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BOOTSTRAP PERCOLATION ON THE HAMMING TORUS
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The Hamming torus of dimension d is the graph with vertices {1, . . . , n}d
and an edge between any two vertices that differ in a single coordinate. Boot-
strap percolation with threshold θ starts with a random set of open vertices,
to which every vertex belongs independently with probability p, and at each
time step the open set grows by adjoining every vertex with at least θ open
neighbors. We assume that n is large and that p scales as n−α for some α > 1,
and study the probability that an i-dimensional subgraph ever becomes open.
For large θ , we prove that the critical exponent α is about 1 + d/θ for i = 1,
and about 1 + 2/θ + �(θ−3/2) for i ≥ 2. Our small θ results are mostly lim-
ited to d = 3, where we identify the critical α in many cases and, when θ = 3,
compute exactly the critical probability that the entire graph is eventually
open.

1. Introduction. Bootstrap percolation is a simple growth model, introduced
to understand nucleation and metastability in physical processes such as crack for-
mations, clustering and alignment of magnetic spins. It was introduced in 1979 by
Chalupa, Leath and Reich [11]. For more applications and background, see surveys
by Adler and Lev [1] and Holroyd [15].

Given a graph G = (V ,E), bootstrap percolation with threshold θ is the fol-
lowing discrete-time growth process: given an initial configuration ω ∈ {0,1}V , an
increasing sequence of configurations ω = ω0,ω1, . . . is defined by

ωj+1(v) =
{

1, if ωj(v) = 1 or
∑
w∼v

ωj (w) ≥ θ ,

0, else,
and ω∞ is the pointwise limit of ωj as j → ∞. The initial configuration ω is
random; {ω(v) :v ∈ V } is a collection of i.i.d. Bernoulli random variables with
parameter p. A natural quantity to study is Pp(ω∞ ≡ 1). Indeed, first results in
this area were by van Enter [21] and Schonmann [18], who proved that for the
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lattice Z
d this probability is either 1 or 0 according to whether θ ≤ d or θ > d .

Following the seminal work of Aizenman and Lebowitz [2], it became clear that
this process is even more interesting on large finite graphs. For a family of graphs
depending on a single parameter n, with the number of vertices going to infinity
as n increases, we assume that p = p(n), and study the dependence on n of the
critical probability pc defined by

Ppc(ω∞ ≡ 1) = 1/2.

We mention only a few prominent results on how pc scales with n. Let [n] =
{1, . . . , n}. For a large lattice cube [n]d ⊆ Z

d (where each point is connected to
the nearest 2d points), Aizenman and Lebowitz [2] proved that pc behaves as
( 1

logn
)d−1 when θ = 2, and later Cerf and Cirillo [9] and Cerf and Manzo [10]

established the scaling (logθ−1 n)−d+θ−1 for 3 ≤ θ ≤ d; here, logθ−1 denotes the
(θ −1)st iteration of the logarithm. For the hypercube {0,1}n, Balogh and Bollobás
[3] proved that the scaling for pc is n−24−√

n when θ = 2; by contrast, for the very
large threshold θ = �n/2�, the majority bootstrap percolation studied by Balogh,
Bollobás and Morris [5], pc is close to 1/2.

Such scaling results do not tell the whole story. They suggest the existence
of an order parameter, a function of p and n whose size determines whether
Pp(ω∞ ≡ 1) is small or close to 1, for example, on a lattice square [n]2, such
a function is p logn. This leads to two natural questions: Does the probability ex-
hibit a sharp jump from 0 to 1 as the order parameter increases? Does the location
of the (purported) sharp jump converge as n increases? (There are good reasons to
expect the answer to the first question to be positive in surprising generality [12].)

In a major breakthrough, Holroyd [14] established a positive answer to both
questions in the lattice square case, and proved that pc ∼ π2

18 logn
. This celebrated

theorem contradicted conjectures based on simulations, which is due to the fact
that pc logn converges to its limit very slowly, as about 1/

√
logn [13]. For lattice

cubes [n]d , d ≥ 3 and 2 ≤ θ ≤ d , the sharp transition was established by Balogh,
Bollobás, Duminil-Copin and Morris [4, 6].

Besides varying the dimension of the lattice or the threshold, one can also vary
the neighborhood of a point. For example, Holroyd, Liggett and Romik [16] con-
sider the lattice square [n]2, with the “cross” neighborhood of a point that con-
sists of k − 1 points in each of the 4 axis directions, and θ = k. In this case,
pc ∼ π2

3k(k+1) logn
.

In this paper, we consider bootstrap percolation on the Hamming torus (or Ham-
ming graph), the d-fold product graph Kn × · · · × Kn, where Kn is the complete
graph with n vertices. This graph has vertex set V = [n]d , and two vertices v ∈ V

and w ∈ V are adjacent iff v − w has exactly one nonzero coordinate. In d = 2,
this graph could be interpreted as taking the Holroyd–Liggett–Romik neighbor-
hood [16] with k = ∞. For any d , the neighborhood of a point v is the union of
all d lines through v parallel to the axes. We emphasize, however, that the thresh-
old θ remains fixed as n increases (although some of our results assume that θ is
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large). Other models of percolation, including bond percolation [8, 22] and site
percolation [19], have been considered on the Hamming torus, and were shown to
exhibit interesting behavior due to the large neighborhood sizes relative to nearest-
neighbor lattices and hypercubes. For the same reason, we expect qualitatively dif-
ferent transition phenomena in bootstrap percolation on the Hamming torus from
those described above. First, the critical probability is much smaller. In fact, our re-
sults suggest that pc is of the order n−α , for some critical exponent α > 1. We are
able to determine α exactly in a few cases, and give estimates otherwise. More-
over, we expect that varying the order parameter nαp does not lead to a sharp
jump of Pp(ω∞ ≡ 1) from 0 to 1; instead, this probability gradually approaches
0 (resp., 1) as the order parameter approaches 0 (resp., ∞). When d = 2, this is
easy to demonstrate for arbitrary θ , but when d ≥ 3 the combinatorics are quite
difficult even when α is known exactly. Nevertheless, we succeeded in analyzing
the case d = θ = 3, which has α = 2: we give an explicit formula for the limit of
Pp(ω∞ ≡ 1) when pn2 = a ∈ (0,∞). See [17], Theorem 3.2, for an analogous
result for bootstrap percolation on Erdős–Rènyi random graphs.

Moreover, in dimensions d ≥ 3, we find two distinct critical exponents. When
p is much smaller than n−1−d/θ , the model does not accomplish much; with high
probability it does not even fill a single line. When p is much larger than n−1−d/θ ,
but smaller than n−1−2/θ−c′/θ3/2

, for large enough θ , with high probability some
lines become open, but no two-dimensional subgraphs do, and thus Pp(ω∞ ≡
1) → 0. When p > n−1−2/θ−c′′/θ3/2

, and θ is large enough, Pp(ω∞ ≡ 1) → 1.
Here, 0 < c′′ < c′ are constants depending on d .

It remains an open question for θ > 2 whether the critical exponents for the
appearance of open subspaces with dimension i are distinct for each 2 ≤ i ≤ d .
However, in subsequent work, Slivken has proven that for θ = 2, there are distinct
critical exponents for the appearance of open subspaces with dimension 2i for
1 ≤ i <

√
d [20].

2. Statement of results. Let F be a family of subsets of [n]d . Then

Pp(∃F ∈ F :ω∞|F ≡ 1)

is a nondecreasing function in p. (Observe that here the vertical bar does not denote
a conditional probability but a restriction, i.e., ω∞|F is ω∞ restricted to the set
F ⊆ [n]d .) For Fi , the collection of i-dimensional subgraphs of G, there exists a
threshold function pc(i, d) such that

Ppc(i,d)(∃F ∈Fi :ω∞|F ≡ 1) = 0.5.

If ωj(v) = 1, we say v is open at step j , and a set S ⊆ V is open if each v ∈ S is
open, that is, ωj |S ≡ 1.

For i = 0, we have an additional critical probability p∗
c (0, d). We would like to

define it to be the threshold function for the event that ω∞ �≡ ω0; unfortunately,
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this is not an increasing event. (Recall that an event E ⊆ {0,1}V is increasing if
ω ∈ E and ω ≤ ω′ together imply ω′ ∈ E.) Instead, we define the event

Above Threshold =
{
∃v :

∑
w∼v

ω0(w) ≥ θ

}

and p∗
c (0, d) to be the p for which Pp(Above Threshold) = 0.5.

We write f (n) ∼ g(n) if f (n)
g(n)

→ 1 as n → ∞. We conjecture that for every
θ, i, d ∈ N with i ≤ d , there exists ac = ac(θ, i, d) and αc = αc(θ, i, d) such that

pc(i, d) ∼ acn
−αc .

Moreover, there exists a nondecreasing function G = G(θ, i, d) :R+ → [0,1] such
that G(x) → 0 as x → 0, G(x) → 1 as x → ∞, and if p = an−αc then

Pp(∃F ∈ Fi :ω∞|F ≡ 1) ∼ G(a).

We are able to prove that this is the case for d = 2.

THEOREM 2.1. Let d = 2, k = �θ/2� > 1 and p = an−1−1/k . Then

P(ω∞ ≡ 1) →
{

1 − e−2ak/k!, if θ is odd,(
1 − e−ak/k!)2

, if θ is even.

Thus,

pc(2,2) = pc(1,2) = p∗
c (0,2) = n−1−2/θ+o(θ−3/2).

Furthermore,

P
({ω∞ �≡ ω0} \ {ω∞ ≡ 1}) = o(1).

As d increases the problem becomes more intricate. For d = 3, we are able to
identify the limit under critical scaling when θ = 3.

THEOREM 2.2. Let d = 3, θ = 3 and p = an−2 with a > 0. Then as n → ∞
Pp(ω∞ ≡ 1) → 1 − e−a3−(3/2)a2(1−e−2a)

(2.1)

×
[

3

2
a2((

e−a + ae−3a)2 − e−2a)
e−a2e−2a + ea3e−3a

]
.

Other three-dimensional results include determining the critical exponents (αc)

for d = 3 and low thresholds, but not the exact constants ac; see Section 5 for
details.

Observe the contrast between Theorem 2.1 and Theorem 2.2 and classical re-
sults on percolation on lattice cubes [n]d [6, 14]: not only is the critical scaling
p = an−α much smaller in the present case, but also limn Pp(ω∞ ≡ 1) is not a
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step function of a. Instead, this limiting probability varies continuously from 0 to
1 as a increases from 0 to ∞.

Many of our results state that

pc(i, d) = n−1−c1(i,d)/θ−�(θ−3/2),

where c1 = c1(i, d) is a constant. This shorthand notation means that, for a large
n, we can get a lower bound and upper bound for pc(i, d) of the stated form, with
constants in the correction term �(θ−3/2) depending on i and d .

For general d ≥ 3, we calculate p∗
c (0, d) and pc(1, d) for all d ≥ 2 quite pre-

cisely.

THEOREM 2.3. Let p = f (n)n−1−d/θ and d, θ ≥ 3. If f (n) → 0 then

P(Above Threshold) → 0

and if f (n) → ∞ then

P(∃ a line � such that ω∞|� ≡ 1) → 1.

Furthermore, we get good bounds on pc(2, d), the threshold for existence of
two-dimensional subspaces in the final configuration.

THEOREM 2.4. Fix d and fix θ sufficiently large depending on d . For n suffi-
ciently large,

n−1−2/θ−(4d2+3)/θ3/2 ≤ pc(2, d) ≤ n−1−2/θ−√
8(d−2.1)/θ3/2

.

[We have not attempted to optimize the constants
√

8(d − 2.1) and 4d2 + 3 in
the above theorem.] The key arguments in the proof of Theorem 2.4 are Lemmas
8.1 and 5.1.

The higher the dimensions i and d , the more difficult it becomes to calculate
pc(i, d). However, Theorems 2.3 and 2.4 are sufficient for us to get bounds on
pc(i, d) for all i, d ≥ 2.

THEOREM 2.5. For all i ≥ 2 and d , and sufficiently large n,

pc(i, d) = n−1−2/θ−�(θ−3/2).

PROOF. It is easy to see that pc(i, d) is nondecreasing in i and decreasing in d .
Also pc(d, d) is decreasing in d . To see this last inequality note that when n ≥ 3θ

and d = j + 1

Ppc(j,j)(∃ at least θ i such that ω∞|(i,∗,∗,...) ≡ 1) > 1/2.

The event on the left-hand side implies that ω∞ ≡ 1, and thus

pc(j + 1, j + 1) ≤ pc(j, j)
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and inductively

pc(d, d) ≤ pc(3,3).

So

pc(2, d) ≤ pc(i, d) ≤ pc(d, d) ≤ pc(3,3).

By Theorem 2.4,

pc(2,3) ≤ n−1−2/θ−(
√

7.2+o(1))/θ3/2
.

By coupling it is easy to see that ω chosen when p = 10θpc(2,3) stochastically
dominates the union of 10θ independent ω′ chosen with p = pc(2,3). Then by the
definition of pc(2,3)

P10θpc(2,3)(∃ at least θ i such that ω∞|(i,∗,∗) ≡ 1) > 1/2.

The event on the left-hand side implies ω|∞ ≡ 1, and thus

pc(3,3) ≤ 10θpc(2,3).(2.2)

And putting this all together for all d ≥ 3 and 2 ≤ i ≤ d ,

n−1−2/θ−(4d2+2+o(1))/θ3/2 ≤ pc(2, d) ≤ pc(i, d) ≤ pc(d, d) ≤ pc(3,3)

≤ 10θpc(2,3) ≤ n−1−2/θ−(
√

7.2−o(1))/θ3/2
,

which is the desired result. �

REMARK 2.6. The above results are all asymptotic statements in n. One nat-
ural question is whether we can obtain nonasymptotic bounds on the critical pa-
rameters. Our arguments do in fact produce bounds on the critical probability for
specific values of n. Keeping track of (or even stating) these bounds is quite chal-
lenging and we have made no attempt to optimize them. Different results kick in
at different values of n, but all of them work if n is at least roughly eθ3/2

.

The rest of the paper is organized as follows. In Section 3, we prove the two-
dimensional Theorem 2.1. In Section 4, we give a necessary condition for a plane
to become open when d = 3 and in Section 5 we give a sufficient condition for this
event for arbitrary d . Section 5 also features the resulting upper and lower bounds
for critical exponents in three dimensions and the proof for the upper bound in
Theorem 2.4. Section 6 features the proof of Theorem 2.2, which is, like that of
Theorem 2.1, based on Poisson convergence. While the two-dimensional case re-
quires nothing more than Poisson approximation to the binomial, our proof of this
three-dimensional result hinges on much more intricate coupling methods intro-
duced in [7]. As some events in question are not positively related, the required
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couplings need to be explicitly constructed; the details of this construction are de-
ferred to the Appendix. In Section 7, we study when a line is likely to become open
and establish Theorem 2.3. In Section 8, we provide a lower bound on the value
of p that makes it likely that a plane becomes open; this, together with results in
Section 5, will complete the proof of Theorem 2.4. We conclude with a short list
of open questions in Section 9.

We end this section with a note on terminology, adopted from [2]. A vertex v

(resp., a set F ⊂ [n]d ) is called open, or occupied at a time t ∈ [0,∞] if ωt(v) = 1
(resp., ωt |F ≡ 1). Assume G ⊂ [n]d is an arbitrary (deterministic or random) set,
and suppose the bootstrap percolation process is run started from the set of open
vertices equal to G. Fix also a set F ⊂ [n]d . We say that G spans F if this process
makes every vertex in F eventually open. Furthermore, we say that F is internally
spanned by G if G ∩ F spans F . When F is unspecified, it is assumed to be the
entire torus [n]d . As throughout this section, the initially open points are by default
chosen at random, independently with probability p; if this set spans, we also say
that spanning occurs. Finally, we denote by σθ (d,p) the spanning probability,
that is, the probability of spanning for the d-dimensional torus with threshold θ

and initial occupation density p. (Note that the dependence on n is suppressed in
this notation.)

3. Precise two-dimensional results. In the two-dimensional case, we can de-
scribe the limiting behavior exactly as n → ∞. Let k = �θ/2� and p = an−1−1/k

for some constant a. Also assume k > 1; the cases θ = 1 and θ = 2 are easy to
work out separately. (For θ = 1, ω∞ ≡ 1 if and only if ω0 �≡ 0; for θ = 2, ω∞ ≡ 1
asymptotically if and only if ω0 contains at least two noncollinear open points.)

LEMMA 3.1. Let k = �θ/2� and p = an−1−1/k . With probability going to 1,
there are no lines with at least k + 1 points initially open.

PROOF. For a fixed line �, let E� be the event that � contains k + 1 initially
open points. For any �,

Pp(E�) ≤
(

n

k + 1

)
pk+1 ≤ nk+1pk+1 ≤ ak+1n−1−1/k,

and, as there are 2n lines,

Pp

(⋃
�

E�

)
≤ 2n · ak+1n−1−1/k = 2ak+1n−1/k → 0

as n → ∞. �

LEMMA 3.2. Fix an ε > 0. Let k = �θ/2� and p = εn−1−1/k . Fix constants
A,B and choose B fixed vertical (resp. horizontal) exceptional lines. With proba-
bility going to 1, there are at least A horizontal (resp., vertical) lines, which con-
tain k − 1 initially open points none of which are in the union of the exceptional
lines.
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PROOF. Each of the n horizontal lines satisfies the condition independently
with probability at least(

n − B

k − 1

)
pk−1(1 − p)n−k+1 = �

(
n−1+1/k).

The probability that there are at least A such lines therefore goes to 1. �

Let Ehoriz be the event that some horizontal line contains at least k initially open
points, Evert the corresponding event for vertical lines, and Ehoriz ◦ Evert the event
that the two occur disjointly.

LEMMA 3.3. Let k = �θ/2� and p = an−1−1/k . We have

Pp

(
(Ehoriz ∩ Evert) \ (Ehoriz ◦ Evert)

) → 0.

Furthermore,

Pp(Ehoriz ∩ Evert) → (
1 − e−ak/k!)2

and

Pp(Ehoriz ∪ Evert) → 1 − (
e−ak/k!)2

.

PROOF. The event (Ehoriz ∩Evert)\ (Ehoriz ◦Evert) happens only if some point
v is open, and each of the two lines through v contains exactly k − 1 additional
open points. The probability that such a point exists is bounded by

n2p
(
nk−1pk−1)2 = O

(
n−1+1/k) → 0.

This proves the first assertion.
As Ehoriz and Evert are increasing events, Pp(Ehoriz ∩ Evert) ≥ Pp(Ehoriz) ×

Pp(Evert) = Pp(Ehoriz)
2 by the FKG inequality. Conversely, the BK inequal-

ity gives Pp(Ehoriz)Pp(Evert) ≥ Pp(Ehoriz ◦ Evert). Thus, Pp(Ehoriz ∩ Evert) −
Pp(Ehoriz)

2 → 0. Moreover, the number of horizontal lines with at least k open
points is Binomial and converges in distribution to a Poisson random variable with
expectation ak/k!. Thus, Pp(Ehoriz) → 1 − e−ak/k!, which easily ends the proof.

�

Let G be the event that the entire graph becomes open, that is, G = {ω∞ ≡ 1}.

LEMMA 3.4. Let k = �θ/2� and p = an−1−1/k . If θ is even, Pp(G) −
P(Ehoriz ∩ Evert) → 0, while if θ is odd, Pp(G) − Pp(Ehoriz ∪ Evert) → 0.

PROOF. If θ is odd, the process adds no new open vertex unless there is some
line with at least k vertices initially open. So G ⊆ Ehoriz ∪ Evert. If θ is even, then
by Lemma 3.1, Pp(G \ (Ehoriz ∩ Evert)) → 0.
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Fix an ε > 0 and let ω∗, ω′ and ω′′ be three independent configurations, the
first with p∗ = (1 − 2ε)n−1−1/k , and the other two are “sprinkled” with small
p′ = εn−1−1/k . Observe that ω0 (generated with p) stochastically dominates ω∗ ∪
ω′ ∪ ω′′.

Now suppose θ is odd and Ehoriz ∪ Evert occurs in ω∗. Then some line � has
k points open in ω∗. We now describe the events that occur with probability 1 as
n → ∞. By Lemma 3.2, there are θ lines {�′

i} parallel to �, each with k − 1 points
open in ω′. Moreover, again by Lemma 3.2, there are θ lines {�′′

j } perpendicular to
�, each with k − 1 points, which are open in ω′′ and avoid � and all �′

i .
Let G∗ be the event that the initial configuration ω∗ ∪ω′ ∪ω′′ eventually causes

every point to be open. We claim that if the events in the above paragraph all
happen then G∗ happens. First, each point of intersection of �′′

j and � becomes open
as it sees k − 1 open neighbors on �′′

j and k on �. Then there are θ open points on
�, so � becomes open. Now each point of intersection of �′′

j and �′
i becomes open

as it sees one open neighbor on �, and k − 1 additional open neighbors each on �′′
j

and �′
i . This results in θ open points on each �′′

i and �′
i , so these 2θ lines all become

open, and the entire graph becomes open in the next step.
It now follows that lim infPp(G) ≥ lim infPp∗(Ehoriz ∪Evert), and the claim for

odd θ follows by continuity (in a) of limits in Lemma 3.3.
Now suppose θ is even. If Ehoriz ∩ Evert occurs, then we may assume Ehoriz ◦

Evert occurs by Lemma 3.3. That is, there is a horizontal line �h and a vertical line
�v , each with k points initially open, excluding their point of intersection. This
point of intersection becomes open at the first time step.

As in the odd case, we may use sprinkling and Lemma 3.2 to produce θ hori-
zontal lines �′

i and θ vertical �′′
j , each with k − 1 initially open points that avoid all

other lines. Then every point of intersection between �h and �′′
j , and between �v

and �′
i , sees θ = (k + 1) + (k − 1) open sites, so it becomes open. Then �h and �v

contain θ open sites, so they become open. Then every point of intersection of an
�′
i with an �′′

j sees 2 + 2(k − 1) = θ open sites, so becomes open. Now the entire
graph becomes open in two additional steps. �

PROOF OF THEOREM 2.1. The claimed convergence follows from Lemmas
3.3 and 3.4. �

4. Upper bound on critical exponent in three dimensions. It is easy to see
that with p = n−α for α > 1 + d

θ
, with high probability, no points that are not

initially open become open. [The expected number of vertices with at least θ open
neighbors is at most Cnd(np)θ = O(nd+θ−αθ ) = o(1).] In this section, we will
assume that d = 3 and θ ≥ 3 and establish a bound on α that ensures that no
planes become open (and hence the entire Hamming torus does not become open)
with high probability. A similar result is proved for general d in Section 8.
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LEMMA 4.1. Let d = 3 and θ = 2k − 1 ≥ 3 be odd. Let p = n−α for α >

1 + 8
3θ−1 . Then Pp(a plane becomes open) → 0. The same holds for θ = 2k ≥ 4

when α > 1 + 8
3θ−2 .

PROOF. We may assume θ ≥ 4, since the θ = 3 bound of α > 2 is equivalent
to α > 1 + d

θ
. We will prove the lemma for θ odd; the even case is similar. Define

the following three conditions for a vertex v:

(1) v is initially open,
(2) v is on a line with at least k points initially open,
(3) the neighborhood of v has at least θ points initially open.

We first prove

Pp

(
there exists a plane each of whose points satisfies one of (1)–(3)

) → 0(4.1)

To prove (4.1), we fix a plane P , which we may assume to be the e1, e2-plane, and
prove that the probability that all of its points satisfy one of (1)–(3) is exponentially
small. Fix an ε ∈ (0,1/3). Consider the lines perpendicular to P , horizontal lines
in P , and vertical lines in P , that contain at least one initially open point. Let their
respective numbers be S1, S2 and S3, and note that each of these three numbers is
Binomially distributed. The probability that a fixed line contains an initially open
vertex is at most np = o(1), so Pp(S1 ≥ εn2), Pp(S2 ≥ εn), and Pp(S3 ≥ εn) are
all exponentially small. With probability exponentially close to 1, the number of
points in P included in one of the three types of lines is therefore at most 3εn2,
which proves (4.1).

Let Ev be the event that the point v violates all three conditions (1)–(3), but that
it becomes open and that no point violating these conditions becomes open earlier.
It remains to show that

Pp(Ev) = o
(
1/n3)

.(4.2)

We will denote by N (v) the neighborhood of a point v. If Ev occurs, then N (v)

has m points initially open, for some 0 ≤ m ≤ θ − 1. Then N (v) contains θ − m

other points w1, . . . ,wθ−m, not initially open, which become open before v. Thus,
these wi must satisfy (2) or (3). Because v violates (2), each wi shares with v

at most k − 1 initially open neighbors. Therefore, whether wi satisfies (2) or (3),
Ni =N (wi) \N (v) must contain k initially open points.

Assume m and wi are selected. Let N be the number of initially open points in
Ni ∩Nj , for some i �= j . (Note that the intersection of three or more Ni is empty.)
Let Hm

b be the event that N (v) has m initially open points, w1, . . . ,wθ−m exist
such that Ni all contain k initially open points and that N = b. Then

P
(
Hm

0
) ≤ C(np)mnθ−m(

(np)k
)θ−m(4.3)
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for some constant C. To estimate P(Hm
b ), observe that each increase of b by 1

contributes an additional factor of p and removes a factor (np)2 from the right-
hand side of (4.3). By monotonicty, we may assume α ≤ 2 so p ≤ (np)2 [recall θ ≥
5 so 1+8/(3θ −1) < 2]; then P(Hm

b ) ≤ P(Hm
0 ) for all b ≥ 0 and m. Furthermore,

nkpk−1 = o(1) (since k ≥ 2), thus the upper bound in (4.3) increases with m. It
follows that P(Ev) is bounded by the expression in (4.3) with m = θ − 1, which
gives

n3P(Ev) ≤ Cn3k+2p3k−2 → 0,

proving (4.2). �

5. Internally spanned planes. In this section, we prove the upper bound in
Theorem 2.4 regarding pc(2, d), the critical probability for the existence of two-
dimensional planes in the final configuration. We also introduce a dimension-
reduction inequality that allows us to compute lower bounds on the spanning prob-
abilities σθ (θ,p) for arbitrary d and θ . Our first result is a lower bound on σθ (2,p),
which will allow us to find lower bounds for all d later on.

LEMMA 5.1. Let k = �θ/2� and lim infnαp = b > 0 with α > 1 + 1/k. Then
there exists a constant C > 0 depending on θ and b such that for all sufficiently
large n, σθ(2,p) ≥ Cn−β where

β(α) =
{

αk2 + a(a + 1) − αa(a − 1) − (k + 1)2, θ odd,
αk(k + 1) + a(a + 1) − αa(a − 1) − (k + 1)(k + 2), θ even,

(5.1)

and a = �α/(α − 1)�.

REMARK 5.2. If α = 1 + 1/k and p = b/nα then σθ (2,p) → c ∈ (0,1) by
Theorem 2.1, so β(α) = 0 for α ≤ 1 + 1/k.

PROOF OF LEMMA 5.1. Observe that the configuration in Figure 1 is suffi-
cient for spanning for odd θ = 2k − 1. In the figure, the two-dimensional Ham-
ming graph is first subdivided into nine regions that have dimensions n/3 × n/3.
The hashed lines further subdivide some of the regions, and are spaced n

3(k−2)
units apart, so each subregion has height and width on the order of n. Each red
oval represents the existence of at least one line (in the direction indicated) in that
region with the specified number of open vertices. To check that this configuration
leads to spanning, observe that the horizontal line containing k open vertices is the
first to be spanned: after one step the vertex at the intersection of this line and the
vertical line with k − 1 open vertices becomes open, after two steps the vertex at
the intersection of this line and the vertical line with k − 2 open vertices becomes
open, and so on until this line contains 2k − 1 open vertices and the entire line
becomes open. As this line is made open, all of the vertical lines each gain one
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FIG. 1. This configuration will span the two-dimensional Hamming graph when θ = 2k − 1 is odd.
Each region bounded by solid lines is approximately n/3 × n/3. The hashed lines are spaced n

3(k−2)
units apart, so each subregion has height and width on the order of n. A red oval represents the
existence of at least one line (in the direction indicated) in that region with the specified number of
open vertices.

additional open vertex, so the vertical line with k − 1 initially open vertices is next
to be spanned in the same fashion, followed by the horizontal line with k − 1 open
vertices and so on until all 2k − 1 lines with ovals are spanned and cause the rest
of the graph to become open. The reason for subdividing the graph into disjoint re-
gions like we have is so that all of the events depicted are independent. Therefore,
the spanning probability is bounded below as

σ2k−1(2,p) ≥ Pp(configuration in Figure 1)

=
[
1 −

(
1 − 1

k!n
kpk + o

(
(np)k

))n/3]
(5.2)

×
k−1∏
�=1

[
1 −

(
1 − 1

�!(np)� + o
(
(np)�

))n/3(k−2)]2

.

If p � n−α and α < 1 + 1
k

then the lower bound in (5.2) tends to 1 as n → ∞, in
agreement with Theorem 2.1, so we assume p � n−α and α > 1 + 1

k
. In this case,

the terms in the product in the last line of (5.2) for which � ≤ 1/(α − 1) either tend
to 1 or (in the case of equality) are bounded away from 0 as n → ∞. Therefore,
by applying the bound (1 − x)m ≤ 1 − mx + m2x2 for x ∈ (0,1), we bound (5.2)
from below by

C
[
nk+1pk − o

(
nk+1pk)] k−1∏

�=a

[
n�+1p� − o

(
n�+1p�)]2

,(5.3)

where a = �α/(α − 1)� and the value of C here is not smaller than (3 · k!)−2k

for any α > 1 + 1/k. We can take p = (b/2)n−α by noting that σθ (2,p) is in-
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creasing in p, so the constant C appearing in the lemma is not smaller than
(3 · k!)−2k(b/2)k(k+1). Computing the exponent of the leading order term in (5.3)
when p = (b/2)n−α gives the formula for β(α) when θ is odd. A configuration
similar to the one in Figure 1, but where there is one additional column with k ini-
tially open vertices, provides a sufficient condition for spanning when θ = 2k. This
leads to an expression like the one in (5.2), except with the first factor squared, and
leads to the formula for β(α) when θ is even. �

Our first application of Lemma 5.1 is to prove the upper bound in Theorem 2.4.

THEOREM 5.3. Fix d ≥ 3 and fix θ large enough depending on d [θ ≥
650(d − 2.1) is sufficient]. For all sufficiently large n,

pc(2, d) ≤ n−1−2/θ−√
8(d−2.1)/θ3/2

.

To prepare for the proof, we need a bound on the function β(α) in Lemma 5.1
that eliminates the use of the floor function. We isolate the reasoning by treating
just the terms involving a.

LEMMA 5.4. If 1 < α ≤ 2 and a = �α/(α − 1)� then

a(a + 1) − αa(a − 1) ≤ 1

α − 1
+ 1 + 1

2
(α − 1).(5.4)

PROOF. Let ε = α − 1 and suppose 1
ε

= m + u where m ≥ 1 is an integer and
u ∈ [0,1). Then we can write (5.4) as

a(−εa + 2 + ε) − 1

ε
≤ 1 + 1

2
ε,

so we must prove this inequality. Observe that

a =
⌊

1 + ε

ε

⌋
= �m + u + 1� = m + 1,

so we have

a(−εa + 2 + ε) − 1

ε
= −(m + 1)2 + 2(m + u)(m + 1) + m + 1 − (m + u)2

m + u

= 1 + u − u2

m + u
≤ 1 + 1

2
ε. �

PROOF OF THEOREM 5.3. We can divide the d-dimensional Hamming torus
into nd−2 disjoint 2-dimensional planes all parallel to the e1, e2-plane. Our goal is
to show that at least one of these planes are internally spanned with high proba-
bility when p = n−α with α = 1 + 2/θ + √

8(d − 2.1)/θ3/2. The number of these
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2-planes that are internally spanned is binomially distributed, so we need only to
show that the expected number of internally spanned planes tends to infinity. The
expected number of internally spanned planes is

nd−2σθ

(
2, n−α) ≥ Cnd−2−β(α)

by Lemma 5.1. By applying Lemma 5.4, we see that when θ = 2k − 1 is odd

β(α) = αk2 − (k + 1)2 + a(a + 1) − αa(a − 1)

≤ αk2 − (k + 1)2 + 1

α − 1
+ 1 + 1

2
(α − 1)

=
(

1 + 2

θ
+

√
8(d − 2.1)

θ3/2

)(
θ + 1

2

)2

−
(

θ + 3

2

)2

+ θ

2 + √
8(d − 2.1)/θ

+ 1 + 1

θ
+

√
8(d − 2.1)

2θ3/2

≤ −θ

2
+ 3

2θ
+

√
8(d − 2.1)

4

(
θ1/2 + 2θ−1/2 + θ−3/2)

+ θ

2

(
1 −

√
8(d − 2.1)

2θ1/2 + 8(d − 2.1)

4θ

)
+

√
8(d − 2.1)

2θ3/2

= d − 2.1 + 3

2θ
+

√
8(d − 2.1)

4

(
2θ−1/2 + 3θ−3/2)

< d − 2,

where the last inequality holds for θ large relative to d , and in the fourth line
we used the inequality (1 + x)−1 ≤ 1 − x + x2 for x > 0. This implies that the
expected number of internally spanned 2-dimensional planes tends to infinity with
n, and completes the proof for odd θ . The proof for even θ is analogous. �

The next theorem is a simple but powerful observation, which we refer to as the
dimension reduction inequality.

THEOREM 5.5. For any d ≥ 2, θ ≥ 2, and 1 ≤ d ′ ≤ d − 1

σθ(d,p) ≥ σθ

(
d − d ′, σθ

(
d ′,p

))
.(5.5)

PROOF. We can subdivide the d-dimensional Hamming torus into nd−d ′
dis-

joint sub-Hamming tori of dimension d ′. The probability of internally span-
ning a fixed sub-Hamming torus is σθ(d

′,p), and the initially open sets in the
sub-Hamming tori are mutually independent. Therefore, we may identify each
d ′-dimensional sub-Hamming torus with a single vertex, which is open indepen-
dently with probability σθ (d

′,p), and the result is a random subset of a (d − d ′)-
dimensional Hamming torus that spans with probability σθ (d − d ′, σθ (d

′,p)). If
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TABLE 1
Upper and lower bounds for the critical exponent when d = 3

θ

Bound 2 3 4 5 6 7 8 9 10 11 12

Lower 5/2 2 7/4 11/7 3/2 7/5 19/14 17/13 23/18 5/4 27/22
Upper 5/2 2 7/4 11/7 3/2 7/5 15/11 17/13 9/7 5/4 21/17

Note: If p � n−α and α is larger than the upper bound, then spanning will not occur with high
probability, while if α is smaller than the lower bound then spanning will occur with high probability.

this procedure spans the (d − d ′)-dimensional Hamming torus, then the original
configuration in the d-dimensional graph will span as well. �

Since we can compute bounds for σθ(2,p) and σθ (1,p) for all θ and p, the
dimension reduction inequality yields lower bounds on the critical exponents for
all d and θ . In some cases, the lower bounds obtained this way match our upper
bounds, so we can precisely compute the critical exponent. For instance, when
d = 3 and θ = 4 we see that the critical exponent is αc = 1 + d/θ = 7/4. In this
case, if α = (7 − ε)/4 with 0 < ε < 1 then Lemma 5.1 with k = 2 implies that
σ4(2, n−α) ≥ cn6−4α = cn−1+ε . Then, since σθ (d,p) is increasing in p,

σ4
(
3, n−α) ≥ σ4

(
1, σ4

(
2, n−α)) ≥ σ4

(
1, cn−1+ε) = P

(
Bin

(
n, cn−1+ε) ≥ 4

) → 1.

Theorem 7.6 implies that 1 + d/θ is always an upper bound for the critical expo-
nent, so in the case d = 3, θ = 4 the critical exponent is 7/4.

As a second example of how to apply Lemma 5.1 and Theorem 5.5, consider
the case d = 6, θ = 5. Applying dimension reduction and Lemma 5.1 twice yields

σ5
(
6, n−α) ≥ σ5

(
4, σ5

(
2, n−α)) ≥ σ5

(
4,Cn−β(α)) ≥ σ5

(
2, cn−β(β(α))).

The last term above tends to 1 as n → ∞ if β(β(α)) < 4/3 by Theorem 2.1, so
finding the supremum over α satisfying this inequality gives a lower bound on the
critical exponent in this case. With a little help from Matlab, we can numerically
compute this supremum, and generate lower bounds for other d and θ . See Figure 2
for plots of upper and lower bounds on αc for d ∈ {2,3,4,5,6} and θ ∈ {2, . . . ,20}.
Table 1 lists all cases for which our upper and lower bounds match when d = 3,
and a few cases for which they conspicuously do not (θ = 8,10,12). The upper
bounds in the table are the smaller of 1 + 3/θ and the bounds from Theorem 4.1—
either 1 + 8/(3θ − 1) or 1 + 8/(3θ − 2), depending on whether θ is odd or even.

6. A precise three-dimensional result. In this section, we precisely compute
the limiting spanning probability in the case d = 3 and θ = 3. As computed in
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FIG. 2. Upper and lower bounds for the critical exponent when p � n−α .

Section 5, the critical exponent in this case is α = 2 (see Table 1), so we consider
the scaling p = an−2 when a > 0 is a constant.

The resulting limit in Theorem 2.2 is a simplified expression for a probabil-
ity involving Poisson random variables with means depending on a. Indeed, to
compute the spanning probability, we identify the minimal ingredients that lead to
spanning, and show that their frequencies of occurrence in ω0 converge jointly to
independent Poisson random variables by using the Chen–Stein method [7]. First,
we identify two fundamental configurations, which we will define carefully later:
points that see at least one open vertex in each direction [Figure 3(b)] and lines that
contain at least two open vertices and at least one more open vertex in the same
plane [Figure 3(a)]. At least one of these configurations is necessary (in the limit)
for spanning because lines that contain 3 or more open vertices do not appear when
p = an−2, as the expected number of such lines is O(n2(np)3) = O(n−1). Note
that in the definitions of our configurations we allow for there to be three or more
open vertices in a line, even though this is unlikely to occur for large n. This is to
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FIG. 3. Without one of these configurations appearing somewhere in the graph at time 0, nothing
will become open at time 1 when d = θ = 3. The open circle in (b) is to emphasize that this “Basic”
configuration is with respect to a focal vertex which will become open at time 1. The “Line” config-
uration in (a) is indexed with respect to the line which contains two open points, and the single open
vertex off of the horizontal line signifies that at least one vertex on one of the two planes containing
the focal line must be open.

maintain some monotonicity of the events, and simplifies the Poisson convergence
proofs. Each fundamental configuration also has a corresponding “enhanced” con-
figuration (Figures 4 and 6), which requires additional open vertices in certain
planes. Each of these configurations has nonzero probability in the limit, and af-
fects the limiting spanning probability.

We must now determine which combinations of these ingredients are asymptot-
ically necessary and sufficient for spanning. This is summarized as follows:

(1) At least one “basic” configuration like that in Figure 3(b), AND at least one
“line” configuration like that in Figure 3(a); OR

(2) At least one “enhanced basic” configuration like that in Figure 4; OR
(3) At least one “line” configuration, AND at least one askew (nonparallel, non-

intersecting) line that contains at least two open vertices (see the configuration in
Figure 5); OR

(4) At least two “line” configurations like the one in Figure 3(a); OR
(5) At least one “enhanced line” configuration like those in Figure 6.

FIG. 4. “Enhanced Basic”: First the two lines containing the open circle in the front plane will be
spanned, followed by the two dotted lines then the front plane. Once a plane is spanned, the rest of
the graph is likely to be spanned (see the last paragraph in the proof of Lemma 6.1).
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FIG. 5. This configuration leads to the front plane being spanned, and the graph is likely to be
spanned. There is a “line” configuration with respect to the line that contains the two closed cir-
cles—the rectangle in the front plane completes the configuration and leads to the spanning of the
top line in two steps. After the line with two circles is spanned, the line with two triangles is now in
a “line” configuration, and is spanned in two more steps. The vertex at the intersection of the dotted
line and the line with the triangles is now open, and leads to the vertex at the intersection of the
dotted lines becoming open, which leads to the spanning of the front plane in three more steps. Note
that it is crucial for the lines with the circles and triangles to be askew—if these lines were parallel
then the front plane would not be spanned without additional help.

We call ω0 good if it contains at least one of the recipes (1)–(4) described above; a
formal definition is given below. The event {ω0 is good} is asymptotically equiva-
lent to the event {ω0 spans} in the sense of the following lemma.

LEMMA 6.1. If d = θ = 3 and p = an−2, then as n → ∞
P(ω0 is good) − P(ω∞ ≡ 1) → 0.

To formally define the event {ω0 is good}, and for the proofs that follow, we
need to introduce some notation.

Notation. Let e1, e2, e3 denote the standard basis vectors in R
3. For v,w ∈ V

let d(v,w) be the number of nonzero coordinates of v − w. Let N (v) = {w ∈

FIG. 6. “Enhanced Line”: These configurations labeled by (a), (b) and (c) (and any rotations or
shifts of them) are likely to span. The triangle vertex will cause a second line in the front plane to be
spanned, thus the full front plane will be spanned if there is an additional open vertex anywhere in
the graph that is not coplanar with this line or the line with two circles. Once a plane is spanned, the
rest of the graph is likely to be spanned.
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V :d(v,w) = 1} denote the neighborhood of v, and for A ⊆ V let N (A) =⋃
v∈AN (v) \ A.
The basic and enhanced basic configurations will be indexed by vertices, while

the line and enhanced line configurations will be indexed by lines. So, we let

L = {
� ⊆ V : |�| = n and ∀v,w ∈ �, d(v,w) ≤ 1

}
be the set of lines in V . Also, for i = 1,2,3, let

Li = {
� ∈ L :∀u, v ∈ �,∃m = m(u,v) ∈ Z s.t. u = v + mei

}
denote the collection of lines in V parallel to the coordinate axis in the ei direction.
For the duration of this paper, we will use � to refer to a generic line.

In order to apply the Chen–Stein method, we let Basic, Line, Line∅,
EnhancedBasic, EnhancedLine and NonEnhancedLine be the random
variables that count the number of occurrences of the corresponding configura-
tions in ω0, which we now define carefully. The relevant events are a bit difficult
to describe, so we refer the reader to Figures 3–6 for guidance.

Define the basic event, for v ∈ V , to be

GB
v = {∃w1,w2,w3 ∈ ω0 \ {v} and ∃m1,m2,m3 ∈ Z

s.t. v = wi + miei for i = 1,2,3
}
.

As Figure 3(b) indicates, the basic event occurs at v if v has at least one initially
open neighbor in each basis direction. Define the enhanced basic event, for v ∈ V ,
to be

GEB
v = {∃w ∈ ω0 s.t. d(v,w) = 2, and ∃w1,w2,w3 ∈ ω0 \ (

N (w) ∪ {v})
and ∃m1,m2,m3 ∈ Z s.t. v = wi + miei for i = 1,2,3

}
.

As Figure 4 indicates, the enhanced basic event occurs at v if the basic event occurs
at v and there is at least one open vertex in one of the planes containing v that is not
a neighbor of v. Further, this additional open vertex should not be collinear with
the sole open neighbor of v in any direction; if there were two open neighbors of v

in a single direction, then we could allow the additional open vertex to be collinear
with one of them, but this event is rare. Let IB

v be the indicator random variable for
the event GB

v , so Basic = ∑
v IB

v , and let IEB
v be the indicator random variable

for the event GEB
v , so EnhancedBasic= ∑

v IEB
v . In general, we will denote by

I ∗
† the indicator of the event G∗

†.
For each line � ∈ L , we define the line event

GL
� = {|� ∩ ω0| = 2,

∣∣N (�) ∩ ω0 \N (� ∩ ω0)
∣∣ ≥ 1

}
∪ {|� ∩ ω0| ≥ 3,

∣∣N (�) ∩ ω0
∣∣ ≥ 1

}
.

As Figure 3(a) suggests, the line event occurs at � if � contains at least two initially
open vertices, and there is at least one additional open vertex in the same plane as �.
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This additional open vertex should not be in the neighborhood of the two open ver-
tices in �, though if there are three or more open vertices in � then the location of
the additional vertex does not matter. We now define Line = ∑

�∈L IL
� , and be-

cause we will also need to count the number of line events in a particular direction
[for case (3) in the recipe for spanning], for i = 1,2,3 we let Linei = ∑

�∈Li
IL
� .

For each � ∈ L , we define the ∅-line event

G∅L
� = {|� ∩ ω0| ≥ 2

} \ GL
� ,

and let I∅L
� be the corresponding indicator random variable so Line∅ = ∑

�∈L I∅L
�

and for i = 1,2,3, Line∅i = ∑
�∈Li

I∅L
� . The ∅-line event occurs at � if � con-

tains at least two initially open vertices, and there are no other open vertices in the
same plane as � (except possibly those that are collinear with one of the two open
vertices in �).

For each line � ∈ L , we define the enhanced line event

GEL
� = {|� ∩ ω0| = 2 and ∃v ∈ N (�) ∩ ω0 \N (� ∩ ω0)

s.t.
∣∣N (

N (v)
) ∩ ω0 \N (

� ∩N (v)
)∣∣ ≥ 1

}
∪ {|� ∩ ω0| ≥ 3,∃v ∈ N (�) ∩ ω0 s.t.

∣∣N (
N (v)

) ∩ ω0 \N (
� ∩N (v)

)∣∣ ≥ 1
}

and let IEL
� be the corresponding indicator random variable so EnhancedLine=∑

�∈L IEL
� and for i = 1,2,3, EnhancedLinei = ∑

�∈Li
IEL
� . For the enhanced

line event to occur at �, a line configuration must appear in ω0 at � and there
must be at least one additional open vertex. This additional open vertex is coplanar
with the open vertex in N (�) from the line configuration (there may be more than
one), but is not counted if it is collinear with this vertex or on the other plane
containing �. Finally, define the nonenhanced line event

GNEL
� = GL

� \ GEL
�

and its corresponding indicator INEL
� , so that INEL

� = IL
� − IEL

� for every
� ∈ L , NonEnhancedLine = Line−EnhancedLine and for i = 1,2,3,
NonEnhancedLinei = Linei −EnhancedLinei .

Now we define the event that ω0 is good by

{ω0 is good} = {Basic≥ 1,Line≥ 1} ∪ {EnhancedBasic≥ 1}

∪
3⋃

i=1

{
Linei ≥ 1,

∑
j �=i

Line∅j ≥ 1
}

∪ {Line≥ 2} ∪ {EnhancedLine≥ 1}.
The third term above covers the scenario in Figure 5 when Line ≤ 1, which is
otherwise covered by the event {Line≥ 2}. Using inclusion–exclusion, exploiting
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TABLE 2
Means of the random variables appearing in (6.1)

Random variable Mean

Basic a3

EnhancedBasic a3(1 − e−3a)

Line 3
2a2(1 − e−2a)

Line∅i
1
2a2e−2a

NonEnhancedLinei
1
2a2[(e−a + ae−3a)2 − e−2a]

EnhancedLine 3
2a2[1 − (e−a + ae−3a)2]

obvious symmetries of the graph, and combining like terms:

P(ω0 is good)

= P(Basic≥ 1,Line= 1) + P(EnhancedBasic≥ 1,Line= 0)

+ P(Line≥ 2)

+ P(Basic= 0,EnhancedLine= 1,NonEnhancedLine= 0)(6.1)

+ 3P(Basic= 0,NonEnhancedLine1 = 1,

NonEnhancedLine2 +NonEnhancedLine3 = 0,

EnhancedLine= 0,Line∅2 +Line∅3 ≥ 1).

Therefore, once we compute the probabilities in (6.1), Lemma 6.1 implies The-
orem 2.2. Lemma 6.2 allows us to do just this, and is followed by the proof of
Lemma 6.1. The proof of Lemma 6.2 uses the Chen–Stein method, and is outlined
in the Appendix.

LEMMA 6.2. If p = an−2, then as n → ∞ Table 2 gives the means of the
random variables appearing in (6.1). Furthermore, the two random variables
EnhancedBasic and Line converge jointly in distribution to independent
Poisson random variables with the above means, as do the eight random vari-
ables Basic, EnhancedLine, and for i = 1,2,3, NonEnhancedLinei and
Line∅i .

REMARK 6.3. Lemma 6.2 allows us to compute the limiting probability in
(6.1) by treating all of the random variables that appear as independent Poisson
random variables with the means given by the table. The means that appear in
the limit are straightforward to compute. For example, to compute the expected
number of basic events, the probability that a fixed vertex has at least one initially
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open neighbor in each direction is ∼ (np)3 = a3/n3, and there are n3 vertices at
which a basic configuration can be centered. To obtain the expected number of
enhanced basic configurations, observe that a fixed vertex must first see a basic
configuration, then independently at least one of the 3(n − 2)2 coplanar but not
collinear vertices must be present. This has probability 1 − (1 − p)3(n−2)2 ∼ 1 −
e−3a of occurring.

PROOF OF LEMMA 6.1. We will first show that spanning does not occur with
high probability when ω0 is not good. The expected number of lines that contain
at least three initially open vertices is ∼ 3n2(n

3

)
p3 = O(n−1), so at least one line

configuration or basic configuration is necessary for any vertices to become open
after one step.

Any vertex that becomes open in the second step must be neighbors with at
least one vertex that becomes open in the first step, that is, with a vertex in ω1 \ω0.
If Line = 0 and EnhancedBasic = 0 then any two basic events located at
vertices v and w cannot be coplanar unless N (v) ∩ N (w) ⊆ ω0, otherwise a line
or an enhanced basic configuration would exist. The probability that there exist
two vertices, v and w, with IB

v IB
w = 1, d(v,w) = 2 and N (v) ∩ N (w) ⊆ ω0 is

at most 3n
(n2

2

)
(np)2p2 = O(n−1), so with high probability there are no coplanar

basic events. Therefore, no pair of vertices in ω1 \ ω0 have a common neighbor,
and no vertex in N (ω1 \ ω0) \ ω0 has more than one neighbor in ω0 (or else a line
or enhanced basic configuration would have existed in ω0). This implies that no
vertices can become open in the second step, so spanning cannot occur with high
probability when Line= 0 and EnhancedBasic= 0.

Also, if simultaneously NonEnhancedLine1 = 1, NonEnhancedLine2 +
NonEnhancedLine3 = 0, Basic = 0, EnhancedLine = 0 and Line∅2 +
Line∅3 = 0 then spanning is unlikely to occur. The sole line configuration will
span the focal line, �, after two steps. There may be parallel lines that contain two
occupied vertices, but they cannot be coplanar with � or else the line configuration
would be enhanced. These parallel lines will not span the cube as their neighbor-
hoods do not intersect �, so no other vertices will become open after two steps.
Therefore, P({ω∞ ≡ 1} \ {ω0 is good}) → 0.

The probability of ω0 containing a basic configuration and a line configuration
that share a plane [i.e., there exist v and � so that IB

v IL
� = 1 and v ∈ N (�) ∪ �]

is at most Cn3(n)(np)3(np)2 = O(n−1). Similarly, the probability of having two
or more coplanar line configurations is O(n−1). Conditional on the complements
of these last two events, observe that a line configuration will cause a basic con-
figuration to become an enhanced basic configuration in two steps. Likewise, a
line configuration will cause a second line configuration to become an enhanced
line configuration in two steps; and similarly a line configuration will with high
probability cause an askew line with two initially open vertices to become a line
configuration (and subsequently an enhanced line configuration).
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Both the enhanced basic and enhanced line configurations lead to a plane be-
coming open. Once a plane is open, two nonneighboring, coplanar open vertices
will cause another plane to become open, then one more open vertex elsewhere
will cause the rest of the graph to become open. With probability exponentially
close to 1, there are at least n1/2 planes with at least two nonneighboring open ver-
tices in ω0. Therefore, P({ω0 is good} \ {ω∞ ≡ 1}) = O(n−1), and the two events
are asymptotically equivalent. �

7. Open one-dimensional subgraphs. In this section, we obtain an upper
bound on the threshold probability for lines, pc(1, d). The main idea is the follow-
ing. Assume that the line � contains r ≤ θ initially open vertices, that it intersects
one line with θ − r initially open sites (not on �), and that it intersects θ other lines,
each with θ − r − 1 sites (not on �) initially open. Then after one step, � has r + 1
points open, and after two steps, θ points open. After three steps, � is completely
open. See Figure 7 for an illustration.

For a set S ⊆ V and x ∈ N, let Initial(S,≥ x) be the event that the set S has at
least x points initially open, that is,

Initial(S,≥ x) =
{∑

v∈S

ω0(v) ≥ x

}
.

For a point v ∈ V , let P1,2(v) be the e1, e2-parallel plane through v:

P1,2(v) = {
(a1, a2, v3, v4, . . . , vd) :a1, a2 ∈ [n]}.

Let �2(v) be the e2-parallel line through v:

�2(v) = {
(v1, a2, v3, v4, . . . , vd) :a2 ∈ [n]}.

For any e1-parallel line �, define

�l = {w ∈ �,w1 < n/3}, �m = {w ∈ �,n/3 ≤ w1 ≤ 2n/3},
and

�r = {w ∈ �,w1 > 2n/3}
to be the left, middle and right thirds of �. Define

Cross Linesm(�) =
{ ∑

v∈�m

1Initial(�2(v),≥θ−r) ≥ 1
}

Cross Linesr (�) =
{∑

v∈�r

1Initial(�2(v),≥θ−r−1) ≥ θ

}

and

F� = Initial(�l,≥ r) ∩ Cross Linesm(�) ∩ Cross Linesr (�).
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FIG. 7. An instance of the event F�. Here, θ = 6, r = 3. After one step, the intersection of lines �

and �′ becomes open so � has r + 1 vertices open. At step 2, the θ intersections with � and the other
θ vertical lines become open. At step 3, all of � becomes open.

Notice that the event F� depends only on the sites in P1,2(v) for any v ∈ �. Also
note that

Cross Linesm(�) = Cross Linesm(�′) and Cross Linesr (�) = Cross Linesr (�
′)

for any e1-parallel lines � �= �′ that lie in a common e1, e2-parallel plane. Finally,
note that Initial(�l,≥ r), Cross Linesm(�), and Cross Linesr (�) are independent,
and Initial(�l,≥ r) and Initial(�′

l ,≥ r) are independent.
We exhibit the role of F� (see Figure 7) in the following lemma.

LEMMA 7.1. If � is a line parallel to the e1 axis and F� occurs, then the entire
line � is open after three steps.

REMARK 7.2. Computation of P(F�) is facilitated by independence of the
three events. A more natural definition would not restrict the orientations of the
lines, or demand that the event happen in the left, middle or right sections thereof,
and would increase the probability by a constant factor, independent of n.

We set r = � (d−1)θ
d

� − 1 and p = n−1−d/θf (n), where f (n) is any function
such that f (n) → ∞. We will show that in this regime some line becomes open
asymptotically almost surely. We will use the following elementary fact about the
binomial distribution.

LEMMA 7.3. Assume that S is Binomial(n,p), with large n and p = p(n),
and that k does not depend on n. If np = O(1), then P(S ≥ k) ≥ c(np)k for some
constant c dependent on k. If np → ∞, then P(S ≥ k) → 1.
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LEMMA 7.4. Fix v ∈ V and θ, d ≥ 3. Let p = n−1−d/θf (n) where f (n) →
∞. Then for any c > 0, the probability that there exists an e1-parallel line � in
P1,2(v) such that F� occurs is at least cn2−d for n sufficiently large.

PROOF. As the event in the statement is increasing, its probability is monotone
in p. Thus, we may assume that f (n) grows to ∞ as slowly as we need in the
proof.

Note that when θ, d ≥ 3 then rd/θ ≥ 1 as

rd/θ ≥
(

(d − 1)θ

d
− 1

)
d

θ
= d − 1 − d/θ.

The right-hand side is strictly greater than 1 except if d = θ = 3. We assume that
at least one of d and θ is at least 4, and leave the exceptional case to the reader.

The three events that define F� depend on disjoint sets of sites, so they are inde-
pendent and we compute their probabilities separately. Furthermore, for the set of
lines � we consider, the events Cross Linesm(�) and Cross Linesr (�) do not depend
on �, which will thus be dropped from the notation. For any �, by Lemma 7.3

P
(
Initial(�l,≥ r)

) ≥ c1(np)r

≥ c1
(
f (n)n−d/θ )r

.

As this is o(1/n), we can use Lemma 7.3 again to get that

P
(∃� such that Initial(�l,≥ r) occurs

) ≥ c2n
(
f (n)n−d/θ )r

.

To estimate the second probability, observe that

P
(
Initial

(
�2(v),≥ θ − r

)) ≥ c3(np)θ−r ,

which is o(1/n), as r < (d − 1)θ/d . Thus,

P(Cross Linesm) ≥ c4n(np)θ−r

≥ c4n
(
f (n)n−d/θ )θ−r

.

For the third probability,

P
(
Initial

(
�2(v),≥ θ − r

)) ≥ c5(np)θ−r−1,

and

n · (np)θ−r−1 ≥ f (n)θ−r−1n1−d+(r+1)d/θ → ∞
as n → ∞, so Lemma 7.3 implies that

P(Cross Linesr ) → 1,
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and for large n the probability is bounded below by a constant c6 > 0. Multiplying
together the probabilities, we have that for any c and all sufficiently large n

P
(∃� in P1,2(v) such that that F� occurs

)
= P

(∃� such that Initial(�l,≥ r)
)
P(Cross Linesm)P(Cross Linesr )

≥ c2n
(
f (n)n−d/θ )r

c4n
(
f (n)n−d/θ )θ−r

c6

= c7f (n)θn2−d

> cn2−d,

ending the proof. �

THEOREM 7.5. Suppose that p = n−1−d/θf (n) with f (n) → ∞. Then
P(

⋃
� F�) → 1 as n → ∞, where the union is taken over all e1-parallel lines.

Thus, with probability going to 1, some line becomes open after three steps.

PROOF. We can choose nd−2 distinct vertices vi such that P1,2(vi) are dis-
joint. Then the events that there exist � in P1,2(vi) where F� occurs are indepen-
dent. Moreover,

nd−2
P

(∃� in P1,2(vi) such that F� occurs
) ≥ nd−2cn2−d = c

for any fixed c. Thus, P(
⋃

� F�) → 1 by Lemma 7.3. �

THEOREM 7.6. Assume that p = n−1−d/θf (n), with f (n) → 0, then
P(Above Threshold) → 0.

PROOF. Using the union bound,

P(Above Threshold) ≤ ∑
v∈V

P

( ∑
w∼v

ω0(w) ≥ θ

)

= nd
P

( ∑
w∼v

ω0(w) ≥ θ

)

≤ nd

(
n

θ

)
pθ

≤ f (n)θ

which approaches 0 as n → ∞. �

PROOF OF THEOREM 2.3. Combining Theorems 7.5 and 7.6 proves the result.
�
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8. Open two-dimensional subgraphs. In previous sections, we have encoun-
tered several possibilities for a vertex v to become open:

• v is initially open;
• the neighborhood of v has at least θ vertices initially open, causing v to become

open by time 1; and
• a line containing v has at least θ(d − 1)/d vertices initially open, with some

additional open sites “nearby” (see Section 7).

Let Plane Active be the event that some plane eventually becomes open. In this
section, we show that if p is sufficiently small then with high probability all of the
vertices that are eventually open satisfy a condition like one of the three above.
By doing this, we prove an upper bound on the probability of Plane Active and
consequently a lower bound on the threshold probability pc(2, d).

Let A be some integer, 1 ≤ A ≤ θ , which we will specify later. Let E be the
event that there exists a vertex v such that:

(1) v is initially not open;
(2) the neighborhood of v has at most A vertices initially open;
(3) each line containing v has at most A/2 vertices initially open; and
(4) v becomes open.

Our strategy to demonstrate that P(Plane Active) is small for sufficiently small p

is to show that P(E) and P(Plane Active \ E) are both small.
For each vertex v, let Ev be the event that v satisfies (1)–(4), and none among

such vertices becomes open earlier. If the event E occurs, then there must be a
first time a vertex satisfying (1)–(4) exists, thus E ⊆ ⋃

v Ev , and consequently,
P(E) ≤ nd

P(Ev).

LEMMA 8.1. Suppose p = o(n−1−β) with β > ( 2d2

θ−A
+ 1) 2

A
. Fix a line �. The

probability that � contains at least θ−A
2d

vertices v that have at least A/2 initially
open points in N (v) \ � is

o
(
n(θ−A)/(2d)(1−βA/2)).

PROOF. The reduced neighborhoods N (v) \ �, v ∈ �, are pairwise disjoint,
and in each the number of initially open vertices is a Binomial((d − 1)(n − 1),p)

random variable. The probability that such a random variable is at least A/2 is
bounded by a constant times (np)A/2 = o(n−βA/2). These random variables are
independent, thus the probability that at least θ−A

2d
of them are at least A/2 is

o((n · n−βA/2)(θ−A)/(2d)). �

LEMMA 8.2. Assume p satisfies the same bound as in Lemma 8.1. Fix a line
�. The probability that � has at least θ−A

2d
vertices w, for which there exists a line

�′ �= � through w such that �′ \ {w} contains at least A/2 initially open points is

o
(
n(θ−A)/(2d)(1−βA/2)).
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PROOF. We need to bound the probability of at least θ−A
2d

successes in n(d−1)

independent trials, each of which is a success with the probability that a given line
has at least A/2 points initially open. Same estimates as in the proof of Lemma 8.1
apply. �

LEMMA 8.3. Assume p satisfies the same bound as in Lemma 8.1. Then
P(E) → 0 as n → ∞.

PROOF. As we have already observed, P(E) ≤ nd
P(Ev). Now, if Ev occurs,

by (2) at least θ − A vertices in the neighborhood of v must be initially closed but
become open strictly before v; therefore, they violate at least one of (1)–(4). But
since they are not open initially and become open, they must violate one of (2) or
(3). By the pigeonhole principle, of the d lines through v, at least one must either
contain θ−A

2d
vertices which violate (2), or θ−A

2d
vertices which violate (3).

By Lemmas 8.1 and 8.2, each of these happens with probability

o
(
n(θ−A)/(2d)(1−βA/2)).

Rearranging using the inequality β > ( 2d2

θ−A
+ 1) 2

A
, we see that P(Ev) = o(n−d),

as claimed. �

LEMMA 8.4. Let p = n−1−β , with β > 0, and assume A ≥ 4. Then P(Plane
Active \ E) → 0 as n → ∞.

PROOF. There are
(d

2

)
nd−2 planes, P , and Plane Active = ⋃

P {P becomes
open}, so we have

P(Plane Active \ E) ≤
(
d

2

)
nd−2

P
({P becomes open} \ E

)
.

Now if P becomes open but E does not occur, then since each point in P be-
comes open, they must all violate one of (1), (2) or (3). By the pigeonhole principle,
at least n2/3 of these points must together violate a single condition. We will check
that the probabilities of these three cases are o(n−(d−2)). In fact, we will see that
they are exponentially small by reducing each case to a large deviation probability
involving a Binomial random variable with a small chance of success. We will use
the fact that neighborhoods of two points in P do not intersect outside P .

• P(n2/3 vertices in P are initially open) is exponentially small in n2, as p =
o(1).

• P(n2/3 vertices in P are each on a line with A/2 points initially open) is expo-
nentially small in n.

As every line covers at most n points in P , this event implies that there are
at least n/(3d) parallel lines, in some direction ei , each with at least A/2 points
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initially open. The probability that a given line has at least A/2 points initially
open is O((np)�A/2�) = o(1), thus the probability that n/(3d) lines in a given
direction ei satisfy this is exponentially small in n.

• P(n2/3 vertices in P each have at least A initially open vertices in their
neighborhoods) is exponentially small in n.

If a vertex w has at least A initially open vertices in its neighborhood then
either one of the two lines through w in P contain at least A/4 initially open
vertices or the d − 2 lines through w not in P together contain at least A/2
initially open vertices. This implies that either (a) there are at least n/12 parallel
lines in P with at least A/4 vertices initially open, or (b) there are at least n2/6
vertices with at least A/2 vertices in their neighborhoods outside of P .

The probability of (a) is exponentially small by the same argument as in the
previous case. For a fixed w, the probability that (d − 2)(n − 1) sites in N (w) \
P contain at least A/2 initially open sites is again O(np) = o(1). Thus, the
probability of (b) is exponentially small in n2.

Therefore, P(Plane Active \ E) goes to 0 exponentially fast. �

PROOF OF THEOREM 2.4. To get the lower bound set, A = �θ − √
θ�. Then

Lemmas 8.1–8.3 are (for large enough θ ) satisfied with

β = 2

θ
+ 4d2 + 3

θ3/2 .

The upper bound was proved in Theorem 5.3. �

9. Further questions and conjectures. We begin with a general form of
threshold probabilities; we believe that the answer to the question below is pos-
itive.

QUESTION 9.1. Do there exist positive constants c1 = c1(i, d) and c3/2 =
c3/2(i, d), so that, for all i and d , a lower bound and an upper bound for pc(i, d)

are both of the form

n−1−c1/θ−c3/2/θ
3/2+o(θ−3/2)

for large enough n?

We next ask whether it is possible that generation of open planes does not likely
lead to spanning of the entire graph when d ≥ 4.

QUESTION 9.2. Can one find d and θ > 2 such that logn(pc(2, d)) −
logn(pc(d, d)) is bounded away from 0 as n → ∞, that is, pc(2, d) ≈ n−ζ and
pc(d, d) ≈ n−ξ with ζ > ξ? Does this hold for all θ and d ≥ 4? Note that it does
not hold for d = 3 by (2.2).
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It would be desirable to have a general method to determine the critical expo-
nent for any given (small) d and θ ; here we merely recall the simplest unsolved
instances.

QUESTION 9.3. When d = 3, we know the critical exponents for θ =
2,3,4,5,6,7,9,11; what are the correct exponents for θ = 8,10 and θ ≥ 12?

APPENDIX: POISSON CONVERGENCE FOR d = θ = 3

In this section, we outline the proof of Lemma 6.2 regarding Poisson conver-
gence of the random variables that count the configurations that lead to spanning
when d = θ = 3 and p = an−2. Our approach is to apply the Chen–Stein method
[7], and to do so we need to introduce some notation.

We want to show that a collection of random variables, which are sums of in-
dicator random variables, converge to independent Poisson random variables in
the limit. That is, suppose we have disjoint sets of indices, 1,2, . . . ,�, let
 = ⋃�

i=1 i , and for each γ ∈  suppose Iγ is an indicator random variable.
For i = 1, . . . , � let Wi = ∑

γ∈i
Iγ and suppose that EWi = λi and EIγ = pγ . In

our application, the index sets are going to be V for the indicators of the basic and
enhanced basic events, and L for the indicators of the line, ∅-line, enhanced line
and nonenhanced line events.

To apply the Chen–Stein method in many cases, we need to construct a coupling
for every fixed γ ∈  between Iη and Jηγ so that

(Jηγ )η �=γ
d= (Iη|Iγ = 1)η �=γ .(A.1)

Many of the indicators that we have constructed are increasing functions of ω0,
which makes those sets of indicators positively related ([7], Section 2.1). How-
ever, the ∅-line and nonenhanced line indicators, I∅L

� and INEL
� , are not increasing

functions of ω0, so whenever these appear we are unable to use the simpler form of
the Poisson convergence theorem. Instead, we will explicitly define the couplings
below, and use Theorem 10.J of [7], which we state below as Lemma A.1.

Suppose X and Y are two Z
m-valued random variables with laws μX and μY ,

and recall that the total variation distance between μX and μY (or with an abuse
of notation, between X and Y or X and μY ) is

dTV(X,Y ) = dTV(μX,μY ) := sup
A⊆Zm

∣∣μX(A) − μY (A)
∣∣ = 1

2

∑
k∈Zm

∣∣μX(k) − μY (k)
∣∣.

Let Pλ denote the law of a Poisson(λ) random variable (taking values in Z+). The
Chen–Stein method gives us the following bound on the total variation distance
between the joint law of (W1,W2, . . . ,Wm) and

∏m
i=1 Pλi

.
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LEMMA A.1 ([7], Theorem 10.J and Corollary 10.J.1). If Wi are defined as
above with λi = EWi for i = 1, . . . , �, with EIγ = pγ , then

dTV

(
(W1, . . . ,Wm),

m∏
i=1

Pλi

)
≤ ∑

γ∈

p2
γ + ∑

γ,η∈

γ �=η

pγE|Jηγ − Iη|.(A.2)

If {Iγ }γ∈ are positively related then

dTV

(
(W1, . . . ,Wm),

m∏
i=1

Pλi

)
≤ ∑

γ∈

p2
γ + ∑

γ,η∈

γ �=η

Cov(Iγ , Iη).(A.3)

REMARK A.2. In all of our applications of Lemma A.1, the first sum on
the right-hand side is easy to control, since it merely requires that pγ are uni-
formly small. In the case of events indexed by L this sum is O(n−2), since there
are O(n2) summands and the probability of a line configuration is O(n2p2) =
O(n−2). Similarly, in the case of basic or enhanced basic events this sum is
O(n−3). The important part of the right-hand side is the term E|Jηγ − Iη| =
P(Jηγ �= Iη), which requires bounding the probability that our coupling destroys
or creates the event indicated by Iη. In the case of positively related indicators, no
explicit coupling is needed, and we must merely bound the covariances between
the relevant indicators.

Construction of couplings. Observe that in equation (6.1), the last term in-
volves random variables that are sums of indicators that are not positively related.
So, for each of the indicators IB

v , I∅L
� , IEL

� , INEL
� and every v ∈ V and � ∈ L , we

must construct a suitable coupling between all of the remaining indicators and their
conditioned versions as in (A.1). As in (A.1), we will use the letter J for coupled
indicator random variables.

Once we show that these random variables appearing in the last term of (6.1)
converge jointly to independent Poissons, we will be able to compute the lim-
iting probabilities for all of the terms except the second, which involves the
EnhancedBasic and Line random variables. We will treat this term separately
using the simpler form of Lemma A.1, since the enhanced basic and line indicators
are positively related.

Our goal is to show that the second summation in (A.2) is O(n−1) under the
couplings that we construct. We will need to construct four couplings, one for each
type of indicator, and for each coupling we have four comparisons (to each of the
four types of indicators) that need to be made. Furthermore, for each comparison,
there are several cases that need to be checked depending on the relative positions
of the vertices and lines that index each event. There are many cases that need to
be verified, but the arguments quickly become repetitive, thus we merely outline
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the proof and give complete details in two typical cases (see proofs of Lemmas
A.6 and A.7).

We begin with the simplest case, the basic coupling for conditioning on IB
v = 1

for a fixed v ∈ V . In this case, we merely need each of the three lines containing v

to contain at least one open vertex. To achieve this, we extend the probability space
by possibly resampling the vertices in each of the three lines until this condition is
met. That is, if a line through v already contains an open vertex, nothing is resam-
pled for that line, and the original configuration is kept, otherwise it is repeatedly
replaced with an independent configuration until it does contain an open vertex.
Also, it is important to note that none of the other vertices in the initial configura-
tion, ω0, are altered. Then J B

wv, J
∅L
�v , J EL

�v , J NEL
�v are the indicator random variables

of the corresponding events after the local resampling is completed. Since v is fixed
and the Hamming torus is transitive, we will drop the index v in the conditioning
on IB

v = 1.

LEMMA A.3. Under the basic coupling, the following sums are all O(n−1):∑
v∈V

∑
w∈V
w �=v

EIB
v P

(
IB
w �= J B

w

)
,

∑
v∈V

∑
�∈L

EIB
v P

(
I∅L
� �= J ∅L

�

)
,

∑
v∈V

∑
�∈L

EIB
v P

(
INEL
� �= J NEL

�

)
,

∑
v∈V

∑
�∈L

EIB
v P

(
IEL
� �= J EL

�

)
.

The next simplest coupling is the ∅-line coupling for the conditioning on I∅L
� =

1 for a fixed � ∈ L . For this coupling, we need the line � to contain at least two
initially open vertices, so we first resample the vertices in � if necessary until
this condition is met. Given the locations of the open vertices in �, we need the
two planes containing � to have no open vertices that are not neighbors of the
open vertices in �. To achieve this, we simply remove any violating vertices from
ω0. In the next three lemmas, we use indicators J , with proper subscripts and
superscripts, in an analogous fashion as in Lemma A.3.

LEMMA A.4. Under the ∅-line coupling, the following sums are O(n−1)∑
�∈L

∑
w∈V

EI∅L
� P

(
IB
w �= J B

w

)
,

∑
�∈L

∑
�′∈L
�′ �=�

EI∅L
� P

(
I∅L
�′ �= J ∅L

�′
)
,

∑
�∈L

∑
�′∈L

EI∅L
� P

(
INEL
�′ �= J NEL

�′
)
,

∑
�∈L

∑
�′∈L

EI∅L
� P

(
IEL
�′ �= J EL

�′
)
.

Next, we construct the enhanced line coupling for the conditioning on IEL
� = 1

for a fixed � ∈ L . To achieve this, we will need the line � to contain at least two
open vertices, so we first resample the vertices in � if necessary until this condition
is met. Next, given the locations of the open vertices in �, we need that at least one
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of the two planes containing � has at least one open vertex that is not collinear with
an open vertex in �. Again, if necessary, we resample these two planes (excepting
the vertices in �) simultaneously until this condition is satisfied. At this point, if
one of the two planes containing � has at least two nonneighboring open vertices,
then the coupling is completed. Otherwise, conditional on the location of the open
vertex (or vertices) in N (�), we need there to be at least one open vertex in the
same plane as this vertex (or vertices) but not in the same line. If one does not
exist, then we resample the two (or four) planes containing the open vertex (or
vertices) in N (�) but not containing � until there is at least one open vertex in any
of these planes [we do not resample the vertices in �, N (�), or the neighborhood
of the open vertices in N (�)].

LEMMA A.5. Under the enhanced line coupling, the following sums are
O(n−1): ∑

�∈L

∑
w∈V

EIEL
� P

(
IB
w �= J B

w

)
,

∑
�∈L

∑
�′∈L

EIEL
� P

(
I∅L
�′ �= J ∅L

�′
)
,

∑
�∈L

∑
�′∈L

EIEL
� P

(
INEL
�′ �= J NEL

�′
)
,

∑
�∈L

∑
�′∈L
�′ �=�

EIEL
� P

(
IEL
�′ �= J EL

�′
)
.

Finally, we construct the nonenhanced line coupling for the conditioning on
INEL
� = 1 for a fixed � ∈ L . To achieve this, we will need the line � to contain at

least two open vertices. So, first we resample the vertices in � if necessary until
this condition is met. Next, given the locations of the open vertices in �, we need:
(1) that at least one of the two planes containing � has at least one open vertex
that is not collinear with an open vertex in �, and (2) that neither plane containing
� has more than one noncollinear open vertex. Again, if necessary, we resample
these two planes simultaneously until these conditions are met (here we do not
resample �). Now, conditional on the locations of the open points in N (�), we
must guarantee that there are no other points outside of � that are coplanar but not
collinear with these points. For this part of the coupling, we simply remove any
violating points from ω0.

LEMMA A.6. Under the nonenhanced line coupling, the following sums are
O(n−1): ∑

�∈L

∑
w∈V

EINEL
� P

(
IB
w �= J B

w

)
,

∑
�∈L

∑
�′∈L

EINEL
� P

(
I∅L
�′ �= J ∅L

�′
)
,

∑
�∈L

∑
�′∈L
�′ �=�

EINEL
� P

(
INEL
�′ �= J NEL

�′
)
,

∑
�∈L

∑
�′∈L

EINEL
� P

(
IEL
�′ �= J EL

�′
)
.

PROOF. We now outline the proof by bounding the first summation above.
There are three cases.
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Case 1: w ∈ �. This term appears in the sum O(n3) times, and EINEL
� =

O(n−2), so we must show that P(IB
w �= J B

w) = O(n−2). Now there are two sub-
cases, destruction and creation, respectively: P(IB

w = 1, J B
w = 0) and P(IB

w = 0,

J B
w = 1). Clearly, P(IB

w = 1, J B
w = 0) ≤ P(IB

w = 1) = O(n−3). Next, in order for
the creation event to occur, the resampling procedure must have generated at least
one open vertex in both planes containing �, and both of these points must lie in the
neighborhood of w. The probability of this is O(n−2), since we require an open
vertex in each of two fixed lines.

Case 2: w ∈ N (�). This term appears in the sum O(n4) times, and EINEL
� =

O(n−2), so we must show that P(IB
w �= J B

w) = O(n−3). Once again, there are two
subcases as above. The creation event cannot occur in this case because an open
vertex in N (�) that is collinear with w must not see any coplanar open vertices
(off of �), which includes a line in the neighborhood of w, so w can no longer see
an open vertex in each direction. The probability of the destruction event can be
trivially bounded by O(n−3) as in Case 1.

Case 3: w /∈ N (�)∪�. This term appears in the sum O(n5) times, and EINEL
� =

O(n−2), so we must show that P(IB
w �= J B

w) = O(n−4). Once again, the creation
event cannot occur for the same reason as cited in Case 2. The destruction event can
only occur if one of the initially open points in the neighborhood of w is in one of
the resampled planes. At most six planes are affected with probability 1−O(n−1),
and with the same probability none of the resampled planes contain a line in the
neighborhood of w. The probability of the destruction event is at most O(n−4),
since w must first have three open neighbors initially [an event with probability
O(n−3)], and at least one must coincide with one of the resampled planes [an
event with probability O(n−1)]. �

Positively related case. Since {IEB
v }v∈V and {IL

� }�∈L are all increasing func-
tions of ω0, these collections of indicators are positively related so we may apply
the simpler form of Lemma A.1 by bounding the covariances.

LEMMA A.7. The collections of indicators {IEB
v }v∈V and {IL

� }�∈L are posi-
tively related and the following sums are O(n−1):∑
v∈V

∑
w∈V
w �=v

Cov
(
IEB
v , IEB

w

)
,

∑
v∈V

∑
�∈L

Cov
(
IEB
v , IL

�

)
,

∑
�∈L

∑
�′∈L
�′ �=�

Cov
(
IL
� , IL

�′
)
.

Note that the bound on the last sum, which involves only indicators of line
events, is implied by combining the results for the enhanced line and nonenhanced
line couplings in Lemmas A.5 and A.6 by writing IL

� = IEL
� + INEL

� .

PROOF. We will explain the proof of the bound on the first sum, as the second
sum is evaluated in a similar fashion and the third is implied by previous lemmas.
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We break up the sum into three cases depending on the Hamming distance between
v and w.

Case 1: d(v,w) = 1. There are O(n4) such terms in the sum, so we need
to show that the covariance is O(n−5). In this case it suffices to use the trivial
bound Cov(IEB

v , IEB
w ) ≤ EIEB

v IEB
w = P(GEB

v ∩ GEB
w ), which is the probability that

an enhanced basic configuration appears at v and at w. For this event to occur, v

must have one open neighbor in each direction, one of which is shared with w,
so w needs only one open neighbor in each direction orthogonal to w − v. This
is a total of at least five open points on five fixed lines, which has probability
O((np)5) = O(n−5) as desired.

Case 2: d(v,w) = 2. There are O(n5) such terms in the sum, so we need to show
that the covariance is O(n−6). Again, it suffices to use the bound Cov(IEB

v , IEB
w ) ≤

EIEB
v IEB

w . In this case, the vertices v and w have exactly two common neighbors,
so there are three cases: zero, one, or two of these common neighbors are initially
open. If neither common neighbor is initially open, then v and w each indepen-
dently need one open neighbor in each direction—a total of six open vertices in
six fixed lines, which has probability O(n−6). If one of the common neighbors
is open, an event with probability O(p) = O(n−2), then v and w each need an
open neighbor in two other directions—a total of four open vertices in four fixed
lines which has probability O(n−4). This gives a probability of O(n−6) to the case
where one common neighbor is open. The event that both common neighbors are
open has probability p2 = O(n−4), and v and w each require one more occupied
neighbor in one direction, which has probability O(n−2) for a total probability of
O(n−6).

Case 3: d(v,w) = 3. There are O(n6) such terms in the sum, so we need to
show that the covariance is O(n−7), and the trivial upper bound on the covariance
will not suffice. Observe that the planes containing v and the planes containing w

intersect only along 6 lines, and conditional on the event that none of the points on
these lines are initially open, IEB

v and IEB
w are independent. Call this event Eempty,

then since IEB
v and IEB

w are increasing functions of ω0, the covariance is bounded
by

Cov
(
IEB
v , IEB

w

) ≤ P
(
IEB
v IEB

w = 1,Ec
empty

)
.

We now divide the event Ec
empty into subcases according to which vertices in the

intersection are open. There are two types of vertices in the intersection—those
which are neighbors to either v or w, and those which are only in the same plane
as each vertex. There are exactly 6 vertices in the former category and 6(n − 2) in
the latter. The probability that j of the 6 vertices in [N (v)∩N (N (w))]∪[N (w)∩
N (N (v))] are initially open is O(pj ) = O(n−2j ). Conditional on this, v and w

collectively require an initially open vertex in each of the remaining 6 − j lines in
their neighborhoods, which has probability O(n−6+j ), giving a total probability
of O(n−6−j ) to the event that there are j of these 6 vertices initially open and
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both enhanced basic events occur. Therefore, if j ≥ 1 we are done, otherwise we
must consider the case where j = 0 and then Ec

empty requires that at least one vertex
among the 6(n−2) vertices in N (N (v))∩N (N (w)) are initially open. This event
has probability O(np) = O(n−1), and when j = 0, v and w still need one open
vertex in each line of their neighborhoods, which has probability O(n−6), giving
a total probability of O(n−7). �

PROOF OF LEMMA 6.2. The limiting means are straightforward to calculate,
as outlined in Remark 6.3. It is also not difficult to show that dTV(Pλn,Pλ) ≤ |λn −
λ| so if λn → λ then Pλn converges to Pλ. Therefore, applying Lemma A.1 and
using Lemmas A.3–A.6 to bound the second summation in (A.2) implies that the
random variables Basic, Line∅i , NonEnhancedLinei and EnhancedLine
(where i = 1,2,3, so there are a total of 8 random variables) converge jointly
to independent Poisson random variables with the appropriate limiting means.
Similarly, applying Lemma A.1 and using Lemma A.7 to bound the second sum-
mation in (A.3) implies that the random variables EnhancedBasic and Line
converge jointly to independent Poisson random variables with the appropriate
limiting means. �
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