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ON GERBER–SHIU FUNCTIONS AND OPTIMAL DIVIDEND
DISTRIBUTION FOR A LÉVY RISK PROCESS IN THE PRESENCE

OF A PENALTY FUNCTION

BY F. AVRAM, Z. PALMOWSKI1 AND M. R. PISTORIUS2

University of Pau, University of Wrocław and Imperial College London

This paper concerns an optimal dividend distribution problem for an in-
surance company whose risk process evolves as a spectrally negative Lévy
process (in the absence of dividend payments). The management of the com-
pany is assumed to control timing and size of dividend payments. The objec-
tive is to maximize the sum of the expected cumulative discounted dividend
payments received until the moment of ruin and a penalty payment at the mo-
ment of ruin, which is an increasing function of the size of the shortfall at
ruin; in addition, there may be a fixed cost for taking out dividends. A com-
plete solution is presented to the corresponding stochastic control problem. It
is established that the value-function is the unique stochastic solution and the
pointwise smallest stochastic supersolution of the associated HJB equation.
Furthermore, a necessary and sufficient condition is identified for optimal-
ity of a single dividend-band strategy, in terms of a particular Gerber–Shiu
function. A number of concrete examples are analyzed.

1. Optimal control of Lévy risk models. The spectrally negative Lévy risk
model. Recall the classical Cramér–Lundberg model

Xt − X0 = ηt − St , St =
Nt∑

k=1

Ck − λmt,(1.1)

which is used in collective risk theory (e.g., Gerber [20]) to describe the surplus
X = {Xt, t ∈ R+} of an insurance company. Here, X0 ≥ 0 is the initial level of
reserves, Ck are i.i.d. positive random variables representing the claims made, N =
{Nt, t ∈ R+} is an independent Poisson process with intensity λ modeling the times
at which the claims occur, and pt , with p := η + λm, represents the premium
income up to time t , with profit rate η > 0 and mean m < ∞ of C1.
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In later years, model (1.1) was generalized to the “perturbed model”

Xt − X0 := σBt + ηt − St ,(1.2)

where Bt denotes an independent standard Brownian motion, which models small
scale fluctuations of the risk process.

Since the jumps of X are all negative, the moment generating function
E[eθ(Xt−X0)] exists for all θ ≥ 0 and t ∈ R+, and is log-linear in t , defining thus a
function ψ(θ) satisfying E[eθ(Xt−X0)] = etψ(θ) with

ψ(θ) = σ 2

2
θ2 + ηθ +

∫
R+\{0}

(
e−θx − 1 + θx

)
ν(dx),(1.3)

where ν(dx) = λFC(dx), x ∈ R+, with FC the distribution function of C1, is the
“Lévy measure” of the compound Poisson process St , and η = ψ ′(0) is the mean
of X1 − X0.

The cumulant exponent ψ(θ) is well defined, at least on the positive half-line,
where it is strictly convex with the property that limθ→∞ ψ(θ) = +∞. Moreover,
ψ is strictly increasing on [�(0),∞), where �(0) is the largest root of ψ(θ) = 0.
The right-inverse function of ψ is denoted by � : [0,∞) → [�(0),∞).

An important generalization is to replace the process S in (1.2) by a general
subordinator [a nondecreasing Lévy process, with Lévy measure ν(dx), x ∈ R+,
which may have infinite mass]. Under this model, the “small fluctuations” can
arise either continuously, due to the Brownian motion, or due to the infinite jump-
activity.

Taking S to be a pure jump-martingale with i.i.d. increments and negative jumps
with Lévy measure ν(dx), one arrives thus to a general integrable spectrally neg-
ative Lévy process X = {Xt, t ∈ R+}, that is, a stochastic process that has sta-
tionary independent increments, no positive jumps and càdlàg paths, such that Xt

integrable for any t ∈R+, defined on some filtered probability space (	,F,F,P),
where F = {Ft }t∈R+ is the natural filtration generated by X satisfying the usual
conditions of right-continuity and completeness; see Bertoin [12], Kyprianou [25],
Sato [35]. The assumption that Xt − X0 has finite mean for any fixed t > 0 is
equivalent to the requirement that the Lévy measure ν satisfies the integrability
condition

ν1,∞ :=
∫
[1,∞)

xν(dx) < ∞.(1.4)

To avoid degeneracies, the case that X has monotone paths is excluded. The (pos-
sibly random) initial value X0 is assumed to be nonnegative. Conditioning the
probability measure P on the value of X0 gives rise to the family of probability
measures {Px, x ∈ R+} that satisfy Px[X0 = x] = 1.

An alternative characterization of spectrally negative Lévy processes is via the
“q-harmonic homogeneous scale function” W(q), a nondecreasing function de-
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fined on the real line that is 0 on (−∞,0), continuous on R+, with Laplace trans-
form LW(q) given by

LW(q)(θ) = (
ψ(θ) − q

)−1
, θ > �(q).(1.5)

Despite the diversity of possible path behaviors displayed by spectrally negative
Lévy processes, a wide variety of results may be elegantly expressed in a unifying
manner via the homogeneous scale function W(q), bypassing thus “probabilistic
complexity” via unified analytic methods. This paper further illustrates this as-
pect, by unveiling the way the scale function intervenes in a quite complex control
problem.

De Finetti’s dividend problem. Under the assumption that the increments of
the surplus process have positive mean, the Lévy risk model has the unrealistic
property that it converges to infinity with probability one.

In answer to this objection, De Finetti [15] introduced the risk process with
dividends

Uπ
t = Xt − Dπ

t , t ≥ 0,(1.6)

where π is an “admissible” dividend control policy and Dπ
t denotes the cumulative

amount of dividends that has been transferred to a beneficiary up to time t , and
where Uπ

0− = X0 ≥ 0 is the initial capital.
Writing τπ = inf{t ∈ R+ :Uπ

t < 0} for the time at which ruin occurs, the objec-
tive is to maximize the expected cumulative dividend payments until the time of
ruin

v∗(x) := sup
π∈�

Ex

[∫
[0,τπ )

e−qt dDπ
t

]
,

with Ex[·] = E[·|X0 = x] and where � denotes the set of all admissible strategies,
and q > 0 is the discount rate.

Note that ruin may be either exogeneous or endogeneous (i.e., caused by a claim
or by a dividend payment). A dividend strategy is admissible if ruin is always
exogeneous, or more precisely, an admissible dividend strategy Dπ = {Dπ

t , t ∈
R+} is a right-continuous F-adapted stochastic process that will satisfy that, at any
time preceding the epoch of ruin, a dividend payment is smaller than the size of
the available reserves, that is, for any t ≤ τπ ,{


Dπ
t := Dπ

t − Dπ
t− ≤ (

Xt − Dπ
t−

) ∨ 0, and

D
π(c)
t − D

π(c)
u ≤ p(t − u), ∀u ∈ [0, t) if ν0,1 < ∞,

(1.7)

where Dπ(c) denotes the continuous part of Dπ , ν0,1 := ∫
(0,1) xν(dx) and p :=

η + ν0,1 + ν1,∞. In the second line in (1.7) it is stated that if the jump-part of X

is of bounded variation, it is not admissible to pay dividends at a rate larger than
the premium rate p at any time t that there are no reserves (i.e., Uπ

t = 0), as this
would lead to immediate ruin.
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Single barrier policies. Recall first the simplest case when there are no transac-
tion costs. One possible dividends distribution policy is the “barrier policy” πb of
transferring all surpluses above a given level b, which results in the value

vb(x) := vπb
(x) = Ex

[∫
[0,τb)

e−qt dDb
t

]
= W(q)(x)

W(q)′(b)
, x ∈ [0, b]

and vb(x) = x − b + vb(b) for x > b, where τb = inf{t ≥ 0 :Xt < Db
t }, and Db =

Dπb is a local time-type strategy, given explicitly in terms of X by Db
0− = 0 and

Db
t = sup

s≤t
(Xs − b)+, t ∈R+,(1.8)

with x+ = max{x,0}. As this equation shows, a nonzero optimal barrier must be
an inflection point of the scale function if the latter is smooth.

Multiple bands policies. However, single barrier strategies might not be opti-
mal; cf. Gerber [18, 19]. The optimal strategy may be a “multi-bands strategy,”
involving several “continuation bands” [ai, bi), i = 0,1, . . . , with upper reflect-
ing boundaries bi , separated by “lump-sum dividend taking bands” [bi, ai+1), i =
0,1, . . . , of jumping to the next reflecting barrier below bi , by paying all the ex-
cess as a lump-sum payment; see also Hallin [22], who formulated a system of
time dependent integro-differential equations associated to multi-bands policies.
Azcue and Muler [7] established the optimality of multi-bands strategies under
the Cramér–Lundberg model in the presence of proportional and excess-of-loss
reinsurance, adopting a viscosity approach. A direct approach was developed in
Schmidli [37] where a recursive algorithm was provided to find, in terms of so-
lutions to certain integro-differential equations, the value function of the optimal
dividend problem under the Cramér–Lundberg model in the absence of a penalty.
Recently, Albrecher and Thonhauser [1] proved the optimality of bands strategies,
in the case that the reserves attract a fixed interest rate.

Gerber showed also that for exponential claims (and with no constraints on the
dividends rate), the optimal policy involved only one barrier (and one continuation
band); however, constructing examples where more than one band was necessary
remained an open problem for a long time.

Optimality conditions for single barrier strategies. The interest in bands strate-
gies was reawakened by Azcue and Muler [7], who produced the first example
(with Gamma claims) in which a single constant barrier is not optimal. Let

b∗ = sup
{
b > 0 :W(q)′(b) ≤ W(q)′(x) for all x

}
(1.9)

denote the last global minimum of the derivative of the q-scale function.
Avram et al. [6] showed that

(�vb∗ − qvb∗)(x) ≤ 0 for all x > b∗,(1.10)

where � denotes the infinitesimal generator of X, is a sufficient optimality condi-
tion for the single barrier strategy under a general spectrally negative Lévy model.
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In fact, conditions (1.9)–(1.10) is both necessary and sufficient, as follows by ex-
amining the variational inequality characterizing the problem; see Loeffen [27],
Lemmas 1, 2.

A simpler sufficient condition for the optimality of single band policies was
obtained by Loeffen [27, 28] (with and without transaction costs), who showed
that it is enough to check that the last local minimum of the q-scale function is also
a global minimum. Even more direct optimality conditions in terms of the Lévy
measure ν were provided by Kyprianou et al. [26], and Loeffen and Renaud [29],
who showed, respectively, that log-convexity of the density and of the survival
functions suffice (the second condition is more general). Note that the second result
allowed also for an affine penalty function with slope less than unity, and that both
results imply complete monotonicity of the Lévy density, and constitute therefore
powerful generalizations of Gerber’s unicity result [18, 19].

It turns out that b∗ in (1.9) is always the right endpoint of the first continuation
band. As already demonstrated in the rather terse example in Azcue and Muler ([7],
page 274), left and right endpoints of subsequent bands can in principle be deter-
mined recursively (the former by ensuring the “smoothness” of the value function,
and the latter similarly with b∗, by selecting last global maxima of updated value
functions, adjusted by using the values of previous bands as stopping penalties).
A characterization of points of nondifferentiability was provided in Schmidli [37].
However, an explicit smoothness condition (7.9) in terms of scale functions seems
not to have been reported previously.

Quite paradoxically, it is possible that beyond the lump-sum dividend taking
band following the first continuation band, waiting for higher barriers bi, i ≥ 2,
may become again optimal. The level a2 where the second continuation band
starts may be determined by examining the family of functions G

(a)
2 (b) defined

in (7.9), which are computed from a second Gerber–Shiu function, which uses the
first value functions as stopping penalties, and so on, leading ultimately to all the
optimal band levels; see Section 11.

Fixed transaction costs. It is interesting to consider also the effect of adding
fixed transaction cost K > 0 that are not transferred to the beneficiaries when divi-
dends are being paid. The objective of the beneficiaries becomes then to maximize
vπ,K(x), that is, v∗(x) = supπ∈� vπ,K(x) with

vπ,K(x) = Ex

[∫
[0,τπ )

e−qt dDπ
t − K

∫
[0,τπ )

e−qt dNπ
t

]
,

where Nπ = {Nπ
t , t ∈ R+} is the stochastic process that counts the number of

jumps of Dπ in the interval [0, t],
Nπ

t = #
{
s ∈ [0, t] :
Dπ

s > 0
}
, t ∈ R+.(1.11)

The introduction of a fixed transaction cost K > 0 has the usual effect of changing
the optimal reflection boundaries b into strips [b−, b+], so that when Ut = b+,
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a lump-sum dividend b+ −b− is paid, and the reserves process is diminished to the
lower “entrance” point b−. To emphasize this disappearance of reflection barriers,
the term band will be used throughout when K > 0, and also when more than one
barrier is present.

The typical optimal dividend strategy consists of “lump-sum payments” (see,
e.g., Alvarez and Virtanen [2] and Thonhauser and Albrecher [42]), with π of the
form π = {(Jk, Tk), k ∈ N}, where 0 ≤ T1 ≤ T2 ≤ · · · is an increasing sequence of
F-stopping times representing the times at which dividend payments are made, and
Ji ≥ K is a sequence of positive FTi

-measurable random variables representing the
sizes of the dividend payments. Then

Dπ
t =

Nπ
t∑

k=1

Jk,

where Nπ
t = #{k :Tk ≤ t} is the number of times that dividends have been paid by

time t .
For single bands policies for example, the dividend distribution consists of the

fixed amount Ji = b+ − b−.
Balancing dividends and ruin penalties. Several alternative objectives have been

proposed recently, involving final penalties w(x) at ruin (see Dickson and Wa-
ters [16], Gerber et al. [21] and Zajic [43]), or continuous payoffs until ruin; see
Albrecher and Thonhauser [41], Cai et al. [14]. For example, the case where the
insurance company is bailed out by the beneficiaries every time that there is a
shortfall in the reserves was investigated in Avram et al. [6] and in Kulenko &
Schmidli [23]. This paper continues the investigation of the impact of a general
penalty and fixed transaction costs on the optimal dividends policy. The consid-
ered objective is to maximize the expected cumulative discounted dividend pay-
ments until the moment of ruin less the penalty, which is an increasing function of
the shortfall at the moment of ruin, by controlling the timing and size of dividend
payments. This problem is phrased as an optimal control problem, which will be
solved by constructing explicitly a solution of the associated Hamilton–Jacobi–
Bellman (HJB) equation, in terms of scale functions of the Lévy process X.

Stochastic solutions. Given results concerning the smoothness of scale func-
tions (see, e.g., Kyprianou et al. [24]), it is not to be expected that the candidate
value-function is a classical solution of the HJB equation. In fact, it will turn out
that the candidate value function is continuous but not C1 on R+ \ {0} if X has
bounded variation, and is C1 but not C2 on R+ \ {0}, if X has unbounded vari-
ation. To verify optimality of the candidate optimal value-function under weak
regularity conditions, a probabilistic approach is adopted in this paper. It is estab-
lished that the value-function is the unique stochastic solution of the HJB equation
corresponding to the optimal control problem under consideration. The notion of
stochastic solution may informally be considered as a probabilistic counterpart
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of the analytical notion of viscosity solution: While viscosity sub- and superso-
lutions are defined in terms of pointwise approximations by smooth solutions to
the variational inequalities associated to the HJB equation, stochastic super- and
subsolutions are phrased in terms of super- and submartingale properties of related
stochastic processes. The version of the notion of stochastic solution deployed here
is an adaptation of Stroock and Varadhan’s [40] classical notion, which was origi-
nally introduced in the setting of linear parabolic PDEs, to the current setting; see
Definition 4.1. A stochastic version of Perron’s method using the stochastic solu-
tion concept was recently developed in Bayraktar and Sîrbu [10] for the case of
linear parabolic PDEs.

The viscosity solution method is a classical approach that has been used ex-
tensively in the study of existence and uniqueness of solutions to HJB equations;
cf. Bardi and Capuzzo-Dolcetta [9] and Fleming and Soner [17] for general treat-
ments. The HJB equation (3.6) corresponding to the stochastic control problem
considered in the current paper is a nonlinear integro-differential equation with
constant coefficients and with a gradient constraint, which is of first or second or-
der depending on whether or not a Gaussian component is present in the dynamics
of X. Due to the negative jumps of X and the boundary condition on the negative
half-axis (the specified penalty at the epoch of ruin), one is led to the notion of con-
straint viscosity solutions which, in the context of different optimization problems,
has been developed for first order equations by Sayah [36] and Soner [39], and for
second order equations in Alvarez and Tourin [3], Benth et al. [11] and Pham [33].
In, for example, Azcue and Muler [7, 8] and Albrecher and Thonhauser [1], divi-
dend optimization problems are studied under the Cramér–Lundberg model using
the viscosity solution method.

By deploying probabilistic tools from among others martingale theory, ana-
logues are derived of key results from viscosity solution theory. In particular, exis-
tence and uniqueness of a stochastic solution to the HJB equation is shown (The-
orem 12.1), where the uniqueness is established deploying a comparison principle
(Proposition 12.6). A (local) verification theorem (Theorem 4.4) is derived as tool
for verifying optimality of a constructed candidate value-function, as direct con-
sequence of a dual representation of the value function as pointwise minimum of
stochastic supersolutions (Proposition 4.3).

Gerber–Shiu functions. A key point in the presented approach is the decompo-
sition of the candidate value function preceding and within a continuation band
[a, b]

va,b(x) =
{

f (x), x < a,

F (x) + W(q)(x)G(a, b), x ∈ [a, b],(1.12)

into a nonhomogeneous solution F(x), which will be called a Gerber–Shiu func-
tion, and the product of the homogeneous scale function W(q)(x) and a “barrier-
influence” function G(a,b) defined in (6.2), which needs to be maximized at b

and be smooth at a.



OPTIMAL DIVIDEND DISTRIBUTION UNDER A PENALTY 1875

Note that the function G in the decomposition (1.12) is only determined up to a
constant, but becomes fixed once F has been selected; see (7.7).

To ensure smoothness at a, it seems then natural to use a “smooth Gerber–
Shiu function” Ff (x) associated to a given penalty f (x), x ∈ (−∞, a). Informally,
Ff (x) is the “smooth nonhomogeneous solution” of the Dirichlet problem on {x ≥
a} with boundary condition f (x), x ∈ (−∞, a). More precisely, it is defined in
Definitions 5.1 and 5.2 in Section 5 by subtracting a multiple of the homogeneous
scale function W(q)(x) out of the solutions of either the two-sided, or the reflected
exit problem, such that the remaining part is continuous on R if f is continuous,
and continuously differentiable on R if f is continuously differentiable on R− and
X has unbounded variation. This results in the explicit formula (5.4).

For exponential penalties w(x) = exv , the Gerber–Shiu function takes a simple
form (5.17), which may be used also as a generating function for the expected
payoffs associated to polynomial penalties xk, k = 0,1, . . . .

Decomposition (1.12) with Ff (x) chosen to fit the imposed penalty f (x) =
w(x) already determines the value function on the first continuation band (and
the value function in the lump-sum dividend taking bands surrounding it); see
Proposition 7.2 and Theorem 7.6. It also yields a necessary and sufficient criterion
for optimality of two-dividend barrier policies with one barrier at zero, which is
analogous to (1.10); see Theorem 10.3.

Contents. The remainder of the paper is organized as follows. Sections 2 and 3
are devoted to the formulation of the dividend-penalty and the corresponding HJB
equation. In Section 4 the definition of stochastic solution is given in this context,
and a verification result is established. Section 5 is concerned with Gerber–Shiu
functions, and Sections 6 and 7 are devoted to single and two-band strategies. Sec-
tion 8 is devoted to a key auxiliary result (Lemma 8.1). Conditions for optimalty of
single and two-band strategies and a construction of the candidate value-function
in terms of scale functions are given in Sections 9, 10 and 11. The optimal value
function is shown to be the unique stochastic solution of the HJB equation in Sec-
tion 12. Some examples are analyzed in Section 13. Some of the proofs are de-
ferred to the Appendix.

2. The dividend-penalty control problem. Assume that the beneficiaries
control the timing and size of dividend payments made by the company, and are
liable to pay at the moment τπ of ruin the penalty −w(Uπ

τπ ), which may be used
to cover (part of) the claim that led to insolvency, where w is a penalty.

DEFINITION 2.1. (i) For any a ∈ R, denote by Ra the set of càdlàg3 functions
w : (−∞, a] → R that are left-continuous at a, admit a finite first left-derivative

3càdlàg = right-continuous with left-limits.
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w′−(a) at a and satisfy the integrability condition

sup
y>1

∫
[y,∞)

sup
u∈[y−1,y]

∣∣w(a + u − z)
∣∣ν(dz) < ∞.(2.1)

(ii) A penalty w :R− →R−, with R− = (−∞,0], is a function from the set R0
that is increasing. The collection of penalties is denoted by P .

The beneficiaries seek to maximize the sum of the expected discounted cumula-
tive dividend payments and an expected penalty payment by paying out dividends
according to an admissible policy. The present value of the penalty payment dis-
counted at rate q > 0, considered as function of the level of initial reserves, is
called the Gerber–Shiu penalty function associated to the penalty w, and is given
by

Wπ
w(x) := Ex

[
e−qτπ

w
(
Uπ

τπ

)]
, x ∈ R+.

For any penalty w ∈ P , it holds that, for any level of initial capital x ∈ R+, Wπ
w(x)

is bounded uniformly over π ∈ �; see Lemma 3.3.
The objective of the beneficiaries of the insurance company is described by the

following stochastic control problem:

v∗(x) = sup
π∈�

vπ(x), vπ(x) := Wπ
w(x) +Ex

[∫
[0,τπ )

e−qtμK(dt)

]
,(2.2)

for x ∈ R+, where � denotes the set of admissible dividend policies π and μK is
the (signed) random measure on (R+,B(R+)) defined by

μπ
K

([0, t]) = Dπ
t − KNπ

t ,(2.3)

with Nπ
t and Dπ

t equal to the counting process defined in (1.11) and the cumulative
amount of dividends that has been paid out by time t , respectively. It is assumed
throughout that w is a penalty (w ∈ P) and that there is positive net income, η :=
E[X1] > 0. A solution to the stochastic control problem in (2.2) consists of a pair
(u,π∗) of a function u :R+ → R and a policy π∗ ∈ � satisfying v∗(x) = u(x) =
vπ∗(x) for all x ∈ R+.

3. Dynamic programming and HJB equation. The analysis of the stochas-
tic optimal control problem (2.2) starts from the observation that the value func-
tion v∗ satisfies a dynamic programming equation.

PROPOSITION 3.1. (i) Extending v∗ to the negative half-axis by v∗(x) =
w(x) for x < 0, we have for any τ ∈ T , the set of F-stopping times, v∗(x) =
supπ∈� vπ,τ (x) where

vπ,τ (x) := Ex

[
e−q(τ∧τπ )v∗

(
Uπ

τ∧τπ

) +
∫
[0,τ∧τπ ]

e−qsμπ
K(ds)

]
.(3.1)
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(ii) For any fixed π ∈ �, the process V π = {V π
t , t ∈ R+} given by

V π
t := e−q(t∧τπ )v∗

(
Uπ

t∧τπ

) +
∫
[0,t∧τπ ]

e−qsμπ
K(ds)(3.2)

is an F-supermartingale.

REMARK 3.2. Note that the integration domains [0, τ ∧ τπ ] and [0, t ∧ τπ ]
in (3.1) and (3.2) are consistent with the domain [0, τπ ) in (2.2) as μK({τπ }) is
equal to 0 for any policy π ∈ �.

The proof of Proposition 3.1(i) follows by straightforward adaptation of classi-
cal arguments (see, e.g., [7], pages 276–277), while that of Proposition 3.1(ii) is
deferred to Appendix A.

The next step is to identify the HJB equation in the current setting. As the ben-
eficiaries may decide to pay out part of the reserves immediately as lump-sum
dividend the value function v∗ satisfies in addition to the dynamic programming
equation the following gradient condition (see Lemma 3.3):

v∗(x) − v∗(y) ≥ (x − y − K) for al x, y > 0 with x > y,(3.3)

or equivalently,

dv∗(x) ≥ 1 for all x > 0, with for any function g :R →R,
(3.4)

dg(x) = inf
y∈(0,x)

g(x) − g(x − y) + K

y
, x > 0.

Note that in the case K = 0 and when v∗|R+\{0} is in C1(R+ \ {0}) the gradient
constraint in (3.3) is equivalent to the condition

v′∗(x) ≥ 1 for all x > 0.

Rather than to pay out dividends immediately, the beneficiaries may de-
cide to postpone such payments to a future epoch. Provided the value func-
tion v∗ were sufficiently regular, it would hold at level x of the reserves that
Ex[e−q(t∧T −

0 )v∗(Xt∧T −
0

)] = v∗(x) + t (�v∗(x) − qv∗(x)) + o(t) for t ↘ 0, where

T −
0 = inf{t ≥ 0 :Xt < 0}, and � denotes the infinitesimal generator of the Feller

semi-group of X which acts on f ∈ C2
c (R+) as (cf. Sato [35], Theorem 31.5)

�f (x) = σ 2

2
f ′′(x) + ηf ′(x) +

∫
R+\{0}

[
f (x − y) − f (x) + yf ′(x)

]
ν(dy),(3.5)

for x ∈ R+, where f ′ denotes the derivative of f and η = ψ ′(0). Heuristically,
this suggests that v∗ satisfies �v∗(x) − qv∗(x) ≤ 0 at any x > 0, and that it is not
optimal to postpone a dividend payment at level x in case �v∗(x) − qv∗(x) < 0.
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As far as the boundary condition at x = 0 is concerned, it follows from (2.2) that
v∗(0) = w(0) if and only if ruin is immediate with zero initial capital (i.e., τπ = 0
P0 a.s.), which is precisely the case if X has paths of unbounded variation. Thus
the boundary condition at x = 0 is imposed precisely if the Gaussian coefficient
σ 2 is strictly positive or the Lévy measure ν does not finitely integrate x around
0 (ν0,1 = ∞). In particular, in the case of the Cramér–Lundberg model or when X

has paths of finite variation, v∗(0) is in general different from w(0).
By the above discussion, one is led to the following form of the HJB equation

associated to the optimal control problem (2.2), expressed in a unified manner for
general cost K ≥ 0:

max
{
�g(x) − qg(x),1 − dg(x)

} = 0, x > 0,(3.6)

subject to the boundary condition{
g(x) = w(x), for all x < 0, and
g(0) = w(0), in the case

{
σ 2 > 0 or ν0,1 = ∞}

,
(3.7)

where the function dg is defined in (3.4).

3.1. Properties of the value function. For later reference a number of proper-
ties of the value function are collected below.

LEMMA 3.3. (i) The function x 
→ v∗(x) is continuous on R+, and v∗ satisfies
equation (3.3).

(ii) For any q > 0, x ∈ R+ and w ∈ P , there exists a C ∈ R+ \ {0} such that
the following bound holds true:

Ex

[
sup

t∈R+,π∈�

{
e−qtUπ

t 1{t<τπ } +
∫ t

0
e−qs dDπ

s +
∫ t

0
e−qs(Xs − Xs)ds

}]
+ sup

y∈R+
sup
π∈�

Ey

[
e−qτ

∣∣w(
Uπ

τ

)∣∣] < C,

with Xt = sups≤t Xs and Xt = infs≤t Xs denoting the supremum and infimum of
Xs over the s ∈ [0, t].

(iii) v∗ is dominated by an affine function: for any x ∈ R+, v∗(0) − K ≤
v∗(x) − x ≤ 1

�(q)
, and the process V π = {V π

t , t ∈ R+} defined in (3.2) is a uni-
formly integrable (UI) F-supermartingale.

The proof of part (i) is deferred to Appendix B.

PROOF OF LEMMA 3.3(II). The following bounds hold true:

sup
t∈R+

e−qtUπ
t 1{t<τπ } ≤ sup

t∈R+
e−qtXt ≤ sup

t∈R+

∫ ∞
t

qe−qsXs ds.(3.8)
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Since the running supremum Xeq at an independent exponential random time eq

with mean q−1 under P0 follows an exponential distribution with parameter �(q)

(e.g., Bertoin [12], Corollary VII.2), the expectation under Px of the expression on
the right-hand side of (3.8) is bounded by x + 1/�(q).

The compensation formula applied to the Poisson point process (
Xt, t ∈ R+),
the monotonicity of w and the fact that w(0) is nonpositive yield that the following
inequalities holds true, for any x ∈ R+:

Ex

[
e−qτπ

w
(
Uπ

τπ

)] ≥ w(−1) +Ex

[
e−qτπ

w
(
Uπ

τπ

)
1{Uπ

τπ <−1}
]

= w(−1) +
∫ ∞

0

∫ ∞
0

w(y − z)1{y−z<−1}ν(dz)R̃q
x (dy),

where R̃
q
x (dy) denote the q-potential measure of Uπ under Px , R̃

q
x (dy) =∫ ∞

0 e−qt
Px(U

π
t ∈ dy, t < τπ). The right-hand side of (3.9) is bounded below, as

w satisfies the integrability condition (2.1) (as w ∈ P). �

PROOF OF LEMMA 3.3(III). In the case K = 0 integration by parts, the non-
negativity of w and condition (1.7) of “no exogenous ruin” imply that

vπ(x) ≤ Ex

[∫
[0,τπ )

e−qt dDπ
t

]
= Ex

[∫ τπ

0
qe−qsDπ

s ds + e−qτπ

Dπ
τπ

]

≤ Ex

[∫ τπ

0
qe−qsXs ds + e−qτπ

Xτπ−
]

≤ Ex

[∫ ∞
0

qe−qsXs ds

]
,

which is equal to x + 1
�(q)

since, as noted before, Xeq ∼ Exp(�(q)) under P0. In
the case K > 0, then the above bound remains valid since the value v∗(x) decreases
if the transaction cost K increases. The lower bound for the value-function follows
from part (i) (with x = 0). The uniform integrability of V π is a consequence of the
fact that V π is dominated by an integrable random variable, in view of the bounds
in parts (ii). �

3.2. Generator and boundary condition. From the HJB equation (3.6) one
would expect that, on any interval I on which the restriction v∗|I has unit deriva-
tive, the function �v∗−qv∗ is nonpositive. Below this function is expressed explic-
itly in terms of the characteristic triplet of X. More generally, in the next result the
form is specified of the generator applied to the functions �̃w

a,b :R → R, a, b ∈ R,
given by

�̃w
a,b(z) =

{
�a,b(z), z ≥ a,
w(z), z < a,

with �a,b : [a,∞) →R: �a,b(x) = b(x − a) + w(a),

where w : (−∞, a] → R is a Borel-function satisfying the integrability condition

∀x > a :
∫
(x−a,∞)

∣∣w(x − z)
∣∣ν(dz) < ∞.(3.9)
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For any such function w and any a ∈ R, the operator a�
w∞ :C2([a,∞)) →

D((a,∞)) is defined as follows: for x > a,

a�
w∞f (x) = σ 2

2
f ′′(x) + (

η + ν1(x − a)
)
f ′(x) − (

q + ν(x − a)
)
f (x)

+
∫
(0,x−a]

[
f (x − y) − f (x) + f ′(x)y

]
ν(dy)(3.10)

+
∫
(x−a,∞)

w(x − y)ν(dy),

where ν(x) = ν((x,∞)) and ν1(x) = ∫
(x,∞) yν(dy). It follows by comparison

with form (3.5) of the infinitesimal generator � that for any f ∈ C2
c (R) with

f |(−∞,a] = w it holds (�f − qf )(x) = a�
w∞g(x) for x > a with g = f |[a,∞).

The form of the generator applied to �a,b is given in the following result:

LEMMA 3.4. Let a, b ∈ R and let w be any Borel function satisfying integra-
bility condition (3.9). (i) For any x > a, (a�

w∞�a,b)(x) is given by

η�′
a,b(x) − q�a,b(x) +

∫
R+\{0}

[
�̃w
a,b(x − z) − �a,b(x) + z�′

a,b(x)
]
ν(dz)

= bη − q
(
b(x − a) + w(a)

)
(3.11)

+
∫
(x−a,∞)

{
w(x − z) − w(a) + b(z + a − x)

}
ν(dz).

(ii) Suppose (a�
w∞�a,b)(x) ≤ 0 for all x > a and supx>a

∫
(x−a,∞) |w(x − z) −

w(a) + b(z + a − x)|ν(dz) < ∞. Then {e−q(t∧T −
a )�̃w

a,b(Xt∧T −
a

), t ∈ R+} is an F-
supermartingale.

PROOF. (i) The assertion directly follows from the form (3.10) of the opera-
tor y�

w∞.
(ii) An application of Itô’s lemma [which is justified since �a,b is C2([a,∞))]

shows that the following process is an F-local martingale:

e−q(t∧Ta
−)�̃w

a,b(Xt∧T −
a

) −
∫ t∧T −

a

0
e−qs

a�
w∞�a,b(Xs)ds.(3.12)

Hence the assumptions (together with the fact
∫ T −

a

0 1{Xs=a} ds = 0 P-a.s.) imply
the asserted supermartingale property. �

4. Stochastic solutions of the HJB equation. While, as was mentioned in
the Introduction, it is in general not to be expected that the HJB equation in (3.6)
admits a classical solution, it will be shown in Section 12.1 that the optimal value-
function v∗ is the unique stochastic solution to the HJB equation. A real-valued
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function g with domain R and sublinear growth, satisfying the boundary condi-
tion (3.7) and the gradient constraint dg(x) ≥ 1 for all x > 0, will be called a
stochastic solution of the HJB equation given in (3.6) if the stochastic processes

M
g,TI := {

e−q(t∧TI )g(Xt∧TI
), t ∈ R+

}
,

(4.1)
TI := inf{t ≥ 0 :Xt /∈ I },

with inf∅ = ∞, are F-martingales for any closed interval I contained in Cg , the
“no dividend region” corresponding to the function g,

Cg := {
x ∈ R+ \ {0} :dg(x) > 1

}
,(4.2)

and are F-supermartingales for any closed interval I contained in R+ \ {0}.
More specifically, the notions of (local) stochastic (super-, sub-) solutions are

defined as follows:

DEFINITION 4.1. Let g :R→R be a càdlàg function satisfying the boundary
condition (3.7) and the linear growth condition

sup
x∈R+

|g(x)|
x + 1

< ∞.(4.3)

(i) g is a local stochastic supersolution on the closed interval I ⊂ R+ of the
HJB equation (3.6) if

M
g,TI is a UI F-supermartingale and dg(x) ≥ 1 for any x ∈ I \ {0}.

(ii) g is called a local stochastic subsolution on the closed interval I ⊂ Cg of
the HJB equation (3.6) if

M
g,TI is a UI F-submartingale.

(iii) g is a stochastic supersolution [stochastic subsolution] of the HJB equation
if g is a local stochastic supersolution on R+ [local stochastic subsolution on I for
all closed intervals I ⊂ Cg], respectively.

(iv) g is a stochastic solution of the HJB equation if g is both a stochastic
supersolution and a stochastic subsolution of the HJB equation.

REMARK 4.2. (i) The optimal value-function v∗ is a stochastic supersolution.
This follows as a direct consequence of Lemma 3.3(i), (iii) (taking π equal to the
“waiting strategy” π∅ of not paying any dividends) and Doob’s Optional Stopping
theorem.

(ii) The terms “stochastic supersolution” and “stochastic subsolution” are jus-
tified by the fact that stochastic supersolutions dominate stochastic subsolutions
(under some regularity condition); see Proposition 12.6.
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(iii) When g is a local stochastic supersolution on a finite partition of intervals
of R+, a global super-martingale property holds true on R+, provided that g is
differentiable at the boundaries of the intervals when X has unbounded variation;
see Corollary 8.2.

The following global representation of the optimal value function v∗ in terms
of the collection of stochastic supersolutions provides a key step in the solution of
the optimal control problem in (2.2):

PROPOSITION 4.3. (i) The value function v∗ is the smallest stochastic super-
solution of the HJB equation (3.6)

v∗(x) = min
g∈G+ g(x),(4.4)

for all x ∈ R+, where G+ denotes the family of stochastic supersolutions of the
HJB equation (3.6).

(ii) For any a, b ∈R+ with a < b, representation (4.4) remains valid for all x ∈
(−∞, b] if the set G+ is replaced by the set G+

a,b of local stochastic supersolutions
g on [a, b] satisfying the condition{

g(x) = v∗(x), for all x ∈ [0, a) ∪ {b}, and in addition,

g(a) = v∗(a), if X has unbounded variation.
(4.5)

Proposition 4.3, the proof of which is given in Section 4.1, yields the following
(local) verification theorem, which is one of the main results of the paper:

THEOREM 4.4. (i) If there exist a, b ∈ R+ with b > a ≥ 0, π ∈ � and g ∈ G+
satisfying g(x) = vπ,τπ

a
(x) for all x ∈ [a, b], with τπ

a = inf{t ≥ 0 :Uπ
t < a}, then it

holds v∗(x) = vπ,τπ
a
(x) for all x ∈ [a, b].

(ii) In particular, if there exist π ∈ � and g ∈ G+ satisfying g(x) = vπ(x) for
all x ∈ R+, then g = v∗ and π is an optimal strategy.

PROOF. In view of the dynamic programming equation (3.1), it follows that
v∗ dominates vπ,τπ

a
, while the dual representation (4.4) in Proposition 4.3 implies

v∗(x) ≤ g(x) for all x ∈ R+, so that when g is equal to vπ,τπ
a

on the interval [a, b],
it follows that v∗(x) = g(x) = vπ,τπ

a
(x) for all x ∈ [a, b], which establishes part (i).

Part (ii) follows by a similar line of reasoning. �

This verification result will be used in the piecewise construction of the value-
function v∗, in Sections 6–11. It can also be used to deduce that the value function
is affine for large levels of the reserves if ν is finite.
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PROPOSITION 4.5. Let the measure ν have finite mass. For some y ∈ R+, the
function v∗ restricted to [y,∞) takes the form

v∗(x) = x − y + v∗(y) for any x − y ∈ R+,(4.6)

and it is optimal to immediately pay out a lump-sum dividend for all sufficiently
large levels of the reserves.

PROOF. The local verification theorem [Theorem 4.4(i)] in conjunction
with Lemma 3.4 imply that condition in (4.6) holds if the supremum m∗ :=
supx>y

∫
(x−y,∞) |v∗(x − z) − v∗(y) + z + y − x|ν(dz) is finite and

for all y ∈R+ sufficiently large
{∀x > y :

(
y�

v∗∞�y,1
)
(x) ≤ 0

}
.(4.7)

This is verified next. The expression for y�
v∗∞�y,1 in (3.11) for x > y can be

bounded above by

η − q
(
x − y + v∗(y)

) +
∫
(x−y,x)

∣∣v∗(x − z) − v∗(y) + z + y − x)
∣∣ν(dz)

+
∫
(x,∞)

∣∣w(x − z) − v∗(y) + z + y − x
∣∣ν(dz).

Hence, in view of (3.3), the linear bounds in Lemma 3.3(iii) and the monotonic-
ity of w, the first and second integrals are bounded above by a constant times
λ(1 + m) and by

∫
(0,∞) |w(−z)|ν(dz) + λ(|y − v∗(y)|) + λm with λ = ν(0,∞)

and λm = ∫
(0,∞) xν(dx). Since the integral with w as integrand is finite [as w ∈ P

satisfies (2.1)] it follows that m∗ is finite. Moreover, as v∗(y) → ∞ and v∗(y) − y

is bounded as y → ∞ [Lemma 3.3(iii)], it is clear that (4.7) is satisfied, and the
proof is complete. �

4.1. Proof of the dual representation. The proof of Proposition 4.3 is based
on a representation of v∗ as the point-wise minimum of a class of “controlled”
supersolutions of the HJB equation.

DEFINITION 4.6. For any closed interval I , a Borel-measurable function
H :R → R is called a controlled supersolution for the stochastic control prob-
lem (2.2) on the closed interval I if it holds for any π ∈ � that

M̃
H,π
t := e−q(τπ

I ∧t)H
(
Uπ

τπ
I ∧t

) +
∫
[0,τπ

I ∧t]
e−qsμπ

K(ds)(4.8)

is a UI F-supermartingale, with τπ
I = inf{t ≥ 0 :Uπ

t /∈ I }, subject to boundary con-
dition{

H(x) ≥ v∗(x), for x < y := min I and x = z := sup I if z < ∞, and,
H(y) ≥ v∗(y), if X has unbounded variation.

The family of such functions will be denoted by HI .
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PROPOSITION 4.7. For any closed interval I the value-function v∗ restricted
to I admits the following representation:

v∗(x) = min
H∈HI

H(x) for all x ∈ R+.

PROOF. The proof rests on standard arguments. Fix x ∈ R+, a closed interval
I in R+, and let H be any element of HI , and π ∈ � any admissible policy. The
supermartingale property and uniform integrability (Definition 4.6) yield

H(x) ≥ lim
t→∞Ex

[
e−q(τπ

I ∧t)H
(
Uπ

τπ
I ∧t

) +
∫
[0,τπ

I ∧t]
e−qsμπ

K(ds)

]

≥ Ex

[
e−qτπ

I v∗
(
Uπ

τπ
I

) +
∫
[0,τπ

I ]
e−qsμπ

K(ds)

]
,

where the convention exp{−∞} = 0 is used. Taking the supremum over π ∈ �

and using the dynamic programming equation (Proposition 3.1) show that H(x) ≥
v∗(x). Since H ∈HI was arbitrary, it holds thus

inf
H∈HI

H(x) ≥ v∗(x).

The inequality in the display is in fact an equality since v∗ is a member of HI ,
by virtue of Doob’s optional stopping theorem and the fact that V π is a UI super-
martingale [Lemma 3.3(iii)]. �

The proof of the representations of the value function v∗ in Proposition 4.3 rests
on the fact that for any admissible policy π ∈ � and stochastic supersolution there
exists a corresponding “controlled” supermartingale.

LEMMA 4.8 (Shifting lemma). Let I ⊂ R+ be any closed interval. If g is a
local stochastic supersolution on I , then g is a controlled supersolution on I .

Given the shifting lemma, the proof of the dual representations in Proposi-
tion 4.3 can be completed as follows:

PROOF OF PROPOSITION 4.3. (i) The representation follows from Proposi-
tion 4.7 in view of the following two observations: (a) G+ is contained in H[0,∞)

[Remark 4.2(i)] and (b) v∗ is an element of the set G+ [by Lemma 3.3(iii)].
(ii) The proof is analogous to that of part (i), using the facts G+

a,b ⊂ H[a,b]
[Lemma 4.8(ii)] and v∗ ∈ G+

a,b [by Remark 4.2(i) and Doob’s Optional Stopping
theorem]. �

PROOF OF LEMMA 4.8. Fix arbitrary π ∈ � and s, t ∈ R+ with s < t . Note
that M̃g,π is F-adapted (as g is a Borel-measurable), while M̃g,π is UI by the



OPTIMAL DIVIDEND DISTRIBUTION UNDER A PENALTY 1885

linear growth condition and Lemma 3.3. Furthermore, the following (in)equalities
hold true:

E
[
M̃

g,π
t |Fs∧τπ

] (a)= lim
n→∞E

[
M̃

g,πn
t |Fs∧τπ

] (b)≤ lim
n→∞ M̃

g,πn

s∧τπ
(c)= M̃

g,π
s∧τπ

(d)= M̃g,π
s ,

where the sequence (πn)n∈N of strategies is defined by πn = {Dπn
t , t ∈ R+} with

D
πn

0 = Dπ
0 and

Dπn
u =

{
sup

{
Dπ

v :v < u,v ∈ Tn

}
, 0 < u < τπ ,

D
πn
τπ−, u ≥ τπ ,

with Tn := ({tk := s + (t − s) k
2n , k ∈ Z} ∪ {0}) ∩R+. Since s and t are arbitrary, it

thus follows that M̃g,π is a F-supermartingale.
The remainder of the proof is devoted to the verification of the (in)equalities (a)–

(d) in above display. (a) Note that the sequence (Dπn)n is monotone (Dπn ≤ Dπn+1

for n ∈ N) and tends to Dπ as n tends to infinity, and Dπn is equal to D
πn
τπ− on

the interval [τπ ,∞), for each n ∈ N. Thus the monotone convergence theorem
(MCT) in combination with an integration-by-parts implies

∫
[0,τπ∧t] e−qs dD

πn
s ↗∫

[0,τπ∧t] e−qs dDπ
s . Also, in the case K > 0, it holds

∫
[0,τπ∧t] e−qs dN

πn
s ↗∫

[0,τπ∧t] e−qs dNπ
s . Hence, by right-continuity of the function g, it holds

M̃
g,πn

t∧τπ −→ M̃
g,π
t∧τπ as n → ∞,P-a.s.(4.9)

As the collection (M̃
g,πn

t∧τπ )n is UI, Lebesgue’s dominated convergence theorem im-
plies that the equality (a) holds true. Equality (c) is a consequence of the pointwise
convergence in (4.9) (which also holds with t replaced by s), while (d) follows
since it holds M̃

g,π
s = M̃

g,π
s∧τπ (by definition of the process M̃g,π ).

Finally, inequality (b) is verified, in what constitutes the key step of the proof.
Denote Ti := τπ ∧ ti and M = M̃g,πn , D = Dπn , and observe that the folowing
decomposition holds true:

Mt − Ms =
2n∑
i=1

Yi +
2n∑
i=1

Zi

with Yi = e−qTi g(XTi
− DTi−1) − e−qTi−1g(XTi−1 − DTi−1),

with Zi = e−qTi (g(XTi
− DTi

) − g(XTi
− DTi−1) + 
DTi

− K)1{
Di>0} and

Di = DTi

− DTi−1 . The strong Markov property of X and the definition of U

imply that E[Yi |FTi−1] is equal to

e−qTi−1E
[
e−q(Ti−Ti−1)g(UTi−1 + XTi

− XTi−1) − g(UTi−1)|FTi−1

]
(4.10)

= e−qTi−1EUTi−1

[
e−qτi g(Xτi

) − g(X0)
]
,

with τi = Ti ◦ θTi−1 , where θ denotes the translation-operator. The right-hand side
of (4.10) is nonpositive as a consequence of the supermartingale property (4.1)
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(with I = R+) and Doob’s optional stopping theorem. Furthermore, in view of the
bound dg(x) ≥ 1 for any x ∈ R+ \ {0} it follows that all the Zi are nonpositive
in the case XTi

− DTi
≥ 0, while, in the case XTi

− DTi
< 0, it holds that Zi is

zero, since Ti = τπ , so that, by construction, 
Di = D
πn
τπ − Dπn(τ+

n ) = 0 with
τ+
n = sup{v < τπ : v ∈ Tn}. Hence, the tower-property of conditional expectation

yields

E[Mt − Ms |Fs] ≤
2n∑
i=1

1{Ti−1>s}E
[
E[Yi |FTi−1]|Fs

] ≤ 0.

This establishes inequality (b), and the proof is complete. �

5. Gerber–Shiu functions. A key-ingredient for the solution of the optimal
control problem (2.2) is a family of martingales given in terms of Gerber–Shiu
functions, a nonstandard terminology; see Definitions 5.1 and 5.2. While the (ho-
mogeneous) q-scale function W(q) is defined to be equal to 0 on the set (−∞,0),
Gerber–Shiu functions are “inhomogeneous q-scale functions” corresponding to
nonzero boundary conditions w on the negative half-line.

The definition of Gerber–Shiu functions is phrased in terms of w and W(q) of
which next a number of well-known properties are recalled that will be deployed in
the sequel; refer to the review article Kyprianou et al. [24], Chapters 2, 3, for proofs
and references. The function W(q) [see (1.5) for its definition] is a “q-harmonic
function” for the process X stopped at first entrance into (−∞,0). Specifically,
for any a ∈ R, the stopped process(

e−q(t∧T −
a )W(q)(Xt∧T −

a
− a), t ∈ R+

)
(5.1)

is an F-martingale, with T −
a := T[a,∞) = inf{t ∈ R+ :Xt < a}.

Furthermore, the function W(q) is well-known to be continuous and nondecreasing
on [0,∞), and right- and left-differentiable on (0,∞), with the right-derivative
and left-derivative at x > 0 denoted by W(q)′(x) and W

(q)′
− (x), respectively, which

are right- and left-continuous and satisfy

W(q)′(x) ≤ W
(q)′
− (x), x > 0,(5.2)

by continuity and log-concavity of W(q)|R+ . In particular, if ν0,1 [which was de-
fined in (1.7)] is infinite, the function W(q)|(0,∞) is C1, while W(q)|(0,∞) is C2

with W(q)′(0+) = 2
σ 2 if the Gaussian coefficient σ 2 is strictly positive.

A function will be referred to as a Gerber–Shiu function if it satisfies the fol-
lowing conditions:

DEFINITION 5.1. Given a ∈R and a pay-off w : (−∞, a] → R with w ∈ Ra ,
the function F :R →R is called a Gerber–Shiu function for payoff w if F(x−a) =
w(x) for x < a, and(

e−q(t∧T −
a )F (Xt∧T −

a
− a), t ∈ R+

)
is an F-martingale.(5.3)
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Of course, such a function F is not unique (as the addition of multiples of
W(q) to a Gerber–Shiu function yields another Gerber–Shiu function). It is shown
below that there exists a special choice Fw of Gerber–Shiu function that is con-
tinuous on R for continuous payoffs w and continuously differentiable on R if X

has unbounded variation and w is continuously differentiable (recall that W(q) is
continuous nor continuously differentiable on R in general). The function Fw is
defined as follows:

DEFINITION 5.2. Let q ≥ 0 and w ∈ R0. The function Fw :R → R is given
by Fw(x) = w(x) for x < 0, and by

Fw(x) = w(0) + w′−(0)x −
∫ x

0
W(q)(x − y)Jw(y)dy, x ∈R+, with(5.4)

Jw(x) = (
0�

w∞�0,w′−(0)

)
(x),(5.5)

where 0�
w∞�0,w′−(0) is given in (3.11) [with a = 0 and b = w′−(0)].

The following result confirms that the function Faw is a Gerber–Shiu func-
tion that “inherits” the continuity/differentiability from the function w, where, for
any function f and a ∈ R, af denotes the composition of f with the translation-
operator θa ,

af := f ◦ θa := f (· + a).(5.6)

THEOREM 5.3. Let a ∈ R and w ∈ Ra . Then aw ∈ R0 and the function Faw

is a Gerber–Shiu function for payoff w satisfying{
Faw(0) = w(a),

F ′
aw(0+) = w′−(a), in the case σ 2 > 0 or ν0,1 = ∞.

(5.7)

Furthermore, Faw|R+ is right-differentiable, with right-derivative at x ∈ R+ de-
noted by F ′(x). If aw is continuous, then Faw is continuous, and, in the case
w ∈ C1(R−) and {σ 2 > 0 or ν0,1 = ∞}, it holds Faw ∈ C1(R).

An example of a Gerber–Shiu function is the Gerber–Shiu penalty function Vw

corresponding to penalty w

Vw(x) = Ex

[
e−qT −

0 w(XT −
0

)
]
,

which admits the following explicit expression in terms of the functions W(q)

and Fw (see Biffis and Kyprianou [13] for an equivalent representation of Vw in
terms of W(q)):
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PROPOSITION 5.4 (Gerber–Shiu penalty function). Let w ∈ R0. For any
x ∈ R it holds

Vw(x) = Fw(x) − W(q)(x)κw with(5.8)

κw :=
[
σ 2

2
w′(0−) + q

�(q)
w(0) −Lwν

(
�(q)

)]
,(5.9)

where Lwν denotes the Laplace transform of the function wν(x) = ∫
(x,∞)[w(x −

z) − w(0)]ν(dz), x > 0.

For later reference two further exit identities are recorded that are also ex-
pressed in terms of W(q) and Fw . First, the two-sided exit identity of X on
the interval [a, b] which involves the distribution of the pair (Ta,b,XTa,b

) where
Ta,b := T[a,b] = T −

a ∧ T +
b , with T +

b := T(−∞,b] = inf{t ∈ R+ :Xt > b}, denotes
the first exit time from the interval [a, b]. Second, a absorption/reflection exit
identity on the interval [a, b] which concerns the law of the pair (τa(b), Y b

τa(b))

and the expected local time up to τa(b) at the level b of Yb where τa(b) = inf{t ∈
R+ :Yb

t < a} denotes the first-passage time into the set (−∞, a) of the process
Yb = {Yb

t , t ∈ R+} given by

Yb
t = Xt − X

b

t with X
b

t = sup
s≤t

(Xt − b) ∨ 0.(5.10)

The identities are given as follows:

PROPOSITION 5.5. Given a ∈ R and a pay-off w : (−∞, a] → R with w ∈
Ra , the following hold for all b, δ,β ∈ R with a < b < ∞ and x ∈ (a, b):

Ex

[
e−qTa,bw(XT −

a
)1{T −

a <T +
b }

] + δEx

[
e−qT +

b 1{T −
a >T +

b }
]

(5.11)

= Faw(x − a) + W(q)(x − a)
δ − Faw(b − a)

W(q)(b − a)
,

Ex

[
e−qτa(b)w

(
Yb

τa(b)

)] + βEx

[∫
[0,τa(b)]

e−qs dX
b

s

]
(5.12)

= Faw(x − a) + W(q)(x − a)
β − F ′

aw(b − a)

W(q)′(b − a)
.

The proofs of Theorem 5.3 and Proposition 5.4 rests on the following auxiliary
results (shown in Section 5.1):

LEMMA 5.6. Let w ∈ R0. The function Fw|R+ real-valued and continuous
and admits the following alternative representation: for x ≥ 0,

Fw(x) = σ 2w′−(0)

2
W(q)(x) + w(0)Z(q)(x) −

∫ x

0
W(q)(x − y)wν(y)dy

(5.13)
with Z(q)(x) = 1 + ∫ x

0 W(q)(y)dy.
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In particular, it holds Fw(0) = w(0) and
∫ x

0 |wν(y)|dy < ∞ for any x ≥ 0, and in
the case that X has bounded variation wν(0+) < ∞.

LEMMA 5.7. Let w ∈ R0. (i) Fw(x)/W(q)(x) → κw as x → ∞.
(ii) Fw(x) is left- and right-differentiable at any x > 0 with right-derivative at

x > 0 given by

F ′
w(x) = w′−(0) −

∫
[0,x)

Jw(x − y)W(q)(dy)

(5.14)
= F ′

w,−(x) − W(q)(0)
(
Jw(x+) − Jw(x−)

)
,

where F ′
w,−(x) denotes the left-derivative of Fw at x. In particular, F ′

w(0) =
w′−(0) if X has unbounded variation, and F ′

w(0) = w′−(0) − W(q)(0)Jw(0+) if
X has bounded variation.

(iii) The function x 
→ F ′
w(x) is right-continuous on R+ \ {0}, and is C1 on

R+ \ {0} in the case w ∈ C1(R−).

Given these two results the proofs of Proposition 5.4 and Theorem 5.3 can be
completed as follows:

PROOF OF PROPOSITION 5.4. Writing Vw(x) = w(0)V1(x) +
Ex[e−qT −

0 (w(XT −
0

) − w(0))], where 1 denotes the function on R− that is constant
equal to one, and applying the compensation formula (e.g., Bertoin [12], Chap-
ter O) to the Poisson point process (
Xt, t ∈R+) yields the following expressions
for any x ∈R+:

Vw(x) − w(0)V1(x) =
∫
[0,∞)

∫
(y,∞)

(
w(y − z) − w(0)

)
ν(dz)Uq(x,dy)

= W(q)(x)Lwν

(
�(q)

) −
∫ x

0
W(q)(x − y)wν(y)dy,(5.15)

Uq(x,dy) = [
W(q)(x)e−�(q)y − W(q)(x − y)

]
dy, y > 0,

where Uq(x,dy) denotes the q-potential measure of X under Px killed upon
entering (−∞,0). It follows from Lemmas 5.6 and 5.7 that the integrals
in (5.15) are finite. Deploying the form of the Laplace transform of T −

0 , V1(x) =
Z(q)(x)−q�(q)−1W(q)(x), and the definition of Fw leads to (5.8) [since the term
σ 2

2 w′(0−)W(q)(x) cancels]. �

PROOF OF PROPOSITION 5.5. Denote the left-hand side of (5.12) by Ua,b
w,β(x),

and let e0,a be the function with domain (−∞, a] that is constant equal to 1. An-
other application of the compensation formula yields the following representation
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of Ua,b
w (x) for x ∈ [a, b]:
Ua,b

w,β(x) − w(0)Ua,b
e0,a ,0(x) − βUa,b

0,1 (x)

=
∫
[a,b]

∫
(y,∞)

(
w(y − z) − w(0)

)
ν(dz)R

q
a,b(x,dy) with

R
q
a,b(x,dy) = W(q)(x − a)

W(q)′(b − a)
W(q)(b − dy) − W(q)(x − y)dy,

Ua,b
e0,a,0(x) = Ex

[
e−qτa(b)] = Z(q)(x − a) − q

W(q)(x − a)

W(q)′(b − a)
W(q)(b − a),

Ua,b
0,1 (x) = Ex

[∫
[0,τa(b)]

e−qs dX
b

s

]
= W(q)(x − a)

W(q)′(b − a)
,

where R
q
a,b(x,dy), y ∈ [a, b], is the q-resolvent measure of Yb killed upon enter-

ing (−∞, a) (from Pistorius [34], Theorem 1) and the final two identities in the
previous display are from Avram et al. ([4], Theorem 1, [6], Proposition 1). Com-
bining these expressions with representation (5.13) of Fw and taking note of the
fact that the term σ 2

2 aw
′(0−)W(q)(x) again cancels yields that (5.12) holds true.

Equation (5.11) follows by a similar line of reasoning. �

PROOF OF THEOREM 5.3. That Faw is a Gerber–Shiu function follows
from (5.8) (with Fw replaced by Faw), the strong Markov property of X and
the martingale property (5.1) of W(q). The martingale property (5.3) was shown
in Proposition 5.4. The asserted continuity follows from the relation (5.7) com-
bined with the continuity of aw and Faw|R+ (Theorem 5.3). The assertion that
Faw is C1(R) is a consequence of the following two observations: (i) Faw|R+\{0}
is C1(R+ \ {0}) [by Lemma 5.7(ii)]; (ii) aw is C1(R−) (by assumption) and
w′−(a) = aw

′−(0) = F ′
aw(0) [by Lemma 5.7(ii)]. �

5.1. Proofs of Lemmas 5.6 and 5.7.

PROOF OF LEMMA 5.6. First it is verified that the function on the right-hand
side of (5.13) is continuous on R+. This follows from the continuity on R+ of
W(q)(x), Z(q)(x) and of the final term in (5.4), as functions of x. The continuity
of the integral is a consequence of Lebesgue’s dominated convergence theorem
and the finiteness of

∫ x
0 |wν(y)|dy for any x ≥ 0, which in turn holds as w is

càdlàg and left-differentiable at 0 (w ∈ R0) and ν satisfies the integrability condi-
tion

∫ 1
0 z2ν(dz) < ∞. Furthermore, in the case that X has paths of bounded vari-

ation, it holds that
∫ 1

0 zν(dz) is finite, and a similar line of reasoning yields that
wν(0+) is finite.

As it follows by a similar argument that also Fw is continuous on R+ it suffices
to show that the Laplace transforms of the right-hand side of (5.13) and of (5.4)
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coincide in order to verify the representation (5.13). Note that the Laplace trans-
form L|w̃ν |(θ) of |w̃ν | is finite for any θ > 0 in view of the integrability condition
(2.1) and since

∫ 1
0 |wν(y)|dy is finite. Taking the Laplace transform of (5.4), using

the forms (1.3) and (1.5) of the Laplace exponent ψ(θ) and the Laplace transform
LW(q) and rearranging terms yields

LFw(θ) = LW(q)(θ)

[
σ 2

2
w′−(0) + ψ(θ)

θ
w(0) −Lwν(θ)

]
, θ > �(q),

= θ−1 · w(0) + θ−2 · w′−(0) − (
ψ(θ) − q

)−1LJw(θ),
(5.16)

LJw(θ) = θ−1 · [
ψ ′(0)w′−(0) − qw(0)

] +Lw̃ν(θ) − θ−2[
qw′−(0)

]
,

Lw̃ν(θ) = Lwν(θ) + w′−(0) · θ−2
∫
(0,∞)

[
e−θx − 1 + θx

]
ν(dx).

Termwise inverting (5.16) yields the expression (5.13).
By letting x → 0 in (5.13), in combination with the facts σ 2W(q)(0+) = 0 and

Z(q)(0+) = 1 and the fact that the integral tends to zero (again by Lebesgue’s
dominated convergence theorem), it follows that Fw(0) = w(0). �

PROOF OF LEMMA 5.7. (i) The limit (5.9) follows from (5.4) or (5.13) using
W(q)(x) ∼ e�(q)x/ψ ′(�(q)) as x → ∞.

(ii) Observe first that Jw is càdlàg on R+ \ {0}, by noting that wν(x) is càdlàg
at any x > 0 [as a consequence of the facts that w is càdlàg, left-differentiable at
zero, and satisfies the integrability condition (2.1)].

The continuity of W(q) on R+, (2.1) and the finiteness of
∫ 1

0 |wν(y)|dy

(Lemma 5.6) imply that the integral
∫ x

0 |W(q)(x − y)Jw(y)|dy is finite for any
x > 0. A change of the order of integration in (5.13), justified by Fubini’s theorem,
implies for x > 0 the integral

∫ x
0 Jw(x − y)W(q)(y)dy is equal to

W(q)(0)

∫ x

0
Jw(u)du +

∫ x

0

∫ x−z

0
Jw(u)duW(q)′(z)dz.

As a consequence, it follows that the right- and left-derivatives F ′
w(x) and F ′

w,−(x)

are equal to w′−(0)− ∫ x
0 Jw((x − z)±)W(q)′(z)dz−W(q)(0)Jw(x±), respectively,

at any x > 0. Thus the difference F ′
w(x)−F ′

w,−(x) is as stated in (5.14). An appli-
cation of Lebesgue’s dominated convergence theorem implies that the integral in
the previous line converges to zero when x tends to 0. The right-continuity of Jw

and the fact that W(q)(0) is 0 precisely if X has unbounded variation, yields the
stated form of F ′

w(0).
(iii) The right-continuity follows from the right-continuity of Jw on R+\{0} and

Lebesgue’s dominated convergence theorem. In the case w ∈ C1(R−), a similar
argument as at the start of part (ii) implies that Jw is continuous on R+. It follows
thus from (5.14) that F ′

w(x) is continuous at any x > 0. �
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5.2. Exponential and polynomial boundary conditions. For later reference it
is noted that in the case that the payoff w is exponential, w(x) = exv for some
v ∈ R, or is a monomial, w(x) = xk , the solutions of the two-sided and mixed
absorbing/reflected exit problems simplify and can be expressed in terms of the
functions Z(q,v) and Zk that are specified as follows:

DEFINITION 5.8. (i) For q, v ∈ R+, the function Z(q,v) :R→R is defined by
Z(q,v)(x) = evx for x < 0, and by

Z(q,v)(x) = evx + (
q − ψ(v)

) ∫ x

0
ev(x−y)W(q)(y)dy, x ∈ R+.(5.17)

(ii) With n0 the largest integer such that
∫
(−∞,−1) |x|nν(dx) < ∞, the related fam-

ily of functions Zk :R→R, k = 0, . . . , n, is defined by

Zk(x) = ∂k

∂vk

∣∣∣∣
v=0+

Z(q,v)(x).(5.18)

As suggested above, Z(q,v) and Zk are in fact Gerber–Shiu functions of the
exponential and monomial pay-offs ev,pk :R− → R, which for any v ∈ R and
k = 1, . . . , n0 are given by ev(x) := evx and pk(x) := xk .

COROLLARY 5.9. For any q > 0, v ∈ R and k = 1, . . . , n0, Z(q,v) and Zk are
Gerber–Shiu functions with payoffs ev,a := aev and pk,a = apk , the translations of
ev and pk , respectively.

PROOF. The assertion concerning Z(q,v) directly follows from Theorem 5.3
since the function Z(q,v) is equal to the Gerber–Shiu function Fw corresponding
to w = ev . The two functions coincide since both are continuous on R+ and it
holds

LFev (θ) = LZ(q,v)(θ) = (
ψ(θ) − q

)−1 ψ(θ) − ψ(v)

θ − v
.(5.19)

The proof of the assertion concerning Zk is similar and omitted. �

REMARK 5.10. (i) For v ≥ 0, the function x 
→ Z(q,v)(x) is strictly increasing
on R+. In particular, for x > 0 and v > �(q), Z(q,v)′(x) is equal to

Z(q,v)′(x) = (
ψ(v) − q

) ∫ ∞
x

ev(x−y)W(q)′(y)dy,(5.20)

which can be derived from (1.5) and (5.17) by integration by parts.
(ii) The map v 
→ v−1Z(q,v)′(x) is completely monotone4 on (�(q),∞),

for any x > 0. That this is the case follows from the observation that v 
→
4A function f : (a,∞) → R+ \ {0}, a ∈R, is completely monotone if (−1)k−1f (k)(x) ≥ 0 for all

k ∈N and x > a, where f (k) denotes the kth derivative with respect to x.
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v−1Z(q,v)(x) is the Laplace transform of some measure on R+ which is shown
next. From the definition of Z(q,v) it follows that the derivative Z(q,v)′(x) at x > 0
satisfies

Z(q,v)′(x) = vZ(q,v)(x) + (
q − ψ(v)

)
W(q)(x).

Inserting the forms of the Laplace transforms of W(q)|R+ and Z(q,v)|R+ [given
in (1.5) and (5.19)], it follows

LZ(q,v)′(θ) = q

ψ(θ) − q
(5.21)

+ θv

ψ(θ) − q

[
σ 2

2
+

∫ ∞
0

e−θy − e−vy

v − θ
ν(y)dy

]
.

Inversion of the Laplace transform in (5.21) and the observation∫ ∞
0

e−θy − e−vy

v − θ
ν(y)dy =

∫ ∞
0

∫ ∞
0

e−θs−vtν(s + t)dt ds,

yield the following expression for v−1Z(q,v)′(x) at any x > 0:

q

v
W(q)(x) + σ 2

2
W(q)′(x) +

∫ ∞
0

∫
[0,x]

e−vtν(x − y + t)W(q)(dy)dt.

By inspection it follows that, for any x > 0, the function v 
→ v−1Z(q,v)′(x) is
the Laplace transform of a measure on [0,∞), which implies the stated complete
monotonicity.

6. Single dividend-band strategies. The analysis of various strategies starts
with the case of single dividend-band strategies. In the absence of transaction costs
such a barrier strategy at level b = (b−, b+), denoted by πb, specifies to pay out
the minimal amount of dividends to keep the reserves Ub := Uπb below the level
b+ = b−, while, in the case K > 0, πb prescribes to pay out a lump-sum b+ −b− >

0 each time that the reserves Ub reach the level b+. More formally, in the cases
K = 0 and K > 0 the forms of the strategy πb = {Db

t , t ∈ R+} are given by (1.8)
[with b = b+ = b−] and by

Db
t = (

Ub
0 −b−

)+(b+−b−)Nb
t , Nb

t = #
{
s ∈ (0, t] :Ub

s− = b+
}
, t ∈ R+,

respectively. As a consequence, it follows that the value vb(x) := vπb
(x) associated

to the single dividend band strategy πb at a nonzero level b when X0 is equal to x

is given by

vb(x) = Ex

[∫ τb

0
e−qtμb

K(dt) + e−qτbw
(
Ub

τb

)]
,

with μb
K := μ

πb

K , Ub := Uπb and τb = τπb = inf{t ∈ R+ :Ub
t < 0}. The function vb

can be expressed in terms of the homogeneous and inhomogeneous scale functions
W(q) and Fw as follows:
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PROPOSITION 6.1. For b+ > b− ≥ 0 and x ∈ [0, b+] and with F = Fw it
holds

vb(x) =
⎧⎪⎨⎪⎩

w(x), x < 0,

W(q)(x)G(b−, b+) + F(x), x ∈ [0, b+],
x − b+ + vb(b+), x > b+,

(6.1)

G(b−, b+) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b+ − b− − K − (F (b+) − F(b−))

W(q)(b+) − W(q)(b−)
, K > 0, b+ > b−,

1 − F ′(b+)

W(q)′(b+)
, K = 0, b+ = b−.

(6.2)

REMARK 6.2. Note that in the case K > 0 and X0 = x > b+ the strategy πb

prescribes an immediate lump-sum dividend payment of size x − b−, which is in
agreement with the value vb(x) for x > b+,

vb(b+) = vb(b−) + b+ − b− − K ⇒ vb(x) = x − b− − K + vb(b−), x > b+.

PROOF OF PROPOSITION 6.1. Consider the case K > 0. Since no dividend
payment takes place before X reaches the level b+ it follows that {Xt, t ≤ T0,b+}
and {Ub+

t , t ≤ τπb} have the same law. The strong Markov property of X and the
absence of positive jumps then yield that for x ∈ [0, b+] vb(x) is equal to

Ex

[
e−qT +

b+
(
vb(b−) + 
b − K

)
1{T +

b+<T −
0 }

] +Ex

[
e−qT −

0 w(UT −
0

)1{T +
b+>T −

0 }
]

= W(q)(x)

W(q)(b+)

[
vb(b−) + 
b − K

] +
[
F(x) − F(b+)

W(q)(x)

W(q)(b+)

]
,

with F = Fw , where the second line follows from Proposition 5.5 (applied with
w ≡ 0 and with δ = 0). Evaluating the expression in the display at x = b−, solv-
ing the resulting linear equation for v(b−) and inserting the result yields the stated
form. The case K = 0 follows by a similar line of reasoning, using (5.12) in Propo-
sition 5.5. �

Next the candidate optimal levels are described. The form of G suggests to
define the level b∗ = (b∗−, b∗+) as a maximizer of G(x,y) over all x, y ≥ 0 in the
case K > 0, and similarly, to define b∗+ as a maximizer of G(x,x) over all x ≥ 0
in the case K = 0.

REMARK 6.3. Observe that in the case K > 0 and G is C1, the partial right
derivatives of G(x,y) are given by

∂G

∂x
(x, y) = W(q)′(x)

W(q)[x, y]
[
G(x,y) − G#(x)

]
,

(6.3)
∂G

∂y
(x, y) = − W(q)′(y)

W(q)[x, y]
[
G(x,y) − G#(y)

]
, G#(x) := 1 − F ′(x)

W(q)′(x)
,
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and with W(q)[x, y] := W(q)(y) − W(q)(x). Therefore, in this case, an interior
maximum (x∗, y∗) will satisfy G(x∗, y∗) = G#(x∗) = G#(y∗), and a candidate
optimum may be found by fixing d = y − x, and optimizing the left endpoint x(d)

for fixed d [graphically, this would amount to determining the highest value of the
function G# where the “width” y(d) − x(d) of the function G# is d].

In the case K > 0, fix therefore d > 0, and let

b∗(d) = sup
{
b ≥ 0 :G(b,b + d) ≥ G(x,x + d) ∀x ≥ 0

}
(6.4)

denote the last global maximum of G(x,x + d).
Define next d∗ to be the last global maximum of G(b∗(y), b∗(y) + y)

d∗ = sup
{
d ≥ 0 :G

(
b∗(d), b∗(d) + d

) ≥ G
(
b∗(y), b∗(y) + y

) ∀y ≥ 0
}
,

where inf∅= +∞.
The candidate optimal levels are then defined as follows:

b∗ = (
b∗−, b∗+

)
with b∗− = b∗(

d∗)
, b∗+ = b∗(

d∗) + d∗.(6.5)

In the absence of transaction cost (K = 0), set

b∗+ = b∗− = sup
{
b ≥ 0 :G#(b) ≥ G#(x) ∀x ≥ 0

}
.(6.6)

THEOREM 6.4. It holds b∗+ < ∞ and

v∗(x) = W(q)(x)G#(
b∗+

) + F(x), x ∈ [
0, b∗+

]
,(6.7)

where F = Fw . In particular, it is optimal to adopt the strategy πb∗ while the
reserves are not larger than b∗+.

The proof rests on the following auxiliary result that concerns explicit expres-
sions linking the operator a�

w∞ with the function G and the scale functions Fw

and W(q). This relation is also deployed in the formulation of necessary and suffi-
cient optimality conditions for optimality of band policies in Sections 9–11.

LEMMA 6.5. Let c > 0, and for any b+ ≥ b− ≥ 0 (with b+ �= b− in the case
K > 0) define

Jvb
:R+ \ {0} →R, Jvb

(y) = (
b+�vb∞vb

)
(y), y > 0.

(i) The following identity holds true:

W(q)′(b∗+ + c
)[

G
(
b∗−, b∗+ + c

) − G
(
b∗−, b∗+

)]
=

∫
[0,c)

b∗+Jvb∗ (c − y)W(q)(dy)(6.8)

= v′
b∗,−

(
b∗+

) − F ′
b∗+vb

(c).
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In particular, it holds∫
[0,c)

b∗+Jvb∗ (c − y)W(q)(dy) < 0 ∀c > 0,(6.9)

and the functions y 
→ G(b−, y) and y 
→ G#(y) are decreasing for all y suffi-
ciently large.

(ii) Denoting Gb−(x) := G(b−, x), the Laplace transform of the function
g :R+ \ {0} →R given by g(x) = b+Jvb

(x) is equal to

Lg(θ) = +eθb+

θ

∫
(b+,∞)

e−θzZ(q,θ)′(z)Gb−(dz), θ > �(q).(6.10)

In particular, g is nonpositive precisely if θ 
→ −Lg(θ + �(q)) is completely
monotone.

REMARK 6.6. The integral in (6.10) is to be interpreted as a Lebesgue–
Stieltjes integral. This follows as a consequence of the form of Gb− and the fact
that the functions W(q) and 1/W(q)′ are of bounded variation (which follows in
turn as W(q) is increasing and W(q)′ is logconcave).

The proof of Lemma 6.5 is given in Appendix C.

PROOF OF THEOREM 6.4. b∗+ is finite, and the supremum is attained: Note
that, for any x > 0, it holds G#(x) ≥ G#(x−), by virtue of the form (6.3) of
G#(x), and the inequalities W(q)′(x) ≥ W

(q)′
− (x) [from (5.2)] and F ′(x) ≥ F ′−(x)

[from (5.14)], where W
(q)′
− (x),F ′−(x) denote the left-derivatives at x. In view of

the facts that the map x 
→ G#(x) defined in (6.2) is right-continuous and mono-
tone decreasing for all x sufficiently large (Lemma 6.5), it then follows that there
exists an x∗ ∈ R+ such that supx≥0 G#(x) = G#(x∗). In the case that K is strictly
positive, G attains its maximum at some (x∗, y∗) ∈ Q := {(z1, z2) ∈ R

2 : 0 ≤ z1 <

z2}, since (a) G(x,y) is continuous at any (x, y) in Q, (b) monotone decreasing
for y sufficiently large and fixed x [Proposition 6.5(iii)], (c) tends to minus infinity
if y ↘ x and (d) tends to the constant κw in (5.9) if |x| + |y| tends to infinity such
that x < y.

Verification of optimality: Assume for the moment that the function h :R+ →R

defined by the right-hand side of (6.7) is a supersolution in the sense of Defini-
tion 4.1. Under this assumption h dominates the value-function v∗ (by Proposi-
tion 4.3). In fact, since h(x) is equal to the value vb∗(x) of the strategy πb∗ for
any level x of initial reserve smaller or equal to b∗+, the local verification theo-
rem, Theorem 4.4(i), implies that h(x) is equal to the optimal value v∗(x) for all
x ∈ [0, b∗+].
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Next it is shown that h is a supersolution by verifying the following two facts:
(a) e−q(t∧T −

0 )h(Xt∧T −
0

) is a martingale, and (b) h satisfies the inequality

h(x) − h(y) ≥ x − y − K for any 0 ≤ y < x.

Fact (a) follows from the martingale properties of Fw and W(q) (see Proposi-
tion 5.4), while (b) follows on account of the definitions of b∗ and G#. Indeed,
if K = 0 and x > 0, h′(x) = W(q)′(x)G#(b∗) − F ′

w(x) is bounded below by

W(q)′(x)G∗(x) − F ′
w(x) = 1,(6.11)

while, if K > 0 and x > y > 0, h(x) − h(y) = (W(q)(x) − W(q)(y))G(b∗−, b∗+) −
Fw(x) + Fw(y) is bounded below by

h(x) − h(y) ≥ (
W(q)(x) − W(q)(y)

)
G(y,x) − Fw(x) + Fw(y)

(6.12)
= x − y − K.

Displays (6.11) and (6.12) imply h(x) − h(y) ≥ x − y − K for any K ≥ 0 and
x, y ≥ 0 with x ≥ y. This completes the proof. �

7. Two-band strategies and a mixed optimal stopping/control problem.
The policy πb∗ considered in the previous section may be optimal for any level
of the reserves, and not just for small levels as shown in Theorem 6.4—necessary
and sufficient conditions for this to be the case are given in Section 9. In this section
the complementary case is considered that it is optimal to have a second dividend
band. The problem of finding the optimal levels of the second dividend band differs
from the single-band optimization problem in the following two respects:

(i) at any time t prior to the time of ruin it is possible to make a lump-sum
payment to bring the reserves down to the level b∗− defined in (6.5), yielding a
pay-off of Ut − b∗− + vb∗(b∗−) − K , and

(ii) it will not be optimal to place a dividend band at levels close to b∗+.

The observation in (i) in combination with the dynamic programming principle
(Proposition 3.1) and Theorem 6.4 yield the representation

v∗(x) = sup
π∈�,τ∈T

Ex

[∫
[0,τ∧τ)

e−qtμπ
K(dt) + e−q(τπ

b∗∧τ)vb∗
(
Uπ

τπ
b∗∧τ

)]
,(7.1)

where τπ
b∗ = inf{t ≥ 0 :Uπ

t < b∗+}. This section is devoted to a stochastic control

problem that is closely related to (7.1), V
f∗ (x) = supπ∈�,τ∈T V

f
τ,π (x), where

V f
τ,π (x) = Ex

[∫
[0,τπ∧τ)

e−qtμπ
K(dt) + e−q(τπ∧τ)f

(
Uπ

τπ∧τ

)]
,(7.2)
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where, as before τπ = inf{t ≥ 0 :Uπ
t < 0}, and f :R → R is assumed to satisfy

the following conditions:

f |R+ is given by f (x) = x + c for x ∈ R+, for some c ∈ R,(7.3)

f ′−(0) ≥ 1,(7.4)

Jw̄(u) := 0�
w̄∞f (u) > 0 for some u > 0, with w̄ = f |R−,(7.5)

for all c ∈ R+ \ {0}, ∫
[0,c) Jw̄(c − y)W(q)(dy) < 0.(7.6)

It will be shown that, under (7.5), it is not optimal to stop immediately (V f∗ �≡ f ),
while, under (7.6), the dividend barrier strategy with level at 0 is not optimal
(V f∗ �≡ V

f
τπ ,π0

). In particular, in the setting of the stochastic control problem
in (7.1) conditions in (7.3)–(7.6) are satisfied:

LEMMA 7.1. If it holds vπb∗ (x) < v∗(x) for some x > b∗+, then the function
f :R → R defined by f (x) = vb∗(b∗+ + x) satisfies the stated conditions in (7.3)–
(7.6).

PROOF. First, note that the conditions in (7.3)–(7.4) hold since vb∗ |[b∗+,∞) is
affine with unit slope and v′

b∗,−(b∗) is larger or equal to one (with equality when
W(q) and Fw are differentiable at b∗). Also, condition (7.6) holds by (6.9) in
Lemma 6.5. Furthermore, it is shown in Theorem 9.1 in Section 9 that if con-
dition (7.5) was not satisfied, then vb∗ = v∗, which would be in contradiction with
the assumed existence of an x larger than b∗+ satisfying vb∗(x) < v∗(x). �

Next a candidate optimal policy is specified for the mixed optimal stop-
ping/optimal control problem in (7.2). Strategies for this optimization problem
consist of pairs (τ,π) of an F-stopping time τ and a policy π from the set �.
The discussion at the beginning of the section [especially item (ii)] in conjunc-
tion with Lemma 7.1 suggests to consider candidate optimal strategies of the
form (τ

πb
a ,πb), a < b+: such policies specify to pay out dividends according

to a single dividend-band strategy πb at levels (b−, b+) until the first moment
τ

πb
a = inf{t ≥ 0 :Uπb

t < a} that Uπb falls below the level a > 0 at which moment
one should stop. Another strategy that is worth considering in the case K > 0
is to refrain from paying dividends until the first moment that the reserves pro-
cess exits a finite interval [a, b+] and to stop then; such strategies are denoted by
(π∅, Ta,b+) for a < b+. The value functions associated to the strategies (τ

πb
a ,πb)

and (π∅, Ta,b+) are given by

V
f
a,b−,b+(x) = Ex

[∫
[0,τ

πb
a )

e−qtμb
K(dt) + e−qτ

πb
a f

(
Ub

τ
πb
a

)]
,

and V
f,∅
a,b+(x) = Ex[e−qTa,b+ f (XTa,b+ )], with μb

K = μ
πb

K . In the following result,
which can be derived by a line of reasoning that is similar to the one used in the
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proof of Proposition 6.1, the functions V
f
a,b−,b+ and V

f,∅
a,b+ are explicitly expressed

in terms of scale functions and the families of functions (y, z) 
→ G
(a)
f (y, z),

G
(a)
f,∅(y, z), a ≥ 0, that are defined as follows:

G
(a)
f (b−, b+) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b+ − b− − K − F (a)[b− − a, b+ − a]

W(q)[b− − a, b+ − a] , K > 0,

G
(a)
f,#(b+) := 1 − F (a)′(b+ − a)

W(q)′(b+ − a)
, K = 0,

(7.7)

G
(a)
f,∅(b+) = f (b+) − F (a)(b+ − a)

W(q)(b+ − a)
,(7.8)

where F (a) = Faf is the Gerber–Shiu function for payoff af = f (a + ·),
F (a)[x, y] = F (a)(y) − F (a)(x) and, as before, W(q)[x, y] = W(q)(y) − W(q)(x).

PROPOSITION 7.2. For any b−, b+, a ∈ R+ satisfying b+ ≥ b− ≥ a the fol-
lowing representations hold true:

V
f
a,b−,b+(x) =

⎧⎪⎪⎨⎪⎪⎩
F (a)(x − a) = f (x), x ∈ [0, a),

W(q)(x − a)G
(a)
f (b−, b+) + F (a)(x − a), x ∈ [a, b+],

x − b+ + V
f
a,b−,b+(b+), x ∈ (b+,∞);

V
f,∅
a,b+(x) =

{
F (a)(x − a) = f (x), x /∈ [a, b+],
W(q)(x − a)G

(a)
f,∅(b+) + F (a)(x − a), x ∈ [a, b+].

Next the candidate optimal levels are described. Focusing first on the case that
dividends are paid and fixing the level a for the moment, and similarly as in the
case of the single dividend-band strategies, let β∗

f (a) = (β∗
f,−(a), β∗

f,+(a)) denote

the (largest) maximizer of the function G
(a)
f . In the case K > 0 we set

β∗
f,−(a) = β∗

f

(
a, δ∗

f (a)
)
, β∗

f,+(a) = β∗
f

(
a, δ∗

f (a)
) + δ∗

f (a),

β∗
f (a, d) = sup

{
b ≥ a :G(a)

f (b, b + d) ≥ G
(a)
f (x, x + d) ∀x ≥ 0

}
,

δ∗
f (a) = sup

{
d ≥ 0 :G(a),∗

f (d) ≤ G
(a),∗
f (y) ∀y ≥ 0

}
,

with G
(a),∗
f (d) := G

(a)
f (β∗

f (a, d), β∗
f (a, d) + d), while, in the case K = 0, we de-

fine

β∗
f,+(a) = β∗

f,−(a) = β∗
f,#(a) := sup

{
b ≥ a :G(a)

f,#(b) ≥ G
(a)
f,#(x) ∀x ≥ 0

}
.

The candidate optimal specification α∗
f of the stopping level a and the candidate

optimal level β∗
f are given by

α∗
f = inf

{
a ≥ 0 :G(a,∗)

f

(
δ∗
f (a)

)
> 0

}
in the case K > 0,(7.9)
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α∗
f = inf

{
a ≥ 0 :G(a)

f,#
(
β∗

f,#(a)
)
> 0

}
in the case K = 0,(7.10)

β∗
f = (

β∗
f,−, β∗

f,+
)
, β∗

f,− = β∗
f,−

(
α∗

f

)
, β∗

f,+ = β∗
f,+

(
α∗

f

)
.(7.11)

Next consider the strategy to continue without paying dividends and stop upon
exiting a finite interval. It will turn out that in the case K = 0 such a strategy is
never optimal; see Remark 7.5.

In the case K > 0 define

β∗
f,∅(a) = sup

{
b ≥ a :G(a)

f,∅(b) ≥ G
(a)
f,∅(x) ∀x ≥ 0

}
,(7.12)

α∗
f,∅ = inf

{
a ≥ 0 :G(a)

f,∅

(
β∗

f,∅(a)
)
> 0

}
, β∗

f,∅ = β∗
f,∅

(
α∗

f,∅

)
.(7.13)

The levels β∗
f,+, β∗

f,∅ and α∗
f,∅ given above are finite and strictly positive.

LEMMA 7.3. Suppose that f satisfies the conditions in (7.3)–(7.6) and denote
w̄ = f |R− .

(i) K = 0: 0 < α∗
f ≤ β∗

f,+ < ∞ and G
(α∗

f )

f,# (β∗
f ) = 0, and 0�

w̄∞f (u) ≤ 0 for all
u ∈ (0, α∗

f ).
Furthermore, if X has unbounded variation, it holds α∗

f < β∗
f,+.

(ii) K > 0: 0 < α∗
f,∅ ≤ β∗

f,∅ < ∞ and G
(α∗

f,∅)

f,∅ (β∗
f,∅) = 0, and it holds

0�
w̄∞f (u) ≤ 0 for all u ∈ (0, α∗

f,∅).
Furthermore, if it holds in addition α∗

f < ∞, then 0 < α∗
f < β∗

f,+ < ∞ and

G
(α∗

f )

f (β∗
f ) = 0.

REMARK 7.4 (Smooth and continuous fit). The choice of α∗
f coincides with

what would be obtained by applying the principles of continuous and smooth fit
from the theory of optimal stopping (see Peskir and Shiryaev [32], Chapter IV.9),
which suggest that in the mixed optimal stopping/stochastic control problem (7.2)
it can be expected that V f be continuous/continuously differentiable at a level α∗

f

if α∗
f is irregular/regular for (−∞, α∗

f ) for X, respectively, where π∗ denotes the
optimal strategy. Since it is well-known that α∗

f is regular for (−∞, α∗
f ) for X if

and only if X has unbounded variation, this heuristic yields⎧⎨⎩α∗
f satisfies V

f ′
α∗,β∗

(
α∗

f +) = f ′(α∗
f −)

, if X has unbounded variation,

α∗
f satisfies V

f
α∗,β∗

(
α∗

f

) = f
(
α∗

f

)
, if X has bounded variation.

The first equation in the display is equivalent to the expression in (7.9) in view of
the form of V

f
a,b and the facts (i) F ′

af (0) = f ′−(a) for any a > 0 and (ii) W
(q)′
+ (0) ∈

(0,∞]. The second equation in the display can also be equivalently expressed
as (7.9), in view of (i′) the form of V

f
a,b−,b+ in Proposition 7.2 and (ii′) the fact that

W(q)(0) is strictly positive precisely if X has bounded variation. A similar remark
holds true for the level α∗

f,∅.
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REMARK 7.5. (i) In the case K = 0 it is straightforward to verify that any
strategy of the form (π∅, Ta,b+), for a, b ∈ R+ with 0 < a < b+, is not optimal
[indeed, the minimal slope of the value function u of such a strategy is smaller than
one, since u satisfies u(b+) − u(0) = b+, given that u(b+) = f (b+), u(0) = f (0)

and f is affine with unit slope].
(ii) In the case K > 0 and α∗

f,∅ < α∗
f , the definition of α∗

f , Proposition 7.2 and
Lemma 7.3(ii) imply

V (x) := V
f,∅

α∗
f,∅,β∗

f,∅
(x) ≥ V

f

α∗
f,∅,β∗

f (α∗
f,∅)

(x), x ∈ [
0, β∗

f,∅

]
.

Note that the nonpositivity of G
(α∗

f,∅)

f (β∗(α∗
f,∅)) implies dV (x) ≥ 1 for all x > 0.

(iii) In the case K > 0 and α∗
f,∅ ≥ α∗

f a similar argument using the definition
of α∗

f,∅ in conjunction with Proposition 7.2 and Lemma 7.3(ii) implies

V
f

α∗
f ,β∗

f
(x) ≥ V

f,∅

α∗
f ,β∗

f,∅(α∗
f )

(x), x ∈ [
0, β∗

f

]
.

PROOF OF LEMMA 7.3. (i) Consider the function G :R+ → R defined by
G(a) = supb≥0 G

(a)
f,#(b). The fact that α∗

f is positive and finite is a consequence of

the intermediate value theorem and the following three assertions concerning G:

(a) G(0) < 0;
(b) there exists an a0 ∈ R+ \ {0} such that G(a0) > 0;
(c) the function a 
→ G(a) is continuous at a ∈ [0, a0].

Next these three assertions are verified. Assertion (a) follows from the definition
of G(0) in (7.7), the form of F (a)′ [in (5.14)] and conditions (7.4) and (7.6).

To verify assertion (b) it suffices to find a0 and b with a0 < b satisfying
G

(a0)
f,# (b) > 0, or equivalently F (a0)′(b − a0) < 1 (in view of the form of G

(a0)
f,# ). By

the form of F (a0)′ and the fact f ′(a0) ≥ 1 it suffices to show
∫
[0,b−a0)

Jw̃(b − a0 −
y)W(q)(dy) > 0 with w̃ = a0f for some a0 < b, which is equivalent to the con-
dition

∫
[0,b−a0)

Jw(b − y)W(q)(dy) > 0 for some a0 < b, as it holds Jw(b − y) =
Jw̃(b − a0 − y).

To see that the latter condition is satisfied, note that right-continuity of the map
Jw and (7.5) imply that there exists an interval I = [u−, u+], with 0 < u− < u+,
such that Jw(y) > 0 for all y ∈ I ; taking a0 := u− and b := u+ it thus follows
that the integral

∫
[0,b−a0)

Jw(b − y)W(q)(dy) is strictly positive, and the proof of
assertion (b) is complete.

To verify that assertion (c) holds fix a ≥ 0, and note V
f
a,β∗(a)(x) = W(q)(x) ×

G(a) + F (a)(x − a) for x ∈ [a,β∗+(a)]. By reasoning analogous to the proof of
Theorem 6.4 the following identity can be shown to hold:

V
f
a,β∗(a)(x) = sup

(π,τ )∈�(β∗+)

Ex

[∫
[0,τπ

a ∧τ ]
e−qt dDπ

t + e−q(τπ
a ∧τ)f

(
Uπ

τπ
a ∧τ

)]
,
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where �(β∗+) is the set of the strategies (π, τ ) that is such that the stochastic
process {Uπ

t∧τ , t ∈ R+} stays below the level β∗+. Let a1, a2 ∈ R+ be such that
a2 < a1 < min{β∗(a1), β

∗(a2)} and fix x0 ∈ (a1,min{β∗(a1), β
∗(a2)}). To show

the continuity of G(a) we show next that V
f
a1,β

∗(a1)
(x0) − V

f
a2,β

∗(a2)
(x0) tends to 0

when a2 − a1 → 0.
By an application of the triangle inequality it follows that the difference

|V f
a1,β

∗(a1)
(x0) − V

f
a2,β

∗(a2)
(x0)| is bounded above by

sup
π∈�

Ex0

[∫
[τπ

a1
,τπ

a2
]
e−qt dDπ

t + ∣∣e−qτπ
a2 f

(
Uπ

τπ
a2

) − e−qτπ
a1 f

(
Uπ

τπ
a1

)∣∣].(7.14)

Since Px0(Uτπ
a1

∈ [a2, a1)) = Px0(τ
π
a1

< τπ
a2

) converges to zero if a1 − a2 ↘ 0, it
follows that also the random variable under the expectation tends to zero Px0 -a.s.
if a1 − a2 ↘ 0. Since this random variable is dominated by an integrable random
variable, uniformly for all (π, τ ) ∈ �(β∗+), Lebesgue’s dominated convergence
theorem implies that the right-hand side of (7.14) tends to zero when a1 − a2 ↘ 0.
To see that the random variable is dominated, recall that f is affine, and note that
e−qτπ

a1 Dπ
τπ
a1

∨ e−qτπ
a2 Dπ

τπ
a2

∨ ∫
[τπ

a1
,τπ

a2
] e−qt dDπ

t is bounded above by∫
[0,∞)

e−qt dDπ
t ≤

∫ ∞
0

qe−qtDπ
t dt ≤

∫ ∞
0

qe−qtXt dt

with Xt = X
0
t = sups∈[0,t] Xs ∨ 0, which is equal to Ex0[Xeq ] = x0 + �(q)−1,

where eq is an independent exponential random time, and

Ex0

[∣∣e−qτπ
a Xτπ

a

∣∣] ≤ Ex0

[
e−qτπ

a (Xτπ
a

− Xτπ
a
)
] ≤ 2x0 +Ex0[Xeq − Xeq

] < ∞,

with Xt = inf0≤s≤t Xs ∧0, where the finiteness follows from the bound Ex0[Xeq
] ≥

E0[Xeq
] = E0[Xeq ] − E0[Xeq ] (which follows from the Wiener–Hopf factoriza-

tion) and the fact E0[Xeq ] = ψ ′(0)/q .
The finiteness of β∗

f,+(α∗
f ) follows by a line of reasoning that is analogous to

the one that was used in the proof of Theorem 6.4, while the relation β∗
f,+(α∗

f ) ≥
α∗

f follows by definition of β∗
f,+(α∗

f ). Finally, in the case K = 0 and {σ 2 > 0 or

ν0,1 = ∞} the equality α∗ = β∗+(α∗) would imply that V
f
α∗,β∗ ≡ f ; however, since

there exists a u such that 0�
f∞f (u) > 0 by (7.5), an argument as above shows

that, for some α,β , V
f
α,β(x) > f (x) for x ∈ (α,β), which yields a contradiction.

A similar argument shows 0�
w̄∞f (u) ≤ 0 for all u ∈ (0, α∗

f ).
The proof of part (ii) is analogous to that of part (i), and is omitted. �

The solution of the stochastic control problem in (7.2) for small levels of the
reserves is given as follows:

THEOREM 7.6. Suppose that f satisfies conditions (7.3)–(7.6).
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(i) When either K = 0 or {K > 0 and α∗
f,∅ ≥ α∗

f }, it holds V
f∗ (x) = V

f

α∗
f ,β∗

f
(x)

for any x ∈ [0, β∗
f,+]. While the reserves are smaller than β∗

f,+ it is optimal to

adopt the policy (τ
πβ∗
α∗ , πβ∗).

(ii) In the case {K > 0 and α∗
f,∅ < α∗

f } it holds V
f∗ (x) = V

f,∅

α∗
f,∅,β∗

f,∅
(x) for any

x ∈ [0, β∗
f,∅]. While the reserves are smaller than β∗

f,∅ it is optimal to adopt the
policy (Tα∗

f,∅,β∗
f,∅

, π∅).
In particular, it holds

V f∗ (x) =
{

f (x), x ∈ [0, a∗),
F (a∗)(x − a∗)

, x ∈ [
a∗, b∗]

,
(7.15)

where F (a∗) = F
a∗f and (a∗, b∗) = (α∗

f , β∗
f,+) in the cases K = 0 or {K > 0 and

α∗
f,∅ ≥ α∗

f }, and (a∗, b∗) = (α∗
f,∅, β∗

f,∅) in the case {K > 0 and α∗
f,∅ < α∗

f }.

The proof of Theorem 7.6 rests an auxiliary result concerning the combination
of locally defined martingales into a globally defined one, which is developed in
the next section.

8. Pasting lemma. The verification that a given stochastic solution satisfies
a global martingale property relies on “martingale pasting,” which is the property
(shown below) that, for a given function g, the combination of two supermartin-
gales of type (4.1) on two adjacent closed intervals I1 and I2 gives rise to a su-
permartingale defined on the union I1 ∪ I2, provided that, in the case that X has
unbounded variation, g is differentiable at the intersection I1 ∩ I2 of I1 and I2.

LEMMA 8.1. Let (Ii)
n
i=1 be a finite collection of closed intervals with disjoint

interiors satisfying
⋃n

i=1 Ii = R+, and let g :R → R be a càdlàg function satisfy-
ing boundary condition (3.7) and growth condition (4.3). Assume in addition that
g is differentiable at any x > 0 with x ∈ ⋃n

i=1 ∂Ii
5 if X has unbounded variation.

If

STIi = {
e−q(t∧TIi

)g(Xt∧TIi
), t ∈ R+

}
are F-supermartingales,(8.1)

for i = 1, . . . , n, then

S = {
e−q(t∧TR+ )g(Xt∧TR+ ), t ∈ R+

}
is a UI F-supermartingale.(8.2)

The pasting lemma implies in particular that a global super-martingale property
holds for sufficiently regular stochastic supersolutions:

5For any set A, ∂A = A \ Ao is the boundary of A, where A, Ao denote the closure and interior
of A.



1904 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

COROLLARY 8.2. Assume that g is a local stochastic supersolution on Ii , i =
1, . . . , n, for some finite collection of closed intervals (Ii)

n
i=1 with

⋃n
i=1 Ii = R+

and I o
i ∩ I o

j = ∅ for i �= j . If X has unbounded variation, suppose in addition that
g is differentiable at any x > 0 with x ∈ ⋃n

i=1 ∂Ii . Then (8.2) holds true.

PROOF OF LEMMA 8.1. In view of the observations that S is F-adapted and
UI [by Lemma 3.3(ii), as g satisfies the linear growth condition], it suffices to
show that E[St |Fs] ≤ Ss for any s, t ∈ R+ with s < t . For the ease of presenta-
tion, only the verification in the case of a collection of closed intervals the form
{[0, a], [a,∞)} for some a > 0 is considered, as the general case follows by a
similar line of reasoning.

Fix thus s, t ∈ R+ arbitrary with s < t and suppose first that X has bounded
variation. Then a is irregular for (−∞, a) for X, so that the following collection
of stopping times (Ti)i∈N∪{0} forms a discrete set:

T0 := 0, T2i := T[0,a] ◦ θT2i−1, T2i−1 = T[a,∞) ◦ θT2i−2, i ∈ N,(8.3)

where θ denotes the translation operator. The strong Markov property of X

and the tower property of conditional expectation imply that, on the event {s ≤
Ti−1, Ti−1 < ∞}, i ∈N, E[St∧Ti

− St∧Ti−1 |Fs] is equal to

E
[
E[St∧Ti

− St∧Ti−1 |FTi−1]|Fs

]
= E

[
1{t>Ti−1}e−qTi−1(8.4)

× {
EXt∧Ti−1

[
e−qRvg(XRv)|Fs

]|v=Ti−1∧t − g(Xt∧Ti−1)
}]

,

with Rv = (Ti ∧ t)◦ θv , where the expectation on the right-hand side is nonpositive
in view of Doob’s optional stopping theorem [which holds in view of the uniform
integrability of S and the assumed supermartingale property (8.1)]. Since Tn → ∞
P-a.s. as n → ∞ (recalling inf∅ = ∞ and Xt → ∞ as t → ∞) and S is UI, it
follows E[St − Ss |Fs] = limn→∞E[STn

t − S
Tn
s |Fs] is equal to the limit as n → ∞

of
n∑

j=1

1{Tj−1<s≤Tj }
{
E

[
(STj∧t − STj∧s)|Fs

] +
n∑

i=j+1

E
[
(St∧Ti

− St∧Ti−1)|Fs

]}
,

which is nonpositive.
Suppose next that X has unbounded variation. For any given ε > 0, denote by

(T ′
i )i∈N∪{0} the sequence of subsequent entrance times into the sets [a − ε, a + ε]

and R \ [a − 2ε, a + 2ε],
T ′

0 := 0, T ′
2i−1 := TR\[a−ε,a+ε] ◦ θT ′

2i−2
,

T ′
2i := T[a−2ε,a+2ε] ◦ θT ′

2i−1
, i ∈ N,
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FIG. 1. The martingale increments commence when X enters the inner band (dashed) and stop
when X leaves the outer band (dotted).

(see Figure 1). For any t ∈ R+, decompose St as St − S0 = S
(1,ε)
t + S

(2,ε)
t with

S
(1,ε)
t = ∑

i≥1

[St∧T ′
2i

− St∧T ′
2i−1

], S
(2,ε)
t = ∑

i≥1

[St∧T ′
2i−1

− St∧T ′
2i−2

].

The conditional expectation E[S(1,ε)
t −S

(1,ε)
s |Fs], which concerns increments of S

during the periods that X spends in the band [a − 2ε, a + 2ε], vanishes as ε ↘ 0,
as shown in the following result:

LEMMA 8.3. We have limn→∞E[S(1,εn)
t − S

(1,εn)
s |Fs] ≤ 0 a.s. for some se-

quence (εn)n with εn ↘ 0.

The proof of Lemma 8.3 is given below. Since S(2,ε) is a UI super-martingale
for any ε > 0 (which follows by the line of the reasoning given in the first part of
the proof), we thus have that E[St |Fs] is equal to

limn→∞E
[
S

(1,εn)
t |Fs

] + limn→∞E
[
S

(2,εn)
t |Fs

] ≤ limn→∞
(
S(1,εn)

s + S(2,ε)
s

)
,

which is equal to Ss . As s and t were arbitrary, the proof is complete. �

Lemma 8.3 can be established deploying the properties of Gerber–Shiu func-
tions:

PROOF OF LEMMA 8.3. Let ε > 0 be given and, for any t ≥ 0 write S
(1,ε)
t =

�
(1,ε)
t + �

(2,ε)
t + �

(3,ε)
t with �

(1,ε)
t = ∑

i≥1 g(Xt∧T ′
2i
)[e−q(t∧T ′

2i ) − e−q(t∧T ′
2i−1)],

�
(2,ε)
t = ∑

i≥1

e−q(t∧T ′
2i−1)

[
E

[
g(Xt∧T ′

2i
)|Ft∧T ′

2i−1

] − g(Xt∧T ′
2i−1

)
]

and �
(3,ε)
t = ∑

i≥1 e−q(t∧T ′
2i−1)[g(Xt∧T ′

2i
) − E[g(Xt∧T ′

2i
)|Ft∧T ′

2i−1
]]. We next esti-

mate these three sums.
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In view of growth condition (4.3), it follows that there exist positive real num-
bers a and b satisfying {∀x ∈ R+, |g(x)| ≤ ax + b}, so that the following estimate
holds: ∣∣�(1,ε)

t

∣∣ ≤ (aXt∧τπ + b)

∫ t∧τπ

0
e−qs1{Xs∈(a−2ε,a+2ε)} ds, t ≥ 0.

The absolute continuity of the potential measure of X and the integrability of Xt

for any t ≥ 0 implies that, as ε ↘ 0, the left-hand side tends to zero P-a.s. and in
L1(P) (by Lebesgue’s dominated convergence theorem).

The next step is the observation that the following estimate holds (as a conse-
quence of the differentiability of g at a):

LEMMA 8.4. Let η > 0 and q ≥ 0. There exists a C̃ > 0 such that for all ε > 0
sufficiently small, L(x) = Ex[e−qTa−2ε,a+2εg(XTa−2ε,a+2ε

)] − g(x) satisfies

sup
x∈[a−2ε,a+2ε]

L(x) ≤ ε · C(ε), C(ε) := C̃
[
η + W(q)(4ε)

]
.(8.5)

The proof of Lemma 8.4 is given below.
The triangle inequality and the strong Markov property imply that |�(2,ε)

t | is
bounded by the sum

∑
i≥1 e−q(t∧T ′

2i−1)|(L̃1 + L̃2)(t − t ∧ T ′
2i−1,Xt∧T ′

2i−1
)| where

L̃1(t, x) = Ex[(g(Xt) − g(x))1{T >t}] and L̃2(t, x) = Ex[(g(XT ) − g(x))1{T ≤t}]
with T = Ta−2ε,a+2ε may be decomposed as L̃2(t, x) = A1 − A2 with A1 = L(x),
and

A2 = Ex

[(
g(XT ) − g(x)

)
1{t<T }

] = Ex

[
L(Xt)1{t<T }

]
.

To estimate |�(2,ε)
t | we split it into two sums. It is straightforward to check that

the sum involving the terms L̃1 is bounded by Ex[|g(Xt) − g(Xρ)|1{t<ρ′}] where
ρ = sup{u ≤ t :Xu ∈ (a − ε, a + ε)} and ρ ′ = inf{t > ρ :Xt /∈ [a − 2ε, a + 2ε]},
which in turn is bounded by C′ε for some constant C′ (as g is differentiable in a).

Furthermore, it follows from Lemma 8.4 that L̃2(t, x) is bounded by 2εC(ε).
Observe next that the number of terms in the sum �(2,ε) is bounded by 1 +
D−

t (ε) + U+
t (ε), where D−

t (ε) and U+
t (ε) denote the numbers of down-crossings

of the band (a − 2ε, a − ε) and upcrossings of (a + ε, a + 2ε) by X before time t .
Thus the expectation of |�(2,ε)

t | can be bounded as follows:

Ex

[∣∣�(2,ε)
t

∣∣] ≤ 2εEx

[
1 + D−

t (ε) + U+(ε)
]
C(ε) + C′ε.(8.6)

Since X is a Lévy process with positive drift, X is a submartingale, so that the
upcrossing lemma implies that the expected number of upcrossings of the band
(c, d) = (a + ε, a + 2ε) by time t does not grow faster than ε−1,

ε ·Ex

[
U+

t (ε)
] ≤ Ex

[
(Xt − d)+

] −Ex

[
(X0 − c)+

]
.
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Thus, it follows that ε · Ex[U+
t (ε)] remains bounded as ε → 0. As the number

of downcrossings D−
t (ε) of the band (a − 2ε, a − ε) is bounded by 2 + U+

t (ε);
also ε · Ex[D−

t (ε)] remains bounded as ε → 0. Since C(ε) tends to η as ε →
0 [as W(q)(0) = 0 when X has unbounded variation], it thus follows from (8.6)
that Ex[|�(2,ε)

t |] tends to 2η as ε tends to zero. As η is arbitrary, we conclude
limε↘0 Ex[|�(2,ε)

t |] = 0.
Next we turn to the sum �(3,ε). We have the decomposition E[�3,ε

t −
�3,ε

s |Fs] = ∑
j≥1 1{T2j−2≤s<T2j }Bj with Bj = e−q(t∧T2j−1(E[g(XTt∧T2j

)|Fs] −
E[g(XTt∧T2j

)|Ft∧T2j−1]. Reasoning as above we find that the sum convergences

to 0 in L1(P) when ε → 0. Finally, an application of the Borel–Cantelli lemma
(recalling S(1,ε) = ∑3

i=1 �(i,ε)) yields the existence of a sequence (εn), εn → 0,

such that E[S(1,εn)
t − S

(1,εn)
s |Fs] → 0 a.s. as n → ∞. �

PROOF OF LEMMA 8.4. By rearranging terms observe that L(x) can be writ-
ten as L(x) = g(a)R0(x)+g′(a)R1(x)+R(x)−w̃(x) with w̃(x) := g(x)−g(a)−
g′(a)(x − a), R(x) := Ex[e−qTa−2ε,a+2ε w̃(XTa−2ε,a+2ε

)], R0(x) :=
Ex[e−qTa−2ε,a+2ε ] − 1 and

R1(x) := Ex

[
e−qTa−2ε,a+2ε (XTa−2ε,a+2ε

− a)
] − (x − a).

Next the terms R0(x), R1(x) and R(x) are estimated. Given η > 0, let δ > 0 satisfy
|w̃(y)/(y − a)| < η, whenever |y − a| < δ (such a δ exists as g is assumed to be
differentiable at a). Then, for any ε sufficiently small and any x ∈ [a −2ε, a +2ε],
the bounds |w̃(x)| ≤ 2ηε and |R(x)| ≤ |R2(x)| + η|R3(x)| hold, with

Ri(x) = Ex

[
e−qTa−2ε,a+2εwi(XTa−2ε,a+2ε

)
]
, i = 2,3,

(8.7)
w2(x) = w̃(x)1(−∞,a−δ](x), w3(x) = (x − a)1(a−δ,0](x), x ≤ a.

From expression (5.11), with the replacements a → a − 2ε, b → a + 2ε and
w → w̃i ∈ R0 for i = 0, . . . ,3 given by w̃i = a−2εwi with wi : (−∞, a − 2ε] → R

specified in (8.7) and by w0(x) := 1 and w1(x) := x − a + 2ε, and the fact that
W(q) is increasing, it is straightforward to verify that, for any x ∈ [a − 2ε, a + 2ε],∣∣Ri(x)

∣∣ ≤ 2 max
z∈[0,4ε]

∣∣Fw̃i
(z) − w̃i(0) − w̃′

i,−(0)z
∣∣, i = 0,1,2.(8.8)

Since the functions Jw̃i
, i = 0,1,2, given in (5.5) with w → w̃i , are bounded, by

J∞ say, and W(q) is increasing, it follows from the form (5.4) of Fw that |Fw̃i
(z)−

w̃i(0) − w̃′
i,−(0)z|, i = 0,1,2, z ∈ [0,4ε], is bounded by

J∞
∫ z

0
W(q)(z − y)dy ≤ J∞ · 4ε · W(q)(4ε).(8.9)

Combining (8.8) and (8.9) yields that the functions Ri(x), i = 0,1,2, are each
bounded by J∞·8εW(q)(4ε) for any x ∈ [a−2ε, a+2ε]. Similarly, it follows from
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the facts Fw̃3(0) = w̃3(0) = 0 and F ′
w̃3

(0+) = w̃′
3,−(0) = 1 (Theorem 5.3) that, for

all ε sufficiently small, |R3(x)| ≤ C1ε, for all x in the interval [a − 2ε, a + 2ε] for
some constant C1 > 0. Combining the estimates for w̃(x) and R0(x), . . . ,R3(x)

with the form of L(x) completes the proof. �

9. Optimality conditions for single dividend-band strategies. A necessary
and sufficient condition for the optimality of the single band policy πb∗ at lev-
els b∗ := b∗

1 = (b∗−, b∗+) defined in (6.5)–(6.6) can be expressed in terms of the
function G∗ : (b∗−,∞) →R given by

G∗(y) = G
(
b∗−, y

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y − b∗− − K − (F (y) − F(b∗−))

W(q)(y) − W(q)(b∗−)
, if K > 0,

G#(x) = 1 − F ′(x)

W(q)′(x)
, if K = 0.

(9.1)

This condition can be expressed in terms of the function Z(q,v) that was defined in
Definition 5.8.

THEOREM 9.1. (i) The single-band policy πb∗ at level b∗ = b∗
1 is optimal for

the stochastic control problem (2.2) if and only if

b∗+
(
�w∞vb∗ − qvb∗

)
(x) ≤ 0 for all x > b∗+ and with w = vb∗ ,(9.2)

where the operator b∗+�w∞ is defined in (3.10), or equivalently, if and only if
�∗ : (�(q),∞) →R is completely monotone, where

�∗(θ) = −eθb∗+

θ

∫
(b∗+,∞)

e−θzZ(q,θ)′(z)G∗(dz), θ > �(q).(9.3)

(ii) In particular, if G∗ is nonincreasing on (b∗+,∞), then the strategy πb∗ is opti-
mal.

Theorem 9.1(ii) yields a useful simple sufficient optimality condition:

COROLLARY 9.2. (i) The unimodality of the function G∗ implies the optimal-
ity of single dividend-band policies.

(ii) In particular, in the case K = 0 and if G# is monotone decreasing, then the
“lump-sum” strategy π0 is optimal.

REMARK 9.3. In the absence of transaction costs, the function �∗ in (9.3) can
be equivalently expressed as

�∗(θ) = G#(
b∗+

)
L0(θ) + (ψ(θ) − q)

θ2 E
[
F ′(b∗+ + eθ

) − F ′(b∗+
)]

,

L0(θ) := ψ(θ) − q

θ2 E
[
W(q)′(b∗+ + eθ

) − W(q)′(b∗+
)]

,
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where eθ denotes an independent exponential random variable with mean θ−1.
In particular, if the penalty is zero and there are no transaction cost (w = K =
0), the necessary and sufficient optimality condition simplifies to the complete
monotonicity of L0(θ) on the interval (�(q),∞). This observation appears new
even in this particular case.

REMARK 9.4 (Lump-sum strategy). In the absence of transaction cost
(K = 0), the “lump-sum” strategy π0 is to “pay out all the reserves to the ben-
eficiaries and subsequently pay all the premiums as dividends, until the moment
of ruin.” Note that π0 is a single dividend-band strategy at level 0. In the case that
X is given by the Cramér–Lundberg model, the first jump (claim) arrives after an
independent exponential time eλ with finite mean λ−1, so that the value v0 is equal
to

v0(x) = Ex

[
x + p

∫ eλ

0
e−qt dt + e−qeλw(
Xeλ)

]
= Ex

[
x + p

q

(
1 − e−qeλ

) + e−qeλ
(
w(
Xeλ) − w(0)

) + w(0)e−qeλ

]
,

which is equal to x + p+wν(0)+λw(0)
λ+q

, where 
Xeλ = X(eλ) − X(eλ−), and
wν :R+ \ {0} → R is defined in Proposition 5.4. If X0 is zero and X has infi-
nite activity or nonzero Gaussian component, ruin occurs immediately if strategy
π0 is followed (τπ0 = 0, P0-a.s.) and v0(x) = x + w(0).

Hence, the value of the lump-sum strategy is equal to v0(x) = (x + γw) ×
1[0,∞)(x) + w(x)1(−∞,0)(x) with γw = v0(0) given by⎧⎨⎩

1

q + ν

[
p + wν(0) + νw(0)

]
, if ν := ν(R+) < ∞ and σ = 0,

w(0), if ν = ∞ or σ > 0.

If G# is monotone decreasing, it attains its maximum over R+ at zero, and the
function � is completely monotone, so that π0 is optimal [Theorem 9.1(ii)].

REMARK 9.5. In the following result (proved in Appendix D) explicit suffi-
cient conditions are given in terms of the penalty w and the Lévy density ν for
optimality of a single barrier strategy at a positive level:

COROLLARY 9.6. In the case {K = 0 and b∗
1 > 0}, if ν admits a convex den-

sity ν′ and the penalty w is severe [i.e., w(0) ≤ γw and w(x + y) − w(y) ≤ x for
all x, y ∈ R−], then the strategy πb∗

1
is optimal.

Note that a penalty w is severe if (i) the penalty at 0 is at least the value of the
lump-sum strategy at 0 and (ii) the slope of the penalty is at least one.
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PROOF OF THEOREM 9.1, PART (I). The equivalence of the conditions (9.2)
and (9.3) directly follows due to Lemma 6.5(iii).

Proof of sufficiency of (9.2): It suffices to show that vb∗ is a stochastic supersolu-
tion, as then the local verification theorem (Theorem 4.4) implies that vb∗ is equal
to the value-function v∗. The supersolution property of vb∗ follows by combining
the pasting lemma (Lemma 8.1) with the following facts:

(a) exp{−q(t ∧ T −
b∗+)}vb∗(X(t ∧ T −

b∗+)) is an F-supermartingale [by (9.2) and
Lemma 3.4(ii)],

(b) exp{−q(t ∧T0,b∗+)}vb∗(X(t ∧T0,b∗+)) is an F-martingale [by the form of vb∗

in (6.7) and the martingale properties of W(q) and Fw in Proposition 3.1] and
(c) if X has unbounded variation, vb∗ is differentiable at b∗+ [in view of the

form of vb∗ in (6.7)].

Proof of necessity of (9.2): Suppose that the condition in (9.2) is not satis-
fied. Since x 
→ (b∗+�w∞vb∗ − qvb∗)(x) is right-continuous at any x with x > b∗+,
it follows that there exists an open interval (α,β) contained in (b∗+,∞) with
(b∗+�w∞vb∗ − qvb∗)(x) > 0 for x ∈ (a, b). Define a strategy π̃ as follows: whenever
Ut does not take a value in the interval (α,β), operate according to πb∗ , and while
the reserve process Ut takes a value in the interval (α,β), do not pay any dividends.
Then St := e−q(t∧Tα,β)(vπ̃ (Xt∧Tα,β ) − vb∗(Xt∧Tα,β )) is an F-supermartingale, and
the following holds true [cf. (3.12)] for any x ∈ (α,β):

vπ̃ (x)− vb∗(x) ≥ Ex[St − S0] = Ex

[∫ t∧Tα,β

0
e−qs(

b∗+�w∞vb∗ − qvb∗
)
(Xs)ds

]
> 0.

Hence it follows that πb∗ is not an optimal policy, and the proof is complete. �

PROOF OF THEOREM 9.1, PART (II). The statement follows by combining
part (i) with the next result. �

LEMMA 9.7. If x 
→ G∗(x) is nonincreasing on (b∗+,∞), then �(θ) is com-
pletely monotone on (�(q),∞).

PROOF. If the function G∗ is nonincreasing, then the function � is completely
monotone in view of the form of � given in (9.3), the complete monotonicity of
θ−1eθ(b−x)Z(q,θ)′(x) [cf. Remark 5.10(ii)] and the following facts:

(i) A function f : (c,∞) →R+, c > 0, is completely monotone if and only if
f is the Laplace transform of a measure supported on [0,∞).

(ii) If f (θ) is the Laplace transform of the measure μ supported on [0,∞),
then for any c > 0, e−θcf (θ) is the Laplace transform of the translated measure
y 
→ 1{y≥c}μ(d(y − c)).

(iii) The Laplace transform of the measure n(dy) = ∫
[b,∞) μx(dy)m(dx) sup-

ported on [0,∞) is given by Ln(θ) = ∫
[b,∞)Lμx(θ)m(dx) where (μx, x > b),

b ∈ R, is a collection measures supported on [0,∞). �
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10. Optimality conditions for solutions to the mixed optimal stopping/
control problem. The Hamilton–Jacobi–Bellman equation associated to the
stochastic control problem in (7.2) differs from (3.6) by the inclusion of the ad-
ditional requirement that the value-function should be larger than the function f

[reflecting the fact that (7.2) is a mixed optimal stopping/control problem]; hence,
the HJB equation corresponding to (7.2) is given by

max
{
Lg(x) − qg(x), f (x) − g(x),1 − dg(x)

} = 0, x > 0,(10.1) {
g(x) = f (x), for all x < 0,
g(0) = f (0), in the case

{
σ 2 > 0 or ν0,1 = ∞}

,
(10.2)

where dg(x) is defined in (3.4). Stochastic supersolutions g of the HJB equation
in (10.1) and (10.2) are defined as in Definition 4.1, with the additional requirement
g ≥ f . By a line of reasoning similar to that used in the proof of Theorem 4.4, it
follows that a local verification result for the stochastic control problem (7.2) holds
true:

COROLLARY 10.1. Let g be a stochastic supersolution of the HJB equation
in (10.1) and (10.2). If there exist c, a, b−, b+ satisfying 0 ≤ c ≤ a ≤ b− ≤ b+
and g(x) = V

f
a,b−,b+(x) {g(x) = V

f,∅
a,b+(x)} for any x ∈ [c, b+], then it holds

V
f∗ (x) = V

f
a,b−,b+(x) for all x ∈ [c, b+] {V

f∗ (x) = V
f,∅
a,b+(x) for all x ∈ [c, b+]},

respectively.

Given this verification result the proof of Theorem 7.6 can be completed. A key
step in the proof is the following property of the function f :

LEMMA 10.2. Suppose that f satisfies the conditions in (7.3)–(7.6), and de-
note w̄ = f |R− . It holds 0�

w̄∞f (u) ≤ 0 for all u ∈ (0, α(K)) with α(0) := α∗
f and

α(K) := α∗
f,∅ for K > 0.

PROOF OF THEOREM 7.6. (i) Since V
f

α∗
f ,β∗

f
is the value-function of the strat-

egy (τ
πβ∗
α∗ , πβ∗), Corollary 10.1 implies that, to prove the assertion, it suffices to

show that V
f

α∗
f ,β∗

f
is a supersolution of the HJB equation in (10.1) and (10.2). Next

the various conditions are verified.
Analogously to the proof of Theorem 6.4, it follows from the definition of β∗

f

and the form of the function V = V
f

α∗
f ,β∗

f
given in Proposition 7.2 that the following

inequality holds:

V (x) − V (y) ≥ x − y − K(10.3)

for all x, y ≥ 0 satisfying x ≥ y ≥ α∗
f . In view of the fact V ′(x) = f ′(x) = 1 for

x ∈ (0, α∗
f ), it follows that the inequality in (10.3) is in fact valid for all x and y

satisfying x ≥ y ≥ 0.



1912 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

To see that the V dominates the function f ,

V (x) ≥ f (x), x ≥ 0,(10.4)

note first that it holds V (0) = f (0) (a direct consequence of the form of V in
Proposition 7.2 and α∗

f > 0 by Lemma 7.3). In the case K = 0, (10.4) is hence
a special case of (10.3) (with y = 0). In the case {K > 0 and α∗

f,∅ ≥ α∗
f }, the

definitions of α∗
f,∅, β∗

f,∅ and G
(a)
f,∅, the positivity of W(q)(x) imply

G
(a)
f,∅(b) ≤ 0 for all a ∈ [

0, α∗
f,∅

]
and b ∈ [

0, β∗
f,∅

]
⇐⇒ F (a)(x − a) ≥ f (x) for all x ∈ [

0, β∗
f,∅(a)

]
and a ∈ [

0, α∗
f,∅

]
,

which yields the inequality in (10.4), in view of the facts V (x) = F (a)(x − a) for
all x ≤ b := β∗

f,+ [by Proposition 7.2 and Lemma 7.3(i) and the fact β∗
f,+ ≤ β∗

f,∅

which holds by Lemma 7.3(ii)], and V |[b,∞) is affine (Proposition 7.2).
In view of the observations

e
−q(t∧T0,α∗

f
)
f (Xt∧T0,α∗

f
) is an F-supermartingale, and(10.5)

e
−q(t∧T −

α∗
f

)

F
(α∗

f )(
Xt∧T −

α∗
f

− α∗
f

)
is an F-martingale,(10.6)

and the differentiability of F
(α∗

f )
(x) at x = 0 if X has unbounded varia-

tion [F (α∗
f )′

(0) = f ′−(α∗
f ), by Lemma 5.7], it follows from the pasting lemma

(Lemma 8.1)

e−q(t∧T −
0 )F

(α∗
f )(

Xt∧T −
0

− α∗
f

)
is an F-supermartingale.(10.7)

Here, the supermartingale property in (10.5) follows from Lemma 7.3(i), by a line
of reasoning that is similar to the one used in the proof of Lemma 3.4, while the
martingale property in (10.6) follows from Proposition 5.4.

The supermartingale property in (10.7) and the inequalities in (10.3) and (10.4)
imply that F

(α∗
f )

(x − α∗
f ) is a stochastic supersolution for the stochastic control

problem in (7.2), which completes the proof of (i).
(ii) The line of reasoning is analogous to the one in part (i) (see Remark 7.5)

and is therefore omitted. �

10.1. Optimality conditions for two-band policies. When a single band strat-
egy is not globally optimal for the stochastic control problem in (2.2), it is not op-
timal to pay out a lump-sum dividend at all levels above b∗+ but is instead optimal
to postpone paying dividends when the reserves process is in a certain subset of
(b+∗ ,∞). This section is concerned with the necessary and sufficient conditions for
optimality of a policy with only one additional band. Consider the candidate opti-
mal two-band strategy πa∗,b∗ at the levels a∗ = (0, a∗

2) and b∗ = (b∗
1, b

∗
2) where the
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levels b∗
1 = (b∗−, b∗+) associated to the first band have been defined in (6.5)–(6.6),

and where the levels associated to the second band are given by

{
a∗

2 , b∗
2
} = b∗

1,+ +

⎧⎪⎪⎨⎪⎪⎩
{
α∗

w∗,
(
β∗

w∗,−, β∗
w∗,+

)}
, if K = 0

or
{
K > 0 and α∗

w∗,∅ ≥ α∗
w∗

}
;{

α∗
vb∗

1
,∅,

(
b∗−, β∗

w∗,∅
)}

, if
{
K > 0 and α∗

w∗,∅ < α∗
w∗

}
,

where w∗ := b∗
1,+vb∗

1
and the levels α∗

w∗ , α∗
w∗,∅, β∗

w∗,−, β∗
w∗,+ and β∗

w∗,∅ are defined
in (7.9)–(7.12).

Necessary and sufficient conditions for the two-band policy πa∗,b∗ to be (glob-
ally) optimal are expressed in terms of the functions �∗ defined in (9.3) and the
function

�∗∗ =
⎧⎨⎩�a∗

2 ,b∗
2

(
w∗)

, if K = 0 or
{
K > 0 and α∗

w∗,∅ ≥ α∗
w∗

}
,

�∅

a∗
2 ,b∗

2

(
w∗)

, if
{
K > 0 and α∗

w∗,∅ < α∗
w∗

}
.

Here for any a, b− and b+ with a ≤ b− ≤ b+ and f ∈ R0 the functions
�a,b−,b+(f ) and �∅

a,b+(f ) are given by

�a,b−,b+(f ) : θ 
→ −eθb+

θ

∫
(b+,∞)

e−θzZ(q,θ)′(z)G(a)
f,b−(dz),

�∅

a,b(f ) : θ 
→ −eθb

θ

∫
(b,∞)

e−θzZ(q,θ)′(z)G(a)
f,∅(dz),

where, for any z ≥ b−, G
(a)
f,b−(z) := G

(a)
f (b−, z), and the functions G

(a)
f,∅ and G

(a)
f

have been defined in (7.8) and (7.7).
Before stating the optimality condition for this two-band policy, we first state a

condition for (global) optimality of the policies (τ
πβ∗

f

α∗
f

, πβ∗
f
) and (Tα∗

f,∅,β∗
f,∅

, π∅)

in the auxiliary stochastic control problem in (7.2).

THEOREM 10.3. Suppose that f satisfies the conditions in (7.3)–(7.6).

(i) Suppose that it holds either K = 0 or {K > 0 and α∗
f,∅ ≥ α∗

f }. Then the

strategy (τ
πβ∗

f

α∗
f

, πβ∗
f
) is optimal for the stochastic optimal control problem in (7.2)

if and only if the function �α∗
f ,β∗

f,−,β∗
f,+(f ) is completely monotone.

(ii) Suppose that it holds {K > 0 and α∗
f,∅ < α∗

f }. Then the strategy (Tα∗
f,∅,β∗

f,∅
,

π∅) is optimal for the stochastic optimal control problem in (7.2) if and only if the
function �α∗

f,∅,β∗
f,∅

(f ) is completely monotone.

The proof of Theorem 10.3 is omitted as it is analogous to the proof of Theo-
rem 9.1(i).
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REMARK 10.4. As in the proof of Lemma 6.5, it can be shown that the com-
plete monotonicity of the function �α∗

f ,β∗
f,−,β∗

f,+(f ) is equivalent to the condition

0�
w∞V f∗ (x) − qV f∗ (x) ≤ 0 for all x > β∗

f,+.(10.8)

Similarly, it follows that the complete monotonicity of �α∗
f,∅,β∗

f,∅
(f ) is equivalent

to (10.8) with β∗
f,+ replaced by β∗

f,∅.

The relationship between the stochastic control problems in (2.2) and (7.2) (cf.
the discussion at the beginning of Section 7) immediately yields necessary and
sufficient optimality conditions for the two-band strategy πa∗,b∗ :

COROLLARY 10.5. (i) The two-band strategy πa∗,b∗ at finite levels a =
(0, a∗

2) and b = (b∗
1, b

∗
2) is optimal for (2.2) if and only if �∗ is not completely

monotone and �∗∗ is completely monotone.
(ii) If �∗ is not completely monotone then the levels a∗

2 and b∗
2,+ are finite, and

it is optimal to adopt the two-band strategy πa∗,b∗ while the reserves are below

b∗
2,+, and it holds (with F

(a∗
2,+)

∗ = F
a∗

2,+v∗)

v∗(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W(q)(x)

1 − F ′
w(b∗

1,+)

W(q)′(b∗
1,+)

+ Fw(x), x ∈ [
0, b∗

1,+
]
,

x − b∗
1,+ + v∗

(
b∗

1,+
)
, x ∈ (

b∗
1,+, a∗

2,+
)
,

F
(a∗

2,+)

∗
(
x − a∗

2,+
)
, x ∈ [

a∗
2,+, b∗

2,+
]
.

(10.9)

11. Multi dividend-band policies: The recursion for the dividend-band lev-
els. A flexible class of dividend strategies are the so-called multi dividend-band
strategies, which generalize the single and two-band strategies, and are specified
as follows:

DEFINITION 11.1. The multi dividend-band strategy πa,b, associated to se-
quences a = (an)n, b− = (b−

n )n, b+ = (b+
n )n with an, b

−
n , b+

n ∈ [0,∞] satisfying
the intertwining conditions

a1 = 0 ≤ b+
1 < a2 ≤ b+

2 < · · · < an ≤ b+
n < · · · , b−

n ≤ b+
n ,

is described as follows:

(i) when Ua,b := Uπa,b = y ∈ (b+
n , an+1), make a lump-sum payment y −b−

n ;
(ii) when Ua,b = b+

n , make a lump-sum payment b+
n − b−

n , if K > 0, and pay
the minimal amount to keep Ua,b below b−

n = b+
n if K = 0;

(iii) while Ua,b ∈ [an, b
+
n ), do not pay any dividends.

The strategy πa,b is called an N -dividend-bands strategy if b+
N < ∞ = aN+1.
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FIG. 2. Illustrated in the figure on the left is a path of the risk process Uπ in the absence of
transaction cost (K = 0) for a three-band strategy with the lowest level b+

1 equal to zero. The figure
on the right pictures a path of the risk process Uπ in the case K > 0, and π is a two-band strategy
with b−

2 = b−
1 . The vertical dashed stretches represent the claims, while lump-sum dividend payments

are indicated by arrows. At the moment τ of ruin a penalty payment w(Uτ ) is required that is a
function of the shortfall Uτ .

A multi dividend-band strategy πa,b consists of paying out “the minimal amount

to keep U
a,b
t below the boundary b(t),” where

b(t) := b+
ρ(t) with ρ(t) = min

{
i ∈ N :Ua,b

t < ai

}
.

In this case, while the boundary b(t) is constant, U
a,b
t is equal to the process X re-

flected at the level b(t) and the corresponding cumulative dividend payments D
a,b
t

are equal to a local time of U
a,b
t at b(t). In the case of a positive fixed transac-

tion cost K the “reflection boundaries” b+
n widen to strips [b−

n , b+
n ], and the “local

time” type payments are replaced by lump-sum payments b+
n − b−

n where b−
n may

lie below an−1; see Figure 2.

11.1. Construction of the candidate solution of the stochastic control problem.
The dynamic programming equation satisfied by the optimal value function is re-
cursive in nature, due to the presence of only negative jumps in both the uncon-
trolled reserves process X and the controlled reserves process Uπ for any admis-
sible policy π . In conjunction with the form of the optimal strategy of the mixed
optimal stopping/stochastic control problem (7.1), this suggests that the candidate
optimal policy for the stochastic control problem takes in general the form of a
multi-dividend-band strategy πa∗,b∗ at certain levels a∗, b∗. By repeatedly solving
mixed-optimal stopping/stochastic control problems of the form (7.2) with suitably
updated reward functions f , these levels a∗, b∗ can be identified, as summarized
in the following recursive procedure:



1916 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

Recursion to construct the candidate optimal band levels

[0.] Set i ← 1, a∗ ← {0}, b∗ ← {b∗}, f ← b∗+v∗
b and � ← �∗(f ), where �∗(f ) is given

by (9.3).
[1.] If � is completely monotone, set a∗ ← a∗ ∪ {∞}. Return {a, b}.
[2.] Else if K = 0 or if {K > 0 and α∗

f,∅ ≥ α∗
f } define (a∗

i+1, b
∗
i+1) ← (b∗

i,+ + α∗
f , b∗

i,+ +
β∗

f ),
where the levels α∗

f and β∗
f are defined in (7.9) and (7.11).

Else if {K > 0 and α∗
f,∅ < α∗

f } define (a∗
i+1, b

∗
i+1) ← (b∗

i,+ + α∗
f,∅, {b∗∗

i,−, b∗
i,+ +

β∗
f,∅})

with b∗∗
i,− = inf{b∗

i,− :Va∗,b∗(b∗
i,+ + β∗

f,∅) − Va∗,b∗(b∗
i,−) = β∗

f,∅ + b∗
i,+ − b∗

i,− − K},
where the levels α∗

f,∅ and β∗
f,∅ are defined in (7.12).

[3.] Set a∗ ← a ∪ {a∗
i+1}, b∗ ← b ∪ {b∗

i+1}, f ← b∗
i+1,+Va∗,b∗ , � ← �a∗,b∗(f ), i ← i + 1.

[4.] Go to step 1.

REMARK 11.2. There may exist a limit point γ∗ = limi→∞ b∗
i,+ = limi→∞ a∗

i

of the band levels. In this case the procedure will converge to the value-function
V

ã∗,b̃∗ corresponding to the levels ã∗ = (a∗
i ), b̃

∗ = (b∗
i ), and needs to be re-started

as follows:

[0.′] Set i ← 1, a∗ ← ã∗, b∗ ← b̃
∗
, f ← γ ∗V

ã∗,b̃∗ , � ← �
ã∗,b̃∗(f ).

In the following result (proved at the end of the section) it is confirmed that the
constructed candidate policy πa∗,b∗ is indeed optimal:

THEOREM 11.3. The multi-dividend-band strategy πa∗,b∗ is an optimal strat-
egy for the control problem in (2.2) and the optimal value function is given by
v∗ = vπa∗,b∗ = Va∗,b∗ , with

Va∗,b∗(x) :=
{

W(q)(x)C∗
i + Fw(x), x ∈ [

a∗
i , b∗

i,+
]
, i ≥ 1,

x − b∗
i,+ + Va∗,b∗

(
b∗
i,+

)
, x ∈ (

b∗
i,+, a∗

i+1

)
, i ≥ 1,

(11.1)

for some constants C∗
i , where the functions fi :R− → R are given by fi(x) =

Va∗,b∗(a∗
i−1 + x), i > 1, with f1 = w.

REMARK 11.4. In Shreve et al. ([38], page 74), an explicit example is given
of an optimal control problem in a diffusion setting in which a multi-dividend-band
strategy is optimal with countably many bands. Azcue and Muler [8] provide an
example of an optimal strategy with infinitely many bands below a finite level, for
the classical De Finetti dividend problem with bounded dividend rates in the set-
ting of a compound Poisson process. It is an open problem to construct an explicit
example in which a multi-dividend-band strategy with countably many bands is
optimal in the dividend-penalty problem.
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11.2. Proof of Theorem 11.3. Denote by v∗ = (vi,j )(i,j), a∗ = (a∗
i,j )(i,j) and

b∗ = (b∗
i,j )(i,j) the sequence of value-functions and band levels generated by the

algorithm in Section 11.1, where the index (i, j) refers to the ith iteration of the
algorithm in the j th run of the algorithm (i.e., it has been restarted j − 1 times; cf.
Remark 11.2). In particular, it follows that vi,j is given by

vi,j (x) =
{

Va∗,b∗(x), x ∈ [
0, b∗

i,j,+
]
,

x − b∗
i,j,+ + vi,j

(
b∗
i,j,+

)
, x > b∗

i,j,+.
(11.2)

In the following result (which implies Theorem 11.3) it is established that πa∗,b∗
is an optimal strategy for (2.2):

PROPOSITION 11.5. (i) For a given pair (i, j) of iteration and run, vi,j is
equal to the value-function va∗

i,j ,b∗
i,j

of the multi-dividend-band strategy πa∗
i,j ,b∗

i,j
at

levels a∗
i,j = (0, a∗

1,1, . . . , a
∗
i−1,j ,∞) and b∗

i,j = (b∗
1,1, . . . , b

∗
i,j ).

(ii) For each pair (�, k) that is smaller than (j, i) in the lexico-graphical order,
v(k,�)(x) = v∗(x) for all x ≤ b∗

k,�,+.
(iii) The optimal value function v∗ is equal to the value function Va∗,b∗ of the

strategy πa∗,b∗ .

PROOF. (i) The strong Markov property of the process U = U
πa∗

i,j
,b∗

i,j applied
at the stopping time τ = τπ

a∗
i−1,j

implies the relation

vk,�(x) = Ex

[∫
[0,τ ]

e−qtμπ
K(dt) + vk−1,�(Uτ )

]
,(11.3)

for k ≤ j , � ≤ i, with π = πa∗
i,j ,b∗

i,j
. As vk,�(x) is increasing in k, it follows that

v∞,�(x) := limk→∞ vk,�(x) exists, for any � ≤ j −1. By applying again the strong
Markov property it follows that v1,�+1 satisfies, for any l ≤ j − 1, π = πa∗

i,j ,b∗
i,j

,

v1,�+1(x) = Ex

[∫
[0,τ ]

e−qtμπ
K(dt) + v∞,�(Uτ )

]
.(11.4)

The form of vi,j then follows by induction, starting from the expression for a single
dividend band strategy and using the form of the value-function of the auxiliary
stochastic control problem in (7.2) [subsequently applied with pay-off functions
f (x) = vπa∗

k,�
,b∗

k,�
(b∗

k,�,+ + x), and performing induction in k for fixed � and using

the relation (11.4)].
(ii) By induction it follows that, for any k, v∗(x) = v(k,1)(x) for all x ≤ b∗

k,1,+.
Indeed, note that Corollary 10.5 implies v(2,1)(x) = v∗(x) for all x ≤ b∗

2,1,+.
Furthermore, that the induction step holds is verified as follows: Assuming that
v(k−1,1)(x) = v∗(x) for all x ≤ b∗

k−1,1,+ for some pair k, Theorem 7.6 with f =
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b∗
k−1,1,+v∗ in conjunction with the relation in (11.3) implies that v(k,1)(x) = v∗(x)

for x ≤ b∗
k,1,+.

The assertion in (ii) thus follows by induction in � > 1, following a line of
reasoning that is analogous to the one applied in the previous paragraph but with
the function w replaced by v∞,�−1.

(iii) Since vi,j (x) = Va∗,b∗(x) for all x ≤ a∗
i−1,j [from (11.2)], it follows by

virtue of part (ii) that v∗(x) = Va∗,b∗(x) for all x ≤ a∗
i−1,j . Since the sequence

(ai,j )i,j is strictly increasing and ultimately tends to infinity (cf. step 2 of the al-
gorithm and Lemma 7.3), it follows that v∗(x) is equal to Va∗,b∗(x), for any fixed
x ∈ R+. �

12. Existence and uniqueness of stochastic solutions. In this section the op-
timal value function v∗, which was identified in the previous section, is shown to
be a stochastic solution of the HJB equation (3.6). From the form (11.1) and prop-
erties of W(q) and of Gerber–Shiu functions, it follows that v∗(x) is left- and right-
differentiable at any x > 0. Furthermore, it was shown in Lemma 3.3 that v∗(x) is
continuous at any x ∈R+. In particular, the function g = v∗ is continuous and left-
differentiable at the “right-boundary” ∂+Cg := {b1, b2, . . .} of the set Cg (which
was defined in (4.2) and where the interior Co

g of Cg is denoted by Co
g = ⋃

n(an, bn)

for some an, bn ∈ [0,∞] with an < bn) and thus satisfies the following property:

If K = 0, g(x) is continuous and left-differentiable at any x ∈ ∂+Cg .(12.1)

The HJB equation (3.6) admits a unique stochastic solution satisfying the regu-
larity condition (12.1):

THEOREM 12.1. The value function v∗ is the unique stochastic solution of the
HJB equation (3.6) satisfying (12.1).

PROOF (EXISTENCE). As v∗ is a stochastic supersolution [by Remark 4.2(i)]
and v∗ satisfies (12.1) (as discussed in above paragraph), it suffices to show that v∗
is also a stochastic subsolution.

Note that, in view of the form (11.1), the interior Co
v∗ of the set Cv∗ is identified as

Co
v∗ = ⋃

n(a
∗
n, b∗

n,+). Therefore, in view of (11.1) and the martingale properties of
W(q) and of the Gerber–Shiu functions (Proposition 3.1), Doob’s optional stopping
theorem implies that v∗ is a local stochastic subsolution of the HJB equation (3.6)
on any closed interval I ⊂ Cv∗ , which shows that v∗ is a stochastic subsolution.

�

12.1. Proof of uniqueness. Given a stochastic supersolution g of the HJB
equation, an admissible candidate optimal strategy π(g) can be described as fol-
lows:
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DEFINITION 12.2. To a stochastic solution g of HJB equation (3.6) are asso-
ciated:

(i) the policy π(g) = {Dπ(g)
t , t ∈ R+} ∈ �, given in terms of the sets Cg and

Dg := R+ \ Cg ,
(ii) the controlled process U = Uπ(g) and

(iii) the level y∗(v) := sup{u ∈ [0, v] :g(v)−g(v−u)+K = u} (with sup∅ = 0),
that are specified as follows:
(a) In the case K = 0, let D = Dπ(g) be the increasing right-continuous

F-adapted process that satisfies⎧⎪⎨⎪⎩
Ut = Xt − Dt ∈ Cg, for any t ∈ [0, τπ(g)),∫
[0,τπ(g))

1{s : Xs−Ds− /∈Dg}(t)dDt = 0,

where 1A denotes the indicator function of the set A and Cg and Dg de-
note the closures of Cg and Dg ;

(b) in the case K > 0, pay out 
Dt = y∗(Xt − Dt−) at time t if Xt − Dt− ∈
Dg and y∗(Xt − Dt−) > 0;

(c) otherwise, pay no dividends.

REMARK 12.3. The Skorokhod embedding lemma implies that the strategy
π(g) = {Dπ(g)

t , t ∈ R+} described in Definition 12.2(iii)(a) is equal to

D
π(g)
t = sup

s∈[0,t∧τπ(g)]
(
Xs − b(s)

) ∨ 0, b(s) = bι(s)

with ι(s) = inf{n ∈N :Xs −D
π(g)

s− ≤ an}, given the representation Dg = ⋃
n≥1[bn,

an]. In particular, it follows that the policy defined in Definition 12.2 is a multi-
dividend band strategy.

LEMMA 12.4. Let g be a stochastic solution of the HJB in (3.6) satisfy-

ing (12.1). Then the process M̃
g,π∗,τπ∗

R+ with π∗ = π(g), defined in Lemma 4.8
and Definition 12.2, is a UI F-submartingale.

The proof of Lemma 12.4 is based on the following auxiliary result:

LEMMA 12.5. Let a > 0 be given and suppose that the function g :R → R is
such that g|R− ∈ P , g|R+ is càdlàg, and g is continuous and left-differentiable at
a > 0. If M = {Mt, t ∈ R+} with Mt = e−q(t∧T0,a)g(Xt∧T0,a

) is an F-martingale,
then Z = {Zt, t ∈ R+} with

Zt = e−q(t∧τ0)g
(
Ya

t∧τ0

) − g
(
Ya

0
) − g′−(a)

∫
[0,t∧τ0]

e−qs dX
a

s

is an F-martingale, where g′−(a) denotes the left-derivative of g at a.
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The proof of this result rests on an application of Itô’s lemma and a density ar-
gument. Details are omitted since these follow straightforwardly from [31], Propo-
sition 1.

PROOF OF LEMMA 12.4. The proof is a modification of the proof of
Lemma 4.8. As, by Lemma 4.8, M̃g,π(g) is a UI supermartingale, it suffices to
verify that M̃g,π(g) is in fact a martingale. Note that the set of distinct epochs T̃ at
which lump-sum dividend payments occur is countable,

T̃= {T̃i :
D
T̃i

> 0} with T̃i = inf
{
t > T̃i−1 :Xt − D

π(g)
t− ∈Dg

}
,

for i ∈ N with T̃0 = 0 and inf∅ = ∞. The form of the strategy π(g) implies that
the sequence (U

T̃i
)i is decreasing with U

T̃i
− U

T̃i−1
> 0 on the set {T̃i < ∞}. In

particular, it follows that, also in this case, T̃ is countable.
Writing D = Dπ(g) and M = M̃g,π(g), fixing arbitrary t, s ∈ R+ with s < t and

denoting Ti = T̃i ∧ t , we have Mt = ∑
i≥1 Yi + ∑

i≥0 Zi with Yi given by

e−qTi g(XTi
− DTi−) − e−qTi−1g(XTi−1 − DTi−1) −

∫
(Ti−1,Ti )

e−qs dDs,(12.2)

and Zi = e−qTi (g(XTi
−DTi

)−g(XTi
−DTi−)+
Di −K)1{
Di>0} with 
Di =

DTi
− DTi−1 . By definition of the strategy π(g) it is straightforward to verify that

Zi = 0 for all i.
In the case K > 0 the integral term in (12.2) vanishes, and we have DTi−1 =

DTi− for i ≥ 0. By reasoning as in Lemma 4.8 it follows that the equality in (4.10)
holds. By combining (4.10) with the fact that g is a stochastic solution, Doob’s
optional stopping theorem and the definition of Ti , we have

E[Yi |FTi−1] = e−qTi−1EUTi−1

[
e−qτi g(Xτi

) − g(X0)
] = 0,

with τi = Ti ◦ θTi−1 . The tower property hence yields E[Mt − Ms |Fs] = 0. Since
s, t were arbitrary, it thus follows that M is a martingale.

If K = 0, the definition of π(g) implies that the process {UTi−1+t , t < Ti −
Ti−1} conditional on FTi−1 has the same law as the process {Yb

t , t < τb(a)} with
X0 = b = UTi−1 and τb(a) = inf{t ≥ 0 :Yb

t < a}, conditional on UTi−1 , where Yb is
independent of UTi−1 . The strong Markov property of Ya implies that E[Yi |FTi−1]
is equal to

e−qTi−1EUTi−1

[
e−qτb(a)g

(
Yb

τb(a)

) − g(Y0) −
∫
(0,τb(a))

e−qs dX
b

s

]
.

This expectation is positive in view of Lemma 12.5 and the fact that g′−(a) ≥ 1
[as dg(a) ≥ 1 and g is left-differentiable at a]. Again, an application of the tower
property yields E[Mt − Ms |Fs] ≥ 0, and it follows that, in this case, M is a sub-
martingale. �
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The stated uniqueness follows as a consequence of the following comparison
principle:

PROPOSITION 12.6. Let h be any stochastic subsolution satisfying (12.1), and
let g be any stochastic supersolution of the HJB equation (3.6). Then g ≥ h.

PROOF OF THEOREM 12.1 (UNIQUENESS). Let h be any stochastic solution
of the HJB equation. Since, by the dual representation in Proposition 4.3, v∗ is the
minimal stochastic supersolution of the HJB and h is a stochastic supersolution,
it follows v∗ ≤ h. Furthermore, the stochastic comparison principle in Proposi-
tion 12.6 implies v∗ ≥ h (as h and v∗ are stochastic sub- and supersolutions of the
HJB). Thus it holds v∗ = h, and uniqueness is established. �

PROOF OF PROPOSITION 12.6. Let g and h be a stochastic supersolution and
stochastic subsolution, and denote by π(h) the policy corresponding to h given in
Definition 12.2. Since the processes M̃v∗,π(h) and M̃h,π(h) [defined in (4.8)], are a
supermartingale and a submartingale (by Lemmas 4.8 and 12.4), Doob’s optional
stopping theorem implies for x ∈ R+

v∗(x) − h(x) ≥ lim
t→∞Ex

[
M̃

v∗,π(h)

t∧τπ(h) − M̃
h,π(h)

t∧τπ(h)

]
.(12.3)

The right-hand side of (12.3) is equal to 0, since M̃v∗,π(h) and M̃h,π(h) are UI, and
satisfy the boundary condition

M̃
v∗,π(h)

τπ(h) = M̃
h,π(h)

τπ(h) = e−qτπ(h)

w
(
U

π(h)

τπ(h)

)
,

and Px(τ
π(h) < ∞) = 1 for all x ∈ R+. This completes the proof. �

13. Examples.

13.1. General computations for processes with rational Laplace exponent.
The determination of the optimal policy starts with the identification of the last
global maximum of the barrier influence function G. For example, in the presence
of an exponential penalty w(x) = cevx or a linear penalty w(x) = cx +c0, we must
compute the extrema of the functions

G(v)(x) := 1 − cZ(q,v)′(x)

W(q)′(x)
, G1(x) := 1 − cZ′

1(x) − c0qW(q)(x)

W(q)′(x)
,(13.1)

respectively.
Therefore, the first step will be computing the homogeneous and generating

scale functions W(q)(x), Z(q,v)(x), for processes with rational Laplace exponent.
Assume the typical case

W(q)(x) = ∑
Aie

ζi (q)x,
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with Ai ∈R and the roots ζi(q) of the Cramér–Lundberg equation ψ(ζ ) = q being
distinct.

This implies Z(q,v)(x) = evx(1 + (q − ψ(v))
∫ x

0 e−vyW(q)(y)dy) is equal to

evx + (
q − ψ(v)

)∑
i

Ai

eζi (q)x − evx

ζi(q) − v
= (

ψ(v) − q
)∑

i

Ai

v − ζi(q)
eζi (q)x,

using that
∑ Ai

v−ζi (q)
= 1

ψ(v)−q
. In particular, Z(q)(x) = q

∑
i Ai

eζi (q)x

ζi (q)
and

Z1(x) = Z
(q)

(x) − ψ ′(0)W
(q)

(x) = q
∑
i

Ai

eζi (q)x

ζ 2
i (q)

− ψ ′(0)
∑
i

Ai

eζi (q)x

ζi(q)
,

Z(q,v)(x) = Z(q)(x) + ∑
i

Aie
ζi (q)x v

v − ζi(q)

(
ψ(v)

v
− q

ζi(q)

)
.

The simplest examples may be completely analyzed by studying the sign
of the functions that are given by D#(x) = −G#′(x)W(q)′(x)2, and D∗(x) =
−G∗′(x)W(q)′(x)2, which determine the critical point b∗ (in particular whether
it is 0), and the eventual unimodality after b∗, which implies optimality of the sin-
gle barrier policy. To alleviate notation, the #,∗ will be omitted in this section,
since the function considered can always be inferred from the absence/presence of
transaction costs.

For exponential and affine penalties, the corresponding functions are given by
D(v)(x) = −G(v)′(x)W(q)′(x)2 and D1(x) = −G′

1(x)W(q)′(x)2. By straightfor-
ward calculations we find

D(v)(x) = W(q)′′(x)
(
1 − cZ(q,v)′(x)

) + cZ(q,v)′′(x)W(q)′(x)

= ∑
j

Aj ζj (q)2eζj (q)x + c
(
ψ(v) − q

)∑
j

∑
k>j

d
(v)
j,kAjAke(ζj (q)+ζk(q))x,

D1(x) = ∑
j

Aj ζj (q)2eζj (q)x − cq
∑
j

∑
k>j

d1;j,kAjAke(ζj (q)+ζk(q))x

+ (
cψ ′(0) − c0q

)∑
j

∑
k>j

(
ζj (q) − ζk(q)

)2
AjAke(ζj (q)+ζk(q))x,

with d
(v)
j,k

ζj (q)ζk(q)(ζj (q)−ζk(q))2

(v−ζj (q))(v−ζk(q))
and d1;j,k = (ζj (q)+ζk(q))

ζj (q)ζk(q)
(ζj (q) − ζk(q))2.

[Note that the coefficients of c and cψ ′(0) − c0q are the intervening Wron-
skians, and that the function D(v)(x) − W(q)′′(x) is a generating function for the
corresponding functions obtained with polynomial penalties.]

13.2. Cramér–Lundberg model with exponential jumps. Consider next the
Cramér–Lundberg model (1.1) with exponential jump sizes with mean 1/μ, jump
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rate λ, and Laplace exponent ψ(s) = ps − λs/(μ + s). The homogeneous scale
function is

W(q)(x) = A+eζ+(q)x − A−eζ−(q)x,

where A± = p−1 μ+ζ±(q)
ζ+(q)−ζ−(q)

, and ζ+(q) = �(q), ζ−(q) are the largest and small-

est roots of the polynomial (ψ(s) − q)(s + μ) = ps2 + s(pμ − λ − q) − qμ:

ζ±(q) = q + λ − μp ±
√

(q + λ − μp)2 + 4pqμ

2p
.

Hence, it follows

Z(q)(x) = q

(
A+

ζ+(q)
eζ+(q)x − A−

ζ−(q)
eζ−(q)x

)

= (q − ζ−(q))eζ+(q)x + (ζ+(q) − q)eζ−(q)x

ζ+(q) − ζ−(q)
,

Z(q,v)(x) = Z(q)(x) + λ
v

v + μ

eζ+(q)x − eζ−(q)x

ζ+(q) − ζ−(q)
,

D(v)(x) = α+eζ+(q)x − α−eζ−(q)x + cαve(ζ+(q)+ζ−(q))x,

with α+ = A+(ζ+(q))2 > 0, α− = A−(ζ−(q))2 > 0, C = (μ + ζ+(q))(μ +
ζ−(q)) = λμ

p
> 0, and

αv = p

v + μ

C

p2

qμ

p
= λqμ2

p3

1

v + μ
> 0.

Then, differentiating v 
→ Z(q,v)(x), v 
→ αv or by (13.2) and using that
(ζ+(q) + ζ−(q))/(ζ+(q)ζ−(q)) = ψ ′(0)/q − 1/μ yields

Z1(x) = λμ−1 eζ+(q)x − eζ−(q)x

ζ+(q) − ζ−(q)
= C+eζ+(q)x + C−eζ−(q)x,

D1(x) = α+eζ+(q)x − α−eζ−(q)x + α1e(ζ+(q)+ζ−(q))x,

where C± = ±λμ−1(ζ+(q) − ζ−(q))−1 and

α1 = A+A−
(
ζ+ − ζ−)2

(
cq

ζ+ + ζ−

ζ+ζ− − cψ ′(0) + c0q

)

= C

p2

(
c0q − c

q

μ

)
= λq

p3 (c0μ − c).

Recall next that in the absence of penalty and costs [w(x) = K = 0], the func-
tion W(q)′(x) = G(x)−1 is unimodal (see Avram et al. [6]) with global minimum
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at b∗ given by

1

ζ+(q) − ζ−(q)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

ζ−(q)2(μ + ζ−(q))

ζ+(q)2(μ + ζ+(q))
,

if W(q)′′(0) < 0 ⇔ (q + λ)2 < pλμ,
0, if W(q)′′(0) ≥ 0 ⇔ (q + λ)2 ≤ pλμ.

[Since W(q)′′(0) ∼ ζ+(q)2(μ + ζ+(q))−ζ−(q)2(μ+ζ−(q))/(ζ+(q)−ζ−(q)) =
(q + λ)2 − pλμ, the optimal strategy is always the barrier strategy at level b∗.]

It is verified next that the functions G(v) and G1 continue to be unimodal when
w is exponential or affine and K = 0, as a consequence of Lemma 13.1 below, and
hence single barrier policies continue to be optimal, in view of Lemma 9.2 (in the
case of affine penalties this has already been established in [5, 29]).

LEMMA 13.1. Let αi, λi ∈ R, i = 1,2,3 satisfy α1 > 0 > α3, and λ1 > λ2 >

λ3. Then the function f (x) := ∑3
i=1 αieλix has a unique root c∗ of f (c∗) = 0, and

it holds f ′(c∗) > 0, and

f (x) > 0 for all x > c∗.

Furthermore, if h :R+ → R is such that h′(x) = k(x)f (x) for x > 0, where
k :R+ →R+ \ {0}, then h is unimodal.

PROOF. The function g(x) := e−λ3xf (x) tends to +∞ and to α3 < 0 as x →
±∞. If it holds α2 ≥ 0, g is strictly convex and strictly increasing. In the case
α2 < 0, g attains a minimum at the unique root of g′. In both cases the equation
g(c) = 0 admits a unique root c, and it holds g′(c) > 0. Hence it holds that c is a
unique root of f (c) = 0, with f ′(c) > 0 and with f (x) > 0 for x > c. In particular,
h has a unique stationary point where it attains a maximum, so that it is unimodal.

�

The optimal level b∗ is characterized as follows:
(i) For K = 0 and in the case of an exponential penalty, b∗

v,+ = 0 if and only if

G(v)′(0) ≤ 0 ⇔ (q + λ)2 − λμp ≥ −cλq
μ2

v + μ
,

as follows from the expression for D(v)(x). Similarly, in the case of linear penalty,
it holds b∗

1,+ = 0 if and only if

G′
1(0) ≤ 0 ⇔ (q + λ)2 − λμp ≥ λq(c − c0μ),

in view of the expression for D1(x). If b∗+ is positive, it is a stationary point, and
hence solves the equation

G(v)′(b) = 0 ⇔ 0 = D(v)(b) = α+eζ+(q)b − α−eζ−(q)b + cαve(ζ+(q)+ζ−(q))b,



OPTIMAL DIVIDEND DISTRIBUTION UNDER A PENALTY 1925

if the penalty w is exponential and

G′
1(b) = 0 ⇔ 0 = D1(b) = α+eζ+(q)b − α−eζ−(q)b + α1e(ζ+(q)+ζ−(q))b,

if w is an affine penalty.
(ii) Suppose next K > 0. Then b∗+ is strictly positive as a consequence of the

positive transaction cost K , and the optimal levels (b∗−, b∗+) are given by (b∗−, b∗− +
d∗) where (b, d) maximizes over (b, d) ∈ R+ ×R+ \ {0} the function

G̃(v) : (b, d) 
→ d − K − B+eζ+(q)b(eζ+(q)d − 1) + B−eζ−(q)b(eζ−(q)d − 1)

A+eζ+(q)b(eζ+(q)d − 1) − A−eζ−(q)b(eζ−(q)d − 1)

if w is an exponential penalty, and the function

G̃1 : (b, d) 
→ d − K − C+eζ+(q)b(eζ+(q)d − 1) + C−eζ−(q)b(eζ−(q)d − 1)

A+eζ+(q)b(eζ+(q)d − 1) − A−eζ−(q)b(eζ−(q)d − 1)

if w is an affine penalty.
The following result sums up the form of the optimal dividend policy:

LEMMA 13.2. Consider a Cramér–Lundberg process (1.1) with exponential
jump sizes with mean 1/μ, and fixed cost K ≥ 0. The optimal dividend policy is
given by a single dividend-band strategy πb∗ for the following Gerber–Shiu penal-
ties w:

(a) Exponential penalties: w(x) = cexv , with v, c < 0 such that the integrability
condition (2.1) is satisfied.

(i) In the case {K = 0 and (q + λ)2 − λμp ≥ −cλq
μ2

v+μ
}, then b∗ = 0.

(ii) In the case {K = 0 and (q + λ)2 − λμp < −cλq
μ2

v+μ
}, then b∗ is the

unique solution b ∈ R+ \ {0} of the equation D(v)(b) = 0.
(iii) In the case K > 0, we have b∗+ = b∗− + d∗ where b∗− and d∗ maximize

over b ≥ 0, d > 0, the function G̃(v).
(b) Affine penalties: w(x) = cx + c0, with c ≥ 0 and c0 ≤ 0 such that (2.1) is

satisfied.
(i) In the case {K = 0 and (q + λ)2 − λμp ≥ λq(c − c0μ)}, then we have

b∗ = 0.
(ii) In the case {K = 0 and (q + λ)2 − λμp < λq(c − c0μ)}, then b∗ is the

unique solution b ∈ R+ \ {0} of the equation D1(b) = 0.
(iii) In the case K > 0, we have b∗+ = b∗− + d∗ where b∗

1,− ≥ 0 and d∗ > 0
maximize over (b, d), the function G̃1.

13.3. Cramér–Lundberg model with Erlang jumps. Suppose next that X is
given by the Cramér–Lundberg model (1.1) with the Erlang (n,μ) jump sizes.
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The corresponding Laplace exponent is ψ(s) = ps + λμn

(μ+s)n
− λ, and by Laplace

inversion it follows that its q-scale function is given by

W(q)(x) =
n∑

j=0

Aj eζj (q)x, Aj = (ζj (q) + μ)n

p
∏

k �=j (ζj (q) − ζk(q))
, x ≥ 0,

where ζ0(q) > 0 > ζ1(q) > −μ > ζ2(q) > · · · are the n + 1 roots of the Cramér–
Lundberg equation ψ(ζ ) = q .

Let K = 0 and w(x) = cevx an exponential penalty (c < 0), and denote by b the
point where G(v) attains its maximum. In general a single dividend-band strategy
may not be optimal. A necessary and sufficient criterion for optimality of πb is the
complete monotonicity of the function �v : (�(q),∞) →R+ given by

�v(s) = ψ(s) − q

s
· esb

∫ ∞
b

e−sz(W(q)′(z)G∗(b) − [
1 − F ′(z)

])
dc,

I (s) = s−1
[
ps + λμn

(μ + s)n
− λ − q

]
,

Iv(s) = I0(s) − c
∑
j>i

k
(v,q)
i,j (s)AjAie

(ζi (q)+ζj (q))b,

I0(s) =
∫ ∞

0
e−sx[

W(q)′(b + x) − W(q)′(b)
]
dx =

n∑
j=0

Ajk
(q)
1,i,j (s)e

ζj (q)b,

where k
(v,q)
i,j (s) = (ζj (q)−ζi(q)2(v−ζi(q)−ζj (q))

(s−ζj (q))(s−ζi(q))(v−ζj (q))(v−ζi(q))
and k

(q)
1,i,j (s) = ζj (q)2

s(s−ζj (q))
. If

in addition there is no penalty (w = 0), the expressions simplify. If b denotes
the value where the minimum of W(q)′ is attained, πb is optimal precisely if
�0 : (�(q),∞) →R+ is completely monotone, where �0(s) = I (s) · I0(s).

The Azcue–Muler example. Consider next the example in Azcue and Muller [7],
with pure Erlang claims of order n = 2, with μ = 1, λ = 10, p = 107

5 , q = 1
10 ,

θ = 7
100 and Laplace exponent ψ(s) − q = ps + λ(

μ
μ+s

)2 − λ − q = p

(μ+s)2 (s +
ζ1)(s + ζ2)(s − ζ0), with ζ0 ≈ 0.0396, ζ1 ≈ 0.0794, ζ2 ≈ 1.4882. In addition we
consider a linear penalty w(x) = cx, c ∈ R+. We will analyze below four particular
cases c ∈ {0,0.2,0.6,1.0}. In cases c ∈ {0.6,1.0} the optimal strategy is a single
dividend band strategy at level b1, while in the cases c ∈ {0,0.2} it is optimal to
adopt a two-band strategy with b1 = 0 (in the case c = 0 we thus recover the form
of the optimal strategy found in [7]). The parameters of the optimal strategies are
summarized in Table 1 (with v2 denoting the difference of the value function and
the identity x 
→ x at the end of the nonempty continuation band).

In the cases c ∈ {0.6,1} a plot of the function G1 defined in (13.1) reveals that
G1 is monotone decreasing on the right of the level at which attains its unique
global maximum which implies the optimal strategy is a single-dividend band
strategy at this level (Theorem 9.1). In the cases c ∈ {0,0.2} a plot of G1 shows
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TABLE 1
The values of the optimal band levels under a linear penalty w(x) = cx

b1 v2 a2 b2

c = 0 0 2.44 1.83 10.45
c = 0.2 0 1.72 1.90 10.47
c = 0.6 10.96 1.71 ∞ ∞
c = 1.0 11.37 1.30 ∞ ∞

that this function attains its global maximum at 0 but also attains a second local
maximum at some strictly positive level, so that the optimal value function is given
by

v(x) =
⎧⎨⎩

x + v1, b1 = 0 ≤ x < a2,
F1(x − a1), x ∈ [a2, b2],
x + v2, x > b2.

Here v2 = −b2 + F1(b2 − a2) and v1 = p−20c
q+λ

= 214−200c
101 is the value of the strat-

egy (at zero) of paying all premiums as dividends until the moment the first claim
arrives, which is also the moment of ruin, and F1(x) is given by

F1(x) = p(a2 + v1)W
(q)(x) −

∫ x

0
W(q)(x − y)

[
fν,a2(y)

]
dy,

fν,a(y) =
∫ a

0
(a − z + v0)k(y + z)dz + c

∫ ∞
a

(a − z)k(y + z)dz,

where k(y) = λμ2ye−μy denotes the Lévy density at y.
The function v is the value function of a two-band strategy at levels (b0, a1, b1)

with b0 = 0. The unknowns a1, b1 are determined by the optimality equations
F ′

1((b1 − a1)−) = 1 and F ′′
1 ((b1 − a1)−) = 0 which yield the following system

of two nonlinear equations for a1 and b1:

1 = p(a1 + v0)W
(q)′(b1 − a1) − p−1fν,a1(b1)

−
∫ b1−a1

0
W(q)′(b1 − a1 − y)fν,a1(y)dy,

0 = p(a1 + v0)qW(q)′′(b1 − a1) − p−1f ′
ν,a1

(b1)

− W(q)′(0)fa1,ν(b1) −
∫ b1−a1

0
W(q)′′(b1 − a1 − y)fν,a1(y)dy,

with W(q)′(0) = 101
10 · 25

1072 . The two-band strategies at the levels (a1, b1) =
(1.83,10.45) [c = 0] and (a1, b1) = (1.90,10.47) [c = 0.2] are indeed optimal
since it holds (b1�

w∞v − qv)(y) ≤ 0 for all y > b1 and (0�
w∞v − qv)(y) ≤ 0 for all

y ∈ (0, a1).
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APPENDIX A: PROOF OF DYNAMIC PROGRAMMING EQUATION

PROOF OF LEMMA 3.1(II). Fix arbitrary π ∈ �, x ∈ R+ and s, t ∈ R+ with
s < t . The process V π

t is Ft -measurable, and is UI on account of Lemma 3.3.
Fix arbitrary π ∈ �, x ∈ R+. Define by Wπ = {Wπ

s , s ∈ R+} the value-process
Wπ

s = ess.supπ̃∈�s
J π̃

s with

J π̃
s = E

[∫
[0,τ π̃ )

e−quμπ̃
K(du) + e−qτ π̃

w
(
Uπ̃

τ π̃

)∣∣∣Fs

]
,(A.1)

where �s = {π̃ = (π,π) = {Dπ,π
u , u ∈ R+} :π ∈ �}, and Dπ,π is given in terms

of the process Dπ(x) of cumulative dividends of the strategy π corresponding to
initial capital X0 = x by

Dπ,π
u =

{
Dπ

u , u ∈ [0, s);
Dπ

s + Dπ
u−s

(
Uπ

s

)
, u ≥ s.

It follows that V π is a supermartingale as direct consequence of the following
P-a.s. relations:

(a) V π
s = Wπ

s , (b) Wπ
s ≥ E

[
Wπ

t |Fs

]
,

where Wπ is the process defined in (A.1).
Proof of (b): The identity follows by classical arguments. Since the family of

random variables {J π̃
t , π̃ ∈ �t } is directed upwards, it follows from Neveu [30]

that there exists a sequence πn ∈ �t such that J
π̃n
t ↑ Wπ

t . Since �t ⊂ �s it follows
that Wπ

s dominates J
πn
s = E[Jπn

t |Fs], so that monotone convergence implies that
we have

Wπ
s ≥ lim

n
E

[
J

πn
t |Fs

] = E
[
Wπ

t |Fs

]
.

Proof of (a): The form of Dπ̃ implies that, conditional on Uπ
s , {Dπ̃

u −Dπ̃
s , u ≥ s}

is independent of Fs . On account of the Markov property of X it also follows that
conditional on Uπ

s , {Uπ̃
u −Uπ̃

s , u ≥ s} is independent of Fs . As a consequence, we
have the following identity on the set {s < τπ }:

E

[∫
[0,τ π̃ )

e−quμπ̃
K(du) + e−qτ π̃

w
(
Uπ̃

τ π̃

)∣∣∣Fs

]

= e−qs
EUπ

s

[∫
[0,τπ )

e−quμπ
K(du) + e−qτπ

w
(
Uπ

τπ

)] +
∫
[0,s]

e−quμπ
K(du)

= e−qsvπ

(
Uπ

s

) +
∫
[0,s]

e−quμπ
K(du).

In particular, Px-a.s. the following representation holds true:

J π̃
s = e−q(s∧τπ )vπ

(
Uπ

s∧τπ

) +
∫
[0,s∧τπ ]

e−quμπ
K(du),
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which yields the following Px -a.s. representation for Wπ
s :

Wπ
s =

∫
[0,s∧τπ ]

e−quμπ
K(du)

(A.2)
+ e−q(s∧τπ ) ess.sup

π̃=(π,π)∈�s

vπ

(
Uπ

s∧τπ

)
.

In view of the definitions of �s and v∗, the essential supremum in (A.2) is P-a.s.
equal to v∗(Uπ

s∧τπ ), which implies that, P-a.s., Wπ
s = V π

s . �

APPENDIX B: PROOF OF PROPERTIES OF VALUE FUNCTION

PROOF OF LEMMA 3.3(I). Let x > y. Denote by πε(y) an ε-optimal strategy
for the case U0 = y. Then a possible strategy is to immediately pay out x − y and
subsequently to adopt the strategy πε(y), so that the following holds:

v∗(x) ≥ x − y − K + vπε(y) ≥ v∗(y) − ε + x − y − K.

Since this inequality holds for any ε > 0, the stated lower bound follows.
To prove the stated continuity we first establish an upper bound for the differ-

ence v∗(x)−v∗(y) with x > y. Let π̃ε(x) denote an ε-optimal strategy for the case
U0 = x for a given ε > 0. Then a possible strategy is to refrain from paying any
dividends until the first time that the reserves hit the level x, and to subsequently
follow the policy π̃ε . Hence v∗(y), x ≥ y, is bounded below by

W(q)(y)

W(q)(x)

(
vπ̃ε

(x) − Fw(x)
) + Fw(y)

≥ W(q)(y)

W(q)(x)

(
v∗(x) − ε − Fw(x)

) + Fw(y).

Rearranging and letting ε tend to zero yields the upper-bound

v∗(x) − v∗(y) ≤
(

1 − W(q)(y)

W(q)(x)

)[
v∗(x) − Fw(x)

] + Fw(x) − Fw(y).(B.1)

In the case K = 0, continuity of W(q)|R+\{0}, the lower bound from part (i)
and (B.1) yield that v∗ is continuous on R+. In the case K > 0 continuity of v∗ on
R+ follows by combining the upper bound in (B.1) with a different lower bound
that is derived next.

For fixed ε > 0 and given initial reserves U0 = y for some y > x, a possible
strategy is to adopt π̃ε(x) until the first moment that the reserves U fall below
δ := y −x, and to follow then a waiting strategy π∅ (of not paying any dividends).



1930 F. AVRAM, Z. PALMOWSKI AND M. R. PISTORIUS

Taking π = π̃ε(x) it follows by the monotonicity of w that v∗(y)−v∗(x) for y ≥ x

is bounded below by

Ey

[∫ τπ
δ

0
e−qtμπ

K(dt) + e−qτπ
δ w

(
Uπ

τπ
δ

)
1{τπ

δ =τπ
0 } + e−qτπ

δ vπ∅

(
Uπ

τπ
δ

)
1{τπ

δ <τπ
0 }

]
− v∗(x)

= Ey

[
e−qτπ

δ
(
w

(
Uδ

τπ
δ

) − w
(
Uδ

τπ
δ

− δ
))

1{τπ
δ =τπ

0 }
] + fε(x, y)

+ vπ(x) − v∗(x) ≥ −ε + fε(x, y),

where τπ
δ = inf{t ≥ 0 :Uπ

t < δ} and

fε(x, y) = Ey

[
e−qτπ

δ
(
Vw

(
Uπ

τπ
δ

) − w
(
Uπ

τπ
δ

− δ
))

1{τπ
δ <τπ

0 }
]
.

Assume for the moment that fε(x, y) tends to zero when δ = y − x tends to 0.
Given this assumption and the bound in (B.1) it follows (since ε was arbitrary)

lim inf|x−y|→0

[
v∗(y) − v∗(x)

] ≥ 0.(B.2)

Similarly, it can be shown lim sup|x−y|→0[v∗(y) − v∗(x)] ≤ 0. Combining the two
limits yields that v∗(x) is continuous at each x ∈ R+.

Finally, the claim that fε(x, y) tends to zero is verified. First, note the estimate

fε(x, y) ≤
(

sup
x∈[0,δ]

Vw(x) − w(−δ)
)
Ey

[
e−qτπ

δ 1{τπ
δ <τπ

0 }
]
.(B.3)

If X has unbounded variation, then the left-continuity of w at zero and the fact
Vw(0+) = w(0) combined with the inequality in equation (B.3) imply fε(x, y) →
0 when δ = y − x → 0. If X has bounded variation, vπw(0) is (in general) not
equal to w(0), and it is next shown that the second factor in equation (B.3) tends
to zero if δ → 0. Note that the policy π̃ε(x), being element of �, consists of at
most countably many dividends payments almost surely. Denoting the times of
the dividend payments by τ1, τ2, . . . , and the values of Uπ̃ε(x) at those times by
U1,U2, . . . , the strong Markov property of X implies

Ey

[
e−qτπ

δ 1{τπ
δ <τπ

0 }
] = ∑

i

Ey

[
e−qτπ

δ 1{τπ
δ <τπ

0 ,τπ
δ ∈[τi ,τi+1)}

]
≤ ∑

i

Ey

[
e−qτi 1{τi<τπ

0 }EUi

[
e−qT −

δ 1{T −
δ <T −

0 }
]]

.

As X has bounded variation, we have Px(X(T −
δ ) < δ) = 1 for all x ∈ [δ,∞) so

that it follows that, for any x ∈ [δ,∞), the probability Px(T
−
δ < T −

0 ) = Px(0 <

X(T −
δ ) < δ) tends to zero as δ tends to zero. Lebesgue’s dominated convergence

theorem implies that the right-hand side of the previous display converges to zero
when δ tends to 0. This completes the proof of the claim in (B.2) �
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APPENDIX C: PROOF OF ANALYTICAL OPTIMALITY CRITERION

PROOF OF LEMMA 6.5. (i) First consider the case K = 0. The proof is based
on the following identity that holds for any c > 0 and any x ≤ b∗+ + c:

Ex

[
e−q(t∧τ)vb(Ut∧τ ) +

∫
[0,t∧τ ]

e−qs dDs

]
− vb(x)

(C.1)

= Ex

[∫ t∧τ

0
e−qs(

b+�w∞vb

)
(Us−)1{Us−>b+} ds

]
,

with b = b∗, b+ = b∗+ and τ = τ
π(b∗−,b∗++c) , w = vb∗ , μK = μ

π(b∗−,b∗++c)

K , D =
D

π(b∗−,b∗++c) , U = U
π(b∗−,b∗++c) . The proof of (C.1) is similar to the proof of

Lemma 3.4(ii) and is omitted.
Letting t → ∞ in (C.1) Lebesgue’s dominated convergence theorem implies for

x ∈ [0, b∗+ + c]

vb∗+c(x) − vb∗(x) = Ex

[∫ τb∗+c

0
e−qs[

b∗+�w∞vb∗
](

Ub∗+c
s−

)
1{Ub∗+c

s− >b∗+} ds

]
=

∫
(b∗+,b∗++c]

[
b∗+�w∞vb

]
(y)R

q

0,b∗++c
(x, dy) with

R
q

0,b∗++c
(x,dy) =

∫ ∞
0

e−qt
Px

(
Y

b∗++c
t ∈ dy, t < τ0

)
dt.

Inserting the explicit expressions from (6.1) and Pistorius [34], Theorem 1 (see
also proof of Proposition 5.5) for v∗

b , vb∗+c and R
q

0,b∗++c
(x,dy) yields for x ∈ x ∈

[0, b∗+]
W(q)(x)

[
G

(
b∗+ + c

) − G
(
b∗+

)]
= W(q)(x)

∫ [
b∗+�w∞vb∗

]
(y)

W(q)(b∗+ + c − dy)

W(q)′(b∗+ + c)
,

where the integral is over the interval (b∗+, b∗+ + c] with G = Gb∗− and using that

W(q)(x) is equal to 0 for x < 0. Changing coordinates in the integral and using that
W(q)(x) is strictly positive at any x > 0 yields the first equality in (6.8). The second
equality in (6.8) follows by the representation in (5.14). The second statement is
a direct consequence of (6.8) and the fact {G(b∗−, b∗+ + c) < G(b∗−, b∗+) ∀c > 0}
(from the definition of d∗ as last supremum). The proof of the case K > 0 is similar
and omitted.

The ultimate monotonicity of G(b−, y) and G#(y) follows from the fact that
b+�w∞vb(x) tends to minus infinity when x → ∞ (by Lemma 3.4).
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(ii) Taking the Laplace transform in c in (6.8) and using the form of the Laplace
transform of W(q) yields that, for θ > �(q) and with G = Gb− ,

Lg(θ) · θ

ψ(θ) − q
=

∫
[0,∞)

e−θcW(q)′(b+ + c)
[
G(b+ + c) − G(b+)

]
dc

=
∫
[0,∞)

∫
[z,∞)

e−θcW(q)′(b+ + c)dcG(b+ + dz)

= eθb+
∫
[b+,∞)

∫
[z,∞)

e−θcW(q)′(c)dcG(dz)

= eθb+

ψ(θ) − q

∫
[b+,∞)

e−θzZ(q,θ)′(z)G(dz),

by a change of the order of integration, which is justified by Fubini’s theorem,
and the form (5.20) of Z(q,θ)′(z). The second assertion follows since a function
f : (c,∞) → R with c > 0 is completely monotone if and only if it is the Laplace
transform of a nonnegative measure supported on R+. �

APPENDIX D: ON OPTIMALITY OF SINGLE BAND STRATEGIES

PROOF OF COROLLARY 9.6. In view of verification Theorem 4.4, it suffices
to verify that it holds J (x) ≤ 0 for any x > 0 with J (x) := (b∗+�w̃∞vb∗)(b∗+ + x).
This assertion follows once the following three facts are verified:

(i) J is concave on R+ \ {0},
(ii) J (0+) = 0 and

(iii) J ′(0+) ≤ 0.

To show (i) note that under the stated assumptions, for y ∈ (0, b), [v(b − y) −
v(b)+y] ≤ 0 ⇔ v(b)−v(b−y) ≥ y (as K = 0), and for y ≥ b it holds w(b−y)−
v(0) − b + y ≤ 0 and v(0) − v(b) + b ≤ 0 which yields that w(b − y) − v(b) ≤ y

for y ≥ b. As ν′ is convex, and a mixture of convex functions with positive weights
is again convex, it follows that J is concave on R+ \ {0}.

Given (ii), statement (iii) follows since if J ′(0+) were positive, (J (x) −
J (0+))/x = J (x)/x would be positive for all x sufficiently small which would
be in contradiction with (6.8).

To see that (ii) holds, note that, from (6.8),
∫
[0,c] J (c − y)W(q)(dy) ≤ 0 for all

c > 0 sufficiently small. Thus since J is continuous on R+ \ {0} (as it is concave)
it follows J (0+) ≤ 0. To complete the proof it is next shown that also J (0+) ≥ 0.

First consider the case that σ 2 is strictly positive: The observations that, for
any b > 0, e−q(t∧T0,b)vb(Xt∧T0,b

) is a martingale with vb ∈ C2 together with Itô’s
lemma yield that (0�

w∞vb)(x) = 0 for all x ∈ (0, b+) which in turn implies that
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J (0+) = 0�
w∞vb(b+) = 0 on account of the continuity of x 
→ (0�

w∞vb∗)(x) at
x = 0.

Consider next the case σ 2 = 0, which follows by approximation. By adding a
small Brownian component with variance σ 2 > 0 to X and subsequently letting
σ 2 → 0, it can be shown that in this case J (0+) ≥ 0: If σ ↘ 0, the continuity
theorem implies that the scale functions W(q)(σ ) and F

(σ)
w of the perturbed process

X(σ) := X +σB (where B is a Brownian motion independent of X) and the corre-
sponding derivatives W(q)(σ )′ and F

(σ)′
w converge pointwise to the corresponding

(derivatives of) scale functions of X at any point of continuity. Denote by J (σ)

the function J with the function v replaced by the function v(σ) corresponding to
the perturbed process X(σ). An application of Fatou’s lemma, which is justified on
account of the bounds in Lemma 3.3, then yields that

0 = lim
σ↘0

J (σ)(x) ≤ J (x) for any x > 0.

The proof is complete. �
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