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In the classical quickest detection problem, one must detect as quickly
as possible when a Brownian motion without drift “changes” into a Brown-
ian motion with positive drift. The change occurs at an unknown “disorder”
time with exponential distribution. There is a penalty for declaring too early
that the change has occurred, and a cost for late detection proportional to the
time between occurrence of the change and the time when the change is de-
clared. Here, we consider the case where there is also a cost for observing the
process. This stochastic control problem can be formulated using either the
notion of strong solution or of weak solution of the s.d.e. that defines the ob-
servation process. We show that the value function is the same in both cases,
even though no optimal strategy exists in the strong formulation. We deter-
mine the optimal strategy in the weak formulation and show, using a form of
the “principle of smooth fit” and under natural hypotheses on the parameters
of the problem, that the optimal strategy takes the form of a two-threshold
policy: observe only when the posterior probability that the change has al-
ready occurred, given the observations, is larger than a threshold A ≥ 0, and
declare that the disorder time has occurred when this posterior probability
exceeds a threshold B ≥ A. The constants A and B are determined explicitly
from the parameters of the problem.

1. Introduction. The classical quickest detection problem [23], Chapter 4.4,
is as follows. One observes a stochastic process X = (Xt)t≥0 that solves the
stochastic differential equation (s.d.e.)

dXt = r1{θ≤t} dt + σ dWt .(1.1)

Here, r > 0, σ > 0, W = (Wt)t≥0 is a standard Brownian motion, and θ is a non-
negative random variable that is independent of (Wt), sometimes called a “disorder
time,” or a “change point.” The random variable θ is not observed directly, but only
through its effect on the sample paths of X. When t < θ , the observer is simply
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watching a Brownian motion, but when t ≥ θ , a drift (or signal) with intensity
r appears. The observer seeks to detect as quickly as possible the appearance of
this signal, while keeping sufficiently low the probability of a “false alarm,” that
is, declaring that the signal has appeared when, in fact, it has not. Typically, the
distribution of θ is assumed known, and, given θ > 0, even equal to an exponen-
tial distribution with known parameter λ > 0; see [19] for many variations on this
problem and for numerous references.

In this paper, we consider the situation where there is an observation cost b ≥ 0
per unit time, and the observer can choose to observe or not. When he does not
observe, the process X is constant (dXt = 0), and when he does observe, X sat-
isfies (1.1). The objective is to detect the appearance of the signal as quickly as
possible, while keeping low the probability of false alarm and the cost of obser-
vation. Therefore, the problem is no longer an optimal stopping problem but an
optimal stopping/control problem.

There are several papers in the literature that consider this type of problem, in
which there is either a cost or a constraint on observations. A discussion already
appears in Bather [5], with a precise continuous-time formulation given in Balmer
[1, 2]: he allows only a restricted class of policies and uses a different cost func-
tion than the one we define in (2.4) below. Dayanik [9] considers a continuous-time
problem with observations allowed only at fixed times. Banerjee and Veeravalli [3,
4] consider a discrete-time formulation, in which observations are costly only if
they occur before the alarm time. They show that a two-threshold policy is asymp-
totically optimal. Finally, Bayraktar and Kravitz [6] consider a continuous-time
problem in which observations are allowed only at a discrete set of times that is
determined adaptively.

In this paper, we consider that the control h = (ht )t≥0 is a [0,1]-valued pro-
cess, where ht = 1 means that observation occurs, and ht = 0 means absence of
observation. Therefore, the observation process is described by the stochastic dif-
ferential

dXt = rht1{θ≤t} dt + σ
√

ht dWt, X0 = 0.(1.2)

Note that when ht ∈ {0,1}, the square-root has no effect. However, it will be conve-
nient during the resolution of the problem to consider also ht ∈ [0,1], and since we
are free to decide the formulation when 0 < ht < 1, we have chosen to use (1.2).

We assume that all objects are defined on a filtered probability space (�,F,

(Ft )t≥0,P ). Therefore, Wt = Wt(ω), θ = θ(ω), and ht = ht (ω). The assumption
that ht depends on ω (ht = ht (ω)) does not create difficulties with definition of the
(“h-controlled”) process X via formula (1.2). However, we must define precisely
what information the observer can use to decide to switch from one value of ht (ω)

to another.
It is reasonable to assume that the control function ht depends on ω via the

observation process: ht (ω) = ht (X(ω)). In this case, the s.d.e. (1.2) will take the
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form

dXt = rht (X)1{θ≤t} dt + σ
√

ht (X)dWt,(1.3)

and, inevitably, we have to explain how to formulate this s.d.e. and give a precise
definition of the control h = (ht (X))t≥0.

These questions are considered in Section 2, where we give two precise but
distinct formulations of the notion of a solution of equation (1.3), according to
whether we interpret X as a strong or weak solution of (1.3). Then we derive
some preliminary properties of the sufficient statistic πh

t , which is the conditional
probability, given the observations (Xs, s ∈ [0, t]), that θ ≤ t . In Section 3, we
study the law of πh

t , writing it, and the likelihood ratio ϕh
t = πh

t /(1 − πh
t ), as

solutions of diffusion equations in the filtration FX of the observed process. In
this section, we also establish, in the spirit of [11] and [18], a “verification lemma”
(Lemma 3.7) that gives sufficient conditions for the optimality of a strategy.

In Section 4, we give the form of a candidate optimal strategy and associated
candidate value function and derive the ordinary differential equations with two
free boundaries that characterize this function. These are completed by imposing
boundary conditions that imply continuity and an appropriate degree of smooth-
ness at the boundaries; see (4.10)–(4.14). These equations are then solved com-
pletely, up to the resolution of a transcendental equation; see (4.26). The form
of the solution depends on the value of the observation cost b, and it turns out
that there are three regimes: if b is large enough, then it is best never to observe,
and to stop simply when the posterior probability πh

t exceeds a certain threshold
B ∈]0,1[. For smaller positive values of b, there are two thresholds 0 < A < B < 1
such that it is best not to observe when πh

t ≤ A, to observe when πh
t ∈]A,B[ and

to declare an alarm when πh
t ≥ B . The candidate value function is given in Propo-

sitions 4.4 and 4.5, depending on the size of b. The third regime is when b = 0,
which is the classical case of [23] and corresponds to 0 = A < B < 1.

For small positive values of b, the candidate value function and optimal strate-
gies are such that it is not clear whether an optimal strategy does indeed exist! In
fact, in the strong formulation, no optimal strategy exists in general, but such an
optimal strategy does exist in the weak formulation. It turns out, however, that the
value function is the same in both formulations. We discuss this question at the
end of Section 4.

In Section 5, we show that the candidate value function of Section 4 is indeed the
value function in both the weak and strong formulations (Theorems 5.1 and 5.2).
However, because of the absence of an optimal strategy in the strong formulation,
it is not possible to conclude directly from a “verification lemma” (Lemma 3.7)
that the candidate value function is indeed the value function in the strong for-
mulation. Therefore, we use a different approach in Theorem 5.2: for ε > 0, we
consider strategies that approximate the candidate optimal strategy but are defined
via s.d.e.’s with sufficiently smooth coefficients. We then compute explicitly the
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cost associated with these strategies. This requires computing the expected time
to hit a threshold, which, in turn, requires solving another o.d.e. [given in (5.11)].
We do this in Section 5, and in Proposition 5.7, we show by direct calculation that
the expected costs of the approximately optimal strategies converge to the can-
didate value function, proving that this is indeed the value function in the strong
formulation.

2. Stating the problem. Consider a filtered probability space (�,F,

(Ft )t≥0,P ) with a filtration (Ft ) (satisfying the usual hypotheses [21]). Let θ

be a random variable defined on � that is F0-measurable. We assume that there
are π0 ∈ [0,1] and λ > 0 such that

P {θ = 0} = π0 and P {θ > x | θ > 0} = e−λx.(2.1)

We let W = (Wt)t≥0 be a standard Brownian motion adapted to (Ft )t≥0 such
that for all t ≥ 0, the process (Ws+t −Wt, s ≥ 0) is independent of Ft . In particular,
(Wt)t≥0 is independent of θ .

Controls and stopping times.

DEFINITION 2.1. A progressively measurable process h = (ht (ω))t≥0 defined
on (�,F, (Ft )t≥0,P ) with values in [0,1] will be called a stochastic control.

Let C(R+,R) denote the space of continuous functions from R+ to R.

DEFINITION 2.2. A canonical control h = (ht (x))t≥0 is a map (t, x) �→ ht (x)

from R+ × C(R+,R) to [0,1] that is progressively measurable for the canonical
filtration on C(R+,R).

A canonical stopping time τ = τ(x) is a random variable τ :C(R+,R) → R+
that is a stopping time relative to the canonical filtration on C(R+,R).

DEFINITION 2.3. A stochastic control h = (ht (ω))t≥0 is called an admissible
control if it has the form ht (ω) = ht (X(ω)) for a canonical control ht (x), and the
s.d.e.

dXt = rht (X)1{θ≤t} dt + σ
√

ht (X)dWt, X0 = 0,(2.2)

admits a strong solution in the sense of the next definition (Definition 2.4).

DEFINITION 2.4. Assume that a filtered probability space (�,F, (Ft )t≥0,P )

is given a priori together with a random variable θ = θ(ω) which is F0-measurable
and satisfies (2.1), and with a Brownian motion W(ω) = (Wt(ω))t≥0 such that Wt

is Ft -measurable, for all t ≥ 0.
A strong solution of the s.d.e. (2.2) is a continuous stochastic process X =

(Xt(ω))t≥0 that satisfies (2.2) and Xt is Ft -measurable, for all t ≥ 0.
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One may consider also the case where (2.2) has a weak solution.

DEFINITION 2.5. We assume that a canonical control h = (ht (x))t≥0 and the
law of θ in (2.1) are given a priori. A weak solution of the s.d.e. (2.2) is a system
of the following objects:

– a filtered probability space (�,F, (Ft )t≥0,P ) (which is not given a priori);
– a Brownian motion W = (Wt)t≥0 such that Wt is Ft -measurable, for all t ≥ 0;
– an F0-measurable random variable θ with the law specified in (2.1);
– an (Ft )t≥0-adapted process X = (Xt)t≥0 which satisfies the s.d.e. (2.2), that is,

for all t ≥ 0

Xt =
∫ t

0
rhs(X)1{θ≤s} ds +

∫ t

0
σ

√
hs(X)dWs.(2.3)

DEFINITION 2.6. For the case of strong solutions, a strategy is a pair (h, τ ),
where h = (ht (X(ω)))t≥0, τ = τ(X(ω)) for some canonical control (ht (x))t≥0
and canonical stopping time τ(x).

For the case of weak solutions, (h, τ,X) is called a control system.

Cost.

DEFINITION 2.7. The cost associated with a strategy (h, τ ) or a control sys-
tem (h, τ,X) is

C(h, τ) = C(h, τ,X)
(2.4)

= 1{τ(X)<θ} + a
(
τ(X) − θ

)
1{τ(X)≥θ} + b

∫ τ(X)

0
ht (X)dt,

where a > 0, so as to penalize late detection of the alarm time θ , and b ≥ 0.

Since the case b = 0 is covered in [23], Chapter 4.4, we will focus on the case
b > 0.

Objective. Our first objective is to find the value

V = inf
(h,τ )

E
(
C(h, τ)

)
,

where the infimum is over all strategies, and to find an optimal strategy (h∗, τ ∗)
that achieves this infimum, or at least, to find a strategy that is within ε of this
infimum (ε > 0). A second objective is to find the value

V w = inf
(h,τ,X)

E
(
C(h, τ,X)

)
,

where the infimum is over all control systems, and an optimal control system
(h∗, τ ∗,X∗). Clearly, V w ≤ V .
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Dependence on π0. The quantities V and V w are in fact functions of the num-
ber π0 = P {θ = 0}, which we denote g̃(π0) and g̃w(π0):

g̃(π0) = inf
(h,τ )

E
(
C(h, τ)

)
,(2.5)

g̃w(π0) = inf
(h,τ,X)

E
(
C(h, τ,X)

)
.(2.6)

Clearly, g̃w ≤ g̃. The following simple lemma (see also [20], Section 2.7) provides
important information about the form of these two functions.

LEMMA 2.8. The functions g̃ and g̃w are concave.

PROOF. By the law of total probability,

E
(
C(h, τ)

)
= π0E

(
aτ(X) + b

∫ τ(X)

0
ht (X)dt

∣∣∣θ = 0
)

+ (1 − π0)

× E

(
1{τ(X)<θ} + a

(
τ(X) − θ

)
1{τ(X)>θ} + b

∫ τ(X)

0
ht (X)dt

∣∣∣θ > 0
)
.

We note that the first expectation does not depend on π0, since τ(X) and ht (X)

are determined by the observation process only, and the second does not either,
since the conditional distribution of θ given that θ > 0 does not depend on π0.
Therefore, π0 �→ E(C(h, τ )) is an affine function of π0, and g̃, being the infimum
of affine functions, is concave. The same argument applies to g̃w. �

Sufficient statistic. Let FX = (FX
t ) be the natural filtration of the observed

process X, augmented with P -null sets. Let (πh
t ) be the optional projection of

(1{θ≤t}, t ≥ 0) onto this filtration, so that for all t , πh
t = P {θ ≤ t | Xs, s ≤ t} a.s.

The next several lemmas are identical both for strategies and for control systems,
so we state them only for strategies.

LEMMA 2.9. With the above notation,

E
(
C(h, τ)

) = E

(
1 − πh

τ + a

∫ τ

0
πh

s ds + b

∫ τ

0
hs ds

)
.(2.7)

PROOF. Note that E(1{τ<θ}) = E(1 − πh
τ ) and

E
(
(τ − θ)1{τ>θ}

) = E

(∫ ∞
0

1{θ<s}1{s<τ } ds

)
=

∫ ∞
0

E
(
πh

s 1{s<τ }
)
ds

= E

(∫ τ

0
πh

s ds

)
.
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This proves the lemma. �

According to Lemma 2.9, the expected cost associated to a strategy (h, τ ) is
the expectation of an adapted functional of the posterior probability process (πh

t ).
Therefore, it will be natural to express controls as functionals of (πh

t ). We proceed
with the analysis of this process.

3. Semimartingale characteristics of (πh
t ) and a verification lemma. For

0 ≤ u < t , let μu,t be the conditional distribution, given that θ = u, of X restricted
to [0, t], and let μt be the unconditional distribution of X restricted to [0, t].

LEMMA 3.1. The Radon–Nikodym derivative of μu,t with respect to μt,t is

dμu,t

dμt,t

= exp
(∫ t

u

r

σ 2 dXs − 1

2

∫ t

u

r2

σ 2 hs(X)ds

)
.(3.1)

PROOF. Recall Girsanov’s theorem [17], Theorem 8.6.6, page 166: let

dZt = σ(Zt) dWt,

dZ̃t = γt dt + σ(Z̃t ) dWt ,

and suppose that under P , the process (Wt) is a standard Brownian motion. Define
P̃ by

dP̃

dP
= exp

(
−

∫ t

0

γs

σ (Z̃s)
dWs − 1

2

∫ t

0

(
γs

σ (Z̃s)

)2

ds

)
.

If EP (dP̃
dP

) = 1, then the law of (Z̃t ) under P̃ is the same as the law of (Zt ) un-
der P .

If θ = u, then the law of (Xs, s ≤ t) is the same as that of (Ys, s ≤ t), where

dYs = rhs(Y )1{u<s} ds + σ
√

hs(Y ) dWs, 0 < s < t.(3.2)

If θ = t , then the law of (Xs, s ≤ t) is the same as that of (Zs, s ≤ t), where

dZs = σ
√

hs(Z)dWs, 0 < s < t.

Therefore, for A ∈ B(C([0, t],R)),

μu,t (A) = P {Y· ∈ A} = EP

(
1A(Y·)

) = E
P̃

(
1A(Y·)

dP

dP̃

)
,

where P̃ is defined by

dP̃

dP
= exp

(
−

∫ t

u

rhs(Y )

σ
√

hs(Y )
dWs − 1

2

∫ t

u

(
rhs(Y )

σ
√

hs(Y )

)2

ds

)

= exp
(
−

∫ t

u

r

σ 2 σ
√

hs(Y ) dWs − 1

2

∫ t

u

(
r

σ

)2

hs(Y ) ds

)
.
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Note in particular that Novikov’s condition [17] is satisfied. Using (3.2), we see
that this can be written

dP̃

dP
= exp

(
−

∫ t

u

r

σ 2 dYs + 1

2

∫ t

u

(
r

σ

)2

hs(Y ) ds

)
.

Therefore, by Girsanov’s theorem,

μu,t (A) = E
P̃

(
1A(Z·) exp

(∫ t

u

r

σ 2 dZs − 1

2

∫ t

u

(
r

σ

)2

hs(Z)ds

))

=
∫
A

μt,t (dω) exp
(∫ t

u

r

σ 2 dXs − 1

2

∫ t

u

(
r

σ

)2

hs(X)ds

)
.

This proves Lemma 3.1. �

Let Fθ denote the probability distribution function of θ , so that

Fθ(x) =
{ 0, if x < 0,

π0 + (1 − π0)
(
1 − e−λx

)
, if x ≥ 0.

LEMMA 3.2. We have

πh
t =

∫ t

0−
dμu,t

dμt

Fθ (du) = dμt,t

dμt

∫ t

0−
dμu,t

dμt,t

Fθ (du)

(note that the 0− accounts for the discontinuity of Fθ at 0).

PROOF. The notation dμu,t

dμt,t
now refers to the right-hand side of (3.1), which is

continuous in u. For the first equality in the lemma, it suffices to show that for all
B ∈ B(C([0, t],R)),

E

(
1{X|[0,t]∈B}

∫ t

0−
dμu,t

dμt

Fθ (du)

)
= E(1{X|[0,t]∈B}1{θ≤t}).

To see this, observe that∫
{X|[0,t]∈B}

dP (ω)

∫ t

0−
dμu,t

dμt

(ω)Fθ(du) =
∫ t

0−
Fθ(du)

∫
{X|[0,t]∈B}

dP (ω)
dμu,t (ω)

dμt

=
∫ t

0−
Fθ(du)μu,t {X|[0,t] ∈ B}

= P {θ ≤ t,X|[0,t] ∈ B}.
This proves the first equality. The second is a consequence of the chain rule for
Radon–Nikodym derivatives. �

LEMMA 3.3. We have

1 − πh
t = dμt,t

dμt

∫ ∞
t

Fθ (du) = (1 − π0)e
−λt dμt,t

dμt

.
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PROOF. As in Lemma 3.2, one checks that

P {θ > t | Xs, s ≤ t} =
∫ +∞
t

dμu,t

dμt

Fθ (du).

Since dμu,t

dμt,t
= 1 when u > t , the right-hand side is equal to∫ +∞

t

dμu,t

dμt,t

dμt,t

dμt

Fθ (du) = dμt,t

dμt

∫ +∞
t

Fθ (du).

This proves the first equality in the statement of the lemma. The second equality is
a consequence of the fact that for u > 0, Fθ(du) = (1 − π0)λe−λu du. �

Set

ϕh
t = πh

t

1 − πh
t

and let

Zu,t =
∫ t

u

r

σ 2 dXs − 1

2

∫ t

u

r2

σ 2 hs ds.

Use Lemmas 3.1, 3.2 and 3.3 to see that

ϕh
t = eλt

1 − π0

∫ t

0−
exp(Zu,t )Fθ (du)

= eλt

1 − π0
exp(Z0,t )

∫ t

0−
exp(−Z0,u)Fθ (du)(3.3)

= eλt

1 − π0
exp(Z0,t )

(
π0 + (1 − π0)

∫ t

0
exp(−Z0,u)λe−λu du

)
.

LEMMA 3.4. The following s.d.e. is satisfied:

dϕh
t = λ

(
1 + ϕh

t

)
dt + r

σ 2 ϕh
t dXt .(3.4)

PROOF. Observe from (1.2) that the quadratic variation of Xt is d〈X〉t =
σ 2ht dt , so we can apply Itô’s formula and (3.3) to get

dϕh
t = λϕh

t dt

+ eλt

1 − π0
exp(Z0,t )

(
r

σ 2 dXt − r2ht

2σ 2 dt + 1

2

(
r

σ 2

)2

· σ 2ht dt

)

×
∫ t

0−
exp(−Z0,u)Fθ (du)

+ eλt exp(Z0,t ) exp(−Z0,t )λe−λt dt

= λ
(
1 + ϕh

t

)
dt + r

σ 2 ϕh
t dXt . �
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LEMMA 3.5. The process X = (Xt)t≥0 has the stochastic differential

dXt = rht (X)πt dt + σ
√

ht dW̄t ,

where (W̄t ) is a standard Brownian motion.

PROOF. Observe that

dXt − rhtπt dt = (rht1{θ≤t} − rhtπt ) dt + σ
√

ht dWt ,

and the right-hand side has mean zero (given X|[0,t]) and quadratic variation
σ 2ht dt . Further, the left-hand side is adapted to FX , so that the right-hand side is
too, and has mean zero. In particular, it is the differential of a local FX-martingale
with quadratic variation σ

√
ht dt . According to [15], Chapter 3, Theorem 4.2, this

term is equal to σ
√

ht times a standard Brownian motion increment. We note for
future reference that (W̄t ) need not be FX-adapted, but the martingale

Mt = σ

∫ t

0

√
hs dW̄t = Xt −

∫ t

0
rhs(X)πs ds(3.5)

is clearly FX-adapted. �

LEMMA 3.6. Set ρ = r
σ

. Then

dπh
t = λ

(
1 − πh

t

)
dt + r

σ 2 πh
t

(
1 − πh

t

)
dXt − r2

σ 2

(
πh

t

)2(
1 − πh

t

)
ht dt(3.6)

and

dπh
t = λ

(
1 − πh

t

)
dt + ρπh

t

(
1 − πh

t

)√
ht dW̄t .(3.7)

PROOF. Note that πh
t = ϕh

t (1 + ϕh
t )−1 = f (ϕh

t ), where f (x) = x(1 + x)−1.
Since f ′(x) = (1 + x)−2 and f ′′(x) = −2(1 + x)−3, Itô’s formula and Lemma 3.4
yield

dπh
t = f ′(ϕh

t

)
dϕh

t + 1

2
f ′′(ϕh

t

)
d
〈
ϕh〉

t

= 1

(1 + ϕh
t )2

(
λ
(
1 + ϕh

t

)
dt + r

σ 2 ϕh
t dXt

)
+ 1

2

−2

(1 + ϕh
t )3

(
r

σ 2 ϕh
t

)2

σ 2ht dt.

Recall that 1 + ϕh
t = 1

1−πt
to see that this is equal to

λ
(
1 − πh

t

)
dt + r

σ 2 πh
t

(
1 − πh

t

)
dXt − r2

σ 2

(
πh

t

)2(
1 − πh

t

)
ht dt,

which establishes (3.6). By Lemma 3.5, this is equal to

λ
(
1 − πh

t

)
dt + r

σ 2 πh
t

(
1 − πh

t

)(
rhtπ

h
t dt + σ

√
ht dW̄t

) − r2

σ 2

(
πh)2

t

(
1 − πh

t

)
ht dt,
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which simplifies to

λ
(
1 − πh

t

)
dt + r

σ
πh

t

(
1 − πh

t

)√
ht dW̄t .

This establishes (3.7). �

Strategies expressed in terms of (πh
t ). According to (3.7), (πh

t ) is a diffusion
process, and therefore an optimal canonical control will typically be expressed
as a function of πh

t ; that is, we will mainly be interested in controls ht (X) of the
form ht (X) = h(t,πh

t ), where h:R+ ×[0,1] → [0,1] is measurable and given. We
explain here how to describe the observation process and the admissible control
(ht ) associated with such a function h.

Consider the s.d.e.

dpt = λ(1 − pt) dt

+ r

σ 2 pt(1 − pt)
(
rh(t,pt )1{θ≤t} dt + σ

√
h(t,pt ) dWt

)
(3.8)

− r2

σ 2 (pt )
2(1 − pt)h(t,pt ) dt,

with p0 = P {θ = 0}. Assume that h is such that (3.8) has a strong solution [i.e., an
(Ft )-adapted solution]. Then we define the observation process by X0 = 0 and

dXt = rh(t,pt )1{θ≤t} dt + σ
√

h(t,pt ) dWt .(3.9)

This process is adapted to (Ft ), and by (3.8),

dpt = λ(1 − pt) dt + r

σ 2 pt(1 − pt) dXt

(3.10)

− r2

σ 2 (pt )
2(1 − pt)h(t,pt ) dt.

Let qt = pt/(1 − pt). Applying Itô’s formula, we find that

dqt = λ(1 + qt ) dt + r

σ 2 qt dXt .(3.11)

According to [22], Chapter IX, (2.3), the solution of this linear s.d.e. is

qt = exp
(

r

σ 2 Xt + λt − 1

2

r2

σ 4 〈X〉t
)

×
[
q0 +

∫ t

0
exp

(
− r

σ 2 Xs − λs + 1

2

r2

σ 4 〈X〉s
)
λds

]
.

In particular, qt , and therefore pt , is a function of X|[0,t], and we can write
pt = ĥt (X), where (t, x) �→ ĥt (x) from R+ × C(R+,R) to R is progressively
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measurable. Looking back to (3.9), we see that (Xt) is a strong solution of the
s.d.e.

dXt = rht (X)1{θ≤t} dt + σ
√

ht (X)dWt,(3.12)

where ht (x) = h(t, ĥt (x)). Therefore, (ht ) is an admissible control.
Comparing (3.11) and (3.4), we conclude that qt = ϕh

t and therefore

pt = πh
t = P

{
θ ≤ t | FX

t

}
.(3.13)

This means that the control ht (X) is indeed equal to h(t,πh
t ).

We note that as in (3.7), there is a Brownian motion (W̄t ) such that

dpt = λ(1 − pt) dt + ρpt(1 − pt)
√

h(t,pt ) dW̄t .(3.14)

If τ is a stopping time defined using πh
t , for instance,

τ = inf
{
t ≥ 0 :πh

t ∈ S
}

(3.15)

for some Borel set S ⊂ [0,1], then

τ = inf
{
t ≥ 0 : ĥt (X) ∈ S

}
,

so τ = τ(X) is a canonical stopping time. In particular, ((ht (x)), τ (x)) is a strat-
egy.

The above discussion shows that if (3.8) has a strong solution, then we can con-
struct a strategy ((ht ), τ ) for which (2.1) or (3.12) admits a strong solution (Xt),
such that pt = πh

t , and the expected cost E(C((ht ), τ )) is given by (2.7).
In the case where (3.8) admits a weak solution, we would similarly conclude

that (2.2) or (3.12) admits a weak solution, and considering τ as in (3.15), we
would conclude that ((ht ), τ,X) is a control system with the same expected cost.

Verification lemma. For π ∈ [0,1], let Eπ denote expectation in the case where
π0 = π . Recall that we have defined

g̃(π) = inf
(h,τ )

Eπ

(
C(h, τ)

)
, g̃w(π0) = inf

(h,τ,X)
E

(
C(h, τ,X)

)
.

By Lemma 2.8, g̃ is concave, and by Lemma 2.9,

g̃(π) = inf
(h,τ )

Eπ

(
1 − πh

τ + a

∫ τ

0
πh

s ds + b

∫ τ

0
hs ds

)
,

with similar properties for g̃w. According to [11], Theorem 3.67, we expect to
be able to characterize each of these two functions as a function g∗ with certain
properties concerning martingales and submartingales. The next lemma gives con-
ditions that will allow us to show that a function g∗ is equal to g̃ (resp., g̃w) and
check that a strategy ((h∗

t ), τ
∗) [resp., a control system ((h∗

t ), τ
∗,X∗)] is optimal.
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LEMMA 3.7 (Verification lemma). Suppose that g∗ is a bounded continuous
function defined on [0,1] such that 0 ≤ g∗(x) ≤ 1 − x, for all x ∈ [0,1].
(1) Suppose that for any π ∈ [0,1], the following property holds:

(a) for any strategy ((ht ), τ ) [resp., for any control system (h, τ,X)], the pro-
cess (Yt ) is an FX-submartingale under Pπ , where

Yt = g∗(
πh

t

) + a

∫ t

0
πh

s ds + b

∫ t

0
hs ds.(3.16)

Then g∗ ≤ g̃ (resp., g∗ ≤ g̃w).
(2) Suppose that for any π ∈ [0,1], in addition to (a), the following three proper-

ties hold:
(b) for the strategy ((h∗

t ), τ
∗) [resp., the control system ((h∗

t ), τ
∗,X∗)], the

process (Y ∗
t∧τ∗) is an FX-martingale under Pπ , where

Y ∗
t = g∗(

πh∗
t

) + a

∫ t

0
πh∗

s ds + b

∫ t

0
h∗

s ds;
(c) Eπ(τ ∗) < +∞;
(d) g∗(πh∗

τ∗ ) = 1 − πh∗
τ∗ .

Then g∗ = g̃ and ((h∗
t ), τ

∗) is an optimal strategy [resp., g∗ = g̃w, and
((h∗

t ), τ
∗,X∗) is an optimal control system].

PROOF. We first establish (1). Let ((ht ), τ ) be a strategy. If E(τ) = +∞, then
E(C(h, τ )) = +∞. Indeed, by (2.4), E(C(h, τ )) ≥ aE(τ1{τ>θ}) − aE(θ). Since

E(τ) = E(τ1{τ>θ}) + E(τ1{τ≤θ})
and the second term is no greater than E(θ) < +∞, we conclude that
E(τ1{τ>θ}) = +∞ and so E(C(h, τ )) = +∞.

Therefore, in the definition of g̃, we can restrict the infimum to those strategies
for which E(τ) < +∞. Since 1 − x ≥ g∗(x), Lemma 2.9 implies that

Eπ

(
C(h, τ)

) ≥ E(Yτ ).

Since (Yt ) is a submartingale by (a) and t ∧ τ is a bounded stopping time,
Eπ(Yt∧τ ) ≥ Eπ(Y0) = g∗(π). By Fatou’s lemma in the form E(lim supYn∧τ ) ≥
lim supE(Yn∧τ ) (cf. [7], Chapter 1), which applies since E(τ) < +∞, we see that

Eπ(Yτ ) ≥ lim sup
t→∞

Eπ(Yt∧τ ) ≥ g∗(π).

We conclude that Eπ(C(h, τ )) ≥ g∗(π) for all strategies ((ht ), τ ), and therefore
g̃ ≥ g∗. The proof for g̃w is identical and is omitted.

We now establish (2) for g̃. It suffices to show that g∗(π) = Eπ(Y ∗
τ∗). Indeed,

this will complete the proof, since by (d) and Lemma 2.9,

g∗(π) = Eπ

(
Y ∗

τ∗
) = Eπ

(
g∗(

πh∗
τ∗

) + a

∫ τ∗

0
πh∗

s ds + b

∫ τ∗

0
h∗

s ds

)

= Eπ

(
C

(
h∗, τ ∗)) ≥ g̃(π).
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Since we have already proved that g̃ ≥ g∗, this shows that g∗(π) = g̃(π).
In order to check that g∗(π) = Eπ(Y ∗

τ∗), note that 0 ≤ Y ∗
t ≤ 1 + (a + b)t and

Eπ(τ ∗) < +∞ by (c). Therefore, (Y ∗
t∧τ∗), which is a martingale by (b), is uni-

formly integrable. By the optional sampling theorem [10], E(Y ∗
τ ) = E(Y ∗

0 ) =
g∗(π). This completes the proof for g̃. The proof for g̃w is identical and is omitted.

�

4. A candidate for the value function. We now seek analytical conditions
on a function g∗ that will guarantee the properties of Lemma 3.7. Consider the
process (Yt ) defined in (3.16) (we write g instead of g∗ to simplify the notation).
By Itô’s formula and Lemma 3.6,

dYt = g′(πh
t

)
dπh

t + 1

2
g′′(πh

t

)
d
〈
πh〉

t + aπh
t dt + bht dt

=
[
λg′(πh

t

)(
1 − πh

t

) + 1

2
g′′(πh

t

)(
ρπh

t

(
1 − πh

t

))2
ht + aπh

t + bht

]
dt(4.1)

+ g′(πh
t

) r

σ
πh

t

(
1 − πh

t

)√
ht dW̄t .

Therefore, (Yt ) will be a submartingale if the term in brackets is nonnegative, for
any value of ht . Since this term is an affine function of ht , this is equivalent to this
term being nonnegative for ht = 0 and ht = 1, that is, for all x ∈ [0,1],

λg′(x)(1 − x) + ax ≥ 0(4.2)

and

λg′(x)(1 − x) + 1
2g′′(x)

(
ρx(1 − x)

)2 + ax + b ≥ 0.(4.3)

Intuition and smooth fit. We can imagine that the optimal strategy, in either the
strong or the weak formulation, is of the following form: do not observe if πh

t is
small, declare the alarm if πh

t is close to 1 and observe otherwise. More precisely,
we postulate that there are two constants 0 ≤ A ≤ B ≤ 1 such that on [0,A], it
is optimal not to observe, on ]A,B[ it is optimal to observe without declaring an
alarm and on [B,1], it is optimal to stop and declare the alarm. That is,

h∗
t = 1{πh∗

t >A} and τ ∗ = inf
{
t ≥ 0 :πh∗

t ≥ B
}
.(4.4)

In order to satisfy condition (b) of Lemma 3.7, we need

λg′(x)(1 − x) + ax = 0, x ∈]0,A](4.5)

and

λg′(x)(1 − x) + ax + 1
2g′′(x)ρ2x2(1 − x)2 + b = 0, x ∈]A,B[.(4.6)
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In order to satisfy condition (d) of Lemma 3.7, we need

g(x) = 1 − x, x ∈ [B,1].(4.7)

In order to find an expression for g, it is natural to solve first the differential
equations (4.5) and (4.6) separately, that is, to seek two functions g1 and g2 such
that

λg′
1(x)(1 − x) + ax = 0, 0 < x < A(4.8)

and

λg′
2(x)(1 − x) + ax + 1

2g′′
2 (x)ρ2x2(1 − x)2 + b = 0, A < x < B.(4.9)

Three constants of integration will appear, one for g1 and two for g2. These con-
stants can then be determined by “pasting together” g1 and g2, that is, requiring
equalities such as

g1(A) = g2(A)(4.10)

and, by (4.7),

g2(B) = 1 − B.(4.11)

These two equalities are referred to as “continuous fit” [19]. As in most prob-
lems of optimal stopping or control, they are not sufficient to determine the five
unknown constants, namely, the three constants of integration and the two “free
boundaries” A and B . For this, it is necessary to use a version of the “principle of
smooth fit”; see [19]. In particular, one can postulate that

g′
2(B) = −1(4.12)

and

g′
1(A) = g′

2(A).(4.13)

We need one more equation in addition to (4.10)–(4.13), since there are five un-
known constants. Since we want to apply Itô’s formula, it is natural to want g to
be twice differentiable at A. This gives one more equation,

g′′
1 (A) = g′′

2 (A).(4.14)

Solving the equations. We seek functions g1 and g2 defined on [0,1] satisfying
(4.8)–(4.14). Set

f1(x) = g′
1(x), f2(x) = g′

2(x).

The value of A. For 0 < x < A, differentiate (4.8) to get

−λf1(x) + λf ′
1(x)(1 − x) + a = 0,
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that is,

f ′
1(x) = λf1(x) − a

λ(1 − x)
.(4.15)

From (4.9), we get

f ′
2(x) = −ax − b − λf2(x)(1 − x)

(1/2)ρ2x2(1 − x)2 .(4.16)

By (4.14), if we plug x = A into (4.15), (4.16), we get

−λ(aA + b) − λ2f2(A)(1 − A) = −a

2
ρ2A2(1 − A) + λρ2

2
A2(1 − A)f1(A).

Since f2(A) = f1(A) by (4.13), we solve for f1(A),

f1(A) = (aρ2/2)A2(1 − A) − λ(aA + b)

(1 − A)(λ2 + (λρ2/2)A2)
.(4.17)

Plugging (4.17) into (4.8) gives an equation for A, whose solution is

A =
√

2λb

aρ2 .(4.18)

For the observation region ]A,B[ to be nonempty, we must have A < 1, but
further, since we want g1 to be concave by Lemma 2.8, we also must have

f1(A) = g′
1(A) > −1.(4.19)

From (4.8),

g′
1(x) = −a

λ

x

1 − x
,(4.20)

so (4.8) and (4.19) give −a
λ

A
1−A

> −1, or equivalently, A < λ
a+λ

. With (4.18), we
conclude that the observation region ]A,B[ is not empty if

b <
λaρ2

2(a + λ)2 .(4.21)

Determining f2(x). For A < x < B , equation (4.9) becomes

λf2(x)(1 − x) + ax + 1
2f ′

2(x)ρ2x2(1 − x)2 + b = 0.(4.22)

A solution of the homogeneous equation

λf (x)(1 − x) + 1
2f ′(x)ρ2x2(1 − x)2 = 0

is

f (x) =
(

1 − x

x

)α

eα/x where α = 2λ

ρ2 .(4.23)
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Therefore, the solution of the inhomogeneous equation (4.22) is

f2(x) = K1f (x) + f (x)

∫ x

A

−2

ρ2

ay + b

y2(1 − y)2

1

f (y)
dy.(4.24)

From (4.13) and (4.8), we conclude that

K1 = −a

λ

A

1 − A

1

f (A)
.(4.25)

Formulas (4.25) and (4.24) together determine f2(x).

REMARK 4.1. In the case where b = 0, then A = 0 by (4.18), and we must
have K1 = 0 in order that f2(x) be bounded. This recovers the case discussed
in [23], Chapter 4.4. Therefore, we consider the case b > 0.

Determining B. Observe that

lim
x→1

f (x) = 0 and lim
x→1

f2(x) = −∞.

Indeed, the first equality is obvious, and the second holds because for x near 1,

f (x) ∼ (1 − x)α,

and, using l’Hopital’s rule,

f2(x) ∼ −2

ρ2 (1 − x)α
∫ x

A

(a + b)e−α

(1 − y)2+α
dy ∼ −(1 − x)1+α(1 − x)−2−α

∼ −(1 − x)−1.

Therefore, if (4.21) holds, then f2(A) = K1f (A) = −a
λ

A
1−A

> −1, so there is
B ∈]A,1[ such that

f2(B) = −1.(4.26)

With this choice of B , (4.12) is satisfied. The next lemma shows that in fact, there
is only one solution to (4.26).

LEMMA 4.2. The function f2 defined in (4.24) is strictly decreasing on [A,1[,
and therefore, there is a unique B ∈]A,1[ satisfying (4.26).

PROOF. By (4.22),

f ′
2(x) = 2λ

ρ2

1

x2(1 − x)

(
ψ(x) − f2(x)

)
,(4.27)

where

ψ(x) = − ax + b

λ(1 − x)
.
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Therefore, f ′
2(x) < 0 if and only if ψ(x) < f2(x). In fact, we will see in (4.51)

[see also (4.32)] that

f2(x) > −a

λ

x

1 − x
> ψ(x), x ∈]A,1[.

We conclude that f ′
2(x) < 0 for x ∈]A,1[, and this proves the lemma. �

REMARK 4.3. It is clear from (4.18) that the value of the constant A is a
continuous function of the observation cost b. The same is true for the constant B ,
by the following argument.

We make explicit the dependence of f2 on b by writing f2(x, b). Equa-
tion (4.26) becomes f2(B, b) = −1. We see that ∂f2

∂b
(x, b) > 0 by differentiating

under the integral sign in (4.24). Therefore, the implicit function theorem implies
that B is a continuous (and even differentiable) function of b.

Determining g2(x). Because g′
2(x) = f2(x), g2(x) can be written

g2(x) =
∫ x

A
f2(y) dy + K2.(4.28)

From (4.11), we see that

K2 = 1 − B −
∫ B

A
f2(y) dy,(4.29)

so that

g2(x) =
∫ x

B
f2(y) dy + 1 − B.(4.30)

Determining g1(x). Because g′
1(x) = f1(x), g1(x) can be written

g1(x) =
∫ x

A
f1(y) dy + K3,(4.31)

where f1(x) is determined from (4.8),

f1(x) = −a

λ

x

1 − x
.(4.32)

From (4.10), (4.28) and (4.31), we get

K3 = K2.(4.33)

We can perform the integration in (4.31) to get

g1(x) = a

λ

(
x + ln(1 − x) − A − ln(1 − A)

) + K2,(4.34)

with K2 determined by (4.29).
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We have now found two functions g1 and g2 that solve (4.8)–(4.14). In order
to ensure that this solves our optimal control problem, slightly more is needed: in
particular, we need inequalities (4.2) and (4.3) for all x ∈ [0,1]. Set

L1g(x) = λg′(x)(1 − x) + ax,(4.35)

L2g(x) = λg′(x)(1 − x) + ax + 1
2g′′(x)ρ2x2(1 − x)2 + b.(4.36)

PROPOSITION 4.4 (Candidate value function). Suppose that 0 < b < λaρ2/

(2(a + λ)2). Define g(x) on [0,1] by

g(x) =
⎧⎪⎨
⎪⎩

g1(x), if 0 ≤ x ≤ A,

g2(x), if A ≤ x ≤ B,

1 − x, if B ≤ x ≤ 1,

(4.37)

where A is defined in (4.18), and B is defined in (4.26). Then g is strictly concave
in [0,B], and

0 ≤ g(x) ≤ 1 − x, 0 ≤ x ≤ 1,(4.38)

L1g(x) = 0, 0 ≤ x ≤ A,(4.39)

L2g(x) = 0, A ≤ x < B.(4.40)

Furthermore,

L2g(x) ≥ 0, 0 ≤ x ≤ A,(4.41)

L1g(x) ≥ 0, A ≤ x ≤ B,(4.42)

L1g(x) ≥ 0, B ≤ x ≤ 1,(4.43)

L2g(x) ≥ 0, B ≤ x ≤ 1.(4.44)

PROOF. Properties (4.39) and (4.40) follow from the construction of g1
and g2; see (4.8) and (4.9). The strict concavity of g1 and g2 (hence of g on
[0,B]) follow from (4.32) and Lemma 4.2. This concavity property and (4.26)
imply g(x) ≤ 1 − x, 0 ≤ x ≤ 1. Finally, since g′

1(x) = f1(x) < 0 for 0 < x ≤ A

and g′
2(x) = f2(x) ≤ 0 for A ≤ x ≤ B , g is nondecreasing on [0,B], therefore

nonnegative on [0,B] since g2(B) = 1 − B ≥ 0. This proves (4.38).
Note that (4.43) implies (4.44), and on [B,1], (4.43) becomes −λ(1−x)+ax ≥

0, that is, x ≥ λ
a+λ

. Therefore, (4.43) will hold provided we show that

B ≥ λ

a + λ
.(4.45)

To see this, note from (4.32) that

f1

(
λ

a + λ

)
= −a

λ
· λ/(a + λ)

1 − λ/(a + λ)
= −1.(4.46)
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We shall show that

f2(x) ≥ f1(x) for x ≥ A.(4.47)

Then, (4.47) and (4.46) imply that

f2

(
λ

a + λ

)
≥ −1 that is, B ≥ λ

a + λ

[since f2(x) < −1 for x > B , by (4.26) and Lemma 4.2], proving (4.45).
It remains to prove (4.47). Set h(x) = f2(x) − f1(x). From (4.8) and (4.9), we

see that for x > A,

λh(x)(1 − x) + 1
2h′(x)ρ2x2(1 − x)2 + b + 1

2f ′
1(x)ρ2x2(1 − x)2 = 0.(4.48)

By (4.20),

f ′
1(x) = −a

λ

1

(1 − x)2 ,(4.49)

so (4.48) becomes

λh(x)(1 − x) + 1

2
h′(x)ρ2x2(1 − x)2 + b − aρ2

2λ
x2 = 0.(4.50)

Recall from (4.18) that b− aρ2

2λ
x2 < 0 for x > A. We note that h(A) = h′(A) = 0

by (4.13) and (4.14), and from (4.50), the following holds: for x > A, it is not
possible to have simultaneously h(x) < 0 and h′(x) < 0. Since h(A) = 0, this
implies that for x > A, h(x) cannot be negative (since otherwise, there would be
y ∈]A,x[ with h(y) < 0 and h′(y) < 0), therefore h(x) > 0 for x > A, that is,

f2(x) > f1(x) for x > A.(4.51)

This proves (4.47). Therefore, (4.43) is proved.
To check (4.41), we use (4.8), to see that for 0 ≤ x ≤ A,

L2g(x) = 1
2g′′

1 (x)ρ2x2(1 − x)2 + b,

and from (4.49),

g′′
1 (x) = −a

λ

1

(1 − x)2 ,

therefore,

L2g(x) = − a

2λ
ρ2x2 + b, x ≤ A,

and the right-hand side is nonnegative for x ≤ A by (4.18). This proves (4.41).
Finally, (4.42) is a consequence of (4.47), since (4.47) implies that

L1g2(x) ≥ L1g1(x) = 0. �
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Case where b ≥ λaρ2

2(a+λ)2 . In this case, we postulate that the observation region
]A,B[ is empty (i.e., B = A), so we seek g1(x) such that

λg′
1(x)(1 − x) + ax = 0, 0 ≤ x < B,(4.52)

g1(B) = 1 − B,(4.53)

g′
1(B) = −1.(4.54)

From (4.52), we see that

g′
1(x) = −a

λ

x

1 − x
= a

λ

(
1 − 1

1 − x

)
,(4.55)

so for some constant K to be determined,

g1(x) = K + a

λ
x + a

λ
ln(1 − x).(4.56)

From (4.55) and (4.54), we see that

a

λ

(
1 − 1

1 − B

)
= −1,

that is,

B = λ

a + λ
.(4.57)

From (4.53) and (4.56), we obtain

K = 1 − B − a

λ
B − a

λ
ln(1 − B) = −a

λ
ln

(
a

a + λ

)
.

Therefore,

g1(x) = a

λ
x + a

λ

(
ln(1 − x) − ln

(
a

a + λ

))
.(4.58)

We note that g′
1(x) is decreasing, g′

1(0) = 0 and g′
1(B) = −1, so 1 − x ≥ g1(x) for

0 ≤ x ≤ B , by (4.53). Since 1 − x ≥ a/(a + λ) = 1 − B for x ≤ B , g1(x) ≥ 0 for
0 ≤ x ≤ B .

PROPOSITION 4.5 (Candidate value function). Suppose that b ≥ λaρ2/(2(a+
λ)2). Define g1(x) as in (4.58) and g(x) on [0,1] by

g(x) =
{

g1(x), if 0 ≤ x ≤ B,

1 − x, if B ≤ x ≤ 1,
(4.59)

where B is defined in (4.57). Then g is strictly concave on [0,B],
0 ≤ g(x) ≤ 1 − x, 0 ≤ x ≤ 1,(4.60)

L1g(x) = 0, x ∈ [0,B],(4.61)
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and furthermore,

L1g(x) ≥ 0 for B ≤ x ≤ 1,(4.62)

L2g(x) ≥ 0 for 0 ≤ x ≤ 1.(4.63)

PROOF. Property (4.61) follows from (4.52), and the strict concavity of g1,
hence of g, on [0,B] and (4.60) are established just after (4.58).

Note that for B ≤ x ≤ 1,

L1g(x) ≥ 0 ⇐⇒ −λ(1 − x) + ax ≥ 0 ⇐⇒ x ≥ λ

a + λ
= B,

and this is indeed that case, so (4.62) holds.
For B ≤ x ≤ 1, L2g(x) = L1g(x) + b, and both of these terms are nonnegative,

so L2g(x) ≥ 0 for these x, proving part of (4.63).
For 0 < x < B ,

L2g(x) = L2g1(x) = L1g1(x) + 1
2g′′

1 (x)ρ2x2(1 − x)2 + b.

Since L1g1(x) = 0,

L2g(x) = 1

2

a

λ

−1

(1 − x)2 ρ2x2(1 − x)2 + b = −aρ2x2

2λ
+ b,

so

L2g(x) ≥ 0 ⇐⇒ aρ2x2

2λ
≤ b ⇐⇒ x ≤

√
2λb

aρ2 .

This will hold for x ≤ B provided it holds for x = B . Now

B ≤
√

2λb

aρ2 ⇐⇒
(

λ

a + λ

)2

≤ 2λb

aρ2 ⇐⇒ b ≥ λaρ2

2(a + λ)2 ,

which is the assumption of this case. This proves (4.63). �

Comments on the optimal strategy. In the case where b ≥ λaρ2/(2(a + λ)2),
the observation region is empty, the candidate optimal control is h∗

t ≡ 0 [with this
control, (2.2) obviously has a strong solution] and the candidate optimal stopping
time is

τ ∗ = inf
{
t ≥ 0 :π∗

t ≥ B
}
,(4.64)

where (π∗
t ) is defined by

dπ∗
t = λ

(
1 − π∗

t

)
dt, π∗

0 = π0(4.65)

[so π∗
t = πh∗

t , where (πh∗
t ) is defined in (3.6) with h there replaced by h∗]. It

is straightforward to check that (h∗, τ ∗) is indeed an optimal strategy (both in
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the weak and strong formulations), and we do this in Section 5 in the proof of
Theorem 5.1.

On the other hand, in the case where b < λaρ2/(2(a+λ)2), the optimal strategy
should take the form mentioned in (4.4),

h∗
t = 1{π∗

t >A} and τ ∗ = inf
{
t ≥ 0 :π∗

t ≥ B
}
,(4.66)

where the law of (π∗
t ) should be determined by the diffusion equation

dπ∗
t = λ

(
1 − π∗

t

)
dt + ρπ∗

t

(
1 − π∗

t

)
1{π∗

t >A} dW̄t ,(4.67)

or, looking back to (3.8) and (3.6),

dπ∗
t = λ

(
1 − π∗

t

)
dt + r

σ 2 π∗
t

(
1 − π∗

t

)
1{π∗

t >A}(r1{θ≤t} dt + σ dWt)

(4.68)

− r2

σ 2

(
π∗

t

)2(
1 − π∗

t

)
1{π∗

t >A} dt.

Because of the irregularity of p �→ 1{p>A}, equations such as (4.67) and (4.68) do
not have a strong solution in general (see, e.g., [8, 14, 24]), but according to the the-
ory developed in [12], Chapter 5, Section 24, they do have a weak solution [such
that the process (π∗

t ) spends an amount of time at A that has positive Lebesgue
measure]. Therefore, from the discussion in (3.8)–(3.15), we expect (4.66) to de-
termine an optimal control system in the weak formulation of our problem, but
there will be no optimal strategy in the strong formulation! This means that we
will be able to use verification Lemma 3.7 to prove, in Section 5, that the func-
tion g defined in Proposition 4.4 is equal to the value function g̃w, but a different
approach via ε-optimal strategies will be used to show that g is equal to g̃.

5. The value function. Formulas (4.37) and (4.59) provide candidates, de-
noted by g, for the value functions g̃ and g̃w defined, respectively, in (2.5)
and (2.6). The objective of this section is to prove that indeed, these two value
functions are equal, and equal to g.

THEOREM 5.1. (a) Case where 0 < b < λaρ2/(2(a+λ)2). Define A by (4.18),
let f be as in (4.23), K1 as in (4.25), f2 as in (4.24), B as in (4.26), K2 as in (4.29),
g1 as in (4.34) and g2 as in (4.30). Then the function g defined in (4.37) is equal
to the value function g̃w defined in (2.6). Further, the control system associated to
h(t,p) = 1{p>A} and to τ ∗ in (4.66) is optimal.

(b) Case where b ≥ λaρ2/(2(a + λ)2). Define B by (4.57) and g1 by (4.58).
Then the function g defined in (4.59) is equal to the value function g̃w defined
in (2.6).

THEOREM 5.2. In both cases of Theorem 5.1, the two value functions g̃

(strong formulation) and g̃w (weak formulation), defined, respectively, in (2.5)
and (2.6), are equal (and equal to the function g of Theorem 5.1).
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REMARK 5.3. It is interesting to observe how the value function g̃ and the
thresholds A and B depend on the observation cost b: we write g̃(x, b), A(b) and
B(b) to indicate this dependence.

From (2.4) and (2.5), b �→ g̃(x, b) is nondecreasing. For b = 0, g(·,0) is the
value function obtained in [23], Chapter 4.4, Theorem 9. As b increases from 0 to
bc = λaρ2/(2(a + b)2), B(b) decreases from B(0) to B(bc), and A(b) increases
from 0 to A(bc) = λ/(a + λ) = B(bc) [see (4.18) for the first equality and the
second follows from the lines preceding (4.26) since f2(A(bc)) = −1]. For b ≥ bc,
g̃(·, b) = g̃(·, bc) since there is no dependence on b.

Theorem 5.1 will be proved in two steps. We begin by showing that g ≤ g̃w.

LEMMA 5.4. In both cases (a) and (b) of Theorem 5.1, the inequality g ≤ g̃w

holds.

PROOF. We are going to use part (1) of Lemma 3.7. Suppose first that we are
in case (a) of Theorem 5.1. By construction, and in particular by (4.10), (4.13)
and (4.14), g is C2 on [0,B[, and C1 on [0,1] by (4.12) and (4.7), so

g′(B−) = g′(B+) = −1.(5.1)

By (4.38), 0 ≤ g(x) ≤ 1 − x. Let ((ht ), τ,X) be a control system, and set

Yt = g
(
πh

t

) + a

∫ t

0
πh

s ds + b

∫ t

0
hs ds.(5.2)

We now apply Itô’s formula, in the form given in [19], Section 3.5:

Yt = Y0 +
∫ t

0
g′(πh

s

)
dπh

s +
∫ t

0

(
aπh

s + bhs

)
ds + 1

2

∫ t

0
g′′(πh

s

)
d
〈
πh〉

s

(5.3)

+ 1

2

(
g′(B+) − g′(B−)

)
LB

t ,

where LB
t is the local time of (πh

s ) at B . By (5.1), the factor g′(B+) − g′(B−)

vanishes, so as in (4.1), we find that

Yt = Y0 +
∫ t

0
g′(πh

s

) r

σ
πh

s

(
1 − πh

s

)√
hs dW̄s +

∫ t

0
�

(
πh

s , hs

)
ds,(5.4)

where

�(x,η) = L1g(x) + η
[1

2g′′(x)
(
ρx(1 − x)

)2 + b
]
, η ∈ [0,1],

and L1 is defined in (4.35). We note that by construction and by Proposition 4.4,

�(x,0) = L1g(x) ≥ 0 for all x ∈ [0,1],
�(x,1) = L2g(x) ≥ 0 for all x ∈ [0,1] \ {B},
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where L2 is defined in (4.36), and since η �→ �(x,η) is an affine function, we
conclude that �(x,η) ≥ 0, for all η ∈ [0,1]. Since g′ is bounded on [0,1], the
stochastic integral in (5.4) is an FX-martingale [recall (3.5)], and therefore (Yt ) is
an FX-submartingale. The conclusion now follows from part (1) of Lemma 3.7.

Now suppose that we are in case (b) of Theorem 5.1. By construction, g is C2

on [0,B[, and C1 on [0,1] by (4.53) and (4.54), so

g′(B−) = g′(B+) = −1.

By (4.60), 0 ≤ g(x) ≤ 1−x, for all x ∈ [0,1]. Let ((ht ), τ,X) be a control system,
and define Yt as in (5.2). Applying Itô’s formula, we obtain (5.3), and this leads
again to (5.4). Using this time Proposition 4.5, we see that �(x,η) ≥ 0, for all
η ∈ [0,1]. Therefore, we conclude, as before, that (Yt ) is an FX-submartingale,
and the conclusion follows from part (1) of Lemma 3.7. �

We now prove Theorem 5.1.

PROOF OF THEOREM 5.1. We begin with case (b). As mentioned in (4.64)
and (4.65), the candidate optimal control system is (h∗, τ ∗,X∗), where h∗

t ≡ 0,
X∗ ≡ 0 and

τ ∗ = inf
{
t ≥ 0 :π∗

t ≥ B
}
,

where (π∗
t ) is defined in (4.65). Clearly, (h∗, τ ∗,X∗) is a control system, and so it

suffices to check properties (b), (c) and (d) of Lemma 3.7. By (4.61),

dY ∗
t = L1g

(
π∗

t

)
dt = 0 for t < τ ∗.

Therefore, (Y ∗
t∧τ∗) is a (constant and deterministic) martingale, proving (b).

Further, since (π∗
t ) is deterministic, we solve (4.65) to find that

τ ∗ =
⎧⎨
⎩

1

λ
ln

(
1 − π0

1 − B

)
, if π0 < B,

0, if π0 ≥ B,

(5.5)

so (c) holds. Finally, if π0 < B , then

g
(
π∗

τ∗
) = g(B) = 1 − B = 1 − π∗

τ∗

by (4.53), and if π0 ≥ B , then

g
(
π∗

τ∗
) = g

(
π∗

0
) = 1 − π∗

0 = 1 − π∗
τ∗

by (4.59). This proves case (b) of Theorem 5.1.
We now consider case (a). We have seen in Lemma 5.4 that g ≤ g̃w. In order

to establish the converse inequality, consider (h∗
t ) and τ ∗ defined in (4.66) and the

associated control system ((h∗
t ), τ

∗,X∗), constructed as in (3.8)–(3.15), using the
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function h(t,p) = 1{p>A} and π∗
t defined as a weak solution of (4.68). Then for

t ≤ τ ∗,

�
(
π∗

t , h∗
t

) =
{

L1g
(
π∗

t

)
, if π∗

t < A,

L2g
(
π∗

t

)
, if π∗

t ∈ [A,B[,
= 0

by (4.39) and (4.40). Therefore, (Y ∗
t∧τ∗) is an FX-martingale. According to

Lemma 5.5 below, Eπ(τ ∗) < ∞, and g(πh∗
τ∗ ) = g(B) = 1−B by (4.66) and (4.37).

This proves properties (b), (c) and (d) of Lemma 3.7 and concludes the proof that
g = g̃w and ((h∗

t ), τ
∗,X∗) is an optimal control system, since we already veri-

fied (a) of Lemma 3.7 during the proof of Lemma 5.4. �

LEMMA 5.5. Suppose that we are in case (a) of Theorem 5.1. Let τ ∗ be defined
as in (4.66). Then for all π ∈ [0,1], Eπ(τ ∗) < ∞.

PROOF. If π ∈ [B,1], then Eπ(τ ∗) = 0, and if π ∈ [0,A[, then (π∗
t ) reaches

A at the deterministic time λ−1 ln((1 − π)/(1 − A)) [see (5.5)], so the problem
reduces to considering π ∈ [A,B[.

Recall from (3.14) and (4.67) that (π∗
t ) solves, in the terminology of [12], Chap-

ter 5, Section 24, an s.d.e. with delayed reflection at the boundary point A, and this
process is associated to a diffusion (ξ̃t ) with instantaneous reflection at the bound-
ary

dξ̃t = λ(1 − ξ̃t ) dt + ρξ̃t (1 − ξ̃t ) dW̃t + dζt ,(5.6)

where (ζt ) is a nondecreasing process that increases at those points where ξ̃t = A,

W̃t =
∫ φt

0
1{ξ̃τs >A} dW̄s,

and φt is defined by the relation

t =
∫ φt

0
1{ξ̃τs >A} ds.

As explained in [12], (π∗
t ) has the same law as (ξ̃τt ), where τt is defined by the

relation

t = τt + 1

λ(1 − A)
ζτt .

Therefore, τ ∗ has the same law as T = inf{t ∈ R+ : ξ̃τt = B}. Letting σ = inf{s ∈
R+ : ξ̃s = B}, we see that σ = τT . Further, according to Lemma 5 in [12], Chap-
ter 5, Section 23, Eπ(σ) = V0(y) − V0(π), where V ′

0(A) = 0 and for y ∈]A,1[,
λ(1 − y)V ′

0(y) + 1
2ρ2y2(1 − y)2V ′′

0 (y) = 1.
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An explicit expression for V0 can be obtained by using (4.24) with K1 = 0, a = 0
and b = −1, and then integrating from A to y. In particular, Eπ(σ) < +∞.

Notice that

T = τT + 1

λ(1 − A)
ζτT

= σ + 1

λ(1 − A)
ζσ .

Therefore, it suffices to show that Eπ(ζσ ) < +∞. By (5.6),

ξ̃t∧σ = ξ̃0 +
∫ t∧σ

0
λ(1 − ξ̃s) ds +

∫ t∧σ

0
ρξ̃s(1 − ξ̃s) dW̃s + ζt∧σ .(5.7)

The stochastic integral is an L2-bounded martingale, since

Eπ

(∫ t∧σ

0
ρ2ξ̃2

s (1 − ξ̃s)
2 ds

)
≤ ρ2Eπ(σ) < +∞.

Therefore, the optional sampling theorem can be applied and, since the ds-integral
in (5.7) is nonnegative, we find that

B = Eπ(ξ̃σ ) ≥ π + Eπ(ζσ ),

so Eπ(ζσ ) < +∞, as was to be proved. �

For the remainder of this section, we put ourselves in case (a) of Theorem 5.1.
Since we have observed just after (2.6) that g̃ ≥ g̃w, and g̃w = g by Theo-
rem 5.1(a), in order to prove Theorem 5.2, it suffices to establish the inequality
g ≥ g̃. For ε > 0, we are going to define an admissible control hε , and a strategy
(hε, τ ε), with associated cost g̃ε = E(C(hε, τ ε)), and we shall show that g̃ε → g

as ε ↓ 0. From the definition of g̃ in (2.5), this will establish that g ≥ g̃, and this
will prove Theorem 5.2.

An almost optimal strategy. Define the function

h(ε)(x) = x − A

ε
1]A,A+ε[(x) + 1[A+ε,∞[(x).

Consider the s.d.e.

dpε
t = λ

(
1 − pε

t

)
dt

+ r

σ 2 pε
t

(
1 − pε

t

)(
rh(ε)(pε

t

)
1{θ<t} dt + σ

√
h(ε)

(
pε

t

)
dWt

)
(5.8)

− r2

σ 2

(
pε

t

)2(
1 − pε

t

)
h(ε)(pε

t

)
dt,

with pε
0 = π0. According to [13], Theorem 3.2 page 168, this s.d.e. has a unique

strong solution (pε
t , t ≥ 0), since

√
h(ε) is Hölder-continuous with exponent 1/2.
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Set

τ ε =
{

inf
{
t ≥ 0 :pε

t ≥ B
}
, if {· · ·} �= ∅,

+∞, otherwise.
(5.9)

Using (3.8)–(3.15), we associate to (h(ε), τ ε) a strategy ((hε
t ), τ

ε).
We are now going to determine the cost of the strategy (hε, τ ε), and we will see

in Proposition 5.7 below that for ε small, this strategy is nearly optimal. Let

g̃ε(π0) = E
(
C

(
hε, τ ε)).(5.10)

In order to determine the function g̃ε , we will use the following lemma.

LEMMA 5.6. Suppose that we are in case (a) of Theorem 5.1 and that we
can find a continuous function gε on [0,1] that is C2 on [0,1] \ {A,B}, C1 on
[0,1] \ {B} and such that

Lgε(x) = −(
ax + bh(ε)(x)

)
,(5.11)

where Lgε(x) is defined by

Lgε(x) = λ(1 − x)g′
ε(x) + 1

2ρ2x2(1 − x)2h(ε)(x)g′′
ε (x)(5.12)

and

gε(x) = 1 − x for x ∈ [B,1].(5.13)

If, in addition,

Ex(τε) < +∞ for all x ∈ [0,1],(5.14)

then gε = g̃ε .

PROOF. Suppose π0 ∈ [B,1]. Then gε(π0) = 1 − π0, and since τ ε = 0 a.s.,
(2.4) gives

g̃ε(π0) = E
(
C

(
hε, τ ε)) = P {θ > 0} = 1 − π0.

Therefore, by (5.13), gε(π0) = g̃ε(π0) in this case.
Now suppose that π0 ∈ [0,B[. According to Lemma 2.9 and (3.13),

g̃ε

(
pε

0
) = E

(
C

(
hε, τ ε)) = E

(
1 − pε

τε + a

∫ τ ε

0
pε

s ds + b

∫ τ ε

0
h(ε)(pε

s

)
ds

)
.

Since τ ε < +∞ a.s. by (5.14), pε
τε = B , and 1 − B = gε(B) by (5.13), so

E
(
C

(
hε, τ ε)) = E

(
gε

(
pε

τε

) + a

∫ τ ε

0
pε

s ds + b

∫ τ ε

0
h(ε)(pε

s

)
ds

)
.

As in Lemmas 3.5 and 3.6, we see from (5.8) and (3.9) that

dpε
t = λ

(
1 − pε

t

)
dt + ρpε

t

(
1 − pε

t

)√
h(ε)

(
pε

t

)
dW̄ ε

t ,(5.15)
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where (W̄ ε
t ) is an Brownian motion. Let

Mt = gε

(
pε

t

) + a

∫ t

0
pε

s ds + b

∫ t

0
h(ε)(pε

s

)
ds.

We apply Itô’s formula in the form given in [19], Section 3.5.3, using the fact that
g′

ε(A−) = g′
ε(A+), to see that

dMt = g′
ε

(
pε

t

)[
λ
(
1 − pε

t

)
dt + ρpε

t

(
1 − pε

t

)√
h(ε)

(
pε

t

)
dW̄ ε

t

]
+ [1

2g′′(pε
t

)
ρ2(

pε
t

)2(
1 − pε

t

)2
h(ε)(pε

t

) + apε
t + bhε(pε

t

)]
dt

= g′
ε

(
pε

t

)
ρpε

t

(
1 − pε

t

)√
h(ε)

(
pε

t

)
dW̄ ε

t + [
Lgε

(
pε

t

) + apε
t + bhε(pε

t

)]
dt.

By (5.11), the drift in brackets vanishes, and therefore (Mt∧τ ε , t ≥ 0) is an FXε
-

martingale. Since, by (3.13), 0 ≤ pε
s ≤ 1, and 0 ≤ h(ε) ≤ 1 and gε is bounded, we

see that |Mt | ≤ A + (a + b)t , so |Mt∧τ ε | ≤ A + (a + b)τ ε . Since Eπ0(τ
ε) < +∞

by (5.14), (Mt∧τ ε ) is uniformly integrable, and so

g̃ε(π0) = E
(
C

(
hε, τ ε)) = Eπ0(Mτε) = Eπ0(M0) = gε

(
pε

0
) = gε(π0).

Therefore, gε(π0) = g̃ε(π0) as claimed. This completes the proof of Lemma 5.6.
�

Constructing gε . It remains to construct the function gε satisfying the assump-
tions of Lemma 5.6. Notice that on ]0,A[, writing ḡ1 instead of gε , equation (5.11)
becomes

λ(1 − x)ḡ′
1(x) + ax = 0,(5.16)

and as in (4.56), the solution of this differential equation is

ḡ1(x) = a

λ

(
x + ln(1 − x)

) + Kε
1 ,(5.17)

where Kε
1 is a constant to be determined.

On ]A + ε,B[, writing ḡ3 instead of gε , equation (5.11) becomes

λ(1 − x)ḡ′
3(x) + 1

2ρ2x2(1 − x)2ḡ′′
3 (x) + ax + b = 0,(5.18)

which is the same equation as in (4.9), and as in (4.28), its solution is

ḡ3(x) =
∫ x

A+ε
h̄3(y) dy + Kε

3 ,(5.19)

where

h̄3(x) = Kε
2f (x) + f (x)

∫ x

A+ε

−2

ρ2

ay + b

y2(1 − y)2

1

f (y)
dy(5.20)
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and

f (x) =
(

1 − x

x

)α

eα/x where α = 2λ

ρ2 ,(5.21)

and Kε
2 , Kε

3 are constants to be determined.
Finally, on ]A,A + ε[, writing ḡ2 instead of gε , equation (5.11) becomes

λ(1 − x)ḡ′
2(x) + 1

2
ρ2x2(1 − x)2 x − A

ε
ḡ′′

2 (x) + ax + b
x − A

ε
= 0.(5.22)

Let h̄2(x) = ḡ′
2(x), so the associated homogeneous equation is

λ(1 − x)f̄2(x) + 1

2
ρ2x2(1 − x)2 x − A

ε
f̄ ′

2(x) = 0,(5.23)

whose solution is

f̄ ε
2 (x) = ψε(x)(x − A)−βε ,(5.24)

where

βε = 1

A2(1 − A)

2λε

ρ2

and

ψε(x) = x2λε(1+A)/(ρA)2
(1 − x)2λε/(ρ2(1−A)) exp

(
− 2λε

Aρ2

1

x

)
.

Therefore,

h̄2(x) = Kf̄ ε
2 (x)

(5.25)

+ f̄ ε
2 (x)

∫ x

A

−2ε

ρ2

(
ay + b

y − A

ε

)
1

y2(1 − y)2(y − A)

1

f̄ ε
2 (y)

dy,

and if we want h̄2 to be bounded as x ↓ A, then we must set K = 0 (notice that
there is no integrability problem at y = A). We conclude that

h̄2(x) = f̄ ε
2 (x)

∫ x

A

−2ε

ρ2

(
ay + b

y − A

ε

)
1

y2(1 − y)2(y − A)

1

f̄ ε
2 (y)

dy(5.26)

and

ḡ2(x) =
∫ x

A
h̄2(y) dy + Kε

4 ,(5.27)

where Kε
4 is a constant to be determined.

In order to determine the four constants Kε
1 , . . . ,Kε

4 , we shall impose the four
equations

ḡ3(B) = 1 − B,(5.28)

ḡ3(A + ε) = ḡ2(A + ε),(5.29)

ḡ′
3(A + ε) = ḡ′

2(A + ε),(5.30)

ḡ1(A) = ḡ2(A).(5.31)
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We note that (5.29) and (5.30), together with (5.18) and (5.22), imply that ḡ′′
3 (A +

ε) = ḡ′′
2 (A + ε), and (5.31), together with (5.16) and (5.22), implies that ḡ′

1(A) =
ḡ′

2(A).
From (5.28) and (5.19), we see that

Kε
3 = 1 − B −

∫ B

A+ε
h̄3(y) dy,(5.32)

while (5.29), (5.19) and (5.27) imply that

Kε
3 =

∫ A+ε

A
h̄2(y) dy + Kε

4 .(5.33)

Equality (5.30), (5.20) and (5.26) give the relation

Kε
2 = f̄ ε

2 (A + ε)

f (A + ε)
(5.34)

×
∫ A+ε

A

−2ε

ρ2

(
ay + b

y − A

ε

)
1

y2(1 − y)2(y − A)

1

f̄ ε
2 (y)

dy,

while (5.31), (5.17) and (5.27) give

a

λ

(
A + ln(1 − A)

) + Kε
1 = Kε

4 .(5.35)

Therefore, (5.34) determines Kε
2 , (5.32) determines Kε

3 , then (5.33) determines
Kε

4 and (5.35) determines Kε
1 .

PROPOSITION 5.7. For ε > 0, let Kε
1 , . . . ,Kε

4 be determined by (5.32)–(5.35),
define ḡ1(x) as in (5.17), ḡ2(x) as in (5.27), and ḡ3(x) as in (5.19). Set

gε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ḡ1(x), if 0 ≤ x ≤ A,

ḡ2(x), if A < x < A + ε,

ḡ3(x), if A + ε ≤ x < B,

1 − x, if B ≤ x ≤ 1.

Then gε satisfies the assumptions of Lemma 5.6. Further, let g be as in case (a) of
Theorem 5.1. Then

lim
ε↓0

gε(x) = g(x) for all x ∈ [0,1].

PROOF. By the comments that follow (5.31), gε is C2 on [0,1] \ {A,B}, C1

on [0,1] \ {B} and continuous on [0,1]. For x ∈ [B,1], gε(x) = 1 − x = g(x), so
we consider the case where x ∈ [0,B[.
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Case 1: x ∈]A,B[. We first check that Kε
2 → K1, where K1 is defined in (4.25).

We note that

Kε
2 = ψε(A + ε)

f (A + ε)
ε−βε

×
∫ A+ε

A

−2ε

ρ2

(
ay + b

y − A

ε

)
1

y2(1 − y)2

1

ψε(y)
(y − A)βε−1 dy.

Notice that ψε(A + ε) → 1 and f (A + ε) → f (A) as ε ↓ 0. Set

λ0 = 1

A2(1 − A)

2λ

ρ2 so that βε = λ0ε.

Then

Kε
2 ∼ 1

f (A)
ε1−λ0ε

∫ A+ε

A

−2

ρ2

(
ay + b

y − A

ε

)
1

y2(1 − y)2ψε(y)
(y − A)λ0ε−1 dy

∼ 1

f (A)

−2

ρ2

1

A2(1 − A)2ψε(A)

× ε1−λ0ε
∫ A+ε

A

[
aA(y − A)λ0ε−1 + b

ε
(y − A)λ0ε

]
dy,

and the integral is equal to

aA
ελ0ε

λ0ε
+ b

ε

ελ0ε+1

λ0ε + 1
,

and therefore,

lim
ε↓0

Kε
2 = 1

f (A)

−2

ρ2

1

A2(1 − A)2

aA

λ0
= −a

λ

A

1 − A

1

f (A)
= K1,

as claimed.
This implies that for y > A + ε, h̄3(y) → f2(y), where h̄3 and f2 are, respec-

tively, defined in (5.20) and (4.24). By dominated convergence, we deduce that
Kε

3 → K2, and for x ∈]A,B[ and for ε ↓ 0 with 0 < ε < x − A,

gε(x) = ḡ3(x) → g2(x) = g(x),

where g2 is defined in (4.30).
Case 2: x ∈ [0,A]. From (5.33), we see that Kε

3 −Kε
4 → 0, therefore Kε

4 → K2
by the above, and from (5.35), we see that

Kε
1 → K2 − a

λ

(
A + ln(1 − A)

)
.

We conclude from (5.17) and (4.34) that for x ∈ [0,A], as ε ↓ 0,

gε(x) = ḡ1(x) → g1(x) = g(x).

This completes the proof of Proposition 5.7. �

The next lemma checks condition (5.14).
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LEMMA 5.8. Fix ε > 0, and let τ ε be defined in (5.9). Then for all x ∈ [0,1],
Ex(τ

ε) < ∞.

PROOF. We first seek a bounded function γε defined on [0,B] such that

Lγε = −1,(5.36)

where L is the operator defined in (5.12).
For 0 < x < A, (5.36) becomes

λ(1 − x)γ ′
ε(x) = −1,(5.37)

so

γε(x) = 1

λ
ln(1 − x) + D1, 0 ≤ x ≤ A.(5.38)

For A < x < A + ε, (5.36) becomes

λ(1 − x)γ ′
ε(x) + 1

2
ρ2x2(1 − x)2 x − A

ε
γ ′′
ε (x) = −1,(5.39)

and as in (5.22) and (5.25), the solution to this equation is

γε(x) =
∫ x

A
h4(y) dy + D3, A < x < A + ε,(5.40)

where

h4(x) = D2f̄
ε
2 (x) + f̄ ε

2 (x)

∫ x

A

−2ε

ρ2

1

y2(1 − y)2(y − A)

1

f̄ ε
2 (y)

dy,(5.41)

and f̄ ε
2 is defined in (5.24). Since we want h4 and γε to be bounded (as x ↓ A), we

set D2 = 0.
For A + ε < x < B , (5.36) becomes

λ(1 − x)γ ′
ε(x) + 1

2ρ2x2(1 − x)2γ ′′
ε (x) = −1,(5.42)

and as in (5.19), the solution of this equation is

γε(x) =
∫ x

A+ε
h5(y) dy + D4,(5.43)

where

h5(x) = D5f (x) + f (x)

∫ x

A+ε

−2

ρ2y2(1 − y)2

1

f (y)
dy,(5.44)

and f (x) is defined in (5.21).
We must determine the constants D1, . . . ,D5. For this, we impose the following

conditions:

(a) γε(B) = 0,
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(b) γε((A + ε)+) = γε((A + ε)−),
(c) γ ′

ε((A + ε)+) = γ ′
ε((A + ε)−),

(d) γε(A+) = γε(A−).

We note that (b) and (c), together with (5.39) and (5.42), imply that

γ ′′
ε

(
(A + ε)+) = γ ′′

ε

(
(A + ε)−)

,(5.45)

so γε will be C2 at A + ε. Also, (d) together with (5.37) and (5.39) implies that

γ ′
ε(A+) = γ ′

ε(A−),(5.46)

so γε will be C1 at A.
From property (c), (5.44) and (5.41), we see that

D5f (A + ε) = f̄ ε
2 (A + ε)

∫ A+ε

A

−2ε

ρ2

1

y2(1 − y)2(y − A)

1

f̄ ε
2 (y)

dy,

and this determines D5 (and therefore h5).
From (a) and (5.43), we find that

D4 =
∫ A+ε

B
h5(y) dy,

so that

γε(x) =
∫ x

B
h5(y) dy for A + ε < x < B.(5.47)

From (b), (5.47) and (5.40), we see that∫ A+ε

B
h5(y) dy =

∫ A+ε

A
h4(y) dy + D3,

and this determines D3.
Finally, from (d), (5.38) and (5.40), we see that

1

λ
ln(1 − A) + D1 = D3,

and this now determines D1.
With the choice of constants D1, . . . ,D5 above, we have determined a function

γε : [0,B] → R which is C1 on [0,B] and C2 on [0,A] and [A,B].
We now turn to the study of Ex(τ

ε). For x ∈ [A,B], the behavior of pε
t while

pε
t ∈ [A,A + ε[ is somewhat unusual, because of the square-root in the diffusion

coefficient in the s.d.e. (5.15). We are going to check below that in this interval,
pε

t − A is comparable to the time-change (under a well-behaved time change) of a
BESQ-process [22], Chapter XI, so it behaves essentially like the Cox–Ingersoll–
Ross process [16], Theorem 6.2.3, Proposition 6.2.4. In particular, pε

t ≥ A since
x ≥ A, so (pε

t ) never goes strictly below A (though it may hit A and A is instan-
taneously reflecting), and A + ε is hit in finite time because pε

t is either recurrent
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or transient, depending on the values of λ and ρ. On the other hand, h(ε)(pε
t ) = 1

while pε
t ∈ [A + ε,B], so (5.15) simply describes there a diffusion with positive,

bounded and Lipschitz continuous drift and diffusion coefficients.
Regarding the behavior of pε

t while pε
t ∈ [A,A+ε[, set p̃ε

t = pε
t −A. By (5.15),

dp̃ε
t = λ

(
1 − A − p̃ε

t

)
dt +

√
p̃ε

t σt dW̄ ε
t ,(5.48)

where

σt = ρε−1/2(
p̃ε

t + A
)(

1 − A − p̃ε
t

)
.

In particular, there are two positive and finite constants cε and Cε such that cε ≤
σt ≤ Cε as long as pε

t ∈ [A,A + ε[. Define a martingale

Mt =
∫ t

0
σs dW̄ ε

s ,(5.49)

so that

〈M〉t =
∫ t

0
σ 2

s ds.

Define the increasing process (ρt ) so that 〈M〉ρt = t , and notice that

c2
ε t ≤ 〈M〉t ≤ C2

ε t and
t

C2
ε

t ≤ ρt ≤ t

c2
ε

t.

By (5.48) and (5.49),

p̃ε
t = p̃ε

0 +
∫ t

0
λ
(
1 − A − p̃ε

s

)
ds +

∫ t

0

√
p̃ε

s dMs.

Using the time-change formulas for deterministic and stochastic integrals (see
Problem 4.5 and Proposition 4.8 in [15], Chapter 3, we see that

p̃ε
t = p̃ε

0 +
∫ 〈M〉t

0
λ
(
1 − A − p̃ε

ρs

) 1

σ 2
ρs

ds +
∫ 〈M〉t

0

√
qs dW̄ ε

s .

Setting qs = p̃ε
ρs

, so that p̃ε
t = q〈M〉t , we find that

q〈M〉t =
∫ 〈M〉t

0
λ(1 − A − qs)

1

σ 2
ρs

ds +
∫ 〈M〉t

0

√
qs dW̄ ε

s ,

and, setting t = ρu,

qu =
∫ u

0
λ(1 − A − qs)

1

σ 2
ρs

ds +
∫ u

0

√
qs dW̄ ε

s .

The drift of (qu) is λ(1 − A − qu)/σ
2
ρu

≥ λ(1 − A − ε)/C2
ε , so by the comparison

theorem for s.d.e.’s [15], Chapter 5, Proposition 2.18, qu is greater than the BESQ-
process with drift λ(1 − A − ε)/C2

ε , hence qu ≥ 0 a.s., or, equivalently, pε
t ≥ A

a.s.
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We now apply Itô’s formula to γε(p
ε
t∧τ ε ), since γε is C2 on [A,B],

γε

(
pε

t∧τ ε

) = γε

(
pε

0
) +

∫ t∧τ ε

0
γ ′
ε

(
pε

s

)
dpε

s + 1

2

∫ t∧τ ε

0
γ ′′
ε

(
pε

s

)
d
〈
pε〉

s

= γε

(
pε

0
) +

∫ t∧τ ε

0
γ ′
ε

(
pε

s

)
ρpε

s

(
1 − pε

s

)√
h(ε)

(
pε

s

)
dW̄ ε

s

+
∫ t∧τ ε

0
Lγε

(
pε

s

)
ds.

According to (5.36), Lγε(p
ε
s ) = −1 for s < τε , so, taking expectations, we find

that

Ex

(
γε

(
pε

t∧τ ε

)) = γε(x) − Ex

(
t ∧ τ ε),

so

Ex

(
t ∧ τ ε) = −Ex

(
γε

(
pε

t∧τ ε

)) + γε(x).

The right-hand side is bounded, so supt∈R+ Ex(t ∧τ ε) < +∞. By the monotone
convergence theorem, Ex(τ

ε) < +∞ as claimed [and in fact, Ex(τ
ε) = γε(x)],

x ∈ [A,B].
For x ∈ [0,A[, we observe from (5.15) that pε

t is deterministic and increases
at speed ≥ λ(1 − A) until reaching A. Thus A is hit in less than some τ0 units of
time, and so

Ex

(
τ ε) ≤ τ0 + EA

(
τ ε) < +∞.

Finally, for x ∈ [B,1], τ ε = 0 Px-a.s., so Ex(τ
ε) = 0. This proves Lemma 5.8. �

LEMMA 5.9. The function gε defined in Proposition 5.7 is the cost associated
with the strategy (hε, τ ε), that is, for all x ∈ [0,1], gε(x) = g̃ε(x) = E(C(hε, τ ε))

[g̃ε is defined in (5.10)].

PROOF. According to Proposition 5.7, gε satisfies the assumptions of Lem-
ma 5.6, and according to Lemma 5.8, (5.14) holds. Therefore, by Lemma 5.6,
gε = g̃ε , and this proves Lemma 5.9. �

PROOF OF THEOREM 5.2. In case (a) of Theorem 5.1, in view of the consider-
ations that follow the proof of Theorem 5.1, it remains only to prove that g̃ ≤ g. By
definition of g̃ and Lemma 5.9, the inequality g̃ ≤ gε holds. Since g = limε↓0 gε by
Proposition 5.7, we conclude that g̃ ≤ g. This completes the proof of Theorem 5.2
in case (a) of Theorem 5.1.

The statement of Theorem 5.2 in case (b) of Theorem 5.1 follows from the fact
that the optimal control system exhibited in the proof of Theorem 5.1 is (trivially)
a strategy, which then is necessarily optimal. �
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