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RESOURCE DEPENDENT BRANCHING PROCESSES
AND THE ENVELOPE OF SOCIETIES

BY F. THOMAS BRUSS AND MITIA DUERINCKX

Université Libre de Bruxelles

Since its early beginnings, mankind has put to test many different society
forms, and this fact raises a complex of interesting questions. The objective of
this paper is to present a general population model which takes essential fea-
tures of any society into account and which gives interesting answers on the
basis of only two natural hypotheses. One is that societies want to survive, the
second, that individuals in a society would, in general, like to increase their
standard of living. We start by presenting a mathematical model, which may
be seen as a particular type of a controlled branching process. All conditions
of the model are justified and interpreted. After several preliminary results
about societies in general we can show that two society forms should attract
particular attention, both from a qualitative and a quantitative point of view.
These are the so-called weakest-first society and the strongest-first society. In
particular we prove then that these two societies stand out since they form an
envelope of all possible societies in a sense we will make precise. This result
(the envelopment theorem) is seen as significant because it is paralleled with
precise survival criteria for the enveloping societies. Moreover, given that one
of the “limiting” societies can be seen as an extreme form of communism, and
the other one as being close to an extreme version of capitalism, we conclude
that, remarkably, humanity is close to having already tested the limits.

1. Introduction. What is the goal of any society? Are there natural bound-
aries for societies mankind would not or cannot exceed? And if so, can we quantify
the critical parameters characterizing these boundaries? Certain aspects of these
questions are equally interesting for animal societies; in fact, throughout this paper
we shall always speak of “individuals” to make clear that, although the motivation
stems from thinking about man, we keep general populations in mind.

The first question is partially philosophical, and we only treat it in as much
as it concerns the subsequent questions. Here we shall provide a mathematical
answer obtained from a model we propose as a global mathematical model for
societies. This model is built on branching processes and submitted to two natural
hypotheses. Still rudimentary, the model is broad enough to allow for essential
features of life within any society: reproduction of individuals, the desire to have
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a future, heritage and production of resources, consumption of resources, policies
to distribute resources among individuals, and, as a tool of interaction, the right of
emigration. We look at different sub-models of the model, characterizing different
societies. These are defined by the type of control they exercise through different
policies to distribute resources among their individuals.

1.1. Objectives of societies. Any society is likely to advertise certain key-
words in its program or mission statement, such as justice, liberty, equal oppor-
tunity, etc. We all agree that these issues are likely to be important. However, there
may be as many different interpretations of them as there are individuals in a pop-
ulation. Hence, within a whole population they can hardly serve as real guidelines
for the choice of a specific society form. We conclude that any reasonable approach
must be more focused.

The philosophy of our approach to answering questions about the choice of a
society is therefore to focus on factors which are seen as dominant, namely those
which come out of two natural and seemingly inoffensive hypotheses:

HYPOTHESIS 1. Individuals want to survive and to see a future for their de-
scendants.

HYPOTHESIS 2. Individuals prefer, in general, a higher standard of living to
a lower one.

Since these hypotheses may not be compatible with each other, we define Hy-
pothesis 1 to have a higher priority than Hypothesis 2.

Other hypotheses may be implicit. For instance, the desire to have security is
implicit in Hypothesis 2. If the standard of living is sufficiently high, the society
can afford a qualified police force or a strong army.

To deal with these hypotheses in an adequate way, the problem is to find a
suitable model. This requires two important conditions. First, the model should
allow for all mentioned features which are seen as essential for the development of
a human society and also for a clear interaction of individuals within the society.
Second, it should be sufficiently tractable to allow for quantifiable conclusions.

1.2. History of results. The first-named author has been thinking about ways
to model societies for many years. He had given a first talk on resource dependent
branching processes in 1983, a second around 1995 and a third in 2001. Although
the publications Bruss (1984) and Bruss and Robertson (1991) were motivated by
thinking about such processes, this is the very first paper devoted to this subject.

In the beginning, only preliminary results about necessary conditions for sur-
vival were obtained, and only for an elementary model. These results were based
on earlier work on branching processes with random absorbing processes, on
ϕ-branching processes, and on different forms of the Borel–Cantelli lemma.
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In a second step, several models were tested until the model presented here took
its approximate shape. When seeing, in a different context, the article by Coffman,
Flatto and Weber (1987), the results were sharpened to our needs in Bruss and
Robertson (1991). These opened the way to quantifiable conclusions for the chosen
model and thus to survival criteria for several special societies.

In a third step it became visible that, in any reasonable model, two soci-
eties deserved special attention. These are what we call the strongest-first society
(s.f.-society), and the weakest-first society (w.f.-society). A survival criterion for
the w.f.-society was proved; survival criteria for the s.f.-society were tested, and
the idea of a theorem of envelopment began to emerge.

The fourth step (with the co-author) brought a broad definition of general poli-
cies as well as a proof of a survival criterion for the s.f.-process. It also led to the
precise formulation and proof of the envelopment theorem for societies. This the-
orem says (in both a conditional and an unconditional form) that all societies are
bound to live in the long run between the s.f.-society and the w.f.-society. Com-
bined with all earlier findings, we think this is a fundamental result.

1.3. Related work. Our model is an asexual controlled branching process
(BP), where controlled should be understood in an interacting sense. The general
control is governed by functions of sums of dependent variables, and self-imposed.
This strong dependence property excludes the generating function machinery, of
course. Moreover, although still rudimentary, the model seems no longer to profit
from martingale arguments.

Early work on controlled BPs confined interest to control through bounds im-
posed on the growth of Galton–Watson-type processes. Sevast’janov and Zubkov
(1974), Schuh (1976) and others modified the number of individuals which are al-
lowed to reproduce in each generation by corresponding deterministic functions.
Bruss (1978) considered a Galton–Watson process (GWP) with a nonspecified ab-
sorbing process for which only the expected influence is known.

Yanev (1976) studied so-called φ-branching processes where the growth of
the GWP reproduction is controlled by random numbers of offspring which are
allowed to reproduce. A more general model for random control functions was
studied in Bruss (1980), and again in more generality, by González, Molina and
Del Puerto (2002). The same authors also examined L2-convergence for such pro-
cesses; see González, Molina and del Puerto (2005).

Population-size dependence is another interesting access to control in BP mod-
els. These were studied by Klebaner (1985) and Cohn and Klebaner (1986). Xu
and Mannor (2012) proposed a special class of controlled BPs involving a differ-
ent notion of “resources.” Motivated by applications in marketing, the objective
is to control independent subpopulations (multi-type model) in such a way that
they grow as quickly as possible. Relative frequencies of types were studied in
Yakovlev and Yanev (2009).
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The model presented in this paper is neither a BP with varying environment
[see, e.g., Cohn (1996)] nor a BP with random environment. See Jagers (1975)
for a clear analysis of the connection between these two types, and, for example,
Haccou, Jagers and Vatutin (2007) for newer developments. Our model is neither
a multi-type BP nor a pure population size-dependent model. It is a Markov pro-
cess, as we shall see, but no phase-type Markov model or decomposable BP [see
Hautphenne (2012)] can play the control we have in mind.

Hence, our model does not fit these or similar models studied in the literature.
Nevertheless, related work is sincerely acknowledged. It has helped, over the years,
to get a feeling of what result one can, or cannot, possibly hope for.

2. The model. We consider a population, beginning at time 0 with a fixed
number of individuals, which reproduce at distinct times n ∈ N0. The time interval
[n,n + 1) is called the nth generation. Individuals consume resources and cre-
ate new resources for their descendants. Only those descendants whose resource
claims will be met by society will stay within the population until the next repro-
duction time; the others are supposed to emigrate (or die) before reproduction. We
first define all the components of the model.

2.1. Reproduction. Individuals are supposed to reproduce independently of
each other. The model supposes that reproduction is asexual. The number of de-
scendants of each individual is modeled according to a common probability law
(pj )j∈N, where pj denotes the probability that a given individual will have ex-
actly j offspring. To avoid trivial cases, we suppose p0 > 0 and pj > 0 for at least
some j > 1. Let Dk

n denote the number of descendants of the kth individual in
the nth generation. Hence P[Dk

n = j ] = pj , for all n ∈ N, k ∈ N0 and all j ∈ N.
The infinite double-array (Dk

n)n∈N,k∈N0 , named reproduction matrix, thus consists
of independent identically distributed (i.i.d.) integer-valued nonnegative random
variables with mean m := E(Dk

n) < ∞.

2.2. Resources and resource space. Human beings need food; they need re-
sources. They also reproduce, and thus they need resources for their descendants.
Hence they must save resources and create resources for future generations.

In our model, individuals inherit resources from preceding generations, con-
sume resources and create new resources. The resources an individual can use dur-
ing his lifetime determines his standard of living. The society decides in what way
resources are distributed among the individuals, or expressed differently, it is the
acceptance of policies to distribute resources that defines a society. The inherited
resources, plus the newly created ones, are, after deduction of consumption, con-
sidered to be the individual’s contribution to the common resources of the society,
called the resource space.

We do not distinguish between heritage, new production and nonconsump-
tion of resources and summarize heritage plus production minus consumption
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as creation of resources. Resource creations of individuals are modeled as i.i.d.
real-valued nonnegative random variables Rk

n, n ∈ N, k ∈ N0, and the infinite dou-
ble array (Rk

n)n∈N,k∈N0 will be called resource creation matrix. We suppose that
r := E(Rk

n) < ∞.

2.3. Objective of survival. The population’s desire to survive is understood as
the objective to have for the society as a whole a positive probability of surviving
forever. If certain rules to distribute resources allow for a positive probability of
survival, and if other rules do not achieve this, then the objective to survive takes
priority, and the rules are changed accordingly. It suffices to see changes as an om-
nipresent option and to think of the rules defining the society, even if they had been
changed many times before, as being fixed from today onward for the whole fu-
ture. (This “fixed future-instant control” assumption has the advantage that society
need not be expected to have long-term prophetical abilities.)

2.4. Resource claims within a society. The model interprets for each descen-
dant, the individual claim of resources as the outcome of two random components.
One is the descendant’s desire to have a certain amount of resources, and the other
is what the descendant, with its own power of conviction, will be able to defend
among its competitors within the society.

These random claims of individuals are modeled as i.i.d. real-valued nonneg-
ative random variables governed by a known continuous distribution function F .
If there are tn descendants in the nth generation they generate a string of claims
(X1

n,X
2
n, . . . ,X

tn
n ). The infinite double array (Xk

n)n∈N,k∈N0 , is called claim matrix.
We have F(x) = P[Xk

j ≤ x] and suppose μ := E(X) < ∞.

2.5. Interaction of individuals and society. Each individual is supposed to
have the right to emigrate, and the control instrument is the right to exercise the
option of emigration. To fix the rules, we suppose that an individual emigrates if
and only if his individual resource claim is not completely satisfied by the society;
otherwise he remains a member of the population until the end of the generation.
Emigration is supposed to happen before an individual produces offspring. Hence
each individual resource assignment (seen as the individual standard of living of-
fered by the society) is felt by an individual as being either sufficient, implying
“stay,” or else insufficient, implying “leave.”

Typically, the total resource space created by a generation is insufficient to sat-
isfy all the resource claims of the offspring. We define a policy as a function which
determines then a priority order among offspring, that is, a rule to distribute the
resources created by the current generation among the next generation.

2.5.1. Examples. To keep examples simple we use here positive integers for
claims and available resources; this is not required in reality, of course. Any ran-
dom claim expresses the number of units of resources the individual requires. As-
sume, for instance, that, in a given generation, the number of individuals is 10, and
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that the current resource space is 100. Suppose further that the individuals write
down their claims on a list in some order, as, for instance, in chronological order
of arrival of claims, and that the string of claims reads

11,7,15,19,11,18,10,22,17,19.

The “first-come-first-served” society would grant the first seven claims (adding up
to 91), and the last three applicants would then have to emigrate. The 9 remaining
units may be divided among the seven or put back into the common resources.
(Details on this level will not matter for our results.) A society that distributes
resources in f.c.f.s.-order may not have much appeal, as one may argue. However
there are certainly more foolish policies, as, for example, the “coin-flipping policy”
which chooses the priority order at random. Any procedure to select a priority of
claims is considered a policy.

In the sequel, two particular policies will attract our special interest: the first
one, called the weakest-first society, satisfies the smallest claims first and would
thus retain, in the example above, the claims 7,10,11,11,15,17,18, while the
other, called the strongest-first society, satisfies the largest claims first and would
thus retain the claims 22,19,19,18,17.

2.6. Resource dependent branching processes. We now give a precise defini-
tion of the type of population processes we consider in this paper. Two definitions
are needed. Let ((Dk

n)n∈N,k∈N0, (X
k
n)n∈N,k∈N0, (R

k
n)n∈N,k∈N0) be a triplet of inde-

pendent double arrays of i.i.d. random variables defined on a probability space
(�,F,P). As before, the variables Dk

n, Xk
n and Rk

n (k ∈ N0) represent the number
of offspring, the resource claims and the production of resources (resp.) of each
individual (labeled by k) in generation n. We always assume that these variables
satisfy the natural regularity conditions given below; see Section 2.7. Let

Dn(k) :=
k∑

j=1

Dj
n and Rn(k) :=

k∑
j=1

Rj
n(1)

denote the total number of offspring and the total resources created by genera-
tion n, respectively, given that generation n counts k individuals. The i.i.d. as-
sumptions for random variables within the same double array allow us to use the
shorter notation D(k) = Dn(k) and R(k) = Rn(k) whenever we limit our interest
to their distributional prescriptions. Conversely, this is understood throughout the
paper whenever we use this simplified notation.

We first need a precise definition of a policy:

DEFINITION 2.1 (Global definition of a policy). A policy is a sequence π =
(πt )t∈N, where, for all t ∈ N, πt is a function associating to any t-uple (xk)

t
k=1 ∈

(R+)t a permutation πt((xk)
t
k=1) ∈ Sym(t) of the set [t] := {1, . . . , t}.



330 F. T. BRUSS AND M. DUERINCKX

In this definition, t corresponds to the number of offspring, and (xk)
t
k=1 to their

respective resource claims. The permutation πt((xk)
t
k=1) ∈ Sym(t) then gives the

priority order that the society has chosen to satisfy the claims of the offspring: the
individual πt((xk)

t
k=1)(1) is the first served, etc. If s denotes the total of resources

produced by the previous generation, the number of offspring having their claims
completely satisfied thanks to the society’s policy π is thus defined by

Qπ (t, (xk)
t
k=1, s

)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if t = 0 or xπt ((xk)
t
k=1)(1) > s,

max

{
1 ≤ k ≤ t :

k∑
j=1

xπt ((xk)
t
k=1)(j) ≤ s

}
,

otherwise.
Note that this function Qπ necessarily satisfies

Qπ(0,∅, s) = 0 = Qπ (t, (xk)
t
k=1,0

)
and 0 ≤ Qπ (t, (xk)

t
k=1, s

)≤ t,

for all s ∈ R
+, all t ∈ N and all (xk)

t
k=1 ∈ (R+)t . Recall that all the offsprings that

are not completely satisfied, and only these, leave the society forever. This leads to
the definition of the following stochastic process:

DEFINITION 2.2 (Global model). If π is a policy, the resource dependent
branching process (RDBP) on (Dk

n,X
k
n,R

k
n)n,k controlled by π is defined as the

integer-valued, nonnegative stochastic process (�n)n∈N, defined by �0 = 1 and
recursively

�n+1 = Qπ (Dn(�n),
(
Xk

n

)Dn(�n)
k=1 ,Rn(�n)

)
,

where Dn(·) and Rn(·) are given by equation (1).

2.6.1. Remarks. (i) The notation (�n)n is mnemonic for “general” in the sense
that the policy π in Qπ is not specified, and this is maintained throughout this
paper.

(ii) Unless specified otherwise, each process in this paper is supposed to start at
time 0 at level 1; exceptions to this will be clearly indicated.

(iii) Concerning all independence assumptions, we realize, of course, that in a
convincing model, the random variables Dk

n, Rk
n and Xk

n should allow for some
interaction (dependence), and the i.i.d. assumption is primarily made for simplic-
ity. However, it is important to note that, in our setting, this assumption is less
restrictive than it may seem. Indeed, recall that Hypothesis 1 is given priority to
Hypothesis 2. If a population wants to know whether survival is possible, it must
look at the current situation, because we do not assume in the model that the pop-
ulation knows more about the long-term future. Therefore the question is what
would happen if the current situation were maintained for the future. Each time
a change is warranted, for instance, an encouragement to have more descendants,
or to increase resource creation, the matrices can be exchanged. It is this instant
control mentioned earlier which gives considerable support to all independence
assumptions.
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2.7. Regularity assumptions. We suppose that the following assumptions are
always satisfied:

(i) 1 < m < ∞, r < ∞ and 0 < μ < ∞;
(ii) p0 > 0 and there exists some k ≥ 2 with pk > 0;

(iii) the trio of laws of reproduction, creation of resources and claims is com-
patible with a positive probability, however small it might be, that the process can
reach any finite state;

(iv) the variables (Dk
n)n,k , (Rk

n)n,k and (Xk
n)n,k all have finite variance;

(v) (the random variables Dk
n, Rk

n and Xk
n are all bounded).

2.7.1. Justification of assumptions. In assumption (i), the conditions m > 1
and μ > 0 do not restrict generality: the case m ≤ 1 is trivial because then any
RDBP is stochastically smaller than a subcritical GWP. With the natural condition
p0 > 0 of (ii) it is bound to die out. The case μ = 0 implies that (Xk

n)n,k consists
only of 0’s, so that the process coincides with the standard GWP. Survival is thus
possible if and only if m > 1, implying pk > 0 for some k ≥ 2, hence (ii).

Assumption (iii) ensures that the process can grow. It is, for instance, satisfied if
we assume that F(r/k) > 0 for some k ≥ 2 with pk > 0. Note that this assumption
becomes superfluous if we replace the initial setting �0 = 1 by �0 = L for some L

sufficiently large.
The assumption of finite variances of all random variables is needed for our

results and is also completely realistic.
Finally, assumption (v) of boundedness is, apart for two results (i.e., Theo-

rems 4.7 and 4.13), not needed and therefore put in brackets. Note that even this
stronger assumption is well defendable in our model, at least for human societies.

2.8. Multi-parameter policies. According to our definition, a policy can only
depend on the available resources and on the claims of the offspring. However, in
more realistic models, the offspring could be characterized by many other different
parameters, and it would be natural to allow a policy to depend on all these addi-
tional parameters. This is why, although we do not pursue such general models in
this paper, we will indicate shortly how to adapt our definitions accordingly.

We consider a new double array (Yk
n)n,k of i.i.d. random p-vectors defined on a

corresponding probability space (�,F,P ). Here, the components of the random
vectors Yk

n (k ∈ N0) correspond to the different characteristic parameters of each
individual (labeled by k) in generation n. For some fixed p ≥ 0, a p-parameter
policy is any sequence π = (πt )t∈N, where, for all t ∈ N, πt is a function associat-
ing to any t-uple (xk,yk)

t
k=1 ∈ (R+ ×B)t a permutation πt((xk,yk)

t
k=1) ∈ Sym(t)

of the set [t] := {1, . . . , t}, where B ⊂ R
p denotes the set of possible parameter

values. The associated counting function and the associated RDBP are defined as
before. For instance, the coin-flipping policy could be seen as a trivial example of
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a multi-parameter policy, where the coin-flipping parameter actually determines
the whole policy.

Note that the situation is trivial when the additional parameters of an individual
are assumed to be independent of its number of offspring, its resource claim and its
resource production, and when we consider some multi-parameter policy that only
depends on these additional parameters (but not on the resource claims): in this
case, the associated RDBP has exactly the same behavior as the f.c.f.s.-process (as
defined below). In general, the dependence may of course lead to highly complex
situations.

3. Particular policies. In the following, we define policies of particular in-
terest. The first will be a neutral policy, which we call the first-come-first-served
policy. It will serve as a point of comparison with the weakest-first policy and the
strongest-first policy defined later.

3.1. First-come-first-served policy. The f.c.f.s.-policy is a neutral policy in the
sense that it serves the claims according to their respective arrival times. To exclude
ambiguities in the definition, these arrivals of claims are supposed to happen at the
beginning of each generation, being almost surely different, and all preceding the
times of producing offspring.

DEFINITION 3.1. The first-come-first-served policy (f.c.f.s.-policy) is the pol-
icy πU defined by πU

t ((xk)
t
k=1) = id[t].1

The associated function C := QπU
counting the individuals staying in the pro-

cess is

C
(
t, (xk)

t
k=1, s

)=
⎧⎪⎨⎪⎩

0, if t = 0 or x1 > s;

sup

{
1 ≤ k ≤ t :

k∑
j=1

xj ≤ s

}
, otherwise.

DEFINITION 3.2. The first-come-first-served process (f.c.f.s.-process) on
(Xk

n,D
k
n,R

k
n)n,k is the RDBP controlled by πU , that is, the stochastic process

(Un)n∈N defined by U0 = 1, and recursively by

Un+1 = C
(
Dn(Un),

(
Xk

n

)Dn(Un)
k=1 ,Rn(Un)

)
.

Note that C(t, (Xk
n)

t
k=1, s) + 1 is a stopping time with respect to the natural

filtration (F�)�, where F� denotes the σ -field generated by the Xk
n’s for 1 ≤ k ≤ �.

It is useful to refer to stopping-time properties because frequently we use results
which become intuitive if we think of a version of “Wald’s lemma” for curtailed
random variables; see Section 4 of Bruss and Robertson (1991).

1The notation πU should remind of the unordered x1
t , . . . , xt

t used in the definition.
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Interpretation and properties. The f.c.f.s.-society may be seen as a model of
a laissez-faire society. When individuals are born, they are assumed to arrive at
different times within their generation at maturity and then submit their random re-
source claims. This continues as long as resources are available. Since the claims
are i.i.d. random variables, it is not the society but the scarcity of resources that
imposes constraints. This process has some similarity with the GWP because, for
given distributions of resource creation and claims, the claims curtail the effective
mean m of the offspring distribution (pk)k . However, given that the process de-
pends in each generation on common resources, the similarity with a GWP is still
rather limited.

3.2. Weakest-first policy. The weakest-first policy (w.f.-policy) is an extreme
policy, giving priority successively to the least demanding currently remaining off-
spring.

DEFINITION 3.3. The weakest-first policy (w.f.-policy) is the policy πW de-
fined by πW

t ((xk)
t
k=1) = σ , where σ is the permutation of [t] such that xσ(1) ≤

· · · ≤ xσ(t).

Throughout this paper, for i.i.d. realizations (xk)
t
k=1 of the random variable X,

the increasing order statistics will be denoted by x1,t ≤ x2,t ≤ · · · ≤ xt,t . The asso-
ciated counting function N := QπW

is now

N
(
t, (xk)

t
k=1, s

)=
⎧⎪⎨⎪⎩

0, if t = 0 or x1,t > s,

sup

{
1 ≤ k ≤ t :

k∑
j=1

xj,t ≤ s

}
, otherwise.(2)

DEFINITION 3.4. The weakest-first process (w.f.-process) on (Dk
n,X

k
n,R

k
n)n,k

is the RDBP controlled by πW , that is, the stochastic process (Wn)n∈N defined by
W0 = 1, and recursively by

Wn+1 = N
(
Dn(Wn),

(
Xk

n

)Dn(Wn)
k=1 ,Rn(Wn)

)
.(3)

Note that N(·, ·, ·) counts the maximal number of increasing order statistics
of the random sample (xk)

t
k=1 which, starting with the smallest, can be summed

up without exceeding s. Further, N(t, (Xk
n)

t
k=1, s) + 1 is a stopping time on the

filtration (F I
� )� say, generated by the � first increasing order statistics from all

order statistics, beginning with the smallest one, but it is not a stopping time with
respect to the natural filtration (F�)�.
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Interpretation and properties. The policy of the w.f.-society is to support al-
ways the weakest. In that respect it comes close to the ideas of socialism and com-
munism. In each generation, individuals are ordered according to their resource
claims, and these order statistics are highly dependent of each other.

The following lemma will be needed throughout.

LEMMA 3.5. N(t, (xk)
t
k=1, s) is increasing in both t and s.

PROOF. This follows immediately from Definition 3.3. �

3.3. Strongest-first policy. The strongest-first policy (s.f.-policy) gives succes-
sively priority to the most demanding currently remaining offspring, that is to the
largest random claims.

DEFINITION 3.6. The strongest-first policy (s.f.-policy) is the policy πS de-
fined by πS

t ((xk)
t
k=1) = σ , where σ is the permutation of [t] such that xσ(1) ≥

· · · ≥ xσ(t).

The associated counting function M := QπS
becomes

M
(
t, (xk)

t
k=1, s

)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if t = 0 or xt,t > s,

sup

{
1 ≤ k ≤ t :

t∑
j=t−k+1

xj,t ≤ s

}
,

otherwise.

(4)

It counts the maximal number of decreasing order statistics which can be summed
up, starting with the biggest, without exceeding s.

DEFINITION 3.7. The strongest-first process (s.f.-process) on (Xk
n,D

k
n,R

k
n)n,k

is the RDBP controlled by πS , that is, the stochastic process (Sn)n∈N defined by
S0 = 1, and recursively by

Sn+1 = M
(
Dn(Sn),

(
Xk

n

)Dn(Sn)
k=1 ,Rn(Sn)

)
.(5)

We note that M(t, (Xk
n)

t
k=1, s) + 1 is a stopping time on the filtration (FD

� )�
generated by the first � decreasing order statistics of all currently presented claims,
beginning with the largest one. It is again no stopping time on the natural filtra-
tion (F�)�.

Interpretation and properties. The s.f.-society is the model which serves the
strongest individuals first. Since we identified the values of resource claims with
the power to defend these claims, this society shares important features with free-
market policies and an uncontrolled capitalistic society. Since claims are again
highly dependent, the technical difficulty in this model is comparable with the one
evoked for the w.f.-society.

For a closer study of the s.f.-process, we will need later the following definition:
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DEFINITION 3.8. We say that a function h : [t1, t2] →R defined on an interval
[t1, t2] ⊂ R is cap-unimodal if it is either monotone, or else unimodal and cap-
shaped, on [t1, t2].

Note that a cap-unimodal function h on [t1, t2] satisfies

min
t∈[t1,t2]

h(t) = min
{
h(t1), h(t2)

}
,(6)

provided that h is defined in both t1 an t2. The following lemma then contrasts
Lemma 3.5:

LEMMA 3.9. M(t, (xk)
t
k=1, s) is increasing in s for fixed t , and, for fixed s,

cap-unimodal in t on any interval [t1, t2]. Further, maxt∈[t1,t2] M(t, (xk)
t
k=1, s) ≤

t2 − t1 + M(t1, (xk)
t1
k=1, s).

PROOF. See Section 6.1. �

REMARK 3.10. If resources are plenty and suffice to accommodate all claims,
then all policies have the same effect; that is, they allow all individuals to stay and
reproduce. However, if not, the w.f.-society is the one which allows the maximum
number of individuals to stay and to reproduce. The s.f.-society is then opposite in
the sense that the resource space is used up by the corresponding minimum number
of applicants.

4. Main results. Throughout this section, all RDBPs are supposed to be con-
trolled by some policy π on (Dk

n,X
k
n,R

k
n)n,k , where all random variables satisfy

the assumptions of Section 2.7.

4.1. Preliminaries. It is important to first point out that any RDBP shares the
following property, which is typical for many branching processes. Namely, either
it explodes, or it becomes extinct.

PROPOSITION 4.1 (Markov property). Any RDBP (�n)n is a Markov process
with a unique absorbing state, which is 0. Moreover, it tends a.s. either to 0 or
to ∞.

PROOF. See Section 6.1. (The same result remains true in the multi-parameter
case.) �

In accordance with Hypothesis 1, we must first answer the question under which
conditions a given RDBP (�n)n can survive, that is, we must determine when the
extinction probability

q� = P
[

lim
n→∞�n = 0

∣∣�0 = 1
]
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is equal to 1. Note that, in the case q� < 1, the probability of extinction could
intuitively be made arbitrarily small if we replace the initial setting �0 = 1 by
�0 = M for M sufficiently large. We will in fact prove this for several processes,
and for the w.f.-process this holds even in a stronger form:

PROPOSITION 4.2 (“Safe-haven” property of the w.f.-process). For all
L ∈ N0,

P
[

lim
n→∞Wn = 0

∣∣W0 = L
]
≤ qL

W .

PROOF. See Section 6.1. �

Hence, if a society fears extinction it may change to become a w.f.-society and
likely survive unless qW = 1, or L is small. Also, as we shall see later on, qW = 1
implies q� = 1 for any RDBP (�n)n, so that in that case no change in policy could
avoid extinction. The w.f.-society may be seen as the “safe-haven” society form
with respect to Hypothesis 1.

4.2. Uniform upper-bound process. It turns out that the w.f.-process is always
an upper bound for any other RDBP, and this in the strongest sense:

PROPOSITION 4.3 (Uniform upper bound). Let (�n)n be any RDBP, and let
(Wn)n be the w.f.-process defined on the same double arrays. Then, for all n, we
have �n ≤ Wn a.s. In particular, qW ≤ q� .

PROOF. See Section 6.2. (The same result remains true in the multi-parameter
case.) �

4.2.1. Nonexistence of a uniform lower-bound process. We now turn to a com-
parison between (�n)n and the corresponding s.f.-process (Sn)n. This is a more
subtle problem. Indeed, it is in general not true that Sn ≤ �n a.s. for all n.

This may come somewhat as a surprise. Indeed, since the s.f.-society is clearly
the most restrictive one for the number of offspring which can stay, one feels that
(�n)n should always do at least as well as the process (Sn)n governed by the s.f.-
policy. An explicit counterexample is given in Section 6.2: it is based on the fact
that M(t, (xk)

t
k=1, s) is, for fixed s, increasing in t up to some threshold ts but

decreasing for t ≥ ts . However we can explain here already what is behind it.
Suppose (Sn)n and (�n)n have the same number k of individuals at time n. Then

it follows from the counting function comparison that �n+1 is at least as large as
Sn+1. Hence we expect on average more offspring from �n+1 than from Sn+1. But
then the extreme claims of the offspring of �n+1 must be expected to be larger
than those from the offspring of Sn+1. If the policy of (�n)n serves just one of
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the larger claims, the inequality established in generation n + 1 may point to the
opposite direction in generation n + 2.

Therefore, we see that no nontrivial uniform lower bound can exist for general
RDBPs, and thus all attempts to compare general trajectories would be fruitless.
We found it highly interesting that, nevertheless, we can prove the Envelopment
theorem presented in Section 4.6 (see Theorem 4.13). This will justify the fact that
we can essentially restrict our attention to the w.f.-policy and the s.f.-policy, which
we will study in the next sections. The f.c.f.s.-policy will be considered as a point
of comparison later on (see Section 4.5).

4.3. Extinction criterion for the w.f.-process.

THEOREM 4.4. Let (Wn)n be the w.f.-process on (Dk
n,X

k
n,R

k
n)n,k .

(a) If r ≤ mμ and if τ is the solution of∫ τ

0
x dF(x) = r

m
,(7)

then:

(i) if mF(τ) < 1, then qW = 1;
(ii) if mF(τ) > 1, then qW < 1.

(b) If r > mμ, then qW < 1.

Moreover, in cases (a)(ii) and (b), we even have

P
[

lim
n→∞Wn = 0

∣∣W0 = L
] L→∞−−−→ 0.(8)

Further, if there is no extinction, the process explodes a.s. and behaves more and
more like a supercritical GWP with a new reproduction mean m̃(> 1), say, defined
by

m̃ =
{

m, if r ≥ mμ,
mF(τ), if r < mμ and mF(τ) > 1.

PROOF. See Section 6.3. Equation (8) follows from Proposition 4.2. �

The following remarks will provide a better understanding of these results.

REMARKS 4.5. (i) The case (b) is the most intuitive one. Indeed, the condition
r > mμ means that a typical ancestor creates in expectation more resources than
his offspring will claim together. Consequently, when the population grows the law
of large numbers ensures that the process will behave more and more like a super-
critical GWP, the asymptotic properties of which are well understood [see, e.g.,
Bingham and Doney (1974)]. For this argument to hold, the regularity assump-
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tion (iii) (see Section 2.7) is needed to ensure that the process can reach any finite
size with positive probability; this condition becomes redundant if we replace the
initial setting W0 = 1 by W0 = w for w sufficiently large.

(ii) Theorem 4.4 is sharp in the sense that mF(τ) = 1 is the exact separation
point between a.s. extinction and positive survival probability. However, unlike
what occurs with GWPs, it is here not immediate to see under which conditions
on the law (pk)k and on F the critical case implies a.s. extinction. Note that, for
fixed m and F , the parameter τ = τ(r/m) is increasing in r , so that the equation
mF(τ) = 1 defines a critical mean resource production rW,c below which qW = 1
and above which qW < 1.

Note that the survival conditions depend deeply on the distribution F of the
claims. The following special cases give criteria in terms of the first two moments
only. From the point of view of applications, this is more attractive since F may
not be known precisely.

COROLLARY 4.6. Let (Wn)n be the w.f.-process on (Dk
n,X

k
n,R

k
n)n,k .

(i) If μ < r , we have qW < 1.

(ii) Assume r ≤ mμ(1 − √
1 − 1/m). If VarX <

(mμ−r)2

m(m−1)
− μ2(> 0), we have

qW = 1.

PROOF. See Section 6.5. �

4.4. Extinction criterion for the s.f.-process. We now present the extinction
criterion for the s.f.-process. Since we deal here again with a process depending on
the partial sum behavior of order statistics—now on the sum of the largest ones—
we expect analogies. To facilitate a comparison between the s.f.-process and the
w.f.-process we had made the assumption [recall (v) in Section 2.7] that resource
claims are bounded above.

However, many important difficulties will arise, and the comparison with the
w.f.-process will only be possible for a very small part of the proof. In particular,
we will need here the boundedness of all the random variables Dk

n, Xk
n and Rk

n

[see (v) in Section 2.7].

THEOREM 4.7. Let (Sn)n be the s.f.-process on (Dk
n,X

k
n,R

k
n)n,k .

(a) If r ≤ mμ and if θ is the solution of∫ b

θ
x dF(x) = r

m
,(9)

then:

(i) if m(1 − F(θ)) < 1, then qS = 1;
(ii) if m(1 − F(θ)) > 1, then qS < 1.
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(b) If r > mμ, then qS < 1.

Moreover, in cases (a)(ii) and (b), we even have

P
[

lim
n→∞Sn = 0

∣∣S0 = L
] L→∞−−−→ 0.(10)

Further, if there is no extinction, the process explodes a.s. and behaves more and
more like a supercritical GWP with a new reproduction mean m̃(> 1), say, defined
by

m̃ =
{

m, if r ≥ mμ,
m
(
1 − F(θ)

)
, if r < mμ and m

(
1 − F(θ)

)
> 1.

PROOF. See Sections 6.4 and 6.8. �

REMARK 4.8. Equation (10) rejoins Proposition 4.2 in a weaker sense. The
critical case is now determined by the equation m(1 − F(θ)) = 1. Note that, for
fixed m, the parameter θ = θ(r/m) is decreasing in r , in the same way that, in
Theorem (4.4), τ(r/m) was increasing in r . The equation m(1 − F(θ)) = 1 thus
defines the critical mean resource production rS,c.

Note that the survival conditions depend deeply on the distribution of the claims
and are thus quite difficult to interpret in practice. The following special cases,
expressed in terms of the two first moments of the claims only, are more easy to
interpret:

COROLLARY 4.9. Let (Sn)n be the s.f.-process on (Dk
n,X

k
n,R

k
n)n,k .

(i) If r < μ, we have qS = 1.
(ii) Assume r ≥ μ

√
m. If VarX < r2/m − μ2(> 0), then we have qS < 1.

PROOF. See Section 6.5. �

4.5. Extinction criterion for the f.c.f.s.-process. As a term of comparison, it is
interesting to observe what happens in the case of a f.c.f.s.-process.

PROPOSITION 4.10. Let (Un)n be the f.c.f.s.-process on (Dk
n,X

k
n,R

k
n)n,k .

(a) If r < μ, then qU = 1.
(b) If r > μ, then qU < 1.

Moreover, in case (b), we even have

P
[

lim
n→∞Un = 0

∣∣U0 = L
] L→∞−−−→ 0.(11)

Further, if there is no extinction, the process explodes a.s. and behaves more and
more like a supercritical GWP with reproduction mean m.
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REMARK 4.11. As in the case of the w.f.-process, the regularity assump-
tion (v) (see Section 2.7) is not needed in the proof of the above result. The critical
mean resource production is now simply defined by rU,c = μ.

4.6. Envelopment theorems. As explained in Section 4.2, although the
w.f.-process constitutes a uniform upper bound process, no nontrivial uniform
lower bound process can possibly exist for general RDBPs. In this section we shall
see that, however, the s.f.-process constitutes a lower bound process in a sense that
is strong enough to call it an envelopment from below. Firstly, conditioned on
survival, (Sn)n has the lowest limiting growth rate of all RDBPs. Secondly, if an
arbitrary RDBP (�n)n cannot survive, the s.f.-process (Sn)n cannot survive either.

4.6.1. Conditional envelopment theorem. Let us first consider a general RDBP
(�n)n. Since 0 is an absorbing state, we define �n+1/�n = 0 if �n = 0. If �n+1 > 0
we may see �n+1/�n as the empirical growth rate in period n. We know that for
some societies the empirical growth rates will converge a.s. to a limit in time, as,
for instance, for the w.f.-process, the s.f.-process, the f.c.f.s.-process, and others.
But then, given our very general definition of a policy π , it is also clear that there
are many processes for which the empirical growth rates do not converge; it suf-
fices to think, for example, of societies which apply very different rules according
to the number of claims being even or odd.

The following result shows that, conditioned on survival, the growth rates of
any RDBP will finally be between the growth rates of the w.f.-process and the
s.f.-process.

PROPOSITION 4.12. Let (�n)n be any RDBP on (Dk
n,X

k
n,R

k
n)n,k . Let

γ = lim inf
n→∞

�n+1

�n

, γ̄ = lim sup
n→∞

�n+1

�n

.

Given that �n → ∞ (i.e., γ > 0), we have

m
(
1 − F(θ)

)≤ γ ≤ γ̄ ≤ mF(τ),

where τ and θ are defined as in Theorems 4.4 and 4.7.

PROOF. See Section 6.6. �

Hence, there may be no limiting growth rate of a RDBP, but the lim inf and
the lim sup of empirical growth rates are, conditioned on survival, bounded by
the limit growths rates of the w.f.-process and the s.f.-process. This can be seen
as a conditional envelopment result with the w.f.- and the s.f.-policies as extreme
policies. If the lim inf and lim sup coincide, we can call the limit γ (without much
abuse of terminology) the “Malthusian” growth rate.
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4.6.2. Unconditional envelopment theorem. We shall prove a stronger uncon-
ditional result: if there is a positive survival probability for the process (�n)n, then,
given that the size of the process (�n)n is sufficiently large, the growth rate of that
process dominates, with overwhelming probability, that of the corresponding s.f.-
society at all times n ≥ n0. This is essentially the statement of Proposition 6.8 in
Section 6.7, and this allows us to deduce the following envelopment theorem.

A few definitions are needed: for any L ∈ N0, let (Sn(L))n, (�n(L))n and
(Wn(L))n denote, respectively, the s.f.-process, an arbitrary RDBP, and the w.f.-
process, each starting with initial size L. Hence, Sn = Sn(1), �n = �n(1) and
Wn = Wn(1). Also let θ be defined as in Theorem 4.7.

THEOREM 4.13 (Envelopment theorem). Assume that m(1 − F(θ)) 	= 1 if
r ≤ mμ. Then,

P
[

lim
n→∞Sn(L) ≤ lim

n→∞�n(L) ≤ lim
n→∞Wn(L)

] L→∞−−−→ 1.

Moreover, qW = 1 ⇒ q� = 1 ⇒ qS = 1.

PROOF. See Section 6.7. (The same result holds in the multiparameter case.)
�

Proposition 6.8 in Section 6.7 will give more precise information about the
lower bound. Such bounds are of considerable theoretical interest, and, as we shall
now see, they are also serving as useful directives for individuals who have de-
cided to adapt a specific type of society. Indeed, if the probability laws of the
random variables (Dk

n)n,k , (Xk
n)n,k and (Rk

n)n,k are fixed up to their mean m, μ

and r , respectively, then it is in practice interesting to determine the critical mean
resource production r�,c(m,μ), say, relative to the RDBP (�n)n, that is, the value
such that

q� = 1 if r < r�,c(m,μ) and q� < 1 if r > r�,c(m,μ).

By Theorem 4.13, the following can be deduced:

COROLLARY 4.14 (Critical curves for survival). For all m,μ, we have

rW,c(m,μ) ≤ r�,c(m,μ) ≤ rS,c(m,μ).

Therefore, the study of the two extreme RDBPs gives highly relevant infor-
mation about general RDBPs, without having to understand every single possible
policy (see examples in Section 5). As we have seen, the computation of the criti-
cal mean resource production even shows more. The point is that the mean claim
value plays only one part but that the resource claim distribution function F (which
determines the mean, of course) plays itself an important part. Hence society may
try to take influence on individuals to settle, under a fixed mean claim μ, for a
distribution F which favors survival.
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REMARK 4.15. If D, X and R were not assumed to be independent, Theo-
rem 4.13 would in general not remain true: the w.f.-policy and the s.f.-policy would
a priori not remain extreme policies. We could then naturally wonder how different
dependence patterns yield different extreme policies. Such questions may attract
interest for further studies.

5. Examples. We now give examples. It will be interesting to notice that the
critical mean resource production for a w.f.-process turns out to be lower than one
would intuitively expect.

(i) Let F be the uniform distribution function on (0, d), say. Then μ = d/2. As
in Theorems 4.4(a) and 4.7(a), let r < mμ = md/2 and suppose that F(r/k) > 0
for some k ≥ 2 with pk > 0.

First, focus on the corresponding w.f.-process. The value of τ [see equation (7)]
is thus determined by:

r

m
=
∫ τ

0
x dF(x) =

∫ τ

0

1

d
x dx = τ 2

2d
,

which yields τ = √
2dr/m. Therefore, F(τ) = √

2r/(md). The critical mean re-
source production rw,c is thus determined by

mF(τ) = 1 ⇐⇒
√

2rw,cm/d = 1

which implies rw,c = d/2m = μ/m. Note that, rw,c = d/2m, which is for larger m

not far from the expected value of the smallest order statistic of claims of 2m de-
scendants. With such a low creation of resources, the f.c.f.s.-process or s.f.-process
would die out very quickly, as we shall see now.

For the s.f.-process we need θ defined by [see equation (9)]:

r

m
=
∫ d

θ

1

d
x dx = d2 − θ2

2d
,

and straightforward calculations yield rs,c = d(1 − 1/2m) = μ(2 − 1/m).
We note that the critical mean resource production is now 2m − 1 times

higher than for the corresponding w.f.-process. Hence, if individuals living in the
w.f.-society on the critical value of creation and want to change to the s.f.-society,
then they must increase their average resource creation by a factor 2m − 1 to be
able to survive in the long run, that is, an enormous difference. For instance, if
m = 3, the critical resource creation mean must increase by factor five to maintain
a chance of survival! Comparing with the corresponding critical mean resource
production for a f.c.f.s.-process, ru,c = μ, gives

ru,c − rw,c = μ(1 − 1/m) = rs,c − ru,c.

Figure 1 compares the behavior of rw,c and rs,c as functions of m. The area be-
tween the two curves corresponds to a control area, where the population can
survive or get extinct depending on the policy.
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FIG. 1. For d = 2 (μ = 1), the critical mean resource productions rw,c and rs,c are plotted (in
blue and in red, resp.), as functions of m.

(ii) Of course, we realize that the uniform distribution pushes the largest and the
smallest order statistics far apart. Therefore, it is informative to look also at a case
when the resource claim distribution is more concentrated around its mean, as, for
instance, in the case of a beta distribution on (0,1), with parameters a and b, say.
The distribution function is then defined on (0,1) by the regularized incomplete
beta function: F(x) = Ia,b(x). The mean resource claim is given by μ = a

a+b
. As

in Theorems 4.4(a) and 4.7(a), let r < mμ = am
a+b

and suppose that F(r/k) > 0 for
some k ≥ 2 with pk > 0.

First, focus on the corresponding w.f.-process. The value of τ [see equation (7)]
is determined by

r

m
=
∫ τ

0
x dF(x) =

∫ τ

0

xa(1 − x)b−1

B(a, b)
= B(a + 1, b)

B(a, b)
Ia+1,b(τ )

= a

a + b
Ia+1,b(τ ),

which yields τ = I−1
a+1,b(

r
m

a+b
a

). The critical mean resource production rw,c is thus
defined by

mF(τ) = 1 ⇐⇒ mIa,b

(
I−1
a+1,b

(
rw,c

a + b

am

))
= 1,

which implies

rw,c = am

a + b
Ia+1,b

(
I−1
a,b(1/m)

)
.

Now look at the corresponding s.f.-process. The value of θ [see equation (9)] is
determined by

r

m
=
∫ 1

θ
x dF(x) = a

a + b

(
1 − Ia+1,b(θ)

)
,
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which yields θ = I−1
a+1,b(1 − r

m
a+b
a

). Straightforward calculations then give the

critical mean resource production rs,c = am
a+b

(1 − Ia+1,b(I
−1
a,b(1 − 1/m))).

Observing that Iα,β(1 − x) = 1 − Iβ,α(x), we deduce that I−1
α,β(1 − x) = 1 −

I−1
β,α(x). The formula for rs,c can thus be rewritten as

rs,c = am

a + b
Ib,a+1

(
I−1
b,a (1/m)

)
.

For a f.c.f.s.-process, the corresponding critical mean resource production simply
reads ru,c = μ. Further, for large m, we can use the approximation

Iα,β(z) = zα

B(α,β)

(
1

α
+ 1 − β

α + 1
z + O

(
z2));

see, for example, Pearson (1968). Straightforward calculations then give, at leading
order,

rw,c = a

a + 1

(
a

m
B(a, b)

)1/a

+ O
(
m−2/a),

and

rs,c = 1 + b

b + 1

(
b − a(b + 1)

)( b

m
B(b, a)

)1/b

+ O
(
m−2/b).

Figure 2 shows the critical areas in some typical cases, as the peak is centered,
moved to the left or to the right. Figure 3 shows, in the centered case, how the
critical area narrows as the dispersion around the peak diminishes.

(iii) In the third example we choose a case where resource claims are not
bounded. Our results in the s.f.-case can therefore not be used directly but it is

FIG. 2. The critical mean resource productions rw,c and rs,c are plotted as functions of m, in the
case of a B(a, b) resource claim distribution, for typical values of (a, b): (2,10) in blue, (14,14) in
yellow and (10,2) in red.
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FIG. 3. The critical mean resource productions rw,c and rs,c are plotted as functions of m, in the
case of a B(a, b) resource claim distribution, for different symmetric values of (a, b): (1,1) in blue,
(2,2) in pink, (3,3) in red, (4,4) in orange and (10,10) in red.

interesting to see what happens to the corresponding w.f.-process. Let F be the dis-
tribution function of an exponential random variable with parameter λ. The mean
resource claim is given by μ = 1/λ. As in Theorem 4.4(a), let r < mμ = m/λ and
suppose that F(r/k) > 0 for some k ≥ 2 with pk > 0. The value of τ is determined
by [see equation (7)]

r

m
=
∫ τ

0
x dF(x) =

∫ τ

0
λxe−λx dx = 1

λ
− e

(
τ + 1

λ

)
e−λ(τ+1/λ)

which yields τ = − 1
λ
(1 + W[−λ

e
( 1
λ

− r
m

)]), where W[·] denotes the Lambert W
function; see, for example, Corless et al. (1996). The critical mean resource pro-
duction rw,c is thus determined by

mF(τ) = 1 ⇐⇒ m

(
1 − exp

(
W
[
−λ

e

(
1

λ
− rw,c

m

)]
+ 1
))

= 1.

After simplifications, we get rw,c = 1
λ
(1 − (m − 1) log ( m

m−1)), where we recall

that 1
λ

= μ. For larger m, this becomes rw,c ≈ 1/(2λm) = μ/(2m), that is, about
one half of what is required for U [0,1]-claims.

6. Proofs.

6.1. Preliminary results. We first prove Lemma 3.9.

PROOF OF LEMMA 3.9. The property of M(t, (xk)
t
k=1, s) being increas-

ing in s is evident from the definition. To see unimodality in t , let I (t, s) =
1{∑t

j=1 xj,t ≤ s}. Then (4) can be written as

M
(
t, (xk)

t
k=1, s

)= I (t, s)t + (1 − I (t, s)
)
sup

{
1 ≤ k ≤ t :

t∑
j=t−k+1

xj,t ≤ s

}
,
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where sup∅ := 0. This sum is clearly linearly increasing in t as long as I (t, s) = 1;
it is decreasing in t as soon as I (t, s) = 0, since the k largest order statistics
are increasing with the sample size t . Hence, if t1, t2 ∈ N0, then, for fixed s,
M(t, (xk)

t
k=1, s) is either monotone increasing or monotone decreasing on [t1, t2],

or else takes its maximum somewhere in (t1, t2). This means that M is cap-
unimodal in t , and hence the minimum

min
t∈[t1,t2]

M
(
t, (xk)

t
k=1, s

)
is assumed in either t1 or t2. Finally, the estimate for the corresponding maximum
on [t1, t2] is evident from the definition of M(t, (xk)

t
k=1, s). �

We now prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. Let π be some policy (in the sense of Defini-
tion 2.1). Given �n, the distributions of Dn(�n) and Rn(�n) are independent from
�1, . . . ,�n−1, so that

�n+1 = Qπ (Dn(�n),
(
Xk

n

)Dn(�n)
k=1 ,Rn(�n)

)
is independent of �1, . . . ,�n−1, given �n. Thus, (�n)n is a Markov process. Now
note that, since Qπ(0,∅, s) = 0 and Dn(0) = 0 for all n ∈ N, we have {�n = 0} ⊂
{�n+1 = 0} so that 0 is an absorbing state for the process (�n)n. Moreover, since

�n+1 = Qπ (Dn(�n),
(
Xk

n

)Dn(�)
k=1 ,Rn(�n)

)≤ Dn(�n),(12)

it follows that

P[�n+1 = 0|�n] ≥ P
[
Dn(�n) = 0|�n

]= p
�n

0 ,(13)

where the last equality holds because of the assumption of independent reproduc-
tion. Therefore, the absorbing state 0 is accessible from any state s ∈ N, with at
least probability ps

0 > 0. The state 0 is thus the only absorbing state, and, as (�n)n
is a Markov process, we conclude

P[0 < �n ≤ s i.o.] = 0 ∀s ∈ N0.(14)

The same arguments immediately adapt to multiparameter policies. �

We now turn to the proof of Proposition 4.2. The idea is that we compare the
behavior of (Wn)n in each step n with a process consisting of Wn i.i.d. versions of
a weakest-first process starting with one individual.

PROOF OF PROPOSITION 4.2. Let L ∈ N0 and let W
(1)
n , . . . ,W

(L)
n be L i.i.d.

copies of a weakest-first process. We then have the following (superadditivity-
type) inequality, namely, for all n, k ∈N0,

P[Wn ≤ k|W0 = L]
(15)

≤ P
[
W(1)

n + · · · + W(L)
n ≤ k|W(1)

0 = · · · = W
(L)
0 = 1

]
,

which we shall prove first.
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To see this, we begin with the case n = 1.
The case L = 1 is trivial; hence suppose L > 1. The LHS of (15) becomes, by

an additional conditioning on D1(L) ∼ D(L),

P [W1 ≤ k|W0 = L]
= P
[
D(L) ≤ k

]+ P
[
W1 ≤ k|D1(L) > k,W0 = L

]
P
[
D(L) > k

]
,

where we have used the facts that the distribution of D(L) depends only on L (and
not on the generation number), and also that W1 cannot possibly exceed D1(W0) =
D1(L).

Now suppose we do the same conditioning on the RHS of (15), that is, for the
offspring of the L partitioned processes. The first term P [D(L) ≤ k] is then the
same on both sides, since, as before, reproduction of individuals is independent.
Hence, subtracting equal terms on both sides we can now limit our interest to the
corresponding second term with more than k offspring.

The distributions of the total created resource space and of the claims are by
definition the same on both sides; therefore it suffices to look for the moment at
the influence of the order statistics of claims in a fixed sequence of claims on a
fixed resource space R, say.

In the LHS model of (15), the resource space R is global (i.e., united) because
all descendants from the different families contribute to a common resource space.
In the RHS model of (15), this resource space is, however, local (i.e., compart-
mented). On the LHS the count of individuals to stay is therefore the count of the
globally smallest order statistics of claims which can be successively accommo-
dated by R whereas on the RHS the count is on the locally smallest order statistics
of claims. The latter, put in increasing order, are a subsequence of the sequence of
claims in increasing order. Hence the RHS count cannot exceed the lhs count.

Passing from the counting argument to the corresponding probability measures
on both sides proves (15) for n = 1, that is, under the condition W0 = L the number
of descendants staying in the population is stochastically larger than W

(1)
1 + · · · +

W
(L)
1 , that is, for all j ∈N0,

P[W1 ≥ j |W0 = L] ≥ P
[
W

(1)
1 + · · · + W

(L)
1 ≥ j |W(1)

0 = · · · = W
(L)
0 = 1

]
.

But now, we can iterate this argument. Clearly inequality (15) must hold in
particular if we replace, on the RHS only, the number L by some L′ with L′ ≤ L.
Hence the stochastic order is maintained through the next generation, and thus, by
recurrence, through all generations. This implies that (15) is true for all n ∈N0.

Finally, choosing k = 0 in (15) and taking the limit for n → ∞, we obtain by
independence of the processes (W

(j)
n )n that

P[Wn → 0|W0 = L]
(16)

≤ P
[
W(1)

n → 0, . . . ,W(L)
n → 0|W(1)

0 = · · · = W
(L)
0 = 1

]= qL
W ,

which completes the proof. �
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REMARK 6.1. The superadditivity-type inequality (15) is in general no longer
correct if the w.f.-process is replaced by other RDBPs. Indeed, a very large claim
may force on the RHS all the offspring of one subpopulation to leave, but this
effect stays still local whereas it may be large on the global LHS. This exemplifies
at the same time the adherent difficulty in estimating extinction probabilities for
arbitrary policies.

6.2. Uniform bounds. We first prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. Let π be any policy (the same arguments
immediately adapt to multiparameter policies). First note that, by definition of
N and M ,

M
(
t, (xk)

t
k=1, s

)≤ Qπ (t, (xk)
t
k=1, s

)≤ N
(
t, (xk)

t
k=1, s

)
(17)

∀t, ∀(xk)
t
k=1, ∀s.

We shall now show by induction that if (�n)n is the RDBP controlled by π , it
follows that �n ≤ Wn a.s. for all n, given W0 = �0 = 1. Indeed, it is true at any
time at which the two processes have the same number of individuals, and hence
for n = 0.

Now, if it is true for some n, we deduce that, a.s.,

�n+1 = Qπ (Dn(�n),
(
Xk

n

)Dn(�n)
k=1 ,Rn(�n)

)
(18)

≤ N
(
Dn(�n),

(
Xk

n

)Dn(�n)
k=1 ,Rn(�n)

)
(19)

≤ N
(
Dn(Wn),

(
Xk

n

)Dn(Wn)
k=1 ,Rn(Wn)

)= Wn+1,(20)

as the mapping (t, s) �→ N(t, (xk)
t
k=1, s) is increasing in both arguments. Hence

the inequality is also true for n + 1.
It follows that P[�n ≤ Wn] = 1 for all n. Since the limiting extinction probabil-

ities of (�n)n and (Wn)n must exist, we must also have qW ≤ q� . �

We now give an explicit counterexample showing that it is in general not true
that Sn ≤ �n a.s. for all n, given S0 = �0 = 1. The underlying idea was already
explained in Section 4.2.1.

Counterexample. We have assumed pk > 0 for some k ≥ 2 [see regularity as-
sumption (ii) in Section 2.7]; to fix ideas, assume that p3 > 0 (the argument can
be adapted in any case). Then consider the deterministic policy π given by

πt

(
(xk)

t
k=1
)
(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ(3), if j = 1 and t ≥ 3,
σ(1), if j = 2 and t ≥ 3,
σ(2), if j = 3 and t ≥ 3,
σ(j), otherwise,

(21)
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where σ is the permutation such that xσ(1) ≥ · · · ≥ xσ(t) [i.e., by definition, σ =
πS

t ((xk)
t
k=1)]. Let, for example,

D1
0 = 3, X1

0 > X2
0 > X3

0, X1
0 + X3

0 < R1
0 < X1

0 + X2
0,

D1
1 = D2

1 = 3, X1
1 + X2

1 + X3
1 ≤ R1

1

and then

X4
1,X

5
1,X

6
1 > R1

1 + R2
1 .

These events will occur simultaneously with positive probability, as p3 > 0. But
then we immediately see that �2 = 0 < 3 = S2 in this case.

6.3. Extinction criterion for the w.f.-society. In this section, we will prove
Theorem 4.4. In these proofs, we will repeatedly make use of the following lemma,
which we shall prove first.

LEMMA 6.2. Let X1,X2, . . . be i.i.d. real-valued nonnegative random vari-
ables with mean μ < ∞ and continuous distribution function F . Further, let (�n)n
be a sequence of integer-valued random variables with �n → ∞ a.s. as n → ∞,
and let (�n)n be a sequence of real random variables with �n → ∞ a.s. as
n → ∞. Suppose that �n/�n → ρ a.s. with 0 < ρ ≤ μ, and that τ is the solu-
tion of ∫ τ

0
x dF(x) = ρ.

Let N be defined by (2). Then N(�n, (Xk)
�n

k=1,�n)/�n → F(τ) a.s.
Moreover, if the random variables X1,X2, . . . are bounded, then we have an

analogous result for M defined in (4): defining θ as the solution of∫ b

θ
x dF(x) = ρ,

then M(�n, (Xk)
�n

k=1,�n)/�n → 1 − F(θ) a.s.

PROOF. Since �n/�n → ρ > 0 a.s. as n → ∞, we have

∀ε > 0 P
[
sup
n≥b

∣∣∣∣�n

�n

− ρ

∣∣∣∣< ε

]
→ 1 a.s. as b → ∞.(22)

To simplify notation, we write N(t, s) := N(t, (Xk)
t
k=1, s). (Note that this sim-

plification is here admissible since the distribution of the string of claims depends
only on t .)
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As the function N(t, s) is stochastically increasing in s, we deduce from almost-
sure convergence of �n/�n to ρ that, for all 0 ≤ ε < ρ and all δ > 0, the inequal-
ities

N(�n, (ρ − ε)�n)

�n

≤ N(�n,�n)

�n

≤ N(�n, (ρ + ε)�n)

�n

(23)

must hold (simultaneously), for all n sufficiently large, with probability at least
1 − δ.

We now use Theorem 2.2 (on page 615) of Bruss and Robertson (1991). This
theorem [refining a result of Coffman, Flatto and Weber (1987)] implies that

N(n, sn)

n
→ F

(
τ(s)
)

a.s. as n → ∞,(24)

where τ(s) is the solution of∫ τ(s)

0
x dF(x) = lim

n→∞
sn

n
=: s,(25)

provided that the latter limit exists and satisfies 0 < s ≤ μ = E[X].
Now note that τ(·) is continuous on (0,μ) because F is assumed to be contin-

uous on its support.
As �n → ∞ a.s., the left-hand side variable of (23) must converge a.s. to

F(τ(ρ − ε)) and the right-hand side variable of (23) a.s. to F(τ(ρ + ε)). Since
ε > 0 is arbitrary and

lim
ε→0+ F

(
τ(ρ ± ε)

)= F
(
τ(ρ)
)

by continuity of F(·) and τ(·), the first part of the lemma is proved.
The second part of the lemma, that is, the statement that

M
(
�n, (Xk)

�n

k=1,�n

)
/�n → 1 − F(θ) a.s.,

can now be proved similarly, using Theorem 2.3 of Bruss and Robertson (1991).
Note that we need here, as stated, the assumption that the resource claims are
bounded, since the cited Theorem 2.3 may not hold otherwise. �

We can now prove Theorem 4.4.

PROOF OF THEOREM 4.4. We first prove statement (a). Suppose r ≤ mμ and
mF(τ) < 1, and let

W∞(�) = {ω ∈ � :Wn(ω) → ∞ as n → ∞}.(26)

In the following, we can use the shorthand notation Nn(t, s) := N(t, (Xk
n)

t
k=1, s),

where again the index n will be dropped only if the distribution is used.
Now look at

E[Wn+1|Wn = w] = E
[
Nn

(
Dn(w),Rn(w)

)|Wn = w
]
.(27)
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Since Rn(w)/w → r a.s. as w → ∞ and Dn(w)/w → m a.s. as w → ∞ and
m > 0, we have Rn(w)/Dn(w) → ρ := r/m a.s. According to Lemma 4.1 (on
page 622) of Bruss and Robertson (1991), there exists a sequence Tw → τ a.s. as
w → ∞ with

E
[
Nn

(
Dn(w),Rn(w)

)|Wn = w
]≤ E

[
Dn(w)

]
F(Tw),(28)

where τ is the solution of ∫ τ

0
x dF(x) = ρ = r

m
.

Since F is continuous we can find, for each ε > 0, a value w = w(ε) such that
F(Tv) ≤ F(τ + ε) for all v ≥ w. Thus, from equations (27) and (28),

E[Wn+1|Wn = v] ≤ mvF(τ + ε), v ≥ w.(29)

Hence we get

E[Wn+1|Wn ≥ w] =
∞∑

v=w

P[Wn = v|Wn ≥ w]E[Wn+1|Wn = v](30)

≤ mF(τ + ε)

∞∑
v=w

vP[Wn = v|Wn ≥ w](31)

= mF(τ + ε)E[Wn|Wn ≥ w].(32)

Since mF(τ) < 1, we can choose, again by continuity of F , a positive value ε

sufficiently small such that mF(τ + ε) < 1. The latter implies then that (E[Wn])n
must be bounded. Consequently, Proposition 4.1 implies that P[W∞(�)] = 0, or
equivalently, since (Wn)n is Markovian, qW = 1.

This proves the first part of Theorem 4.4(a).
To see the second part of Theorem 4.4(a), we now suppose that r ≤ mμ and

mF(τ) > 1. Recall that we had supposed that any finite level can be reached with
a strictly positive probability [see regularity assumption (iii) in Section 2.7]. There-
fore it suffices to show that, for w sufficiently large,

∃α ≥ 1 liminf
k→∞ P

[
Wn+k ≥ αkw|Wn ≥ w

]
> 0.(33)

Let now

h(j,α,w) := P
[
Wn+j < αjw|Wn+j−1 ≥ αj−1w

]
.(34)

It follows that

P
[
Wn+k ≥ αkw|Wn ≥ w

]
(35)

≥ (1 − h(k,α,w)
)
P
[
Wn+k−1 ≥ αk−1w|Wn ≥ w

]
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and thus by recurrence on k that

P
[
Wn+k ≥ αkw|Wn ≥ w

]≥ k∏
j=1

(
1 − h(j,α,w)

)
.(36)

Therefore a sufficient condition for (33) to hold is
∞∑

j=1

h(j,α,w) < ∞.(37)

Since Nn(·, ·), Dn+j (·) and Rn+j (·) are all stochastically increasing in their argu-
ments, we have

h(j,α,w) = P
[
Wn+j < αjw|Wn+j−1 ≥ αj−1w

]
(38)

= P
[
Nn+j

(
Dn+j (Wn+j−1),

(39)
Rn+j (Wn+j−1)

)
< αjw|Wn+j−1 ≥ αj−1w

]
≤ P
[
Nn+j

(
Dn+j

(⌊
αj−1w

⌋)
,Rn+j

(⌊
αj−1w

⌋))
< αjw

]
.(40)

Choose ε > 0 such that (m−ε)F (τ) > 1, and put α = (m−ε)F (τ). Then we have
pα

0 < 1 so that

∞∑
j=1

p
�αj−1w�
0 =

∞∑
j=1

P
[
Dn+j

(⌊
αj−1w

⌋)= 0
]
< ∞.(41)

Since the Dn+j are independent random variables, it follows from the Borel–
Cantelli lemma that P[Dn+j (�αj−1w�) = 0 j -i.o.] = 0. Therefore, for j suffi-
ciently large, inequality (40) is equivalent to

h(j,α,w) ≤ P
[
L∗

j < R∗
j

]
,(42)

where the LHS variable is defined by

L∗
j = Nn+j (Dn+j (�αj−1w�),Rn+j (�αj−1w�))

Dn+j (�αj−1w�)(43)

and the corresponding RHS variable by

R∗
j = αjw

Dn+j (�αj−1w�) .(44)

Now let βj = �αj−1w�.
First look at the random variables Dn+j (βj )/βj ∼ D(βj )/βj (and recall that,

whenever we drop indices of variables in our notation, then this means that we use
information on their distributional prescription only). D(k) is hence distributed
like a sum of k i.i.d. random variables with finite mean m and finite variance σ 2

D ,
say.
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Recall that α > 1, and that βj/j → ∞ as j → ∞. Therefore, it follows from
the Hsu–Robbins theorem of complete convergence [see Theorem 1 of Hsu and
Robbins (1947), or Asmussen and Kurtz (1980)] that D(βj )/βj → m completely
as j → ∞. Note that complete convergence holds row-wise in the reproduction
matrix since all D

j
k are i.i.d. and have finite variance. This implies

∀δ > 0
∞∑

j=1

P
[∣∣∣∣D(βj )

βj

− m

∣∣∣∣> δ

]
< ∞.(45)

Further, since αjw/βj → α as j → ∞ and Dn+j (·) ∼ D(·), we obtain from (44)
and (45)

∀δ > 0
∞∑

j=1

P
[∣∣∣∣R∗

j − α

m

∣∣∣∣> δ

]
< ∞.(46)

Second, to study the convergence of L∗
j defined in (43) we turn to Lemma 6.2 with

�j = D(βj ) and �j = R(βj ). Since �j/βj → m completely and �j/βj → r

completely (again by the Hsu–Robbins theorem), we have

�j

�j

→ ρ = r

m
completely, as j → ∞.(47)

Therefore, in particular, �j/�j → ρ a.s., so that the conditions of Lemma 6.2 are
satisfied. It follows that if L∗

j in (43) allows for a limit (in some sense) l, say, then
we must have l = F(τ), where τ is defined as in Lemma 6.2.

Using this and the Chernov-type estimates obtained by Coffman, Flatto and
Weber (1987) (see Theorems 2 and 3) with a = jδ, we obtain after some straight-
forward simplifications,

P
[∣∣∣∣N(·, ·)

j
− F(τ)

∣∣∣∣> δ

]
≤ 2e−(jδ2)/(4F(τ)).(48)

Again Nn+j (·, ·) ∼ N(·, ·) and βj/j → ∞, and thus L∗
j → F(τ) completely as

j → ∞. This implies the convergence

∀δ > 0
∞∑

j=1

P
[∣∣L∗

j − F(τ)
∣∣> δ

]
< ∞.(49)

Now choose δ = 1
2 |F(τ) − α/m| > 0. Note that the event {L∗

j < R∗
j } can only

occur if |L∗
j − F(τ)| > δ or |Rj − α/m| > δ. Therefore, from (42),

h(j,α,w) ≤ P
[
L∗

j < R∗
j

]
(50)

≤ P
[∣∣L∗

j − F(τ)
∣∣> δ

]+ P
[∣∣∣∣R∗

j − α

m

∣∣∣∣> δ

]
(51)
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so that, according to (46) and (49),

∞∑
j=1

h(j,α,w) < ∞.(52)

This completes the proof of statement (a).
Statement (b) is obtained similarly (and more easily) using Theorem 2.1

of Bruss and Robertson (1991).
Finally, using Lemma 6.2, it is clear that, if r ≤ mμ and mF(τ) > 1, condition-

ing on survival, we have Wn+1/Wn → mF(τ) a.s. as n → ∞, and thus, for any
ε, δ > 0, there exists some large Lε,δ > 0 such that

P
[

sup
n≥Lε,δ

∣∣∣∣Wn+1

Wn

− mF(τ)

∣∣∣∣< δ
∣∣∣ lim
n→∞Wn = ∞

]
≥ 1 − ε.(53)

This precisely means that, conditioning on survival, the w.f.-process behaves more
and more like a GWP with the modified reproduction mean m̃ = mF(τ). �

6.4. Extinction criterion for the s.f.-society (first part). In this section, we are
concerned with the proof of Theorem 4.7. The first part of Theorem 4.7(a) can be
obtained by similar considerations as for Theorem 4.4 (the extinction criterion for
the w.f.-society), the role of τ being now played by θ , defined by∫ b

θ
x dF(x) = r

m
,

as in Theorem 2.3 of Bruss and Robertson (1991). However, here we need the
assumption that the resource claims are bounded as assumed in the model, simply
because the cited Theorem 2.3 may not hold otherwise. (This was not needed in the
case of the w.f.-society where we only used that the claims have a finite variance.)

PROOF OF THEOREM 4.7(a)(i). The proof of the first part of Theorem 4.7(a)
follows the same reasoning as for Theorem 4.4 [see equations (26)–(32)] and yields
correspondingly that, for all ε > 0, there exists a sufficiently large s such that

E[Sn+1|Sn ≥ s] ≤ m
(
1 − F(θ − ε)

)
E[Sn|Sn ≥ s].(54)

Choosing ε sufficiently small such that m(1 − F(θ − ε)) < 1 shows that
(E[Sn+1|Sn ≥ s])n is bounded, so that (E[Sn])n is bounded too. Hence, similarly
as before, qS = 1. �

For the other parts of Theorem 4.7, adapting the proof of Theorem 4.4 seems
difficult. The major technical difficulty is that we have to deal with the cap-
unimodality of M(·, ·) in its first argument [while N(·, ·) was increasing in both
arguments].
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Cap-unimodality implies that the minimum of M(D(t),R(t)) for given D(t)

and R(t) over an interval [t1, t2] must be taken on the border, but gives less infor-
mation about the corresponding maximum. The estimate t2 − t1 for the difference
between the maximum and the minimum over [t1, t2] (see Lemma 3.9) is here too
crude. We therefore have to proceed differently, and, in order to use arguments
developed later, the rest of this proof is postponed to Section 6.8.

6.5. Corollaries 4.6 and 4.9. We shall need the following two lemmas, which
we prove first:

LEMMA 6.3. Assume r > μ, and let τ be defined by∫ τ

0
x dF(x) = r

m
.

Then mF(τ) > 1.

PROOF. Let a ≥ 0 be the infimum of the support of F . As F(x) > 0 for all
x > a and as τ > a [because

∫ τ
0 x dF(x) = r

m
>

μ
m

≥ 0], we deduce F(τ) > 0, and
we can write

mF(τ)

∫ τ

0
x

dF(x)

F (τ)
= r > μ,

or equivalently,

mF(τ)E[X|X ≤ τ ] > μ.

However, E[X|X ≤ τ ] ≤ E[X] = μ, so that the above inequality cannot hold unless
mF(τ) > 1. �

LEMMA 6.4. Assume r < μ, and let θ be defined by∫ ∞
θ

x dF(x) = r

m
.

Then m(1 − F(θ)) < 1.

PROOF. Let b ≥ 0 be the least upper bound of claims. As 1 −F(x) > 0 for all
x < b and as θ < b [because

∫∞
θ x dF(x) = r

m
> 0], we deduce 1 − F(θ) > 0, and

we can write

m
(
1 − F(θ)

) ∫ ∞
θ

x
dF(x)

1 − F(θ)
= r < μ,

or equivalently

m
(
1 − F(θ)

)
E[X|X > θ ] < μ.

However, E[X|X > θ ] ≥ E[X] = μ, so that the above inequality implies m(1 −
F(θ)) < 1. �

We can now prove Corollary 4.6.
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PROOF OF COROLLARY 4.6. Using Lemma 6.3 and Theorem 4.4(a)(ii),
part (a) is immediate. It remains to prove part (b). Using the Cauchy–Schwarz
inequality, we deduce directly from the definition of τ ,

r

m
=
∫ τ

0
x dF(x) = μ −

∫ b

τ
x dF(x)(55)

≥ μ −√1 − F(τ)

√∫ b

τ
x2 dF(x) ≥ μ −√1 − F(τ)

√
E
[
X2
]
,(56)

so that, after straightforward simplifications, mF(τ) ≤ m− (mμ− r)2/(mE[X2]).
Hence, if

E
[
X2]< (mμ − r)2/

(
m(m − 1)

)
,

we deduce mF(τ) < 1 and thus, by Theorem 4.4(a)(i), we must have qW = 1. �

We now turn to the proof of Corollary 4.9.

PROOF OF COROLLARY 4.9. Using Lemma 6.4 and Theorem 4.7(a)(i),
part (a) is immediate.

It remains to prove part (b).
Using the Cauchy–Schwarz inequality, we deduce directly from the definition

of θ

r

m
=
∫ b

θ
x dF(x) ≤√1 − F(θ)

√∫ b

θ
x2 dF(x) ≤√1 − F(θ)

√
E
[
X2
]
.(57)

Hence, if E[X2] < r2/m, we deduce

m
(
1 − F(θ)

)≥ r2/
(
mE
[
X2])> 1

and thus, by Theorem 4.7(a)(ii), we must have qS < 1. �

6.6. Conditional envelopment theorem. We prove here Proposition 4.12.

PROOF OF PROPOSITION 4.12. Assume that �n → ∞ is given, that is, that
γ > 0 is given. First compare the process (�n)n with (Sn)n. We see from the cor-
responding counting functions Qπ and M that

γ = lim inf
n→∞

�n+1

�n

= lim inf
n→∞

Qπ
n (Dn(�n),Rn(�n))

�n

(58)

≥ lim inf
n→∞

Mn(Dn(�n),Rn(�n))

�n

,(59)

where the last inequality follows from the definition of the function M . Since the
latter is increasing in the second argument and cap-unimodal in the first argument,
we define (neglecting the floor–roof symbols which are here of no importance)

M̃ε
n(�n) = min

{
Mn

(
(m − ε)�n, (r − ε)�n

)
,Mn

(
(m + ε)�n, (r − ε)�n

)}
,(60)
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so that, for all 0 < ε < min(r,m),

γ ≥ lim inf
n→∞

1

�n

M̃ε
n(�n) = lim inf

n→∞
m

Dn(�n)
M̃ε

n(�n).(61)

Now, let θ−
ε and θ+

ε be defined, respectively, by∫ ∞
θ−
ε

x dF(x) = r − ε

m − ε
and

∫ ∞
θ+
ε

x dF(x) = r − ε

m + ε
.(62)

Then, from Lemma 6.2, we get

M̃ε
n(�n)

Dn(�n)
≥ min

{
1 − F

(
θ−
ε

)
,1 − F

(
θ+
ε

)}
,(63)

for all sufficiently large n. Hence, using equations (61) and (63), as well as the
continuity of θ−

ε and θ+
ε as functions of ε, we deduce

γ ≥ m
(
1 − F(θ)

)
.(64)

Second, we must compare (�n)n with (Wn)n. This is done similarly and more
easily because N(·, ·) is monotone increasing in both arguments. This yields then
directly the other stated inequality γ̄ ≤ mF(τ) and the proof is complete. �

6.7. Unconditional envelopment theorem. In this section, we are concerned
with the proof of Theorem 4.13. In the case when r ≤ mμ, we define τ and θ as in
the statement of Theorems 4.4 and 4.7. When r > mμ, these are not defined, but,
to simplify notations, we then define F(τ) := 1 and 1 − F(θ) := 1.

First of all, we shall need the following interesting result, which is a far-reaching
strengthening of equation (53):

THEOREM 6.5. For any ε > 0 and any δ > 0, there exists some sufficiently
large Lε,δ > 0 such that, if mF(τ) > 1,

P
[
sup
l≥0

∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣< δ
∣∣∣Wn ≥ Lε,δ

]
≥ 1 − ε,

and similarly, if m(1 − F(θ)) > 1,

P
[
sup
l≥0

∣∣∣∣Sn+l+1

Sn+l

− m
(
1 − F(θ)

)∣∣∣∣< δ
∣∣∣Sn ≥ Lε,δ

]
≥ 1 − ε.

It should be noted that this result constitutes a new proof of part (a)(ii) of The-
orem 4.4, and it will be used to deduce part (a)(ii) of Theorem 4.7 in the next
section. In order to prove this result, we shall crucially make use of the follow-
ing Chernov-type estimates, which we prove first, based on Theorems 2 and 3
of Coffman, Flatto and Weber (1987):
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LEMMA 6.6. For any δ > 0, there exists constants C,c > 0 such that, for all
n, j ≥ 0,

P
[∣∣∣∣Wn+1

Wn

− mF(τ)

∣∣∣∣> δ
∣∣∣Wn = j

]
≤ Ce−cj ,(65)

and similarly,

P
[∣∣∣∣Sn+1

Sn

− m
(
1 − F(θ)

)∣∣∣∣> δ
∣∣∣Sn = j

]
≤ Ce−cj .(66)

PROOF. By definition,

P
[∣∣∣∣Wn+1

Wn

− mF(τ)

∣∣∣∣> δ
∣∣∣Wn = j

]
(67)

= P
[∣∣∣∣Nn(Dn(j),Rn(j))

j
− mF(τ)

∣∣∣∣> δ

]
.

Let η > 0. As Nn := Nn(·, ·) is increasing in both arguments, conditioning on
|Rn(j)/j − r| ≤ η (resp., > η) and on |Dn(j)/j − m| ≤ η (resp., > η) in the RHS,
we obtain, after several elementary transformations, that the latter rhs is bounded
above by

P
[∣∣∣∣Nn(j (m + η), j (r + η))

j
− mF(τ)

∣∣∣∣> δ

]

+ P
[∣∣∣∣Nn(j (m − η), j (r − η))

j
− mF(τ)

∣∣∣∣> δ

]
(68)

+ P
[∣∣∣∣Dn(j)

j
− m

∣∣∣∣> η

]
+ P
[∣∣∣∣Rn(j)

j
− r

∣∣∣∣> η

]
.

Choosing η small enough such that |(m + η)F (τ((r + η)/(m + η))) − mF(τ)| <

δ/2, the first term of (68) becomes smaller than

P
[∣∣∣∣Nn(j (m + η), j (r + η))

j
− (m + η)F

(
τ

(
r + η

m + η

))∣∣∣∣> δ

2

]
(69)

≤ 2 exp
(
− δ2j

16mF(τ) + 8δ

)
,

where the last inequality follows from Theorems 2 and 3 of Coffman, Flatto and
Weber (1987). The second term of (68) can be bounded similarly.

The two last terms also satisfy an exponential bound by Hoeffding’s inequality
[see Theorem 2 of Hoeffding (1963)], since the random variables Dk

n and Rk
n are

assumed to be bounded. This proves the result in the weakest-first case.
As far as the strongest-first case is concerned, now using the cap-unimodality

as well as a simple bound for the minimum and the maximum of Mn over the
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respective intervals (see Lemma 3.9), we can deduce a bound similar to (68) (with
some additional terms), and the result will follow in an analogous way. �

The following result constitutes a first step in the proof of Theorem 6.5:

PROPOSITION 6.7. For any ε > 0 and any δ > 0, there exists some sufficiently
large Lε,δ > 0 such that, if mF(τ) > 1,

P
[⋂
l≥0

{
Wn+l+1

Wn+l

> mF(τ) − δ

}∣∣∣Wn ≥ Lε,δ

]
≥ 1 − ε,

and similarly, if m(1 − F(θ)) > 1,

P
[⋂
l≥0

{
Sn+l+1

Sn+l

> m
(
1 − F(θ)

)− δ

}∣∣∣Sn ≥ Lε,δ

]
≥ 1 − ε.

PROOF. Choose 1 < m̃ < mF(τ), and take δ = mF(τ)− m̃ > 0. Then we can
write the following inequalities, for any L > 0 and any n ≥ 0:

P
[
Wn+l+1

Wn+l

> m̃, ∀l ≥ 0
∣∣∣Wn ≥ L

]
(70)

= 1 −
∞∑
l=0

P[Wn+j+1 > m̃Wn+j

(71)
for all 0 ≤ j < l, and Wn+l+1 ≤ m̃Wn+l|Wn ≥ L]

≥ 1 −
∞∑
l=0

P
[
Wn+j+1 > m̃Wn+j

(72)

for all 0 ≤ j < l, and
∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣≥ δ
∣∣∣Wn ≥ L

]
,

since m̃ = mF(τ) − δ. Now, given Wn ≥ L, the inequalities Wn+j+1 > m̃Wn+j

for all 0 ≤ j < l imply that Wn+l ≥ m̃lL. Using this and dropping the intersection
yields

P
[
Wn+l+1

Wn+l

> m̃, ∀l ≥ 0
∣∣∣Wn ≥ L

]
(73)

≥ 1 −
∞∑
l=0

P
[∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣≥ δ
∣∣∣Wn+l ≥ m̃lL

]
(74)

≥ 1 −
∞∑
l=0

∞∑
j=m̃lL

P
[∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣≥ δ
∣∣∣Wn+l = j

]
(75)

≥ 1 − C

∞∑
l=0

∞∑
j=m̃lL

e−cj ,
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where the last inequality follows from the Chernov-type estimates given in
Lemma 6.6. Now, since m̃ > 1, a straightforward calculation yields

∞∑
l=0

∞∑
j=m̃lL

e−cj =
∞∑
l=0

e−cm̃lL
∞∑

j=0

e−cj = 1

1 − e−c

∞∑
l=0

e−cm̃lL(76)

≤ 1

1 − e−c
e−cL

∞∑
l=0

e−c(m̃l−1) ≤ Ke−cL,(77)

where the constant K < ∞ only depends on c and on m̃. Taking L large enough
thus yields the result. The same argument holds in the strongest-first case. �

Now using Proposition 6.7, the proof of Theorem 6.5 becomes straightforward:

PROOF OF THEOREM 6.5. Let n be fixed and choose 0 < δ < mF(τ) − 1.
First consider the event

�ε,δ,L =
{
Wn+l+1

Wn+l

> mF(τ) − δ for all l ≥ 0, and Wn ≥ L

}
⊂ �,(78)

for any L > 0. Proposition 6.7 means that P[�ε,δ,L] ≥ (1−ε)P[Wn ≥ L] whenever
L ≥ Lε,δ . On �ε,δ,L, it is clear that Wn+l → ∞ a.s. as l → ∞, and Lemma 6.2
then implies that Wn+l+1/Wn+l → mF(τ) a.s. as l → ∞. Hence, there exists a
sufficiently large Kε,δ ≥ 0 such that

P
[
�ε,δ,L ∩

{
sup

l≥Kε,δ

∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣< δ

}]
≥ (1 − ε)P[�ε,δ,L].(79)

Choose such a Kε,δ . Then, since, for any fixed k, Lemma 6.2 gives Nk(Dk(j),

Rk(j))/j → mF(τ) a.s. as j → ∞, we deduce that, for some sufficiently large
L′

ε,δ > 0,

P
[

sup
0≤l<Kε,δ

∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣< δ
∣∣∣Wn+l ≥ L′

ε,δ, for all 0 ≤ l < Kε,δ

]
(80)

≥ 1 − ε.

Now note that, whenever L ≥ L′
ε,δ , we have on �ε,δ,L the inequality Wn+l ≥ L′

ε,δ

for all 0 ≤ l < Kε,δ , so that equation (80) yields, for any L ≥ L′
ε,δ ,

P
[
�ε,δ,L ∩

{
sup

0≤l<Kε,δ

∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣< δ

}]
(81)

≥ (1 − ε)P[�ε,δ,L].
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We can thus conclude, for L′′
ε,δ = max(Lε,δ,L

′
ε,δ), using, for instance, the Bonfer-

roni inequality,

P
[
sup
l≥0

∣∣∣∣Wn+l+1

Wn+l

− mF(τ)

∣∣∣∣< δ, and Wn ≥ L′′
ε,δ

]
(82)

≥ (2(1 − ε) − 1
)
P[�ε,δ,L′′

ε,δ
]

≥ (1 − 2ε)(1 − ε)P
[
Wn ≥ L′′

ε,δ

]
.(83)

Replacing ε by ε/3 yields the result. The same argument holds in the strongest-first
case. �

We can now turn to the proof of Theorem 4.13.
For that purpose, we first prove the following result, which is interesting in

itself:

PROPOSITION 6.8. Let (�n)n be any RDBP. Assume that m(1 − F(θ)) > 1.
Then, for any ε, δ > 0, there exists some sufficiently large Lε,δ > 0 such that, for
all n ≥ 0,

P
[⋂
l≥0

{
�n+l+1

�n+l

≥ Sn+l+1

Sn+l

− δ

}∣∣∣�n = Sn ≥ Lε,δ

]
≥ 1 − ε.

PROOF. Choose m̃ = m(1 − F(θ)) − δ/2 and take δ small enough so that
m̃ > 1. Then we can write the following inequalities, similarly as in the proof of
Proposition 6.7:

P
[
�n+l+1

�n+l

> m̃, ∀l ≥ 0
∣∣∣�n ≥ L

]
(84)

= 1 −
∞∑
l=0

P[�n+j+1 > m̃�n+j

(85)
for all 0 ≤ j < l, and �n+l+1 ≤ m̃�n+l|�n ≥ L]

≥ 1 −
∞∑
l=0

P
[
�n+l+1 ≤ m̃�n+l|�n+l ≥ m̃lL

]
(86)

≥ 1 −
∞∑
l=0

∞∑
j=m̃lL

P[�n+l+1 ≤ m̃�n+l|�n+l = j ].(87)

Now note that, given �n+l = Sn+l = j , we have

Sn+l+1 = Mn+l

(
Dn+l(j ),Rn+l(j )

)≤ Q�
n+l

(
Dn+l(j ),Rn+l(j )

)≤ �n+l+1.
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Using this and the Chernov-type estimates given in Lemma 6.6, we see that for
any ε > 0, we can find a sufficiently large Lε,δ > 0 such that

P
[
�n+l+1

�n+l

> m̃, ∀l ≥ 0
∣∣∣�n ≥ Lε,δ

]
(88)

≥ 1 −
∞∑
l=0

∞∑
j=m̃lL

P[Sn+l+1 ≤ m̃Sn+l|Sn+l = j ]

≥ 1 − C

∞∑
l=0

∞∑
j=m̃lLε,δ

e−cj ≥ 1 − ε,(89)

where we argued in the second inequality exactly as in the proof of Proposition 6.7.
Putting this together with Theorem 6.5 yields the result. �

We can now immediately deduce Theorem 4.13:

PROOF OF THEOREM 4.13. On the one hand, if m(1 − F(θ)) > 1, Proposi-
tion 6.8 yields

lim
L→∞ P

[
lim

n→∞�n(L) ≥ lim
n→∞Sn(L)

]
= 1.(90)

On the other hand, if m(1 − F(θ)) < 1, then we have proven that Sn(L) → 0
almost surely for any L > 0 [see Theorem 4.7(a)(i)], and thus equation (90) holds
trivially. Finally, using Proposition 4.3 for the upper bound for (�n)n yields, as
desired,

lim
L→∞ P

[
lim

n→∞Sn(L) ≤ lim
n→∞�n(L) ≤ lim

n→∞Wn(L)
]
= 1.(91)

It remains to prove that qW = 1 ⇒ q� = 1 ⇒ qS = 1. The first implication simply
follows from Proposition 4.3. Now, assuming q� = 1, we easily deduce, using the
regularity assumption (iii) of Section 2.7, that, for any L, we have �n(L) → 0 a.s.,
as n → ∞. Hence, equation (91) gives P[limn Sn(L) = 0] → 1, as L → ∞. It fol-
lows then that qS = 1, as we can show by contradiction, using again the regularity
assumption (iii). �

6.8. Extinction criterion for the s.f.-society (second part). In this section, we
finish the proof of Theorem 4.7, using the results of previous section (in particular,
Theorem 6.5). Therefore, we will need the boundedness assumption for all the
random variables Dk

n, Xk
n and Rk

n [see regularity assumption (v) of Section 2.7],
while only the boundedness of the Xk

n’s was needed for the first part of the proof
in Section 6.4.

PROOF OF THEOREM 4.7. The first part of Theorem 4.7(a) has already been
proven in Section 6.4.
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Now look at the second part, assuming r ≤ mμ and m(1 − F(θ)) > 1. Then,
Theorem 6.5 (or Proposition 6.7) gives, for any ε > 0 and for δ > 0 with m(1 −
F(θ)) > 1 + δ,

1 − qS ≥ P
[⋂
l≥0

{
Sn+l+1

Sn+l

> m
(
1 − F(θ)

)− δ

}]
≥ (1 − ε)P[Sn ≥ Lε,δ],(92)

so that, using the regularity assumption (iii) of Section 2.7, we can deduce qS < 1.
Finally, equation (10) of Theorem 4.7 is another direct consequence of Theo-

rem 6.5 (or again Proposition 6.7). �

6.8.1. Alternative criterion for the s.f.-society. For human societies (which
constitute here the main focus interest) the condition that all random variables
are bounded can be well defended. Viewing applications of our results for pop-
ulations other than human populations, it may be desirable to do without the
boundedness assumption. Recall that we needed this assumption only in the
proof that the s.f.-process may survive if m(1 − F(θ)) > 1. Assume r ≤ mμ and
α := m(1 − F(θ)) > 1. Recall also that the condition of bounded claims must be
maintained for the extinction criterion for the s.f.-process. For the other variables
we have, however, an alternative condition:

LEMMA 6.9. Suppose that the sequence (M(D(t),R(t))t is stochastically in-
creasing in t for all t sufficiently large. Further, let θ be as defined in (9). Then

m
(
1 − F(θ)

)
> 1 �⇒ qS < 1.

PROOF. If M(D(t),R(t))t is stochastically increasing in t for all t sufficiently
large, then there exists an integer t0, say, such that for all v ≥ 0 and for all t ≥ t0,

P
[
M
(
D(t),R(t)

)≥ v
]≤ P

[
M
(
D(t + 1),R(t + 1)

)≥ v
]
.

Hence, for t1, t, t2 ∈ N with t0 ≤ t1 ≤ t ≤ t2, we deduce, for all v ≥ 0,

max
t∈[t1,t2]

P
[
M
(
D(t),R(t)

)≥ v
]= P

[
M
(
D(t2),R(t2)

)≥ v
]
.

The proof of Theorem 4.4(a)(ii) for the w.f.-process can now be adapted imme-
diately to the s.f.-process by replacing mF(τ) by m(1 − F(θ)). Indeed, for j

sufficiently large the maximum probability is always on the right border of the
corresponding interval and thus under control. Inequality (40) now remains true
for the s.f.-process as well, and the rest of the proof can be rewritten accordingly.

�

REMARK 6.10. We do not know whether (M(D(t),R(t)))t is stochastically
increasing for sufficiently large t for all choices of distributions of Dk

n and Rk
n with
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finite second moments. A beginning argument is as follows. First note that D(t)

and R(t) are stochastically increasing in t and that, as we also know,

M(D(t),R(t))

t
→ m

(
1 − F(θ)

)=: α a.s. as t → ∞,(93)

and the convergence of the expectations E[M(D(t),R(t))]/t thus holds as well.
Thus we can find ε > 0 with α − ε > 1, such that E[M(D(t),R(t))] is increasing
for all t ≥ t0(ε). This implies that, for all t ≥ t0(ε),

E
[
M
(
D(t),R(t)

)]= ∞∑
v=0

P
[
M
(
D(t),R(t)

)≥ v
]

(94)

≤
∞∑

v=0

P
[
M
(
D(t + 1),R(t + 1)

)≥ v
]

(95)
= E
[
M
(
D(t + 1),R(t + 1)

)]
.

It would be natural to believe that this inequality holds not only for the sums, but
also for the corresponding terms of the sums, from some t onward, which would
mean that M is stochastically increasing.

Note that M does actually not need to be strictly stochastically increasing for
the proof of Lemma 6.9 to hold: some rapidly decreasing error (in v and t) can
indeed be admitted. More precisely, it suffices to show that there is some big t0
such that, for all t ≥ t0 and for all s,

P
[
M
(
D(t),R(t)

)≥ s
]≤ P

[
M
(
D(t + 1),R(t + 1)

)≥ s
]+ C(t, s),(96)

where the corrections C must be not too big, in the sense that
∑

j C(α
j−1
ε s, α

j
ε s) <

∞, where we choose αε = α − ε > 1, for some ε > 0 small enough.
However, even such a weakened form seems hard to prove, and we let this prob-

lem as an open question.

7. Significance of the results. The fact that the survival criteria for both ex-
treme societies can be given explicitly makes the Envelopment theorem signifi-
cant. We first note that these theorems give extinction/survival criteria in terms of
the parameters m (mean offspring number), r (mean resource creation) and the
distribution function of resource claims F (from which we also know the mean
resource claim μ). Interestingly, in each case the solution of a last relevant param-
eter (τ and θ , resp.) is obtained by solving a simple integral equation involving the
Lorenz curve known from Economics. Thus the critical boundaries are explicit.

Now recall the “safe-haven” property. We have seen that if the survival proba-
bility of the w.f.-society is strictly positive, then, however small it may be when
starting with few individuals, it converges quickly to 1 with increasing size. We
conclude that, provided qW < 1, any society has always the option of a very prob-
able survival by letting converge their rules, if necessary, toward the rules of the
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w.f.-society. If qW = 1, however, then, with a fixed offspring probability law (pk)k ,
society must draw the consequences, because, viewing the chance of survival, there
is no alternative. The individuals live beyond their means and must be instructed
by the society to either become more modest in average claims of resources or else
to increase the average reproduction of resources.

No other society in this model does as much for ensuring survival as the w.f.-
society. The price to pay under the same fixed distribution is the most modest
standard of living of individuals in this society.

The s.f.-society constitutes the other extreme. Under the given assumptions this
society does the most for the standard of living of the few. However, it jeopardizes
the prospects of survival more than any other society.

Both extreme societies form an envelope for any society in the sense that, in the
long run, no society can exceed these bounds. We may call it a quasi-envelope be-
cause the w.f.-society leads to a definite uniform upper bound process whereas the
s.f.-society leads, strictly speaking, only to a very probable lower bound process.
However, we know from the conditional envelopment theorem that in the long run
there cannot exist a strictly better lower bound process, so that it is not a misnomer
to speak of an envelope rather than of a quasi-envelope.

7.1. Tractability of the model. Clearly, RDBPs are still relatively simple mod-
els compared with what we expect we would need to model societies in a most
realistic way. However, there are strong reasons why they should earn our atten-
tion.

First, of course, it is not realistic to look for a perfect model, and, keeping this
in mind, RDBPs seem to be a good approach because they give considerable room
for modeling aspects.

Second, RDBPs yield, as we have seen, not only the envelopment theorem for
societies but also explicit survival criteria in form of quantifiable critical relation-
ships between society forms. This fact should not be taken for granted. As we have
seen in the general definition of RDBPs, realistic society forms will typically im-
pose complicated structures. Almost all interesting forms are too complicated to be
tackled by generating functions or martingale arguments, the most powerful tools
in branching process theory.

Third, RDBPs are remarkably robust. The main results flowing from them hold
in more general settings. So, in particular, consider the assumption that reproduc-
tion within a RDBP is asexual. It is interesting to know what happens if we replace
this assumption by the natural assumption that reproduction depends on two sexes
[see Daley, Hull and Taylor (1986); see also Molina (2010) for a review of known
results in this domain].

The answer is in fact in favor of RDBPs. Since survival is only possible if the
RDBP can grow without limits, the asexual reproduction mean m can here be
substituted by the so-called limiting average reproduction mean. The average re-
production mean for a total of k “mating units” m(k) is defined in equation (1)



366 F. T. BRUSS AND M. DUERINCKX

of Bruss (1984). In the notation of the present paper, it translates into

m(k) = 1

k
E
[
D̃n(�̃n)|�̃n = k

]
,(97)

where, unlike (�n)n, the modified (�̃n)n counts now the number of “mating units”
(and not individuals) present in generation n, and D̃n(�̃n) denotes the number
of mating units generated by these for the next generation. If � := limk→∞ m(k)

exists (which is the case for the majority of natural mating functions), then the
specific form of the mating function becomes irrelevant for extinction criteria as
soon as the population size has become sufficiently large. Hence the generalization
to sexual reproduction may affect the initial chances of reaching larger numbers of
individuals within a RDBP but does not affect the main results.

Similarly, a little reflection shows that passing from discrete time generations
to more realistic “moving” generations makes it technically harder to define the
precise meaning of the strings of resource claims. However, under some reason-
able conditions, there are ways around the formal problems via discretization, and
moving generations do not impair the essence of the found critical relationships
between the society form, the parameters m̃, r , μ and the function F .

8. Conclusions. Returning to the RDBPs we have defined, we shall comment
for the remainder of this paper on real-world conclusions by confining our interest
to the important ones.

On the one hand, we have some intuition that all societies we may think of
should have, for fixed probability laws of natality, of resource production, and
of resource consumption, somewhere their limits. On the other hand, as we have
seen, this intuition is partially wrong and requires a thorough revision. Rigorous
arguments then helped to overcome the new difficulties. These arguments lead
to more subtle conclusions. The more remarkable is, in our opinion, that, after
refinement, a major part of the original intuition is now proven true.

It is tempting to apply these results by looking at society forms that we see
around us, or at those that mankind has tried in the past. Much insight may be
gained from learning why certain society forms have failed, and why others seem
to do, or to have done, relatively well. It would be nice to see that scientists who
have access to data or estimates needed for the analysis presented here will find
such questions a real challenge.

In the following, we shortly discuss the main features of a few selected societies,
and how they can be seen as RDBPs.

8.1. A brief comparison of major society forms.

8.1.1. Mercantilism. Mercantilism was the dominant policy for western soci-
eties for most of the 16th century up to the end of the 18th century, and in some
countries even to the beginning of the 19th century. There are several forms of
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mercantilism, but with respect to RDBPs, there is a common denominator to all
different forms of mercantilism, that is, as we shall argue, a state-controlled “head-
and-tail policy” of distributing resources.

The philosophy of mercantilism is that the wealth of a nation, compared with
the wealth of other nations, is a zero-sum game. This implies that leaders concen-
trate their interest on the competition between different states for a common fixed
wealth of the world. At the same time, the idea behind was also that a rich coun-
try can afford a strong army to defend wealth. Strict mercantilists, exemplified by
Colbert in France, concluded that all what counts is getting the wealth into the
own country by exports and keeping production costs of goods as low as possible.
A positive balance of trades was the main concern; imports were highly taxed.

In the interpretation of RDBPs, the members of the government or kingdom as
well as rich merchants are typically those with the larger claims. They form the
“head,” but they are relatively small in number. The “tail” consists of the claims of
those individuals in the population who have to produce (farmers, workers, etc.).
In agreement with the philosophy of mercantilism, money which was spent was
seen as lost. Hence production costs were kept as low as possible. The right of
emigration was denied in some countries during certain periods, and in such cases
unsatisfied claims must be interpreted as removal by death in RDBPs. The tail is
made of the modest claims, but now to be satisfied from a reduced resource space.

In words of RDBPs mercantilism may be seen as a hybrid society, one part living
under a s.f.-policy the other part (the last majority of people) under an enforced
w.f.-policy. It can be modeled as the “sum” of two RDBPs, by assuming (e.g.) that
a certain percentage p of the common resource space is reserved for the rich and
1 − p for the poor.

8.1.2. Enlightened mercantilism. As we understand today, mercantilism suf-
fered from a lack of experience, or, as critics would say, a lack of understanding.
The rules of import and export were very strict, and the idea that free trade creates
value and that wealth is by far not a zero-sum game had to await the arrival of great
economists.

Although economists like Dudley North, John Locke and Adam Smith in partic-
ular, undermined much of mercantilism, and saw themselves as anti-mercantilists,
one may call them today enlightened mercantilists. The new ideas of the great
value of free trade and of a motivated work force seemed almost revolutionary,
and it is true that they brought a great change and opened the way to more recent
economic societies. However, at the beginning, a part of the philosophy of mer-
cantilism was still in force. So, for instance, the priority of inexpensive production
before fair compensation for work was still rather present, and not all defendants
of the new ideas accepted already the conclusion that the wealth of nations is no
zero-sum game.

The graph of claims in a society under enlightened mercantilism, modeled by an
RDBP, would therefore still resemble that of mercantilism, and we would suggest
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a similar approach to model it as a hybrid w.f.-society and s.f.-society. There are
two clear differences: first, nations became richer once the barriers to free trade
imposed by the classical mercantilism were relaxed. Hence, the available resource
space s should be seen as getting significantly larger. Second, the barrier between
small claims and large claims became much more fluent because the poor ones
could escape more easily the society into which they were born.

8.1.3. Modern western societies. As much as we might see large differences
between western nations and their society forms, we are reminded that everything
is just relative. Seen as RDBPs with their graph of resource claims, these soci-
eties are not really that different. On the one hand many have quite an important
common denominator, namely a rather solid social security system. On the other
hand, they typically display society forms which leave quite some room for indi-
vidual freedom and performance. They are ranging from (controlled) free societies
up to a laissez-faire societies. The first feature (social security systems) implies
that the smallest claims are, compared with the larger ones, much bigger than in
mercantilist societies, and the second one that the larger claims go in all of them
through a wide range. It is this mixture of a laissez-faire society behavior as well
as w.f.-features and s.f.-features, which would make it hard to model western so-
cieties by RDBPs in such a way that finer differences between modern western
societies show up clearly.

8.1.4. Capitalism. Concerning capitalism, RDBPs can tell much more. As in-
dicated before, the s.f.-society shares features of an extreme form of capitalism,
and it is easy to understand why. The larger claims stem from the class of people
who have the power to defend them within society and are thus strongly correlated
with financial power. The graph of claims would look similar to the one for the
s.f.-society.

In one point, things are of course different. It suffices to ask who would effec-
tively still create the resources which are made available by manual work. Even in
extreme forms of capitalism, there must still be some space for the lower claims.
Still, the s.f.-process is probably the most convincing RDBP-approach to modeling
capitalism.

8.1.5. Communism. Correspondingly, the w.f.-society shares undeniably fea-
tures with an extreme form of communism. If means of production are completely
in the hands of the people’s society, the larger claims are no longer backed by per-
sonal power due to individual ownership. Hence, the smaller claims, backed by the
masses, are automatically given priority.

Again, exception must be made for the top political class, but in comparison
to the whole population the number of individuals in this class is very small.
Hence the overall picture of the resource claim distribution over the whole space
of currently available resources would have much similarity with the one of the
w.f.-society, and the corresponding RDBP is well-understood.
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8.1.6. Extreme communism versus extreme capitalism. If we accept the com-
parison of the w.f.-society and the s.f.-society with extreme versions of commu-
nism and capitalism, respectively, then these two societies, seen as RDBPs form,
as we have seen, an envelope for all society forms.

It is a strange envelope indeed: namely, its boundaries attract and repulse indi-
viduals at the same time. Neither of the extreme societies can be expected to be
seen by individuals as attractive, at least not if resources are limited. People want to
get away from extreme communism by Hypothesis 2. They would like to increase
their standard of living as far as possible and thus leave extreme communism as
quickly as possible.

In the extreme form of capitalism, things are equally unstable. Neglecting the
case of arbitrarily many resources for everybody, the greed of the strongest ones
kills the population from above because, typically, a large proportion of the people
will leave. This society will soon have to revise thoroughly its philosophy. One
reason is, as shown in this article, the necessity to have more people to increase
the survival probability. Another reason is that there must be enough people to
make the present resources available.

It is difficult to imagine that extreme capitalism could survive in reality. In our
RDBP model, it is possible under the condition m(1−F(θ)) > 1. This imposes not
only a high productivity, but also that individual resource creations stay i.i.d. ran-
dom variables. However, work forces from different society classes are in reality
not easily exchangeable.

8.1.7. Marxism. Returning to Hypothesis 2 and our conclusion that extreme
communism will never last long, RDBPs give, in a certain way, reason to Marx for
the facts, although not for the conclusion. Marx saw that it may be hard to convince
people of the advantages of his new ideology. He believed that the “Mehrwert”
(added value) of labor would then mainly benefit the working class who creates
value, and that, as a result, income of the lowest class would go up. In RDBPs, this
does not happen unless the mean production per individual would go up.

One has to give to Marx that he was hoping that this would be the case, that is,
that not only the income of the lower class but also the overall productivity would
go up. Many opponents of communism are convinced of the very contrary, namely
that the loss of personal advantages in the ideal communistic society will bring
productivity down.

We have to stay neutral on the latter discussion because our analysis touches
only the critical relationship between demand and productivity, and not what is
behind. What RDBPs show [compare with example (i) in Section 5] is that the
added value would have to be considerable to convince people that their search for
a higher standard of living would be of little importance.

When Marx formulated his famous promise “From each according to his ability,
to each according to his needs,” then there is nothing remarkable about this in a
RDBP. If a low productivity of an individual comes together with a large claim,
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then it must be expected to happen in a model with i.i.d. random variables. Any
society can propose to serve claims independently of their size, provided that the
resource space allows for it. But this is the point. To know whether the resource
space will allow for the advertised generosity, Marx would face the crucial ques-
tion of productivity.

8.1.8. Leninism. Coming back to the question of added value, Lenin was,
compared to Marx, much more radical in his views. He went so far as advocating
the new ideas to be imposed by a vanguard party approach, that is, a revolution.
And this is what he got. One serious question should be asked here. Why did Lenin
push toward a revolution before knowing more about the alleged added value by
moving production tools in the hands and property of the working class? This was
completely new territory; there was no prior experience, there were no data. What
does not work in theory cannot work in practice. For RDBPs at least it cannot
work in theory if there is no added value in creating resources. And it is difficult
to imagine that Lenin could possibly have known more about the added value in
Marx’s “model” than Marx knew himself.

8.2. Comparing ideologies. As we have seen, when maintaining the mean re-
source creation constant, extreme communism cannot be a stable society. Never-
theless, it has one undeniable and distinguished advantage worth repeating: with
fixed resource creation (productivity), it is superior to any other society with re-
spect to survival probability. The price to pay is a low average standard of living.
Extreme capitalism leads to the highest possible average standard of living. How-
ever this does not mean much in a society where so many of the next generation
may have to emigrate. Note that in our RDBP-model this fate may hit equally
likely the own descendants so that the conclusions may pass the test of “political
correctness” so frequently evoked today.

Individuals typically wish to increase their standard of living and Hypothesis 2
will push extreme communism more and more into consumption, that is, into a
“stronger” first society of some kind. If this move stays without control, then it
will approach capitalism, the declared enemy of communism.

No wonder capitalism and communism are declared enemies. There is more to
it than politics, more than just a great difference of ideology. Seen as RDBPs, the
difference between them is fundamental because they are as opposed to each other
with respect to the natural Hypotheses 1 and 2 as they possibly can be. The extreme
communism is doing everything for Hypothesis 1 and nothing for Hypothesis 2,
and the extreme capitalism does exactly the opposite. In the setting of RDBPs,
both opponents are born losers, as we have seen, and there is little reason for born
losers to be declared enemies. Societies may test these limits, as they have done,
but any attractive society is bound to be somewhere else within the envelope of
societies.



THE ENVELOPE OF SOCIETIES 371

8.3. A modest outlook. If mankind has seen several other variations of so-
cieties which seem more attractive than the extreme societies we had to discuss
before because they stood out, then this is due to an increase of understanding.
Understanding the mechanisms and the impact of financial instruments of a na-
tional economy, including all the instruments of monetary policy and labor policy,
these are essential factors as we believe today, and there is little reason to doubt
this. However, there is also little reason to ignore the message of RDBPs. If the
model is accepted, then the interesting move of any society will always be toward
something lying between the w.f.-society and the s.f.-society. Not accepting this
conclusion means not agreeing with Hypotheses 1 and 2. As far as we are aware,
nothing definite as this has ever been stated and proven before.

Could data help mankind converge in its search for an optimal policy toward
an “optimum?” Hopefully yes, at least toward something like an optimum region.
Nevertheless, Hypotheses 1 and 2 will always be in force, and hence fluctuations
of policies, even around an alleged optimum must be expected to be part of the
game.

To know to what extent, this is much harder. As we understand, dynamical poli-
cies should now be defined and studied, whereas this paper studies the develop-
ment of a society by control decisions based on static RDBPs. The crucial question
is then how to model dynamical policies in such a way that the tractability of the
global model (already an important issue in the present paper) can be maintained.
We hope that this article may help to pave the way for further research.

Acknowledgments. The authors are grateful to the referee, to the Associate
Editor and to the Editor for many critical remarks and stimulating comments.

REFERENCES

ASMUSSEN, S. and KURTZ, T. G. (1980). Necessary and sufficient conditions for complete conver-
gence in the law of large numbers. Ann. Probab. 8 176–182. MR0556425

BINGHAM, N. H. and DONEY, R. A. (1974). Asymptotic properties of supercritical branching pro-
cesses. I. The Galton–Watson process. Adv. in Appl. Probab. 6 711–731. MR0362525

BRUSS, F. T. (1978). Branching processes with random absorbing processes. J. Appl. Probab. 15
54–64. MR0464416

BRUSS, F. T. (1980). A counterpart of the Borel–Cantelli lemma. J. Appl. Probab. 17 1094–1101.
MR0587211

BRUSS, F. T. (1984). A note on extinction criteria for bisexual Galton–Watson processes. J. Appl.
Probab. 21 915–919. MR0766827

BRUSS, F. T. and ROBERTSON, J. B. (1991). “Wald’s lemma” for sums of order statistics of i.i.d.
random variables. Adv. in Appl. Probab. 23 612–623. MR1122878

COFFMAN, E. G. JR., FLATTO, L. and WEBER, R. R. (1987). Optimal selection of stochastic inter-
vals under a sum constraint. Adv. in Appl. Probab. 19 454–473. MR0889945

COHN, H. (1996). On the asymptotic patterns of supercritical branching processes in varying envi-
ronments. Ann. Appl. Probab. 6 896–902. MR1410120

COHN, H. and KLEBANER, F. (1986). Geometric rate of growth in Markov chains with applications
to population-size-dependent models with dependent offspring. Stoch. Anal. Appl. 4 283–307.
MR0857082

http://www.ams.org/mathscinet-getitem?mr=0556425
http://www.ams.org/mathscinet-getitem?mr=0362525
http://www.ams.org/mathscinet-getitem?mr=0464416
http://www.ams.org/mathscinet-getitem?mr=0587211
http://www.ams.org/mathscinet-getitem?mr=0766827
http://www.ams.org/mathscinet-getitem?mr=1122878
http://www.ams.org/mathscinet-getitem?mr=0889945
http://www.ams.org/mathscinet-getitem?mr=1410120
http://www.ams.org/mathscinet-getitem?mr=0857082


372 F. T. BRUSS AND M. DUERINCKX

CORLESS, R. M., GONNET, G. H., HARE, D. E. G., JEFFREY, D. J. and KNUTH, D. E. (1996).
On the Lambert W function. Adv. Comput. Math. 5 329–359. MR1414285

DALEY, D. J., HULL, D. M. and TAYLOR, J. M. (1986). Bisexual Galton–Watson branching pro-
cesses with superadditive mating functions. J. Appl. Probab. 23 585–600. MR0855367

GONZÁLEZ, M., MOLINA, M. and DEL PUERTO, I. (2005). On L2-convergence of controlled
branching processes with random control function. Bernoulli 11 37–46. MR2121454

GONZÁLEZ, M., MOLINA, M. and DEL PUERTO, I. (2002). On the class of controlled branching
processes with random control functions. J. Appl. Probab. 39 804–815. MR1938172

HACCOU, P., JAGERS, P. and VATUTIN, V. A. (2007). Branching Processes: Variation, Growth, and
Extinction of Populations. Cambridge Univ. Press, Cambridge. MR2429372

HAUTPHENNE, S. (2012). Extinction probabilities of supercritical decomposable branching pro-
cesses. J. Appl. Probab. 49 639–651. MR3012089

HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58 13–30. MR0144363

HSU, P. L. and ROBBINS, H. (1947). Complete convergence and the law of large numbers. Proc.
Natl. Acad. Sci. USA 33 25–31. MR0019852

JAGERS, P. (1975). Branching Processes with Biological Applications. Wiley, New York.
MR0488341

KLEBANER, F. C. (1985). A limit theorem for population-size-dependent branching processes.
J. Appl. Probab. 22 48–57. MR0776887

MOLINA, M. (2010). Two-sex branching process literature. In Workshop on Branching Processes
and Their Applications. Lect. Notes Stat. Proc. 197 279–293. Springer, Berlin. MR2730954

PEARSON, K. (1968). Tables of the Incomplete Beta-Function, 2nd ed. Cambridge Univ. Press, Cam-
bridge. MR0226815

SCHUH, H.-J. (1976). A condition for the extinction of a branching process with an absorbing lower
barrier. J. Math. Biol. 3 271–287. MR0423564

SEVAST’JANOV, B. A. and ZUBKOV, A. M. (1974). Controlled branching processes. Teor. Verojat-
nost. i Primenen. 19 15–25. MR0339350

XU, K. and MANNOR, S. (2012). Rate-optimal control for resource-constrained branching pro-
cesses. Available at arxiv:1203.1072v1.

YAKOVLEV, A. Y. and YANEV, N. M. (2009). Relative frequencies in multitype branching pro-
cesses. Ann. Appl. Probab. 19 1–14. MR2498669

YANEV, N. M. (1976). Conditions for degeneracy of ϕ-branching processes with random ϕ. Theory
Probab. Appl. 20 421–428.

DÉPARTEMENT DE MATHÉMATIQUE

FACULTÉ DES SCIENCES

UNIVERSITÉ LIBRE DE BRUXELLES

CP 210, B-1050 BRUSSELS

BELGIUM

E-MAIL: mduerinc@ulb.ac.be

http://www.ams.org/mathscinet-getitem?mr=1414285
http://www.ams.org/mathscinet-getitem?mr=0855367
http://www.ams.org/mathscinet-getitem?mr=2121454
http://www.ams.org/mathscinet-getitem?mr=1938172
http://www.ams.org/mathscinet-getitem?mr=2429372
http://www.ams.org/mathscinet-getitem?mr=3012089
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=0019852
http://www.ams.org/mathscinet-getitem?mr=0488341
http://www.ams.org/mathscinet-getitem?mr=0776887
http://www.ams.org/mathscinet-getitem?mr=2730954
http://www.ams.org/mathscinet-getitem?mr=0226815
http://www.ams.org/mathscinet-getitem?mr=0423564
http://www.ams.org/mathscinet-getitem?mr=0339350
http://arxiv.org/abs/arxiv:1203.1072v1
http://www.ams.org/mathscinet-getitem?mr=2498669
mailto:mduerinc@ulb.ac.be

	Introduction
	Objectives of societies
	History of results
	Related work

	The model
	Reproduction
	Resources and resource space
	Objective of survival
	Resource claims within a society
	Interaction of individuals and society
	Examples

	Resource dependent branching processes
	Remarks

	Regularity assumptions
	Justiﬁcation of assumptions

	Multi-parameter policies

	Particular policies
	First-come-ﬁrst-served policy
	Interpretation and properties

	Weakest-ﬁrst policy
	Interpretation and properties
	Strongest-ﬁrst policy
	Interpretation and properties


	Main results
	Preliminaries
	Uniform upper-bound process
	Nonexistence of a uniform lower-bound process

	Extinction criterion for the w.f.-process
	Extinction criterion for the s.f.-process
	Extinction criterion for the f.c.f.s.-process
	Envelopment theorems
	Conditional envelopment theorem
	Unconditional envelopment theorem


	Examples
	Proofs
	Preliminary results
	Uniform bounds
	Counterexample

	Extinction criterion for the w.f.-society
	Extinction criterion for the s.f.-society (ﬁrst part)
	Corollaries 4.6 and 4.9
	Conditional envelopment theorem
	Unconditional envelopment theorem
	Extinction criterion for the s.f.-society (second part)
	Alternative criterion for the s.f.-society


	Signiﬁcance of the results
	Tractability of the model

	Conclusions
	A brief comparison of major society forms
	Mercantilism
	Enlightened mercantilism
	Modern western societies
	Capitalism
	Communism
	Extreme communism versus extreme capitalism
	Marxism
	Leninism

	Comparing ideologies
	A modest outlook

	Acknowledgments
	References
	Author's Addresses

