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CENTRAL LIMIT THEOREM FOR THE MULTILEVEL
MONTE CARLO EULER METHOD

BY MOHAMED BEN ALAYA1 AND AHMED KEBAIER2

Université Paris 13

This paper focuses on studying the multilevel Monte Carlo method re-
cently introduced by Giles [Oper. Res. 56 (2008) 607–617] which is signifi-
cantly more efficient than the classical Monte Carlo one. Our aim is to prove
a central limit theorem of Lindeberg–Feller type for the multilevel Monte
Carlo method associated with the Euler discretization scheme. To do so, we
prove first a stable law convergence theorem, in the spirit of Jacod and Protter
[Ann. Probab. 26 (1998) 267–307], for the Euler scheme error on two con-
secutive levels of the algorithm. This leads to an accurate description of the
optimal choice of parameters and to an explicit characterization of the lim-
iting variance in the central limit theorem of the algorithm. A complexity of
the multilevel Monte Carlo algorithm is carried out.

1. Introduction. In many applications, in particular in the pricing of finan-
cial securities, we are interested in the effective computation by Monte Carlo
methods of the quantity Ef (XT ), where X := (Xt)0≤t≤T is a diffusion pro-
cess and f a given function. The Monte Carlo Euler method consists of two
steps. First, approximate the diffusion process (Xt)0≤t≤T by the Euler scheme
(Xn

t )0≤t≤T with time step T/n. Then approximate Ef (Xn
T ) by 1

N

∑N
i=1 f (Xn

T,i),
where f (Xn

T,i)1≤i≤N is a sample of N independent copies of f (Xn
T ). This approx-

imation is affected, respectively, by a discretization error and a statistical error

εn := E
(
f

(
Xn

T

) − f (XT )
)

and
1

N

N∑
i=1

f
(
Xn

T,i

) −Ef
(
Xn

T

)
.

On one hand, Talay and Tubaro [21] prove that if f is sufficiently smooth, then
εn ∼ c/n with c a given constant and in a more general context, Kebaier [17]
proves that the rate of convergence of the discretization error εn can be 1/nα for
all values of α ∈ [1/2,1] (see, e.g., Kloeden and Platen [18] for more details on
discretization schemes). On the other hand, the statistical error is controlled by the
central limit theorem with order 1/

√
N . Further, the optimal choice of the sample
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size N in the classical Monte Carlo method mainly depends on the order of the
discretization error. More precisely, it turns out that for εn = 1/nα the optimal
choice of N is n2α . This leads to a total complexity in the Monte Carlo method of
order CMC = n2α+1 (see Duffie and Glynn [5] for related results). Let us recall that
the complexity of an algorithm is proportional to the maximum number of basic
computations performed by this one. Hence, expressing this complexity in terms
of the discretization error εn, we get CMC = ε

−2−1/α
n .

In order to improve the performance of this method, Kebaier introduced a two-
level Monte Carlo method [17] (called the statistical Romberg method) reducing
the complexity CMC while maintaining the convergence of the algorithm. This
method uses two Euler schemes with time steps T/n and T/nβ , β ∈ (0,1) and
approximates Ef (XT ) by

1

N1

N1∑
i=1

f
(
X̂nβ

T ,i

) + 1

N2

N2∑
i=1

f
(
Xn

T,i

) − f
(
Xnβ

T,i

)
,

where X̂nβ

T is a second Euler scheme with time step T/nβ and such that the
Brownian paths used for Xn

T and Xnβ

T has to be independent of the Brown-

ian paths used to simulate X̂nβ

T . It turns out that for a given discretization error
εn = 1/nα (α ∈ [1/2,1]), the optimal choice is obtained for β = 1/2, N1 = n2α

and N2 = n2α−(1/2). With this choice, the complexity of the statistical Romberg
method is of order CSR = n2α+(1/2) = ε

−2−1/(2α)
n , which is lower than the classi-

cal complexity in the Monte Carlo method.
More recently, Giles [8] generalized the statistical Romberg method of Kebaier

[17] and proposed the multilevel Monte Carlo algorithm, in a similar approach
to Heinrich’s multilevel method for parametric integration [12] (see also Creutzig
et al. [3], Dereich [4], Giles [7], Giles, Higham and Mao [9], Giles and Szpruch
[10], Heinrich [11], Heinrich and Sindambiwe [13] and Hutzenthaler, Jentzen and
Kloeden [14] for related results). The multilevel Monte Carlo method uses infor-
mation from a sequence of computations with decreasing step sizes and approxi-
mates the quantity Ef (XT ) by

Qn = 1

N0

N0∑
k=1

f
(
X1

T ,k

)+
L∑

�=1

1

N�

N�∑
k=1

(
f

(
X

�,m�

T ,k

)−f
(
X

�,m�−1

T ,k

))
, m ∈N\ {0,1},

where the fine discretization step is equal to T/n thereby L = logn
logm

. For � ∈
{1, . . . ,L}, processes (X

�,m�

t,k ,X
�,m�−1

t,k )0≤t≤T , k ∈ {1, . . . ,N�}, are independent

copies of (X
�,m�

t ,X
�,m�−1

t )0≤t≤T whose components denote the Euler schemes
with time steps m−�T and m−(�−1)T . However, for fixed �, the simulation of

(X
�,m�

t )0≤t≤T and (X
�,m�−1

t )0≤t≤T has to be based on the same Brownian path.
Concerning the first empirical mean, processes (X1

t,k)0≤t≤T , k ∈ {1, . . . ,N0}, are
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independent copies of (X1
t )0≤t≤T which denotes the Euler scheme with time

step T . Here, it is important to point out that all these L+1 Monte Carlo estimators
have to be based on different independent samples. Due to the above independence
assumption on the paths, the variance of the multilevel estimator is given by

σ 2 := Var(Qn) = N−1
0 Var

(
f

(
X1

T

)) +
L∑

�=1

N−1
� σ 2

� ,

where σ 2
� = Var(f (X

�,m�

T )−f (X
�,m�−1

T )). Assuming that the diffusion coefficients
of X and the function f are Lipschitz continuous, then it is easy to check, using
properties of the Euler scheme that

σ 2 ≤ c2

L∑
�=0

N−1
� m−�

for some positive constant c2 (see Proposition 1 for more details). Giles [8] uses
this computation in order to find the optimal choice of the multilevel Monte Carlo
parameters. More precisely, to obtain a desired root mean squared error (RMSE),
say of order 1/nα , for the multilevel estimator, Giles [8] uses the above computa-
tion on σ 2 to minimize the total complexity of the algorithm. It turns out that the
optimal choice is obtained for (see Theorem 3.1 of [8])

N� = 2c2n
2α

(
logn

logm
+ 1

)
T

m�
for � ∈ {0, . . . ,L} and L = logn

logm
.(1)

Hence, for an error εn = 1/nα , this optimal choice leads to a complexity for the
multilevel Monte Carlo Euler method proportional to n2α(logn)2 = ε−2

n (log εn)
2.

Interesting numerical tests, comparing three methods (crude Monte Carlo, statisti-
cal Romberg and the multilevel Monte Carlo), were processed in Korn, Korn and
Kroisandt [19].

In the present paper, we focus on central limit theorems for the inferred error;
a question which has not been addressed in previous research. To do so, we use
techniques adapted to this setting, based on a central limit theorem for triangular
array (see Theorem 2) together with Toeplitz lemma. It is worth to note that our
approach improves techniques developed by Kebaier [17] in his study of the sta-
tistical Romberg method (see Remark 2 for more details). Hence, our main result
is a Lindeberg–Feller central limit theorem for the multilevel Monte Carlo Euler
algorithm (see Theorem 4). Further, this allows us to prove a Berry–Esseen-type
bound on our central limit theorem.

In order to show this central limit theorem, we first prove a stable law conver-
gence theorem, for the Euler scheme error on two consecutive levels m�−1 and m�,
of the type obtained in Jacod and Protter [16]. Indeed, we prove the following func-
tional result (see Theorem 3):√

m�

(m − 1)T

(
X�,m� − X�,m�−1) ⇒stably U as � → ∞,
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where U is the same limit process given in Theorem 3.2 of Jacod and Protter [16].
Our result uses standard tools developed in their paper but it cannot be deduced
without a specific and laborious study. Further, their result, namely√

m�

T

(
X�,m� − X

) ⇒stably U as � → ∞,

is neither sufficient nor appropriate to prove our Theorem 4, since the multilevel
Monte Carlo Euler method involves the error process X�,m� − X�,m�−1

rather than
X�,m� − X.

Thanks to Theorem 4, we obtain a precise description for the choice of the
parameters to run the multilevel Monte Carlo Euler method. Afterward, by a com-
plexity analysis we obtain the optimal choice for the multilevel Monte Carlo Euler
method. It turns out that for a total error of order εn = 1/nα the optimal parameters
are given by

N� = (m − 1)T

m� logm
n2α logn for � ∈ {0, . . . ,L} and L = logn

logm
.(2)

This leads us to a complexity proportional to n2α(logn)2 = ε−2
n (log εn)

2 which
is the same order obtained by Giles [8]. By comparing relations (1) and (2), we
note that our optimal sequence of sample sizes (N�)0≤�≤L does not depend on any
given constant, since our approach is based on proving a central limit theorem and
not on obtaining an upper bound for the variance of the algorithm. However, some
numerical tests comparing the runtime with respect to the root mean square error,
show that we are in line with the original work of Giles [8]. Nevertheless, the major
advantage of our central limit theorem is that it fills the gap in the literature for
the multilevel Monte Carlo Euler method and allows to construct a more accurate
confidence interval compared to the one obtained using Chebyshev’s inequality.
All these results are stated and proved in Section 3. The next section is devoted to
recall some useful stochastic limit theorems and to introduce our notation.

2. General framework.

2.1. Preliminaries. Let (Xn) be a sequence of random variables with values in
a Polish space E defined on a probability space (�,F,P). Let (�̃, F̃, P̃) be an ex-
tension of (�,F,P), and let X be an E-valued random variable on the extension.
We say that (Xn) converges in law to X stably and write Xn ⇒stably X, if

E
(
Uh(Xn)

) → Ẽ
(
Uh(X)

)
for all h :E → R bounded continuous and all bounded random variable U on
(�,F). This convergence is obviously stronger than convergence in law that we
will denote here by “⇒.” According to Section 2 of Jacod [15] and Lemma 2.1 of
Jacod and Protter [16], we have the following result.
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LEMMA 1. Let Vn and V be defined on (�,F) with values in another metric
space E′.

If Vn
P→ V,Xn ⇒stably X then (Vn,Xn) ⇒stably (V ,X).

Conversely, if (V ,Xn) ⇒ (V ,X) and V generates the σ -field F , we can realize
this limit as (V ,X) with X defined on an extension of (�,F,P) and Xn ⇒stably X.

Now, we recall a result on the convergence of stochastic integrals formulated
from Theorem 2.3 in Jacod and Protter [16]. This is a simplified version but it is
sufficient for our study. Let Xn = (Xn,i)1≤i≤d be a sequence of Rd -valued contin-
uous semimartingales with the decomposition

X
n,i
t = X

n,i
0 + A

n,i
t + M

n,i
t , 0 ≤ t ≤ T ,

where, for each n ∈ N and 1 ≤ i ≤ d , An,i is a predictable process with finite
variation, null at 0 and Mn,i is a martingale null at 0.

THEOREM 1. Assume that the sequence (Xn) is such that〈
Mn,i 〉

T +
∫ T

0

∣∣dAn,i
s

∣∣
is tight. Let Hn and H be a sequence of adapted, right-continuous and left-
hand side limited processes all defined on the same filtered probability space.
If (Hn,Xn) ⇒ (H,X) then X is a semimartingale with respect to the filtra-
tion generated by the limit process (H,X), and we have (Hn,Xn,

∫
HndXn) ⇒

(H,X,
∫

H dX).

We recall also the following Lindeberg–Feller central limit theorem that will be
used in the sequel (see, e.g., Theorems 7.2 and 7.3 in [1]).

THEOREM 2 (Central limit theorem for triangular array). Let (kn)n∈N be a
sequence such that kn → ∞ as n → ∞. For each n, let Xn,1, . . . ,Xn,kn be kn

independent random variables with finite variance such that E(Xn,k) = 0 for all
k ∈ {1, . . . , kn}. Suppose that the following conditions hold:

(A1) limn→∞
∑kn

k=1 E|Xn,k|2 = σ 2, σ > 0.

(A2) Lindeberg’s condition: for all ε > 0, limn→∞
∑kn

k=1 E(|Xn,k|2 ×
1{|Xn,k |>ε}) = 0. Then

kn∑
k=1

Xn,k ⇒ N
(
0, σ 2)

as n → ∞.

Moreover, if the Xn,k have moments of order p > 2, then the Lindeberg’s condition
can be obtained by the following one:

(A3) Lyapunov’s condition: limn→∞
∑kn

k=1 E|Xn,k|p = 0.
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2.2. The Euler scheme. Let X := (Xt)0≤t≤T be the process with values in R
d ,

solution to

dXt = b(Xt) dt + σ(Xt) dWt , X0 = x ∈ R
d,(3)

where W = (W 1, . . . ,Wq) is a q-dimensional Brownian motion on some given
filtered probability space B = (�,F, (Ft )t≥0,P) with (Ft )t≥0 is the standard
Brownian filtration, b and σ are, respectively, Rd and R

d×q valued functions. We
consider the continuous Euler approximation Xn with step δ = T/n given by

dXn
t = b(Xηn(t)) dt + σ(Xηn(t)) dWt , ηn(t) = [t/δ]δ.

It is well known that under the global Lipschitz condition

∃CT > 0, such that,
∣∣b(x) − b(y)

∣∣ + ∣∣σ(x) − σ(y)
∣∣ ≤ CT |y − x|,

(Hb,σ )
x, y ∈ R

d,

the Euler scheme satisfies the following property (see, e.g., Bouleau and Lépin-
gle [2]):

∀p ≥ 1, sup
0≤t≤T

|Xt |, sup
0≤t≤T

∣∣Xn
t

∣∣ ∈ Lp and

(P)

E

[
sup

0≤t≤T

∣∣Xt − Xn
t

∣∣p]
≤ Kp(T )

np/2 , Kp(T ) > 0.

Note that according to Theorem 3.1 of Jacod and Protter [16], under the weaker
condition

b and σ are locally Lipschitz with linear growth,(H̃b,σ )

we have only the uniform convergence in probability, namely the property

sup
0≤t≤T

∣∣Xt − Xn
t

∣∣ P→ 0.(P̃)

Following the notation of Jacod and Protter [16], we rewrite diffusion (3) as fol-
lows:

dXt = ϕ(Xt) dYt =
q∑

j=0

ϕj (Xt) dY
j
t ,

where ϕj is the j th column of the matrix σ , for 1 ≤ j ≤ q , ϕ0 = b and Yt :=
(t,W 1

t , . . . ,W
q
t )′. Then the continuous Euler approximation Xn with time step

δ = T/n becomes

dXn
t = ϕ

(
Xn

ηn(t)

)
dYt =

q∑
j=0

ϕj

(
Xn

ηn(t)

)
dY

j
t , ηn(t) = [t/δ]δ.(4)
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3. The multilevel Monte Carlo Euler method. Let (Xm�

t )0≤t≤T denotes the
Euler scheme with time step m−�T for � ∈ {0, . . . ,L}, where L = logn/ logm.
Noting that

Ef
(
Xn

T

) = Ef
(
X1

T

) +
L∑

�=1

E
(
f

(
Xm�

T

) − f
(
Xm�−1

T

))
,(5)

the multilevel method is to estimate independently by the Monte Carlo method
each of the expectations on the right-hand side of the above relation. Hence, we
approximate Ef (Xn

T ) by

Qn = 1

N0

N0∑
k=1

f
(
X1

T ,k

) +
L∑

�=1

1

N�

N�∑
k=1

(
f

(
X

�,m�

T ,k

) − f
(
X

�,m�−1

T ,k

))
.(6)

Here, it is important to point out that all these L + 1 Monte Carlo estimators have
to be based on different, independent samples. For each � ∈ {1, . . . ,L} the sam-

ples (X
�,m�

T ,k ,X
�,m�−1

T ,k )1≤k≤N�
are independent copies of (X

�,m�

T ,X
�,m�−1

T ) whose
components denote the Euler schemes with time steps m−�T and m−(�−1)T and
simulated with the same Brownian path. Concerning the first empirical mean, the
samples (X1

T ,k)1≤k≤N0 are independent copies of X1
T . The following result gives

us a first description of the asymptotic behavior of the variance in the multilevel
Monte Carlo Euler method.

PROPOSITION 1. Assume that b and σ satisfy condition (Hb,σ ). For a Lips-
chitz continuous function f :Rd −→ R, we have

Var(Qn) = O

(
L∑

�=0

N−1
� m−�

)
.(7)

PROOF. We have

Var(Qn) = N−1
0 Var

(
f

(
X1

T

)) +
L∑

�=1

N−1
� Var

(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

))
≤ N−1

0 Var
(
f

(
X1

T

))
+ 2

L∑
�=1

N−1
�

(
Var

(
f

(
Xm�

T

) − f (XT )
) + Var

(
f

(
Xm�−1

T

) − f (XT )
))

≤ N−1
0 Var

(
f

(
X1

T

))
+ 2[f ]lip

L∑
�=1

N−1
� E

[
sup

0≤t≤T

∣∣Xm�

t − Xt

∣∣2 + sup
0≤t≤T

∣∣Xm�−1

t − Xt

∣∣2]
,
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where [f ]lip := supu
=v
|f (u)−f (v)|

|u−v| . We complete the proof by using property (P)
on the strong convergence of the Euler scheme. �

Inequality (7) indicates the dependence of the variance of Qn on the choice
of the parameters N0, . . . ,NL. This variance can be smaller than the variance of
f (Xn

T ), so that Qn appears as a good candidate for the variance reduction.
The main result of this section is a Lindeberg–Feller central limit theorem (see

Theorem 4 below). In order to prove this result, we need to prove first a new sta-
ble law convergence theorem for the Euler scheme error adapted to the setting of
multilevel Monte Carlo algorithm. This is crucial and is the aim of the following
subsection.

3.1. Stable convergence. In what follows, we prove a stable law convergence
theorem, for the Euler scheme error on two consecutive levels m�−1 and m�, of
the type obtained in Jacod and Protter [16]. Our result in Theorem 3 below is
an innovative contribution on the Euler scheme error that is different and more
tricky than the original work by Jacod and Protter [16] since it involves the error
process X�,m� − X�,m�−1

rather than X�,m� − X. Note that the study of the error
X�,m� − X�,m�−1

as � → ∞ can be reduced to the study of the error Xmn − Xn as
n → ∞ where Xmn and Xn stand for the Euler schemes with time steps T/(mn)

and T/n constructed on the same Brownian path.

THEOREM 3. Assume that b and σ are C1 with linear growth then the follow-
ing result holds:

For all m ∈ N \ {0,1}
√

mn

(m − 1)T

(
Xmn − Xn) ⇒stably U as n → ∞,

with (Ut )0≤t≤T the d-dimensional process satisfying

Ut = 1√
2

q∑
i,j=1

Zt

∫ t

0
Hi,j

s dBij
s , t ∈ [0, T ],(8)

where

Hi,j
s = (Zs)

−1ϕ̇s,j ϕ̄s,i with ϕ̇s,j := ∇ϕj (Xs) and ϕ̄s,i := ϕi(Xs),(9)

and (Zt )0≤t≤T is the R
d×d valued process solution of the linear equation

Zt = Id +
q∑

j=0

∫ t

0
ϕ̇s,j dY j

s Zs, t ∈ [0, T ].

Here, ∇ϕj is a d × d matrix with (∇ϕj )ik is the partial derivative of ϕij with
respect to the kth coordinate, and (Bij )1≤i,j≤q is a standard q2-dimensional
Brownian motion independent of W . This process is defined on an extension
(�̃, F̃, (F̃t )t≥0, P̃) of the space (�,F, (Ft )t≥0,P).
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Note that by letting formally m tend to infinity, we recover the Jacod and Prot-
ter’s result [16].

PROOF OF THEOREM 3. Consider the error process Umn,n = (U
mn,n
t )0≤t≤T ,

defined by

U
mn,n
t := Xmn

t − Xn
t , t ∈ [0, T ].

Combining relation (4), for both processes Xmn and Xn, together with a Taylor
expansion

dU
mn,n
t =

q∑
j=0

ϕ̇n
t,j

(
Xmn

ηmn(t) − Xn
ηn(t)

)
dY

j
t ,

where ϕ̇n
t,j is the d × d matrix whose ith row is the gradient of the real-valued

function ϕij at a point between Xn
ηn(t) and Xmn

ηmn(t). Therefore, the equation satisfied
by Un can be written as

U
mn,n
t =

∫ t

0

q∑
j=0

ϕ̇n
s,jU

mn,n
s dY j

s + G
mn,n
t ,

with

G
mn,n
t =

∫ t

0

q∑
j=0

ϕ̇n
s,j

(
Xn

s − Xn
ηn(s)

)
dY j

s −
∫ t

0

q∑
j=0

ϕ̇n
s,j

(
Xmn

s − Xmn
ηmn(s)

)
dY j

s .

In the following, let (Z
mn,n
t )0≤t≤T be the R

d×d valued solution of

Z
mn,n
t = Id +

∫ t

0

( q∑
j=0

ϕ̇n
s,j dY j

s

)
Zmn,n

s .

Theorem 48, page 326 in [20], ensures existence of the process ((Z
mn,n
t )−1)0≤t≤T

defined as the solution of(
Z

mn,n
t

)−1 = Id +
∫ t

0

(
Zmn,n

s

)−1
q∑

j=1

(
ϕ̇n

s,j

)2
ds −

∫ t

0

(
Zmn,n

s

)−1
q∑

j=0

ϕ̇n
s,j dY j

s .

Thanks to Theorem 56, page 333 in the same reference [20], we get

U
mn,n
t = Z

mn,n
t

{∫ t

0

(
Zmn,n

s

)−1
dGmn,n

s

−
∫ t

0

(
Zmn,n

s

)−1
q∑

j=1

(
ϕ̇n

s,j

)2(
Xn

s − Xn
ηn(s)

)
ds

+
∫ t

0

(
Zmn,n

s

)−1
q∑

j=1

(
ϕ̇n

s,j

)2(
Xmn

s − Xmn
ηmn(s)

)
ds

}
.
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Since the increments of the Euler scheme satisfy

Xn
s − Xn

ηn(s) =
q∑

i=0

ϕ̄n
s,i

(
Y i

s − Y i
ηn(s)

)
and

Xmn
s − Xmn

ηmn(s) =
q∑

i=0

ϕ̄mn
s,i

(
Y i

s − Y i
ηmn(s)

)
,

with ϕ̄n
s,i = ϕi(X

n
ηn(s)) and ϕ̄mn

s,i = ϕi(X
mn
ηmn(s)), it is easy to check that

U
mn,n
t =

q∑
i,j=1

Z
mn,n
t

∫ t

0
Hi,j,mn,n

s

(
Y i

s − Y i
ηn(s)

)
dY j

s + R
mn,n
t,1 + R

mn,n
t,2

(10)

−
q∑

i,j=1

Z
mn,n
t

∫ t

0
H̃ i,j,mn,n

s

(
Y i

s − Y i
ηmn(s)

)
dY j

s − R̃
mn,n
t,1 − R̃

mn,n
t,2

with

R
mn,n
t,1 =

q∑
i=0

Z
mn,n
t

∫ t

0
Ki,mn,n

s

(
Y i

s − Y i
ηn(s)

)
ds,

R
mn,n
t,2 =

q∑
j=1

Z
mn,n
t

∫ t

0
H 0,j,mn,n

s

(
s − ηn(s)

)
dY j

s ,

and

R̃
mn,n
t,1 =

q∑
i=0

Z
mn,n
t

∫ t

0
K̃i,mn,n

s

(
Y i

s − Y i
ηmn(s)

)
ds,

R̃
mn,n
t,2 =

q∑
j=1

Z
mn,n
t

∫ t

0
H̃ 0,j,mn,n

s

(
s − ηmn(s)

)
dY j

s ,

where, for (i, j) ∈ {0, . . . , q} × {1, . . . , q},

Ki,mn,n
s = (

Zmn,n
s

)−1
(
ϕ̇n

s,0ϕ̄
n
s,i −

q∑
j=1

(
ϕ̇n

s,j

)2
ϕ̄n

s,i

)
,

H i,j,mn,n
s = (

Zmn,n
s

)−1
ϕ̇n

s,j ϕ̄
n
s,i ,

and

K̃i,mn,n
s = (

Zmn,n
s

)−1
(
ϕ̇n

s,0ϕ̄
mn
s,i −

q∑
j=1

(
ϕ̇n

s,j

)2
ϕ̄mn

s,i

)
,

H̃ i,j,mn,n
s = (

Zmn,n
s

)−1
ϕ̇n

s,j ϕ̄
mn
s,i .
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Now, let us introduce

Zt = Id +
∫ t

0

q∑
j=0

(
ϕ̇s,j dY j

s

)
Zs with ϕ̇t,j = ∇ϕj (Xt).

Moreover, ((Zt )
−1)0≤t≤T exists and satisfies the following explicit linear stochas-

tic differential equation:

(Zt )
−1 = Id +

∫ t

0
(Zs)

−1
q∑

j=1

(ϕ̇s,j )
2 ds −

∫ t

0
(Zs)

−1
q∑

j=0

ϕ̇s,j dY j
s .

Thanks to the uniform convergence in probability of the Euler scheme and accord-
ing to Theorem 2.5 in Jacod and Protter [16], we have

sup
0≤t≤T

∣∣Zmn,n
t − Zt

∣∣ P→ 0 and sup
0≤t≤T

∣∣(Zmn,n
t

)−1 − (Zt )
−1∣∣ P→ 0.(11)

Furthermore, in relation (10), one can replace, respectively, H
i,j,mn,n
s and

H̃
i,j,mn,n
s by their common limit H

i,j
s given by relation (9). So that relation (10)

becomes

U
mn,n
t =

q∑
i,j=1

Z
mn,n
t

∫ t

0
Hi,j

s

(
Y i

ηmn(s) − Y i
ηn(s)

)
dY j

s + R
mn,n
t ,(12)

with

R
mn,n
t = R

mn,n
t,1 + R

mn,n
t,2 + R

mn,n
t,3 − R̃

mn,n
t,1 − R̃

mn,n
t,2 − R̃

mn,n
t,3 ,

where R
mn,n
t,i and R̃

mn,n
t,i , i ∈ {1,2}, are introduced by relation (10) and

R
mn,n
t,3 =

q∑
i,j=1

Z
mn,n
t

∫ t

0

(
Hi,j,mn,n

s − Hi,j
s

)(
Y i

s − Y i
ηn(s)

)
dY j

s ,

R̃
mn,n
t,3 =

q∑
i,j=1

Z
mn,n
t

∫ t

0

(
H̃ i,j,mn,n

s − Hi,j
s

)(
Y i

s − Y i
ηmn(s)

)
dY j

s .

The remainder term process Rmn,n vanishes with rate
√

n in probability. More
precisely, we have the following convergence result.

LEMMA 2. The rest term introduced in relation (12) is such that

sup
0≤t≤T

∣∣√nR
mn,n
t

∣∣
converges to zero in probability as n tends to infinity.
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For the reader’s convenience, the proof of this lemma is postponed to the end of
the current subsection.

The task is now to study the asymptotic behavior of the process given by rela-
tion (12)

q∑
i,j=1

√
nZ

mn,n
t

∫ t

0
Hi,j

s

(
Y i

ηmn(s) − Y i
ηn(s)

)
dY j

s .

In order to study this process, we introduce the martingale process,

M
n,i,j
t =

∫ t

0

(
Y i

ηmn(s) − Y i
ηn(s)

)
dY j

s , (i, j) ∈ {1, . . . , q}2,

and we proceed to a preliminary calculus of the expectation of its bracket.
Let (i, j) and (i′, j ′) ∈ {1, . . . , q}2, we have:

• for j 
= j ′, the bracket 〈Mn,i,j ,Mn,i′,j ′ 〉 = 0,
• for j = j ′ and i 
= i′, E〈Mn,i,j ,Mn,i′,j 〉 = 0,
• for j = j ′ and i = i ′, E〈Mn,i,j 〉t = ∫ t

0 (ηmn(s) − ηn(s)) ds, t ∈ [0, T ] and we
have

E
(〈
Mn,i,j 〉

t

) =
∫ ηn(t)

0

(
ηmn(s) − ηn(s)

)
ds + O

(
1

n2

)

=
m−1∑
�=0

[t/δ]−1∑
k=0

∫ (mk+�+1)δ/m

(mk+�)δ/m

(
ηmn(s) − ηn(s)

)
ds + O

(
1

n2

)

=
m−1∑
�=0

[t/δ]−1∑
k=0

δ2

m

(
mk + �

m
− k

)
+ O

(
1

n2

)
(13)

= (m − 1)δ2

2m
[t/δ] + O

(
1

n2

)
= (m − 1)T

2mn
t + O

(
1

n2

)
.

Having disposed of this preliminary evaluations, we can now study the sta-

ble convergence of (
√

2mn
(m−1)T

Mn,i,j )1≤i,j≤q . By virtue of Theorem 2.1 in [15],

we need to study the asymptotic behavior of both brackets n〈Mn,i,j ,Mn,i′,j ′ 〉t
and

√
n〈Mn,i,j , Y j ′ 〉t , for all t ∈ [0, T ] and all (i, j, i ′, j ′) ∈ {1, . . . , q}4. The case

j 
= j ′ is obvious and we only proceed to prove that:

• for j = j ′,
√

n〈Mn,i,j , Y j 〉t P−→
n→∞ 0, for all t ∈ [0, T ],

• for j = j ′ and i 
= i′, n〈Mn,i,j ,Mn,i′,j 〉t P−→
n→∞0, for all t ∈ [0, T ],

• for j = j ′ and i = i′, n〈Mn,i,j 〉t P−→
n→∞

(m−1)T
2m

t , for all t ∈ [0, T ].
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For the first point, we consider the L2 convergence

E
〈
Mn,i,j , Y j 〉2

t = E

(∫ t

0

(
Y i

ηmn(s) − Y i
ηn(s)

)
ds

)2

=
∫ t

0

∫ t

0
E

((
Y i

ηmn(s) − Y i
ηn(s)

)(
Y i

ηmn(u) − Y i
ηn(u)

))
ds du

= 2
∫

0<s<u<t
g(s, u) ds du

with

g(s, u) = ηmn(s) ∧ ηmn(u) − ηmn(s) ∧ ηn(u)
(14)

− ηn(s) ∧ ηmn(u) + ηn(s) ∧ ηn(u).

It is worthy to note that

ηn(s) ≤ ηmn(s) ≤ s ≤ ηn(u) ≤ ηmn(u) ≤ u ∀s ≤ ηn(u).(15)

Hence, g(s, u) = 0, for s ≤ ηn(u), g(s, u) = ηmn(s) − ηn(s), for ηn(u) < s < u,
and

E
〈
Mn,i,j , Y j 〉2

t = 2
∫

0<ηn(u)<s<u<t

(
ηmn(s) − ηn(s)

)
ds du

≤ 2
T

n

∫ t

0

(
u − ηn(u)

)
du

≤ 2
T 2

n2 t.

This yields the desired result. Concerning the second point, the L2 norm is given
by

E
〈
Mn,i,j ,Mn,i′,j 〉2

t = E

(∫ t

0

(
Y i

ηmn(s) − Y i
ηn(s)

)(
Y i′

ηmn(s) − Y i′
ηn(s)

)
ds

)2

=
∫ t

0

∫ t

0

(
E

((
Y i

ηmn(s) − Y i
ηn(s)

)(
Y i

ηmn(u) − Y i
ηn(u)

)))2
ds du

= 2
∫

0<s<u<t
g(s, u)2 ds du,

with the same function g given in relation (14). Using the properties of function g

developed above, we have in the same manner

E
〈
Mn,i,j ,Mn,i′,j 〉2

t = 2
∫

0<ηn(u)<s<u<t

(
ηmn(s) − ηn(s)

)2
ds du ≤ 2

T 3

n3 t,
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which proves our claim. For the last point, that is the essential one, we use the
development of E〈Mn,i,j 〉t given by relation (13) to get

E

(
n
〈
Mn,i,j 〉

t − (m − 1)T

2m
t

)2

= n2
E

〈
Mn,i,j 〉2

t − (m − 1)2T 2

4m2 t2 + O

(
1

n

)
.(16)

Otherwise, we have

E
〈
Mn,i,j 〉2

t = E

(∫ t

0

(
Y i

ηmn(s) − Y i
ηn(s)

)2
ds

)2

=
∫ t

0

∫ t

0
E

((
Y i

ηmn(s) − Y i
ηn(s)

)2(
Y i

ηmn(u) − Y i
ηn(u)

)2)
ds du(17)

= 2
∫

0<s<u<t
h(s, u) ds du

with

h(s, u) = E
((

Y i
ηmn(s) − Y i

ηn(s)

)2(
Y i

ηmn(u) − Y i
ηn(u)

)2)
.(18)

On one hand, for s ≤ ηn(u), using property (15) together with the independence of
the increments Y i

ηmn(s) − Y i
ηn(s) and Y i

ηmn(u) − Y i
ηn(u), yields

h(s, u) = (
ηmn(s) − ηn(s)

)(
ηmn(u) − ηn(u)

)
.

On the other hand, in relation (18) we use the Cauchy–Schwarz inequality to get
h(s, u) = O( 1

n2 ) and this yields∫
0<ηn(u)<s<u<t

h(s, u) ds du = O

(
1

n3

)
.

Now, noting that (ηmn(s) − ηn(s))(ηmn(u) − ηn(u)) = O( 1
n2 ), relation (17) be-

comes

E
(〈
Mn,i,j 〉2

t

) = 2
∫

0<s<u<t

(
ηmn(s) − ηn(s)

)(
ηmn(u) − ηn(u)

)
ds du + O

(
1

n3

)

=
(∫ t

0

(
ηmn(s) − ηn(s)

)
ds

)2

+ O

(
1

n3

)
.

Once again thanks to the development of E(〈Mn,i,j 〉t ) given by relation (13), we
deduce that

E
〈
Mn,i,j 〉2

t = (m − 1)2T 2

4m2n2 t2 + O

(
1

n3

)
.(19)

By (16) and (19), we deduce the convergence in L2 of n〈Mn,i,j 〉t toward (m−1)T
2m

t .

By Theorem 2.1 in Jacod [15], (
√

2mn
(m−1)T

Mn,i,j )1≤i,j≤q converges in law stably

to a standard q2-dimensional Brownian motion (Bij )1≤i,j≤q independent of W .
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Consequently, by Lemma 1 and Theorem 1, we obtain(√
mn

(m − 1)T

∫ t

0
Hi,j

s

(
Y i

ηmn(s) − Y i
ηn(s)

)
dY j

s , t ≥ 0
)

1≤i,j≤q

⇒stably
(∫ t

0
Hi,j

s

dB
ij
s√
2

, t ≥ 0
)

1≤i,j≤q

.

Finally, we complete the proof using relations (11), (12), Lemma 2 and once again
Lemma 1 to obtain√

mn

(m − 1)T
Umn,n ⇒stably U where Ut = 1√

2

q∑
i,j=1

Zt

∫ t

0
Hi,j

s dBij
s .

�

PROOF OF LEMMA 2. At first, we prove the uniform convergence in probabil-
ity toward zero of the normalized rest terms

√
nR

mn,n
t,i for i ∈ {1,2}. The conver-

gence of
√

nR̃
mn,n
t,i i ∈ {1,2} is a straightforward consequence of the previous one.

The main part of these rest terms can be represented as integrals with respect to
three types of supermartingales that can be classified through the following three
cases:

D
n,0,0
t = √

n

∫ t

0

(
s − ηn(s)

)
ds,

D
n,i,0
t = √

n

∫ t

0

(
Y i

s − Y i
ηn(s)

)
ds,

M
n,0,j
t = √

n

∫ t

0

(
s − ηn(s)

)
dY j

s ,

where (i, j) ∈ {1, . . . , q}2 and t ∈ [0, T ]. In the first case, the supermartingale is
deterministic of finite variation and its total variation on the interval [0, T ] has the
following expression:∫ T

0

∣∣dD
n,0,0
t

∣∣ = √
n

∫ T

0

(
s − ηn(s)

)
ds ≤ T 2

√
n
.

So, the process Dn,0,0 converges to 0 and is tight. In the second case, for i ∈
{1, . . . , q}, the supermartingale is also of finite variation and its total variation on
the interval [0, T ] has the following expression:∫ T

0

∣∣dD
n,i,0
t

∣∣ = √
n

∫ T

0

∣∣Y i
s − Y i

ηn(s)

∣∣ds.

It is clear that supnE(
∫ T

0 |dDn,i,0
s |) < ∞, which ensures the tightness of the pro-

cess Dn,i,0. Therefore, we only need to establish the convergence of D
n,i,0
t to-

ward 0 in L2(�), for t ∈ [0, T ]. In fact, we have

E
((

D
n,i,0
t

)2) = 2n

∫
0<s<u<t

E
((

Y i
s − Y i

ηn(s)

)(
Y i

u − Y i
ηn(u)

))
ds du.
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When s ≤ ηn(u), we have ηn(s) ≤ s ≤ ηn(u) ≤ u and by independence of the
Brownian motion increments, we deduce that the integrand term is equal to 0.
Otherwise, when s ≥ ηn(u), we apply the Cauchy–Schwarz inequality to get

E
((

D
n,i,0
t

)2) ≤ 2T

∫ t

0

(
u − ηn(u)

)
du ≤ 2

T 2

n
t.

It follows from all these that Dn,i,0 ⇒ 0. In the last case, for j ∈ {1, . . . , q}, the
process M

n,0,j
t is a square integrable martingale and its bracket has the following

expression: 〈
Mn,0,j 〉

T = n

∫ T

0

(
s − ηn(s)

)2
ds ≤ T 3

n
.

It is clear that supnE〈Mn,0,j 〉T < ∞, so we deduce the tightness of the process
〈Mn,0,j 〉 and the convergence Mn,0,j ⇒ 0.

Now thanks to property (P̃) and relation (11), it is easy to check that the
integrand processes Ki,mn,n

s and H
0,j,mn,n
s , introduced in relation (10), con-

verge uniformly in probability to their respective limits Ki
s = (Zs)

−1(ϕ̇s,0ϕ̄s,i −∑q
j=1(ϕ̇s,j )

2ϕ̄s,i) and H
0,j
s = (Zs)

−1ϕ̇s,j ϕ̄s,i , where ϕ̇s,j = ∇ϕj (Xs) and ϕ̄s,i =
ϕi(Xs). Therefore, by Theorem 1 we deduce that the integral processes given by

√
n

∫ t

0
Ki,mn,n

s

(
Y i

s − Y i
ηn(s)

)
ds and

√
n

∫ t

0
H 0,j,mn,n

s

(
s − ηn(s)

)
dY j

s

vanish. Consequently, we conclude using relation (11) that
√

nR
mn,n
i ⇒ 0 for i ∈

{1,2}.
We now proceed to prove that R

mn,n
3 ⇒ 0. The convergence of the process

R̃
mn,n
3 toward 0 is obviously obtained from the previous one. The main part of this

rest term can be represented as a stochastic integral with respect to the martingale
process given by

N
n,i,j
t = √

n

∫ t

0

(
Y i

s − Y i
ηn(s)

)
dY j

s ,

with (i, j) ∈ {1, . . . , q} × {1, . . . , q}. It was proven in Jacod and Protter [16] that√
n

T
Nn,i,j ⇒stably Bij

√
2
,

where (Bij )1≤i,j≤q is a standard q2-dimensional Brownian motion defined on an
extension probability space (�̃, F̃, (F̃t )t≥0, P̃) of (�,F, (Ft )t≥0,P), which is in-
dependent of W . Thanks to property (P̃) and relation (11), the integrand process
Hi,j,mn,n − Hi,j ⇒ 0 and once again by Theorem 1 we deduce that the integral
processes given by

√
n

∫ t

0

(
Hi,j,mn,n

s − Hi,j
s

)(
Y i

s − Y i
ηn(s)

)
dY j

s

vanish. All this allows us to conclude using relation (11). �
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3.2. Central limit theorem. Let us recall that the multilevel Monte Carlo
method uses information from a sequence of computations with decreasing step
sizes and approximates the quantity Ef (XT ) by

Qn = 1

N0

N0∑
k=1

f
(
X1

T ,k

) +
L∑

�=1

1

N�

N�∑
k=1

(
f

(
X

�,m�

T ,k

) − f
(
X

�,m�−1

T ,k

))
,

m ∈N \ {0,1} and L = logn

logm
.

In the same way as in the case of a crude Monte Carlo estimation, let us assume
that the discretization error

εn = Ef
(
Xn

T

) −Ef (XT )

is of order 1/nα for any α ∈ [1/2,1]. Taking advantage from the limit theorem
proven in the above section, we are now able to establish a central limit theorem
of Lindeberg–Feller type on the multilevel Monte Carlo Euler method. To do so,
we introduce a real sequence (a�)�∈N of positive terms such that

lim
L→∞

L∑
�=1

a� = ∞ and lim
L→∞

1

(
∑L

�=1 a�)p/2

L∑
�=1

a
p/2
� = 0

(W)
for p > 2

and we assume that the sample size N� depends on the rest of parameters by the
relation

N� = n2α(m − 1)T

m�a�

L∑
�=1

a�, � ∈ {0, . . . ,L} and L = logn

logm
.(20)

We choose this form for N� because it is a generic form allowing us a straightfor-
ward use of Toeplitz lemma that is a crucial tool used in the proof of our central
limit theorem. Indeed, property (W) implies that if (x�)�≥1 is a sequence converg-
ing to x ∈ R as � tends to infinity then

lim
L→+∞

∑L
�=1 a�x�∑L
�=1 a�

= x.

In the sequel, we will denote by Ẽ, respectively, Ṽar the expectation, respectively,
the variance defined on the probability space (�̃, F̃, P̃) introduced in Theorem 3.
We can now state the central limit theorem under strengthened conditions on the
diffusion coefficients.

THEOREM 4. Assume that b and σ are C1 functions satisfying the global Lip-
schitz condition (Hb,σ ). Let f be a real-valued function satisfying∣∣f (x) − f (y)

∣∣ ≤ C
(
1 + |x|p + |y|p)|x − y| for some C,p > 0.(Hf )
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Assume P(XT /∈ Df ) = 0, where Df := {x ∈ R
d;f is differentiable at x}, and that

for some α ∈ [1/2,1] we have

lim
n→∞nαεn = Cf (T ,α).(Hεn)

Then, for the choice of N�, � ∈ {0,1, . . . ,L} given by equation (20), we have

nα(
Qn −E

(
f (XT )

)) ⇒ N
(
Cf (T ,α), σ 2)

with σ 2 = Ṽar(∇f (XT ).UT ) and N (Cf (T ,α), σ 2) denotes a normal distribution.

The global Lipschitz condition (Hb,σ ) seems to be essential to establish our
result, since it ensures property (P). Otherwise, Hutzenthaler, Jentzen and Kloe-
den [14] prove that under weaker conditions on b and σ the multilevel Monte Carlo
Euler method may diverges whereas the crude Monte Carlo method converges.

PROOF OF THEOREM 4. To simplify our notation, we give the proof for
α = 1, the case α ∈ [1/2,1) is a straightforward deduction. Combining relations
(5) and (6) together, we get

Qn −E
(
f (XT )

) = Q̂1
n + Q̂2

n + εn,

where

Q̂1
n = 1

N0

N0∑
k=1

(
f

(
X1

T ,k

) −E
(
f

(
X1

T

)))
,

Q̂2
n =

L∑
�=1

1

N�

N�∑
k=1

(
f

(
X

�,m�

T ,k

) − f
(
X

�,m�−1

T ,k

) −E
(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

)))
.

Using assumption (Hεn), we obviously obtain the term Cf (T ,α) in the limit.

Taking N0 = n2(m−1)T
a0

∑L
�=1 a�, we can apply the classical central limit theorem

to Q̂1
n. Then we have nQ̂1

n

P→ 0. Finally, we have only to study the convergence of

nQ̂2
n and we will conclude by establishing

nQ̂2
n ⇒ N

(
0, Ṽar

(∇f (XT ).UT

))
.

To do so, we plan to use Theorem 2 with the Lyapunov condition and we set

Xn,� := n

N�

N�∑
k=1

Z
m�,m�−1

T ,k and

(21)
Z

m�,m�−1

T ,k := f
(
X

�,m�

T ,k

) − f
(
X

�,m�−1

T ,k

) −E
(
f

(
X

�,m�

T ,K

) − f
(
X

�,m�−1

T ,k

))
.

In other words, we will check the following conditions:

• limn→∞
∑L

�=1 E(Xn,�)
2 = Ṽar(∇f (XT ).UT ).
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• (Lyapunov condition) there exists p > 2 such that limn→∞
∑L

�=1 E|Xn,�|p = 0.

For the first one, we have

L∑
�=1

E(Xn,�)
2 =

L∑
�=1

Var(Xn,�)

=
L∑

�=1

n2

N�

Var
(
Z

m�,m�−1

T ,1

)
(22)

= 1∑L
�=1 a�

L∑
�=1

a�

m�

(m − 1)T
Var

(
Z

m�,m�−1

T ,1

)
.

Otherwise, since P(XT /∈ Df ) = 0, applying the Taylor expansion theorem twice
we get

f
(
X

�,m�

T

) − f
(
X

�,m�−1

T

)
= ∇f (XT ).U

m�,m�−1

T + (
X

�,m�

T − XT

)
ε
(
XT ,X

�,m�

T − XT

)
− (

X
�,m�−1

T − XT

)
ε
(
XT ,X

�,m�−1

T − XT

)
.

The function ε is given by the Taylor–Young expansion, so it satisfies

ε(XT ,X
�,m�

T − XT )
P−→

�→∞0 and ε(XT ,X
�,m�−1

T − XT )
P−→

�→∞0. By property (P), we

get the tightness of
√

m�

(m−1)T
(X

�,m�

T − XT ) and
√

m�

(m−1)T
(X

�,m�−1

T − XT ) and then
we deduce√

m�

(m − 1)T

((
X

�,m�

T − XT

)
ε
(
XT ,X

�,m�

T − XT

)
− (

X
�,m�−1

T − XT

)
ε
(
XT ,X

�,m�−1

T − XT

)) P−→
�→∞0.

So, according to Lemma 1 and Theorem 3 we conclude that√
m�

(m − 1)T

(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

)) ⇒stably ∇f (XT ).UT

(23)
as � → ∞.

Using (Hf ) it follows from property (P) that

∀ε > 0 sup
�

E

∣∣∣∣
√

m�

(m − 1)T

(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

))∣∣∣∣2+ε

< ∞.
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We deduce using relation (23) that

E

(√
m�

(m − 1)T

(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

)))k

→ Ẽ
(∇f (XT ).UT

)k
< ∞

for k ∈ {1,2}.
Consequently,

m�

(m − 1)T
Var

(
Z

m�,m�−1

T ,1

) → Ṽar
(∇f (XT ).UT

)
< ∞.

Hence, combining this result together with relation (22), we obtain the first condi-
tion using Toeplitz lemma. Concerning the second one, by Burkhölder’s inequality
and elementary computations, we get for p > 2

E|Xn,�|p = np

N
p
�

E

∣∣∣∣∣
N�∑
�=1

Z
m�,m�−1

T ,1

∣∣∣∣∣
p

≤ Cp

np

N
p/2
�

E
∣∣Zm�,m�−1

T ,1

∣∣p,(24)

where Cp is a numerical constant depending only on p. Otherwise, property (P)
ensures the existence of a constant Kp > 0 such that

E
∣∣Zm�,m�−1

T ,1

∣∣p ≤ Kp

mp�/2 .

Therefore,

L∑
�=1

E|Xn,�|p ≤ C̃p

L∑
�=1

np

N
p/2
� mp�/2

(25)

≤ C̃p

(
∑L

�=1 a�)p/2

L∑
�=1

a
p/2
� −→

n→∞ 0.

This completes the proof. �

REMARK 1. From Theorem 2, page 544 in [6], we prove a Berry–Esseen-
type bound on our central limit theorem. This improves the relevance of the above
result. Indeed, take α = 1 as in the proof, for Xn,0 = nQ̂1

n and Xn,� given by
relation (21), with � ∈ {1, . . . ,L}, put

s2
n =

L∑
�=0

E|Xn,�|2, ρn =
L∑

�=0

E|Xn,�|3

and denote by Fn the distribution function of n(Qn − Ef (Xn
T ))/sn. Then for all

x ∈ R and n ∈ N
∗ ∣∣Fn(x) − G(x)

∣∣ ≤ 6
ρn

s3
n

,(26)
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where G is the distribution function of a standard Gaussian random variable. If we
interpret the output of the above inequality as sum of independent individual path
simulation, we get

s2
n = 1

(m − 1)T
∑L

�=1 a�

×
(
a0 Var

(
f

(
X1

T

)) +
L∑

�=1

a�m
� Var

(
f

(
X

�,m�

T

) − f
(
X

�,m�−1

T

)))
.

According to the above proof, it is clear that sn behaves like a constant but getting
lower bounds for sn seems not to be a common result to our knowledge. Concern-
ing ρn, taking p = 3 in both inequalities (24) and (25) gives us an upper bound. In
fact, when f is Lipschitz, there exists a positive constant C depending on b, σ , T

and f such that

ρn ≤ C

(
∑L

�=1 a�)3/2

L∑
�=1

a
3/2
� .

For the optimal choice a� = 1, given in the below subsection, the obtained Berry–
Esseen-type bound is of order 1/

√
logn.

REMARK 2. Note that the above proof differs from the ones in Kebaier [17].
In fact, here our proof is based on the central limit theorem for triangular array
which is adapted to the form of the multilevel estimator, whereas Kebaier used
another approach based on studying the associated characteristic function. Further,
this latter approach needs a control on the third moment, whereas we only need to
control a moment strictly greater than two. Also, it is worth to note that the limit
variance in Theorem 4 is smaller than the limit variance in Theorem 3.2 obtained
by Kebaier in [17].

3.3. Complexity analysis. From a complexity analysis point of view, we can
interpret Theorem 4 as follows. For a total error of order 1/nα , the computational
effort necessary to run the multilevel Monte Carlo Euler method is given by the se-
quence of sample sizes specified by relation (20). The associated time complexity
is given by

CMMC = C ×
(
N0 +

L∑
�=1

N�

(
m� + m�−1))

with C > 0

= C ×
(

n2α(m − 1)T

a0

L∑
�=1

a� + n2α (m2 − 1)T

m

L∑
�=1

1

a�

L∑
�=1

a�

)
.

The minimum of the second term of this complexity is reached for the choice of
weights a∗

� = 1, � ∈ {1, . . . ,L}, since the Cauchy–Schwarz inequality ensures that



232 M. BEN ALAYA AND A. KEBAIER

L2 ≤ ∑L
�=1

1
a�

∑L
�=1 a�, and the optimal complexity for the multilevel Monte Carlo

Euler method is given by

CMMC = C ×
(

(m − 1)T

a0 logm
n2α logn + (m2 − 1)T

m(logm)2 n2α(logn)2
)

= O
(
n2α(logn)2)

.

It turns out that for a given discretization error εn = 1/nα to be achieved the com-
plexity is given by CMMC = O(ε−2

n (log εn)
2). Note that this optimal choice a∗

� = 1,
� ∈ {1, . . . ,L}, with taking a0 = 1 corresponds to the sample sizes given by

N� = (m − 1)T

m� logm
n2α logn, � ∈ {0, . . . ,L}.

Hence, our optimal choice is consistent with that proposed by Giles [8]. Never-
theless, unlike the parameters obtained by Giles [8] for the same setting [see re-
lation (1)], our optimal choice of the sample sizes N�, � ∈ {1, . . . ,L} does not
depend on any given constant, since our approach is based on proving a central
limit theorem and not on getting upper bounds for the variance. Otherwise, for the
same error of order εn = 1/nα the optimal complexity of a Monte Carlo method is
given by

CMC = O
(
n2α+1) = O

(
ε−2−1/α
n

)
which is clearly larger than CMMC. So, we deduce that the multilevel method is
more efficient. Also, note that the optimal choice of the parameter m is obtained
for m∗ = 7. Otherwise, any choice N0 = n2α(logn)β , 0 < β < 2, leads to the same
result. Some numerical tests comparing original Giles work [8] with the one of us
show that both error rates are in line. Here in Figure 1, we make a simple log–log
scale plot of CPU time with respect to the root mean square error, for European
call and with N0 = n2α(logn)1.9.

It is worth to note that the advantage of the central limit theorem is to construct
a more accurate confidence interval. In fact, for a given root mean square error
RMSE, the radius of the 90%-confidence interval constructed by the central limit
theorem is 1.64 × RMSE. However, without this latter result, one can only use
Chebyshev’s inequality which yields a radius equal to 3.16 × RMSE. Finally, note
that, taking α = 1/2 still gives the optimal rate and allows us to cancel the bias in
the central limit theorem due to the Euler discretization.

4. Conclusion. The multilevel Monte Carlo algorithm is a method that can be
used in a general framework: as soon as we use a discretization scheme in order to
compute quantities such as Ef (XT ), we can implement the statistical multilevel
algorithm. And this is worth because it is an efficient method according to the
original work by Giles [8]. The central limit theorems derived in this paper fill the
gap in literature and confirm superiority of the multilevel method over the classical
Monte Carlo approach.
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FIG. 1. Comparison of both routines.
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