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FINITENESS OF ENTROPY FOR THE HOMOGENEOUS
BOLTZMANN EQUATION WITH MEASURE INITIAL CONDITION

BY NICOLAS FOURNIER

Université Pierre et Marie Curie

We consider the 3D spatially homogeneous Boltzmann equation for
(true) hard and moderately soft potentials. We assume that the initial con-
dition is a probability measure with finite energy and is not a Dirac mass.
For hard potentials, we prove that any reasonable weak solution immediately
belongs to some Besov space. For moderately soft potentials, we assume ad-
ditionally that the initial condition has a moment of sufficiently high order
(8 is enough) and prove the existence of a solution that immediately belongs
to some Besov space. The considered solutions thus instantaneously become
functions with a finite entropy. We also prove that in any case, any weak so-
lution is immediately supported by R3.

1. Introduction and results.

1.1. The Boltzmann equation. We consider a spatially homogeneous gas mod-
eled by the Boltzmann equation: the density ft (v) of particles with velocity v ∈ R3

at time t ≥ 0 solves

∂tft (v) =
∫
R3

dv∗
∫
S2

dσB
(|v − v∗|, cos θ

)[
ft

(
v′)ft

(
v′∗

) − ft (v)ft (v∗)
]
,(1.1)

where

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ and
(1.2)

cos θ =
〈

v − v∗
|v − v∗| , σ

〉
.

The cross section B(|v − v∗|, cos θ) ≥ 0 depends on the type of interaction be-
tween particles. We refer to the book of Cercignani [7] for a physical reference on
the Boltzmann equation and to the review papers of Villani [38] and Alexandre [2]
for many details on what is known from the mathematical point of view. Conser-
vation of mass, momentum and kinetic energy hold for reasonable solutions, and
we classically may assume without loss of generality that

∫
R3 f0(v) dv = 1.
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1.2. Assumptions. We will assume that for some γ ∈ (−1,1), some ν ∈ (0,1)

with γ + ν > 0, some measurable function b : (0, π] �→R+,⎧⎨⎩
B
(|v − v∗|, cos θ

)
sin θ = |v − v∗|γ b(θ),

∃0 < c0 < C0, ∀θ ∈ (0, π/2], c0θ
−1−ν ≤ b(θ) ≤ C0θ

−1−ν,

∀θ ∈ (π/2, π], b(θ) = 0.

(Aγ,ν)

As noted in the introduction of [3], this last assumption (b = 0 on (π/2, π]) is
not a restriction since we can always reduce to this case by a symmetry argument.
When particles collide by pairs due to a repulsive force proportional to 1/rs for
some s > 2, then (Aγ,ν) holds with γ = (s − 5)/(s − 1) and ν = 2/(s − 1). Thus
our study includes the case of hard potentials (s > 5), Maxwell molecules (s = 5)
and moderately soft potentials [s ∈ (3,5)].

1.3. Functional spaces. Let us introduce all the functional spaces we will use
in this paper:

• M(Rd) is the set of nonnegative finite measures on Rd .
• P(Rd) is the set of probability measures on Rd .
• Pp(Rd) is the set of all f ∈P(Rd) such that mp(f ) := ∫

Rd |v|pf (dv) < ∞.
• Lipb(R

d) is the set of bounded globally Lipschitz-continuous functions.
• Cb(R

d) is the set of bounded continuous functions.
• C0(R

d) is the set of continuous functions vanishing at infinity.
• C1

c (Rd) is the set of compactly supported C1 functions.
• For α ∈ (0,1), Cα

b (Rd) is the set of all functions g such that

‖g‖Cα
b (Rd ) := sup

x∈Rd

∣∣g(x)
∣∣ + sup

x,y∈Rd ,x 
=y

|g(x) − g(y)|
|x − y|α < ∞.

• Lp(Rd) is the usual Lebesgue space with ‖f ‖Lp(Rd ) := (
∫
Rd |f (x)|p dx)1/p .

• For s ∈ (0,1), the Besov space Bs
1,∞(Rd) consists of all functions f such that

‖f ‖Bs
1,∞(Rd ) := ‖f ‖L1(Rd ) + sup

h∈Rd ,0<|h|<1
|h|−s

∫
Rd

∣∣f (x + h) − f (x)
∣∣dx < ∞.

In the whole paper, when a measure f ∈ M(Rd) has a density, we also denote
by f this density.

1.4. Weak solutions. We will consider weak solutions in the following sense.

DEFINITION 1.1. Assume (Aγ,ν) for some ν ∈ (0,1) and γ ∈ (−1,1).
(i) A family (ft )t≥0 ⊂P2(R

3) is a weak solution to (1.1) if for all t ≥ 0,∫
R3

vft (dv) =
∫
R3

vf0(dv) and
∫
R3

|v|2ft (dv) =
∫
R3

|v|2f0(dv) < ∞(1.3)
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and if for any φ ∈ Lipb(R
3) and any t ≥ 0,∫

R3
φ(v)ft (dv)

(1.4)

=
∫
R3

φ(v)f0(dv) +
∫ t

0

∫
R3

∫
R3

LBφ(v, v∗)fs(dv∗)fs(dv) ds,

where, for v′ = v′(v, v∗, σ ) and θ = θ(v, v∗, σ ) defined in (1.2),

LBφ(v, v∗) :=
∫
S2

B
(|v − v∗|, cos θ

)[
φ
(
v′) − φ(v)

]
dσ.(1.5)

The right-hand side of (1.4) is well-defined due to (1.3) and (Aγ,ν). Indeed,
there holds |v′ −v| = |v−v∗|√(1 − cos θ)/2 ≤ |v−v∗||θ |, so that |LBφ(v, v∗)| ≤
Cφ

∫
S2 B(|v − v∗|, cos θ)|v − v∗||θ |dσ ≤ Cφ|v − v∗|1+γ

∫ π/2
0 |θ |−ν dθ ≤ Cφ(1 +

|v|2 + |v∗|2).
Concerning the well-posedness of (1.1) given f0 ∈ P2(R

3), the following results
are available.

Hard potentials. Assume (Aγ,ν) for some ν ∈ (0,1) and γ ∈ (0,1). Then by
Lu–Mouhot [29], there exists a weak solution to (1.1) starting from f0. This solu-
tion furthermore satisfies that sup[t0,∞) mp(ft ) < ∞ for all t0 > 0, all p ≥ 2. Such
a moment production property was discovered by Elmroth [15] and Desvillettes
[10]. Two different uniqueness results are available, assuming either that f0 is reg-
ular (f0 ∈ W 1,1(R3) with

∫
R3(1+|v|2)|∇f0(v)|dv < ∞, Desvillettes and Mouhot

[13]) or localized (
∫
R3 ea|v|γ f0(dv) < ∞ for some a > 0, [22]).

Maxwell molecules. Assume (Aγ,ν) for some ν ∈ (0,1) and with γ = 0. Then
there exists a unique weak solution to (1.1) starting from f0 due to Toscani and
Villani [36].

Moderately soft potentials. Assume (Aγ,ν) for some ν ∈ (0,1), some γ ∈
(−1,0) with γ + ν > 0. Assume also that f0 has a density with a finite entropy,
that is,

∫
R3 f0(v)| logf0(v)|dv < ∞. Then there exists a weak solution to (1.1)

starting from f0 due to Villani [37]. This solution is unique [22] if f0 ∈ Pq(R
3)

for some q > γ 2/(γ + ν).

Very soft potentials. Assume (Aγ,ν) for some ν ∈ (0,2), some γ ∈ (−3,0). If
f0 has a density with a finite entropy, there exists a weak solution to (1.1) starting
from f0 due to Villani [37]. Uniqueness holds locally in time [20] provided f0 ∈
Lp(R3) for some p > 3/(3 + γ ).
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1.5. Main result. Let us mention that during the proof, we will check the fol-
lowing property.

THEOREM 1.2. Assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈ (0,1). Let also f0 ∈
P2(R

3) not be a Dirac mass. For any weak solution (ft )t≥0 to (1.1) starting from
f0, Suppft = R3 for all t > 0.

The main result of the paper is the following.

THEOREM 1.3. Assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈ (0,1) with γ +
ν > 0. Let f0 ∈ P2(R

3) not be a Dirac mass.

(i) If γ ∈ (0,1), then any weak solution (ft )t≥0 to (1.1) starting from f0 and
such that

∀t0 > 0,∀p ≥ 2, sup
t≥t0

mp(ft ) < ∞(1.6)

satisfies that ft ∈ Bs
1,∞(R3) for all t > 0, all s ∈ (0, sν), where

sν = sup
α∈(0,ν]

(
2α

1 + 2α
− α

)
(1.7)

=
{(

ν − 2ν2)/(1 + 2ν) if ν ∈ (
0, (

√
2 − 1)/2

)
,

(
√

2 − 1)2/2 if ν ∈ [
(
√

2 − 1)/2,1
)
.

(ii) If γ ∈ (−1,0], assume also that f0 ∈ P4+γ+4|γ |/ν(R3). There exists a weak
solution (ft )t≥0 to (1.1) starting from f0 such that ft ∈ Bs

1,∞(R3) for all t > 0, all
s ∈ (0, sγ,ν), where

sγ,ν = sup
α∈(0,ν]

(
(2 + γ /ν)α

1 + (2 + γ /ν)α
− α

)
.(1.8)

(iii) In any case, ft has a density satisfying
∫
R3 ft (v)| logft (v)|dv < ∞ as

soon as t > 0.

No regularization may hold if f0 is a Dirac mass, since Dirac masses are sta-
tionary solutions to (1.1). In the case of moderately soft potentials (γ ∈ (−1,0]
and γ + ν > 0), we need a few moments; observe that we always have 4 ≤
4 + γ + 4|γ |/ν ≤ 8. Of course, (1.8) can of be made explicit, but the resulting
formula is awful. While we show that any solution is regularized for hard poten-
tials, we can only prove that there exists at least one solution enjoying some regu-
larization properties for moderately soft potentials. This is due to our probabilistic
interpretation: when γ ∈ (0,1), we can associate a Boltzmann stochastic process
to any weak solution, while when γ ∈ (−1,0], we are only able to prove that there
exists a Boltzmann stochastic process and that its law is a weak solution.



864 N. FOURNIER

In [38], Theorem 9(iii), page 95, Villani announces a result very similar to The-
orem 1.3. However, he obtains only some gain of integrability, while we obtain
some (extremely weak) regularity. We know from a private communication that
this work has never been written down.

REMARK 1.4. As can be checked from the proof, the same result as stated in
Theorem 1.3(i) holds for regularized hard potentials where B(|v − v∗|, cos θ) =
(1 + |v − v∗|2)γ /2b(θ), with γ ∈ (0,1) and c0|θ |−ν−1 ≤ b(θ) ≤ C0|θ |−ν−1 for
some ν ∈ (0,1).

1.6. Motivation. The main interest of Theorem 1.3 is the following: almost all
the papers on the Boltzmann equation (concerning, e.g., regularization or large-
time behavior) assume that the initial condition has a finite entropy; see the long
review paper of Villani [38]. This condition is of course physically reasonnable.
Our result shows that it is indeed physically reasonnable, since the entropy auto-
matically becomes finite. Consequently, the results assuming the finiteness of the
entropy of the initial condition extend to any measure initial data with a finite mass
and energy which are not Dirac masses. For example, we deduce from Alexandre
et al. [3], Chen and He [8], Desvillettes and Wennberg [14] and Huo et al. [27] that
for any (non-Dirac) measure initial condition with finite mass and energy:

• under the assumptions of Theorem 1.3, (1 + |v|2)γ /2√ft (v) ∈ Hν/2(R3) for all
t > 0 by [8];

• for regularized hard potentials, ft ∈ C∞(R3) for all t > 0 due to [14, 27].

1.7. Known regularization results. In many papers, Grad’s cutoff is assumed:
the cross section B , which physically satisfies

∫ π
0 B(|v − v∗|, cos θ) dθ = ∞, is

replaced by an integrable cross section. No regularization may arise under Grad’s
cutoff; see, for example, Mouhot and Villani [31]. The first results about regular-
ization for the homogeneous Boltzmann equation without cutoff are due to Desvil-
lettes [11, 12]. There are now roughly four types of available results.

• General results applying to all true physical potentials, relying on the entropy
dissipation, providing weak regularity. Under (Aγ,ν) for some ν ∈ (0,2) and
some γ ∈ (−3,1), when f0 is a function with finite mass, entropy and en-
ergy, it has been shown (among many other things) by Alexandre et al. [3]
that

√
ft ∈ H

ν/2
loc (R3) for all t > 0. This has been recently precised, in the

case of hard and moderately soft potentials by Chen and He [8], Theorem 1.3:
(1 + |v|2)γ /2√ft (v) ∈ Hν/2(R3) for all t > 0.

• High regularization for true physical potentials assuming that f is already
known to be slightly regular. It is proved by Chen and He [8], Theorem 1.5,
that for hard and moderately soft potentials, if f0 ∈ H 3(R3) and

∫
R3(1 +

|v|q)|∇f0(v)|dv < ∞ for some q ≥ 2 large enough, then the solution imme-
diately lies in HN(R3) for some N depending on q .
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• Full regularization for regularized hard potentials, when f0 is a function with
finite mass, entropy and energy. See Desvillettes and Wennberg [14], Alexandre
and Elsafadi [4] and Huo et al. [27].

• Very restrictive results when f0 is a (non-Dirac) probability measure in the 2D

case: full regularization for Maxwell molecules (see Graham and Méléard [25]
and [16]) and weak regularization [5] for a class of hard potentials (applying to
interaction forces in 1/rs with s > 13.75). All these works use some Malliavin
calculus and seem very difficult to extend to the 3D case.

Here we deal with true physical potentials, for which there are several com-
plications: |w|γ is not bounded below (and vanishes when γ > 0), which makes
ellipticity estimates nontrivial, explodes either at 0 or at infinity and is in any case
not smooth at 0. To our knowledge, the only regularization results that concern the
homogeneous Boltzmann equation for true physical potentials are those of [3], [8]
and [5]. The present result consequently improves on [5] (we treat the 3D case, all
interaction forces in 1/rs with s > 3 and we remove some technical assumptions)
and is not in competition with [3] or [8] (the finiteness of the entropy is assumed
in [3] and [8]).

1.8. Known positivity results. The proof of Theorem 1.2 is very easy, but
it seems to be new. The first lower bound of solutions to the Boltzmann equa-
tion is due to Carleman [6] in the case of hard spheres (γ = 1, b ≡ 1). In [32],
Pulvirenti and Wennberg obtained some Maxwellian lowerbound in the case of
hard potentials with cutoff (γ ∈ (0,1] and

∫ π
0 b(θ) dθ < ∞), assuming that f0

has a finite entropy. A quantitative version of Theorem 1.2 (for measure solu-
tions) has been proved by Zhang and Zhang [39], still in the case of hard po-
tentials with cutoff. Some positivity results [17] are available for 2D Maxwell
molecules without cutoff. For general physical potentials without cutoff, some
indications concerning the positivity of smooth solutions are given in Villani
[38], Sections 6.2 and 6.3. Finally, Mouhot [30] proved some quantitative lower
bound in the much more complicated spatially inhomogeneous case without cut-
off, but for quite regular solutions [corresponding here, roughly, to the assumption
f ∈ L∞

loc([0,∞),W 2,∞(R3))].

1.9. Comments on the method. The classical way to prove some regularization
results by probabilistic methods is to use some Malliavin calculus, based on the
famous probabilistic interpretation of the homogeneous Boltzmann equation in
terms of a nonlinear jumping stochastic differential equation initiated by Tanaka
[35]. Unfortunately, this s.d.e. has regular coefficients only in the 2D-case and
for Maxwell molecules. In the case of 3D Maxwell molecules, a sort of Lipschitz
property was observed by Tanaka [35] (see Lemma 3.2 below), but we cannot hope
for more. This seems to make almost impossible the use of Malliavin calculus to
study the 3D Boltzmann equation.
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Here we use no Malliavin calculus, but a recent method introduced in [23] to
prove that stochastic processes with rather irregular coefficients have a density.
Recently, Debussche and Romito [9] have considerably improved this method by
using Besov spaces, in order to study the regularity of the law of the solution to a
3D stochastic Navier–Stokes equation. For example, only 1D diffusion processes
with diffusion coefficient in C

1/2+ε
b (R) were treated in [23], while some quick

computations seem to show that diffusion processes in any dimension and with
diffusion coefficient in Cε

b(R
d) can be studied using the tools of [9]. As we will see,

it also perfectly applies to the s.d.e. associated with the homogeneous Boltzmann
equation.

Let us mention that our proof is not deeply probabilistic: we use no stopping
times, no Malliavin calculus, etc. We believe that a very similar deterministic proof
can be written down. The advantage would be to remove Section 9 below, which is
long and boring, in which we build the stochastic processes related to Boltzmann’s
equation. The disadvantage would be that the computations of Section 6 would
become awful (and would look completely artificial).

1.10. Heuristics. Let us say a word about the reasons for regularization. Con-
sider an initial velocity distribution f0, possibly very singular. Pick at random
a particle in the initial system, and call Vt its velocity at time t . Observe that
the law of Vt is ft for all t ≥ 0. This particle collides, at time t ≥ 0, at rate∫
R3

∫
S2 B(|Vt − v∗|, cos θ) dσft (dv∗). In the case without cutoff, this rate is thus

infinite: the particle is subjected to infinitely many collisions on each finite time
interval. Furthermore, at each collision, some randomness is added, since v∗ and σ

are chosen at random. Hence, we expect that for each t > 0, our particle has been
subjected to infinitely many collisions on the time interval [0, t], each of these col-
lisions producing some randomness. Consequently, Vt will be much more random
than V0, so that its law should be much more regular.

Conversely, in the case with cutoff where the rate of collision of our particle
is finite, we expect that Vt = V0 during some (random) positive time, so that the
solution ft will contain all the singularities of f0, at least for small times.

1.11. Plan of the paper. In the next section, we state the main lemma we will
use, which is due to Debussche and Romito [9] and we give an elementary proof.
In Section 3, we rewrite in an adequate way the weak formulation of (1.1) and
prove a few properties of weak solutions. Section 4 is devoted to the proof of The-
orem 1.2 and to some slightly more quantitative lower bound. Then we adapt the
probabilistic interpretation of Tanaka [35] to hard and moderately soft potentials
in Section 5. The proof of the existence of the Boltzmann process lies at the end of
the paper (Section 9). Then the strategy of the proof is the following: we approxi-
mate the Boltzmann process by a Lévy process (Section 6) and study the regularity
of the law of the approximating Lévy process (Section 7). Using that the approx-
imating process has a regular law and that the true Boltzmann process is close to
the approximating process, we conclude in Section 8.
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1.12. Notation. We will write C for a (large) finite constant and c for a (small)
positive constant, whose values may change from line to line and which depend
only on ν, γ, c0,C0 [recall (Aγ,ν)] and on the weak solution (ft )t≥0. We write in
index all the additional dependence of constants.

2. Main lemma. Our study is based on the following result due to Debussche
and Romito [9], End of the proof of Theorem 5.1.

LEMMA 2.1. Let g ∈ M(Rd). Assume that there are 0 < α < a < 1 and a
constant κ such that for all function φ ∈ Cα

b (Rd), all h ∈Rd with |h| ≤ 1,∣∣∣∣∫
Rd

[
φ(x + h) − φ(x)

]
g(dx)

∣∣∣∣ ≤ κ‖φ‖Cα
b (Rd )|h|a.(2.1)

Then g has a density in Ba−α
1,∞ (Rd) and ‖g‖Ba−α

1,∞ (Rd ) ≤ g(Rd) + Cd,a,ακ .

Actually, the result in [9] is more general. The proof in [9] relies on several
theorems of functional analysis. We present here an elementary (though longer)
proof.

PROOF OF LEMMA 2.1. We divide the proof into four steps.
Step 1: Preliminaries. For r > 0, consider the function χr(x) = (vdrd)−1 ×

1{|x|<r}, where vd is the volume of the unit ball in Rd . An easy computation shows
that for all x, y ∈ Rd ,∫

Rd

∣∣χr(x − z) − χr(y − z)
∣∣dz ≤ Cd min

(
1, |x − y|/r

)
.(2.2)

For ψ ∈ L∞(Rd) and r ∈ (0,1], ψ �χr belongs to Cα
b (Rd) (it is actually Lipschitz-

continuous) and

‖ψ � χr‖Cα
b (Rd ) ≤ Cd‖ψ‖L∞(Rd )r

−α.(2.3)

Indeed, it obviously holds that ‖ψ �χr‖L∞(Rd ) ≤ ‖ψ‖L∞(Rd ) and for x 
= y, we de-
duce from (2.2) that |ψ � χr(x) − ψ � χr(y)| ≤ Cd‖ψ‖L∞(Rd ) min(1, |x − y|/r) ≤
Cd‖ψ‖L∞(Rd )r

−α|x − y|α .
Step 2. Next we prove that for any r ∈ (0,1], any |h| ≤ 1,∫

Rd

∣∣g � χr(x + h) − g � χr(x)
∣∣dx ≤ Cdκ|h|ar−α.

It suffices to prove that for any ψ ∈ L∞(Rd), Ir(h,ψ) := | ∫Rd ψ(x)[g � χr(x +
h) − g � χr(x)]dx| ≤ Cdκ‖ψ‖L∞(Rd )|h|ar−α . But using (2.1) and (2.3), we get

Ir(h,ψ) =
∣∣∣∣∫

Rd

[
ψ � χr(y − h) − ψ � χr(y)

]
g(dy)

∣∣∣∣ ≤ κ‖ψ � χr‖Cα
b (Rd )|h|a

≤ Cdκ‖ψ‖L∞(Rd )|h|ar−α.
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Step 3. Here we assume additionally that g has a density in C1(Rd) satisfying∫
Rd |∇g(x)|dx < ∞ (which implies that all the computations below are licit), and

we check that

sup
|h|≤1

|h|α−a
∫
Rd

∣∣g(x + h) − g(x)
∣∣dx ≤ Cd,a,ακ.

To this end, we first write, using Step 2, for all |h| ≤ 1, all r ∈ (0,1],∫
Rd

∣∣g(x + h) − g(x)
∣∣dx

≤
∫
Rd

∣∣g � χr(x + h) − g � χr(x)
∣∣dx + 2

∫
Rd

∣∣g � χr(x) − g(x)
∣∣dx

≤ Cdκ|h|ar−α + 2

vdrd

∫
Rd

∫
Rd

∣∣g(y) − g(x)
∣∣1{|x−y|<r} dx dy

= Cdκ|h|ar−α + 2

vdrd

∫
|u|<r

du

∫
Rd

dx
∣∣g(x + u) − g(x)

∣∣.
Thus, setting It := sup|h|=t

∫
Rd |g(x +h)−g(x)|dx and St = sups∈(0,t] sα−aIs , we

deduce that for all t ∈ (0,1], all r ∈ (0,1] (below, the variable u belongs to Rd ),

tα−aIt ≤ Cdκ(t/r)α + 2tα−a

vdrd

∫
|u|<r

|u|a−αS|u| du

≤ Cdκ(t/r)α + 2tα−a

vdrd
S1r

a−αvdrd

≤ Cdκ(t/r)α + 2(r/t)a−αS1.

Choosing r = 4−1/(a−α)t , we deduce that for all t ∈ (0,1], tα−aIt ≤ 4α/(a−α) ×
Cdκ + S1/2. This implies S1 ≤ 4α/(a−α)Cdκ + S1/2 and finally S1 ≤ 2.4α/(a−α) ×
Cdκ as desired.

Step 4. Consider now g as in the statement. For n ≥ 1, put gn = g � Gn,
where Gn(x) = (n/π)d/2e−n|x|2 . Then gn ∈ C1(Rd),

∫
Rd gn(x) dx = g(Rd) and∫

Rd |∇gn(x)|dx < ∞. Furthermore, one easily checks that gn satisfies (2.1)
with the same constant κ as g. Thus we can apply Step 3 and deduce that
sup|h|≤1 |h|α−a

∫
Rd |gn(x + h) − gn(x)|dx ≤ Cd,a,ακ for all n ≥ 1, whence

‖gn‖Ba−α
1,∞

≤ g(Rd) + Cd,a,ακ (recall Section 1.3). Consequently, the sequence

gn is strongly compact in L1(Rd) (because the balls of Bs
1,∞(Rd) are compact

in L1(Rd) for all s > 0; see, e.g., [33]). But gn tends weakly (in the sense of
measures) to g. We deduce that g ∈ L1(Rd) and that we can find a subsequence
such that limk ‖gnk

− g‖L1(Rd ) = 0. One easily concludes that for all |h| ≤ 1,∫
Rd |g(x + h) − g(x)|dx = limk

∫
Rd |gnk

(x + h) − gnk
(x)|dx ≤ Cd,a,ακ|h|a−α .

We deduce that ‖g‖Ba−α
1,∞ (Rd ) ≤ g(Rd) + Cd,a,ακ . �
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3. Weak solutions. First, we parameterize (1.2) as in [21]. For each X ∈ R3 \
{0}, we introduce I (X), J (X) ∈ R3 such that ( X

|X| ,
I (X)
|X| , J (X)

|X| ) is an orthonormal

basis of R3, in such a way that X �→ (I (X), J (X)) is measurable. We also put
I (0) = J (0) = 0. For X,v, v∗ ∈ R3, θ ∈ [0, π) and ϕ ∈ [0,2π), we set⎧⎪⎨⎪⎩

�(X,ϕ) := (cosϕ)I (X) + (sinϕ)J (X),

v′(v, v∗, θ, ϕ) := v − 1 − cos θ

2
(v − v∗) + sin θ

2
�(v − v∗, ϕ),

a(v, v∗, θ, ϕ) := v′(v, v∗, θ, ϕ) − v.

(3.1)

The choice of (I (X), J (X)) does not matter. The important thing is that for any
reasonable F :R3 ×R3 ×R3 × [0, π) �→R, any v, v∗ ∈R3,∫ π

0

∫ 2π

0
F
(
v, v∗, v′(v, v∗, θ, ϕ), θ

)
sin θ dϕ dθ =

∫
S2

F
(
v, v∗, v′, θ

)
dσ,

where on the right-hand side, v′ = v′(v, v∗, σ ) and θ = θ(v, v∗, σ ) ∈ (0, π) are
defined by (1.2). This in particular implies that for all φ ∈ Lipb(R

3), recalling
(1.5) and then (Aγ,ν),

LBφ(v, v∗)
(3.2)

=
∫ π

0

∫ 2π

0

[
φ
(
v + a(v, v∗, θ, ϕ)

) − φ(v)
]
B
(|v − v∗|, cos θ

)
sin θ dϕ dθ

= |v − v∗|γ
∫ π/2

0

∫ 2π

0

[
φ
(
v + a(v, v∗, θ, ϕ)

) − φ(v)
]
b(θ) dϕ dθ.(3.3)

We will frequently use that, by a straightforward computation,

∣∣a(v, v∗, θ, ϕ)
∣∣ =

√
1 − cos θ

2
|v − v∗| ≤ 1

2
θ |v − v∗|.(3.4)

We will also need the following remark, corresponding to the 2D equality
〈ξ,X⊥〉 = ±〈ξ⊥,X〉.

REMARK 3.1. For any measurable nonnegative function F :R �→R, any X ∈
R3, any ξ ∈R3,∫ 2π

0
F
(〈
ξ,�(X,ϕ)

〉)
dϕ =

∫ 2π

0
F
(〈
X,�(ξ,ϕ)

〉)
dϕ.

PROOF. Recall that these integrals do not depend on the choice of (I (X),

J (X)) and (I (ξ), J (ξ)) [as soon as ( X
|X| ,

I (X)
|X| , J (X)

|X| ) and (
ξ
|ξ | ,

I (ξ)
|ξ | ,

J (ξ)
|ξ | ) are or-

thonormal bases of R3]. If X and ξ are colinear 〈ξ,�(X,ϕ)〉 = 〈X,�(ξ,ϕ)〉 = 0
for all ϕ and the result follows. Otherwise, choose (I (X), J (X)) and (I (ξ), J (ξ))

such that X,ξ, I (X), I (ξ) are in the same plane and such that 〈X,I (ξ)〉 =
〈ξ, I (X)〉, which implies that 〈ξ,�(X,ϕ)〉 = 〈X,�(ξ,ϕ)〉 for all ϕ. �
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Unfortunately, it is not possible to build I in such a way that X �→ I (X) is
smooth. Tanaka [35] found a way to overcome this difficulty, which was slightly
precised in [21], Lemma 2.6.

LEMMA 3.2. There exists a measurable function ϕ0 :R3 ×R3 �→ [0,2π), such
that for all v, v∗,w,w∗ ∈ R3, all θ ∈ [0, π) and all ϕ ∈ [0,2π),∣∣a(v, v∗, θ, ϕ)− a

(
w,w∗, θ, ϕ +ϕ0(v − v∗,w −w∗)

)∣∣ ≤ 2θ
(|v −w| + |v∗ −w∗|).

We conclude this section with a useful time-regularity property of weak solu-
tions. This must be more or less classical; see, for example, Gamba, Panferov and
Villani [24] for a stronger result in the case of cutoff hard potentials, but we found
no precise reference in the present setting.

LEMMA 3.3. Let f0 ∈ P2(R
3). Assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈

(0,1). Consider any weak solution (ft )t≥0 to (1.1) starting from f0. Then for any
φ ∈ Lipb(R

3), LBφ is continuous on R3 × R3 and the map t �→ ∫
R3 φ(v)ft (dv)

belongs to C1([0,∞)).

PROOF. Recall (1.4): to show that t �→ ∫
R3 φ(v)ft (dv) is of class C1([0,∞)),

it suffices to check that t �→ ∫
R3

∫
R3 LBφ(v, v∗)ft (dv∗)ft (dv) is continuous on

[0,∞).
Step 1. For φ ∈ Lipb(R

3), |LBφ(v, v∗)| ≤ Cφ|v−v∗|γ+1 ≤ Cφ(1+|v|2 +|v∗|2)
by (3.3), (3.4) and since

∫ π/2
0 θb(θ) dθ < ∞ by (Aγ,ν). By (1.3), we deduce that∫

R3
∫
R3 LBφ(v, v∗)ft (dv∗)ft (dv) is bounded, so that t �→ ∫

R3 φ(v)ft (dv) is con-
tinuous on [0,∞) by (1.4). The Portemanteau theorem thus implies that t �→ ft is
weakly continuous, which classically implies that t �→ ft ⊗ ft is weakly continu-
ous: for all φ ∈ Cb(R

3 ×R3), t �→ ∫
R3

∫
R3 φ(v, v∗)ft (dv)ft (dv∗) is continuous on

[0,∞).
Step 2. Recall that B(|v −v∗|, cos θ) sin θ = |v −v∗|γ b(θ) by (Aγ,ν) and define,

for k ≥ 1, Bk(|v−v∗|, cos θ) sin θ = (|v−v∗|γ ∧k)b(θ)1{θ>1/k}. It is immediately
checked that LBk

φ ∈ Cb(R
3 × R3) for any φ ∈ Lipb(R

3). By Step 1, we deduce
that t �→ ∫

R3
∫
R3 LBk

φ(v, v∗)ft (dv∗)ft (dv) is continuous on [0,∞).
Step 3. We claim that |(LB −LBk

)φ(v, v∗)| ≤ Cφ(1+|v|2 +|v∗|2)k−κ for some
κ = κ(γ, ν) > 0, for all φ ∈ Lipb(R

3). Using (3.3), (3.4) and then (Aγ,ν ), we get∣∣(LB − LBk
)φ(v, v∗)

∣∣
≤ Cφ|v − v∗|γ

∫ π/2

0

∫ 2π

0
θ |v − v∗|(1{|v−v∗|γ >k} + 1{θ≤1/k}) dϕb(θ) dθ

≤ Cφ|v − v∗|γ+11{|v−v∗|γ >k} + Cφ|v − v∗|γ+1kν−1

≤ Cφ|v − v∗|γ+11{|v−v∗|γ >k} + Cφ

(
1 + |v|2 + |v∗|2)kν−1.
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If γ ∈ (0,1), we write |v − v∗|γ+11{|v−v∗|γ >k} ≤ k1−1/γ |v − v∗|2 and conclude
with κ = (1/γ − 1)∧ (1 − ν). If γ = 0, |v − v∗|γ > k never happens (since k ≥ 1),
whence the claim with κ = 1 − ν. If γ ∈ (−1,0), |v − v∗|γ > k implies |v − v∗| <
k−1/|γ | and we conclude with κ = ((γ + 1)/|γ |) ∧ (1 − ν).

Step 4. Let φ ∈ Lipb(R
3). By Step 2, LBk

φ ∈ Cb(R
3 × R3) and Step 3 im-

plies that LBk
φ tends to LBφ uniformly on compacts, whence LBφ is continu-

ous. Next, Step 3 and (1.3) show that
∫
R3

∫
R3 LBk

φ(v, v∗)ft (dv∗)ft (dv) goes to∫
R3

∫
R3 LBφ(v, v∗)ft (dv∗)ft (dv) uniformly for t ∈ |0,∞). Using Step 2, we con-

clude that t �→ ∫
R3

∫
R3 LBφ(v, v∗)ft (dv∗)ft (dv) is continuous on [0,∞). �

4. Lowerbound. The aim of this section is to prove Theorem 1.2 and to de-
duce some lowerbounds of weak solutions. For x ∈ R3 and r > 0, we denote by
B(x, r) := {y ∈ R3 : |y − x| < r} and by S(x, r) := {y ∈ R3 : |y − x| = r}. We start
with the following preliminary result.

LEMMA 4.1. Consider g ∈ P(R3) enjoying the following property: v1, v2 ∈
Suppg implies that S((v1 +v2)/2, |v1 −v2|/2) ⊂ Suppg. If g is not a Dirac mass,
then Suppg = R3.

PROOF. We first claim that for any x ∈ R3, any r > 0, S(x, r) ⊂ Suppg im-
plies B̄(x,

√
2r) ⊂ Suppg. Due to our assumption, it suffices to show that for any

v ∈ B̄(x,
√

2r), there exists v1, v2 ∈ S(x, r) such that v ∈ S((v1 + v2)/2, |v1 −
v2|/2). This is not hard: write v = x+αrσ , for some σ ∈ S2 and some α ∈ [0,

√
2],

consider any τ ∈ S2 orthogonal to σ and choose v1 = x + r[(α + √
2 − α2)σ +

(α − √
2 − α2)τ ]/2 and v2 = x + r[(α + √

2 − α2)σ − (α − √
2 − α2)τ ]/2.

Since g is not a Dirac mass, we can find v1 
= v2 in Suppg. Put x0 =
(v1 + v2)/2 and r0 = |v1 − v2|/2 > 0. By assumption, S(x0, r0) ⊂ Suppg,
whence B̄(x0,

√
2r0) ⊂ Suppg. Thus in particular, S(x0,

√
2r0) ⊂ Suppg, whence

B̄(x0,2r0) ⊂ Suppg, and so on. We find that B̄(x0,2n/2r0) ⊂ Suppg for any n ≥ 1,
which ends the proof. �

We can now give the proof of Theorem 1.2. Let us mention that Step 2 below is
inspired by Villani [38], Chapter 3, Section 6.2.

PROOF OF THEOREM 1.2. We thus assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈
(0,1) and consider a weak solution (ft )t≥0 to (1.1) starting from some non-Dirac
initial condition f0 ∈ P2(R

3).
Step 1. For all t > 0, ft is not a Dirac mass. This is immediate from the conser-

vations of momentum and energy (1.3) and the fact that f0 is not a Dirac mass: for
all t ≥ 0, all v0 ∈R3,∫

R3
|v − v0|2ft (dv) =

∫
R3

|v − v0|2f0(dv) > 0.
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Step 2. Here we prove that for any t > 0, any v0 ∈ R3, any ε > 0, [recall that
v′ = v′(v, v∗, σ ) and θ = θ(v, v∗, σ ) were defined in (1.2)]

ft

(
B(v0, ε)

) = 0

�⇒
∫
R3

∫
R3

∫
S2

1{v′(v,v∗,σ )∈B(v0,ε)}

× 1{v 
=v∗,θ(v,v∗,σ )∈(0,π/2)} dσft (dv∗)ft (dv) = 0.

Assume thus that ft (B(v0, ε)) = 0 and consider φε,v0 ∈ Lipb(R
3), strictly positive

on B(v0, ε) and vanishing outside B(v0, ε). By Lemma 3.3, s �→ ∫
R3 φε,v0(v) ×

fs(dv) belongs to C1([0,∞)). Since it is nonnegative and vanishes at t > 0, its
derivative also vanishes at t . Consequently, by (1.4),∫

R3

∫
R3

∫
S2

B
(|v − v∗|, cos θ

)[
φε,v0

(
v′) − φε,v0(v)

]
dσft (dv∗)ft (dv) = 0.

But ft (B(v0, ε)) = 0 and Suppφε,v0 ⊂ B(v0, ε), so that∫
R3

∫
R3

∫
S2

B
(|v − v∗|, cos θ

)
φε,v0

(
v′)dσft (dv∗)ft (dv) = 0.

This implies the result, since φε,v0(v
′)B(|v − v∗|, cos θ) > 0 as soon as v′ ∈

B(v0, ε), v 
= v∗ and θ ∈ (0, π/2) due to (Aγ,ν).
Step 3. We now show that for any t > 0, v1, v2 ∈ Suppft implies S((v1 +

v2)/2, |v1 − v2|/2) ⊂ Suppft . We can assume that v1 
= v2, because else,
S((v1 + v2)/2, |v1 − v2|/2) = {v1} and the result is obvious. Observe that
S((v1 + v2)/2, |v1 − v2|/2) is the closure of �v1,v2 ∪ �v2,v1 , where

�v1,v2 := {
v′(v1, v2, σ ) :σ ∈ S2, θ(v1, v2, σ ) ∈ (0, π/2)

}
.

Since Suppft is closed, it suffices to prove that �v1,v2 ∪ �v2,v1 ⊂ Suppft . Let
thus, for example, v0 ∈ �v1,v2 . Then v0 = v′(v1, v2, σ0) for some σ0 ∈ S2 with
θ0 = θ(v1, v2, σ0) ∈ (0, π/2). Thus for all v � v1, all v∗ � v2, all σ � σ0, we have
v′(v, v∗, σ ) � v0, v 
= v∗ and θ(v, v∗, σ ) ∈ (0, π/2). Since v1 ∈ Suppft (dv) and
v2 ∈ Suppft (dv∗), we conclude that for any ε > 0,∫

R3

∫
R3

∫
S2

1{v′(v,v∗,σ )∈B(v0,ε)}1{v 
=v∗,θ(v,v∗,σ )∈(0,π/2)} dσft (dv∗)ft (dv) > 0.

This implies that ft (B(v0, ε)) > 0 for all ε > 0 by Step 2.
Step 4. We conclude from Lemma 4.1 and Steps 1 and 3 that for all t > 0,

Suppft = R3. �

We finally check the following estimate.

PROPOSITION 4.2. Assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈ (0,1). Let also
f0 ∈ P2(R

3) not be a Dirac mass. Consider any weak solution (ft )t≥0 to (1.1)
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starting from f0. For all 0 < t0 < t1,

qt0,t1 := inf
t∈[t0,t1],w∈R3,ζ∈R3

ft

(
K(w, ζ )

)
> 0,

where K(w, ζ ) := {v ∈ R3 : |v| ≤ 3, |v − w| ≥ 1, |〈v − w,ζ 〉| ≥ |ζ |}.
PROOF. We divide the proof into three steps.
Step 1. We first prove that for any 0 < t0 < t1, inft∈[t0,t1],x∈S(0,2) ft (B(x,1)) >

0. To this end, consider φ ∈ Lipb(R
3) such that 1B(0,1/2) ≤ φ ≤ 1B(0,1). Define

F(t, x) = ∫
R3 φ(v − x)ft (dv). We know from Lemma 3.3 that t �→ F(t, x) is con-

tinuous for each x ∈ R3. Furthermore, denoting by C the Lipschitz constant of φ,
we have supt≥0 |F(t, x) − F(t, y)| ≤ C|x − y|. All this implies that F is continu-
ous on [0,∞) ×R3. Since F(t, x) ≥ ft (B(x,1/2)), we deduce from Theorem 1.2
that F(t, x) > 0 for all t > 0, all x ∈ R3. The continuity of F and the compactness
of [t1, t2] × S(0,2) imply that inf[t1,t2]×S(0,2) F > 0. This ends the step, because
ft (B(x,1)) ≥ F(t, x).

Step 2. Here we check that for any w ∈ R3, any ζ ∈ R3 we can find xw,ζ ∈
S(0,2) such that B(xw,ζ ,1) ⊂ K(w, ζ ). We may assume that ζ 
= 0 [because
K(w, ζ ) ⊂ K(w,0) for any ζ 
= 0]. Put sg(y) = 1 for y ≥ 0 and sg(y) = −1
for y < 0. Choose xw,ζ = −2 sg(〈w,ζ 〉)ζ/|ζ | ∈ S(0,2). It remains to prove that
B(xw,ζ ,1) ⊂ K(w, ζ ). Let thus v ∈ B(xw,ζ ,1).

(a) First, |v| ≤ |xw,ζ | + 1 = 3.

(b) Next, observe that |w − xw,ζ | = |w + 2 sg(〈w,ζ 〉)ζ/|ζ || ≥
√

|w|2 + 4 ≥ 2,
so that

|w − v| ≥ |w − xw,ζ | − |xw,ζ − v| ≥ 2 − 1 = 1.

(c) Finally, using that |〈w − xw,ζ , ζ 〉| = |〈w,ζ 〉 + 2 sg(〈w,ζ 〉)|ζ || ≥ 2|ζ |, we
see that∣∣〈w − v, ζ 〉∣∣ ≥ ∣∣〈w − xw,ζ , ζ 〉∣∣ − ∣∣〈xw,ζ − v, ζ 〉∣∣ ≥ 2|ζ | − |ζ | = |ζ |.

All this shows that v ∈ K(w, ζ ) as desired.
Step 3. By Step 2, we have

inf
t∈[t0,t1],w∈R3,ζ∈R3

ft

(
K(w, ζ )

) ≥ inf
t∈[t0,t1],x∈S(0,2)

ft

(
B(x,1)

)
.

This last quantity is positive if 0 < t0 < t1 by Step 1. �

5. Probabilistic interpretation. We write down the probabilistic interpreta-
tion of (1.1) initiated by Tanaka [35] in the case of Maxwell molecules.

PROPOSITION 5.1. Let f0 ∈ P2(R
3). Assume (Aγ,ν) for some γ ∈ (−1,1),

ν ∈ (0,1).

(i) Assume first that γ ∈ (0,1). Then for any weak solution (ft )t≥0 to (1.1)
starting from f0 and satisfying (1.6), there exist, on some probability space
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(�,F, (Ft )t≥0,Pr), a F0-measurable random variable V0 with law f0, a (Ft )t≥0-
Poisson measure N(ds, dv, dθ, dϕ, du) on [0,∞) × R3 × (0, π/2] × [0,2π) ×
[0,∞) with intensity dsfs(dv)b(θ) dθ dϕ du and a càdlàg (Ft )t≥0-adapted R3-
valued process (Vt )t≥0 satisfying L(Vt ) = ft for all t ≥ 0 and solving

Vt = V0 +
∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vs−, v, θ, ϕ)

(5.1)
× 1{u≤|Vs−−v|γ }N(ds, dv, dθ, dϕ, du).

(ii) Assume next that γ ∈ (−1,0] and that f0 ∈ Pp(R3) for some p > 2. There
exists a weak solution (ft )t≥0 to (1.1) starting from f0 satisfying

∀T > 0, sup
[0,T ]

mp(ft ) ≤ CT,p(5.2)

and such that there exist, on some probability space (�,F, (Ft )t≥0,Pr), a
F0-measurable random variable V0 with law f0, a (Ft )t≥0-Poisson measure
N(ds, dv, dθ, dϕ, du) on [0,∞) × R3 × (0, π/2] × [0,2π) × [0,∞) with in-
tensity dsfs(dv)b(θ) dθ dϕ du and a càdlàg (Ft )t≥0-adapted R3-valued process
(Vt )t≥0 solving (5.1) and satisfying L(Vt ) = ft for all t ≥ 0.

The proof of this result is fastidious and not very interesting, so we will give at
the end of the paper. In the sequel, (Vt )t≥0 will be called Boltzmann process.

6. Approximation. We now wish to approximate the Boltzmann process
(Vt )t≥0 by a process (V ε

t )t≥0 of which we can more easily study the law. We
essentially freeze the integrand in the Poisson integral during a small time interval
[t − ε, t], so that the resulting process V ε

t becomes a Lévy process conditionally
on Ft−ε . The advantage of Lévy processes is that we can easily study their laws
through their Fourier transforms. Due to the lack of regularity of the function a,
we have to make use of ϕ0 introduced in Lemma 3.2.

PROPOSITION 6.1. Assume (Aγ,ν ) for some γ ∈ (−1,1), ν ∈ (0,1) with γ +
ν > 0. Consider a Boltzmann process (Vt )t≥0 built with a Poisson measure N as
in Proposition 5.1. For ε ∈ (0, t ∧ 1), set

V ε
t := Vt−ε +

∫ t

t−ε

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a
(
Vt−ε, v, θ, ϕ + ϕ0(Vs− − v,Vt−ε − v)

)
(6.1)

× 1{u≤|Vt−ε−v|γ }N(ds, dv, dθ, dϕ, du).

(i) If γ ∈ (0,1), then for any 0 < t0 ≤ t − ε ≤ t with ε ∈ (0,1) and any η ∈
(0,2),

E
[∣∣Vt − V ε

t

∣∣ν] ≤ Ct0,ηε
2−η.
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(ii) If γ ∈ (−1,0], then for any 0 ≤ t −ε ≤ t with ε ∈ (0,1) and any η ∈ (0,2+
γ /ν),

E
[∣∣Vt − V ε

t

∣∣ν] ≤ Cηε
2+γ /ν−η.

We will use that for a, b > 0, there are some constants 0 < ca,b < Ca,b such that

∀x, y > 0, ca,b

∣∣xa+b − ya+b
∣∣ ≤ (

xa + ya)∣∣xb − yb
∣∣

(6.2)
≤ Ca,b

∣∣xa+b − ya+b
∣∣.

PROOF. We divide the proof into several steps.
Step 1. Here we check that for all β ∈ (ν,1) and all 0 ≤ s ≤ t , E[|Vt − Vs |β] ≤

Cβ(t − s) in both cases (i) and (ii). Using the subadditivity of x �→ xβ , we deduce
from (5.1) that

|Vt − Vs |β ≤
∫ t

s

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∣∣a(Vr−, v, θ, ϕ)
∣∣β

× 1{u≤|Vr−−v|γ }N(dr, dv, dθ, dϕ, du).

Taking expectations, integrating in u and using (3.4), we obtain

E
[|Vt − Vs |β] ≤ E

[∫ t

s

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∣∣a(Vr, v, θ, ϕ)
∣∣β

× 1{u≤|Vr−v|γ } dudϕb(θ) dθfr(dv) dr

]

≤
∫ t

s

∫
R3

∫ π/2

0

∫ 2π

0
θβE

[|Vr − v|γ+β]dϕb(θ) dθfr(dv) dr

≤ Cβ(t − s).

We used that β > ν, whence
∫ π/2

0 θβb(θ) dθ ≤ C0
∫ π/2

0 θβ−1−ν dθ < ∞ by (Aγ,ν),
that |Vr −v|γ+β ≤ C(1+|Vr |2 +|v|2) [because γ +β ∈ (0,2)] and that

∫
R3 E(1+

|v|2 + |Vr |2)fr(dv) = 1 + 2m2(fr) = C by (1.3) [recall that L(Vt ) = ft ].
Step 2. In this step we prove that for all β ∈ (ν,1) and all 0 ≤ t − ε ≤ t , in cases

(i) and (ii),

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ

∫ t

t−ε

∫
R3

E
[
A1,β,ε

s (v) + A2,β,ε
s (v) + A3,β,ε

s (v)
]
fs(dv) ds,

where, using the notation x+ = x ∨ 0,

A1,β,ε
s (v) := (|Vt−ε − v|γ ∧ |Vs − v|γ )

× (|Vs − Vt−ε|β ∧ [|Vt−ε − v|β + |Vs − v|β]),
A2,β,ε

s (v) := (|Vt−ε − v|γ − |Vs − v|γ )+|Vt−ε − v|β,

A3,β,ε
s (v) := (|Vs − v|γ − |Vt−ε − v|γ )+|Vs − v|β.
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Exactly as in Step 1, we obtain

E
[∣∣Vt − V ε

t

∣∣β]
≤ E

[∫ t

t−ε

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

∣∣a(Vs, v, θ, ϕ)1{u≤|Vs−v|γ }

− a
(
Vt−ε, v, θ, ϕ + ϕ0(Vs − v,Vt−ε − v)

)
× 1{u≤|Vt−ε−v|γ }

∣∣β dudϕb(θ) dθfs(dv) ds

]
.

Integrating in u, we get E[|Vt − V ε
t |β] ≤ ∫ t

t−ε

∫
R3 E[B1,β,ε

s (v) + B
2,β,ε
s (v) +

B
2,β,ε
s (v)]fs(dv) ds, where

B1,β,ε
s (v) :=

∫ π/2

0

∫ 2π

0

(|Vt−ε − v|γ ∧ |Vs − v|γ )
× ∣∣a(Vs, v, θ, ϕ)

− a
(
Vt−ε, v, θ, ϕ + ϕ0(Vs − v,Vt−ε − v)

)∣∣β dϕb(θ) dθ,

B2,β,ε
s (v) :=

∫ π/2

0

∫ 2π

0

(|Vt−ε − v|γ − |Vs − v|γ )+
× ∣∣a(Vt−ε, v, θ, ϕ + ϕ0(Vs − v,Vt−ε − v)

)∣∣β dϕb(θ) dθ,

B3,β,ε
s (v) :=

∫ π/2

0

∫ 2π

0

(|Vs − v|γ − |Vt−ε − v|γ )+∣∣a(Vs, v, θ, ϕ)
∣∣β dϕb(θ) dθ.

Using Lemma 3.2 and (3.4), we realize that∣∣a(Vs, v, θ, ϕ) − a
(
Vt−ε, v, θ, ϕ + ϕ0(Vs − v,Vt−ε − v)

)∣∣
≤ 2θ

(|Vs − Vt−ε| ∧ [|Vt−ε − v| + |Vs − v|]).
Since

∫ π/2
0 θβb(θ) dθ < ∞, we deduce that B

1,β,ε
s (v) ≤ CβA

1,β,ε
s (v). Using (3.4),

we get B
2,β,ε
s (v) ≤ CβA

2,β,ε
s (v) and B

3,β,ε
s (v) ≤ CβA

3,β,ε
s (v), which completes

the step.
Step 3. Here we conclude the proof of (i). We thus assume that γ ∈ (0,1) and

fix 0 < t0 ≤ t − ε ≤ t with ε ∈ (0,1). We also fix β ∈ (ν,1) and apply Step 2. We
first observe that

A1,β,ε
s (v) ≤ C

(|v|γ + |Vt−ε|γ + |Vs |γ )|Vs − Vt−ε|β.

We next use twice (6.2) (with a = γ and b = β) to deduce that

A2,β,ε
s (v) + A3,β,ε

s (v) ≤ (|Vt−ε − v|β + |Vs − v|β)∣∣|Vt−ε − v|γ − |Vs − v|γ ∣∣
≤ Cβ

∣∣|Vt−ε − v|β+γ − |Vs − v|β+γ
∣∣

≤ Cβ

(|Vt−ε − v|γ + |Vs − v|γ )∣∣|Vt−ε − v|β − |Vs − v|β ∣∣
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≤ Cβ

(|Vt−ε − v|γ + |Vs − v|γ )|Vs − Vt−ε|β
≤ Cβ

(|v|γ + |Vt−ε|γ + |Vs |γ )|Vs − Vt−ε|β.

We thus have

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ

∫ t

t−ε

∫
R3

E
[|Vs − Vt−ε|β(|v|γ + |Vt−ε|γ + |Vs |γ )]fs(dv) ds

≤ Cβ

∫ t

t−ε
E
[|Vs − Vt−ε|β(1 + |Vt−ε|γ + |Vs |γ )]ds,

since
∫
R3 |v|γ fs(dv) ≤ ∫

R3(1 + |v|2)ft (dv) ≤ C by (1.3). We now consider δ ∈
(0,1 − β) and apply the Hölder inequality [with p = 1/(1 − δ) and q = 1/δ]:

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ

∫ t

t−ε
E
[|Vs − Vt−ε|β/(1−δ)]1−δ

×E
[(

1 + |Vt−ε|γ + |Vs |γ )1/δ]δ
ds.

By Step 1 [observe that β/(1−δ) ∈ (ν,1)], we have E[|Vs −Vt−ε|β/(1−δ)] ≤ Cβ,δε

for all s ∈ [t − ε, t]. Using (1.6) [recall that L(Vs) = fs for all s ≥ 0], we see that
E[(1 + |Vt−ε|γ + |Vs |γ )1/δ] ≤ Ct0,δ (because s ≥ t − ε ≥ t0 > 0). Thus

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ,δ,t0

∫ t

t−ε
ε1−δ ds ≤ Cβ,δ,t0ε

2−δ.

Using finally the Hölder inequality, we deduce that for all β ∈ (ν,1) and all δ ∈
(0,1 − β), E[|Vt − V ε

t |ν] ≤ E[|Vt − V ε
t |β]ν/β ≤ Cβ,δ,t0ε

(2−δ)ν/β . Since we can
choose β ∈ (ν,1) arbitrarily close to ν and δ ∈ (0,1 − β) arbitrarily close to 0, it
holds that (2 − δ)ν/β ∈ (0,2) is arbitrarily close to 2, which ends the proof of (i).

Step 4. We finally check (ii). We thus assume that γ ∈ (−1,0], that γ + ν > 0
and we fix 0 ≤ t − ε ≤ t with ε ∈ (0,1). We also fix β ∈ (ν,1) and apply Step 2.
First, since |γ |/β ∈ (0,1),

A1,β,ε
s (v) ≤ (|Vt−ε − v|γ ∧ |Vs − v|γ )|Vs − Vt−ε|β(1−|γ |/β)

× (|Vt−ε − v|β + |Vs − v|β)|γ |/β

≤ (|Vt−ε − v|γ ∧ |Vs − v|γ )(|Vt−ε − v||γ | + |Vs − v||γ |)|Vs − Vt−ε|β+γ

≤ 2|Vs − Vt−ε|β+γ .

Next, using twice (6.2) with a = |γ | and b = β + γ (lines 2 and 4),

A2,β,ε
s (v) = 1{|Vt−ε−v|<|Vs−v|}

(|Vs − v||γ | − |Vt−ε − v||γ |)|Vt−ε − v|β+γ |Vs − v|γ
≤ Cβ1{|Vt−ε−v|<|Vs−v|}

(|Vs − v|β − |Vt−ε − v|β)|Vs − v|γ

≤ Cβ1{|Vt−ε−v|<|Vs−v|}
|Vs − v|β − |Vt−ε − v|β

|Vs − v||γ | + |Vt−ε − v||γ |
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≤ Cβ

(|Vs − v|β+γ − |Vt−ε − v|β+γ )
≤ Cβ |Vs − Vt−ε|β+γ ,

where we finally used that 0 < β + γ < 1. Treating A
3,β,ε
s (v) similarly, we finally

get

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ

∫ t

t−ε

∫
R3

E
[|Vs − Vt−ε|β+γ ]fs(dv) ds

≤ Cβ

∫ t

t−ε
E
[|Vs − Vt−ε|β+γ ]ds.

Using the Hölder inequality (recall that 0 < β + γ < β) and Step 1, we obtain

E
[∣∣Vt − V ε

t

∣∣β] ≤ Cβ

∫ t

t−ε
E
[|Vs − Vt−ε|β]1+γ /β

ds ≤ Cβε2+γ /β,

whence E[|Vt −V ε
t |ν] ≤ E[|Vt −V ε

t |β]ν/β ≤ Cβε(2+γ /β)ν/β . Since we can choose
β ∈ (ν,1) arbitrarily close to ν it holds that (2 + γ /β)ν/β ∈ (0,2 + γ /ν) is arbi-
trarily close to 2 + γ /ν, which completes the proof of (ii). �

7. Density estimate for the approximate process. The aim of this section,
strongly inspired by Schilling, Sztonyk and Wang [34], Propositions 2.1, 2.2, 2.3,
is to prove that V ε

t has a regular law in some sense, with some precise estimates in
terms of ε.

PROPOSITION 7.1. Assume (Aγ,ν ) for some γ ∈ (−1,1), ν ∈ (0,1). Let
f0 ∈ P2(R

3) not be a Dirac mass. If γ ∈ (−1,0], assume additionally that
f0 ∈ P4+γ+4|γ |/ν(R3). Consider the approximate Boltzmann process V ε

t defined
in Proposition 6.1 associated with a weak solution (ft )t≥0 to (1.1) starting from
f0. For all h ∈ Rd , all φ ∈ L∞(R3), all 0 < t0 ≤ t − ε < t ≤ t1 with ε ∈ (0,1),∣∣E[

φ
(
V ε

t + h
) − φ

(
V ε

t

)]∣∣ ≤ Ct0,t1‖φ‖L∞(R3)

|h|
ε1/ν

.

We will use the following easy estimate, which resembles [34], Proposition 2.1:
it is much less general, but sharper.

LEMMA 7.2. Let λ be a nonnegative measure on R3 such that
∫
R3 |y|λ(dy) <

∞ and consider the infinitely divisible distribution k with Fourier transform

k̂(ξ) :=
∫
R3

ei〈ξ,x〉k(dx) = exp
(−�(ξ)

)
with �(ξ) =

∫
R3

(
1 − ei〈ξ,y〉)λ(dy).

If the right-hand side of the following inequality is finite, then k has a density (still
denoted by k) and

‖∇k‖L1(R3) ≤ C
(
1 + m4

1(λ) + m4(λ)
) ∫

R3
e−Re�(ξ)(1 + |ξ |)dξ,

where mn(λ) = ∫
R3 |y|nλ(dy) and C is a universal constant.
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PROOF. The proof is quite similar to [34], Proposition 2.1. We will show that

‖∇k‖L∞(R3) ≤ C

∫
R3

e−Re�(ξ)|ξ |dξ,(7.1)

∥∥|x|4∇k(x)
∥∥
L∞(R3) ≤ C

(
1 + m4

1(λ) + m4(λ)
) ∫

R3
e−Re�(ξ)(1 + |ξ |)dξ,(7.2)

from which the result follows, since (1 + |x|)−4 ∈ L1(R3). First,

‖∇k‖L∞(R3) ≤ (2π)−3‖∇̂k‖L1(R3) = (2π)−3∥∥ξ k̂(ξ)
∥∥
L1(R3)

= (2π)−3
∫
R3

e−Re�(ξ)|ξ |dξ,

whence (7.1). To check (7.2), we start with∥∥|x|4∇k(x)
∥∥
L∞(R3) ≤ (2π)−3∥∥�2(∇̂k)

∥∥
L1(R3) ≤ C

∥∥D4(ξ k̂(ξ)
)∥∥

L1(R3).

A tedious computation recalling that k̂(ξ) = e−�(ξ) shows that∣∣D4(ξ k̂(ξ)
)∣∣

≤ C
(
1 + |ξ |)∣∣e−�(ξ)

∣∣
× (∣∣D4�(ξ)

∣∣ + ∣∣D3�(ξ)D�(ξ)
∣∣ + ∣∣D2�(ξ)

∣∣2 + ∣∣D�(ξ)
∣∣2∣∣D2�(ξ)

∣∣
+ ∣∣D�(ξ)

∣∣4 + ∣∣D3�(ξ)
∣∣ + ∣∣D�(ξ)

∣∣∣∣D2�(ξ)
∣∣ + ∣∣D�(ξ)

∣∣3).
But from the expression of �, we see that |Dn�(ξ)| ≤ mn(λ) for all n ≥ 1. Since
|e−�(ξ)| = e−Re�(ξ), we get, setting mn = mn(λ) for simplicity,∣∣D4(ξ k̂(ξ)

)∣∣ ≤ C
(
1 + |ξ |)e−Re�(ξ)

× (
m4 + m3m1 + m2

2 + m2
1m2 + m4

1 + m3 + m1m2 + m3
1
)

≤ C
(
1 + |ξ |)e−Re�(ξ)(1 + m4 + m

4/3
3 + m2

2 + m4
1
)
,

where we used the Young inequality. To complete the proof of (7.2), it only remains
to check that m

4/3
3 +m2

2 ≤ C(m4 +m4
1), which is not hard by the Hölder and Young

inequalities. �

Unfortunately, applying directly Lemma 7.2 to the law of V ε
t does not give the

correct power of ε. We thus use the same trick as in [34]: we only consider the part
of V ε

t corresponding to small values of θ (grazing collisions), in such a way that it
does not affect the estimate from below of Re�(ξ), but which makes consequently
decrease the moment estimates [of m4

1(λ) + m4(λ)].
We start with the following remark.

LEMMA 7.3. Adopt the notation and assumptions of Proposition 7.1. Let ε ∈
(0, t ∧ 1) be fixed.
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(i) We can find a (Ft )t≥0-Poisson measure M with the same intensity as N

(see Proposition 5.1) such that

V ε
t := Vt−ε +

∫ t

t−ε

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vt−ε, v, θ, ϕ)

(7.3)
× 1{u≤|Vt−ε−v|γ }M(ds, dv, dθ, dϕ, du).

(ii) We write V ε
t = Uε

t + Wε
t with

Uε
t :=

∫ t

t−ε

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vt−ε, v, θ, ϕ)

× 1{u≤|Vt−ε−v|γ }1{θ<ε1/ν}M(ds, dv, dθ, dϕ, du),

Wε
t := Vt−ε +

∫ t

t−ε

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vt−ε, v, θ, ϕ)1{u≤|Vt−ε−v|γ }

× 1{θ≥ε1/ν}M(ds, dv, dθ, dϕ, du),

so that Uε
t and Wε

t are independent conditionally on Ft−ε .
(iii) For all ξ ∈ R3, E[ei〈ξ,Uε

t 〉|Ft−ε] = exp(−�ε,t,Vt−ε (ξ)), where, for v0 ∈ R3,

�ε,t,v0(ξ) =
∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0

(
1−ei〈ξ,a(v0,v,θ,ϕ)〉)|v−v0|γ dϕb(θ) dθfs(dv) ds.

PROOF. To prove point (i), define M as the image measure of N by the
(Ft )t≥0-predictable map (s, v, θ, ϕ,u) �→ (s, v, θ, ϕ+ϕ0(Vs− −v,Vt−ε −v) mod-
ulo 2π,u). Then (6.1) obviously rewrites as (7.3). The fact that M is a (Ft )t≥0-
Poisson measure with the same intensity as N is due to the fact that the Lebesgue
measure on [0,2π) is invariant by translation (modulo 2π ). This was already no-
ticed by Tanaka [35]; see [21], Lemma 4.7, for a very similar statement. Points
(ii) and (iii) follow from standard properties of Poisson measures, because in Uε

t

and Wε
t , the integrands are Ft−ε-measurable and the Poisson integrals concern the

time interval [t − ε, t]. �

We next estimate the Fourier transform of the law of Uε
t .

LEMMA 7.4. Adopt the notation and assumptions of Proposition 7.1. Recall
that �ε,t,v0 was defined in Lemma 7.3. For all ξ ∈ R3, all 0 < t0 ≤ t − ε < t ≤ t1
with ε ∈ (0,1),

Re�ε,t,v0

(
ε−1/νξ

) ≥
{

ct0,t1

(|ξ |2 ∧ |ξ |ν) if γ ∈ (0,1),
ct0,t1

(
1 + |v0|)γ (|ξ |2 ∧ |ξ |ν) if γ ∈ (−1,0].

PROOF. We divide the proof into three steps.
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Step 1. Here we assume that γ ∈ (−1,1). We have

Re�ε,t,v0

(
ε−1/νξ

) =
∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0

(
1 − cos

(
ε−1/ν 〈ξ, a(v0, v, θ, ϕ)

〉))
× |v − v0|γ dϕb(θ) dθfs(dv) ds.

By (3.1), 〈ξ, a(v0, v, θ, ϕ)〉 = (cos θ − 1)〈ξ, v0 − v〉/2 + sin θ〈ξ,�(v0 − v,ϕ)〉/2.
Hence ∫ 2π

0

(
1 − cos

(
ε−1/ν 〈ξ, a(v0, v, θ, ϕ)

〉))
dϕ

=
∫ 2π

0

(
1 − cos

(
ε−1/ν(cos θ − 1)〈ξ, v0 − v〉/2

)
× cos

(
ε−1/ν sin θ

〈
ξ,�(v0 − v,ϕ)

〉
/2

)
+ sin

(
ε−1/ν(cos θ − 1)〈ξ, v0 − v〉/2

)
× sin

(
ε−1/ν sin θ

〈
ξ,�(v0 − v,ϕ)

〉
/2

))
dϕ

=
∫ 2π

0

(
1 − cos

(
ε−1/ν(cos θ − 1)〈ξ, v0 − v〉/2

)
× cos

(
ε−1/ν sin θ

〈
ξ,�(v0 − v,ϕ)

〉
/2

))
dϕ

≥
∫ 2π

0

(
1 − ∣∣cos

(
ε−1/ν sin θ

〈
ξ,�(v0 − v,ϕ)

〉
/2

)∣∣)dϕ.

Since 1 − cosx ≥ x2/4 and | sinx| ≥ |x|/2 for x ∈ [−1,1] and since | sinx| ≤ |x|
for all x ∈ R (recall that θ ≤ ε1/ν ≤ 1),∫ 2π

0

(
1 − cos

(
ε−1/ν 〈ξ, a(v0, v, θ, ϕ)

〉))
dϕ

≥
∫ 2π

0

ε−2/ν sin2 θ〈ξ,�(v0 − v,ϕ)〉2

16
1{|〈ξ,�(v0−v,ϕ)〉 sin θ |≤2ε1/ν} dϕ

≥
∫ 2π

0

ε−2/νθ2〈ξ,�(v0 − v,ϕ)〉2

64
1{|θ |≤2ε1/ν/|〈ξ,�(v0−v,ϕ)〉|} dϕ.

Using the lower bound of b given by (Aγ,ν) and then integrating in θ , we obtain

Re�ε,t,v0

(
ε−1/νξ

)
≥ c

ε2/ν

∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0
θ2〈ξ,�(v0 − v,ϕ)

〉2
× 1{|θ |≤2ε1/ν/|〈ξ,�(v0−v,ϕ)〉|}
× |v − v0|γ dϕθ−1−ν dθfs(dv) ds
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= c

ε2/ν

∫ t

t−ε

∫
R3

∫ 2π

0

〈
ξ,�(v0 − v,ϕ)

〉2[
ε1/ν ∧ 2ε1/ν

|〈ξ,�(v0 − v,ϕ)〉|
]2−ν

× |v − v0|γ fs(dv) dϕ ds

≥ c

ε

∫ t

t−ε

∫
R3

∫ 2π

0

[〈
ξ,�(v0 − v,ϕ)

〉2 ∧ ∣∣〈ξ,�(v0 − v,ϕ)
〉∣∣ν]

× |v − v0|γ fs(dv) dϕ ds

= c

ε

∫ t

t−ε

∫
R3

∫ 2π

0

[〈
v0 − v,�(ξ,ϕ)

〉2 ∧ ∣∣〈v0 − v,�(ξ,ϕ)
〉∣∣ν]

× |v − v0|γ fs(dv) dϕ ds,

where we finally used Remark 3.1.
Step 2. We now assume that γ ∈ (0,1). Recall Proposition 4.2 [and the fact

that |�(ξ,ϕ)| = |ξ |, see (3.1)]: for any v0, ξ ∈ R3, any ϕ ∈ [0,2π), any v ∈
K(v0,�(ξ,ϕ)), we have |v − v0| ≥ 1 and |〈v0 − v,�(ξ,ϕ)〉| ≥ |�(ξ,ϕ)| = |ξ |.
Thus, using that fs(K(v0,�(ξ,ϕ))) ≥ qt0,t1 > 0 for all 0 < t0 ≤ t − ε ≤ s ≤ t ≤ t1,
we get

Re�ε,t,v0

(
ε−1/νξ

) ≥ c

ε

∫ t

t−ε

∫ 2π

0

[|ξ |2 ∧ |ξ |ν]fs

(
K

(
v0,�(ξ,ϕ)

))
dϕ ds

≥ cqt0,t1

[|ξ |2 ∧ |ξ |ν].
Step 3. We finally assume that γ ∈ (−1,0]. Recall again Proposition 4.2 and that

|�(ξ,ϕ)| = |ξ |: for any v0, ξ ∈ R3, any ϕ ∈ [0,2π), any v ∈ K(v0,�(ξ,ϕ)), we
have |v − v0| ≤ |v|+ |v0| ≤ 3 +|v0| [so that |v − v0|γ ≥ 3γ (1 +|v0|)γ ] and |〈v0 −
v,�(ξ,ϕ)〉| ≥ |�(ξ,ϕ)| = |ξ |. Thus, using that fs(K(v0,�(ξ,ϕ))) ≥ qt0,t1 > 0 for
all 0 < t0 ≤ t − ε ≤ s ≤ t ≤ t1, we get

Re�ε,t,v0

(
ε−1/νξ

) ≥ c

ε

∫ t

t−ε

∫ 2π

0

[|ξ |2 ∧ |ξ |ν](1 + |v0|)γ fs

(
K

(
v0,�(ξ,ϕ)

))
dϕ ds

≥ cqt0,t1

(
1 + |v0|)γ [|ξ |2 ∧ |ξ |ν],

which completes the proof. �

We now estimate the regularity of the law of Uε
t .

LEMMA 7.5. Adopt the notation and assumptions of Proposition 7.1. Re-
call that �ε,t,v0 was defined in Lemma 7.3. Consider gε,t,v0 ∈ P(R3) such that
ĝε,t,v0(ξ) = exp(−�ε,t,v0(ξ)). If 0 < t0 ≤ t − ε < t ≤ t1 and ε ∈ (0,1), gε,t,v0 has
a density and

‖∇gε,t,v0‖L1(R3) ≤
{

Ct0,t1ε
−1/ν(1 + |v0|)4γ+4 if γ ∈ (0,1),

Ct0,t1ε
−1/ν(1 + |v0|)4+γ+4|γ |/ν if γ ∈ (−1,0].
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PROOF. We introduce, for Xε,t,v0 a gε,t,v0 -distributed random variable,

Yε,t,v0 := ε−1/νXε,t,v0 . Then the law kε,t,v0 of Yε,t,v0 satisfies k̂ε,t,v0(ξ) =
ĝε,t,v0(ε

−1/νξ) = exp(−�ε,t,v0(ε
−1/νξ)) and kε,t,v0(x) = ε3/νgε,t,v0(ε

1/νx). Ob-
serve that

‖∇gε,t,v0‖L1(R3) = ε−1/ν‖∇kε,t,v0‖L1(R3).(7.4)

Step 1. We want to apply Lemma 7.2. We have k̂ε,t,v0(ξ) = exp(−�ε,t,v0(ξ)),
where �ε,t,v0(ξ) = �ε,t,v0(ε

−1/νξ), whence

�ε,t,v0(ξ) =
∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0

(
1 − ei〈ξ,ε−1/νa(v0,v,θ,ϕ)〉)

× |v − v0|γ dϕb(θ) dθfs(dv) ds

=
∫
R3

(
1 − ei〈ξ,z〉)λt,ε,v0(dz),

the measure λt,ε,v0 being defined by∫
R3

F(z)λt,ε,v0(dz)

=
∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0
F

(
a(v0, v, θ, ϕ)

ε1/ν

)
|v − v0|γ dϕb(θ) dθfs(dv) ds

for all nonnegative measurable F :R3 �→R. Lemma 7.2 thus implies

‖∇kε,t,v0‖L1(R3) ≤ C
(
1 + m4

1(λt,ε,v0) + m4(λt,ε,v0)
)

×
∫
R3

e−Re�ε,t,v0 (ξ)(1 + |ξ |)dξ

(7.5)
≤ C

(
1 + m4

1(λt,ε,v0) + m4(λt,ε,v0)
)

×
(

1 +
∫
|ξ |≥1

e−Re�ε,t,v0 (ε−1/νξ)|ξ |dξ

)
.

A simple computation using (3.4) and (Aγ,ν) shows that for n = 1,4,

mn(λt,ε,v0) ≤
∫ t

t−ε

∫
R3

∫ ε1/ν

0

∫ 2π

0

|θ |n|v − v0|n
2nεn/ν

|v − v0|γ dϕb(θ) dθfs(dv) ds

≤ C

∫ t

t−ε

∫
R3

∫ ε1/ν

0

|θ |n−1−ν |v − v0|n+γ

εn/ν
dθfs(dv) ds

(7.6)

≤ C

∫ t

t−ε

∫
R3

(|v|γ+n + |v0|γ+n)ε(n−ν)/ν

εn/ν
fs(dv) ds

≤ C sup
s∈[t−ε,t]

∫
R3

(|v|γ+n + |v0|γ+n)fs(dv).
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Step 2. Here we conclude when γ ∈ (0,1). Let thus 0 < t0 ≤ t − ε ≤ t ≤ t1 with
ε ∈ (0,1). Using (1.3), we deduce that sups∈[t−ε,t]

∫
R3(|v|γ+1 + |v0|γ+1)fs(dv) ≤

C(1 + |v0|γ+1) and by (1.6), sups∈[t−ε,t]
∫
R3(|v|γ+4 + |v0|γ+4)fs(dv) ≤ Ct0(1 +

|v0|γ+4). Hence m4
1(λt,ε,v0) + m4(λt,ε,v0) ≤ Ct0(1 + |v0|4γ+4). By Lemma 7.4,∫

|ξ |≥1 e−Re�ε,t,v0 (ε−1/νξ)|ξ |dξ ≤ Ct0,t1 . Recalling (7.5), we finally find that

‖∇kε,t,v0‖L1(R3) ≤ Ct0,t1(1 + |v0|4γ+4), whence the result by (7.4).
Step 3. We finally conclude when γ ∈ (−1,0]. Let thus 0 < t0 ≤ t − ε ≤

t ≤ t1 with ε ∈ (0,1). Using (1.3), we deduce that sups∈[t−ε,t]
∫
R3(|v|γ+1 +

|v0|γ+1)fs(dv) ≤ C(1 + |v0|γ+1). By (5.2) and since f0 ∈ P4+γ+4|γ |/ν(R3) ⊂
P4+γ (R3), we deduce that sups∈[t−ε,t]

∫
R3(|v|γ+4 + |v0|γ+4)fs(dv) ≤ Ct1(1 +

|v0|γ+4). Hence m4
1(λt,ε,v0) + m4(λt,ε,v0) ≤ Ct1(1 + |v0|γ+4). By Lemma 7.4,∫

|ξ |≥1 e−Re�ε,t,v0 (ε−1/νξ)|ξ |dξ ≤ ∫
|ξ |≥1 e−ct0,t1 (1+|v0|)γ |ξ |ν |ξ |dξ ≤ Ct0,t1(1 +

|v0|)4|γ |/ν . Recalling (7.5), we finally get ‖∇kε,t,v0‖L1(R3) ≤ Ct0,t1(1 + |v0|γ+4) ×
(1 + |v0|)4|γ |/ν ≤ Ct0,t1(1 + |v0|)4+γ+4|γ |/ν , whence the result by (7.4). �

We finally have all the weapons to give the following:

PROOF OF LEMMA 7.1. Let thus t0 ≤ t − ε ≤ t ≤ t1 with ε ∈ (0,1), and let
φ ∈ L∞(R3). Recall the notation introduced in Lemma 7.3. Write, using that Wε

t

and Uε
t are independent conditionally on Ft−ε and that the law of Uε

t conditionally
on Ft−ε is gε,t,Vt−ε (see Lemma 7.5)∣∣E[

φ
(
V ε

t + h
) − φ

(
V ε

t

)]∣∣
= ∣∣E[

φ
(
Uε

t + Wε
t + h

) − φ
(
Uε

t + Wε
t

)]∣∣
= ∣∣E[

E
(
φ
(
Uε

t + Wε
t + h

) − φ
(
Uε

t + Wε
t

)|Ft−ε

)]∣∣
=

∣∣∣∣E[∫
R3

[
φ
(
x + Wε

t + h
) − φ

(
x + Wε

t

)]
gε,t,Vt−ε (x) dx

]∣∣∣∣
=

∣∣∣∣E[∫
R3

φ
(
x + Wε

t

)[
gε,t,Vt−ε (x − h) − gε,t,Vt−ε (x)

]
dx

]∣∣∣∣
≤ ‖φ‖L∞(R3)|h|E[‖∇gε,t,Vt−ε‖L1(R3)

]
.

We used that
∫
R3 |g(x − h) − g(x)|dx ≤ ∫

R3
∫ 1

0 |h.∇g(x − uh)|dudx ≤ |h| ×∫ 1
0 ‖∇g(· − uh)‖L1(R3) du = |h|‖∇g‖L1(R3).

Assume first that γ ∈ (0,1). Using Lemma 7.5, we get∣∣E[
φ
(
V ε

t + h
) − φ

(
V ε

t

)]∣∣ ≤ Ct0,t1‖φ‖L∞(R3)|h|ε−1/νE
[(

1 + |Vt−ε|)4γ+4]
.

The conclusion follows, since

E
[|Vt−ε|4γ+4] = m4γ+4(ft−ε) ≤ sup

s≥t0

m4γ+4(fs) < ∞
by (1.6).
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Assume next that γ ∈ (−1,0]. In this case, Lemma 7.5 gives∣∣E[
φ
(
V ε

t + h
) − φ

(
V ε

t

)]∣∣ ≤ Ct0,t1‖φ‖L∞(R3)|h|ε−1/νE
[(

1 + |Vt−ε|)4+γ+4|γ |/ν]
.

But since f0 ∈ P4+γ+4|γ |/ν(R3) and 0 ≤ t − ε ≤ t1, (5.2) implies that
E[|Vt−ε|4+γ+4|γ |/ν] = m4+γ+4|γ |/ν(ft−ε) ≤ Ct1 , which completes the proof. �

8. Conclusion. We finally can give the following:

PROOF OF THEOREM 1.3. We thus assume (Aγ,ν) for some γ ∈ (−1,1), ν ∈
(0,1) such that γ + ν > 0. We also consider f0 ∈ P2(R

3) such that f0 is not a
Dirac mass. If γ ∈ (0,1), we consider any weak solution (ft )t≥0 to (1.1) starting
from f0 and satisfying (1.6) and we consider the associated Boltzmann process
(Vt )t≥0 built in Proposition 5.1(ii). If γ ∈ (−1,0], we assume additionally that
f0 ∈ P4+γ+4|γ |/ν(R3), and we consider the weak solution (ft )t≥0 to (1.1) starting
from f0 and the associated Boltzmann process (Vt )t≥0 built in Proposition 5.1(ii).
From now on, we fix t > 0.

We wish to apply Lemma 2.1. Let thus h ∈R3 such that |h| ≤ 1 and φ ∈ Cα
b (R3)

for some α ∈ (0,1). Let us define

I
φ
t,h =

∣∣∣∣∫
R3

(
φ(v + h) − φ(v)

)
ft (dv)

∣∣∣∣ = ∣∣E[
φ(Vt + h) − φ(Vt )

]∣∣.
For ε ∈ (0, (t/2) ∧ 1), we write, recalling that the approximate Boltzmann process
V ε

t was defined in Lemma 6.1,

I
φ
t,h ≤ ∣∣E[

φ(Vt + h) − φ
(
V ε

t + h
)]∣∣ + ∣∣E[

φ(Vt ) − φ
(
V ε

t

)]∣∣
+ ∣∣E[

φ
(
V ε

t + h
) − φ

(
V ε

t

)]∣∣
≤ 2‖φ‖Cα

b (R3)E
[∣∣Vt − V ε

t

∣∣α] + Ct‖φ‖∞ε−1/ν |h|
≤ Ct‖φ‖Cα

b (R3)

[
E
[∣∣Vt − V ε

t

∣∣α] + ε−1/ν |h|],
where we used Lemma 7.1 (with t0 = t/2 and t1 = t) and that ‖φ‖L∞(R3) ≤
‖φ‖Cα

b (R3).
Point (i). We assume here that γ ∈ (0,1). We consider α ∈ (0, ν], and we apply

Proposition 6.1(i): for any η ∈ (0,2), we write E[|Vt −V ε
t |α] ≤ E[|Vt −V ε

t |ν]α/ν ≤
Ct,ηε

(2−η)α/ν . We have proved that for all η ∈ (0,2), all ε ∈ (0, (t/2) ∧ 1),

I
φ
t,h ≤ Ct,η‖φ‖Cα

b (R3)

[
ε(2−η)α/ν + ε−1/ν |h|].

Choosing ε = (1 ∧ (t/2))|h|ν/(1+(2−η)α), we obtain I
φ
t,h ≤ Ct,η‖φ‖Cα

b (R3) ×
|h|(2−η)α/(1+(2−η)α). For α ∈ (0, ν] small enough and η ∈ (0,2) small enough,
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it holds that (2−η)α
1+(2−η)α

> α. Applying Lemma 2.1, we deduce that ft has a density

with furthermore ft ∈ Bs
1,∞(R3) for any s ∈ (0, sν), where

sν = sup
{

(2 − η)α

1 + (2 − η)α
− α :α ∈ (0, ν], η ∈ (0,2)

}
.

It is easily checked that sν is given by (1.7).
Point (ii). We next assume that γ ∈ (−1,0] and that γ + ν > 0. We consider

α ∈ (0, ν] and we apply Proposition 6.1(ii): for any η ∈ (0,2 + γ /ν), E[|Vt −
V ε

t |α] ≤ E[|Vt −V ε
t |ν]α/ν ≤ Ct,ηε

(2+γ /ν−η)α/ν . Hence for all η ∈ (0,2 + γ /ν), all
ε ∈ (0, (t/2) ∧ 1),

I
φ
t,h ≤ Ct,η‖φ‖Cα

b (R3)

[
ε(2+γ /ν−η)α/ν + ε−1/ν |h|].

Choosing ε = (1 ∧ (t/2))|h|ν/(1+(2+γ /ν−η)α), we obtain I
φ
t,h ≤ Ct,η‖φ‖Cα

b (R3) ×
|h|(2+γ /ν−η)α/(1+(2+γ /ν−η)α). For α ∈ (0, ν] small enough and η ∈ (0,2 + 2γ /ν)

small enough, it holds that (2+γ /ν−η)α
1+(2+γ /ν−η)α

> α (because 2 + γ /ν > 1). Applying

Lemma 2.1, we deduce that ft has a density with furthermore ft ∈ Bs
1,∞(R3) for

any s ∈ (0, sγ,ν), where

sγ,ν = sup
{

(2 + γ /ν − η)α

1 + (2 + γ /ν − η)α
− α :α ∈ (0, ν], η ∈ (0,2 + γ /ν)

}
.

It is easily checked that sγ,ν is given by (1.8).
Point (iii). In any case, we thus have ft ∈ Bs

1,∞(R3) for some s > 0. This implies
that ft ∈ Lp(R3) for all p ∈ (1,3/(3 − s)); see, for example, [33], Corollary 2(ii),
page 36. The facts that ft ∈ P2(R

3) ∩ Lp(R3) for some p > 1 classically imply
that

∫
R3 ft (v)| logft (v)|dv < ∞. �

9. Existence of the Boltzmann process. It remains to prove Proposition 5.1.
We have already checked very similar results in several closely related situations,
but always with some restrictions (in the 2D-case or for bounded velocity cross
sections or assuming conditions on the initial data that guarantees uniqueness of
the solution). We thus give a rather complete proof. Unfortunately, we have to treat
separately the case of hard and moderately soft potentials: for hard potentials, we
associate a Boltzmann process to any weak solution, while for moderately soft
potentials, we can only build one Boltzmann process, which corresponds to one
weak solution. Thus the proofs really differ.

9.1. Moderately soft potentials. In the whole subsection, we assume (Aγ,ν)
for some γ ∈ (−1,0], ν ∈ (0,1), and we consider f0 ∈ Pp(R3) for some p > 2.
We want to prove Proposition 5.1(ii). Recall that LB was defined in (1.5) and
rewritten in (3.2).
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DEFINITION 9.1. Let B(|v − v∗|, cos θ) be a given cross section. A càdlàg
adapted process (Vt )t≥0 on some probability space (�,F, (Ft )t≥0,Pr) is said to
solve the martingale problem MP(f0,B) if:

(a) L(V0) = f0,
(b) for all t ≥ 0, E[Vt ] = ∫

R3 vf0(dv) and E[|Vt |2] = ∫
R3 |v|2f0(dv),

(c) for all φ ∈ Lipb(R
3), (M

φ
t )t≥0 is a (�,F, (Ft )t≥0,Pr)-martingale, where

M
φ
t := φ(Vt ) − ∫ t

0
∫
R3 LBφ(Vs, v)fs(dv) ds and where ft := L(Vt ).

The following remarks are classical.

REMARK 9.2. (i) A càdlàg adapted process (Vt )t≥0 on some probability
space (�,F, (Ft )t≥0,Pr) is a solution to MP(f0,B) if and only if it satisfies
point (a) and (b) of the above definition and if there exists, on a possibly en-
larged probability space, a (Ft )t≥0-Poisson measure N(ds, dv, dθ, dϕ, du) on
[0,∞) ×R3 × (0, π/2] × [0,2π) × [0,∞) with intensity dsfs(dv)b(θ) dθ dϕ du

[where ft := L(Vt )] such that (Vt )t≥0 solves (5.1).
(ii) If (Vt )t≥0 solves MP(f0,B) and if ft := L(Vt ), then (ft )t≥0 is a weak solu-

tion to (1.1) starting from f0.

See, for example, Tanaka [35], Section 4, for (i). Point (ii) is obvious: use that
for φ ∈ Lipb(R

3), for t ≥ 0, E[Mφ
t ] = E[Mφ

0 ] = E[φ(V0)].
We start with the following statement.

REMARK 9.3. Let B be a cross section satisfying (Aγ,ν) for some γ ∈
(−1,0], ν ∈ (0,1). For k ≥ 1, define Bk(|v − v∗|, cos θ) sin θ = (|v − v∗|γ ∧
k)b(θ)1{θ>1/k}. There exists a (unique in law) solution to (V k

t )t≥0 to MP(f0,Bk).

This result can be checked easily, because
∫ π/2

0 b(θ)1{θ>1/k} dθ < ∞ and be-
cause (|z|γ ∧ k) is bounded. For example, one can use a perfect simulation algo-
rithm, see, for example, [19] for a very similar result concerning the Smoluchowski
equation.

Below, D([0,∞),R3) stands for the set of R3-valued càdlàg functions, which
we endow with the Skorokhod topology; see, for example, Jacod and Shiryaev
[28].

LEMMA 9.4. Adopt the assumptions and notation of Remark 9.3 and recall
that f0 ∈ Pp(R3) for some p > 2:

(i) for all T > 0, supk≥1 E[sup[0,T ] |V k
t |p] ≤ CT,p;

(ii) the family ((V k
t )t≥0)k≥1 is tight in D([0,∞),R3) and any limit process

(Vt )t≥0 satisfies Pr(Vt 
= Vt−) = 0 for all t ≥ 0;
(iii) any limit (Vt )t≥0 solves MP(f0,B) and verifies E[sup[0,T ] |Vt |p] ≤ CT,p

for all T > 0.
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PROOF. We start with (i). Set f k
t := L(V k

t ). As in Remark 9.2(i), there is a
Poisson measure Nk(ds, dv, dθ, dϕ, du) on [0,∞) × R3 × (0, π/2] × [0,2π) ×
[0,∞) with intensity dsf k

s (dv)b(θ) dθ dϕ du such that

V k
t = V k

0 +
∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a
(
V k

s−, v, θ, ϕ
)

× 1{u≤|V k
s−−v|γ ∧k}

× 1{θ>1/k}Nk(ds, dv, dθ, dϕ, du).

Observe now that due to (3.4),∣∣∣∣V k
s− + a

(
V k

s−, v, θ, ϕ
)∣∣p−∣∣V k

s−
∣∣p∣∣

≤ Cp

(∣∣V k
s−

∣∣p−1 + ∣∣a(V k
s−, v, θ, ϕ

)∣∣p−1)∣∣a(V k
s−, v, θ, ϕ

)∣∣
≤ Cp

(
1 + ∣∣V k

s−
∣∣p−1 + |v|p−1)∣∣V k

s− − v
∣∣θ

so that, using the Itô formula for jump process (see, e.g., Jacod and Shiryaev [28],
Theorem 4.57, page 56),

sup
[0,t]

∣∣V k
r

∣∣p
≤ ∣∣V k

0

∣∣p + Cp

∫ t

0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

(
1 + ∣∣V k

s−
∣∣p−1 + |v|p−1)∣∣V k

s− − v
∣∣θ

× 1{u≤|V k
s−−v|γ }Nk(ds, dv, dθ, dϕ, du).

Taking expectations and using that
∫ π/2

0 θb(θ) dθ < ∞ by (Aγ,ν), we get

E
(

sup
[0,t]

∣∣V k
r

∣∣p) ≤ E
(∣∣V k

0

∣∣p)
+ Cp

∫ t

0

∫
R3

E
[(

1 + ∣∣V k
s

∣∣p−1 + |v|p−1)∣∣V k
s − v

∣∣1+γ ]
f k

s (dv) ds.

Since γ + 1 ∈ (0,1] and f k
t = L(V k

t ),

E
(

sup
[0,t]

∣∣V k
r

∣∣p) ≤ E
(∣∣V k

0

∣∣p) + Cp

∫ t

0

∫
R3

E
[
1 + ∣∣V k

s

∣∣p + |v|p]f k
s (dv) ds

≤ E
(∣∣V k

0

∣∣p) + Cp

∫ t

0
E
[
1 + ∣∣V k

s

∣∣p]ds.

Finally, E(|V k
0 |p) = mp(f0) < ∞ does not depend on k and we conclude with the

Grönwall lemma.
To check (ii), we use the Aldous [1] criterion (which shows both tightness and

that any limit process has no fixed discontinuity); see also [28], page 321. Due to
(i), it suffices that for all T > 0,

lim
δ→0

sup
k≥1

sup
(S,S′)∈ST (δ)

E
[∣∣V k

S′ − V k
S

∣∣] = 0,(9.1)
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the set ST (δ) consisting of all pairs (S, S′) of stopping times satisfying 0 ≤ S ≤
S′ ≤ S + δ ≤ T . Let thus T > 0, δ > 0, (S, S ′) ∈ ST (δ) and k ≥ 1 be fixed. Using
the s.d.e. satisfied by (V k

t )t≥0, we immediately get

E
[∣∣V k

S′ − V k
S

∣∣]
≤ E

[∫ S+δ

S

∫
R3

∫ π/2

0

∫ 2π

0

∣∣a(Vs, v, θ, ϕ)
∣∣∣∣V k

s − v
∣∣γ dϕb(θ) dθ dϕf k

s (dv) ds

]
.

Using (3.4), that
∫ π/2

0 θb(θ) dθ < ∞ by (Aγ,ν) and that
∫
R3 |v|γ+1f k

s (dv) =
E[|V k

s |γ+1] is bounded for s ∈ [0, T ] due to (i), this gives

E
[∣∣V k

S′ − V k
S

∣∣] ≤ CE

[∫ S+δ

S

∫
R3

∣∣V k
s − v

∣∣γ+1
f k

s (dv) ds

]

≤ CT E

[∫ S+δ

S

(
1 + ∣∣V k

s

∣∣)γ+1
ds

]
.

Finally,

E
[∣∣V k

S′ − V k
S

∣∣] ≤ CT E
[
δ sup

[0,T ]
(
1 + ∣∣V k

s

∣∣)γ+1
]
≤ CT δ

by point (i), whence (9.1).
We finally check (iii). Let thus (Vt )t≥0 be the limit in law of a (not relabelled)

subsequence of (V k
t )t≥0. Write ft := L(Vt ) and f k

t := L(V k
t ). First, we obviously

have L(V0) = f0, since L(V k
0 ) = f0 for all k ≥ 1. We also have E[sup[0,T ] |Vt |p] ≤

CT,p for all T > 0 thanks to point (i). Since we have E[V k
t ] = ∫

R3 vf0(dv) and
E[|V k

t |2] = ∫
R3 |v|2f0(dv) for all k ≥ 1 and all t ≥ 0, we easily deduce from (i)

(recall that p > 2) that E[Vt ] = ∫
R3 vf0(dv) and E[|Vt |2] = ∫

R3 |v|2f0(dv) for all
t ≥ 0. It only remains to check that for all φ ∈ Lipb(R

3), (M
φ
t )t≥0 is a martingale,

where M
φ
t := φ(Vt ) − ∫ t

0
∫
R3 LBφ(Vs, v)fs(dv) ds. To do so, consider n ≥ 1, 0 ≤

t1 ≤ · · · ≤ tn ≤ s ≤ t and a family of continuous bounded functions φ1, . . . , φn on
R3. We have to prove that E[�B,f (V )] = 0, where, for x ∈ D([0,∞),R3),

�B,f (x) =
n∏

i=1

φi(xti )

(
φ(xt ) − φ(xs) −

∫ t

s

∫
R3

LBφ(xr, v)fr(dv) dr

)
.

Since (V k
t )t≥0 solves MP(f0,Bk), we know that E[�Bk,f

k (V k)] = 0, where
�Bk,f

k is defined as �B,f , with LB replaced by LBk
and fr replaced by f k

r . Thus
we just have to prove that limk E[�Bk,f

k (V k)] = E[�B,f (V )]. First, we know
from Lemma 3.3 that LBφ is continuous on R3 × R3. We deduce that �B,f is
continuous at each x ∈ D([0,∞),R3) such that x has no jump at t1, . . . , tn, s, t .
But V has a.s. no jump at fixed points by (ii). Since V k goes in law to V and since
f k

r tends weakly to fr for each r (because V k goes in law to V and since V has
no fixed discontinuity), we deduce that �B,f k (V k) goes in law to �B,f (V ). Using
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that the family (�B,f k (V k))k≥1 is uniformly integrable [because |�B,f k (V k)| ≤
C�(1 + ∫ t

s

∫
R3 |V k

r − v|γ+1f k
r (dv) dr) ≤ Ct,�(1 + sup[0,t] |V k

r |γ+1) and due to
(i)], we conclude that limk E[�B,f k (V k)] = E[�B,f (V )]. Hence it only remains
to check that limk E[|�Bk,f

k (V k) − �B,f k (V k)|] = 0. Using point (i) and that
|(LB − LBk

)φ(v, v∗)| ≤ Cφk−κ(1 + |v|2 + |v∗|2) for some κ > 0 (see the proof
of Lemma 3.3), one easily concludes. �

We finally may give the following:

PROOF OF PROPOSITION 5.1(ii). We thus assume (Aγ,ν) for some γ ∈
(−1,0] and some ν ∈ (0,1) and consider f0 ∈ Pp(R3) for some p > 2. We
know from Lemma 9.4 that there exists a solution (Vt )t≥0 to MP(f0,B) and that
E[sup[0,T ] |Vt |p] ≤ CT,p for all T > 0. For t ≥ 0, set ft = L(Vt ). Then (5.2) obvi-
ously holds, since mp(ft ) = E[|Vt |p]. Finally, Remark 9.2 ensures us that (Vt )t≥0
solves (5.1) and that (ft )t≥0 is a weak solution to (1.1) starting from f0. �

9.2. Hard potentials. We still have to prove Proposition 5.1(i). We use very
similar arguments as in [18], Proof of Proposition 3.4, concerning the 3D Boltz-
mann equation without cutoff with velocity cross section min(|v − v∗|γ , k).

In the whole subsection, we assume (Aγ,ν ) for some γ ∈ (0,1), ν ∈ (0,1).
A weak solution (ft )t≥0 to (1.1) starting from f0 ∈P2(R

3) satisfying (1.6) is fixed.
For t ≥ 0, we introduce At defined, for φ ∈ Lipb(R

3) and v ∈ R3, by [recall
(1.5) and (3.2)]

Atφ(v) =
∫
R3

LBφ(v, v∗)ft (dv∗)

=
∫
R3

∫ π/2

0

∫ 2π

0
|v − v∗|γ(9.2)

× [
φ
(
v + a(v, v∗, θ, ϕ)

) − φ(v)
]
b(θ) dϕ dθft (dv∗),

where a was defined in (3.1). We define similarly, for k ≥ 1, setting Hk(v) =
|v|∧k
|v| v,

Ak
t φ(v) =

∫
R3

∫ π/2

0

∫ 2π

0

∣∣Hk(v) − v∗
∣∣γ

× [
φ
(
v + a

(
Hk(v), v∗, θ, ϕ

)) − φ(v)
]
b(θ) dϕ dθft (dv∗).

DEFINITION 9.5. (i) Let t0 ≥ 0 and μ ∈ P(R3) be fixed. A càdlàg adapted
process (Vt )t≥t0 on some probability space (�,F, (Ft )t≥0,Pr) solves the mar-
tingale problem MP(μ, t0, (At )t≥t0,C

1
c (R3)) if L(Vt0) = μ and if for all φ ∈

C1
c (R3), (M

φ
t )t≥t0 is a (�,F, (Ft )t≥t0,Pr)-martingale, where M

φ
t := φ(Vt ) −∫ t

t0
Asφ(Vs) ds.
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(ii) For t0 ≥ 0, μ ∈ P(R3) and k ≥ 1, the martingale problem MP(μ, t0,

(Ak
t )t≥t0,C

1
c (R3)) is defined similarly.

The following remark is classical; see, for example, Tanaka [35], Section 4.

REMARK 9.6. (i) A process (Vt )t≥t0 on some probability space (�,F,

(Ft )t≥0,Pr) is solution to MP(μ, t0, (At)t≥t0,C
1
c (R3)) if and only if L(Vt0) = μ

and if there exists, on a possibly enlarged probability space, a (Ft )t≥0-Poisson
measure N(ds, dv, dθ, dϕ, du) on [0,∞)×R3 × (0, π/2]×[0,2π)×[0,∞) with
intensity dsfs(dv)b(θ) dθ dϕ du such that for all t ≥ t0,

Vt = Vt0 +
∫ t

t0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a(Vs−, v, θ, ϕ)

(9.3)
× 1{u≤|Vs−−v|γ }N(ds, dv, dθ, dϕ, du).

(ii) Similarly, a process (V k
t )t≥t0 solves MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3)) if and only

if L(Vt0) = μ and if it solves

V k
t = Vt0 +

∫ t

t0

∫
R3

∫ π/2

0

∫ 2π

0

∫ ∞
0

a
(
Hk

(
V k

s−
)
, v, θ, ϕ

)
(9.4)

× 1{u≤|Hk(V
k
s−)−v|γ }N(ds, dv, dθ, dϕ, du).

We start with the following statement.

REMARK 9.7. For any t0 ≥ 0, any μ ∈ P2(R
3) and any k ≥ 1, there exists a

unique (in law) solution (V k
t )t≥t0 to MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3)).

This can be proved exactly as in [18], Proof of Proposition 3.4, Steps 1 to
7. We have checked all the details and omit the proof. Let us only mention
that we have to use the following estimates: (i)

∫
R3 fs(dv∗)(|Hk(v) − v∗|γ +

|Hk(v) − v∗|γ+1) ≤ Ck , (ii)
∫
R3 fs(dv∗)|Hk(v) − v∗|γ |Hk(v) − Hk(ṽ)| ≤ Ck|v −

ṽ|, (iii)
∫
R3 fs(dv∗)|Hk(v) − v∗|||Hk(v) − v∗|γ − |Hk(ṽ) − v∗|γ | ≤ Ck|v − ṽ|.

Points (i) and (ii) are easily checked and use only that Hk ∈ Lipb(R
3) and that∫

R3 fs(dv∗)(1+|v∗|γ +|v∗|γ+1) ≤ ∫
R3 fs(dv∗)(3+|v∗|2) ≤ C by (1.3). Point (iii)

uses additionally (6.2).
To make tend k to infinity, we will need the following uniform (in k) moment

estimates.

LEMMA 9.8. Consider the solution (V k
t )t≥t0 to MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3)),

for some t0 > 0 and some μ ∈ P2(R
3). For any T > t0, we have

(i) sup[t0,T ]E[|V k
t |2] ≤ Ct0,T ,μ,

(ii) E[sup[t0,T ] |V k
t |] ≤ Ct0,T ,μ.
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PROOF. We start with (i). Using (9.4), the Itô formula for jump processes
(see, e.g., Jacod and Shiryaev [28], Theorem 4.57, page 56), taking expectations
and integrating in u, we get, for t ≥ t0,

E
[∣∣V k

t

∣∣2] = E
[∣∣V k

t0

∣∣2]
+E

[∫ t

t0

∫
R3

∫ π/2

0

∫ 2π

0

(∣∣a(Hk

(
V k

s

)
, v, θ, ϕ

)∣∣2
+ 2

〈
V k

s , a
(
Hk

(
V k

s

)
, v, θ, ϕ

)〉)
× ∣∣Hk

(
V k

s

) − v
∣∣γ b(θ) dϕ dθfs(dv) ds

]
.

After some explicit computation using (3.1) and (3.4), this yields

E
[∣∣V k

t

∣∣2] =
∫
R3

|v|2μ(dx)

+E

[∫ t

t0

∫
R3

∫ π/2

0

(∣∣Hk

(
V k

s

) − v
∣∣2 − 2

〈
V k

s ,Hk

(
V k

s

) − v
〉)

× π
∣∣Hk

(
V k

s

) − v
∣∣γ (1 − cos θ)b(θ) dθfs(dv) ds

]
.

Observe that (1 − cos θ)b(θ) is integrable due to (Aγ,ν). Next, we have 〈V k
s ,

Hk(V
k
s )〉 ≥ |Hk(V

k
s )|2 and |Hk(V

k
s )| ≤ |V k

s |, from which we deduce |Hk(V
k
s ) −

v|2 − 2〈V k
s ,Hk(V

k
s ) − v〉 ≤ |v|2 + 2〈V k

s − Hk(V
k
s ), v〉 ≤ |v|2 + 2|V k

s ||v|. We also
have |Hk(V

k
s )− v|γ ≤ C(1 +|Hk(V

k
s )|+ |v|) ≤ C(1 +|V k

s |+ |v|). We finally find
that (|Hk(V

k
s )−v|2 −2〈V k

s ,Hk(V
k
s )−v〉)|Hk(V

k
s )−v|γ ≤ C(|v|2 +|V k

s ||v|)(1+
|V k

s | + |v|) ≤ C(1 + |v|3)(1 + |V k
s |2). Thus

E
[∣∣V k

t

∣∣2] ≤ Cμ + CE

[∫ t

t0

∫
R3

(
1 + |v|3)(1 + ∣∣V k

s

∣∣2)fs(dv) ds

]

≤ Cμ + Ct0

∫ t

t0

E
[
1 + ∣∣V k

s

∣∣2]ds.

We used that, since t0 > 0, supt≥t0
m3(fs) < ∞ by (1.6). The Grönwall lemma

thus implies sup[t0,T ]E[|V k
t |2] ≤ Ct0,T ,μ as desired.

Point (ii) easily follows, since

E
[

sup
[t0,T ]

∣∣V k
s

∣∣] ≤ E
[∣∣V k

t0

∣∣]
+E

[∫ T

t0

∫
R3

∫ π/2

0

∫ 2π

0

∣∣a(Hk

(
V k

s

)
, v, θ, ϕ

)∣∣∣∣Hk

(
V k

s

) − v
∣∣γ

× b(θ) dϕ dθfs(dv) ds

]
,
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so that using (3.4) and that θb(θ) is integrable by (Aγ,ν),

E
[

sup
[t0,T ]

∣∣V k
s

∣∣] ≤
∫
R3

|v|μ(dv) + CE

[∫ T

t0

∫
R3

∣∣Hk

(
V k

s

) − v
∣∣γ+1

fs(dv) ds

]

≤ Cμ + C

∫ T

t0

∫
R3

(
1 +E

[∣∣V k
s

∣∣2] + |v|2)fs(dv) ds ≤ Ct0,T ,μ

by (i) and (1.3). �

We deduce the well-posedness of MP(μ, t0, (At )t≥t0,C
1
c (R3)) when t0 > 0.

LEMMA 9.9. Let t0 > 0 and μ ∈ P2(R
3) be fixed. There exists a unique (in

law) solution (Vt )t≥t0 to MP(μ, t0, (At )t≥t0,C
1
c (R3)).

PROOF. We only sketch the proof, since it is tedious but rather standard.
Uniqueness. Consider (Vt )t≥t0 solving MP(μ, t0, (At )t≥t0,C

1
c (R3)). Introduce,

for k ≥ 1, τk = inf{t ≥ t0 : |Vt | ≥ k} (with the convention that τk = t0 if this set is
empty). Since (Vt )t≥t0 is càdlàg by assumption, it is locally bounded, whence τk →
∞ a.s. as k → ∞. For k ≥ 1, observe that V solves MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3))

until τk (because v = Hk(v) if |v| ≤ k and because |Vt | < k for all t ∈ [t0, τk)). By
uniqueness for MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3)), we deduce that for any T > 0, any

k ≥ 1, the law of (Vt )t∈[t0,T ] knowing τk > T is entirely determined. Using that
τk → ∞ a.s. as k → ∞, we easily conclude.

Existence. One way to prove such an existence result is to use a tightness
argument as in Lemma 9.4 above. Another way is the following. Consider
T > t0 arbitrarily large. Roughly, if k is very large, then a solution (V k

t )t≥t0 to
MP(μ, t0, (A

k
t )t≥t0,C

1
c (R3)) will not reach k before T with a high probability [due

to Lemma 9.8(ii)], so that it actually also solves MP(μ, t0, (At)t≥t0,C
1
c (R3)) dur-

ing [t0, T ] [because as previously, v = Hk(v) for |v| ≤ k]. �

The last preliminary will be useful to show that the law of Vt is indeed ft .

LEMMA 9.10. Let t0 > 0 and μ ∈ P(R3) be fixed. There exists at most one
family (μt )t≥0 ⊂P(R3) such that for all φ ∈ C1

c (R3), all t ≥ t0,∫
R3

φ(v)μt (dv) =
∫
R3

φ(v)μ(dv) +
∫ t

t0

∫
R3

Asφ(v)μs(dv) ds.

PROOF. This will follow from Horowitz and Karandikar [26], Theorem B1, if
we check the following points:

(a) C1
c (R3) is dense in C0(R

3) for the uniform convergence topology;
(b) (t, v) �→ Atφ(v) is measurable for all φ ∈ C1

c (R3);
(c) for each t ≥ 0, At satisfies the maximum principle;
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(d) there exists a countable subset {φk} ⊂ C1
c (R3) such that for all t ≥ t0, the

closure of {(φk,Atφk) :k ≥ 1} ⊂ C1
c (R3) for the bounded-pointwise convergence

is {(φ,Atφ) :φ ∈ C1
c (R3)};

(e) for all v0 ∈ R3, MP(δv0, t0, (At)t≥t0,C
1
c (R3)) is well posed.

First, (a) and (b) are clear, and (e) follows from Lemma 9.9. Next, (c) is
obvious from (9.2): if φ attains its maximum at some v0 ∈ R3, Atφ(v0) ≤ 0.
The only delicate point is (d). Consider a countable family {φk}k≥1 ⊂ C1

c (R3)

dense in C1
c (R3) in the following sense: for all φ ∈ C1

c (R3) such that Suppφ ⊂
B(0,R), there is a subsequence φkn such that Suppφkn ⊂ B(0,R + 1) and
‖φ − φkn‖L∞(R3) + ‖∇(φ − φkn)‖L∞(R3) → 0. We have to prove that (φkn,Atφkn)

goes to (φ,Atφ) bounded-pointwise. We obviously have that φkn → φ bounded-
pointwise. An immediate computation using (3.4), (Aγ,ν) and (1.3) shows
that for all v ∈ R3, |Atφkn(v) − Atφ(v)| ≤ C‖∇(φ − φkn)‖L∞(R3)

∫
R3 θ |v −

v∗|γ+1b(θ) dθft (dv∗) ≤ C‖∇(φ − φkn)‖L∞(R3)(1 + |v|2) → 0. It only remains
to prove that supv∈R3 supn≥1 |Atφkn(v)| < ∞.

To this end, it suffices to check that for φ ∈ C1
c (R3) with ‖φ‖L∞(R3) +

‖∇φ‖L∞(R3) ≤ K and Suppφ ⊂ B(0,R), we have ‖Atφ‖L∞(R3) ≤ CK,R .
First consider v ∈ R3 such that |v| ≤ 5R. Then using (3.4), (Aγ,ν) and (1.3),

we obtain |Atφ(v)| ≤ K
∫
R3 θ |v − v∗|γ+1b(θ) dθft (dv∗) ≤ CK(1 + |v|γ+1) ≤

CK(1 + Rγ+1).
Next, consider v ∈ R3 such that |v| ≥ 5R. Then we have φ(v) = 0, so that

|φ(v + a(v, v∗, θ, ϕ)) − φ(v)| ≤ K|a(v, v∗, θ, ϕ)|1{|v+a(v,v∗,θ,ϕ)|<R}. But |v +
a(v, v∗, θ, ϕ)| < R implies |a(v, v∗, θ, ϕ)| > |v| − R ≥ 4|v|/5, whence [recall
(3.4)]

√
1 − cos θ |v − v∗| > 4

√
2|v|/5, from which (recall that θ ∈ (0, π/2]) |v| +

|v∗| > 4
√

2|v|/5 and finally |v∗| > (4
√

2/5 − 1)|v| > |v|/10. We thus get |φ(v +
a(v, v∗, θ, ϕ)) − φ(v)| ≤ K|a(v, v∗, θ, ϕ)|1{|v∗|>|v|/10} ≤ Kθ |v − v∗|1{|v∗|>|v|/10}
by (3.4), whence∣∣Atφ(v)

∣∣ ≤ K

∫
R3

∫ π/2

0

∫ 2π

0
θ |v − v∗|1+γ 1{|v∗|>|v|/10}b(θ) dθ dϕft (dv∗).

Using (Aγ,ν ) and then (1.3), we deduce that∣∣Atφ(v)
∣∣ ≤ K

∫
R3

|v − v∗|1+γ 1{|v∗|>|v|/10}ft (dv∗)

≤ K

∫
R3

(
11|v∗|)γ+1

ft (dv∗) ≤ CK.

We finally have checked that for any v ∈R3, |Atφ(v)| ≤ CK(1 + Rγ+1). �

We finally may give the

PROOF OF PROPOSITION 5.1(i). We divide the proof into two steps.
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Step 1. For t0 > 0, let (Vt )t≥t0 be the unique (in law) solution to MP(ft0, t0,

(At )t≥t0,C
1
c (R3)). The aim of this step is to prove that L(Vt ) = ft for all t ≥

t0. To this end, put μt = L(Vt ). For any φ ∈ C1
c (R3) and any t ≥ t0, we know

that φ(Vt ) − ∫ t
t0

Asφ(Vs) ds is a martingale, whence E[φ(Vt ) − ∫ t
t0

Asφ(Vs) ds] =
E[φ(Vt0)], which yields∫

R3
φ(v)μt (dv) =

∫
R3

φ(v)ft0(dv) +
∫ t

t0

∫
R3

Asφ(v)μs(dv) ds.

But (ft )t≥0 is a weak solution to (1.1), whence, for φ ∈ C1
c (R3) ⊂ Lipb(R

3) and
t ≥ t0,∫

R3
φ(v)ft (dv) =

∫
R3

φ(v)ft0(dv) +
∫ t

t0

∫
R3

∫
R3

LBφ(v, v∗)fs(dv∗)fs(dv) ds

=
∫
R3

φ(v)ft0(dv) +
∫ t

t0

∫
R3

Asφ(v)fs(dv) ds.

Lemma 9.10 implies that μt = ft for all t ≥ t0.
Step 2. We deduce from Step 1 that if (V

t0
t )t≥t0 solves MP(ft0, t0, (At )t≥t0,

C1
c (R3)), then for any t1 > t0, (V

t0
t )t≥t1 solves MP(ft1, t1, (At )t≥t1,C

1
c (R3)).

This compatibility property [recall that uniqueness holds for MP(ft0, t0, (At )t≥t0,

C1
c (R3)) for any t0 > 0 by Lemma 9.9] implies, by the Kolmogorov theo-

rem, that there exists a process (Vt )t≥0 such that for all t0 > 0, (Vt )t≥t0 solves
MP(ft0, t0, (At )t≥t0,C

1
c (R3)). In particular, we have L(Vt ) = ft for all t > 0 by

Step 1. Since now ft0 tends weakly to f0 as t0 → 0 [use, e.g., Lemma 3.3], we eas-
ily deduce that (Vt )t≥0 solves MP(f0,0, (At)t≥0,C

1
c (R3)). Due to Remark 9.6(i),

this ends the proof. �
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