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TRACER DIFFUSION AT LOW TEMPERATURE IN KINETICALLY
CONSTRAINED MODELS

BY ORIANE BLONDEL

Université Paris Diderot

We describe the motion of a tracer in an environment given by a kineti-
cally constrained spin model (KCSM) at equilibrium. We check convergence
of its trajectory properly rescaled to a Brownian motion and positivity of the
diffusion coefficient D as soon as the spectral gap of the environment is pos-
itive (which coincides with the ergodicity region under general conditions).
Then we study the asymptotic behavior of D when the density 1 − q of the
environment goes to 1 in two classes of KCSM. For noncooperative models,
the diffusion coefficient D scales like a power of q, with an exponent that we
compute explicitly. In the case of the Fredrickson–Andersen one-spin facil-
itated model, this proves a prediction made in Jung, Garrahan and Chandler
[Phys. Rev. E 69 (2004) 061205]. For the East model, instead we prove that
the diffusion coefficient is comparable to the spectral gap, which goes to zero
faster than any power of q. This result contradicts the prediction of physicists
(Jung, Garrahan and Chandler [Phys. Rev. E 69 (2004) 061205; J. Chem.
Phys. 123 (2005) 084509]), based on numerical simulations, that suggested
D ∼ gapξ with ξ < 1.

1. Introduction. Kinetically constrained models (KCSM) have been intro-
duced in the physics literature to model glassy dynamics. They are Markov pro-
cesses on {0,1}Zd

(or more generally on the set of configurations on a graph),
where zeros mark empty sites, and ones mark sites occupied by a particle. The dy-
namics is of Glauber type: with rate one, each site refreshes its occupation variable:
to a zero with probability q , and to a one with probability 1 − q , on the condition
that a specific constraint be satisfied by the configuration around the to-be-updated
site. This constraint takes the form that “a certain set of zeros should be present in
a fixed neighborhood,” but does not involve the configuration at the to-be-updated
site, so that the product Bernoulli measure on Z

d with parameter 1−q is reversible
for the dynamics.

A tracer particle evolves in an environment given by a KCSM. The environment
is not influenced by the tracer, which performs a simple random walk constrained
to jumping only between two empty sites. Properly rescaled, the tracer trajectory is
expected to converge to a Brownian motion with a diffusion coefficient depending
on the environment. Standard results and strategy [Kipnis and Varadhan (1986),
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De Masi et al. (1989), Spohn (1990)] allow us to show that in the ergodic regime
for the environment there is indeed convergence to a Brownian motion, and to
give a variational formula for the diffusion coefficient; see Proposition 3.1 and
Lemma 4.1. A general argument then implies that, as soon as the environment has
a positive spectral gap, the diffusion coefficient is also positive, so that the conver-
gence result is nondegenerate (Proposition 3.2). Note that the ergodicity regime of
KCSM has been identified in Cancrini et al. (2008), and has been shown to coin-
cide with the region of positivity of the spectral gap in great generality, including
all the models we consider. Thus we prove in fact positivity of the diffusion coeffi-
cient in the ergodic regime of the dynamical environment. The variational formula
also yields an immediate upper bound on the diffusion coefficient. A similar study
was carried in Bertini and Toninelli (2004) with environments given by some non-
cooperative constrained models with Kawasaki dynamics.

The main focus of this paper is to compute the asymptotics of the diffusion
coefficient when q → 0. This study is inspired by the papers Jung, Garrahan and
Chandler (2004, 2005), which in turn have the following physical motivation. In
homogeneous liquid systems, physicists argue that the relaxation time τ (measured
as the viscosity of the liquid), the temperature T and the diffusion coefficient D

of a particle moving inside the system satisfy the following relation, called the
Stokes–Einstein relation,

D ∝ T τ−1.(1)

This relation is well obeyed in liquids at high enough temperature. Instead, in
supercooled liquids it is experimentally observed [see, for instance, Edmond et al.
(2012), Cicerone and Ediger (1996), Chang and Sillescu (1997), Swallen et al.
(2003)] that Dτ/T increases by 2–3 orders of magnitude when decreasing T to-
ward the glass transition temperature. In particular both D and τ−1 decrease faster
than any power law when the temperature is lowered, and for many supercooled
liquids a good fit of data is

D ∝ τ−ξ with ξ < 1.(2)

In other words, the self-diffusion of particles becomes much faster than structural
relaxation, and the Stokes–Einstein relation is violated. This decoupling between
translational diffusion and global relaxation is interpreted as a landmark of dynam-
ical heterogeneities in glassy systems, namely the existence of spatially correlated
regions of relatively high or low mobility that persist for a finite lifetime in the liq-
uid, and that grow in size as one approaches the glass transition. More precisely,
the decoupling should be due to the fact that diffusion is dominated by the fastest
regions, whereas structural relaxation is dominated by the slowest regions.

In order to investigate the possible violation of the Stokes–Einstein relation in
KCM, which are used as simplified models of glassy dynamics, in Jung, Garrahan
and Chandler (2004, 2005) the authors run simulations of a tracer in two systems
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with constrained dynamics in one dimension: the FA-1f model (in which the con-
straint requests that at least one neighbor be empty) and the East model (in which
the constraint is satisfied if the neighbor in the East direction is empty). They pre-
dict in both cases a breakdown of the Stokes–Einstein relation. More precisely,
they predict that in the FA-1f model in one dimension,

D ∼ q2 ∼ gap2/3(3)

and in the East model,

D ≈ gapξ with ξ ≈ 0.73.(4)

Our results confirm (3) but invalidate (4). Indeed we prove that for the East
model D ≈ gap up to polynomial corrections (Theorem 3.3). For this model sim-
ulations are much harder to run than for FA model due to the very fast divergence
of the relaxation time when q → 0 [faster than any power of 1/q; see (19)], thus
accounting for the wrong numerical prediction.

More generally we show that, in any dimension, if the model is defined by the
constraint “there should be at least k zeros in a ball of radius k around the to-be-
updated site,” the diffusion coefficient is of order qk+1 [k = 1 corresponds to the
FA-1f model, so the result confirms the conjecture in Jung, Garrahan and Chandler
(2004); see Theorem 3.3]. The proof of this result relies on the introduction of an
auxiliary dynamics whose diffusion coefficient gives a lower bound for D. This
dynamics is similar to that in Spohn (1990), though it is less immediate to derive
because it does not appear by just suppressing terms in the variational formula. The
very construction of this auxiliary dynamics is in fact quite informative about the
effective dynamics of the tracer, and can be generalized to other noncooperative
models; see Definition 2.1. Back to the FA-1f model, in dimension 2, our result and
the estimate of the spectral gap in Cancrini et al. (2008) (Theorem 6.4) show that
D ∝ gap. When d ≥ 3, our bounds allow us to extract the asymptotic dependence
of D in q . However, due to the current lack of precise bounds on the spectral gap,
we cannot decide whether D ∝ gapξ for some exponent ξ , but our results do imply
that ξ cannot be strictly smaller than one.

We also study the diffusion coefficient when the environment is given by the
East model, which does not belong to the noncooperative class. As mentioned
above, we prove in this case D ≈ gap up to polynomial corrections (Theorem 3.4),
contradicting (4). The strategy used in that context is very different from the one
we designed for the “k-zeros” model because the dynamics of the East model is
cooperative, so that restricting the dynamics only to a neighborhood of the tracer
is not relevant. The proof relies instead on precise estimates of the energy barriers
that have to be overcome in order for the tracer to cross the typical distance be-
tween two zeros at equilibrium, 1/q . These estimates have been established mostly
in Cancrini et al. (2008) and Chleboun, Faggionato and Martinelli (2012). As an
extension of results in these two papers, we provide in particular a better estimate
on the spectral gap in infinite volume (Lemma 6.3).
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The paper is organized as follows. In Section 2, we define the processes of
the environment, the tracer dynamics and the environment seen from the tracer.
In Section 3 we collect the main results of this paper, which are proved in the
following sections. In Section 4, we prove convergence of the tracer trajectory
to a Brownian motion with positive diffusion coefficient in the ergodic regime.
Section 5 is devoted to retrieve the right asymptotics for the diffusion coefficient
when the density goes to 1 in noncooperative models. Finally, in Section 6, we
show that asymptotically the diffusion coefficient in the East model is of the same
order as the spectral gap, up to polynomial corrections.

2. Models and notation. Let � = {0,1}Zd
. For ω ∈ �, x ∈ Z

d we define ωx

the configuration such that

ωx
y =

{
ωy, if y �= x,

1 − ωx, if y = x.
(5)

A KCSM is defined by its equilibrium density p = 1 − q and constraints
(cx(ω))x∈Z,ω∈�, taking values 0 and 1. We require that the constraints be trans-
lation invariant, that cx depend on a fixed finite neighborhood of x and not on
ωx [i.e., cx(ω) = 1 if and only if cx(ω

x) = 1]. We also want the constraints to be
monotone [if ∀x ∈ Z

d,ωx ≤ ω′
x , then ∀x ∈ Z

d, cx(ω) ≥ cx(ω
′)]. We will denote

by LE the generator of the environment process: for f a local function on {0,1}Z
LEf (ω) = ∑

y∈Z
cy(ω)

(
(1 − q)(1 − ωy) + qωy

)[
f

(
ωy) − f (ω)

]
.(6)

In words, a zero (resp., each one) at site x in configuration η turns into a one (resp.,
a zero) at rate (1 − q) (resp., q), provided the constraint is satisfied at x, that is,
cx(η) = 1. This process satisfies the detailed balance property w.r.t. μ the product
Bernoulli measure on {0,1}Zd

of parameter 1 − q , so it is reversible.
A transition ω → ωx is legal if cx(ω) = 1. Note that ω → ωx is legal if and

only if ωx → ω is. A KCSM is noncooperative if a finite empty set is enough to
empty the whole configuration through legal transitions. More precisely, we have
the following:

DEFINITION 2.1. A KCSM is noncooperative if the following holds:
There exists a finite set A ⊂ Z

d such that for every ω ∈ �, if ω|A ≡ 0, for
every x ∈ Z

d such that ωx = 1, there is a finite sequence ω(0), . . . ,ω(n) such that
ω(0) = ω, (ω(n))x = 0, and for all i = 1, . . . , n, ω(i) = (ω(i−1))xi where xi ∈ Z

d

such that cxi
(ω(i−1)) = 1.

The ergodic regime for KCSM was identified in Cancrini et al. (2008). In gen-
eral, there is a critical parameter qc ∈ [0,1] such that the process is ergodic for
q > qc and nonergodic for q < qc. pc = 1 − qc is characterized as the critical
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FIG. 1. N3(x), the 3-neighborhood of x in Z
2.

density of an appropriate bootstrap percolation model; basically, it is the density
above which blocked clusters (i.e., clusters of occupied sites that cannot be emp-
tied through legal transitions) appear with positive probability. A noncooperative
model is ergodic at every density p = 1 − q ∈ (0,1) (qc = 0).

We now present the KCSM, which we will study in more detail.
We define a class of noncooperative KCSM, which we will call “k-zeros” for a

positive integer k. Let ‖ · ‖1 denote the 1-norm on Z
d , that is, the norm induced by

the graph distance. Let

Nk(x) = {
y ∈ Z

d |0 < ‖y − x‖1 ≤ k
}

(7)

be the k-neighborhood of x; see Figure 1.
The model “k-zeros” in Z

d is defined by the following constraints [recall (6)]:

cx(ω) =
⎧⎨
⎩

1, if
∑

y∈Nk(x)

(1 − ωy) ≥ k,

0, else,
(8)

that is, the constraint is satisfied if there are at least k zeros within distance k. It
is noncooperative since it is enough to empty 0, e1,2e1, . . . , (k − 1)e1 to empty
the whole lattice through legal transitions. For k = 1, the “1-zero” model is better
known as the one-flip Fredrickson–Andersen (or FA-1f) model.

The second model we want to study is the East model, a one-dimensional
KCSM for which the constraint is that the East neighbor of the to-be-updated site
be vacant. The corresponding generator is

LEf (ω) = ∑
y∈Z

(1 − ωy+1)
(
(1 − q)(1 − ωy) + qωy

)[
f

(
ωy) − f (ω)

]
.(9)

In this study, we consider an environment given by a KCSM, and we inject a
tracer at its origin. The tracer jumps at rate one to each of its nearest neighbors,
provided that both the site where it sits and the site where it wants to jump are
empty (for the environment). More formally, let (ω(t),Xt ) be the joint evolution
of the KCSM and the tracer. It is a Markov process on {0,1}Zd × Z

d given by the



1084 O. BLONDEL

generator

L0f (ω,x) = ∑
y∈Zd

cy(ω)
(
(1 − q)(1 − ωy) + qωy

)[
f

(
ωy, x

) − f (ω,x)
]

(10)

+
d∑

i=1

∑
α=±1

(1 − ωx)(1 − ωx+αei
)
[
f (ω,x + αei) − f (ω,x)

]
.

We consider the process η(t) of the environment seen from the tracer, whose
generator is given by

Lf (η) = ∑
y∈Zd

cy(η)
(
(1 − q)(1 − ηy) + qηy

)[
f

(
ηy) − f (η)

]
(11)

+
d∑

i=1

∑
α=±1

(1 − η0)(1 − ηαei
)
[
f (ηαei+·) − f (η)

]
,

where ηy+· denotes the configuration such that (ηy+·)x = ηy+x . This is again a

reversible process w.r.t. μ the product Bernoulli measure on {0,1}Zd
of parameter

1 − q (it satisfies detailed balance).
A central tool in our study will be the spectral gap. Recall its definition.

DEFINITION 2.2. The spectral gap of the generator LE is given by the varia-
tional principle

gap(LE) = inf
−μ(fLEf )

Varμ(f )
,(12)

where the infimum is taken over all functions in L2(μ) with Varμ(f ) �= 0. A sim-
ilar definition holds for gap(L) the spectral gap of the environment seen from the
tracer.

Recall also from Aldous and Diaconis (2002), Cancrini et al. (2008) that for the
“k-zeros” model and the East model, the spectral gap is positive at any density.

3. Main results. We collect here the main results of this paper. The first one
establishes that after diffusive scaling the trajectory of the tracer converges to a
Brownian motion and introduces the diffusion coefficient (or diffusion matrix) of
the tracer.

PROPOSITION 3.1. If the environment process is ergodic (q > qc), we have

lim
ε→0

εXε−2t = √
2DBt,(13)
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where Bt is the standard Brownian motion, the convergence holds in the sense of
weak convergence of path measures on D([0,∞),Rd) and the diffusion matrix D

is given by

u.Du = q2‖u‖2
2 −

∫ ∞
0

μ
(
jue

Lt ju

)
dt,(14)

where for any u = (u1, . . . , ud) ∈ Z
d ju is given by the action of the generator L0

on the function (ω, x) �→ u.x, that is,

ju(η) = (1 − η0)

d∑
i=1

∑
α=±1

(1 − ηαei
)αui.(15)

For the previous result to be meaningful, we need to prove D > 0. In the next
proposition, we provide easy bounds on D which show in particular that this is
true as soon as the KCSM has a positive spectral gap. In Cancrini et al. (2008), it
is proved for a large class of KCSM that the spectral gap is positive in the whole
ergodic regime, so this requirement is not a big restriction. In particular, the spec-
tral gap is positive at every density p = 1 − q ∈ (0,1) for the East model and
noncooperative models.

PROPOSITION 3.2.

q2‖u‖2
2 ≥ u.Du ≥ gap(LE)

4d + gap(LE)
q2‖u‖2

2.(16)

The core of this paper is the study of D when q goes to zero, both in nonco-
operative models and in the East model. In both cases the easy bounds above can
be significantly improved. For the sake of simplicity, we give the following result
only in the specific case of the “k-zeros” model. However, we expect our method
to work more generally for noncooperative models, and give the correct power of
q at high density.

THEOREM 3.3. For the tracer diffusion in the “k-zeros” model, there exist
constants 0 < c ≤ C < ∞ depending only on d such that for all u ∈ Z

d ,

cqk+1‖u‖2
2 ≤ u.Du ≤ Cqk+1‖u‖2

2.(17)

In the East model, we bound the ratio D/gap(LE) on both sides by a polyno-
mial in q .

THEOREM 3.4. When the environment is given by the East model, there exist
constants C,c > 0 and α such that

cq2 gap(LE) ≤ D ≤ Cq−α gap(LE).(18)
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REMARK 3.5. In Aldous and Diaconis (2002) and Cancrini et al. (2008), it is
established that

lim
q→0

log(1/gap)

(log(1/q))2 = (2 log 2)−1.(19)

In particular, this means that the powers of q appearing in (18) are merely correc-
tions to the correct asymptotic for D, which is governed by the spectral gap of the
East model. Inequality (18) is therefore incompatible with the prediction in Jung,
Garrahan and Chandler (2004) that D ≈ gapξ for some ξ < 1.

4. Convergence to a nondegenerate Brownian motion. We follow the strat-
egy of Kipnis and Varadhan (1986), De Masi et al. (1989) and Spohn (1990) to
establish Proposition 3.1.

PROOF OF PROPOSITION 3.1. Considering the martingale

Mu
t = u.Xt −

∫ t

0
ju

(
η(s)

)
ds(20)

and following the steps of De Masi et al. (1989) and Spohn (1990), using reversibil-
ity, we get

lim
t→∞

1

t
E

[
(u.Xt)

2]
(21)

=
d∑

i=1

∑
α=±1

u2
i μ

(
(1 − η0)(1 − ηαei

)
) − 2

∫ ∞
0

μ
(
jue

tLju

)
dt.

In particular,
∫ ∞

0 μ(jue
tLju) dt < ∞, so that, since the process of generator L

is ergodic, Theorem 1.8 of Kipnis and Varadhan (1986) applies to
∫ t

0 ju(ηs) ds,
yielding

εu.Xε−2t = ε
(
Mu

ε−2t
+ Nε−2t

) + Qε(t),(22)

where Mt + Nt is a martingale in L2(P) with stationary increments, and Qε(t)

is an error term that vanishes when ε goes to 0. This implies the convergence of
εXε−2t to

√
2DBt with D given by (14). �

A first step in the direction of proving D > 0 is to give a variational formula
for D, which is the adaptation to our context of Proposition 2 in Spohn (1990).

LEMMA 4.1.

u.Du = 1

2
inf
f

{ ∑
y∈Zd

μ
(
cy(η)

(
(1 − q)(1 − ηy) + qηy

)[
f

(
ηy) − f (η)

]2)
(23)

+
d∑

i=1

∑
α=±1

μ
(
(1 − η0)(1 − ηαei

)
[
αui + f (ηαei+·) − f (η)

]2)}
,
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where the infimum is taken over local functions f on �.

PROOF. We notice, as in Spohn (1990), that∫ ∞
0

μ
(
jue

tLju

)
dt = − inf

{−2μ(juf ) − μ(fLf )
}
,(24)

where the infimum is taken over local functions on �. Then, using detailed bal-
ance, notice that we can write

−4μ(juf ) = 2
d∑

i=1

∑
α=±1

αuiμ
(
(1 − η0)(1 − ηαei

)
[
f (ηαei+·) − f (η)

])
.(25)

Moreover,

−2μ(fLf ) = ∑
y∈Zd

μ
(
cy(η)

(
p(1 − ηy) + (1 − p)ηy

)[
f

(
ηy) − f (η)

]2)
(26)

+
d∑

i=1

∑
α=±1

μ
(
(1 − η0)(1 − ηαei

)
[
f (ηαei+·) − f (η)

]2)
.

Inserting (25) and (26) into (21) and rearranging the terms, we get (23). �

Now we can prove D > 0 when the spectral gap of the environment is positive.

PROOF OF PROPOSITION 3.2. The upper bound follows directly from (14),
since the second term is nonnegative.

For the lower bound, consider the expression of D given in (23). The first sum in
the infimum is −2μ(fLEf ), so that by definition of the spectral gap [recall (12)]

u.2Du ≥ inf

{
2 gap(LE)Varμ(f )

(27)

+
d∑

i=1

∑
α=±1

μ
(
η̄0η̄αei

[
αui + f (ηαei+·) − f (η)

]2)}
,

where we write η̄x = 1 − ηx .
To bound the double sum, we use the inequality (a + b)2 ≥ γ a2 − γ

1−γ
b2 for

γ < 1. This yields

μ
(
η̄0η̄αei

[
αui + f (ηαei

) − f (η)
]2)

≥ γ q2u2
i − γ

1 − γ
μ

(
η̄0η̄αei

[
f (ηαei+·) − f (η)

]2)

≥ γ q2u2
i − 4

γ

1 − γ
Varμ(f ).
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So that, injecting this in (27), we get

u.Du ≥ inf
{(

gap(LE) − 4d
γ

1 − γ

)
Varμ(f ) + γ q2‖u‖2

2

}
.(28)

Choosing γ = gap(LE)
4d+gap(LE)

< 1, we get the desired lower bound. �

Note that at high density (q → 0), the spectral gap of the East model is of
order higher than any polynomial in q , so that the term q2 is negligible. In fact,
for the East model, the lower bound here is quite accurate (Theorem 3.4). For
noncooperative models, however, we are able to do much better. In particular, for
FA-1f in one dimension, this gives D ≥ Cq5, which is pretty poor, given that D is
in fact of order q2, as predicted in Jung, Garrahan and Chandler (2004). Except in
the FA-1f model, the upper bound also needs refinement. Designing more precise
bounds on D when q → 0 is the object of the next sections.

5. Correct order of D for small q in noncooperative models.

REMARK 5.1. We believe that the techniques developed below can be adapted
to show the equivalent of Theorem 3.3 for any noncooperative model, k being the
minimal number of zeros needed to empty the whole lattice (see Definition 2.1),
and 1 being replaced by m the minimal number of extra zeros needed to move a
minimal cluster around. We propose a heuristic for the order qk+m, which we state
in dimension 1 for simplicity. Consider for a moment a simple symmetric random
walk on the interval {−1/(2q), . . . ,1/(2q)} of length 1/q . For large times T , the
time spent in 0 by the random walk is approximately T q . Since 1/q is the typi-
cal distance between two zeros under the product Bernoulli measure μ on {0,1}Z,
the fraction of time during which there is a zero at 0 before time T is approx-
imately T q . When that happens, a tracer sitting in 0 has a probability of order
q to jump, which gives a diffusion coefficient for the tracer in the FA-1f model
of order T q × q/T = q2. How does this adapt to another noncooperative environ-
ment, where k ≥ 1, m ≥ 1 (e.g., the “k-zeros” model, k > 1, in which case m = 1)?
A single zero cannot move on its own in such a model, but a group of k zeros can,
and since the number of extra zeros it needs to move is m, the diffusion coefficient
of such a group is of order qm. So we have to consider the fraction of time spent
in 0 by a group of k zeros performing a random walk on {−1/(2qk), . . . ,1/(2qk)}
before time T (1/qk being the typical distance between two such groups under μ),
that is, T qk . During the time the group of k zeros is in contact with the tracer (i.e.,
at site 0), the tracer diffuses with it, which means with rate qm. In the end, the
diffusion coefficient of the tracer should therefore be of order T qk × qm/T .
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FIG. 2. The four legal flips used to reconstruct the swap η −→ η↔ when η−1 = η−2 = η̄1 =
(1 − η2) = 1. The cross recalls that the tracer is sitting at the origin.

5.1. Lower bound in Theorem 3.3. The key to the proof of the lower bound
we give below is that we are able to come down to studying a local dynamics; see
Lemma 5.2 and the description of the dynamics in the proof of Lemma 5.3. The
possibility of doing this simplification is strongly related to the fact that we are
working with noncooperative models.

For the sake of simplicity, this proof is written for k = 3, but it generalizes
without difficulty to any k ≥ 1. It is widely inspired by the fourth section in Spohn
(1990).

The first step is to give a lower bound on D in terms of the diffusion coef-
ficient D of another dynamics (Lemma 5.2), for which we can prove positivity
(Lemma 5.3). In the auxiliary dynamics, the only allowed transitions are jumps of
the tracer between empty sites and swaps of its left and right neighborhood, which
can be reconstructed using only transitions that are allowed in the initial dynamics;
see Figures 2 and 3. We need some notation to be more specific.

Let μ(3) be the product Bernoulli measure on Z conditioned to having at least
three consecutive zeros, one of which at the origin; that is, let A ⊂ � be defined as

A = {
η ∈ �|η0 = 0

(29)
and (1 − η1)(1 − η2) + (1 − η−1)(1 − η1) + (1 − η−2)(1 − η−1) ≥ 1

}
and

μ(3) = μ(·|A).(30)

FIG. 3. The two legal flips used to reconstruct the swap η −→ η↔ when η−1 = η̄−2 = η̄1 =
η̄2 = 1.
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Also, if η ∈ �, denote by η↔ the configuration obtained by exchanging the occu-
pation numbers in sites −1 and +1, and −2 and +2

η↔
y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η1, if y = −1,

η−1, if y = 1,

η2, if y = −2,

η−2, if y = 2,

ηy, else.

(31)

We also generalize the notation ηx by defining ηx1,...,xn as the configuration η

flipped at sites x1, . . . , xn (the xi being distinct).
We can now state the following:

LEMMA 5.2. If D is defined by

D = 1

2
inf
f

{
μ(3)((1 − (1 − η1)(1 − η−1)

)[
f

(
η↔) − f (η)

]2)
+ μ(3)((1 − η1)

[
1 + f (η1+·) − f (η)

]2)
(32)

+ μ(3)((1 − η−1)
[−1 + f (η−1+·) − f (η)

]2)}
,

where the infimum is taken over local functions on �, then we have

e1.De1 ≥ 1 + 2p

4
q4D.(33)

PROOF. For briefness, we define

η̄x = 1 − ηx and rx(η) = (1 − q)η̄x + qηx.(34)

Then we have, given the definition of μ(3) (30), for every local function f ,

μ(3)((1 − η̄1η̄−1)
[
f

(
η↔) − f (η)

]2)
= μ(3)(η̄1η̄2η−1

[
f

(
η↔) − f (η)

]2)
(35)

+ μ(3)(η̄−1η̄−2η1
[
f

(
η↔) − f (η)

]2)
.

Our aim is to reconstruct the swap changing η into η↔, using only legal (for the
“3-zeros” model dynamics) flips. The first term of the RHS in (35) can be rewritten
as

μ(3)(η̄1η̄2η−1η−2
[
f

(
η↔) − f (η)

]2)
(36)

+ μ(3)(η̄1η̄2η−1η̄−2
[
f

(
η↔) − f (η)

]2)
.
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Let us focus on the first term. See in Figure 2 a representation of the successive
flips used to reconstruct the swap. Writing that, when η−1 = η−2 = η̄1 = η̄2 = 1,

f
(
η↔) − f (η) = f

(
η−1,2,−2,1) − f

(
η−1,2,−2) + f

(
η−1,2,−2) − f

(
η−1,2)

(37)
+ f

(
η−1,2) − f

(
η−1) + f

(
η−1) − f (η),

and using the Cauchy–Schwarz inequality, we have

μ(3)(η̄1η̄2η−1η−2
[
f

(
η↔) − f (η)

]2)
≤ 4μ(3)(η̄1η̄2η−1η−2

[
f

(
η−1,2,−2,1) − f

(
η−1,2,−2)]2)

+ 4μ(3)(η̄1η̄2η−1η−2
[
f

(
η−1,2,−2) − f

(
η−1,2)]2)

(38)

+ 4μ(3)(η̄1η̄2η−1η−2
[
f

(
η−1,2) − f

(
η−1)]2)

+ 4μ(3)(η̄1η̄2η−1η−2
[
f

(
η−1) − f (η)

]2)
.

Note that all the flips involved are legal for the dynamics “3-zeros”: there are
always at least three zeros in the 3-neighborhood of the site that is flipped. Then
we make a change of variables in the first three terms above to get

μ(3)(η̄1η̄2η−1η−2
[
f

(
η↔) − f (η)

]2)
≤ 4

1 − q

q
μ(3)(η̄1η2η̄−1η̄−2

[
f

(
η1) − f (η)

]2)
+ 4μ(3)(η̄1η2η̄−1η−2

[
f

(
η−2) − f (η)

]2)
(39)

+ 4
1 − q

q
μ(3)(η̄1η̄2η̄−1η−2

[
f

(
η2) − f (η)

]2)
+ 4μ(3)(η̄1η̄2η−1η−2

[
f

(
η−1) − f (η)

]2)
.

In the same way (following the strategy represented in Figure 3), we get

μ(3)(η̄1η̄2η−1η̄−2
[
f

(
η↔) − f (η)

]2)
≤ 2(1 − q)

q
μ(3)(η̄−1η̄2η̄−2η̄1

[
f

(
η1) − f (η)

]2)
(40)

+ 2μ(3)(η̄1η̄2η̄−2η−1
[
f

(
η−1) − f (η)

]2)
.

Combining (36), (39) and (40) and doing the same for the second term in (35),
we get [recall (34) for the definition of rx]

μ(3)((1 − η̄1η̄−1)
[
f

(
η↔) − f (η)

]2)
≤ 4

q
μ(3)(η̄−1η̄−2r1(η)

[
f

(
η1) − f (η)

]2)
(41)
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+ 4

q
μ(3)(η̄1η̄−1r−2(η)

[
f

(
η−2) − f (η)

]2)

+ 4

q
μ(3)(η̄1η̄−1r2(η)

[
f

(
η2) − f (η)

]2)

+ 4

q
μ(3)(η̄1η̄2r−1(η)

[
f

(
η−1) − f (η)

]2)
.

Now notice that we have

μ(3)(η̄−1η̄−2r1(η)
[
f

(
η1) − f (η)

]2) = 1

μ(A)
μ

(
η̄0η̄−1η̄−2r1(η)

[
f

(
η1) − f (η)

]2)
and similarly for the other terms in (41), so that we have proved the following
inequality, recalling that μ(A) = q3(1 + 2p):∑

y∈Zd

μ
(
cy(η)ry(η)

[
f

(
ηy) − f (η)

]2)
(42)

≥ q4 (1 + 2(1 − q))

4
μ(3)((1 − η̄1η̄−1)

[
f

(
η↔) − f (η)

]2)
.

We are almost done. It remains to notice that

μ(3)(η̄1
[
1 + f (η1+·) − f (η)

]2) ≤ 1

μ(A)
μ

(
η̄0η̄1

[
1 + f (η1+·) − f (η)

]2)
and similarly with 1 replaced by −1, so that a fortiori

μ(3)(η̄1
[
1 + f (η1+·) − f (η)

]2) + μ(3)(η̄−1
[−1 + f (η−1+·) − f (η)

]2)
(43)

≤ 4

q4(1 + 2(1 − q))

d∑
i=1

∑
α=±1

μ
(
η̄0η̄αei

[
αδ1i + f (ηαei+·) − f (η)

]2)
.

Combining (42) and (43), and recalling (23), we get the lemma. �

Of course there is nothing special about the direction e1, and the lemma is valid
in all directions. Notice that it does not depend on the dimension. We now complete
the proof of the lower bound in Theorem 3.3 by providing a universal lower bound
on D.

LEMMA 5.3. D defined in (32) is the diffusion coefficient of a universal aux-
iliary dynamics and is bounded below as

D ≥ 4/9.(44)

PROOF. Following the same lines as in the proof of Proposition 3.1 and
Lemma 4.1, we see that D is the diffusion coefficient of the dynamics reversible
w.r.t. μ(3) described below:
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• with rate 1, if η1 = 0, the tracer jumps to the right, that is, we go from η to η1+·,
• with rate 1, if η−1 = 0, the tracer jumps to the left, that is, we go from η to

η−1+·,
• with rate 1, if either η1 = 1 or η−1 = 1, {−2,−1} and {2,1} are swapped, that

is, we go from η to η↔.

As in Spohn (1990), starting from a configuration η chosen in A [recall (29)],
we can index by Z all the configurations that can be reached by this dynamics in
the following way. η(0) = η is the initial configuration, that is almost surely in A.
Then we define inductively η(n), n ∈ Z. If η

(n)
1 = 0, η(n+1) = η

(n)
1+·. If η

(n)
1 = 1,

η(n+1) = (η(n))↔. Similarly, if η
(n)
−1 = 0, η(n−1) = η

(n)
−1+·. If η

(n)
−1 = 1, η(n−1) =

(η(n))↔. Note that this definition is consistent (η(n+1−1) = η(n)).
Using this labeling with integers of all attainable configurations, the dynamics

described above can be equivalently defined in the following way: if the system is
in the configuration η(n), it goes to η(n+1) with rate one, and to η(n−1) also with rate
one. So we can rewrite the process starting from η as η(t) = η(Nt ) where (Nt)t≥0
is a simple random walk on Z.

Now to conclude, we just need to notice that if Xt is the position of the tracer at
time t in this dynamics, we have

|Xt | ≥ ⌊2
3 |Nt |⌋,

since two out of three times N moves to the right, X also jumps by one (and
similarly to the left).

2D = lim
t→+∞

1

t
E

[
X2

t

] ≥ 4

9
lim

t→+∞
1

t
E

[
N2

t

] = 8/9. �

To deduce Theorem 3.3 lower bound from Lemma 5.2 and Lemma 5.3, let u ∈
R

d be such that ‖u‖2 = 1 and notice that we can use comparisons with the auxiliary
dynamics above in all directions to get

2u.Du ≥
d∑

i=1

inf
fi

{
1

d

∑
x∈Zd

μ
(
cx(η)rx(η)

[
fi

(
ηx) − fi(η)

]2)

+ ∑
α=±1

μ
(
(1 − η0)(1 − ηαei

)
[
αui + fi(ηαei+·) − fi(η)

]2)}

≥
d∑

i=1

u2
i inf

fi

{
1

d

∑
x∈Z·ei

μ
(
ci
x(η)rx(η)

[
fi

(
ηx) − fi(η)

]2)
(45)

+ 1

d

∑
α=±1

μ
(
(1 − η0)(1 − ηαei

)
[
α + fi(ηαei+·) − fi(η)

]2)}

≥ 2

d
D1,
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where ci
x(η) is one if and only if the constraint is satisfied using only zeros in

the direction i, D1 is the diffusion coefficient in one dimension and we used∑d
i=1 u2

i = 1. Theorem 3.3 follows from this inequality and the two previous lem-
mas.

REMARK 5.4. This strategy can be applied to other noncooperative mod-
els. However, the auxiliary dynamics (the one involving swaps around the origin
and jumps of the tracer) will be model dependant and may not be strictly one-
dimensional. It may be encoded by a random walks on graphs slightly more com-
plex than Z, but still with a uniformly positive diffusion coefficient. We believe that
this technique could allow us to retrieve the correct exponent at low temperature
for noncooperative models.

5.2. Upper bound in Theorem 3.3. In view of (23), to find an upper bound
on D, we need to find an appropriate test function. As a warming, suppose that
d = 1. Then, looking for a function that cancels the second line in (23), we find
that a natural function to consider is

f (η) = min{x ∈ N|ηx = 1}.(46)

Then it is not too difficult to check that if we plug this function into the first line
of (23), we get an expression of order qk+1: the factor qk comes from the con-
straint, and the extra q comes from the extra empty site we need in order to evolve.

In higher dimension, we are going to find a good test function to evaluate
e1.De1. Define C(η) the connected cluster of zeros containing the origin in the
configuration η [C(η) =∅ if η0 = 1]. See Figure 4 for an example.

Now we can define our test function.

f (η) = min
{
x ∈ N|C(η) ⊂ (−∞, x − 1] ×Z

d−1}
.(47)

For instance, if η0 = 1, f (η) = 0. In Figure 4, f (η) = 4. Note that this function
coincides with that in (46) when d = 1. This function cancels the second line

FIG. 4. An example of C(η). Zeros are represented by empty circles, ones by filled disks and the
origin is marked by a cross. The cluster of zeros containing the origin is circled by a line and tiled in
gray. In this case, f (η) = 4.
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in (23) when u = e1. Indeed, when (1 − η0)(1 − ηαei
) �= 0, 0 and αei belong to the

same cluster of zeros. So what we need to do is show that∑
y∈Zd

μ
(
cy(η)

(
(1 − q)(1 − ηy) + qηy

)[
f

(
ηy) − f (η)

]2) ≤ Cqk+1(48)

for some finite C. Let us split the LHS into two terms and treat them separately:
we need to show that

S0 = ∑
y∈Zd

μ
(
cy(η)(1 − ηy)

[
f

(
ηy) − f (η)

]2) ≤ Cqk+1,(49)

S1 = ∑
y∈Zd

μ
(
cy(η)ηy

[
f

(
ηy) − f (η)

]2) ≤ Cqk.(50)

Thanks to detailed balance, (1 − q)S0 = qS1, so we only need to show (49).
Let us now study S0. The mechanism involved here is the removal of part of the

cluster of zeros around the origin. In particular, when (1−ηy)[f (ηy)−f (η)]2 �= 0,
we certainly have

[
f

(
ηy) − f (η)

]2 ≤ ∣∣C(η)
∣∣2,

where |C(η)| is the cardinal of C(η). So that

S0 ≤ μ

(∣∣C(η)
∣∣2 ∑

y∈C(η)

cy(η)(1 − ηy)

)
(51)

≤ ∑
n≥0

μ

(∣∣C(η)
∣∣210↔∂Bn,0�∂Bn+1

∑
y∈C(η)

cy(η)(1 − ηy)

)
,

where ∂Bn denotes the set of points at distance n from 0, and {0 ↔ ∂Bn} is the
event that there is a site at distance n from 0 in C(η). Since on the event {0 ↔
∂Bn,0 � ∂Bn+1}, C(η) ⊂ B1(0, n), we have

S0 ≤ ∑
n≥0

(2n + 1)2d
∑

y∈B1(0,n)

μ
(
cy(η)(1 − ηy)10↔∂Bn,0�∂Bn+1

)
.(52)

On the one hand, for any y, we have for some constant C depending only on d ,

μ
(
cy(η)(1 − ηy)

) ≤ Cqk+1,(53)

since the constraint requires at least k zeros to be satisfied, and cy is independent
from ηy . On the other hand, if 0 ↔ ∂Bn, there is a self-avoiding walk of length
n starting at 0 which is empty. So a rough bound on the number of self-avoiding
walks of length n yields

μ(0 ↔ ∂Bn,0 � ∂Bn+1) ≤ (2d)nqn.(54)
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Putting together (53) and (54), we get

S0 ≤ ∑
n≥0

(2n + 1)3d[
Cqk+1 ∧ (2dq)n

] ≤ C′qk+1(55)

for q small enough. So we have proved (49).
A general argument allows to retrieve the upper bound in Theorem 3.3 for any

u ∈ R
d from the result for e1, . . . , ed . Write u = ∑d

i=1 uiei , and compute

u.Du =
d∑

i=1

u2
i ei .Dei + ∑

i �=j

uiuj ei .Dej .(56)

Notice that D is symmetric and positive (by Proposition 3.2), so that the appli-
cation (u, v) �→ u.Dv is a scalar product. We can therefore apply the Cauchy–
Schwarz inequality to the terms ei.Dej and get

u.Du ≤ Cqk+1

(
d∑

i=1

|ui |
)2

≤ C′qk+1,(57)

where C′ depends only on d by equivalence of the norms in finite dimension.

6. In the East model, D ≈ gap. In this section, we prove Theorem 3.4.
Before getting into the results concerning the tracer, let us recall briefly the

definition and basic property of the so-called distinguished zero, a very useful tool
for the study of the East model, which was introduced in Aldous and Diaconis
(2002).

DEFINITION 6.1. Consider ω ∈ � a configuration with ωx = 0 for some
x ∈ Z. Define ξ(0) = x. Call T1 = inf{t ≥ 0|the clock in x rings and ωx+1(t) = 0},
the time of the first legal ring at x. Let ξ(s) = x for s < T1, ξ(T1) = x + 1 and start
again to define recursively (ξ(s))s≥0.

Notice that for any s ≥ 0, ωξ(s)(s) = 0, and that ξ :R+ → Z is almost surely
càdlàg and increasing by jumps of 1.

This distinguished zero has an important property: as it moves forward, it leaves
equilibrium on its left; see Lemma 4 in Aldous and Diaconis (2002) or Lemma 3.5
of Cancrini et al. (2010). In particular, if ω is such that ωx = 0 and A an event
depending only on the configuration restricted to [x−, x+], with x+ < x, letting
V = {x−, . . . , x − 1}, then we have the following estimate:

Pω

(
ω(t) ∈ A

) ≤ μV (ω|V )−1
PμV ·ω

(
ω(t) ∈ A

) = μ(ω|V )−1μ(A),(58)

where μV is the Bernoulli(1 − q) product measure on {0,1}V , μV · ω denotes the
law of a random configuration equal to ω on Z \ V and chosen with law μV on V .
In the above estimate, the factor μV (ω|V ) comes from a change of measure to start
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from μ in V , and the last equality comes from the property of the distinguished
zero mentioned above.

For briefness, in this section, we will denote the spectral gap of the East process
by gap; see (12).

PROOF OF THEOREM 3.4. The lower bound is already contained in Proposi-
tion 3.2.

For the proof of the upper bound, fix t > 0 and τ � t to be chosen later, such
that t/τ is an integer and τ � gap−1 (more precisely, τ = qβ gap−1).

Then we can write

E
[
X2

t

] = E

[( t/τ∑
k=1

Xkτ − X(k−1)τ

)2]

=
t/τ∑
k=1

E
[
(Xkτ − X(k−1)τ )

2]
(59)

+ ∑
k �=k′

E
[
(Xkτ − X(k−1)τ )(Xk′τ − X(k′−1)τ )

]

= t

τ
E

[
X2

τ

] + ∑
k �=k′

E
[
(Xkτ − X(k−1)τ )(Xk′τ − X(k′−1)τ )

]
.

We need to show that (59) is smaller than tq−α gap for some α when τ is well
chosen. We are going to bound the first term using the fact that energy barriers
make it very costly to cross a distance greater than 1/q in time τ � gap−1. To
bound the second term, we use the symmetry of the model and the fact that the
process seen from the tracer has a positive spectral gap.

PROPOSITION 6.2. There exists β,C < ∞ such that, if τ = qβ gap−1,

E
[
X2

τ

] ≤ Cq−C.(60)

First we need two lemmas that rely on precise estimates on the spectral gap of
the East model on lengths of order at most 1/q , and related energy barriers, that
have been established in Chleboun, Faggionato and Martinelli (2012). We start
by showing a precise comparison between the relaxation time in infinite volume
and the relaxation time in volume 1/q . Recall that it was shown in Cancrini et al.
(2008) that for any δ > 0,

gap−1 ≤ Cδ

(
1

q

)log2(1/q)/(2−δ)

.(61)
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LEMMA 6.3. Let n = �log2(1/q)� and Trel(L) be the relaxation time of the
East model on length L with empty boundary condition. Then there exist finite
constants C,C′ such that

gap−1 ≤ Cq−CTrel(1/q) ≤ C′q−C′ n!
qn2

( n
2
) .(62)

PROOF. The second inequality follows immediately from Theorem 2 in
Chleboun, Faggionato and Martinelli (2012). To prove the first one, we refine
the bisection technique used in Cancrini et al. (2008) to prove (61). Let δ(q) =
10/ log(1/q), lk = 2k , δk = �l1−δ/2

k �, sk = �lδ/6
k �. These are the same definitions as

in Cancrini et al. (2008), except that instead of a fixed δ > 0, we take δ to 0 with q .
With these definitions, we have for every k ≥ kδ := 6/δ the following estimate1

[see (6.3) in Cancrini et al. (2008)]:

gap−1 ≤ Trel
(
lk + l

1−δ/6
k

) ∞∏
j=k

(
1

1 − pδj /2

) ∞∏
j=k

(
1 + s−1

j

)
.(63)

As in Cancrini et al. (2008), let

j∗ = min
{
j |pδj /2 ≤ e−1} ≈ log2(1/q)/(1 − δ/2).(64)

As long as j∗ ≥ kδ , which is true thanks to our choice of δ, we can replace k

by j∗ in (63). Now we have [see the computations in Cancrini et al. (2008), top of
page 484 for the first estimate]

∞∏
j=j∗

(
1

1 − pδj /2

)
≤ C,(65)

∞∏
j=j∗

(
1 + s−1

j

) ≤ q−C,(66)

for C some constant not depending on q . Noticing that lj∗ + l
1−δ/6
j∗ ≤ d/q for some

constant d , we get

gap−1 ≤ Cq−CTrel(d/q).(67)

Now it is enough to recall Theorem 4 in Chleboun, Faggionato and Martinelli
(2012), that states that there is no time scale separation on scale 1/q

Trel(d/q) ∼ Trel(1/q).(68) �

Now we can use Lemma 6.3 to prove the following estimate, which basically
means that in times smaller than gap−1, it will be extremely difficult for the system
to erase a row of 1/q ones.

1This condition is not necessary, but sufficient; it comes from the fact that Lemma 4.2 in Cancrini
et al. (2008) has to be satisfied in order to apply the bisection technique.
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LEMMA 6.4. Recall that τ = qβ gap−1. Let l = 1/q and P10(·) denote (abu-
sively) the law of the East process on Z starting from a configuration equal to one
on {1, . . . , l}, with a zero in l + 1. Let T0 be the first time there is a zero at 1. In-
dependently of the choice of the initial configuration outside {1, . . . , l, l + 1}, we
have, if β is large enough (independently of q),

P10(T0 ≤ τ) ≤ Cq.(69)

PROOF. In Chleboun, Faggionato and Martinelli (2012),2 the authors define a
certain set ∂A∗ of configurations in {0,1}l that has two interesting properties [it
is defined in paragraph 5.2.1 of Chleboun, Faggionato and Martinelli (2012), the
properties below are stated in Remark 5.8 and Corollary 5.10]:

• Starting from a configuration equal to one on {1, . . . , l}, with a zero in 0, in order
to put a one in 0 before time τ , the dynamics restricted to {1, . . . , l} has to go
through the set ∂A∗ at some time s ≤ τ .

• For some α′ < ∞, if n = �log2 l�,

μ(∂A∗) ≤ qn2
( n

2
)

n! q−α′
.(70)

Put another way, ∂A∗ is a bottleneck separating the events {η0 = ηl+1 = 0, η1 =
· · · = ηl = 1} and {η0 = 1} in the East dynamics.

Call τ0 the first time there is a one in 0. Denote (abusively) by 010 any config-
uration equal to zero in 0 and l + 1, and to one on {1, . . . , l}, by T an exponential
variable of parameter 2 independent of T0, and by τ0 the first time at which there
is a one in position 0. Notice that once there is a zero in 1, if the clock attached to
site 0 rings before that attached to 1, and if the associated Bernoulli variable is a
one, then the configuration at site 0 takes value one. So that

1 − q

2
P10(T0 + T ≤ τ + 1/2) ≤ P010(τ0 ≤ τ + 1/2),(71)

where 10 and 010 are equal except maybe in 0. The constant 1/2 appears to allow
the following estimate:

P10(T0 + T ≤ τ + 1/2) ≥ P10(T0 ≤ τ)P(T ≤ 1/2)
(72)

= (
1 − e−1)

P10(T0 ≤ τ).

Equations (71) and (72) yield

P10(T0 ≤ τ) ≤ 2

(1 − q)(1 − e−1)
P010(τ0 ≤ τ + 1/2).(73)

2Note that the orientation convention is reversed in this paper: contrary to this paper, the constraint
that has to be satisfied to update x is that x − 1 should be empty.
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Now we use the first property of ∂A∗ to get

P010(τ0 ≤ τ + 1/2) ≤ P10
(∃s ≤ τ + 1/2 s.t.

(
ω(s)

)
[1,l] ∈ ∂A∗

)
.(74)

To evaluate the RHS, we condition on Nτ+1/2 the number of rings occurring in
[1, l] before time τ + 1/2 in the graphical construction with a union bound to get

P10
(∃s ≤ τ + 1/2 s.t.

(
ω(s)

)
[1,l] ∈ ∂A∗

)
≤ E[Nτ+1/2] sup

s≤τ+1/2
P10

((
ω(s)

)
[1,l] ∈ ∂A∗

)

≤ (τ + 1/2)l
∑

σ∈∂A∗
sup

s≤τ+1/2
P10

((
ω(s)

)
[1,l] = σ

)
(75)

≤ (τ + 1/2)l
∑

σ∈∂A∗
p−lμ(σ )

≤ (τ + 1/2)l(1 − q)−lμ(∂A∗)

≤ (τ + 1/2)(1 − q)−l q
n2

( n
2
)

n! q−(α′+1),

where we used (58) with the distinguished zero starting at l + 1 to get the third in-
equality, and the second property of ∂A∗ (70) to get the last one. Now collect (73),
(74) and (75) to get

P10(T0 ≤ τ) ≤ 2

(1 − q)(1 − e−1)
(τ + 1/2)(1 − q)−l q

n2
( n

2
)

n! q−(α′+1).(76)

For q small enough and τ = qβ gap−1, τ + 1/2 ≤ qβ−1 gap−1, so that Lemma 6.3
yields

P10(T0 ≤ τ) ≤ Cq−α′′
qβ−1,(77)

for some C,α′′ independent of q . �

REMARK 6.5. An anonymous referee suggested an alternative proof for this
lemma, relying directly on Proposition 3.2 and Theorem 1 in Chleboun, Faggion-
ato and Martinelli (2012) and Lemma 6.3, outlined as follows. P010(τ0 ≤ t) ≤
et/Thit(1/q) by (3.3) in Chleboun, Faggionato and Martinelli (2012), and by The-
orem 1 in Chleboun, Faggionato and Martinelli (2012), Thit(1/q) ≥ cTrel(1/q).
Lemma 6.3 then yields the conclusion. In order to carry this (more efficient) proof
rigorously, one would just need to check that the above results can be extended
to infinite volume dynamics with distinguished zero starting at l + 1 (or guaran-
tee that the initial zero at l + 1 has not moved by time τ ). We keep the above
proof in order to evidence the role of the energy barriers involved in confining the
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tracer, the most relevant part of the proof in that respect being the set of equa-
tions (75).

PROOF OF PROPOSITION 6.2. First of all, let us reformulate what we want to
show.

E
[
X2

τ

] =
∞∑

x=1

(2x − 1)P
(|Xτ | ≥ x

)

= 2
∞∑

x=1

(2x − 1)P(Xτ ≥ x)(78)

≤ 4
∞∑

m=1

q−m
P

(
Xτ ≥ q−m)

.

In light of Lemma 6.4, we can now notice that in order to have Xτ ≥ q−m for
m ≥ 2, the system will have to overcome a large number of energy barriers (i.e.,
rows of ones of length larger than 1/q), so that the probability of this event will
become very small.

Fix m > 2, and let us study P(Xτ ≥ q−m). Throughout the proof, to simplify the
notation, if C(q) is a quantity going to infinity when q → 0, we will not make the
distinction between C(q) and �C(q)�. We divide {0, . . . , q−m} into q−m+2(3m)−1

groups of 3m blocks of length q−2. Given a configuration, we say that a block of
q−2 sites is well behaved if we can find a row of consecutive ones of length at
least 1/q that ends with a zero inside it. We can estimate the probability of a block
having this property by

μ(a given block is not well-behaved) ≤ (
1 − q(1 − q)1/q)1/q ≤ c < 1(79)

for some constant c.
Let A be the event that in all of these q−m+2(3m)−1 groups of blocks, there is

one of the 3m blocks that is not well behaved. With this definition, on Ac, there is
a group of 3m well behaved blocks. Let us estimate the probability of A under μ

using (79)

μ(A) ≤ (
1 − μ(a given block is well-behaved)3m)q−m+2(3m)−1

≤ (
1 − (1 − c)3m)q−m+2(3m)−1

(80)

≤ e−Cq2q−γm

,

with γ > 0, C < ∞.
So we can write

P
(
Xτ ≥ q−m) ≤ μ(A) + μ

(
1Ac(η)Pη

(
Xτ ≥ q−m))

.(81)
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Denote by B1 the first block of length q−2, B2 = B1 +q−2, . . . ,B3m = B1 +(3m−
1)q−2. We have the following estimate:

μ
(
1Ac(η)Pη

(
Xτ ≥ q−m))

(82)

≤ q−m+2(3m)−1μ

( 3m∏
i=1

1Bi well-behaved (η)Pη

(
Xτ ≥ q−m))

.

Let η be a configuration in which all the Bi are well behaved. Let xi be the starting
point of the first row of 1/q ones ended by a zero in Bi , and Ti the first time
this site is empty. We denote by (ξi(s))s≤τ the trajectory of the distinguished zero
started from the position of the zero at the end of the row of ones starting at xi , up
to time τ :

Pη

(
Xτ ≥ q−m)
≤ Pη(∀i = 1, . . . ,3m Ti ≤ τ)

≤ Pη(T3m ≤ τ)Pη(∀i = 1, . . . ,3m − 1 Ti ≤ τ |T3m ≤ τ)(83)

≤ Pη(T3m ≤ τ)

×Eη

[
Pη

(∀i = 1, . . . ,3m − 1 Ti ≤ τ |(ξ3m−1(s)
)
s≤τ

)|T3m ≤ τ
]
,

since the dynamics on the left of x3m−1 + 1/q knowing (ξ3m−1(s))s≤τ does not
depend on what happens on the right of (ξ3m−1(s))s≤τ .

Let us show iteratively that, uniformly in the trajectory (ξk(s))s≤τ ,

Pη

(∀i = 1, . . . , k Ti ≤ τ |(ξk(s)
)
s≤τ

) ≤ (Cq)k.(84)

For k = 1, mutatis mutandis, the proof of Lemma 6.4 applies. Let k > 1.
Pη(∀i = 1, . . . , k Ti ≤ τ |(ξk(s))s≤τ ) is also

Pη

(
Tk ≤ τ |(ξk(s)

)
s≤τ

)
Pη

(∀i = 1, . . . , k − 1 Ti ≤ τ |(ξk(s)
)
s≤τ , Tk ≤ τ

)
,(85)

which can be rewritten

Pη

(
Tk ≤ τ |(ξk(s)

)
s≤τ

)
(86)

×Eη

[
Pη

(∀i = 1, . . . , k − 1 Ti ≤ τ |(ξk−1(s)
)
s≤τ

)|(ξk(s)
)
s≤τ , Tk ≤ τ

]
,

and the induction hypothesis applies.
Putting together (83), (84) and (82), we get for some constant C

μ
(
1Ac(η)Pη

(
Xτ ≥ q−m)) ≤ (Cq)2m.(87)

Recalling (81), (80) and (78), we get Proposition 6.2. �

What now remains is to show there is enough decorrelation to bound the second
sum in (59). This is not difficult, once we make the following remark.
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LEMMA 6.6. Denote by gapT the spectral gap of the process seen from the
tracer [recall (11)]

gapT = inf
−μ(fLf )

Varμ(f )
,(88)

where the infimum is taken over nonconstant functions f ∈ L2(μ). Then we have

gapT ≥ gap .(89)

PROOF. This follows directly from (26) and the definition of gap and gapT

[recall (12)]. �

Now we are armed to study the terms E[(Xkτ − X(k−1)τ )(Xk′τ − X(k′−1)τ )].
First of all, by stationarity, this quantity depends only on τ and |k − k′|. Therefore,
we only need to study E[Xτ(Xkτ − X(k−1)τ )] for k ≥ 2. In fact, using the Cauchy–
Schwarz inequality and Proposition 6.2, we only need to study this term for k ≥ 3,
which allows some decorrelation to take place between times τ and (k − 1)τ . Let
us denote by (P T

s )s≥0 the semigroup associated to L. E(ω,x)[·] will denote the law
of the process with generator L0 starting from the configuration ω with the tracer
in position x (E[·] is still the law of the process starting from μ and the tracer at
the origin). Using successively the Markov property at time τ , we can write

E
[
Xτ(Xkτ − X(k−1)τ )

] = E
[
XτE(ω(τ),Xτ )

[
X′

(k−1)τ − X′
(k−2)τ

]]
,(90)

where (X′
s)s≥0 denotes the trajectory of the tracer under the law E(ω(τ),Xτ )[·]. Now

we use successively the Cauchy–Schwarz inequality and stationarity of the process
seen from the tracer to get

E
[
Xτ(Xkτ − X(k−1)τ )

]2 ≤ E
[
X2

τ

]
E

[
E(ω(τ),Xτ )[X(k−1)τ − X(k−2)τ ]2]

≤ E
[
X2

τ

]
E

[
E((ω(τ))Xτ +·,0)[X(k−1)τ − X(k−2)τ ]2]

(91)

≤ E
[
X2

τ

]
μ

(
E(ω,0)[X(k−1)τ − X(k−2)τ ]2)

.

Let us focus on E(ω,0)[X(k−1)τ − X(k−2)τ ]. Using the Markov property at time
(k − 2)τ , we get

E(ω,0)[X(k−1)τ − X(k−2)τ ] = E(ω,0)

[
E(ω((k−2)τ ),X(k−2)τ )

[
X′

τ − X′
0
]]

= E(ω,0)

[
E((ω((k−2)τ ))X(k−2)τ+·,0)

[
X′

τ

]]
(92)

= P T
(k−2)τ g(ω),

where g(ω) = E(ω,0)[Xτ ], and the X′
s in the first and second line denote re-

spectively the trajectory of the tracer under the laws E(ω((k−2)τ ),X(k−2)τ )[·] and
E((ω((k−2)τ ))X(k−2)τ+· ,0)[·]. Therefore, using the spectral gap inequality and the fact
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that g is a mean-zero function in L2(μ) thanks to stationarity and Proposition 6.2,
we get

E
[
(Xτ )(Xkτ − X(k−1)τ )

]2 ≤ E
[
X2

τ

]
μ

((
P T

(k−2)τ g
)2)

≤ E
[
X2

τ

]2
e−2(k−2)τ gapT(93)

≤ E
[
X2

τ

]2
e−2(k−2)qβ

.

Since
∑

k≥1 e−kqβ � q−β , the second term in (59) is∑
k �=k′

E
[
(Xkτ − X(k−1)τ )(Xk′τ − X(k′−1)τ )

] ≤ C�t/τ�E[
X2

τ

]
q−β.(94)

Putting this into (59) together with Proposition 6.2, we get Theorem 3.4. �

APPENDIX: AN ALTERNATIVE PROOF IN THE FA-1F MODEL

When the environment is given by the one-spin Fredrickson–Andersen model
(FA-1f), in which cx(η) = 1 − ∏d

i=1 ηei
η−ei

(the constraint requires at least one
nearest neighbor to be empty), the diffusion coefficient at low density is of or-
der q2. This means that in this particular case, the correct order is already given
by the first term in (14), which allows us to design another strategy to find the
lower bound in Theorem 3.3 when k = 1. Since the diffusion coefficient is of order
lower than q2 in the k-zeros model with k > 1, this technique does not apply. For
simplicity, we write the proof in dimension d = 1.

We follow the strategy devised to prove Lemma 6.25 in Komorowski, Landim
and Olla (2012); that is, we prove that

sup
{
2μ(jf ) −D(f )

} ≤ cq2,(95)

where c < 1 does not depend on q and D(f ) = −μ(fLf ). Seeing (14) and (24),
this is sufficient to prove Theorem 3.3 when k = 1, d = 1. To obtain that result, we
define [recall (34)]

Djump(f ) = 1

2
μ

(
η̄0η̄αei

[
f (ηαei+·) − f (η)

]2)
,(96)

DFA(f ) = 1

2

∑
y∈Z

μ
(
cy(η)ry(η)

[
f

(
ηy) − f (η)

]2)
,(97)

so that D(f ) = Djump(f ) +DFA(f ), and we show separately that for all f ,

2μ(jf ) −Djump(f ) ≤ q2,(98)

2μ(jf ) −DFA(f ) ≤ Cq2,(99)
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where C ≥ 1 is a constant that does not depend on q . To get the result from (98)
and (99), we write that for any λ > 0, for any local function f .

λ−1(
2μ(jf ) −Djump(f ) −DFA(f )

)
= 2μ

(
jλ−1f

) − λDjump
(
λ−1f

) − λDFA
(
λ−1f

)
so that

λ−1 sup
{
2μ(jf )−Djump(f )−DFA(f )

} ≤ sup
{
2μ(jg)−λDjump(g)−λDFA(g)

}
.

Take, for instance, λ = C/(C + 1). We have λ ≥ 1 − λ, so that

λ−1 sup
{
2μ(jf ) −Djump(f ) −DFA(f )

}
≤ sup

{
2μ(jg) − λDjump(g) − (1 − λ)DFA(g)

}
≤ [

λ + (1 − λ)C
]
q2 = q2,

using (98) and (99), so that (95) is proven.
(1) Proof of (98).
For any local function f , we can rewrite μ(jf ) in terms of the “jumps” η →

η1+· and η → η−1+

2μ(jf ) = −μ
(
η̄0η̄1

[
f (η1+·) − f (η)

]) + μ
(
η̄0η̄−1

[
f (η−1+·) − f (η)

])
.

Now using the inequality ab ≤ (a2 + b2)/2, the Dirichlet form Djump(f ) appears
on the RHS,

2μ(jf ) ≤ q2 + 1
2μ

(
η̄0η̄1

[
f (η1+·) − f (η)

]2) + 1
2μ

(
η̄0η̄−1

[
f (η−1+·) − f (η)

]2)
≤ q2 +Djump(f ).

(2) Proof of (99).
We need only to prove it for small q . First we make a few computations to ex-

press μ(jf ) in terms of allowed flips (η → η1 or η → η−1). Then we use the same
optimization technique performed in the proof of Lemma 6.13 in Komorowski,
Landim and Olla (2012) to get the desired bound. We have the following equali-
ties:

μ
(
η̄0η̄1f (η)

) = q

1 − 2q
μ

(
η̄0

[
f

(
η1) − f (η)

]) + q

1 − q
μ

(
η̄0η1f (η)

)
,(100)

μ
(
η̄0η̄−1f (η)

) = q

1 − 2q
μ

(
η̄0

[
f

(
η−1) − f (η)

]) + q

1 − q
μ

(
η̄0η−1f (η)

)
,(101)

μ
(
η̄0η1f (η)

) = (1 − q)μ
(
η̄0η̄1

[
f

(
η1) − f (η)

]) + (1 − q)μ
(
η̄0f (η)

)
,(102)

μ
(
η̄0η−1f (η)

) = (1 − q)μ
(
η̄0η̄−1

[
f

(
η−1) − f (η)

]) + (1 − q)μ
(
η̄0f (η)

)
.(103)
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So that, computing differences, we get

μ(jf ) = q

p − q

[
μ

(
η̄0

[
f

(
η1) − f (η)

]) − μ
(
η̄0

[
f

(
η−1) − f (η)

])]
(104)

+ q
[
μ

(
η̄0η̄1

[
f

(
η1) − f (η)

]) − μ
(
η̄0η̄−1

[
f

(
η−1) − f (η)

])]
.

Assume q < 1/2. Using the inequality ab ≤ (a2 + b2)/2, we get for any α,β > 0,

μ(jf )

q

≤ 1

1 − 2q

{
αq + 1

2α

[
μ

(
η̄0

[
f

(
η1) − f (η)

]2) + μ
(
η̄0

[
f

(
η−1) − f (η)

]2)]}

+ β

+ 1

2β

[
μ

(
η̄0η̄1

[
f

(
η1) − f (η)

]2) + μ
(
η̄0η̄−1

[
f

(
η−1) − f (η)

]2)]
.

We insert the missing rates to recover terms appearing in DFA(f ). For instance,
since we assumed q < 1/2,

μ
(
η̄0

[
f

(
η1) − f (η)

]2) ≤ 1

q
μ

(
η̄0r1(η)

[
f

(
η1) − f (η)

]2)
(105)

and

μ
(
η̄0η̄1

[
f

(
η1) − f (η)

]2) ≤ 1

p
μ

(
η̄0r1(η)

[
f

(
η1) − f (η)

]2)
.(106)

Thus we get

μ(jf ) ≤ q

1 − 2q

{
αq + 1

αq
DFA(f )

}
+ q

{
β + 1

β(1 − q)
DFA(f )

}
.(107)

Optimizing in α,β , this yields

μ(jf ) ≤ 2q

1 − 2q

√
DFA(f ) + 2

√
DFA(f )/(1 − q).(108)

This is enough to prove (99) for small q; see Section 6.3 of Komorowski,
Landim and Olla (2012).
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