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DEGREE DISTRIBUTION OF SHORTEST PATH TREES AND BIAS
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In this article, we explicitly derive the limiting degree distribution of the
shortest path tree from a single source on various random network models
with edge weights. We determine the asymptotics of the degree distribution
for large degrees of this tree and compare it to the degree distribution of the
original graph. We perform this analysis for the complete graph with edge
weights that are powers of exponential random variables (weak disorder in
the stochastic mean-field model of distance), as well as on the configuration
model with edge-weights drawn according to any continuous distribution.
In the latter, the focus is on settings where the degrees obey a power law,
and we show that the shortest path tree again obeys a power law with the
same degree power-law exponent. We also consider random r-regular graphs
for large r , and show that the degree distribution of the shortest path tree is
closely related to the shortest path tree for the stochastic mean-field model of
distance. We use our results to shed light on an empirically observed bias in
network sampling methods.

This is part of a general program initiated in previous works by Bhamidi,
van der Hofstad and Hooghiemstra [Ann. Appl. Probab. 20 (2010) 1907–
1965], [Combin. Probab. Comput. 20 (2011) 683–707], [Adv. in Appl.
Probab. 42 (2010) 706–738] of analyzing the effect of attaching random
edge lengths on the geometry of random network models.

1. Introduction. In the last few years, there has been an enormous amount
of empirical work in understanding properties of real-world networks, especially
data transmission networks such as the Internet. One functional which has wit-
nessed intense study and motivated an enormous amount of literature is the de-
gree distribution of the network. Many real-world networks are observed to have a
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heavy-tailed degree distribution. More precisely, empirical data suggest that if we
look at the empirical proportion p̂k of nodes with degree k, then

p̂k ≈ 1/kτ , k → ∞.(1.1)

The quantity τ is called the degree exponent of the network and plays an important
role in predicting a wide variety of properties, ranging from the typical distance
between different nodes, robustness and fragility of the network, to diffusion prop-
erties of viruses and epidemics; see [16–18, 31, 32, 36] and the references therein.

In practice, such network properties often cannot be directly measured and are
estimated via indirect observations. The degree of a given node, or whether two
given nodes are linked by an edge, may not be directly observable. One method
to overcome this issue is to send probes from a single source node to every other
node in the network, tracking the paths that these probes follow. This procedure,
known as multicast, gives partial information about the underlying network, from
which the true structure of the network must be inferred; see, for example, [1, 15,
21, 22, 28, 33].

Probes sent between nodes to explore the structure of such networks are as-
sumed to follow shortest paths in the following sense. These networks are de-
scribed not only by their graph structure but also by costs or weights across edges,
representing congestion across the edge or economic costs for using it. The total
weight of any given path is the sum of edge weights along the path. Given a source
node and a destination node, a shortest path is a (potentially nonunique) path join-
ing these nodes with smallest total weight. It is generally believed that the path that
data actually takes is not the shortest path, but that the shortest path is an accept-
able approximation of the actual path. For our models, the shortest paths between
vertices will always be unique.

For a given source node, the union of the shortest paths to all other nodes of
the network defines a subgraph of the underlying network, representing the part of
the network that can be inferred from the multicast procedure. When all shortest
paths are unique, which we assume henceforth, this subgraph is a tree, called the
shortest path tree. This will be the main object of study in this paper.

Given the shortest path tree and its degree distribution, one can then attempt to
infer the degree distribution of the whole network. Empirical studies such as [1, 28]
show that this may create a bias, in the sense that the observed degree distribution
of the tree might differ significantly from the degree distribution of the underlying
network. Thus a theoretical understanding of the shortest path tree, including its
degree distribution and the lengths of paths between typical nodes, is of paramount
interest.

By definition, the unique path in the shortest path tree from the source vs

to any given target vertex vt is the shortest path in the weighted network be-
tween vs and vt . Thus the shortest path tree minimizes path lengths, not the to-
tal weight of a spanning tree. Hence it is different from the minimal spanning
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tree, the tree for which the total weight over all edges is the tree is minimal. The
last few years have seen a lot of interest in the statistical physics community for
the study of disordered random systems that bridge these two regimes, with mod-
els proposed to interpolate between the shortest weight regime (first passage per-
colation or weak disorder) and the minimal spanning tree regime (strong disor-
der); see [14]. Consider a connected graph Gn = (Vn,En) on n vertices with edge
lengths Ln := {le : e ∈ En}. Now fix the disorder parameter s ∈ R+, change the
edge weights to Ln(s) := {lse : e ∈ Gn} and consider the shortest paths correspond-
ing to the weights Ln(s). For finite s, this is called the weak disorder regime. As
s → ∞, it is easy to check that the optimal path between any two vertices con-
verges to the path between these two vertices in the minimal spanning tree where
one uses the original edge weights L(n) to construct the minimal spanning tree.
This is called the strong disorder regime. The parameter s allows one to interpolate
between these two regimes. Understanding properties of the shortest path tree and
its dependence on the parameter s is then of relevance.

The aim of this paper is to study the degree distribution of shortest path trees,
motivated by these questions from network sampling and statistical physics.

1.1. Mathematical model. In order to gain insight into these properties, we
need to model (a) the underlying networks and (b) the edge weights. We shall
study two main settings in this paper, the first motivated by network sampling
issues and the second to understand weak disorder models.

(a) Configuration model with arbitrary edge weights: An array of models have
been proposed to capture the structure of empirical networks, including prefer-
ential attachment-type models [5, 12, 13] and, what is relevant to this study, the
configuration model CMn(d) [11, 30] on n vertices given a degree sequence
d = dn = (d1, . . . , dn) which is constructed as follows. Let [n] := {1,2, . . . , n}
denote the vertex set of the graph. To vertex i ∈ [n], attach di half-edges, and write
�n = ∑

i∈[n] di for the total degree, assumed to be even. (For di drawn indepen-
dently from a common degree distribution D, �n may be odd; if so, select one of
the di uniformly at random and increase it by 1.) Number the half-edges in any ar-
bitrary order from 1 to �n, and sequentially pair them uniformly at random to form
complete edges. More precisely, at each stage pick an arbitrary unpaired half-edge
and pair it to another uniformly chosen unpaired half-edge to form an edge. Once
paired, remove the two half-edges from the set of unpaired half-edges and con-
tinue the procedure until all half-edges are paired. Call the resulting multi-graph
CMn(d).

Although self-loops and multiple edges may occur, under mild conditions on the
degree sequence d , these become rare as n → ∞; see, for example, [27] or [11]
for more precise results in this direction. For the edge weight distribution, we will
assume any continuous distribution with a density. In the case of infinite-variance
degrees, we need to make stronger assumptions and only work with exponential
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edge weights and independent and identically distributed (i.i.d.) degrees having a
power-law distribution.

(b) Weak disorder and the stochastic mean-field model: The complete graph
can serve as an easy mean-field model for data transmission, and for many observ-
ables it gives a reasonably good approximation to the empirical data; see [37]. The
complete graph with random exponential mean one edge weights is often refered
to as the stochastic mean-field model of distance and has been one of the standard
workhorses of probabilistic combinatorial optimization; see [2, 3, 26, 38] and the
references therein. In this context, we consider the weak disorder model where,
with s > 0 fixed, the edge lengths are i.i.d. copies of Es , where E has an expo-
nential distribution with mean one. In [26], the optimal paths were analyzed when
s = 1, and in [6], the case of general s was studied as a mathematically tractable
model of weak disorder.

1.2. Our contribution. We rigorously analyze the asymptotic degree distribu-
tion of the shortest path tree in the two settings described above. We give an ex-
plicit probabilistic description of the limiting degree distribution that is intimately
connected to the random fluctuations of the length of the optimal path. These in
turn are intimately connected to Bellman–Harris–Jagers continuous-time branch-
ing processes (CTBP) describing local neighborhoods in these graphs. By analyz-
ing these random fluctuations, we prove that the limiting degree distribution has
markedly different behavior depending on the underlying graph:

(i) Configuration model: The shortest path tree has the same degree exponent
τ as the underlying graph for any continuous edge weight distribution when τ > 3,
and for exponential mean one edge weights when τ ∈ (2,3). This reflects the fact
that, for a vertex of unusually high degree in the underlying graph, almost all of its
adjoining edges (if τ > 3) or a positive fraction of its adjoining edges (if 2 < τ < 3)
are likely to belong to the shortest path tree. See Figure 1.

(ii) Weak disorder: Here the limiting degree distribution of the shortest path
tree has an exponential or stretched exponential tail depending on the tempera-
ture s. Furthermore, this limiting degree distribution arises as the limit r → ∞ of
the limiting degree distribution for the r-regular graph when the edge weights are
exponential variables raised to the power s; see Figure 2 for the case s = 1.

1.3. Notation. In stating our results, we shall write vs and vt for two vertices
(the “source” and the “target”) chosen uniformly and independently from a graph
Gn on vertex set [n] = {1, . . . , n}, which will either be the complete graph or a
realization of the configuration model. For the configuration model, we write dv

for the degree of vertex v ∈ [n]. On the edges of Gn, we place i.i.d. positive edge
weights Ye drawn from a continuous distribution. We denote by Tn the shortest
path tree from vertex vs , that is, the union over all vertices v �= vs of the (a.s.
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FIG. 1. Empirical distributions of underlying degrees (“truth”) in the full graph and observed
degrees (“tree”) in the shortest path tree, shown in log–log scale. The vertical axis measures the

tail proportion qk = ∑
j≥k p̂

(n)
j of vertices having degree at least k. The underlying graphs are

realizations of the configuration model on n vertices with power-law degree distributions having
exponent τ (and minimal degree 5 so as to ensure connectivity). Edge weights are i.i.d. exponential
variables.

unique) optimal path from vs to v. We write degTn
(v) for the degree of vertex v in

the shortest path tree and p̂
(n)
k for the proportion of vertices having degree k in the

shortest path tree.
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FIG. 2. Empirical distributions of observed degrees in the shortest path tree. At left, both the degree

k and the tail proportion qk = ∑
j≥k p̂

(n)
j of vertices having degree at least k are shown in logarith-

mic scale; at right, only qk is shown in logarithmic scale. The underlying graph is a random r-regular
graph, r = 100, on n = 100,000 vertices. The blue line in the right-hand graph is the curve q = 2−k ,
corresponding to the Geometric(1/2) distribution. Edge weights are i.i.d. exponential variables.

We write E for an exponential variable of mean 1 and �
d= log(1/E) for a

standard Gumbel variable, that is, P(� ≤ x) = exp(−e−x).

1.4. Organization of the paper. We describe our results in Section 2 and set up
the necessary mathematical constructs for the proof in Section 3. Theorems about
convergence of the degree distribution have three parts:

� part (a) describes the limiting degree distribution of a uniformly chosen vertex
in the shortest path tree; this is proved in Section 4;

� part (b) states the convergence of the empirical degree distribution in the short-
est path tree to the asserted limit from part (a); this is proved in Section 5;

� part (c) identifies the limiting expected degree in the shortest path tree; this is
proved in Section 6.

Section 2 also contains results about the tail behavior of the degrees in the shortest
path tree, proved in Section 7, and a link between the limiting degree distributions
and those for breadth-first tree setting, proved in Section 8.

2. Main results and discussion. We now set out to state our main results.

2.1. Weak disorder in the stochastic mean-field model. Let Gn(s) denote the
complete graph with each edge e equipped with an i.i.d. edge weight le = Es

where E ∼ exp(1) and s > 0. Here we describe our results for the shortest path



1786 BHAMIDI, GOODMAN, VAN DER HOFSTAD AND KOMJÁTHY

tree Tn := Tn(s) from a randomly selected vertex. Let Ei , i = 1,2, . . . , denote
independent copies of E. Define X1 < X2 < · · · by

Xi = (E1 + · · · + Ei)
s;(2.1)

equivalently, (Xi)i≥1 are the ordered points of a Poisson point process with inten-
sity measure

dμs(x) = 1

s
x1/s−1 dx.(2.2)

Let �(·) be the Gamma function, and set

λs = �(1 + 1/s)s;(2.3)

a short calculation verifies that
∫ ∞

0 e−λsx dμs(x) = 1. Then there exists a random
variable W with W > 0 and E(W) = 1 whose law is uniquely defined by the re-
cursive distributional equation

W
d= ∑

i≥1

e−λsXiWi,(2.4)

where W1,W2, . . . are i.i.d. copies of W . This identity will arise from the basic
decomposition of a certain continuous-time branching process, and the uniqueness
in law of W follows from standard arguments; see Section 2.4.4.

Our first theorem describes the degrees in the shortest path tree for the weak-
disorder regime from Section 1:

THEOREM 2.1. Let s > 0, and place i.i.d. positive edge weights with distri-
bution Es on the edges of the complete graph Kn. Let (Xi)i≥1 be as in (2.1), let
(�i)i≥1 be i.i.d. standard Gumbel variables and let (Wi)i≥1 be an i.i.d. sequence
of copies of W . Then:

(a) the degree degTn
(Vn) of a uniformly chosen vertex in the shortest path tree

converges in distribution to the random variable D̂ defined by

D̂ = 1 + ∑
i≥1

1{�i+logWi+λsXi<M}

(2.5)
with M = max

i∈N (�i + logWi − λsXi);
(b) the empirical degree distribution in the shortest path tree converges in prob-

ability as n → ∞,

p̂
(n)
k = 1

n

∑
v∈[n]

1{degTn
(v)=k}

P−→ P(D̂ = k);(2.6)

(c) the expected limiting degree is 2, that is, as n → ∞,

E
[
degTn

(Vn)
] → E[D̂] = 2.(2.7)
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We remark that D̂ and M take finite values: the law of large numbers implies
that i−1Xi → 1 a.s., whereas �i + logWi = o(i) a.s. by Markov’s inequality and
the Borel–Cantelli lemma.

Since Tn is a tree on n vertices, and Vn is a uniformly chosen vertex,
E[degTn

(Vn)] = 2(1 − 1/n) → 2 as n → ∞. The convergence in (2.7) is in this
sense a triviality. However, when combined with the convergence in distribution
of degTn

(Vn) to D̂ from part (a), the assertion of (2.7) is that no mass is lost in the
limit; that is, the variables degTn

(Vn), n ∈N, are uniformly integrable. In practical
terms, this means that a small number of vertices cannot carry a positive proportion
of the degrees in the shortest path tree.

The following theorem describes the tail of the degree distribution in the tree in
terms of the exponent s on the exponential weights:

THEOREM 2.2. Let s > 0, and place i.i.d. positive edge weights with distribu-
tion Es on the edges of the complete graph Kn:

(a) For s = 1, the variable D̂ defined by (2.5) is a geometric random variable
with parameter 1

2 . Then:
(b) For s < 1 and k → ∞,

logP(D̂ = k) ∼ −λsk
s.

(c) For s > 1 and k → ∞,

logP(D̂ = k) ∼ −(1 − 1/s)k logk.

Theorem 2.2 shows that the tail asymptotics of D̂ decay less rapidly when s

becomes small. Note that the boundary case s = 0 corresponds to constant edge
weights. However, λs → ∞ as s↘0, and Theorem 2.2 is not uniform over s. In-
deed, the limit s↘0 is surprisingly subtle; see [19].

2.2. The configuration model with finite-variance degrees. We next consider
the configuration model for rather general degree sequences dn, which may be
either deterministic or random, subject to the following convergence and integra-
bility conditions. To formulate these, we think of dn as fixed, and choose a vertex
Vn uniformly from [n]. We write dv for the degree of v in the original graph. Then
the distribution of dVn is the distribution of the degree of a uniformly chosen ver-
tex Vn, conditional on the degree sequence dn. We assume throughout that dv ≥ 2
for each v ∈ [n].

CONDITION 2.3 (Degree regularity). The degrees dVn satisfy dVn ≥ 2 a.s.
and, for some random variable D with P(D > 2) > 0 and E(D2) < ∞,

dVn

d−→ D, E
(
d2
Vn

) → E
(
D2)

.(2.8)
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Furthermore, the sequence d2
Vn

log(dVn) is uniformly integrable. That is, for any
sequence an → ∞,

lim sup
n→∞

E
(
d2
Vn

log+(dVn/an)
) = 0.(2.9)

In the case where dn is itself random, we require that the convergences in Condi-
tion 2.3 hold in probability. In particular, Condition 2.3 is satisfied when d1, . . . , dn

are i.i.d. copies of D and E(D2 logD) < ∞.
Define the distribution of the random variable D�—the size-biased version

of D—by

P
(
D� = k

) = kP(D = k)

E(D)
.(2.10)

We define ν = E(D� − 1); it is easily checked that ν = E[D(D − 1)]/E[D]. The
assumptions dVn ≥ 2 and P(D > 2) > 0 imply that ν > 1.

We take the edge weights to be i.i.d. copies of a random variable Y > 0 with
a continuous distribution. Since ν > 1, we may define the Malthusian parameter
λ ∈ (0,∞) by the requirement that

νE
(
e−λY ) = 1.(2.11)

Then there is a random variable W whose law is uniquely defined by the require-
ments that W > 0, E(W) = 1 and

W
d=

D�−1∑
i=1

e−λYiWi,(2.12)

where W1,W2, . . . are i.i.d. copies of W . Again, this identity is derived from the
basic decomposition of a certain branching process; see Section 2.4.4.

The next theorem, the counterpart of Theorem 2.1, is about the degrees in the
shortest path tree in the configuration model:

THEOREM 2.4. On the edges of the configuration model where the degree se-
quences dn satisfy Condition 2.3 with limiting degree distribution D, place as edge
weights i.i.d. copies of a random variable Y > 0 with a continuous distribution. Let
(�i)i≥1, (Wi)i≥1 and (Yi)i≥1 be i.i.d. copies of �, W and Y , respectively. Then:

(a) the degree degTn
(Vn) of a uniformly chosen vertex in the shortest path tree

converges in distribution to the random variable D̂ defined by

D̂ = 1 +
D∑

i=1

1{�i+logWi+λYi<M}
(2.13)

with M = max
1≤i≤D

(�i + logWi − λYi);
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(b) the empirical degree distribution in the shortest path tree converges in prob-
ability,

p̂
(n)
k = 1

n

∑
v∈[n]

1{degTn
(v)=k}

P−→ P(D̂ = k) as n → ∞;(2.14)

(c) the expected limiting degree is 2, that is, as n → ∞,

E
[
degTn

(Vn)
] → E[D̂] = 2.(2.15)

As in Theorem 2.1(c), part (c) implies that the degrees degTn
(Vn), n ∈ N, are

uniformly integrable. Since degTn
(Vn) ≤ dVn , part (c) follows from Condition 2.3

using dominated convergence, but for completeness we will give a proof that uses
the stochastic representation (2.13) directly.

In (2.13), the behavior of D̂ depends strongly on the value of D, and in par-
ticular D̂ ≤ D a.s. [This bound is clear in the original degree problem; to see
it from (2.13), note that the summand for which M = �i + logWi − λYi must
vanish.] Thus very large observed degrees D̂ must arise from even larger original
degrees D. To understand this relationship, we define a family of random variables
(D̂k)

∞
k=1 by

D̂k = 1 +
k∑

i=1

1{�i+logWi+λYi<Mk}
(2.16)

with Mk = max
1≤i≤k

(�i + logWi − λYi).

The distribution of D̂k corresponds to the limiting distribution of degTn
(Vn) when,

instead of being selected uniformly, Vn is conditioned to have degree k. The limit-
ing distribution D̂ from (2.13) is then the composition

D̂
d= D̂D,(2.17)

where D has the asymptotic degree distribution from Condition 2.3.
As well as depending on k, the distribution of D̂k depends on λ > 0 and on the

distributions of (�i)i≥1, (Wi)i≥1 and (Yi)i≥1, which we always assume to be i.i.d.
copies of �, W and Y , respectively. We omit this dependence from the notation.

The asymptotic behavior of D̂ is established by large values of D, hence we
study D̂k in the limit k → ∞. The following theorem shows that the form of (2.13)
and (2.16) determines the asymptotic behavior under very general conditions.

THEOREM 2.5. Define D̂k according to (2.16), where the variables (�i)i≥1,
(Wi)i≥1 and (Yi)i≥1 are i.i.d. copies of arbitrary random variables �,W,Y , in-
dependently for each i ∈ N, with Y > 0 a.s. If P(� > x) > 0 for each x ∈ R, or if
P(W > x) > 0 for each x ∈ R, then D̂k = k(1 − oP(1)) as k → ∞.
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Theorem 2.5 shows that the proportion of summands in (2.16) that do not con-
tribute to D̂k tends to 0. In words, if the vertex has large degree in the original
graph, then it is likely that almost all of the outgoing edges will be revealed by the
shortest path tree.

On the contrary, the next result shows that under certain circumstances the order
of magnitude of the error is not necessarily small, that is, finite behavior might
modify the empirical data significantly compared to the true limit behavior. We pay
particular attention to the case when the edge weights (Yi)i≥1 are i.i.d. exponential
or uniform variables. In these cases we can determine the precise asymptotic order
of magnitude of the difference between the degrees in the original graph and in the
shortest path tree.

THEOREM 2.6. Define D̂k,Mk according to (2.16), where the variables
(�i)i≥1, (Wi)i≥1 and (Yi)i≥1 are i.i.d. copies of a Gumbel variable �, a positive
random variable W with E(W) < ∞ and a positive random variable Y . Then:

(a) Mk = log k + OP(1) as k → ∞;
(b) if E(eλY ) < ∞, then k − D̂k is tight;
(c) if Y is a standard exponential variable and the Malthusian parameter λ

satisfies λ > 1, then

k − D̂k = 	P

(
k1−1/λ);(2.18)

(d) if Y is a standard exponential variable and λ = 1, then

k − D̂k = 	P(logk).(2.19)

Theorem 2.6(b) applies to the setting where Y is a standard exponential variable
and 0 < λ < 1. Interestingly, for the CM with exponential edge weights, one has
λ = ν − 1, where we recall that ν = E[D(D − 1)]/E[D] denotes the expected for-
ward degree. Thus λ ∈ (0,1) precisely when ν ∈ (1,2). The other cases are treated
in Theorem 2.6(c) and (d), where the behavior is really different. Further, Theo-
rem 2.6(b) applies to the setting where Y is a uniform random variable, regardless
of the value of λ.

An immediate consequence is the following corollary, handling the case of i.i.d.
degrees with power-law exponent τ > 3. Here we shall assume that the distribution
function F(x) = P(D ≤ x) of the underlying degrees satisfies

1 − F(x) = x1−τL(x),(2.20)

where x �→ L(x) is a slowly varying function as x → ∞.

COROLLARY 2.7. Suppose that the configuration model degrees are i.i.d.
copies of a random variable D whose distribution function satisfies (2.20) with
τ > 3. Then:



DEGREE DISTRIBUTION OF SHORTEST PATH TREES 1791

(a) conditional on {D = k}, we have D̂ = D(1 − oP(1)) in the limit k → ∞,
and

(b) the distribution function of D̂ satisfies (2.20) also, for the same τ .

If in addition ν > 2 and the edge weights are exponentially distributed, then

(c) conditional on {D = k}, we have D − D̂ = 	P(k
1−1/(ν−1)) in the limit

k → ∞.

Corollary 2.7(a) and (b) show that large degrees are asymptotically fully de-
tected in the shortest path tree. Corollary 2.7(c) provides a counterpart by showing
that D̂, though asymptotically of the same order as D, may nevertheless be sub-
stantially smaller when D is of moderate size. Furthermore, this effect is accentu-
ated when ν is large.

Note that Theorems 2.5–2.6 and thus Corollary 2.7 rely heavily on the fact
that the underlying degree distribution and the Malthusian parameter λ stay fixed
whereas k is large. In other words, these results pertain to a single vertex of un-
usually large degree. In particular, Theorems 2.5–2.6 do not hold for the random
k-regular graph in the limit k → ∞. In that case every vertex—not just the tar-
get vertex—has degree k and hence the Malthusian parameter λ = k − 1 tends to
infinity together with the degree k. In the context of an r-regular graph, Theo-
rems 2.5–2.6 apply instead to the asymptotic degree behavior of a vertex of degree
k added artificially to the random r-regular graph on n vertices, with r fixed, k � r

and n → ∞.

2.3. The configuration model with infinite-variance degrees. Section 2.2 treats
the configuration model with degree distribution having a finite limiting variance.
However, in many real-life networks, this is not the case. Quite often, the avail-
able empirical work suggests that the degrees in the network follow a power-law
distribution with exponent τ ∈ (2,3).

Thus throughout this section we shall have in mind that the degrees d1, . . . , dn of
the configuration model are i.i.d. copies of D, where D ≥ 2 a.s. and the distribution
function F(x) = P(D ≤ x) satisfies (2.20) for 2 < τ < 3 and x �→ L(x) a slowly
varying function as x → ∞. We further assume that the edge weights are standard
exponential random variables.

In the parameter range 2 < τ < 3, the degree distribution has finite mean but
infinite variance. Hence the size-biased distribution in (2.10) is well defined, but
has infinite mean, and the Malthusian parameter in (2.11) does not exist. Instead,
let V be the positive (nontrivial) random variable that satisfies

V
d=

∞∑
i=1

Ei

1 + ∑i
j=1(D

�
j − 2)

,(2.21)
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where Ei is an i.i.d. collection of exponential random variables, and independently,
D�

j are i.i.d. copies of the size-biased distribution defined in (2.10), now having
infinite mean. It is not hard to see that V also satisfies

V
d= min

i=1,...,D�−1
(Ei + Vi),(2.22)

where Ei and Vi are i.i.d. copies of E and V , respectively. This recursive charac-
terization can be derived again from the basic decomposition of Markov chains.

Our next theorem describes the behavior of degrees in the shortest path tree on
the configuration model with i.i.d. infinite-variance degrees and exponential edge
weights:

THEOREM 2.8. On the edges of the configuration model whose degree se-
quence dn is given by independent copies of D, where the distribution function
of D satisfies (2.20) with τ ∈ (2,3), place i.i.d. edge weights distributed as E, an
exponential random variable of mean 1. Let (Vi)i≥1 and (Ei)i≥1 be i.i.d. copies of
V and E, respectively. Then:

(a) the degree degTn
(Vn) of a uniformly chosen vertex in the shortest path tree

converges in distribution to the random variable D̂ defined by

D̂ = 1 +
D∑

i=1

1{Vi−Ei>ξ} with ξ = min
1≤i≤D

(Vi + Ei);(2.23)

(b) the empirical degree distribution in the shortest path tree converges in
probability, that is,

p̂
(n)
k = 1

n

∑
v∈[n]

1{degTn
(v)=k}

P−→ P(D̂ = k);(2.24)

(c) the expected limiting degree is 2, that is, as n → ∞,

E
[
degTn

(Vn)
] → E[D̂] = 2.(2.25)

As with Theorem 2.4(c), part (c) of Theorem 2.8 asserts that the degrees
degTn

(Vn), n ∈ N, are uniformly integrable, and we will give both a dominated
convergence proof and a proof using the stochastic representation (2.23).

As in Section 2.2, we wish to understand the asymptotic behavior of the de-
grees by looking at vertices with large original degree. Thus, we define a family of
random variables (D̂k)

∞
k=1 by

D̂k = 1 +
k∑

i=1

1{Vi−Ei>ξk} with ξk = min
1≤i≤k

(Vi + Ei).(2.26)

Then the following theorem describes the degree in the shortest path tree of a
vertex conditioned to have a large original degree:
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THEOREM 2.9. Define D̂k according to (2.26), where the variables (Vi)i≥1
and (Ei)i≥1 independent i.i.d. copies of arbitrary continuous positive random vari-
ables V and E, respectively. If P(V < x) and P(E < x) are positive for each x > 0,
then for V,E independent, p = P(V > E) satisfies 0 < p < 1 and, as k → ∞,

D̂k = p · k · (
1 + oP(1)

)
.(2.27)

Theorem 2.9 asserts that an asymptotic fraction p (neither 0 nor 1) of the sum-
mands in (2.26) contribute to D̂k . Compared to Theorem 2.5, where p = 1, the
difference stems from the fact that V is supported on (0,∞) whereas � + logW

is supported on (−∞,∞).

COROLLARY 2.10. If the distribution function of the configuration model de-
grees D satisfies (2.20) with τ ∈ (2,3), then:

(a) conditional on {D = k}, we have D̂ = p ·D ·(1+oP(1)) in the limit k → ∞,
and

(b) the distribution function of D̂ satisfies (2.20) also, for the same τ .

2.4. Discussion. In this section, we discuss our results and compare them to
existing literature.

2.4.1. Convergence to the limiting degree distribution. Part (a) of Theo-
rems 2.1, 2.4 and 2.8 states that the degree distribution of a single uniformly se-
lected vertex converges to the distribution of D̂. Part (b) strengthens this to state
that the empirical degree distribution converges in probability; that is, the (random)
proportion of vertices of degree k in the shortest path tree Tn is with high proba-
bility close to the limiting value P(D̂ = k), for all k. Finally, part (c) states that the
convergence of the degree distribution from part (a) also happens in expectation.

Note that these convergences are not uniform over the choice of original degree
distribution or edge weight distribution; see the remarks following Theorem 2.2
and Corollary 2.7.

2.4.2. Degree exponents, bias and the effect of randomness. If the initial graph
is the configuration model whose original degrees obey a power law with expo-
nent τ , then Theorems 2.5 and 2.9 show that in both cases the power-law exponent
τ is preserved via the shortest path tree sampling procedure.4 In particular, if the
degrees from a shortest path tree are used to infer the power-law exponent τ , then
asymptotically they will do so correctly.

4To be precise, this is proved only for τ > 3, for certain parts of the regime τ = 3 and for 2 < τ < 3
with exponential edge weights.
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In the literature, several papers consider the question of bias. Namely, do the ob-
served degrees arising from network algorithms accurately reflect the true under-
lying degree distribution, or can they exhibit power law behavior with a modified
or spurious exponent τ̃? This question has drawn particular attention in the setting
of the breadth-first search tree (BFST), where paths are explored in breadth-first
order according to their number of edges, instead of according to their total edge
weight. Exact analysis [1] and numerical simulations [28] have shown that the
BFST can produce an apparent bias, in the sense that observed degree distribu-
tions appear to follow a power law, for a relatively wide range of degrees, when
the true distribution does not. Surprisingly, this phenomenon occurs even in the
random r-regular graph, where all vertices have degree r : defining

a
(r)
k = �(r)�(k − 1 + 1/(r − 2))

(r − 2)�(r + 1/(r − 2))�(k)
,(2.28)

the limiting degree distribution D̂BFST satisfies

P
(
D̂BFST = k

) = a
(r)
k if 1 ≤ k ≤ r and

(2.29)

a
(r)
k ≈ 1

r · k1−1/(r−2)
as k → ∞.

(See [1], Section 6.1; note that the requirement k ≤ r is not mentioned in their
discussion.) In this case, since the underlying degrees are bounded, the power law
in (2.29) is of course truncated, and is therefore not a power law in the sense
of (1.1) or (2.20).

The breadth-first search tree corresponds in our setup to the nonrandom case
where all edge weights are 1. Although our proof of Theorem 2.4 relies on a
continuous edge weight distribution, we may nevertheless set Y = 1 in the defi-
nition (2.13) of D̂. In this case, we recover the limiting degree distribution arising
from the breadth-first search tree:

THEOREM 2.11. Let D be any degree distribution with D ≥ 3 a.s. and
E(D2 logD) < ∞, and set Y = 1. Then with λ and W as in Section 2.2, the lim-
iting degree distribution D̂ from (2.13) is equal to the limiting degree distribution
for the breadth-first search tree identified in [1], Theorem 2.

In particular, Theorem 2.6 (which makes no assumptions on the edge weights
except positivity) applies to the breadth-first search tree degrees. Consequently,
Theorem 2.6 and Corollary 2.7 must be understood with the caveat that they pertain
to true power laws, but not truncated power laws such as (2.29).

For the truncated power law in (2.29) to look convincingly like a true power
law, r must be relatively large. It is worth noting, however, that the limiting degree
distribution is ill-behaved in the limit r → ∞: we have a

(r)
1 → 1 and a

(r)
k → 0

for k ≥ 2, so that the degree of a typical vertex converges to 1 and most vertices
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are leaves. In particular, the truncated power law in (2.29) disappears in this limit.
Furthermore, the expected limiting degree E(D̂BFST) (which continues to be 2 for
each finite r) is reduced to 1 after taking r → ∞, so that D̂BFST is not uniformly
integrable in this limit.

By way of comparison, the limiting degree distribution for the random r-regular
graph with i.i.d. exponential edge weights (perhaps raised to some power s > 0)
is well behaved in the limit r → ∞, and indeed converges5 to the limiting degree
distributions for the complete graph defined in Section 2.1. By Theorem 2.2, the
tails of this distribution decay faster than a power law, for any s > 0.

Figure 2 shows a simulation of the case r = 100, s = 1, with n = 10,000.
The observed degree distribution does not resemble a power law at all, and in
fact it agrees very closely with the Geometric(1/2) distribution which, by Theo-
rem 2.2(a) and the preceding discussion, corresponds to the case r → ∞. While
not a proof, this strongly suggests that the truncated power laws found in [1, 28] are
anomalous and reflect specific choices in the breadth-first search model. It would
be of great interest to understand under what conditions truncated power laws can
be expected to appear in general. It is tempting to conjecture that spurious power
laws do not arise whenever the edge weights are random with support reaching all
the way to 0.

2.4.3. Special cases. The statement of Theorem 2.2 for s = 1 is well known,
since in this case the shortest path tree is the uniform recursive tree, and the degrees
in the uniform recursive tree can be understood via martingale methods; see, for
instance, [36], Exercise 8.15, Theorem 8.2. The proof we give here is different,
with the main advantage that it is easier to generalize to the case s �= 1. It is based
on the representation (2.5) for D̂ together with the observation that the martingale
limit W is a standard exponential variable; see, for instance, [36] or [26], or verify
directly that E satisfies (2.4).

The r-regular graph on n vertices corresponds to the choice D = r in Theo-
rem 2.4. If in addition the edge weights are exponential, the martingale limit W

can be identified as a Gamma( r−1
r−2 , r−2

r−1) random variable, that is, the variable with

Laplace transform φW(u) = (1 + r−2
r−1u)−(r−1)/(r−2). Even though we can char-

acterize W , obtaining an explicit description of the law of D̂ (e.g., through its
generating function) appears difficult.

2.4.4. Branching processes: Limit random variables W and V . In analyzing
the shortest path tree Tn, it is natural to consider the exploration process, or first

5This follows from the convergence of the collection (r−sYi)i∈[r] of rescaled edge weights to-
ward the Poisson point process (Xi)

∞
i=1 [cf. (4.14) and the surrounding material] and the consequent

convergence of the corresponding martingale limits W . Problems related to the unbounded number
of terms in (2.5) and (2.13) can be handled by the observation that the collection (r−sYi)i∈[r] is
stochastically dominated by (Xi)i≥1 for each r .
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passage percolation, that discovers Tn gradually according to the distance from
the source vertex vs . Starting from the subgraph consisting of vs alone, reveal the
original degree dvs . Reveal whether any of the dvs half-edges associated to vs form
self-loops; if any do, remove them from consideration. (This step is unnecessary in
the complete graph case.) For each remaining half-edge, there is an i.i.d. copy of
the edge weight Y . Set t0 = 0. Iteratively, having constructed the subgraph with i

vertices and i −1 edges, wait until the first time ti > ti−1 when some new vertex vi

can be reached from vs by a path of length ti . (Thus t1 will be equal to the smallest
edge weight incident to vs , apart from self-loops.) Reveal the degree dvi

and add
the unique new edge in the path between vi and vs , using one of the dvi

half-edges
associated to vi . For the remaining dvi

− 1 half-edges, remove any that form self-
loops or that connect to already explored vertices, and iterate this procedure as
long as possible. The subgraph so constructed will be Tn.

When n → ∞, no half-edge will form a self-loop or connect to a previously ex-
plored vertex by any fixed stage i of the exploration, for any fixed i. It follows that
the exploration process is well approximated (at least initially) by a continuous-
time branching process (CTBP) that we now describe.

Consider first the configuration model. The vertex vs is uniformly chosen by as-
sumption. The vertex v1, however, is generally not uniformly chosen. Conditional
on vs we have

P(v1 = v|vs) = dv1{v �=vs}∑
w �=vs

dw

.(2.30)

(Note, e.g., that dv1 can never be 0). Owing to the finite mean assumption on the
CM degrees, it follows that

∑
w �=vs

dw ∼ nE(D) and P(dv1 = k|vs) ≈ kP(D =
k)/E(D) in the limit n → ∞. This size-biasing effect means that the number dvi

−
1 of new half-edges will asymptotically have the distribution D� − 1, where D� is
defined in (2.10). The CTBP approximation for the CM is therefore the following:
An individual v born at time Tv has a random finite number Nv of offspring, born at
times Tv +Yv,1, . . . , Tv +Yv,Nv . The Yv,i are i.i.d. copies of Y ; the initial individual

vs has family size Nvs = dvs ; and all other individuals have family size Nv
d=

D� − 1.
For the complete graph, the degrees are deterministic but large, and it is neces-

sary to rescale the edge weights: the collection of edge weights incident to a ver-
tex, multiplied by ns , converges toward the Poisson point process (Xi)i≥1 defined
in (2.1), for a formal version of this statement; see (4.14) below. The corresponding
CTBP is as follows: Every individual v born at time Tv has an infinite number of
offspring, born at times Tv +Xv,1, Tv +Xv,2, . . . , where (Xv,i)i≥1 are i.i.d. copies
of the Poisson point process defined in (2.1).

The random variables W and V from Sections 2.1–2.3 arise naturally from these
CTBPs. In the complete graph context from Section 2.1–2.2, the CTBPs grow ex-
ponentially in time, with asymptotic population size cWeλt for λ = λs defined
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by (2.3) and c > 0 a constant, and indeed W arises as a suitable martingale limit;
see [4]. For the CM contexts from Sections 2.2–2.3, we must take the initial in-
dividual vs to have degree distribution D� − 1 in order to obtain the variables W

and V (instead of Ŵ and V̂ from Section 3 below). When the family sizes D� − 1
have finite mean, as in Section 2.2, the population size again grows asymptotically
as cWeλt for λ given by (2.11). In the setting of Section 2.3, the CTBP explodes
in finite time; that is, there is an a.s. finite time V = limk→∞ tk at which the popu-
lation size diverges; see [23]. The recursive relations (2.4), (2.12) and (2.22) result
from conditioning on the size and birth times of the first generation in the CTBP.
For the uniqueness in law of W , see [29], Theorem 4.1, page 111.

We note that in all cases, the value of W or V is determined from the initial
growth of the branching process approximations: we can obtain an arbitrarily ac-
curate guess, with probability arbitrarily close to 1, by examining the CTBP until
it reaches a sufficiently large but finite size. In terms of the exploration process, it
is sufficient to examine a large but finite neighborhood of the initial vertex. Large
values of W and small values of V correspond to faster than usual growth during
this initial period, and thereafter the growth is essentially deterministic.

In Theorems 2.1 and 2.4, a large value of M might be expected to correspond
to one large value of Wi , and a large value of D̂ might be expected to arise from
having many vertices j with small values of Wj . As we shall see in the proofs,
however, this intuition is incorrect, and it is the variables �i , and secondarily the
edge weights Yi , whose deviations are most relevant to the sizes of M and D̂.

2.4.5. Shortest path trees and giant components. In Theorems 2.4 and 2.8, the
hypothesis D ≥ 2 implies that vs and vt are connected with high probability. If de-
grees 1 or 0 are possible, we must impose the additional assumption that ν > 1 in
Theorem 2.4. Having made this assumption, the CM will have a giant component;
that is, asymptotically, the largest component will contain a fixed positive fraction
of all vertices, and the next largest component will contain o(n) vertices. The vari-
able W from Section 2.2 has a positive probability of being 0, in which case we
set logW = −∞, and the variable V from Section 2.3 has a positive probability of
being ∞. Furthermore, there is a positive probability that Tn contains only a fixed
finite number of vertices, corresponding to the case where the branching process
approximations from Section 2.4.4 go extinct. (This possibility will be reflected
mathematically in the possibilities that Ŵs = 0 in Proposition 3.2 or V̂s = ∞ in
Proposition 3.3.)

If we condition vs to lie in the giant component (corresponding to nonextinction
of the branching process started from vs ), then in the resulting shortest path tree,
the outdegree of vt has the same limiting conditional distribution as D̂ − 1 in
Theorems 2.4 and 2.8. The variable M (resp., ξ ) equals −∞ (resp., ∞) whenever
Wi = 0 (resp., Vi = ∞) for each i = 1, . . . ,D, corresponding to the case that vt

does not belong to the giant component, and in this case the outdegree and the
degree of vt are both 0.
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2.4.6. Open problems. There are several interesting questions that serve as
extensions of our results. First, as discussed in Section 2.4.2, our results reveal
the existence or nonexistence of true power laws, but not truncated power laws.
A precise characterization of when truncated power laws arise would be of great
interest.

Second, many real-life networks have power-law behavior with degree exponent
τ ∈ (2,3). In this regime where the degrees have infinite variance (as well as part
of the regime τ = 3 when Condition 2.3 is not satisfied), it is natural to extend be-
yond the exponential edge weights that we consider. We expect that Theorems 2.8
and 2.9 remain valid with slight modification if the corresponding CTBP is explo-
sive, that is, if the CTBP reaches an infinite population in finite time. When the
corresponding CTBP is not explosive, even the probabilistic form of the limiting
distribution D̂ is unknown. Such a representation would in particular be expected
to give rise to the limiting BFST degree distribution, as in Theorem 2.11.

Finally, real-world traceroute sampling typically uses more than just a single
source. It is natural to extend our model to several shortest path trees from different
sources. In this setup, the resulting behavior might depend on whether we observe,
for a given target vertex, either the degree in each shortest path tree; or the degree
in the union of all shortest path trees; or the entire collection of incident edges in
each shortest path tree. In any of these formulations, we may ask how accurately
the observed degree reflects the true degree when the number of sources is large,
and whether this accuracy varies when both the true degree and the number of
sources are large.

3. Limit theorems for shortest paths. The proofs of Theorems 2.1, 2.4
and 2.8 are based on Propositions 3.1, 3.2 and 3.3, respectively, which in turn fol-
low from [6], Theorem 1.1, [10], Theorems 1.2–1.3 and [8], Theorem 3.2, respec-
tively. These theorems determine the distribution of the shortest paths between two
uniformly chosen vertices in the complete graph, and in the configuration model.
Since we need the results about shortest paths jointly across a collection of several
target points (i.e., not just between two vertices), we state only the needed ver-
sions here. These modifications easily follow from the results mentioned earlier,
combined with an idea about marginal convergence from the work of Salez [35]
who proved the joint convergence of typical distances between several points for
the particular case of the random r-regular graph with exponential mean one edge
lengths. His argument extends, however, to the more general situation as well. We
give an idea of how these results were proven in Section 3.1 but omit full proofs.
Our first proposition is about the joint convergence of shortest weight paths on the
complete graph. Recall the notation for W from Section 2.1.

PROPOSITION 3.1. Consider the complete graph with edge weights dis-
tributed as Es , s > 0. Let v1, . . . , vk be distinct vertices, all distinct from vs̃
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(the source vertex), and denote the length of the shortest path between vs̃, vi by
Cn(vs̃, vi). Then(

λsn
sCn(vs̃, vi) − logn

)k
i=1

d−→ (−�i − logWs̃ − logWi)
k
i=1,(3.1)

where �1, . . . ,�k are i.i.d. copies of � and Ws̃,W1, . . . ,Wk are i.i.d. copies of
the random variable W from Section 2.1.

Note that, due to the presence of the term logWs̃ , the limiting variables in Propo-
sition 3.1 are exchangeable but not independent for different i. When k = 1, the
case s = 1 is due to [26], and the case s �= 1 is due to [6].

For the configuration model with finite-variance degrees, we will need to apply
a similar result to the neighbors of the uniformly chosen vertex vt .

PROPOSITION 3.2. Consider the configuration model with degrees satisfying
Condition 2.3. Let v1, . . . , vk be distinct vertices, all distinct from vs̃ , which may be
randomly chosen but whose choice is independent of the configuration model and
of the edge weights. If the degrees (dv1, . . . , dvk

) converge jointly in distribution
to independent copies of D� − 1, then there is a constant λ > 0 and a sequence
λn → λ such that(

λnCn(vs̃, vi) − logn
)k
i=1

d−→ (−�i − log Ŵs − logWi + c)ki=1,(3.2)

jointly in i = 1, . . . , k, where c is a constant, �i are i.i.d. copies of �, W1, . . . ,Wk

are i.i.d. copies of the variable W from Section 2.2 and Ŵs is a positive random
variable, all independent of one another.

As discussed in Section 2.4.4, each time we connect a half edge of vt to another
vertex, the probability of picking a vertex of degree k is approximately propor-
tional to k ·P(D = k). Thus, for each neighbor, the degree converges in distribution
to the size-biased variable D� defined in (2.10), and the number of half-edges not
connected to vt converges in distribution to D�−1. This motivates the assumptions
on the degrees in Proposition 3.2.

The constant c arises as a function of the stable age-distribution of the associated
branching process [10]. Since it does not play a role in the proof, we omit a full
description of this constant.

Finally, we state the corresponding result for the infinite-variance case:

PROPOSITION 3.3. Consider the configuration model with i.i.d. degrees sat-
isfying (2.20) with τ ∈ (2,3). Let v1, . . . , vk be distinct vertices, all distinct from
vs̃ , which may be randomly chosen but whose choice is independent of the configu-
ration model and of the edge weights. If the degrees (dv1, . . . , dvk

) converge jointly
in distribution to independent copies of the size-biased distribution D� − 1, then(

Cn(vs̃, vi)
)k
i=1

d−→ (V̂s + Vi)
k
i=1,
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where (Vi)i≥1 are i.i.d. copies of the random variable V from Section 2.3, and V̂s

is a random variable independent of V1, . . . , Vk .

3.1. Idea of the proof. We give the idea behind the proof of Proposition 3.2.
The proofs of the other propositions are similar, using the corresponding branching
process approximations of local neighborhoods as described in Section 2.4.4.

Let (dn)n≥1 be a degree sequence satisfying Condition 2.3, and fix a continuous
positive random variable Y . Let Gn = ([n],En) be the configuration model con-
structed from this degree sequence, with En denoting the edge set of the graph, and
let the edge weights {Ye : e ∈ En} be i.i.d. copies of Y .

As in (2.10)–(2.11), we define P(D�
n = k) = kP(dVn = k)/E(dVn) (the size-

biasing of dVn ) and the corresponding size-biased expectations νn = E(D�
n − 1),

Malthusian parameters λn satisfying νnE(e−λnY ) = 1 and martingale limit W(n)

satisfying W(n) d= ∑D�
n−1

i=1 e−λnYiW
(n)
i . Assuming Condition 2.3, we have νn → ν

(so that νn > 1 and λn, W(n) are well defined for n sufficiently large), λn → λ and

W(n) d−→ W .

3.1.1. One target vertex: The case k = 1. Let us first summarize the ideas
behind [10], Theorems 1.2–1.3, which derive the asymptotics for the length of
the optimal path between two selected vertices v0, v1 ∈ Gn. To understand this
optimal path, think of a fluid flowing at rate one through the network using the
edge lengths, started simultaneously from the two vertices v0, v1 at time t = 0.
When the two flows collide, say at time �

(1)
n , there exists one vertex in both flow

clusters. This implies that the optimal path is created, and the length of the optimal
path is essentially 2�

(1)
n .

Write (Fi(t))t≥0 for the flow process emanating from vertex vi . As described in
Section 2.4.4, these flow processes can be approximated by independent Bellman–
Harris processes where each vertex has offspring distribution D�

n − 1 and life-
time distribution Y . By [24], the size of both flow processes grow like |Fi (t)| ∼
W̃

(n)
i exp(λnt) as t → ∞, where λn is the Malthusian rate of growth of the branch-

ing process, and W̃
(n)
i > 0 (due to the fact that by assumption our branching pro-

cesses survive with probability 1) are associated martingale limits. Furthermore,
an analysis of the two exploration processes suggests that for t > 0, the rate at
which one flow cluster picks a vertex from the other flow cluster (thus creating a
collision in a small time interval [t, t + dt)) is approximately

γn(t) ≈ κ|F0(t)||F1(t)|
n

≈ κW̃
(n)
0 W̃

(n)
1 exp(2λnt)

n
, t ≥ 0,(3.3)

where the constant κ arises due to a subtle interaction of the stable-age dis-
tribution of the associated continuous time branching process with the explo-
ration processes. This suggests that times of creation of collision edge scales like
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(2λ)−1 logn, and further the time of birth of the first collision edge, re-centered by
(2λ)−1 logn, converges to the first point �∞ of a Cox process with rate

γ∞(x) := κW̃0W̃1 exp(2λx), x ∈ R.

It is easy to check that

�∞ d= 1

2λ
(−� − log W̃0 − log W̃1 + c),(3.4)

where c is a constant depending on λ and κ , and � has Gumbel distribution inde-
pendent of W̃0, W̃1.

In [10], both v0 and v1 are chosen uniformly and therefore have a degree distri-
bution different from the offspring distribution D�

n − 1 associated to the rest of the
branching process. Consequently, W̃

(n)
0 and W̃

(n)
1 are not distributed as the mar-

tingale limit W(n) but as a certain sum Ŵ
(n)
s of such variables (with Ŵ

(n)
s → Ŵs

as n → ∞). By contrast, in the setting of Proposition 3.2 for k = 1, the vertex v1
has distribution close to D� − 1 by assumption, so that this replacement is not nec-

essary and W̃
(n)
1

d= W(n) d−→ W . Since the length of the optimal path scales like

2�
(1)
n , rearranging (3.4) gives Proposition 3.2 with k = 1.
The actual rigorous proof in [10] is a lot more subtle albeit following the above

underlying idea. The optimal path is formed not quite at time 2�n, and one has to
keep track of “residual life-times” of alive vertices, whose asymptotics follow from
the stable-age-distribution theory of Jagers and Nerman [25], and so on, leading
to the analysis of a much more complicated Cox process. In the end, distributional
identities for the Poisson process yield the result above.

3.1.2. Extension to multiple target vertices: The case k ≥ 2. Let us now de-
scribe how one extends the above result for k = 1 to more general k. For ease of
notation, assume k = 2; the general case follows in an identical fashion. Consider
flow emanating from three vertices vs and v1, v2 simultaneously at t = 0. Argu-
ing as above, one finds that there exist paths P1 and P2 (not necessarily optimal)
between vs and v1, v2 such that the respective lengths of the paths C̃n(vs̃, v1) and
C̃n(vs̃, v2) satisfy(

λnC̃n(vs̃, v1) − logn
)2
i=1

d−→ (−�i − log Ŵs − logWi + c)2
i=1 := W (2).(3.5)

Obviously the length of the optimal paths satisfy Cn(vs̃, vi) ≤ C̃n(vs̃, v1), and thus
the limit W (2) above serves as a limiting upper bound (in the distributional sense)
to the vector of lengths of optimal costs properly re-centered,

Cn(2) := (
λnCn(vs̃, v1) − logn

)2
i=1.

However, the result holds for k = 1 by the argument in the previous section; thus
the marginals of Cn(2) must converge to the marginals of W (2). This implies that
Cn(2) converges to W (2). See [35] for more details.
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4. Convergence of the degree distribution. In this section we prove part (a)
of Theorems 2.4, 2.8 and 2.1, since the proofs share similarities. Parts (b) and (c)
of these theorems are deferred to Sections 5 and 6. For the rest of the paper we
write

φW(u) := E
(
exp(−uW)

)
, u ≥ 0,(4.1)

for the Laplace transform of the random variable W which arise as martingale lim-
its of branching processes and satisfy the recursive distributional equations (2.4)
or (2.12).

All three proofs are based on an analysis of optimal path lengths, using the
following characterization of the out-degree of vt . Note that we convert again to
using vs for the source vertex, and we continue to use vt for the target vertex.

The out-degree of vt in Tn is the number of immediate neighbors of vt for which the
shortest path from vs passes through vertex vt .

To formalize this, write N for the collection of neighbors of vt in Gn, and let
C′

n(vs, v), v ∈ N , denote the shortest path between vertices vs and v in the modi-
fied graph G′

n where the vertex vt , and all edges incident to vt , are excised. Write
Yv , v ∈ N , for the weight of the edge between v and vt ; by construction, the Yv

are independent copies of Y , independent of everything else. Then

Cn(vs, vt ) = min
v∈N

(
C′

n(vs, v) + Yv

)
,(4.2)

and the unique path in Tn from vs to vt passes through the unique vertex U ∈ N for
which Cn(vs, vt ) = C′

n(vs,U) + YU . Moreover, the edge between vt and a vertex
v ∈ N \ {U} belongs to Tn if and only if the path from vs to v via vt is shorter than
the optimal path excluding vt . That is,

edge {vt , v} ∈ Tn ⇐⇒ v = U or
(4.3)

C′
n(vs,U) + YU + Yv < C′

n(vs, v).

Because the alternatives in the right-hand side of (4.3) are mutually exclusive, we
can therefore express the degree of vt as

degTn
(Vn) = 1 + ∑

v∈N
1{C′

n(vs,U)+YU+Yv<C′
n(vs ,v)}.(4.4)

First we start with the configuration model. The proofs of part (a) of Theo-
rems 2.4 and 2.8 rely on the asymptotics for optimal path lengths stated in Propo-
sitions 3.2 and 3.3.

PROOF OF THEOREM 2.4(A). Since the original degree dvt converges in dis-
tribution to D as n → ∞, it suffices to condition on {dvt = k} and then show that
degTn

(Vn) converges in distribution to D̂k , for each finite value k ∈ N. Having
made this conditioning, the event

An,k = {
dvt = k, vt �= vs, |N | = k,N ∩ {vs, vt } = ∅

}
(4.5)
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(i.e., the event that the vertex paired to each of the k stubs from vt , the vertex vs ,
and the vertex vt itself are all distinct) occurs with high probability.

It is easy to see that, conditional on the occurrence of An,k and the values vt

and N , the graph G′
n is equivalent to a configuration model on the n − 1 vertices

[n] \ {vt }, where the degree d ′
v of vertex v is given by

d ′
v =

{
dv − 1, v ∈ N ,
dv, v /∈ N .

(4.6)

Conditional on {dvt = k}, let v1, . . . , vk denote the vertices paired to stubs from vt .
As discussed earlier, the vertices (v1, . . . , vk) are chosen with probabilities asymp-
totically proportional to dv1 · · ·dvk

. From (4.6) it follows that, conditional on An,k ,
the modified degrees (d ′

v1
, . . . , d ′

vk
) converge jointly in distribution to k inde-

pendent variables with the distribution D� − 1; see (2.10). By Proposition 3.2,
conditional on An,k , the recentered shortest paths λn−1C

′
n(vs, vi) − log(n − 1),

i = 1, . . . , k, converge jointly in distribution to − log Ŵs − logWi − �i + c,
i = 1, . . . , k, while the edge weights Yvi

are independent copies of Y . Recall the
notation Mk from (2.16). Then (4.2) implies that

λn−1Cn(vs, vt ) − log(n − 1)

d−→ min
i=1,...,k

(− log Ŵs − logWi − �i + c + λYi)(4.7)

= −Mk − log Ŵs + c,

also jointly with the previous convergences.
On the other hand, if we rescale and recenter the shortest paths in (4.4), then we

get

degTn
(Vn)

(4.8)

= 1 +
k∑

i=1

1{(λn−1Cn(vs,vt )−log(n−1))+λn−1Yvi
<(λn−1C

′
n(vs ,vi )−log(n−1))}.

The mapping (λn−1C
′
n(vs, vi)− log(n− 1), Yvi

)ki=1 �→ degTn
(Vn) defined by (4.8)

is not continuous. However, the limiting variables (−�i − log Ŵs − logWi +
c,Yi)

k
i=1 are continuous and so is the difference between the left and right-hand

side of the inequality inside the indicators; hence simple discontinuities of the map-
ping play no role. By combining (4.7) with (4.8), as well as the fact that λn → λ,
we conclude that, conditional on An,k ,

degTn
(Vn)

d−→ 1 +
k∑

i=1

1{−Mk−log Ŵs+c+λYi<−�i−log Ŵs−logWi+c},(4.9)

which simplifies to (2.16). Since dvt

d−→ D, this completes the proof of part (a).
�
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Now we move to show the corresponding characterization of the degrees in the
shortest path tree in the infinite-variance case. The proof is very similar, using
Proposition 3.3 in place of Proposition 3.2.

PROOF OF THEOREM 2.8(A). For the infinite-variance case, no rescaling or
recentering is needed in (4.4). Define An,k and the modified shortest path lengths
C′

n(vs, vi) as in the proof of Theorem 2.4. Conditional on An,k , Proposition 3.3

gives (C′
n(vs, vi))

k
i=1

d−→ V̂s + Vi and

Cn(vs, vt )
d−→ min

i=1,...,k
(V̂s + Vi + Ei) = V̂s + ξk,(4.10)

so that combining this with (4.4) gives that, conditional on An,k ,

degTn
(Vn)

d−→ 1 + ∑
i �=U,1≤i≤k

1{V̂s+ξk+Ei<V̂s+Vi},(4.11)

which reduces to (2.26) and completes the proof. �

Now we aim to prove the similar characterization of the degrees for the complete
graph, that is, Theorem 2.1(a). The difficulty in this case is that the degree of vt is
not tight, and an additional argument is needed to show that only neighbors joined
to vt by short edges are likely to contribute to degTn

(Vn).
For the purposes of the following lemma, it is convenient to think of Tn as

directed away from the source vertex vs , so that the children of vt are precisely
those vertices v for which vt is the last vertex before v on the shortest path from
vs to v. In this formulation, the out-degree of vt is equal to the number of children
of vt in Tn.

LEMMA 4.1. Consider the complete graph with the edge cost distribution Es ,
as in Theorem 2.1. Then, given ε > 0, there exists R < ∞ such that, with probabil-
ity at least 1 − ε, every edge between vt and a child of vt in the shortest-path tree
Tn has edge weight at most Rn−s .

PROOF. Let ε > 0 be given. By Proposition 3.1 applied for k = 1, we may
choose R′ < ∞ such that logn − R′ ≤ λsn

sCn(vs, vt ) with probability at least
1 − 1

2ε. Assume that this event occurs, and suppose in addition that vt has at least
one child V in Tn joined to vt by an edge of weights at least Rn−s . Then

λsn
sCn(vs,V ) ≥ λsn

s(Cn(vs, vt ) + Rn−s) ≥ logn − R′ + λsR,(4.12)

and furthermore vt is the last vertex before V on the optimal path from vs to V .
Write N for the number of vertices v ∈ [n] with these two properties. Since vt is
chosen uniformly, independently of everything else,

P(N > 0) ≤ E(N) ≤ ∑
v∈[n]

1

n
P

(
λsn

sCn(vs, v) − logn ≥ λsR − R′),(4.13)
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and the right-hand side is the probability that a uniformly chosen vertex v has
λsn

sCn(vs, v) − logn ≥ λsR − R′. By Proposition 3.1 for k = 1, this probability
can be made smaller than 1

2ε by taking R large enough. �

PROOF OF THEOREM 2.1(A). For the collection of edges incident to vt , write
the edge weights in increasing order as Es

1 < · · · < Es
n−1, and let v1, . . . , vn−1

denote the corresponding ordering of the vertices [n] \ {vt }. It is easy to see that
the rescaled order statistics (n− 1)sEs

1, . . . , (n− 1)sEs
n−1 converge to the Poisson

point process (Xi)i≥1 from (2.1), in the sense that for any k ∈ N, jointly in k and
as n → ∞, (

(n − 1)sEs
1, . . . , (n − 1)sEs

k

) d−→ (X1, . . . ,Xk).(4.14)

This follows from the usual convergence of the rescaled order statistics (n −
1)E1 < · · · < (n − 1)En−1 toward a Poisson point process of unit intensity, to-
gether with the fact that the map x �→ xs is increasing and continuous.

If vt had only a fixed number k of neighbors, we could complete the proof in the
same way as for Theorems 2.4 and 2.8. We must therefore control the possibilities
that (a) some vertex not belonging to {v1, . . . , vk} (for some k) contributes to the
out-degree of vt ; and (b) the last vertex before vt on the shortest path from vs to vt

does not belong to {v1, . . . , vk} for some k.
Let Bn,k denote the event that every child of vt in Tn is one of the vertices

{v1, . . . , vk}. We claim that

lim
k→∞ lim inf

n→∞ P(Bn,k) = 1.(4.15)

Indeed, by a union bound we have that if Bc
n,k occurs, then either the kth edge

weight is too small, or if it is not, then vt has a neighbor in Tn with too large
edge-weight

P
(
Bc

n,k

) ≤ P
(
nsEs

k ≤ R
) + P

(
vt has a child v with Yv ≥ Rn−s).(4.16)

But from (4.14) we know that nsEs
k

d−→ Xk as n → ∞ (the distinction between

n and n − 1 being irrelevant in this limit). Since Xk
P−→ ∞ as k → ∞, we can

choose R = R(k) in such a way that

lim
k→∞ lim sup

n→∞
P

(
nsEs

k ≤ R(k)
) = 0,(4.17)

and then Lemma 4.1 shows that the second term in (4.16) is also negligible; hence
we get (4.15).

On Bn,k , only the vertices v1, . . . , vk contribute to the out-degree of vt , and (4.4)
becomes

degTn
(Vn) = 1 +

k∑
i=1

1{Cn(vs,vt )+Es
i <C′

n(vs ,vi )} on Bn,k.(4.18)
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Since the original graph is the complete graph, the modified graph G′
n with vt

excluded is a complete graph on the n − 1 vertices [n] \ {vt }. Since the labeling of
v1, . . . , vk depend only on the excluded edge weights, Proposition 3.1 applies, and
we conclude that(

λs(n − 1)sC′
n(vs, vi) − log(n − 1), (n − 1)sEs

i

)k
i=1

(4.19)
d−→ (−�i − logWs − logWi + c,Xi)

k
i=1.

We wish to conclude also that

λs(n − 1)sCn(vs, vt ) − log(n − 1)
d−→ −M − logWs + c,(4.20)

jointly with the convergence in (4.19). However, (4.20) does not follow from (4.2)
and (4.19); rather, we obtain only that

λs(n − 1)s min
i=1,...,k

(
C′

n(vs, vi) + Es
i

)
(4.21)

d−→ − max
i=1,...,k

(�i + logWi − λsXi) − logWs + c,

that is, the maximum is taken only on the first k elements. We will therefore give
a separate argument to show (4.20).

Set M ′
k = maxi∈[k](�i + logWi − λsXi), so that M = supk M ′

k . Further, let
(Z, (−�i − logWs − logWi + c,Xi)i≥1) denote any subsequential limit of the
rescaled shortest paths(

λs(n − 1)sCn(vs, vt ) − log(n − 1),
(4.22) (

λs(n − 1)sC′
n(vs, vi) − log(n − 1), (n − 1)sEs

i

)
i∈[n−1]

)
.

By (4.21), Z ≤ −M ′
k − logWs +c for each k, and therefore Z ≤ −M − logWs +c.

It therefore suffices to show that the marginal distribution of Z is the same as that
of −M − logWs + c. The event that M < m is the event that the number of points
(Xi,�i + logWi) lying in the region {(x, y):y − λsx ≥ m} should be 0. Since
(�i)i≥1, (Wi)i≥1 are i.i.d., the collection (Xi,�i + logWi)i≥1 forms a Poisson
point process on (0,∞)2 with intensity measure dμs × P(� + logW ∈ ·), and we
compute

P(M < m) = exp
(
−

∫ ∞
0

P(� + logW ≥ λsx + m)dμs(x)

)
= exp

(
−

∫ ∞
0

P(logE ≤ −λsx − m + logW)dμs(x)

)
(4.23)

= exp
(
−

∫ ∞
0

E
(
1 − exp

(−We−λsx−m))
dμs(x)

)
= exp

(
−

∫ ∞
0

(
1 − φW

(
e−λsx−m))

dμs(x)

)
,
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where φW(u) = E(e−uW ) is the Laplace transform of W . The recursive defini-
tion (2.4) of W implies the identity

φW(u) = exp
(
−

∫ ∞
0

(
1 − φW

(
ue−λsx

))
dμs(x)

)
,(4.24)

so that (4.23) reduces to

P(M < m) = φW

(
e−m)

.(4.25)

In particular, we have P(−M − logWs + c > z) = E(φW (Wsez−c)).
On the other hand, since Z is the limit in distribution of λs(n − 1)sCn(vs, vt ) −

logn, Proposition 3.1 implies that Z
d= −� − logWs − logWt + c (the distinction

between n and n − 1 again being irrelevant), and we compute

P(Z > z) = E
(
P(logE − logWs − logW > z − c|Ws,W)

)
(4.26)

= E
(
exp

(−WsWez−c)) = E
(
φW

(
Wsez−c)).

This proves (4.20).
We can now complete the proof of Theorem 2.1(a). Rescale and recenter the

edge weights, and apply (4.19) and (4.20) to the right-hand side of (4.18) to con-
clude that, on Bn,k , degTn

(Vn) is equal to a random variable that converges in
distribution to

D̃k = 1 +
k∑

i=1

1{�i+logWi+λsXi<M}.(4.27)

Since D̂ is finite a.s., P(D̃k �= D̂) → 0 as k → ∞. Together with (4.15), this com-
pletes the proof. �

In the course of proving (4.20) [compare (4.25) with the calculation in (4.26)],
we have proved an equality in law between M and � + logW , which we record
for future reference:

LEMMA 4.2. The random variables M and W from Section 2.1 are related by

M
d= � + logW.(4.28)

Observe that the result of Lemma 4.2 does not apply in the CM setting from
Section 2.2 because of size-biasing and depletion-of-points effects.

5. Convergence of the empirical degree distribution. In this section we
sketch the proofs of part (b) of Theorems 2.1, 2.4 and 2.8. Since vt is a uniformly
chosen vertex, E(p̂

(n)
k ) = P(degTn

(Vn) = k) → P(D̂ = k) by part (a). By an appli-
cation of Chebychev’s inequality, it suffices to prove that

P
(
degTn

(vt ) = k,degTn
(wt ) = k

) → P(D̂ = k)2,(5.1)
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where wt is another uniformly chosen vertex independent of vt .

PROOF OF THEOREM 2.4(B). As in the proof of part (a), it suffices to con-
dition on the original degrees. Fix i, j ∈ N. Conditional on {dvt = i, dwt = j}, the
event

An,i,j = {
dvt = i, dwt = j, vt ,wt , vs,N (vt ),N (wt ) all distinct

}
occurs with high probability. Moreover, Proposition 3.2 holds for the i + j neigh-
bors of vt and wt , saying that the re-centered edge weights tend to exchangeable
random variables. As in (4.7) and (4.8), we get that, conditionally on An,i,j ,

degTn
(vt )

d−→ 1 +
i∑

l=1

1{−M
(vt )
i −log Ŵs+c+λnYl<−�l−logWl−log Ŵs+c},

(5.2)

degTn
(wt )

d−→ 1 +
i+j∑

l=i+1

1{−M
(wt )
j −log Ŵs+c+λnYl<−�l−logWl−log Ŵs+c},

where M
(vt )
i = maxl=1,...,i (�l + logWl −λYl) and M

(wt )
j = maxl=i+1,...,i+j (�l +

logWl − λYl). The terms log Ŵs cancel in (5.2), and it follows that degTn
(Vn) and

degTn
(wt ) converge to independent limits conditional on {dvt = i, dwt = j}. By

Condition 2.3, and since vt and wt are both independent uniform draws from [n],
the random variables dvt and dwt converge jointly to independent copies of D.
Thus it follows that degTn

(vt ) and degTn
(wt ) converge (unconditionally) to inde-

pendent copies of D̂. In particular, (5.1) holds. �

The proof of Theorem 2.8(b) is identical, using Proposition 3.3 instead of
Proposition 3.2 as in the proof of part (a):

PROOF OF THEOREM 2.1(B). The idea here is again similar to the proof of
Theorem 2.1(a). First, arrange the outgoing edge weights from vt and wt separately
in increasing order and multiply by (n− 2)s . Since the weight of the edge between
vt and wt diverges under this rescaling, we see that these rescaled edge weights
converge to two independent Poisson processes (X

(vt )
i )i≥1 and (X

(wt )
i )i≥1. Denote

the corresponding two orderings of vertices by (vi)i≥1 and (wi)i≥1. For any fixed
k ∈ N, the vertices vs, vt ,wt , v1, . . . , vk,w1, . . . ,wk are all distinct with high prob-
ability, and conditional on this event we can apply Proposition 3.1 to the 2k vertices
v1, . . . , vk,w1, . . . ,wk . A modification of the argument from the proof of part (a),
as in the discussion following (4.20), shows that λs(n−2)sCn(vs, vt )− log(n−2)

and λs(n − 2)sCn(vs,wt ) − log(n − 2) converge jointly to −M(vt ) − logWs + c

and −M(wt ) − logWs + c, where M(vt ) and M(wt ) are independent; we leave the
details to the reader. With B

(wt )
n,k denoting the analogue of Bn,k [where Bn,k is

defined above (4.15)] with vt replaced by wt , we conclude from (4.18) that, on
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Bn,k ∩ B
(wt )
n,k , degTn

(Vn) and degTn
(wt ) are equal to random variables that con-

verge in distribution to independent copies of D̃k . Since Bn,k and B
(wt )
n,k both

satisfy (4.15), we conclude that degTn
(Vn), degTn

(wt ) have independent limits,
and (5.1) holds. �

6. Average degrees. In this section we prove part (c) of Theorems 2.1, 2.4
and 2.8. Here we show that the average of the limiting degree in all the three cases
is 2, as one would expect.

PROOF OF THEOREM 2.1(C). Recall that μs stands for the intensity measure
for the ordered points Xi , as in Section 2.1, and recall the characterization of the
degree D̂ in part (a) of Theorem 2.1. Since (�i + logWi)i≥1 are i.i.d. random
variables, the points (Xi,�i + logWi)i≥1 form a Poisson point process (PPP) P
on R

+ × R with the product intensity measure μs(dx) · P(� + logW ∈ dy); see,
for example, [34], Proposition 2.2.

The event that {M > m} is the event that the number of points Xi,�i + logWi

lying in the region {(x′, y′):y′ − λsx
′ > m} is at least 1. Hence {M > m} is mea-

surable with respect to the σ -field generated by the restriction of the Poisson
point process (�i + logWi)i≥1 to the infinite upward-facing triangle {(x′, y′) ∈
R

+ × R :y′ − λsx
′ > m}. On the other hand, a point (x, y) contributes to D̂ if

M > y +λsx, and clearly the point (x, y) does not lie in the infinite upward-facing
triangle {(x′, y′) ∈ R

+ ×R :y′ − λsx
′ > m = y + λsx}.

Hence, by the independence of PPP points in disjoint sets, conditional on finding
a point (X,� + logW) with value (x, y), the conditional probability of the event
{M > y +λsx} is equal to the unconditional probability, which is 1−φW(e−y−λsx)

by Lemma 4.2. On the other hand, P(� + logW ≤ y) = φW(e−y) implies that the
intensity measure for the points (X,� + logW) is dμs(x) × (−φ′

W(e−y))e−y dy.
Hence

E(D̂ − 1) = E

( ∑
(x,y)∈{(Xi,�i+logWi),i∈N}

P(M > y + λsx)

)

=
∫ ∞

0

∫ ∞
−∞

(
1 − φW

(
e−y−λsx

))(−φ′
W

(
e−y))

e−y dy dμs(x)(6.1)

=
∫ ∞

0

∫ ∞
0

(
1 − φW

(
ue−λsx

))(−φ′
W(u)

)
dudμs(x)

by the substitution u = e−y . By relation (4.24), we obtain

E(D̂ − 1) =
∫ ∞

0

(− log
(
φW(u)

))(−φ′
W(u)

)
du =

∫ 1

0
(− logx)dx = 1. �

Next we give a direct proof of the average degree in shortest path tree for the
configuration model with finite-variance degrees.
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PROOF OF THEOREM 2.4(C). Let f (z) = E(zD) denote the probability gen-
erating function of D. Then the probability generating function of D� − 1 is
f ′(z)/f ′(1), and from (2.12) it follows that

φW(u) = f ′(E(φW(ue−λY )))

f ′(1)
.(6.2)

In (2.13), partition according to the value of D and use symmetry to see that

E(D̂ − 1)

=
∞∑

k=1

P(D = k)kP(�1 + logW1 + λY1 < Mk)

=
∞∑

k=1

P(D = k)

× k
(
1 − P(�i − logWi − λYi ≤ �1 + logW1 + λY1, i = 2, . . . , k)

)
(6.3)

=
∞∑

k=1

P(D = k)

× kE
(
1 − P(� + logW − λY ≤ �1 + logW1 + λY1|�1,W1, Y1)

k−1)
= E

(
f ′(1) − f ′(

E
(
φW

(
e−λY−�1−logW1−λY1

)|�1,W1, Y1
)))

= f ′(1)E
(
1 − φW

(
e−�1−logW1−λY1

))
,

by (6.2) with u = e−�1−logW1−λY1 . Integrating first over Y1 and using P(� +
logW ≤ x) = φW(e−x) and (6.2) again,

E(D̂ − 1) = f ′(1)

∫ ∞
−∞

(
1 −E

(
φW

(
e−x−λY )))(−φ′

W

(
e−x)

e−x)
dx

= f ′(1)

∫ ∞
0

(
1 −E

(
φW

(
ue−λY )))(−φ′

W(u)
)

du

(6.4)
= f ′(1)

∫ ∞
0

(
1 − (

f ′)−1(
f ′(1)φW (u)

))(−φ′
W(u)

)
du

=
∫ 1

0
(1 − z)f ′′(z)dz = [

(1 − z)f ′(z)
]1
0 +

∫ 1

0
f ′(z) = 1,

where we used the substitution f ′(z) = f ′(1)φW(u). Here we used f ′(0) =
f (0) = 0, which follows from the assumption that D ≥ 2 a.s. �

Next we give a direct proof for the average degree in the shortest path tree for
the configuration model with infinite-variance degrees.
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PROOF OF THEOREM 2.8(C). In the setting of Theorem 2.8 it is relevant to
consider the distribution function FV (x) = P(V ≤ x) instead of the Laplace trans-
form. Then from (2.22) we obtain

1 − FV (x) = f ′(P(V + E > x))

f ′(1)
.(6.5)

Partition (2.23) according to the value of D, and use the continuity of the distibu-
tions to obtain

E(D̂ − 1) =
∞∑

k=1

P(D = k)kP(V1 − E1 > ξk)

=
∞∑

k=1

P(D = k)kE
(
1 − P(Vi + Ei ≤ V1 − E1|V1,E1)

k−1)
(6.6)

= E
(
f ′(1) − f ′(

P(V + E ≤ V1 − E1|V1,E1)
))

= f ′(1)E
(
FV (V1 − E1)

)
,

where we applied (6.5) with x = V1 − E1. That is, using (6.5) again,

E(D̂ − 1) = f ′(1)P(V ≤ V1 − E1) = f ′(1)P(V + E1 ≤ V1)

= f ′(1)

∫ ∞
0

P(V + E ≤ x)F ′
V (x)dx

(6.7)
= f ′(1)

∫ ∞
0

[(
f ′)−1(

f ′(1)
(
1 − FV (x)

))]
F ′

V (x)dx

=
∫ 1

0
(1 − z)f ′′(z)dz = 1

as before, where we used the substitution f ′(z) = f ′(1)(1 − FV (x)). �

REMARK 6.1. An alternative proof of part (c) of Theorems 2.4 and 2.8 is the
following: Because vt is a uniformly chosen vertex, we have

En

(
degTn

(Vn)
) = E

(
1

n

∑
v∈[n]

degTn
(v)

)
.

The sum of the degrees is twice the number of edges, namely 2(n − 1) since Tn

is a tree on n vertices. Therefore E(degTn
(Vn)) → 2. On the other hand, we have

degTn
(Vn)

d−→ D̂ and degTn
(Vn) ≤ dvt

d−→ D. Under the hypotheses of Theo-
rem 2.4 or Theorem 2.8, D has finite expectation, and we can make a dominated
convergence argument to show that E(degTn

(Vn)) → E(D̂). Note that this reason-
ing is not available on the complete graph, where the original degree dvt diverges.
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7. Degree asymptotics. In this section we prove the theorems investigating
the asymptotic behavior of the degrees in the shortest path tree.

7.1. Degree asymptotics: CM with finite-variance degrees. Now we prove
Theorems 2.5 and 2.6. Theorem 2.5 tells us that almost all the edges of a large
degree vertex are revealed by the shortest path tree. Theorem 2.6 shows that the
finite order correction term, that is, the number of “hidden” edges, still can be quite
large for some edge-weight distributions. The main advantage is that in both cases
we can use the representation of the degrees in Theorem 2.4(a).

PROOF OF THEOREM 2.5. We have P(� + logW > x) > 0 for each x ∈ R,

by either of the hypotheses on � or W . It follows that Mk
P−→ ∞ as k → ∞. Let

ε > 0 be given, and choose x < ∞ such that q = P(�+ logW +λY < x) satisfies
q ≥ 1 − ε. Then

D̂k ≥
k∑

i=1

1{�i+logWi+λYi<x} on {Mk > x},(7.1)

and the right-hand side of inequality (7.1) is Binomial(k, q). Since P(Mk > x) →
1, it follows that P(D̂k ≥ k(1−2ε)) → 1, and since ε > 0 was arbitrary, this shows
that D̂k = k(1 − oP(1)). �

PROOF OF THEOREM 2.6. For part (a), recall that Mk is the maximum of k

i.i.d. random variables �i + logWi − λYi , so, by classical extreme value the-
ory [20], Mk = log k + OP(1) will follow if ce−x ≤ P(� + logW − λY > x) ≤
Ce−x for x sufficiently large. For the upper bound, write � = − logE and use
P(E < x) ≤ x for x > 0 to obtain

P(� + logW − λY > x) = E
(
P

(
E < We−λY e−x |W,Y

))
(7.2)

≤ E
(
We−λY e−x) = O

(
e−x)

.

The lower bound follows from P(E < y) ≥ cy for some c > 0, uniformly over
y < 1:

P(� + logW − λY > x) ≥ E
(
1{W<K}cWe−λY e−x) ≥ c′e−x(7.3)

for K large enough and x large enough that Ke−x ≤ 1. This completes the proof
of part (a).

For part (b), let ε > 0 be given, and choose K < ∞ large enough that P(Mk <

logk − K) < ε. Apply (7.1) with x = log k − K to conclude that, apart from
an event of small probability, D̂k is stochastically larger than a Binomial(k,pk)

random variable with pk = P(� + logW + λY < logk − K). To show tightness
for k − D̂k , it is therefore sufficient to show that 1 − pk = O(1/k). [To see the
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sufficiency, note that we need only show that the Binomial(k,1 − pk) distribu-
tions are tight, and 1 − pk = O(1/k) implies that these distributions have a uni-
formly bounded mean. Alternatively, note that the Binomial(k,C/k) distribution
converges to the Poisson(C) distribution as k → ∞.] We compute

1 − pk = E
(
P(−� ≤ logW + λY − log k + K|W,Y)

)
= E

(
P

(
E ≤ 1

k
WeλY eK

∣∣∣W,Y

))
(7.4)

≤ O
(
k−1)

E
(
WeλY ) = O

(
k−1)

,

since E(WeλY ) < ∞ by assumption.
For part (c), suppose λ > 1. For the upper bound, we estimate

1 − pk = E
(
P(λY ≥ log k − K − � − logW |�,W)

)
= P(log k − K − � − logW < 0)

+E
(
1{log k−K−�−logW≥0}e−(1/λ)(logk−K−�−logW))(7.5)

≤ E

(
P

(
E <

eK

k
W

∣∣∣W))
+E

(
e−(1/λ)(logk−K−�−logW))

≤ O(1/k)E(W) + O
(
k−1/λ)

E
(
E−1/λW 1/λ) = O

(
k−1/λ)

,

and it follows that k − D̂k = OP(k
1−1/λ) as in the previous case.

To show the corresponding lower bound, let ε > 0 be given, and choose K < ∞
large enough that P(Mk > log k + K) < ε. Similar to (7.1),

k − D̂k ≥ −1 +
k∑

i=1

1{�i+logWi+λYi≥logk+K} on {M ≤ logk + K}.(7.6)

We estimate

P(� + logW + λY ≥ log k + K)
(7.7)

≥ P(� ≥ 0)P(W ≥ δ)P
(
λY ≥ logk + K + log(1/δ)

) ≥ ck−1/λ

provided δ > 0 is small enough that P(W ≥ δ) > 0. Therefore, apart from an event
of small probability, k − D̂k +1 is stochastically larger than a Binomial(k, ck−1/λ)

random variable, and such a variable is itself 	P(k
1−1/λ).

The proof of part (d) is similar. For the upper bound, it suffices to show that 1 −
pk = O(k−1 log k). Recall that � = − logE, and write the standard exponential
variable Y as Y = − logU , where U is Uniform[0,1]. Then

1 − pk = P(− logE + logW − logU ≥ log k − K) = P
(
EU ≤ WeK/k

)
.(7.8)
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Splitting according to the value of U , we can then estimate

P(EU ≤ z) ≤ z + P(U ≥ z,E ≤ z/U)
(7.9)

≤ z +
∫ 1

z
(z/u)du = z

(
1 + log(1/z)

)
,

so that 1 − pk ≤ E((WeK/k)(1 + log k − logW − K)). Note that the term
−W logW is bounded above, so we conclude that 1 − pk ≤ O(k−1 log k), as re-
quired. Similarly, for the lower bound, we use P(E ≤ y) ≥ cy for y ≤ 1 to estimate
P(EU ≤ z) ≥ ∫ 1

z (cz/u)du = cz log(1/z) for any z < 1, and we conclude that

P(� + logW + Y ≥ log k + K) ≥ P(W ≥ δ)P
(
EU ≤ δeK/k

)
(7.10)

≥ ck−1 logk

provided that P(W ≥ δ) > 0 and that k is large enough. �

7.2. Degree asymptotics: CM with infinite-variance degrees. Now we prove
that if the degrees in the configuration model have infinite variance, then the short-
est path tree reveals an asymptotic proportion p of the original degree. The proof
of Theorem 2.9 is similar to the proof of Theorem 2.5, except that here the asymp-
totic proportion of revealed edges is p < 1 and we need both upper and lower
bounds.

PROOF OF THEOREM 2.9. Recall the notation ξk = mini∈[k](Vi + Ei). The

hypotheses on V and E imply that ξk
P−→ 0 as k → ∞. Let ε > 0 be given. Since

V and E have continuous distributions, we may choose x > 0 such that p − ε ≤
P(V − E > x) ≤ P(V − E > 0) = p. Then

k∑
i=1

1{Vi−Ei>x} ≤ D̂k ≤ 1 +
k∑

i=1

1{Vi−Ei>0} on {ξk < x},(7.11)

and each sum on the left-hand side of (7.11) is Binomial(k, q) for some parameter
q ∈ [p − ε,p]. Since P(ξk < x) → 1, it follows from the concentration of the
binomial distribution that P(k(p − 2ε) ≤ D̂k ≤ k(p + ε)) → 1, and since ε > 0
was arbitrary, this shows that D̂k = p · k · (1 + oP(1)). �

7.3. Degree asymptotics: The complete graph. In this section we prove Theo-
rem 2.2. This theorem shows that the degree distribution on the shortest path tree
Tn behaves very differently for the complete graph Kn compared to the configura-
tion model CMn(d).

We use the representation of the limiting degree distribution from Theo-
rem 2.1(a). Recall that the points (Xi)

k
i=1 form a Poisson point process (PPP) with

intensity measure μs(dx) = 1
s
x1/s−1 dx on R

+. Since �i + logWi , i ∈ N, are i.i.d.
random variables, the points (Xi,�i + logWi) form a PPP P on R

+ ×R (see, e.g.,
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FIG. 3. The Poisson point process P . Crosses denote the points (Xi, logWi +�i), and the coloured
areas indicate the upward- and downward-facing infinite triangles �↑(M) and �↓(M). The maxi-
mum M of �+ logW +λsX is taken at the thick red cross. By (7.15), the degree in this configuration
is 1 + P(�↓(M)) = 1 + 6 = 7. The dashed lines indicate the values m2,m6,m7 introduced in the
proof of Theorem 2.2(b) and (c).

[34], Proposition 2.2) with the product intensity measure μ̃s given by

μ̃s(dx dy) = μs(dx) · P(� + logW ∈ dy).(7.12)

Let P(S) stand for the number of points (Xi,�i + logWi) in this Poisson point
process for any measurable set S ⊂ R

+ × R. We introduce infinite upward- and
downward-facing triangles (see Figure 3) with y-intercept m,

�↑(m) = {
(x, y) ∈ R

+ ×R :y ≥ m + λsx
}
,

(7.13)
�↓(m) = {

(x, y) ∈ R
+ ×R :y ≤ m − λsx

}
.

With this notation in mind, we can rewrite M = maxi∈N(�i + logWi − λsXi)

from (2.5) as M = sup{m ∈ R :P(�↑(m)) ≥ 1} = inf{m ∈ R :P(�↑(m)) = 0},
and

P(M ≥ m) = P
(
P

(
�↑(m)

) ≥ 1
) = 1 − exp

{−μ̃s

(
�↑(m)

)}
.(7.14)

Thus, (2.5) implies that

D̂ − 1 = ∑
i∈N

1{λsXi+logWi+�i<M} = P
(
�↓(M)

)
.(7.15)

Moreover, by the Poisson property, conditional on M , the number P(�↓(M)) is
Poisson with parameter μ̃s(�

↓(M)) [since {M ≥ m} is measurable with respect to
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the restriction of P to �↑(m), whereas �↑(m) ∩ �↓(m) = {(0,m)} has measure
zero]. Hence, by the law of total probability,

P(D̂ − 1 = k) =
∫ ∞
−∞

P
(
Poi

(
μ̃s

(
�↓(m)

)) = k
)
P(M ∈ dm).(7.16)

Thus, in order to understand D̂ − 1, we need to investigate the behavior of
μ̃s(�

↓(m)) and μ̃s(�
↑(m)) as functions of m. We start with s = 1, in which

case (7.16) leads to analytically tractable integrals.

PROOF OF THEOREM 2.2(a). In this case, the weights are exponential, and
the evolution of the shortest path tree is the same as that of the Yule process, and

W
d= E. Thus − logW −�

d= �′ −�, with �′,� i.i.d. Gumbel random variables.
The distribution of �′ −� is called the logistic distribution and is clearly symmet-
ric about 0. We compute

P
(
�′ − � ≥ x

) = E
[
P

(
� ≤ −x + �′|�′)] = E

[
exp

{−ex−�′}]
(7.17)

= E
[
exp

{−exE
}] = 1

1 + ex
.

We have λs = λ1 = 1 and μ1(dx) = dx, so

μ̃1
(
�↑(m)

) =
∫ ∞

0
P

(
�′ − � ≥ x + m

)
dx =

∫ ∞
0

e−(m+x)

1 + e−(m+x)
dx

(7.18)
= log

(
1 + e−m)

.

Thus the distribution of M is the same as that of �′ − �,

P(M ≥ m) = P
[
P

(
�↑(m)

) ≥ 1
] = 1 − e−μ̃1(�

↑(m)) = 1

1 + em
.(7.19)

[In general, recall from Lemma 4.2 that M
d= � + logW ; thus (7.19) is an expres-

sion of the symmetry of �′ − � that is particular to the case s = 1.] Similarly,

μ̃1
(
�↓(m)

) =
∫ ∞

0
P

(
�′ − � ≤ m − x

)
dx

(7.20)

=
∫ ∞

0

em−x

1 + em−x
dx = log

(
1 + em)

.

Combining (7.16), (7.19) and (7.20),

P(D̂ − 1 = k) =
∫ ∞
−∞

P
(
Poi

(
log

(
1 + em)) = k

)
dP(M ≤ m)

=
∫ ∞
−∞

1

1 + em

(log(1 + em))k

k!
em

(1 + em)2 dm

=
∫ ∞

0

tk

k!e
−2t dt = 1

2k+1 ,
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where in the last line we used the change of variables t = log(1 + em). This com-
pletes the proof of Theorem 2.2(a). �

When s �= 1, we do not have a closed form for the distribution of W , so we
need to estimate the parameters of the Poisson variables in (7.16). The following
lemma summarizes the asymptotic properties of μ̃s(�

↓(m)), μ̃s(�
↑(m)) and M

that we will need. To state it, we define g to be the inverse of the function m �→
μ̃s(�

↓(m)), and set δ = μ̃s(�
↓(1)) > 0.

LEMMA 7.1. Fix s > 0. Then:

(a) uniformly over m ≥ 1 and u ≥ δ,

μ̃s

(
�↓(m)

) = (m/λs)
1/s(1 + O(1/m)

)
,(7.21)

g(u) = λsu
s + O(1);(7.22)

(b) there is a constant c (depending on s) such that, for any m ≥ 0,

ce−m ≤ μ̃s

(
�↑(m)

) ≤ e−m.(7.23)

Furthermore the random variable M has a density P(M∈dm)
dm

with respect to
Lebesgue measure, and

e−m
E

(
We−W ) ≤ P(M ∈ dm)

dm
≤ e−m, m ≥ 0;(7.24)

(c) there is a constant C (depending on s) such that, for any m ≥ 1,

d

dm
μ̃s

(
�↓(m)

) ≤ Cm1/s .(7.25)

PROOF. By the definition of μ̃s ,

μ̃s

(
�↓(m)

) =
∫ ∞

0
P(� + logW < m − λsx)dμs(x)

=
∫ ∞

0
E

(
exp

(−e−m+λsxW
))

dμs(x)(7.26)

=
∫ ∞

0
φW

(
e−m+λsx

)
dμs(x),

where φW(u) = E(e−uW ). We split the integral into two terms, and use the trivial
bound φW(u) ≤ 1 in the first term to get

μ̃s

(
�↓(m)

) ≤
∫ m/λs

0
1 · dμs(x) +

∫ ∞
m/λs

φW

(
eλsx−m)

dμs(x).(7.27)

The first term equals (m/λs)
1/s , so we continue by showing that the second term

in (7.27) is of smaller order. Recall that φW satisfies the recursive relation (4.24).
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By the monotonicity property of φW , we have φW(ue−λsx) ≤ φW(1) as long as
x ≤ (logu)/λs . Hence, for u ≥ 1,

φW(u) ≤ exp
{
−

∫ (logu)/λs

0

(
1 − φW(1)

)
dμs(x)

}
(7.28)

= exp
{
−(1 − φW(1))(logu)1/s

λ
1/s
s

}
.

Recalling the definition (2.2) of μs and making the subsitution t = x − m/λs , we
conclude that the second term of (7.27) is at most∫ ∞

0
exp

(−(
1 − φW(1)

)
t1/s)1

s

(
t + m

λs

)1/s−1

dt.(7.29)

For s > 1, the estimate (t + m/λs)
1/s−1 ≤ (m/λs)

1/s−1 shows that the second
term of (7.27) is O(m1/s−1). For s < 1, the bound (t + m/λs)

1/s−1 ≤ (2t)1/s−1 +
(2m/λs)

1/s−1 shows that the second term of (7.27) is O(1) + O(m1/s−1), which
is O(m1/s−1) uniformly over m ≥ 1. In either case we have verified (7.21). By the
definition of δ, (7.22) follows from (7.21), and this proves part (a).

For part (b), the upper bound in (7.23) follows from the bounds P(� ≥ x) =
1 − e−e−x ≤ e−x as follows:

μ̃s

(
�↑(m)

) =
∫ ∞

0
P(� + logW ≥ m + λsx)dμs(x)

(7.30)
≤

∫ ∞
0

E
(
e−m−λsx+logW )

dμs(x) = e−m,

since E(W) = 1 = ∫ ∞
0 e−λsx dμs(x). For the lower bound, note that P(W ≥ 1) > 0

[since E(W) = 1], so the bound P(� ≥ x) ≥ c′e−x gives

μ̃s

(
�↑(m)

) ≥
∫ 1

0
P(W ≥ 1)P(� ≥ m + λs)dμs(x) ≥ ce−m.(7.31)

For (7.24), use Lemma 4.2 to express the density of M in terms of the density
e−e−x

e−x dx of a Gumbel random variable,

P(M ∈ dm) = E
(
P(� + logW ∈ dm|W)

)
(7.32)

= E
(
e−e−m+logW

e−m+logW )
dm = E

(
We−We−m)

e−m dm.

We may then bound E(We−We−m
) above and below by E(W) = 1 and E(We−W),

respectively, completing the proof of (7.24) and part (b).
Finally, for part (c), note from (7.26) that

d

dm
μ̃s

(
�↓(m)

) =
∫ ∞

0
eλsx−m(−φ′

W

(
eλsx−m))

dμs(x).(7.33)
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Recalling (4.24) and using the trivial bound −φ′
W(u) ≤ −φ′

W(0) = E(W) = 1,

φ′
W(u)

φW(u)
=

∫ ∞
0

e−λsx
(−φ′

W

(
ue−λsx

))
dμs(x) ≤

∫ ∞
0

e−λsx dμs(x) = 1,(7.34)

and using (7.28) we conclude that

d

dm
μ̃s

(
�↓(m)

)
≤

∫ ∞
0

eλsx−mφW

(
eλsx−m)

dμs(x)

(7.35)
≤ μs[0,m/λs] +

∫ ∞
m/λs

eλsx−m exp
(−c(λsx − m)1/s) dμs(x)

= (m/λs)
1/s +

∫ ∞
0

ez−cz1/s (z + m)1/s−1

sλ
1/s−1
s

dz,

where z = λsx − m. As before, we either bound (z + m)1/s−1 ≤ m1/s−1 (if s >

1) or (z + m)1/s−1 ≤ (2z)1/s−1 + (2m)1/s−1 (if s < 1) to conclude that the last
term in (7.35) is O(m1/s−1) + O(1). Hence the upper bound in (7.35) is O(m1/s)

uniformly over m ≥ 1, which completes the proof. �

With Lemma 7.1 in hand, we can now prove Theorem 2.2(b) and (c).

PROOF OF THEOREM 2.2(b) and (c). From (7.16), we see that the unlikely
event {D̂ − 1 = k} is achieved when the variables M or Poi(μ̃s(�

↓(m))), or both,
are unusually large. As a heuristic to evaluate the costs of these alternatives, we
can use Lemma 7.1(a) and (b) to approximate μ̃s(�

↑(m)) ≈ e−m, μ̃s(�
↓(m)) ≈

(m/λs)
1/s1{m≥0}, leading to

P(D̂ − 1 = k) ≈
∫ ∞

0

e−(m/λs)
1/s

(m/λs)
k/s

k!
(
e−m dm

)
(7.36)

=
∫ ∞

0

sλsu
s−1

k! exp
(−u − λsu

s + k logu
)

du

after the substitution u = (m/λs)
1/s . The exponential in (7.36) is maximized when

u = u∗, where u∗ is the unique solution of

u∗ + sλsu
s∗ = k.(7.37)

For s < 1, we have u∗ ≈ k, corresponding to m∗ ≈ λsk
s , whereas for s > 1 we

have u∗ ≈ (k/sλs)
1/s , corresponding to m∗ ≈ k/s.

We now formalize this heuristic argument. For k ∈ N, define the random vari-
ables

mk = inf
{
m ∈R :P

(
�↓(m)

) ≥ k
}
.(7.38)



1820 BHAMIDI, GOODMAN, VAN DER HOFSTAD AND KOMJÁTHY

(See Figure 3: mk is the value on the vertical axes where the kth point enters the
downward-facing triangle). Note that each mk is a stopping time with respect to the
filtration (σ (P|�↓(m)))m∈R generated by the restrictions of P to �↓(m), m ∈ R.
In terms of mk , we have

{D̂ − 1 ≥ k} = {M ≥ mk}.(7.39)

Since �↑(m) is disjoint from �↓(m), it follows that

P(M ≥ mk|mk = m) = P(M ≥ m) = P
(
P

(
�↑(m)

)
> 0

)
(7.40)

= 1 − e−μ̃s (�
↑(m)) ≤ μ̃s

(
�↑(m)

)
.

Since the function m �→ μ̃s(�
↓(m)) is continuous, the sequence

(μ̃s(�
↓(mk)))

∞
k=1 forms a Poisson point process on (0,∞) of intensity 1. [This

fact, which is elementary to verify, is the analogue of the statement that applying
a continuous distribution function to a variable having that distribution gives a
Uniform(0,1) random variable.] In particular, μ̃s(�

↓(mk)) has the Gamma(k,1)

distribution with density �(k)−1uk−1e−u du.
For the upper bound, it suffices to estimate P(D̂ − 1 ≥ k). By (7.39), this

amounts to bounding P(M ≥ mk). We begin with s < 1, in which case the above
heuristics suggest that the dominant contribution to P(D̂ − 1 ≥ k) comes when
μ̃s(�

↓(mk)) ≈ k. Partitioning according to the value u = μ̃s(�
↓(mk)), and com-

bining with the fact that μ̃s(�
↓(mk)) has the Gamma distribution, we obtain

P(D̂ − 1 ≥ k) ≤ P

(
μ̃s

(
�↓(mk)

)
/∈

[
1

2
k,

3

2
k

])
+ P

(
μ̃s

(
�↓(mk)

) ∈
[

1

2
k,

3

2
k

]
,M ≥ g

(
μ̃s

(
�↓(mk)

)))
(7.41)

= P

(
Gamma(k,1) /∈

[
1

2
k,

3

2
k

])

+
∫ 3k/2

k/2

uk−1e−u

(k − 1)! P
(
M ≥ g(u)

)
du,

where we used that g is the inverse function of m �→ μ̃s(�
↓(m)). We can continue

estimating the right-hand side as

P(D̂ − 1 ≥ k) ≤ e−ck +
∫ 3k/2

k/2

uk−1e−u

(k − 1)! μ̃s

(
�↑(

g(u)
))

du

(7.42)

≤ e−ck +
∫ 3k/2

k/2

exp((k − 1) logu − u − λsu
s + O(1))

(k − 1)! du,

where we used that μ̃s(�
↑(g(u))) ≤ e−g(u) by (7.23) and then the bound on g(u)

in (7.22).
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Uniformly over the range of integration, Stirling’s approximation and a Taylor
expansion give

(k − 1) logu − u − log
(
(k − 1)!) ≤ − 1

8k
(k − 1 − u)2 + O(logk),

whereas λsu
s = λs(k − 1)s + O((ks−1)(k − 1 − u)). Hence

P(D̂ − 1 ≥ k)

≤ e−ck + e−λs(k−1)s+O(log k)
∫ 3k/2

k/2
exp

(
−(k − 1 − u)2

8k
(7.43)

+ O
(
ks−1)|k − 1 − u|

)
du.

The integral in (7.43) is exp(O(k2s−1)) (this can be seen by maximising the inte-
grand), which is negligible compared to exp(−λsk

s) since s < 1, and this proves
the upper bound.

For s > 1, the dominant contribution to P(D̂ −1 = k) is expected to come when
u = μ̃s(�

↓(mk)) satisfies u ≈ (k/sλs)
1/s � k. We partition into the events {u ≥

k} (in which case we must have M ≥ mk = g(u) ≥ g(k)), {u ≤ δ = μ̃s(�
↓(1))}

(in which case we must have mk ≤ 1 and P(�↓(1)) ≥ k), and {δ ≤ u ≤ k}. As
in (7.42)–(7.43),

P(D̂ − 1 ≥ k) ≤ P
(
M ≥ g(k)

) + P
(
P

(
�↓(1)

) ≥ k
)

+
∫ k

δ

exp{(k − 1) logu − u − λsu
s + O(1)}

(k − 1)! du

≤ μ̃s

(
�↑(

g(k)
)) + P

(
Poi(δ) ≥ k

)
(7.44)

+ O(k)
exp{maxδ≤u≤k(k logu − λsu

s)}
(k − 1)!

≤ e−λsk
s+O(1) + e−k log k+O(k)

+ O
(
k2)exp{(k/s) log(k/(sλs)) − k/s}

k! ,

where we used (7.40) first and then (7.22) to bound g(k). The desired bound fol-
lows by Stirling’s approximation.

For the lower bound, let ε > 0 be given. We begin with s > 1. By Lemma 7.1(a),
uniformly over m ∈ [k, k1+ε], we have μ̃s(�

↓(m)) = k1/s+O(ε). Therefore, us-
ing (7.16) and Stirling’s approximation,

P(D̂ − 1 = k|M = m) = exp
{
k log μ̃s

(
�↓(m)

) − μ̃s

(
�↓(m)

)}
/k!

(7.45)
= exp

{(
1/s − 1 + O(ε)

)
k log k

}
.
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On the other hand, to estimate P(M ∈ [k, k1+ε]) write{
k ≤ M ≤ k1+ε}

(7.46)
= {

P
(
�↑(

k1+ε)) = 0
} ∩ {

P
(
�↑(k) \ �↑(

k1+ε)) > 0
}
.

By Lemma 7.1(b), μ̃s(�
↑(k1+ε)) ≤ e−k1+ε → 0, so the first event on the right-

hand side occurs with high probability as k → ∞. Since in addition μ̃s(�
↑(k)) ≥

ce−k � μ̃s(�
↑(k1+ε)), it follows that the second event occurs with probability at

least c′e−k . Combining all of these estimates gives the result.
Similarly, for s < 1, let m ∈ [g(k), g(k + 1)], and set u = μ̃s(�

↓(m)), so that
u ∈ [k, k + 1]. Uniformly over this range, we have logu = logk + o(ks), and it
follows using Stirling’s approximation that

P(D̂ − 1 = k|M = m) = exp{−u + k logu}/k! = exp
{
o
(
ks)}.

By Lemma 7.1(b), we have

P
(
g(k) ≤ M ≤ g(k + 1)

) ≥ ce−g(k+1)(g(k + 1) − g(k)
)
.

We have g(k + 1) ∼ g(k) ∼ λsk
s by Lemma 7.1(a). To bound g(k + 1) − g(k),

note that the definition of g implies

(
g(k + 1) − g(k)

) · max
g(k)≤m≤g(k+1)

d

dm
μ̃s

(
�↓(m)

) ≥ 1.(7.47)

We apply Lemma 7.1(c) with m ∼ λsk
s , so that (7.47) gives g(k + 1) − g(k) ≥

c/k. Consequently P(g(k) ≤ M ≤ g(k + 1)) ≥ e−λsk
s+o(ks), and this completes

the proof. �

8. Deterministic edge weights. In this section we prove Theorem 2.11. The
proof has some similarity to the proofs in Section 6.

PROOF OF THEOREM 2.11. Write f (z) = E(zD) for the generating function
of the degree distribution D. It suffices to show that the generating function for D̂

matches with the expression in [1], equation (1),

E
(
zD̂) = z

∫ 1

0
f ′

(
t − (1 − z)

f ′(f ′(t)/f ′(1))

f ′(1)

)
dt.(8.1)

Since Y = 1, we have e−λY = 1/ν, and recursive equation (6.2) becomes

φW(u) = f ′(φW(u/ν))

f ′(1)
.(8.2)



DEGREE DISTRIBUTION OF SHORTEST PATH TREES 1823

Using symmetry, writing �1 = − logE1 and recalling that P(� + logW < x) =
φW(e−x),

E
(
zD̂) =

∞∑
i=2

P(D = i)

i∑
k=1

zki

(
i − 1
k − 1

)

× P

⎛⎝ M = �1 + logW1 − logν;
�j + logWj + logν < M for j = 2, . . . , k; and
�j + logWj − logν > M for j = k + 1, . . . , i

⎞⎠
=

∞∑
i=2

iP(D = i)

i∑
k=1

zk

(
i − 1
k − 1

)
×E

(
P(�j + logWj < �1 + logW1 − 2 logν|�1,W1)

k−1

× P(�1 + logW1 − 2 logν < �j + logWj(8.3)

< �1 + logW1|�1,W1)
i−k)

= zE

( ∞∑
i=2

iP(D = i)
(
zφW

(
ν2E1/W1

)

+ (
φW(E1/W1) − φW

(
ν2E1/W1

)))i−1
)

= zE
(
f ′(φW(E1/W1) − (1 − z)φW

(
ν2E1/W1

)))
.

Applying (8.2) twice, we obtain

E
(
zD̂) = zE

(
f ′

(
φW(E1/W1) − (1 − z)

f ′(f ′(φW (E1/W1))/f
′(1))

f ′(1)

))
.(8.4)

Finally, since W is positive and finite-valued, φ−1
W (t) is defined for each t ∈ (0,1),

and we can compute

P
(
φW(E1/W1) < t

) = P
(
E1 > W1φ

−1
W (t)

) = E
(
e−W1φ

−1
W (t))

(8.5)
= φW

(
φ−1

W (t)
) = t,

so that φW(E1/W1) has the Uniform(0,1) distribution. Thus the expectation over
the value of φW(E1/W1) in (8.4) is equivalent to the integration in (8.1). �
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