
ρ∗ − δ

)|Z0 = j
) + P

(
Z�c lnm� ≥ m

(
ρ∗ + δ

)|Z0 = j
)

≤ P
(
Z�c lnm� ≤ m

(
ρ∗ − δ

)|Z0 = 1
) + P

(
Z�c lnm� ≥ m

(
ρ∗ + δ

)|Z0 = m
)

≤ 1 − 1

mc lnm
+ exp

(−c′m
)
.

This estimate is uniform with respect to j ∈ {1, . . . ,m}. �

COROLLARY 7.15. We suppose that σe−a > 1. For any δ > 0, there exists
c > 0, depending on δ, such that, asymptotically, for j ∈ {1, . . . ,m},

∀n ≥ 0 P
(
T ∗

1 ∧ τ0 ≥ n�c lnm�|Z0 = j
) ≤

(
1 − 1

mc lnm

)n

.

PROOF. We proceed as in Corollary 7.10 to obtain this inequality. We divide
the interval {0, . . . , n�c lnm�} into subintervals of length �c lnm�, and we use re-
peatedly the estimate of Lemma 7.14. �

By Corollary 7.15, we have, asymptotically, for any j ∈ {1, . . . ,m},
E
((

T ∗
1 ∧ τ0

)2|Z0 = j
) = ∑

k≥1

P
(
T ∗

1 ∧ τ0 ≥ √
k|Z0 = j

)

≤ ∑
k≥1

(
1 − 1

mc lnm

)�√k/�c lnm��
.

Let us set

α = 1 − 1

mc lnm
, t = �c lnm�.
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We have
∑
k≥1

α�√k/t� ≤ ∑
k≥1

α
√

k/t−1 ≤
∫ ∞

0
α

√
x/t−1 dx = t2

α(lnα)2

∫ ∞
0

e−√
y dy,

therefore, asymptotically, for any j ∈ {1, . . . ,m},
E
((

T ∗
1 ∧ τ0

)2|Z0 = j
) ≤ m3c lnm.

Reporting in the inequality before Lemma 7.14, we have

∀k ≥ 1 E
(
1k≤K(τ0)

(
T ∗

k ∧ τ0 − Tk−1
)2) ≤ m3c lnm.

Plugging this estimate in (©) and using Lemma 7.13, we obtain

E

(
1τ0≤t

η
m

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
))

≤ ∑
k≥0

(
m3c lnm)1/2

P
(
K

(
tηm

)
> k

)1/2

≤ m3c lnm

(
tηm exp(−cm/3) + 1 + ∑

k≥t
η
m exp(−cm/3)

(
(t

η
m)k

k! exp(−cmk)

)1/2)

≤ m3c lnm

(
tηm exp(−cm/3) + 1 + ∑

k≥0

exp
(

k

2
− cm

k

3

))
.

To get the last inequality, we have used that k! ≥ (k/e)k , whence, for k ≥
t
η
m exp(−cm/3),

(t
η
m)k

k! ≤
(

et
η
m

k

)k

≤ exp(k + cmk/3).

We choose η such that η < c/3. The above inequality implies that

lim sup
�,m→∞,q→0

�q→a

1

m
lnE

(
1τ0≤t

η
m

K(τ0)∑
k=1

(
T ∗

k ∧ τ0 − Tk−1
))

≤ max
(
V
(
ρ∗,0

) + η − c

3
,0

)
< V

(
ρ∗,0

)
.

All these estimates, together with Proposition 7.5, imply that, asymptotically, uni-
formly with respect to i ∈ {1, . . . ,m},∣∣∣∣∣E

(
τ0∑

n=0

f

(
Zn

m

)∣∣∣Z0 = i

)
− f

(
ρ∗)E(τ0|Z0 = i)

∣∣∣∣∣ ≤ 3εE(τ0|Z0 = i).

This achieves the proof of Proposition 7.11. �
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8. The neutral phase. We denote by N the set of the populations which do
not contain the master sequence w∗, that is,

N = (
A� \ {

w∗})m.

Since we deal with the sharp peak landscape, the transition mechanism of the
process restricted to the set N is neutral. We consider a Wright–Fisher process
(Xn)n≥0 starting from a population of N . We wish to evaluate the first time when
a master sequence appears in the population,

τ∗ = inf{n ≥ 0 :Xn /∈ N }.
We call the time τ∗ the discovery time. Until the time τ∗, the process evolves
in N , and the dynamics of the Wright–Fisher model in N does not depend on σ .
In particular, the law of the discovery time τ∗ is the same for the Wright–Fisher
model with σ > 1 and the neutral Wright–Fisher model with σ = 1. Therefore, we
compute the estimates for the latter model.

Neutral hypothesis. Throughout this section, we suppose that σ = 1.

8.1. Mutation dynamics. We consider a Markov chain (Yn)n≥0 with state
space {0, . . . , �} and having for transition matrix the lumped mutation matrix MH .
In this section, we recall some properties and estimates concerning the Markov
chain (Yn)n≥0. We refer to the corresponding section of [3] for the detailed
proofs. The Markov chain (Yn)n≥0 is monotone. We denote by B the binomial
law B(�,1 − 1/κ) with parameters � and 1 − 1/κ , that is,

∀b ∈ {0, . . . , �} B(b) =
(

�

b

)(
1 − 1

κ

)b(1

κ

)�−b

.

The matrix MH is reversible with respect to the binomial law B. This binomial
law is the invariant probability measure of the Markov chain (Yn)n≥0. When �

grows, the law B concentrates exponentially fast in a neighborhood of its mean
�κ = �(1 − 1/κ). We restate next without proofs several inequalities and estimates
proved in [3].

LEMMA 8.1. For b ≤ �/2, we have

1

κ�

(
�

2b

)b

≤ B(b) ≤ �b

κ�−b
.

PROPOSITION 8.2. We suppose that � → +∞, q → 0, �q → a ∈]0,+∞[.
Asymptotically, we have

∀n ≥ √
� P (Yn ≥ ln�|Y0 = 0) ≥ 1 − exp

(−1
2(ln�)2).
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PROPOSITION 8.3. We suppose that � → +∞, q → 0, �q → a ∈]0,+∞[.
Let ε ∈]0,1[. There exists c(ε) > 0 such that, asymptotically, we have

∀n ≥ 4�

aε
P
(
Yn ≥ �κ(1 − ε)|Y0 = 0

) ≥ 1 − exp
(−c(ε)�

)
.

We define

τ0 = inf{n ≥ 0 :Yn = 0}.

PROPOSITION 8.4. For any a ∈]0,+∞[,

lim sup
�→∞,q→0

�q→a

1

�
lnE(τ0|Y0 = �) ≤ lnκ.

8.2. Ancestral lines. Let us define an ancestral line. For i ∈ {1, . . . ,m} and
n ≥ 1, we denote by I(i, n, n− 1) the index of the ancestor at time n− 1 of the ith
chromosome at time n. More precisely, if the ith chromosome of the population at
time n has been obtained by replicating the j th chromosome of the population at
time n − 1, then I(i, n, n − 1) = j . For s ≤ n, the index I(i, n, s) of the ancestor
at time s of the ith chromosome at time n is then defined recursively with the help
of the following formula:

I(i, n, s) = I
(
I(i, n, n − 1), n − 1, s

)
.

We define also I(i, n, n) = i. The ancestor at time s of the ith chromosome at
time n is the chromosome

ancestor(i, n, s) = Xs

(
I(i, n, s)

)
.

The ancestral line of the ith chromosome at time n is the sequence of its ancestors
until time 0,(

ancestor(i, n, s),0 ≤ s ≤ n
) = (

Xs

(
I(i, n, s)

)
,0 ≤ s ≤ n

)
.

PROPOSITION 8.5. Let b ∈ {0, . . . ,m}, and let (Xn)n≥0 be the neutral
Wright–Fisher process starting from (b)m. Let i ∈ {1, . . . ,m}. For any n ≥ 0, the
law of the ancestral line (ancestor(i, n, s),0 ≤ s ≤ n) of the ith chromosome of Xn

is equal to the law of (Y0, . . . , Yn) starting from b.

The proof is standard. One can proceed by induction as in [3]. In fact, the an-
cestral lines of the individuals at time n are given by a coalescent process. Along
an ancestral line, a chromosome moves according to the mutation dynamics given
by the matrix MH .
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8.3. Discovery time. The dynamics of the processes (O�
n)n≥0, (O1

n)n≥0 in N
are the same as the original process (On)n≥0. Therefore we can use the original
process to compute the discovery time

τ ∗ = inf
{
n ≥ 0 :On ∈ W∗}.

The law of the discovery time τ ∗ is the same for the distance process and the
occupancy process. With a slight abuse of notation, we let

τ ∗ = inf
{
n ≥ 0 :Dn ∈ W∗}.

We will carry out the estimates of τ ∗ for the distance process (Dn)n≥0. Notice that
the case α = +∞ is not covered by the result of next proposition. This case will be
handled separately, with the help of the intermediate inequality of Corollary 8.7.

Notation. For b ∈ {0, . . . , �}, we denote by (b)m the vector column whose com-
ponents are all equal to b.

PROPOSITION 8.6. Let a ∈]0,+∞[ and α ∈ [0,+∞[. For any d ∈ N ,

lim
�,m→∞,q→0

�q→a,(m/�)→α

1

�
lnE

(
τ ∗|D0 = d

) = lnκ.

PROOF. By Corollary 5.4, the neutral distance process (Dn)n≥0 is monotone.
Therefore, for any d ∈ N , we have

E
(
τ ∗|D0 = (1)m

) ≤ E
(
τ ∗|D0 = d

) ≤ E
(
τ ∗|D0 = (�)m

)
.

To bound the discovery time τ ∗ from above, we consider the time needed for a
single chromosome to discover the master sequence w∗, and we remark that, if the
master sequence has not been discovered until time n in the distance process, then
certainly the ancestral line of any chromosome present at time n does not contain
the master sequence. By Proposition 8.5, the ancestral line of any chromosome
present at time n has the same law as Y0, . . . , Yn. Therefore, we conclude that

∀n ≥ 0 P
(
τ ∗ > n|D0 = (�)m

) ≤ P(τ0 > n|Y0 = �),

where τ0 is the hitting time of 0 for the process (Yn)n≥0. Summing this inequality
over n ≥ 0, we obtain the following upper bound.

COROLLARY 8.7. For any d ∈ N , any m ≥ 1, we have

E
(
τ ∗|D0 = d

) ≤ E(τ0|Y0 = �).
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With the help of Proposition 8.4, we obtain the desired upper bound. To bound
the discovery time τ ∗ from below, we use the same strategy as in [3]. There are
two main differences in the case of the Wright–Fisher model. First the time scale
is multiplied by m, because m mutations can occur at each generation. Second, the
neutral distance process (Dn)n≥0 has positive correlations. This makes the proof
substantially simpler than in the case of the Moran model, where a technical ex-
ponential estimate had to be used instead of a correlation inequality. We give here
only the main steps of the proof. The details are similar to [3] in that they involve
repeated intermediate conditionings, use of the Markov property and monotonicity.

We suppose that the distance process starts from (1)m, and we will estimate the
probability of a specific scenario leading to a discovery time close to κ�. Let E be
the event

E = {∀n ≤ �3/4, ∀i ∈ {1, . . . ,m},Ui,1
n > q/(κ − 1)

}
.

If the event E occurs, then, until time �3/4, none of the mutation events in the
process (Dn)n≥0 can create a master sequence. Let ε > 0. Conditioning on the
population at time m�3/4, we obtain

P
(
τ ∗ > κ�(1−ε)|D0 = (1)m

)
≥ P

(
τ ∗ > κ�(1−ε),E |D0 = (1)m

)
≥ P

(
τ ∗ > κ�(1−ε)|D0 = (ln�)m

)
P
(
D�3/4 ≥ (ln�)m,E |D0 = (1)m

)
.

We first study the last term in the above inequality. The status of the process at
time �3/4 is a function of the random matrices

Rn = (
Si

n,U
i,1
n , . . . ,Ui,�

n

)
1≤i≤m, 1 ≤ n ≤ �3/4.

We make an intermediate conditioning with respect to the variables Si
n,

P
(
D�3/4 ≥ (ln�)m,E |D0 = (1)m

)
= E

(
P
(
D�3/4 ≥ (ln�)m,E |Si

n,1 ≤ i ≤ m,1 ≤ n ≤ �3/4)|D0 = (1)m
)
.

The variables Si
n,1 ≤ i ≤ m,1 ≤ n ≤ �3/4 being fixed, all the indices of the

chromosomes selected for replication are fixed, and since the mutation map
MH(·, u1, . . . , u�) is nondecreasing with respect to u1, . . . , u�, the state of the
process at time �3/4 is a nondecreasing function of the variables

Ui,1
n , . . . ,Ui,�

n , 1 ≤ i ≤ m,1 ≤ n ≤ �3/4.

Thus the events E and D�3/4 ≥ (ln�)m are both nondecreasing with respect to these
variables. By the FKG inequality for a product measure,

P
(
D�3/4 ≥ (ln�)m,E |Si

n,1 ≤ i ≤ m,1 ≤ n ≤ �3/4)
≥ P

(
D�3/4 ≥ (ln�)m|Si

n,1 ≤ i ≤ m,1 ≤ n ≤ �3/4)P(E).



1988 R. CERF

We have used the fact that E does not depend on the variables Si
n. Reporting in the

conditioning, we obtain

P
(
D�3/4 ≥ (ln�)m,E

) ≥ P
(
D�3/4 ≥ (ln�)m

)
P(E).

By Proposition 5.8, the distance process starting from (1)m has positive correla-
tions, therefore

P
(
D�3/4 ≥ (ln�)m

) ≥ ∏
1≤i≤m

P
(
D�3/4(i) ≥ ln�

) = P(Y�3/4 ≥ ln�)m.

Using the estimate of Proposition 8.2, we get

P
(
D�3/4 ≥ (ln�)m,E

) ≥
(

1 − exp
(
−1

2
(ln�)2

))m(
1 − q

κ − 1

)m�3/4

.

We study next

P
(
τ ∗ > κ�(1−ε)|D0 = (ln�)m

)
.

The following inequality can be proved exactly as Lemma 10.15 of [3].

LEMMA 8.8. For b ∈ {1, . . . , �}, we have

∀n ≥ 0 P
(
τ ∗ ≤ n|D0 = (b)m

) ≤ nm
B(0)

B(b)
.

Let ε′ > 0. Conditioning on the population at time �2, we obtain

P
(
τ ∗ > κ�(1−ε)|D0 = (ln�)m

)
≥ P

(
τ ∗ > κ�(1−ε)|D0 = (

�κ

(
1 − ε′))m)

(♥)

× P
(
τ ∗ > �2,D�2 ≥ (

�κ

(
1 − ε′))m|D0 = (ln�)m

)
.

We first take care of the last probability. We write

P
(
τ ∗ > �2,D�2 ≥ (

�κ

(
1 − ε′))m|D0 = (ln�)m

)
(�)

≥ P
(
D�2 ≥ (

�κ

(
1 − ε′))m|D0 = (ln�)m

) − P
(
τ ∗ ≤ �2|D0 = (ln�)m

)
.

To control the last term, we use the inequality of Lemma 8.8 with n = �2 and
b = ln�, and Lemma 8.1,

P
(
τ ∗ ≤ �2|D0 = (ln l)m

) ≤ �2m
B(0)

B(ln �)
≤ �2m

(
2 ln�

�

)ln�

.(�)

For the other term, we use the monotonicity of the process (Dn)n≥0, the fact that
it has positive correlations (by Proposition 5.8), and Proposition 8.3 to get

P
(
D�2 ≥ (

�κ

(
1 − ε′))m|D0 = (ln�)m

)
≥ ∏

1≤i≤m

P
(
D�2(i) ≥ �κ

(
1 − ε′)|D0 = (0)m

)
(�)

= P
(
Y�2 ≥ �κ

(
1 − ε′)|Y0 = 0

)m ≥ (
1 − exp

(−c
(
ε′)�))m.
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Plugging the inequalities (�) and (�) into the inequality (�), we obtain

P
(
τ ∗ > �2,D�2 ≥ (

�κ

(
1 − ε′))m|D0 = (ln�)m

)
(♣)

≥ (
1 − exp

(−c
(
ε′)�))m − �2m

(
2 ln�

�

)ln�

.

Using Lemma 8.8 with n = κ�(1−ε) and b = �κ(1 − ε′), and a standard large devi-
ation estimates, we see that, for ε′ small enough, there exists c(ε) > 0 such that,
for � large enough,

P
(
τ ∗ ≤ κ�(1−ε)|D0 = (

�κ

(
1 − ε′))m) ≤ κ�(1−ε)mB(0)

B(�κ(1 − ε′))
≤ me−c(ε)�.(♠)

Plugging the estimates (♣) and (♠) into the inequality (♥), we conclude that, for �

large enough,

P
(
τ ∗ > κ�(1−ε)|D0 = (1)m

)

≥
(

1 − exp
(
−1

2
(ln�)2

))m(
1 − q

κ − 1

)m�3/4

× (
1 − m exp

(−c(ε)�
))((

1 − exp
(−c

(
ε′)�))m − �2m

(
2 ln�

�

)ln�)
.

Moreover, by Markov’s inequality,

E
(
τ ∗|D0 = (1)m

) ≥ κ�(1−ε)P
(
τ ∗ ≥ κ�(1−ε)|D0 = (1)m

)
.

It follows that

lim inf
�,m→∞,q→0

�q→a,(m/�)→α

1

�
lnE

(
τ ∗|D0 = (1)m

) ≥ (1 − ε) lnκ.

Letting ε go to 0 yields the desired lower bound. �

9. Synthesis. As in Theorem 3.1, we suppose that � → +∞, m → +∞,
q → 0, in such a way that �q → a ∈]0,+∞[, m/� → α ∈ [0,+∞]. We put now
together the estimates of Sections 7 and 8 in order to evaluate the formula for the
invariant measure obtained at the end of Section 6.3. Using the monotonicity of
(Zθ

n)n≥0, we have

E
(
τ0|Zθ

0 = 1
) ≤

m∑
i=1

E
(
τ0|Zθ

0 = i
)
P
(
Oθ

τ∗(0) = i|Oθ
0 = oθ

exit
)

≤ E
(
τ0|Zθ

0 = m
)
.
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These inequalities and Proposition 7.5 imply that

lim
�,m→∞

q→0,�q→a

1

m
ln

m∑
i=1

E
(
τ0|Zθ

0 = i
)
P
(
Oθ

τ∗(0) = i|Oθ
0 = oθ

exit
) = V

(
ρ∗(a),0

)
.

By Proposition 8.6, for α ∈ [0,+∞[,

lim
�,m→∞,q→0

�q→a,(m/�)→α

1

�
lnE

(
τ ∗|Oθ

0 = oθ
exit

) = lnκ.

For the case α = +∞, by Corollary 8.7 and Proposition 8.4,

lim sup
�,m→∞,q→0

�q→a,(m/�)→∞

1

�
lnE

(
τ ∗|Oθ

0 = oθ
exit

) ≤ lnκ.

These estimates allow us to evaluate the ratio between the discovery time and the
persistence time. We define a function ψ : ]0,+∞[→ [0,+∞[ by setting

∀a ∈]0,+∞[ ψ(a) = V
(
ρ∗(a),0

)
.

For α ∈ [0,+∞[ or α = +∞, we have

lim
�,m→∞,q→0

�q→a,(m/�)→α

∑m
i=1 E(τ0|Zθ

0 = i)P (Oθ
τ∗(0) = i|Oθ

0 = oθ
exit)

E(τ ∗|Oθ
0 = oθ

exit)

=
{

0, if αψ(a) < lnκ ,
+∞, if αψ(a) > lnκ .

By Proposition 7.11, we have

lim
�,m→∞

q→0,�q→a

∑m
i=1 E(

∑τ0
n=0 f (Zθ

n/m)|Zθ
0 = i)P (Oθ

τ∗(0) = i|Oθ
0 = oθ

exit)∑m
i=1 E(τ0|Zθ

0 = i)P (Oθ
τ∗(0) = i|Oθ

0 = oθ
exit)

= f
(
ρ∗).

Putting together the bounds on ν given in Section 6.3 and the previous considera-
tions, we conclude that

lim
�,m→∞,q→0

�q→a,(m/�)→α

∫
[0,1]

f dν =
{

0, if αψ(a) < lnκ ,
f
(
ρ∗(a)

)
, if αψ(a) > lnκ .

This is valid for any continuous nondecreasing function f : [0,1] → R such that
f (0) = 0.
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[18] MEZIĆ, I. (1997). FKG inequalities in cellular automata and coupled map lattices. Phys. D 103
491–504. MR1464259

[19] MORROW, G. J. and SAWYER, S. (1989). Large deviation results for a class of Markov chains
arising from population genetics. Ann. Probab. 17 1124–1146. MR1009448

[20] MUSSO, F. (2011). A stochastic version of the Eigen model. Bull. Math. Biol. 73 151–180.
MR2770281

[21] NOWAK, M. A. and SCHUSTER, P. (1989). Error thresholds of replication in finite populations.
Mutation frequencies and the onset of Muller’s ratchet. J. Theoret. Biol. 137 375–395.

[22] OCHOA, G. (2001). Error thresholds and optimal mutation rates in genetic algorithms. Ph.D.
thesis, Univ. Sussex, Brighton.

[23] PARK, J.-M., MUÑOZ, E. and DEEM, M. W. (2010). Quasispecies theory for finite popula-
tions. Phys. Rev. E 81 011902.

http://arxiv.org/abs/arXiv:1005.3390
http://www.ams.org/mathscinet-getitem?mr=0803564
http://www.ams.org/mathscinet-getitem?mr=2990752
http://www.ams.org/mathscinet-getitem?mr=2189669
http://www.ams.org/mathscinet-getitem?mr=0228020
http://www.ams.org/mathscinet-getitem?mr=1652127
http://www.ams.org/mathscinet-getitem?mr=0503370
http://www.ams.org/mathscinet-getitem?mr=1707339
http://www.ams.org/mathscinet-getitem?mr=0433650
http://www.ams.org/mathscinet-getitem?mr=1015933
http://www.ams.org/mathscinet-getitem?mr=1071818
http://www.ams.org/mathscinet-getitem?mr=2108619
http://www.ams.org/mathscinet-getitem?mr=1464259
http://www.ams.org/mathscinet-getitem?mr=1009448
http://www.ams.org/mathscinet-getitem?mr=2770281


1992 R. CERF

[24] SAAKIAN, D. B., DEEM, M. W. and HU, C.-K. (2012). Finite population size effects in qua-
sispecies models with single-peak fitness landscape. Europhys. Lett. 98 18001.

[25] WEINBERGER, E. D. (1987). A stochastic generalization of Eigen’s theory of natural selection.
Ph.D. dissertation, The Courant Institute of Mathematical Sciences, New York Univ., New
York.

MATHÉMATIQUE

UNIVERSITÉ PARIS SUD

BÂTIMENT 425
91405 ORSAY CEDEX

FRANCE

E-MAIL: rcerf@math.u-psud.fr

mailto:rcerf@math.u-psud.fr

	Introduction
	The Wright-Fisher model
	Main results
	Lumping
	Monotonicity
	Coupling of the lumped processes
	Monotonicity of the model
	The FKG inequality

	Stochastic bounds
	Lower and upper processes
	Dynamics of the bounding processes
	Invariant probability measures

	Approximating processes
	Large deviations for the transition matrix
	Persistence time
	Concentration near rho*

	The neutral phase
	Mutation dynamics
	Ancestral lines
	Discovery time

	Synthesis
	Acknowledgment
	References
	Author's Addresses

