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ON THE STABILITY OF SOME CONTROLLED MARKOV CHAINS
AND ITS APPLICATIONS TO STOCHASTIC APPROXIMATION

WITH MARKOVIAN DYNAMIC

BY CHRISTOPHE ANDRIEU1, VLADISLAV B. TADIĆ AND MATTI VIHOLA2

University of Bristol, University of Bristol and University of Jyväskylä

We develop a practical approach to establish the stability, that is, the re-
currence in a given set, of a large class of controlled Markov chains. These
processes arise in various areas of applied science and encompass important
numerical methods. We show in particular how individual Lyapunov func-
tions and associated drift conditions for the parametrized family of Markov
transition probabilities and the parameter update can be combined to form
Lyapunov functions for the joint process, leading to the proof of the desired
stability property. Of particular interest is the fact that the approach applies
even in situations where the two components of the process present a time-
scale separation, which is a crucial feature of practical situations. We then
move on to show how such a recurrence property can be used in the context of
stochastic approximation in order to prove the convergence of the parameter
sequence, including in the situation where the so-called stepsize is adaptively
tuned. We finally show that the results apply to various algorithms of interest
in computational statistics and cognate areas.

1. Introduction: Recurrence of controlled MC and compound drifts. The
class of controlled Markov chain processes underpins numerous models or algo-
rithms encountered in various areas of engineering or science (e.g., control, EM al-
gorithm, adaptive MCMC). Consider the space (X,B(X)) where X ⊂ R

nx for some
nx ≥ 1, a parametrized family of Markov transition probabilities {Pθ , θ ∈ �} (for
some set � ⊂ R

nθ ) such that for any θ, x ∈ �×X, Pθ(x, ·) is a probability distribu-
tion on (X,B(X)). The class of controlled Markov chains we consider in this paper
consists of the class of processes defined on ((� × X)N, (B(�) ⊗ B(X))⊗N) ini-
tialized at some (θ0,X0) = (θ, x) ∈ � × X, with probability distribution denoted
Pθ,x(·) [and associated expectation Eθ,x(·)] and defined recursively for i ≥ 0 as
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follows:

Xi+1|(θ0,X0,X1, . . . ,Xi) ∼ Pθi
(Xi, ·),

(1.1)
θi+1 := φi+1(θ0,X0,X1, . . . ,Xi+1),

for a family of mappings {φi :�×Xi+1 → �}. The present paper is concerned with
the stability of the sequence {θi,Xi}, or more precisely, the recurrence of such a
process in a set C ⊂ X × �; that is, we aim to develop practically relevant tools
to establish that {θi,Xi} visits C infinitely often Pθ,x-a.s. Such a form of stability
is central to establish important properties of the process which, depending on the
context, range from the existence of an invariant distribution for the process or its
marginals to the convergence of the parameter sequence {θi} to a set of values of
particular interest. This is largely an open problem despite its practical relevance
as illustrated and discussed later in the paper. The following toy example illustrates
the potential difficulties one may face. Let X = {0,1} and consider the transition
matrix

Pθ =
[

1 − exp
(−|θ |) exp

(−|θ |)
exp
(−|θ |) 1 − exp

(−|θ |)
]
,

with � = R. This transition matrix has π = (1/2,1/2) as invariant distribution,
and its second eigenvalue is λ = 1−2 exp(−|θ |). Set θi+1 = θi +a/i[1/2−Xi+1]
for some a > 0. One could expect {θi} to converge to a finite value, but following
the argument in [16], Section 6.3, one can in fact show that for some values of a,
with positive probability, {Xi} may get stuck in either states while {θi} diverges.
Ergodicity is lost here due to the fact that C0 = � × {0} or C1 = � × {1} is not
visited infinitely often with probability one.

The remainder of the paper is organized as follows. In Section 2 we introduce
our methodology, which relies on a classical Lyapunov function/drift argument
to establish recurrence of the joint process {θi,Xi} to a set C (Lemma 1). Our
main result in this section is Theorem 1 where it is shown how individual drift
conditions of type (2.2) and (2.3) characterizing the evolution from Xi to Xi+1
and θi to θi+1 in (1.1), respectively, can be combined into a joint drift condition
in order to characterize the joint dynamic and establish recurrence to a set C. It
is worth pointing out that the result applies even in situations where this dynamic
exhibits a time-scale separation, which, as we shall see in the application section, is
of practical interest. This result captures the main ideas behind our general strategy
to establish recurrence, but for simplicity and clarity, remain unspecific about how
the abstract conditions may be relevant in practice.

Section 3 contains the main practical results of the paper, Theorem 2 and its
corollary, where we show how familiar (e.g., [13]), but θ -dependent, drift condi-
tions characterizing the evolution of homogeneous Markov chains with transitions
{Pθ , θ ∈ �} [see assumption (A2)] can be combined with a class of drift conditions
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characterizing the evolution of the parameter θ [see assumption (A3)] in order to
apply our earlier abstract results for the stability of the joint process.

In Section 4 we focus on a practically important class of updates for the param-
eter θ , known as stochastic approximation [7], which covers all our subsequent
applications. The corresponding processes aim to find the zeroes of a function of
the parameter θ and can be seen as noisy gradient algorithms. The aims of the
section are to introduce sufficient background for the application section and to
establish Theorem 3. The result of this theorem highlights the central role played
by recurrence in an appropriate set C in this scenario, in order to ensure that such
numerical methods are stable and that they achieve their goal.

Finally in Section 5 we show how the results established earlier apply in the
context of adaptive Markov chain Monte Carlo (MCMC) algorithms, a particular
type of MCMC algorithms which aim to optimize their performance “on the fly.”
More specifically, we show that our general results apply to both the AM algorithm
of [11] but also the coerced acceptance probability algorithm [3, 6] and a novel
variation.

2. Compound Lyapunov functions for some two timescale controlled
Markov chains. The approach we adopt throughout this paper relies on a classi-
cal Lyapunov function and drift argument commonly used in the (homogeneous)
Markov chain setting [13]. Due to the potential time inhomogeneity of the process
above, it is useful to consider a sequence of Lyapunov functions {Wi} satisfying a
sequence of drift conditions and leading to the following classical result, provided
here together with its proof (in Appendix A) for completeness only. Hereafter,
for any i ≥ 0 we let Fi := σ(θ0,X0,X1, . . . ,Xi) and for any u, v ∈ R

2 we define
u ∨ v := max{u, v} and u ∧ v := min{u, v}.

LEMMA 1. Let {Wi} be a sequence of functions Wi :� × X → [0,∞) such
that for the controlled Markov chain defined in (1.1) for all θ, x ∈ � × X:

(1) for all i ≥ 0, Eθ,x[Wi(θi,Xi)] < ∞,
(2) there exist C ⊂ � × X, a sequence {δi, i ≥ 1} of nonnegative scalars such

that
∑∞

i=1 δi = ∞ and an integer iw < ∞ such that for all i ≥ iw , and whenever
(θi,Xi) /∈ C, Pθ,x -a.s.

Eθ,x

[
Wi+1(θi+1,Xi+1) | Fi

]≤ Wi(θi,Xi) − δi+1.(2.1)

Then
∑n

i=1 I{(θi,Xi) ∈ C} = ∞, Pθ,x-a.s.

The main result of this section consists of showing that it is possible to construct
joint Lyapunov function sequences {Wi} which satisfy drifts to a set C, such that
the conditions of Lemma 1 hold, from two separate Lyapunov functions w(θ) and
V (x) each satisfying an individual drift condition characterizing the two respective
updates involved in the definition of {θi,Xi} in (1.1). The form of these individual
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drifts is given below in (2.2) and (2.3): it is worth pointing out that we allow
the drift on w(θ) to vanish with time since {γi} may be allowed to vanish. This
is practically very relevant since in many situations of interest the “size” of the
increments |θi+1 − θi | may vanish as i → ∞ while that of |Xi+1 − Xi | may not.
The role of the sequence {γi} is to accommodate the possibility of two distinct
timescales for the two updates in (1.1)—examples are numerous and some will be
presented later in Sections 4 and 5. We will consider two scenarios which share
very similar assumptions, and will be labeled with s ∈ {0,1}.

(A1) Suppose V : X → [1,∞) and w :� → [1,∞) are two functions such that
there exist functions 
w,
V :� × X →R, a set C ⊂ � × X, a sequence of strictly
positive integers {γi, i ≥ 1} such that:

(1) {γi} is bounded,
(2) for some integer i0 ≥ 0, Pθ,x -a.s. the following individual drifts hold for all

i ≥ i0:

Eθ,x

[
w(θi+1) | Fi

]≤ w(θi) − γi+1
w(θi,Xi),(2.2)

Eθ,x

[
V (Xi+1) | Fi

]≤ V (Xi) − 
V (θi,Xi)(2.3)

and Eθ,x[w(θi)] < ∞ and Eθ,x[V (Xi)] < ∞,
(3) there exist constants δ ∈ (0,∞) and υv,υw ∈ (0,1] such that

υw


w(θ, x)

w1−υw(θ)
+ υv


V (θ, x)

V 1−υv (x)
≥ δws×υw(θ) for (θ, x) /∈ C(2.4)

and

sup
(θ,x)∈C

∣∣
w(θ, x)
∣∣∨ ∣∣
V (θ, x)

∣∣< ∞.

The following theorem establishes two recurrence results for {θi,Xi} to C. The
first result requires the strongest set of assumptions but also establishes a stronger
result, namely that the first moment of the return times to C are uniformly bounded
in time. The second result requires weaker assumptions but does not guarantee the
existence of a uniform in time upper bound on characteristics of the return times.
A particular contribution here is the rescaling of either the Lyapunov function w(θ)

or V (x) in order to allow for their respective drift terms to be compared on the
same time scale.

THEOREM 1. Consider the controlled Markov chain defined in (1.1). Define
the sequences of functions {Wi :� × X → [1,∞)} and {Ui :� × X → [1,∞)} for
i ≥ 1 and θ, x ∈ � × X as follows:

Wi(θ, x) := V υv(x) + wυw(θ)/γi and Ui(θ, x) := γiWi(θ, x),

where {γi}, w(·), V (·), υv and υw are as in (A1), which is assumed to hold. Then:
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(1) if s = 1 and �̄ := lim supi→∞(γ −1
i+1 −γ −1

i ) < δ, then for any δW ∈ (0, δ − �̄)

there exists iW ≥ i0 such that for any i ≥ iW , whenever (θi,Xi) /∈ C, Pθ,x-a.s.

Eθ,x

[
Wi+1(θi+1,Xi+1) | Fi

]≤ Wi(θi,Xi) − δW ,(2.5)

and Eθ,x[Wi(θi,Xi)] < ∞, and
∑∞

i=1 I{(θi,Xi) ∈ C} = ∞, Pθ,x -almost surely,
(2) if s = 0, {γi} is nonincreasing then for any i ≥ i0, whenever (θi,Xi) /∈ C,

Pθ,x-a.s.

Eθ,x

[
Ui+1(θi+1,Xi+1) | Fi

]≤ Ui(θi,Xi) − δγi+1(2.6)

and moreover Eθ,x[Ui(θi,Xi)] < ∞. If in addition
∑∞

i=1 γi = ∞, then
∑∞

i=1 I{(θi,

Xi) ∈ C} = ∞, Pθ,x-almost surely.

PROOF. By (A1), Jensen’s inequality and the classical concavity identity (1 +
x)υ ≤ 1 + υx for x ∈ [−1,∞) and υ ∈ (0,1], we have for any i ≥ i0 and Pθ,x-a.s.

Eθ,x

[
Wi+1(θi+1,Xi+1) | Fi

]
≤ V υv(Xi)

(
1 − 
V (θi,Xi)

V (Xi)

)υv

+ γ −1
i+1w

υw(θi)

(
1 − γi+1


w(θi,Xi)

w(θi)

)υw

(2.7)

≤ V υv(Xi)

(
1 − υv


V (θi,Xi)

V (Xi)

)
+ γ −1

i+1w
υw(θi)

(
1 − γi+1υw


w(θi,Xi)

w(θi)

)

= Wi(θi,Xi) + (γ −1
i+1 − γ −1

i

)
wυw(θi) −

(
υv


V (θi,Xi)

V 1−υv (Xi)
+ υw


w(θi,Xi)

w1−υw(θi)

)
.

Now consider the scenario where s = 1. Let δW ∈ (0, δ − �̄) and iW ≥ i0 be such
that supi≥iw

(γ −1
i+1 −γ −1

i ) < δ − δW . Then, for all i ≥ iW and (θi,Xi) /∈ C, Pθ,x-a.s.

Eθ,x

[
Wi+1(θi+1,Xi+1) | Fi

]≤ Wi(θi,Xi) − δW .

Let C := [supi≥i0
γi(γ

−1
i+1 − γ −1

i )] ∨ [sup(θ,x)∈C |γ̄i0
w(θ, x)| ∨ |
V (θ, x)|] with
γ̄i0 = supi≥i0

γi . Now for any i ≥ i0 and (θi,Xi) ∈ � × X we have, starting with
the first inequality in (2.7),

Eθ,x

[
Wi+1(θi+1,Xi+1) | Fi

]
≤ (1 + C)υvV υv (Xi) + (1 + C)υw

[
γi

(
γ −1
i+1 − γ −1

i

)+ 1
]
wυw(θi)/γi

≤ (1 + C)2Wi(θi,Xi)

for s ∈ {0,1}. From these inequalities we therefore deduce that for any i ≥ i0,
Eθ,x[Wi(θi,Xi)] ≤ (1 + C)2(i−i0)Eθ,x[Wi0(θi0,Xi0)] < ∞ where the last inequal-
ity follows from our assumptions. For the scenario where s = 0 with Ui(θ, x) =
γiWi(θ, x), we obtain from (2.7)

Eθ,x

[
Ui+1(θi+1,Xi+1) | Fi

]≤ Ui(θi,Xi) + (γi+1 − γi)Wi(θi,Xi)

+ γi+1
(
γ −1
i+1 − γ −1

i

)
wυw(θi)

− γi+1

(
υv


V (θi,Xi)

V 1−υv (Xi)
+ υw


w(θi,Xi)

w1−υw(θi)

)
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and since

(γi+1 − γi)Wi(θ, x) + γi+1
(
γ −1
i+1 − γ −1

i

)
wυw(θ) = (γi+1 − γi)V (x)

and {γi} is nonincreasing, we conclude (2.6) for (θi,Xi) ∈ Cc. Notice further that
Ui(θ, x) ≤ γ1Wi(θ, x), implying Eθ,x[Ui(θi,Xi)] < ∞ for any i ≥ i0. We now
conclude in both scenarios with Lemma 1. �

Some comments are in order concerning the choice of the Lyapunov functions
and the assumptions. First we clarify the role of υv and υw , which are addi-
tional degrees of freedom one may find helpful to establish (2.4) in regions of
�×X where 
V (θ, x) [resp., 
w(θ, x)] is negative and of large magnitude, but V

(resp., w) is itself large. Notice also that more general concave transformations of
V and w could be considered for the definition of Wi and Ui , but we do not pursue
this here. We would also like to point out that other Lyapunov functions of the form
Uα

i (θ, x) := γ α
i Wi(θ, x) for α ≥ 0 may be considered but we have found the sce-

narios α = 0 and α = 1 to be of interest only. Finally whereas it is clear that (2.4) is
stronger for s = 1 than s = 0, we also note that lim supi→∞(γ −1

i+1 −γ −1
i ) < δ − δW

implies
∑∞

i=1 γi = ∞.
In the next section we consider a practically relevant scenario encountered in

practice, for which we identify C and {Wi}, but also establish an even stronger drift
than in (2.5). We will show in Section 5 that such results are satisfied in realistic
scenarios.

3. Simultaneous θ -dependent drift conditions and stability. The results
presented in the previous section are rather abstract since 
w,
V and C are not
specified. Here we add some structure, and in particular, show how a simultane-
ous drift condition on the family of Markov transition probabilities Pθ for θ ∈ �,
where the dependence on θ is explicit, can be used to prove the stability of the se-
quence {θi,Xi} to a well-identified set C ⊂ �× X. For ease of exposition we focus
throughout this section on the situation where φi := φγi

for some family of updates
{φγ :� × X → �,γ ∈ (0, γ +]} and a positive sequence {γi} ⊂ (0, γ +]N, allowing
us to define the update θi+1 = φγi+1(θi,Xi+1) for i ≥ 0. This directly covers most
relevant applications in computational statistics and can be easily generalized. As
we shall see, the realistic assumptions we use lead, in fact, to stronger results than
those of the previous section. For any f : X → R we use the standard notation
Pθf (x) := ∫

X Pθ(x,dy)f (y). The θ -dependent simultaneous drift conditions we
consider here are as follows:

(A2) The family or Markov transition probabilities {Pθ , θ ∈ �} is such that
there exist:

(1) V : X → [1,+∞) and C ⊂ X such that supx∈C V (x) < +∞,
(2) a(·), b(·) :� → [0,+∞) and ι ∈ [0,1]
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such that for any θ, x ∈ � × X,

PθV (x) ≤ [V (x) − a−1(θ)V ι(x)
]
I{x /∈ C} + b(θ)I{x ∈ C}.

For functions v(·) :� → R we define the level sets VM := {θ ∈ � :v(θ) ≤ M} for
all M ≥ 0, and for any set A we will denote Ac the complement of A in either �

or X. Notice that assumption (A2) implies that infθ∈� a(θ) > 0. The situations we
are interested in are those for which Ac

M �= ∅ for any M > 0. Hereafter it will be
convenient to denote for any θ, x ∈ � × X, γ ∈ (0, γ +] and f :� × X →R

nf

Pθ,γ f (θ, x) :=
∫

X
Pθ(x,dy)f

(
φγ (θ, y), y

)
.

(A3) The family of mappings {φγ :� × X → �,γ ∈ (0, γ +]} is such that
there exists a Lyapunov function w(·) :� → [1,∞) such that [with {Pθ , θ ∈ �},
V (·),C, a(·), b(·) and ι as in (A2)]:

(1) for any M > 0, supθ∈WM
a(θ) < ∞ and limM→∞ supθ∈Wc

M
b(θ)/w(θ) = 0,

(2) there exists β ∈ [0,1], c(·), d(·) :� → [0,∞) and e(·) :� → [1,∞) such
that for all γ ∈ (0, γ +] and θ, x ∈ � × X,

Pθ,γ w(θ, x) ≤ w(θ) − γw(θ)

(
Vβ(θ, x)I{x /∈ C} + d(θ)I{x ∈ C}),

where Vβ(θ, x) := c(θ) + V β(x)/e(θ) and
(3) c(·), d(·) :� → [0,∞) are bounded, limM→∞ supθ∈Wc

M
[c(θ) ∨ d(θ)] = 0

and for any M > 0, supθ∈WM
e(θ) < ∞,

(4) 
(·) : [0,∞) →R is such that:

(a) 
(0) > 0 and it is continuous in a neighborhood of 0,
(b) there exists p
 ∈ (0, ι/β] such that for all M > 0 there exists C
,M > 0,

such that for all z ≥ M ∣∣
(z)
∣∣≤ C
,M × zp
,

(5) for any ε > 0,

sup
θ,x∈Ṽε

a(θ)w(θ)e−p
(θ)

V ι−p
β(x)
< ∞,

where Ṽε := {θ, x :V β(x)/e(θ) ≥ ε}.
REMARK 1. The conditions above may appear abstract, but are motivated by

the following concrete situations:

(1) The simultaneous fixed-θ drift conditions (A2) can be established in nu-
merous situations of practical interest. Examples are given in Section 5, where
the transition probabilities share the same invariant distribution, but it should be
pointed out that such drift conditions can also be established in situations of inter-
est where each transition kernel Pθ has its own invariant distribution πθ ; this is the
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case for example in the context of the stochastic approximation implementation
of the EM algorithm in [4]. Other examples can be found in [7] for algorithms
used in the area of digital communications, although the dependence on θ is never
used.

(2) Typically the function 
(·) in (A3) will take the form of a polynomial, as
a byproduct of a tractable approximation of w(φγ (θ, y)) in terms of w(θ). For
example, in the situation where ϑ = φγ (θ, y) = θ + γH(θ, y), which corresponds
to the standard stochastic approximation framework (see Section 4), a Taylor ex-
pansion of w(ϑ) around θ will lead to

w(ϑ) ≤ w(θ) + γ
〈
H(θ, y),∇w(θ)

〉+ 1
2γ 2w̄′′ × ∣∣H(θ, y)

∣∣2
whenever w̄′′ := supθ∈� |∇2w(θ)| < ∞. With appropriate assumptions on H(θ,

y), one can apply Pθ to both sides of this inequality and hence obtain a drift con-
dition on w(·) of the form given in (A3).

(3) The condition required on p
 ∈ (0, ι/β] can be understood as being a trade-
off between the strength of the drift in (A2) and the strength of unfavorable updates
θ+ = φγ (θ, x+) such that w(θ+) � w(θ).

Hereafter for any ε ∈ (0,
(0)) we will denote

�ε := {γ, γ̄ ∈ (0, γ +] :γ −1 − γ̄ −1 < 
(0) − ε
}
,

where we omit the dependence on γ + for simplicity.

THEOREM 2. Assume that {Pθ , θ ∈ �} and {φγ , γ ∈ (0, γ +]} satisfy (A2)
and (A3). Then for any ε ∈ (0,
(0)) there exist λ∗ ∈ [1,∞), δ,M∗ ∈ (0,+∞)

such that for any γ, γ̄ ∈ �ε and θ, x /∈ WM∗ × C,

Pθ,γ {λ∗V + w/γ }(θ, x) ≤ λ∗V (x) + w(θ)/γ̄ − δ
[
V ι(x)/a(θ) + w(θ)

]
.(3.1)

COROLLARY 1. Let {θi,Xi} be the controlled Markov chain process as de-
scribed in equation (1.1) with for any i ≥ 1 φi(θ0, x0, x1, . . . , xi) := φγi

(θi−1, xi)

for a family {φγ :� × X → �,γ ∈ (0, γ +]} and some real positive sequence {γi}.
Assume further that {Pθ , θ ∈ �} and {φγ , γ ∈ (0, γ +]} satisfy (A2), (A3) and that
{γi} is such that

ε̄ := 
(0) − lim sup
i→∞

(
γ −1
i+1 − γ −1

i

)
> 0.(3.2)

Then, for any ε ∈ (0, ε̄) there exists M∗ as in Theorem 2 such that the set WM∗ ×C
is visited infinitely often Pθ,x -a.s. by {θi,Xi}.

PROOF. Let ε ∈ (0, ε̄), δ ∈ (0,1], λ∗ > 1 and M∗ > 0 be as in Theorem 2,
and define the family of (Lyapunov) functions {Wi(θ, x) := λ∗V (x) + w(θ)/γi}.
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From the assumption on {γi} there exists i0 ∈N such that for any i ≥ i0 and θ, x /∈
WM∗ × C

Pθ,γi
Wi(θ, x) ≤ Wi−1(θ, x) − δ

[
V ι(x)/a(θ) + w(θ)

]
.

The result follows from Lemma 1 since infθ∈� w(θ) > 0. �

REMARK 2. One can notice that:

(1) in the case where γi = c0/(c1 + i)a (3.2) is satisfied for any c0 > 0 and
a ∈ (0,1), and for c0 < 
(0) when a = 1;

(2) in the case where {γi = γ ≤ γ +} is constant, W0(θ, x) = λ∗V (x) + w(θ)

and for any θ ∈ �, a(θ) ≤ Cwκ(θ) for κ > 0, then one may show that for any
i ≥ i0 and θ, x /∈WM∗ × C

Pθ,γ W0(θ, x) ≤ W0(θ, x) − δ′Wι/(1+κ)
0 (θ, x).

Indeed, from a standard convexity inequality, for any l ∈ (0,1],

l
V ι(x)

w(θ)κ
+ (1 − l)w(θ) ≥

(
V ι(x)

w(θ)κ

)l

w1−l(θ),(3.3)

which, with the choice l̄ = 1/(1 +κ), leads to

V ι(x)/wκ(θ) + w(θ) ≥ l̄V ι(x)/wκ(θ) + (1 − l̄)w(θ) ≥ V ι/(1+κ)(x).

As a result we obtain [noting that, without loss of generality, one can always take
C ≥ 1 in the upper bound of a(·) above]

V ι(x)/a(θ) + w(θ) ≥ C−12
1

2

[
V ι(x)/wκ(θ) + w(θ)

]

≥ 1

2C

[
V ι/(1+κ)(x) + w(θ)

]

≥ 1

2C

[
V ι/(1+κ)(x) + wι/(1+κ)(θ)

]
≥ C−12−1−ι/(1+κ)(V (x) + w(θ)

)ι/(1+κ)
,

and we conclude. This suggests the possibility of precisely characterizing the re-
turn times to WM∗ × C, as this form of drift condition is known to lead to the
existence of polynomial moments of return times.

PROOF OF THEOREM 2. Choose ε ∈ (0,
(0)) and ε− > 0 such that for any
|z| ≤ ε−, |
(0) − 
(z)| ≤ ε/2. This implies

sup
γ,γ̄∈�ε

(
γ −1 − γ̄ −1)− inf{z:|z|≤ε−}
(z) ≤ 
(0) − ε + ε/2 − 
(0) = −ε/2.(3.4)
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Now let M0 ≥ 0 be such that supθ∈Wc
M0

d(θ) ≤ ε− and supθ∈Wc
M0

c(θ) ≤ ε−/2.

From (A2) and (A3) we have for (θ, x) ∈ � × X and λ ∈ (0,∞)

Pθ,γ {λV + w/γ }(θ, x)

≤ λ
[
V (x) − a−1(θ)V ι(x)

]
I{x /∈ C} + λb(θ)I{x ∈ C}

+ w(θ)/γ − w(θ)

(
Vβ(θ, x)I{x /∈ C} + d(θ)I{x ∈ C}).

Note that for (θ, x) ∈ WM0 × Cc, Vβ(θ, x) ≥ M̄−1
0 := 1/ supθ∈WM0

e(θ) > 0 from
(A3)(3), and therefore from (A3)(4)(b)

w(θ)
∣∣
(Vβ(θ, x)

)∣∣≤ C

,M̄−1

0
M0 sup

θ∈�

(
e−1(θ) + c(θ)

)p
 × V p
β(x),

and supθ∈WM0

(d(θ)) < ∞ as 
(·) is bounded on compact sets. In addition

supθ∈� d(θ) < ∞. Let now

C′

,M0

:=
[
M0C
,M̄−1

0
sup
θ∈�

(
e−1(θ) + c(θ)

)p

]
∨
[
M0 sup

θ∈WM0



(
d(θ)

)]
< ∞,

notice that ι ≥ p
β , and recall that V ≥ 1. Then we have for γ, γ̄ ∈ �ε

Pθ,γ {λV + w/γ }(θ, x) ≤ λV (x) + w(θ)/γ̄ + �(θ, x),

with

�(θ, x) := −λV (x) + λ
[
V (x) − a−1(θ)V ι(x)

]
I{x /∈ C}

+ λb(θ)I{x ∈ C} + (
(0) − ε
)
w(θ)

(3.5)
− 


(
Vβ(θ, x)I{x /∈ C} + d(θ)I{x ∈ C})w(θ)I

{
θ ∈ Wc

M0

}
+ C′


,M0
V ι(x)I{θ ∈ WM0}.

It will be convenient below to refer to the following inequality:

�(θ, x) ≤ −δ̃
[
V ι(x)/a(θ) + w(θ)

]
,(3.6)

for (θ, x) /∈W
M̃

×S and various instantiations of δ̃, M̃, λ > 0 and S ⊂ X. Our ulti-
mate aim is to prove that under the stated assumptions there exist δ, λ∗ ∈ (0,+∞)

and M∗ ≥ M0 such that (3.6) holds for (θ, x) ∈ (WM∗ × C)c. For any M ≥ M0, we
use the following partition:

(WM × C)c = (WM0 × Cc)∪ (Wc
M0

× Cc)∪ (Wc
M × C

)
,

which leads us to consider three cases, (a), (b) and (c), from left to right.
(a) For (θ, x) ∈ WM0 × Cc and any λ > 0, we have

�(θ, x) ≤ [
(0) − ε
]
w(θ) − λV ι(x)/a(θ) + C′


,M0
V ι(x)

≤ [
(0) − ε
]

sup
θ∈WM0

w(θ) + V ι(x)
[
C′


,M0
− λ

/
sup

ϑ∈WM0

a(ϑ)
]
,
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where we note that supϑ∈WM0
a(ϑ) < ∞ from (A3)(1). Now, from our choice of

M0 and since V ≥ 1 and infϑ∈� a(ϑ) > 0, we conclude about the existence of
λa, δa > 0 such that for all λ ≥ λa , (θ, x) ∈WM0 × Cc

�(θ, x) ≤ [
(0) − ε
]
M0 + V ι(x)

[
C′


,M0
− λ

/
sup

ϑ∈WM0

a(ϑ)
]

≤ −δa

[
V ι(x)/a(θ) + w(θ)

]
.

Therefore (3.6) is satisfied with M̃ = M0, any λ ≥ λa and δ̃ = δa .
(b) For (θ, x) ∈ Wc

M0
× Cc and any λ > 0, we have

�(θ, x) ≤ −λV ι(x)/a(θ) + [
(0) − ε − 

(
Vβ(θ, x)

)]
w(θ),

and we seek to show that there exists λb = λi ∨ λii and δb = δi ∧ δii > 0 (where
λi, λii > 0 and δi, δii > 0 are given below in the proof) such that for all λ ≥ λb and
(θ, x) ∈ Wc

M0
× Cc, (3.6) is satisfied with δ̃ = δb. In what follows we will use the

following intermediate results. From (A3)(5) we have that for our earlier choice of
ε− and any (θ, x) ∈ Wc

M0
× Cc, the condition

Vβ(θ, x) = V β(x)

e(θ)
+ c(θ) ≥ ε− implies

V β(x)

e(θ)
≥ ε− − sup

ϑ∈WMc
0

c(ϑ) ≥ ε−/2,

and therefore that for q ∈ {0,p
}

sup
(Wc

M0
×Cc)∩{θ,x:Vβ(θ,x)≥ε−}

a(θ)w(θ)e−q(θ)

V ι−qβ(x)
≤ Cε− < ∞.(3.7)

Indeed the case q = p
 is true by assumption and for V β(x)/e(θ) ≥ ε−/2

a(θ)w(θ)e−p
(θ)

V ι−p
β(x)
= a(θ)w(θ)

V ι(x)

(
V β(x)

e(θ)

)p


≥ a(θ)w(θ)

V ι(x)
(ε−/2)p


from which we conclude. We now partition Wc
M0

× Cc by considering the two
following subsets:

(i) From our choice of M0 and ε− and (3.4), we deduce that on the subset
(Wc

M0
× Cc) ∩ {θ, x :Vβ(θ, x) < ε−}


(0) − ε − 

(
Vβ(θ, x)

)≤ −ε/2,

and consequently

�(θ, x) ≤ −λV ι(x)/a(θ) − w(θ)ε/2,

and we conclude about the existence of λi, δi > 0 such that (3.6) holds for any
λ ≥ λi and δ̃ = δi .

(ii) By our assumption on 
(·) there exists C′

,ε− > 0 such that for any z ≥ ε−


(0) − ε − 
(z) ≤ C ′

,ε−zp
.
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Consequently we deduce that on (Wc
M0

× Cc) ∩ {θ, x :Vβ(θ, x) ≥ ε−}

�(θ, x) ≤ V ι(x)

a(θ)

[
C′


,ε−
a(θ)w(θ)

V ι(x)

(
V β(x)

e(θ)
+ c(θ)

)p


− λ

]

≤ V ι(x)

a(θ)

[
2p
C′


,ε−
a(θ)w(θ)e(θ)−p


V ι−p
β(x)
− λ

]
.

We now choose λ > 2p
C′

,ε−Cε− , and from (3.7) with q = 0 we have V ι(x)/

a(θ) ≥ (ε−/2)p
C−1
ε− w(θ) and therefore

�(θ, x) ≤ 1

2

[
V ι(x)

a(θ)
+ w(θ)(ε−/2)p
C−1

ε−

](
2p
C′


,ε−Cε− − λ
)
.

We conclude about the existence of λii, δii > 0 such that (3.6) holds for any λ ≥ λii

and δ̃ = δii .
(c) First, we note from our choice of M0, (3.4) and (3.5) that for any θ, x ∈

Wc
M0

× C and λ > 0 the function �(θ, x) is upper bounded by

�(θ, x) ≤ −λV (x) + λb(θ) + [
(0) − ε − 

(
d(θ)

)]
w(θ)

≤ −λV (x) + [λb(θ)/w(θ) − ε/2
]
w(θ).

We now show that for any λ ∈ (0,+∞) there exist Mλ ∈ [M0,+∞) and δλ ∈
(0,+∞) such that for all θ, x ∈ Wc

Mλ
× C, (3.6) is satisfied with δ̃ = δλ, a function

of λ. From our last inequality and since ι ∈ [0,1] and V ≥ 1, for any M ≥ M0 and
θ, x ∈ Wc

M × C

�(θ, x) ≤ −λ
[

inf
ϑ∈�

a(ϑ)
]
V ι(x)/a(θ) +

[
λ sup

ϑ∈Wc
M

b(ϑ)/w(ϑ) − ε/2
]
w(θ).

We conclude about the existence of Mλ and δλ as above from our assumption on
b(·).

We now conclude by letting λ∗ ≥ λa,b = λa ∨ λb, M∗ ≥ Mλa∨λb
and δ =

δλa∨λb
∧ δa ∧ δb. �

4. The central role of stability in the context of stochastic approximation
with Markovian dynamic. In this section we illustrate the central role played
by the form of stability considered in this paper to establish that some controlled
Markov chains of practical relevance possess some desired properties. We focus
on a particular class of controlled Markov chains driven by a so-called stochastic
approximation recursion (also known as the Robbins–Monro algorithm). The mo-
tivation for such algorithms, described below, is to find the roots of the function
h(·) :� →R

nθ

h(θ) :=
∫

X
H(θ, x)πθ (dx),
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for a family of functions {H(θ, x) :�× X → �} and a family of probability distri-
butions {πθ , θ ∈ �} defined on some space X×B(X). This is a ubiquitous problem
in statistics, engineering and computer science. These roots are rarely available
analytically and a way of finding them numerically consists of considering the fol-
lowing controlled Markov chain on ((� × X)N, (B(�) ⊗ B(X))⊗N), initialized at
some (θ0,X0) = (θ, x) ∈ �×X and defined recursively for a sequence of stepsizes
{γi} for i ≥ 0,

Xi+1|Fi ∼ Pθi
(Xi, ·),

(4.1)
θi+1 = θi + γi+1H(θi,Xi+1),

where {Pθ , θ ∈ �} (for some set � ⊂ R
nθ ) is a family of Markov transition prob-

abilities such that for each θ ∈ �, Pθ leaves πθ invariant, that is, is such that
πθPθ = πθ . The rational for this recursion is as follows. Let us first rewrite the
Robbins–Monro recursion as

θi+1 = θi + γi+1
[
h(θi) + ξi+1

]
,

where {ξi+1 = H(θi,Xi+1) − h(θi)}, which is traditionally refered to as the
“noise.” Then {θi} can be thought as being a noisy version of the sequence {θ̄i}
defined as θ̄i+1 = θ̄i + γi+1h(θ̄i), and it is believable that the properties of {θi} are
closely related to those of the noiseless sequence {θ̄i} provided the average effect
of the noise on this sequence is negligible. This requires some form of averaging,
or ergodicity, property on {ξi}.

The convergence of such sequences has been well studied by various authors,
starting with the seminal work of [7], under various assumptions on all the quan-
tities involved. A crucial step of such convergence analyses, however, consists of
assuming that the sequence {θi} remains bounded in a compact set of � with prob-
ability one. This problem has traditionally been either ignored or circumvented by
means of modifications of the recursion (4.1). Indeed, one of the major difficulties
specific to the Markovian dynamic scenario is that {θi} governs the ergodicity of
{Xi} (and hence {ξi}) and that stability properties of {θi} relying on those of {θ̄i}
require good ergodicity properties which might vanish whenever {θi} approaches a
set ∂� away from the zeroes of h(θ), resulting in instability. Most existing results
rely on modifications of the updates {φγ } designed to ensure a form of ergodicity
of {ξi} which in turn ensures that {θi} inherits the stability properties of {θ̄i}. The
only known results we are aware of where stability is established for (4.1) without
any modification are [7], Part II, Section 1.9, where assumption (1.9.3) may not be
satisfied in numerous cases of interest or directly verifiable, and [14] in a particular
scenario.

The approach we follow here is significantly different from that developed in
the aforementioned works and consists of dividing the difficult problem of prov-
ing boundedness away from ∂� into two simpler tasks. First using the results
of Sections 2 or 3, one may establish that the sequence {θi,Xi} visits some set
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W × C ⊂ � × X infinitely often Pθ,x-a.s., a set which has the particularity that
transition probabilities {Pθ , θ ∈ W} have uniformly good ergodicity properties.
Then, using these facts, one can show that {θi} follows the trajectories of the de-
terministic recursion {θ̄i} more and more accurately at each visit of W × C, and
eventually remains in a set only slightly larger than W provided the deterministic
sequence is itself stable. The advantage of our approach is that instead of aiming
to establish ergodicity properties of {ξi} in worse case scenarios for the sequence
{θi}, we decouple the analysis of the behavior of {θi} when it approaches ∂� from
the study of the ergodicity properties of {ξi}, which need to be studied for “reason-
able” values of θ only. Before stating the main result of this section we state our
assumptions.

(A4) Let {H(θ, x)}, {γi}, {πθ } and {Pθ } be as above. We assume that:

(1) there exists γ+ > 0 such that:

(a) γ := {γi} ⊂ [0, γ +]N,
(b) for any θ, x ∈ � × X and γ ∈ [0, γ +]

θ + γH(θ, x) ∈ �,

(2) H :� × X →R
nθ is such that for any θ ∈ �,

∫
X |H(θ, x)|πθ(dx) < +∞,

(3) and for any θ ∈ �, πθPθ = πθ .

A practical technique to prove the boundedness of the noiseless sequence con-
sists, whenever possible, of determining a Lyapunov function w :� → [0,∞) such
that 〈∇w(θ),h(θ)〉 ≤ 0 away from the roots of h(θ), where ∇w denotes the gradi-
ent of w with respect to θ , and for u, v ∈R

n, 〈·, ·〉 is their Euclidean inner product
(we will later on also use the notation |v| = √〈v, v〉 to denote the Euclidean norm
of v). Note that although we use here the same symbol w as in Sections 1 and 3,
the Lyapunov function below might be different.

(A5) � is an open subset of Rnθ , h :� → R
nθ is continuous and there exists a

continuously differentiable function w :� → [0,∞) such that:

(1) there exists M0 > 0 such that

L := {θ ∈ �,
〈∇w(θ),h(θ)

〉= 0
}⊂ {θ ∈ �,w(θ) < M0

}
,

(2) there exists M1 ∈ (M0,∞] such that WM1 is a compact set,
(3) for any θ ∈ � \L, 〈∇w(θ),h(θ)〉 < 0.

We now introduce some additional notation needed to describe the ergodic-
ity properties of {ξi} every time the sequence {θi,Xi} visits some set W × C.
More precisely, consider the stochastic processes {ϑi,Xi} defined on ((� ×
X)N, (B(�) ⊗B(X))⊗N) which use the stepsize sequence γ ←l := {γi+l, i ≥ 0} for
some l ≥ 0, initialized with ϑ0,X0 ∈ � × X and such that for i ≥ 0,

Xi+1|(ϑ0,X0,X1, . . . ,Xi) ∼ Pϑi
(Xi , ·),

(4.2)
ϑi+1 = ϑi + γi+1+lH(ϑi,Xi+1).
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In order to take the shift in the stepsize sequence into account, we denote by P̄
γ ←l

θ,x

and Ē
γ ←l

θ,x the associated probability distribution and expectation operator for ϑ0 =
θ ∈ � and X0 = x ∈ X, and point out that in contrast to Pθ,x defined earlier for
{θi,Xi}, the notational dependence on γ ←l for l ≥ 0 is here crucial. For any M > 0
we define the exit time from the level set WM , σ(WM) := inf{k ≥ 1 :ϑk /∈ WM}
(with the standard convention that inf{∅} = +∞), and for any j ≥ 1 we define
ςj := H(ϑj−1,Xj ) − h(ϑj−1). We extend the result of [2], Proposition 5.2 (see
also [1]) in order to establish the following result.

THEOREM 3. Assume (A4) and (A5), that {γi} is such that lim supi→∞ γi = 0,
and let M ∈ (M0,M1]. Assume that there exists C ⊂ X such that:

(1) for any ε > 0,

lim sup
l→∞

sup
θ,x∈WM0×C

P̄
γ ←l

θ,x

(
sup
k≥1

I
{
σ(WM) ≥ k

}∣∣∣∣∣
k∑

j=1

γj+lςj

∣∣∣∣∣> ε

)
< 1;(4.3)

(2) for any θ, x ∈ � × X,

Pθ,x

( ∞⋂
k=1

∞⋃
i=k

{
(θi,Xi) ∈ WM0 × C

})= 1,

that is, {θi,Xi} defined by equation (4.1) visits WM0 × C infinitely often Pθ,x-a.s.

Then the sequence {θi}, as defined by equation (4.1), is such that

Pθ,x

( ∞⋃
k=1

∞⋂
i=k

{θi ∈ WM}
)

= 1,

that is, {θi} eventually remains in WM , Pθ,x -a.s.

REMARK 3. Proving equation (4.3) is now rather well understood in general
scenarios as soon as some form of local (in θ ) uniform ergodicity of {Pθ } is sat-
isfied and can be checked in practice; see [1] and [2], for example, and the recent
results in [5]. In the present paper, we rather focus on finding verifiable conditions
on {γi}, {H(θ, x)} and {Pθ } which ensure that {θi,Xi}, as defined by equation
(4.1), visits WM0 × C infinitely often Pθ,x-a.s., which in combination with the
aforementioned existing results will allow us to conclude about the stability of a
large class of controlled MCMC algorithms.

PROOF OF THEOREM 3. For M ∈ (M0,M1] we let δ0 > 0 and λ0 > 0 be as
in Theorem 7 from [2], Proposition 5.2, given in Appendix B for convenience. We
consider the sequence {Ti, i ≥ 1} of successive return times to WM0 ×C “separated
by at least an exit from WM ,” formally defined for i ≥ 0 as

Ti+1 = inf
{
j ≥ Ti + 1 :∃l ∈ {Ti + 1, . . . , j}/θl /∈WM and (θj ,Xj ) ∈ WM0 × C

}
,
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with the conventions T0 = 0 and inf{∅} = +∞. It will be useful below to note that
for any i ≥ 1, Ti ≥ i. Let n0 ∈ N be such that supk≥n0

γk ≤ λ0. We first show that
for any θ, x ∈ � × X,

Pθ,x

(⋃
k≥1

{Tk = +∞}
)

= 1,(4.4)

and to achieve this, we establish a bound on supθ,x∈�×X Pθ,x(Tn < +∞) for n ≥
n0. Notice that from the strong Markov property, for any θ, x ∈ � × X and l ≥ n0

Pθ,x(Tl+1 < +∞) = Eθ,x

(
I{Tl < +∞}PθTl

,XTl
(T1 < +∞)

)
.

In addition, for any θ, x ∈ � × X, we have

I{Tl < +∞}PθTl
,XTl

(T1 < +∞)

≤ I{Tl < +∞}P̄γ ←Tl

θTl
,XTl

(
σ(WM) < +∞)

, Pθ,x-a.s.

and for any q ≥ 0,

P̄
γ ←q

θ,x

(
σ(WM) < +∞)= P̄

γ ←q

θ,x

(⋃
k≥1

{
σ(WM) = k

})
.

From Theorem 7 we deduce that for any q ≥ n0,

⋃
k≥1

{
σ(WM) = k

}⊂
{

sup
k≥1

I
{
σ(WM) ≥ k

}∣∣∣∣∣
k∑

j=1

γj+qςj

∣∣∣∣∣> δ0

}
,

which implies that for any Tl ≥ l ≥ n0,

I{Tl < +∞}PθTl
,XTl

(T1 < +∞)

≤ sup
q≥l

sup
θ,x∈WM0×C

P̄
γ ←q

θ,x

(
sup
k≥1

I
{
σ(WM) ≥ k

}∣∣∣∣∣
k∑

j=1

γj+qςj

∣∣∣∣∣> δ0

)
.

Consequently by induction one obtains that for any n > n0,

Pθ,x(Tn < +∞)

≤
n−1∏
l=n0

sup
q≥l

sup
θ,x∈WM0×C

P̄
γ ←q

θ,x

(
sup
k≥1

I
{
σ(WM) ≥ k

}∣∣∣∣∣
k∑

j=1

γj+qςj

∣∣∣∣∣> δ0

)
.

Result (4.4) then follows by a standard Borel–Cantelli argument under the condi-
tion of the theorem. We now prove that {θk} eventually remains in WM , Pθ,x -a.s.
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First notice that by construction of {Ti},⋃
k≥1

{Tk = +∞}

= ⋃
k≥1

{Tk−1 < +∞, Tk = +∞}

= ⋃
m≥0

⋃
k≥1

{Tk−1 = m,Tk = +∞}

= ⋃
m≥0

{
(θm,Xm) ∈WM0 × C

}

∩ ({θl ∈ WM,∀l ≥ m + 1} ∪ {θl /∈ WM0,∀l ≥ m + 1}).
Now, since by assumption Pθ,x(

⋂∞
k=1

⋃∞
i=k{(θi,Xi) ∈ WM0 × C}) = 1, we deduce

that for any θ, x ∈ � × X

Pθ,x

(⋃
m≥0

{
(θm,Xm) ∈ WM0 × C,θl ∈WM,∀l ≥ m + 1

})= 1,

and we conclude. �

We briefly discuss here other applications of our stability results, particularly
in the situation where the step-size sequence is held constant. Such fixed stepsize
algorithms have been popular in engineering since they provide the algorithms
with both some form of robustness and a “tracking” ability. The analysis of these
algorithms naturally requires one to establish stability first [7]. We would like,
however, to point out another important application in the context of adaptive step-
size algorithms. Indeed, the choice of {γi} is known to have an important impact
on the convergence properties of {θi}. In particular it is well known that if {γi}
vanishes too quickly in the early iterations of (4.1), convergence may be very slow.
A natural way to address this problem consists of adaptively selecting the sequence
of stepsizes {γi}. A strategy due to Kesten and further extended by Delyon and
Juditsky in [8] is as follows. Given a nonincreasing function γ (·) :→ (0,∞) and
s0 = 0, consider Algorithm 1 which is a modification of (4.1).

Assume for brevity that the root of h(θ) = 0, θ∗, is unique. The rationale behind
this recursion is that for sufficiently regular scenarios, one may expect the event
{〈H(θi−1,Xi),H(θi,Xi+1)〉 < 0} to occur with higher probability when θi is in

Algorithm 1 Adaptive step-size algorithm
• Xi+1 ∼ Pθi

(Xi, ·)
• θi+1 = θi + γ (si)H(θi,Xi+1)

• si+1 = si + I{〈H(θi−1,Xi),H(θi,Xi+1)〉 < 0}
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a neighborhood B(θ∗, ε) of θ∗ than when outside this neighborhood. As a result
γi := γ (si) decreases slowly as long as {θi} is outside this neighborhood of θ∗, and
decreases much faster whenever {θi} approaches θ∗. Convergence to θ∗ requires
that γi → 0 or equivalently that si → ∞ with probability one. This means that one
should show that for any γ ∈ {γ (0), γ (1), γ (2), . . .}, the fixed stepsize sequence
ϑ

γ
i = ϑ

γ
i−1 +γH(ϑ

γ
i−1,X

γ
i ) for i ≥ 1 is recurrent in the aforementioned neighbor-

hood, which is the essence of the proof of [8]. Our results allow one to establish
that the homogeneous Markov chain {ϑγ

i ,X
γ
i } is recurrent in some set WM × C,

the first crucial step of the proof of [8]. A detailed analysis of such a result is,
however, beyond the scope of the present paper.

5. Examples: Some adaptive MCMC algorithms. In this section we illus-
trate how the results established in Sections 3–4 can be straightforwardly ap-
plied to a variety of adaptive Markov chain Monte Carlo (MCMC) algorithms,
where the aim is to automatically optimally choose the parameter θ of a fam-
ily of Markov chain transition probabilities {Pθ , θ ∈ �}, defined on some X ⊂
R sharing a common invariant distribution with density π(·) with respect to
the Lebesgue measure. More specifically, we focus here on the symmetric ran-
dom walk Metropolis (SRWM) algorithm with transition probability defined for
(θ, x,A) ∈ � × X ×B(X) as

Pθ(x,A) =
∫
A−x

α(x, x + z)qθ (z)dz

(5.1)
+ I{x ∈ A}

∫
X−x

(
1 − α(x, x + z)

)
qθ (z)dz,

where for any x, y ∈ X2, α(x, y) := 1 ∧ π(y)/π(x) and {qθ (·), θ ∈ �} is a family
of symmetric increment probability densities with respect to the Lebesgue measure
defined on Z ×B(Z) for some Z ⊂ X. Various choices for qθ (·) are possible.

The AM (adaptive Metropolis) algorithm [10, 11] is concerned with the sit-
uation where X = R

nx for some nx ≥ 1 and θ = [μ|�] ∈ � = R
nx × C where

C ⊂ R
nx×nx is the cone of symmetric positive definite matrices and qθ (z) :=

det−1/2((2.382/nx)(� + εAMInx×nx )) × q(((2.382/nx)(� + εAMInx×nx ))
−1/2z)

for q(z) = N (z;0, Inx×nx ) and some εAM ∈ (0,1). In fact other choices for q(·)
are possible as long as it is symmetric, that is, q(z) = q(−z) for all z ∈ Z. In [9] it is
shown that in some circumstances the “optimal” covariance matrix for the Normal-
SRWM is �π , where �π is the true covariance matrix of the target distribution
π(·), assumed here to exist. The AM algorithm of [11] essentially implements the
following algorithm to estimate � on the fly. Let εAM > 0 and let X0 = x ∈ X, then
for i ≥ 0 and with θi := [μi |�i] here one can consider Algorithm 2.

It was realized in [3] that this algorithm is a particular instance of (4.1) where
H :� × X → � is

H(θ, x) := [x − μ|(x − μ)(x − μ)T − �
]T,(5.3)
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Algorithm 2 AM algorithm, iteration i + 1
• Sample Xi+1 ∼ Pθi

(Xi, ·)
• Update of the tuning parameter

μi+1 = μi + γi+1(Xi+1 − μi),
(5.2)

�i+1 = �i + γi+1
(
(Xi+1 − μi)(Xi+1 − μi)

T − �i

)
.

and the corresponding mean field is

h(θ) = [μπ − μ|(μπ − μ)(μπ − μ)T + �π − �
]T.

We show in Section 5.2 (Theorem 5) that the stability of these recursions is a
direct consequence of the result of Section 3 and a result from [14], which estab-
lishes (A2) for a class of target distribution densities π(·). The result of Section 4
then directly applies to the AM algorithm, leading to the conclusion that {θi} even-
tually remains in a compact set with probability one. While the boundedness of
{θi} has already been established in [14] using different arguments, our results are
more general in several ways. For example, Theorem 5 shows that the AM algo-
rithm is stable when the sequence of stepsizes {γi} is constant, which opens up
the way for the analysis of more sophisticated and robust versions of the AM al-
gorithm. Theorem 5 also shows that the AM algorithm is also stable for heavier
tailed distributions than in [14], in the situation where X = R, for both decreasing
or constant stepsize sequences. As should be clear from our current analysis, a full
study of the multivariate scenario is a different (and significant) research project.

We now turn to another type of popular adaptive scheme for the SRWM.
Let X = R

nx and � = R. Suppose q(·) is a symmetric probability density on
X, and define the family of proposal distributions {qθ (·), θ ∈ �} as qθ (z) :=
exp(−θ)q(exp(−θ)z). A possible increment probability density is again qθ (z) =
N (z, σ := exp(θ)). Let α∗ ∈ (0,1) be a desired mean acceptance probability for
the SRWM. The following algorithm aims to optimize θ∗ in order to achieve an
expected acceptance rate of α∗ [3] and is often used as one of the components of
more sophisticated schemes. The resulting procedure is displayed in Algorithm 3.

In Section 5.1 we prove the stability of {θi,Xi} for a broad class of probability
densities π(·), including a heavy-tailed scenario and situations where the stepsize
sequence is constant (Theorem 6). It should be pointed out that in this case, in
contrast with the AM algorithm scenario, we do not require a lower bound on the
scaling factor exp(θ), which requires establishing (A2) for both arbitrarily large
and small values of exp(θ) and leads us to proving the new result Theorem 4 (a
stability result has been proved in [15], but in a less general scenario). In fact
the theory we have developed suggests improvements on this standard algorithm
whose stability can be easily established thanks to the theory developed earlier in
the paper. An example is given below: the rationale behind the algorithm is that for
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Algorithm 3 Coerced acceptance probability RWM, iteration i + 1
• Update the state Xi,Yi , with Zi+1 ∼ qθi

(·)
Yi+1 = Xi + Zi+1,

Xi+1 =
{

Yi+1 with probability α(Xi, Yi+1),
Xi otherwise

• Update the scaling parameter

θi+1 = θi + γi+1
(
α(Xi, Yi+1) − α∗

)
.

very poor initializations, the increments on the parameter are initially large, while
still leading to a stable dynamic. See Algorithm 4.

The proofs of stability of the three algorithms above rely on common key inter-
mediate results. In Section 5.1 we establish (A2) for the SRWM under two different
sets of assumptions on π(·) and q(·). In Section 5.2 we establish (A3) for the AM
algorithm and conclude with Theorem 5, while in Section 5.3 we establish (A3)
for the coerced acceptance algorithms, and conclude with Theorem 6.

5.1. Establishing (A2) for SRWM algorithms.

5.1.1. The superexponential “� + εAMInx×nx ” scenario. In this section we
state a result which establishes that (A2) is satisfied for the SRWM transition prob-
ability on X = R

nx under suitable conditions on π(·) and q(·) [12].

(A6) The probability distribution π(·) has the following properties:

(1) it is positive on every compact set and continuously differentiable;
(2) there exists ρ > 1 such that

lim
R→+∞ sup

{x:|x|≥R}
x

|x|ρ · ∇ logπ(x) = −∞;(5.4)

Algorithm 4 Fast coerced acceptance probability RWM, iteration i + 1
• Update the state Xi,Yi , with Zi+1 ∼ qθi

(·)
Yi+1 = Xi + Zi+1,

Xi+1 =
{

Yi+1 with probability α(Xi, Yi+1),
Xi otherwise

• Update the scaling parameter

θi+1 = θi + γi+1
(|θi | + 1

)(
α(Xi, Yi+1) − α∗

)
.
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(3) the contours ∂A(x) = {y :π(y) = π(x)} are asymptotically regular, that is,
for some R > 0,

sup
{x:|x|≥R}

x

|x| · ∇π(x)

|∇π(x)| < 0;(5.5)

(4) the proposal distribution density q is that of a standardized Gaussian or
Student’s t-distribution.

The following theorem quantifies the way in which ergodicity of the SRWM
vanishes under (A6) as some of its eigenvalues become large. The norm used for
matrices below is |A| =√Tr(AAT) and recall that here θ = [μ|�] ∈ � = R

nx × C.

PROPOSITION 1. Let η ∈ (0,1) and V (x) ∝ π−η(x). Under (A6) one can
choose V ≥ 1 and there exist a, b ∈ (0,∞) and C = B(0,R) for some R > 0 such
that for any θ, x ∈ � × X,

PθV (x) ≤ (1 − a/
√

det(� + εAMInx×nx )
)
V (x) + bI{x ∈ C},

and we note that for any � ∈ C,√
det(�) ≤ n−nx/4

x |�|nx/2.

PROOF. The first statement is proved in [14], Proposition 15, and the second
statement follows from the standard arithmetic/geometric mean inequality applied
to the eigenvalues of �2,

det
(
�2)≤ (Tr(�2)

nx

)nx

=
( |�|2

nx

)nx

.(5.6) �

5.1.2. Establishing (A2) for the AM algorithms with weak tail assumptions.
In this section we prove (A2) for the SRWM algorithm on X = R in the situa-
tion where no lower bound on the scaling parameter of the proposal distribution
is assumed and under a weaker assumption on the vanishing rate of the tails of
the target density π(·) than in the previous subsection. More precisely, let Pθ de-
note here the random-walk Metropolis kernel with symmetric proposal distribution
qθ (z) = exp(−θ)q(z/ exp(θ)) for θ ∈ � := (−∞,∞). For notational simplicity,
in this subsection, we introduce the piece of notation σ = exp(θ) and use Pσ in-
stead of Plogσ , qσ instead of qlogσ throughout and say that σ ∈ exp(�). We will
also use the piece of notation �(x) := logπ(x). We require the following assump-
tions on π(·) and the increment proposal density qσ :

(A7)

(1) The target distribution π(·) on (X,B(X)) has the following properties:

(a) It has a density π(x) with respect to the Lebesgue measure,
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(b) π(x) is bounded away from 0 on any compact set of R,
(c) �(x) is twice differentiable. We denote �′(x) := ∇�(x) and �′′(x) :=

∇2�(x),
(d) for any M > 0, defining εx := M/|�′(x)|,

lim
R→∞ sup

x∈Bc(0,R)

sup
|t |≤εx

|�′′(x + t)|
|�′(x + t)|2 = 0,

lim
R→∞ sup

x∈Bc(0,R)

sup
|t |≤εx

|�′′(x + t)|
|�′(x)|2 = 0,

lim
R→∞ sup

x∈Bc(0,R)

sup
0≤t≤εx

∣∣∣∣ |�
′(x − t)|

|�′(x + t)| − 1
∣∣∣∣= 0.

(2) The tails of π(x) decay at a minimum rate characterized as follows: there exist
p ∈ (0,1) such that

lim
R→∞ sup

x∈Bc(0,R)

�′(x)

|x|p−1 < 0 and

∀γ ∈ (0,1) lim
R→∞ inf

x∈Bc(0,R)

π−γ (x)

|�′(x)| > 0.

(3) The increment proposal density qσ (z) is of the form qσ (z) = 1
σ
q(z/σ ) for

some symmetric probability density q(z), such that supp(q) = [−1,1] =: Z
and q(·) : Z → [q, q̄] for q, q̄ ∈ (0,∞).

REMARK 4. Consider �(x) = C − |x|α , for |x| ≥ R� and α > 0. Then for
x ≥ R�, �′(x) = −αxα−1 and �′′(x) = −α(α − 1)xα−2 and all the conditions in
(A7) are satisfied.

REMARK 5. The support condition on q can be removed, but this requires
one to control additional “tail integral” terms in the proofs of this section, which
would add further to already long arguments. We have opted for this presentation
for brevity and clarity since it is the terms that we handle which are both crucial
and difficult to control.

The following theorem establishes (A2) for the scalar SRWM with V (x) ∝
π−β(x) for some β ∈ (0,1) under (A7).

THEOREM 4. Consider the SRWM targetting π(·) and with increment pro-
posal density qσ . Assume they satisfy (A7), and let V (x) := cπ−η(x) for some
η ∈ (0,1) and c ∈ (0,∞) such that V ≥ 1. Then for any ι ∈ (0,1) there exists
R ≥ 0 and a0 ∈ (0,∞) such that:
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(1) for any x ∈ Bc(0,R), with ã−1(σ ) := a0/(σ ∨ σ−2),

PσV (x) ≤ V (x) − ã−1(σ )V ι(x),

(2) there exists a constant b ∈ (0,∞) such that for all σ, x ∈ exp(�)×B(0,R)

we have PσV (x) ≤ b.

PROOF. Let ι ∈ (0,1) and R ≥ R0 such that infx∈Bc(0,R) V
1−ι(x)|�′(x)|2 > 0

and infx∈Bc(0,R) V
1−ι(x)/|�′(x)| > 0, where R0 is given in Proposition 2. The exis-

tence of R is ensured by (A7)(2) and the choice of V . Indeed, from the assumption,
for x ∈ Bc(0,R), we have from Lemma 2 that V (x) ≥ Cϒ,2 exp(ηC−1

ϒ,1|x|p) for
some constant C > 0 and |�′(x)| ≥ C�|x|p−1 for x ≥ R� for some C�,R� > 0, and
we can conclude. From Proposition 2 below, for x ∈ Bc(0,R) and σ ≤ c0/|�′(x)|,
we have

PσV (x) ≤ V (x) − a′
0σ

2∣∣�′(x)
∣∣2V (x)

≤ V (x) − a′
0 inf

x0∈Bc(0,R)

∣∣�′(x0)
∣∣2V 1−ι(x0) × σ 2V ι(x).

For |x| ≥ σ ≥ c0/|�′(x)|, we have

PσV (x) ≤ V (x) − a′
0V (x)/

∣∣σ�′(x)
∣∣

≤ V (x) − a′
0 inf

x0∈Bc(0,R)
V 1−ι(x0)/

∣∣�′(x0)
∣∣σ−1V ι(x).

For σ ≥ |x| ≥ R, we have

PσV (x) ≤ V (x) − a′
0|x| × V (x)/σ

≤ V (x) − a′
0R × V (x)/σ.

Now we can use the trivial inequalities σ 2 ≤ σ ≤ 1 ≤ σ−1 (case σ ∈ (0,1]) and
σ−1 ≤ 1 ≤ σ ≤ σ 2 [case σ ∈ (1,∞)] which lead to the following upper bound:

PσV (x) ≤ V (x) − a0
(
σ−1 ∧ σ 2)V ι(x).

The second claim follows immediately from the bound PV (x) ≤ 2V (x) easily
obtained from (C.4) and the fact that supx∈B(0,R) V (x) < ∞. �

PROPOSITION 2. Consider the SRWM targetting π(·) satisfying (A7). Let
V (x) := cπ−η(x) for some η ∈ (0,1) and c such that for all x ∈ X, V (x) ≥ 1.
Then there exist a′

0,R0 > 0 such that for any x ∈ Bc(0,R0) and any σ ∈ exp(�) =
(0,∞),

PσV (x)

V (x)
− 1 ≤ −a′

0 ×
⎧⎨
⎩

σ 2
∣∣�′(x)

∣∣2, if σ
∣∣�′(x)

∣∣< c0,
1/
∣∣σ�′(x)

∣∣, if |x| ≥ σ ≥ c0/
∣∣�′(x)

∣∣,
|x|/σ, if 1 > |x|/σ .
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PROOF. Without loss of generality we detail the situation where x > 0 since
the case x < 0 can be straightforwardly addressed by considering the density
π−(x) := π(−x) which also satisfies (A7), and hence Lemmata 3, 4 and 5
(given below). In what follows the terms Ti(σ, x) for i = 1,2,3,4 are defined in
Lemma 3. Choose R ≥ RPV ∨Rψ ∨RT such that for x ∈ Bc(0,R), x ≥ c0/|�′(x)|,
where RPV ,Rψ,RT and c0 are as in Lemmata 3, 4 and 5. First from Lemma 4, we
have for x ≥ c0/|�′(x)| and any σ ∈ exp(�),

T1(σ, x) =
∫ σ∧c0/|�′(x)|

0
ψx(z)qσ (z)dz

+ I
{
σ ≥ c0/

∣∣�′(x)
∣∣} ∫ σ∧x

c0/|�′(x)|
ψx(z)qσ (z)dz

≤ −εψ

∣∣�′(x)
∣∣2 ∫ σ∧c0/|�′(x)|

0
z2qσ (z)dz

− εψI
{
σ ≥ c0/

∣∣�′(x)
∣∣} ∫ σ∧x

c0/|�′(x)|
qσ (z)dz

≤ −εψq/3
∣∣�′(x)

∣∣2[σ ∧ c0/
∣∣�′(x)

∣∣]3/σ
− εψqI

{
σ ≥ c0/

∣∣�′(x)
∣∣}[σ ∧ x − c0/

∣∣�′(x)
∣∣]/σ,

and therefore for σ ≤ x

T1(σ, x) ≤ −εψq

[
I

{
σ <

c0

|�′(x)|
}
σ 2|�′(x)|2

3

+ I

{
σ ≥ c0

|�′(x)|
}(

c3
0

3σ |�′(x)| + 1 − c0

σ |�′(x)|
)]

≤ −εψq

3

[
σ 2∣∣�′(x)

∣∣2 × I

{
σ <

c0

|�′(x)|
}

+ c3
0

σ |�′(x)| × I

{
x ≥ σ ≥ c0

|�′(x)|
}]

.

Now from Lemma 5 for σ ≥ x ≥ R we have

T1(σ, x) + T2(σ, x) ≤ −εT × x/σ,

T3(σ, x) ≤ 0,

and for σ ≥ x − ϒ(x) we have

T3(σ, x) + T4(σ, x) ≤ −εT × (−ϒ(x)
)
/σ

and we conclude with Lemma 3 and by treating the case where x < 0 in a similar
fashion. �
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Note that, as pointed out in the proof of Proposition 2, it is sufficient to spe-
cialize most of the results of Lemmata 2, 3, 4 and 5 (stated below and proved in
Appendix C) to the case x > 0. The following lemma establishes some key prop-
erties implied specifically by (A7)(2), which will also be used in Section 5.3.

LEMMA 2. Assume that π(·) > 0, is differentiable and satisfies (A7)(2), define
for any γ > 0,

Iγ (x) :=
∫ ∞

0

(
π(x + sgn(x)z)

π(x)

)γ

dz and

Jγ (x) :=
∫ |x|

0

(
π(x)

π(x − sgn(x)z)

)γ

dz,

with sgn(x) := x/|x| for x �= 0 and for any x > 0, ϒ(x) := inf{y ∈ X :π(y) =
π(x)}. Then:

(1) the function ϒ(·) has the following properties:

(a) limx→∞ ϒ(x) = −∞,
(b) there exist constants Cϒ,1,Cϒ,2 ∈ (0,∞) such that for all |x| ≥ Rϒ∣∣ϒ(x)

∣∣∨ |x| ≤ Cϒ,1
(− log

(
π(x)/Cϒ,2

))1/p

[or equivalently π−1(x) ≥ Cϒ,2 exp(C−1
ϒ,1[|ϒ(x)|p ∨ |x|p])],

(2) and there exists a constant Cγ ∈ (0,∞) such that for any x ∈ X, Iγ (x) ∨
Jγ (x) ≤ Cγ |x|1−p .

We now find a convenient expression for PσV (x)/V (x) valid for sufficiently
large x and all σ ’s.

LEMMA 3. Assume (A7), and for x,η, s, z ∈ X × (0,1) × {−1,1} × Z define
φx,η,s(z) := [π(x + sz)/π(x)]η and

ψx(z) := (φx,−η,−1(z) − 1
)+ (φx,1−η,1(z) − 1

)− (φx,1,1(z) − 1
)
.

For any x ≥ 0, define ϒ(x) := inf{y ∈ X : π(x) = π(y)}, and let V (x) ∝ π−η(x).
Then there exists RPV > 0 such that for all x ≥ RPV and any σ ∈ exp(�)

PσV (x)

V (x)
− 1 =

4∑
i=1

Ti(σ, x)

with

T1(σ, x) =
∫ σ∧x

0
ψx(z)qσ (z)dz,

T2(σ, x) = I{σ ≥ x}
∫ σ

x

[
φx,1−η,1(z) − φx,1,1(z)

]
qσ (z)dz,
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T3(σ, x) = I{σ ≥ x}
∫ (σ−x+ϒ(x))∧0

ϒ(x)

[
φϒ(x),−η,−1(z) − 1

]
qσ

(
z + x − ϒ(x)

)
dz,

T4(σ, x) = I
{
σ ≥ x − ϒ(x)

}
×
∫ σ−(x−ϒ(x))

0

[
φϒ(x),1−η,−1(z) − 1 + 1 − φϒ(x),1,−1(z)

]
× qσ

(
z + x − ϒ(x)

)
dz.

Here we prove some properties of ψx(z) which will allow us to upper bound the
term T1(σ, x) in the case where σ ≤ x.

LEMMA 4. Assume (A7)(1) and for η ∈ (0,1) let ψx(z) be as in Lemma 3.
Then there exist constants c0, εψ,Rψ > 0 such that for all x ≥ Rψ , ψx(z) ≤ 0 for
z ∈ [0, x] and ψx(z) satisfies the following upper bounds:

ψx(z) ≤ −εψ ×
{ ∣∣�′(x)

∣∣2z2, for 0 ≤ z ≤ c0/
∣∣�′(x)

∣∣,
1, for c0/

∣∣�′(x)
∣∣≤ z ≤ x.

(5.7)

Now in the following lemma we address the situation where σ ≥ x and require
an additional assumption on the vanishing speed of �′(x).

LEMMA 5. Assume (A7), and let Ti(σ, x) for i = 1, . . . ,4 be as defined in
Lemma 3. Then there exist CT ,RT , εT > 0 such that for x ≥ RT and:

(1) for σ ≥ x

T1(σ, x) + T2(σ, x) ≤ −εT × x/σ,

(2) for σ ≥ x

T3(σ, x) ≤ 0,

(3) and for σ ≥ x − ϒ(x)

T3(σ, x) + T4(σ, x) ≤ −εT

(−ϒ(x)
)
/σ.

5.2. Stability of the AM algorithms. Thanks to Theorem 2 and its corollary
we know that recurrence is ensured as soon as (A2) and (A3) are satisfied. In the
previous section we established conditions on π(·) and qθ (·) under which (A2) is
satisfied for the transition probabilities underpinning Algorithm 2. We therefore
focus on checking that (A3) is satisfied. First we start with a result which, together
with Theorem 3, leads to the same conclusions as [14] when {γi} is not constant,
but also to the additional stability of the time-homogeneous Markov chain {θi,Xi}
when γi = γ0 for any i ≥ 0.
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THEOREM 5. Consider the controlled MC defined by Algorithm 2 for X =R
nx

with nx ≥ 1 (resp., Algorithm 2 for X = R), assume that π(·) and q(·) satisfy
(A6) [resp., (A7)] and that {γi} is such that lim supi→∞ γ −1

i+1 − γ −1
i < 1. Then

for any ε > 0 there exist M,R > 0 such that with WM := {θ ∈ � :w(θ) ≤ M} for
w(θ) = 1 + |μ|2+ε + |�|

Pθ,x

( ∞⋂
k=0

⋃
i≥k

{
(θi,Xi) ∈WM × B(0,R)

})= 1.

The proofs of the theorem for the two sets of assumptions rely on the following
proposition, which establishes (A3) for a suitable Lyapunov function w(·). Note
that despite its dependence on (A2) the result does not depend on the expression
for a(·).

PROPOSITION 3. Let ε > 0, and define w :� → [0,∞) as

w(θ) := 1 + |μ|2+ε + |�|,
and assume that (A2) holds for some V : X → [1,∞) such that for some β ∈ (0,1),
we have V β(x) ≥ 1+|x|2+ε for all x ∈ X. Let γ + ∈ (0,1). Then there exists C > 0
such that for any γ ∈ (0, γ +], and any θ, x ∈ � × X

Pθ,γ w(θ, x) ≤ w(θ)

− γw(θ)


(
w(θ)−ε/(2+ε) + V β(x)I{x /∈ C} + bβ(θ)I{x ∈ C}

w(θ)

)
,

where b :� → [0,∞) is as in (A2) and 
 : [0,∞) →R


(z) := 1 − C
[
z + z1/(2+ε)].

PROOF. For (x+,μ,�) ∈ X×R
nx ×C and γ ∈ [0,1], let μ+ := μ+γ [x+−μ]

and �+ := � + γ [(μ − x+)(μ − x+)T − �]. We have the two trivial inequalities

|μ+| = ∣∣μ + γ [x+ − μ]∣∣≤ (1 − γ )|μ| + γ |x+|,
|�+| = ∣∣� + γ

[
(μ − x+)(μ − x+)T − �

]∣∣
≤ (1 − γ )|�| + γ

∣∣(μ − x+)(μ − x+)T∣∣
which imply that with w(θ) := 1 + |μ|2+ε + |�|, denoting γ̄ := γ /(1 − γ ) <

1/(1 − γ +),

w(θ+) − w(θ)

≤ −|μ|2+ε + γ
[−|�| + |μ − x+|2]

+ (1 − γ )2+ε |μ|2+ε

[
1 + γ

1 − γ

|x+|
|μ|

]2+ε
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≤ γ
[−|�| + |μ − x+|2]+ |μ|2+ε[(1 − γ )

(
1 + γ̄ |x+|/|μ|)2+ε − 1

]
≤ γ

[−w(θ) + 1 + |μ|2+ε + 2
(|μ|2 + |x+|2)]

+ |μ|2+ε[−γ
(
1 + γ̄ |x+|/|μ|)2+ε + (1 + γ̄ |x+|/|μ|)2+ε − 1

]
.

By the mean value theorem,

|μ|2+ε[(1 + γ̄ |x+|/|μ|)2+ε − 1
] ≤ |μ|2+ε(2 + ε)γ̄ |x+|/|μ| × (1 + γ̄ |x+|/|μ|)1+ε

= γ
2 + ε

1 − γ
× |μ|1+ε |x+|(1 + γ̄ |x+|/|μ|)1+ε

,

and since |μ|2+ε[1 − (1 + γ̄ |x+|/|μ|)2+ε] ≤ 0 we obtain the following bound:

w(θ+) − w(θ) ≤ γw(θ)

[
−1 + 1

w(θ)
+ 2|μ|2

w(θ)

(
1 + |x+|2/|μ|2)

+ (2 + ε)

1 − γ

|μ|1+ε |x+|
w(θ)

(
1 + γ̄ |x+|/|μ|)1+ε

]

≤ γw(θ)
(−1 + C�(θ, x+)

)
,

for some C ∈ (0,∞) and where

�(θ, x+) :=
( |μ|2

w(θ)
+ 1 + |x+|2

w(θ)

)
+
( |μ| × |x+|1/(1+ε)

w1/(1+ε)(θ)
+ |x+|1+1/(1+ε)

w1/(1+ε)(θ)

)1+ε

.

Now from Jensen’s inequality we have the identity (a + b)1+ε ≤ 2ε(a1+ε + b1+ε)

for a, b > 0 and the following equalities:

|μ| × |x+|1/(1+ε)

w1/(1+ε)(θ)
= |μ|

w1/(2+ε)(θ)

( |x+|2+ε

w(θ)

)1/[(1+ε)(2+ε)]
,

|x+|1+1/(1+ε)

w1/(1+ε)(θ)
=
( |x+|2+ε

w(θ)

)1/(1+ε)

yield
( |μ| × |x+|1/(1+ε)

w1/(1+ε)(θ)
+ |x+|1+1/(1+ε)

w1/(1+ε)(θ)

)1+ε

≤ 2ε

(( |μ|2+ε

w(θ)

)(1+ε)/(2+ε)( |x+|2+ε

w(θ)

)1/(2+ε)

+ |x+|2+ε

w(θ)

)
.

Note also that since |μ|2+ε/w(θ) ≤ 1, we have

|μ|2
w(θ)

= (|μ|2+ε)2/(2+ε)

w(θ)
≤ w(θ)−ε/(2+ε),
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and we therefore deduce that if for any x ∈ X, V β(x) ≥ 1 + |x|2+ε , then

�(θ, x+) ≤ w(θ)−ε/(2+ε) + 1 + |x+|2
w(θ)

+ 2ε

(( |x+|2+ε

w(θ)

)1/(2+ε)

+ |x+|2+ε

w(θ)

)

≤ w(θ)−ε/(2+ε) + 2
V β(x+)

w(θ)
+ 2ε

((
V β(x+)

w(θ)

)1/(2+ε)

+ V β(x+)

w(θ)

)
.

Now by (A2) and Jensen’s inequality we deduce that for some constant C > 1

Pγ,θ�(θ, x)

≤ w(θ)−ε/(2+ε) + C

[(
V β(x)I{x /∈ C} + bβ(θ)I{x ∈ C}

w(θ)

)1/(2+ε)

+ V β(x)I{x /∈ C} + bβ(θ)I{x ∈ C}
w(θ)

]
,

and we conclude. �

5.2.1. Multivariate case and superexponential tails: (A6).

PROOF OF THEOREM 5 UNDER (A6). Let ε > 0, β ∈ (0,1/(1 + nx/2)] and
V (x) ∝ π−η(x) for some η ∈ (0,1) where the constant of proportionality is such
that V β(x) ≥ 1 + |x|2+ε [which is possible as π−η(x) ≥ C1 exp(C2|x|) for some
C1,C2 > 0]. From Proposition 1 there exists a′, b′ > 0 and C := B(0,R) for some
R > 0 such that for any x ∈ X with w(θ) := 1 + |μ|2+ε + |�| and appropriate
a′, a′′ > 0,

PθV (x) ≤ (1 − a′/|� + εAMInx×nx |nx/2)V (x) + b′
I{x ∈ C}

≤ [1 − a′′/
(|εAMInx×nx |nx/2 + wnx/2(θ)

)]
V (x)I{x /∈ C} + bI{x ∈ C},

where b = b′ + supx∈C V (x). Naturally here ι = 1. Now from Proposition 3 we
have

Pθ,γ w(θ, x) ≤ w(θ) − γw(θ)


(
w(θ)−ε/(2+ε) + V β(x)I{x /∈ C} + bβ

I{x ∈ C}
w(θ)

)

with 
(z) := 1 − C[z + z1/(2+ε)]. Therefore here c(θ) = w(θ)−ε/(2+ε), d(θ) =
w(θ)−ε/(2+ε) + bβ/w(θ) and e(θ) = w(θ). We note that p
 = 1 ≤ nx/2 + 1 ≤
ι/β . The condition β ≤ 1/(1 + nx/2) implies (A3)(5) as for any ε > 0, on
V β(x)/e(θ) ≥ ε

a(θ)w(θ)e−1(θ)

V ι−β(x)
≤ C

wnx/2(θ)

V ι−β(x)
≤ Cε−nx/2

V ι−β(1+nx/2)(x)
,

for some C > 0, and we conclude with Theorem 2. �



30 C. ANDRIEU, V. B. TADIĆ AND M. VIHOLA

5.2.2. Relaxed tail conditions, univariate scenario: (A7). Now we draw the
same conclusions when X = R, and π(·) now satisfies less stringent tail conditions.

PROOF OF THEOREM 5 UNDER (A7). Let ι, η ∈ (0,1) and β ∈ (0, ι/2]. Let
V (x) ∝ π−η(x), such that V β(x) ≥ 1 + |x|2+ε [which is possible as π−1(x) ≥
C1 exp(C2|x|p) for some C1,C2 > 0 from Lemma 2]. From Theorem 4, there exist
b,R > 0 such that with C = B(0,R) for any θ, x ∈ � × X,

PθV (x) ≤ [V (x) − a−1(θ)V ι(x)
]
I{x ∈ C} + bI{x ∈ C},

with a−1(θ) = a0/[(� + εAM)−1 ∨ (� + εAM)1/2] ≥ a0/[ε−1
AM ∨ (εAM +w(θ))] and

w(θ) := 1 + |μ|2+ε + |�|. From Proposition 3 we therefore have

Pθ,γ w(θ, x) ≤ w(θ) − γw(θ)


(
w(θ)−ε/(2+ε) + V β(x)I{x /∈ C} + bβ

I{x ∈ C}
w(θ)

)

with 
(z) := 1 − C[z + z1/(2+ε)]. Therefore here c(θ) = w(θ)−ε/(2+ε), d(θ) =
w(θ)−ε/(2+ε) + bβ/w(θ) and e(θ) = w(θ). Note that we have p
 = 1 ≤ 2 ≤ ι/β .
The condition β ≤ ι/2 implies (A3)(5) as for any ε > 0, on V β(x)/e(θ) ≥ ε

a(θ)w(θ)e−1(θ)

V ι−β(x)
≤ C

w(θ)

V ι−β(x)
≤ Cε−1

V ι−2β(x)
,

for some C > 0 and we conclude with Theorem 2. �

5.3. Stability of the coerced acceptance probability algorithms. In this sub-
section we establish the stability of Algorithm 3 and Algorithm 4 in a univariate
setting. We proceed as in Section 5.2 and aim to apply Theorem 2 and its corollary
which require (A2) and (A3) to be satisfied. A related result has been established in
[15] under a more stringent condition on the decay of the tails of the target density,
and not covering constant stepsize sequences {γi}.

THEOREM 6. Consider the controlled MC as defined by either Algorithm 3 or
Algorithm 4 for some α∗ ∈ (0,1/2). Assume that π(·) and q(·) satisfy (A7) and
that the stepsize sequence {γi} is such that(

lim sup
i→∞

γ −1
i+1 − γ −1

i

)
+ lim sup

i→∞
γi < α∗ ∧

(
1

2
− α∗

)
.

Let w(θ) = exp(|θ |) for Algorithm 3 and w(θ) := 1 + |θ |2 for Algorithm 4. Then
there exist M,R > 0 such that for any θ, x ∈ � × X,

Pθ,x

( ∞⋂
k=0

⋃
i≥k

{
(θi,Xi) ∈WM :×B(0,R)

})= 1,

that is, Pθ,x-a.s. {θi,Xi} visits WM × B(0,R) infinitely often.
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The proofs are given for the two scenarios in the following two subsections. The
following lemma, whose proof can be found in Appendix C, will be useful in both
scenarios.

LEMMA 6. Assume that π(·) is a strictly positive, differentiable probability
density satisfying (A7)(2). Moreover, suppose that qσ (z) := σ−1q(z/σ) where
q : Z → [0, q̄] for q̄ > 0 is symmetric and such that it has a finite absolute first
order moment. Then, for any x ∈ X

ασ (x) :=
∫

Z
min

{
1,

π(x + z)

π(x)

}
qσ (z)dz,

there exist constants C−,C+ > 0 such that

ασ (x) ≥ 1/2 − C−σ for σ ≤ 1 and x ∈ X,

ασ (x) ≤ C+
(− logπ(x))1/p ∨ 1

σ
for σ ≥ 1 and x ∈ X.

REMARK 6. Notice from the proof that the moment condition is assumed here
in order to simplify our statement and that more general conditions are possible.
Note that the restriction α∗ ∈ (0,1/2) is practically harmless since this covers rel-
evant values according to the scaling theory of the RWM [9].

5.3.1. Proof in the standard scenario: Algorithm 3. Before starting the proofs
it is worth stressing on the fact that throughout

Pθ

(
x, y;dx′ × dy′)= q

(
x,dy′)[α(x, y′)δy′

(
dx′)+ (1 − α

(
x, y′))δx

(
dx′)]

and hence that for any x, y ∈ X, Pθ(x, y; ·) = Pθ(x, ·) and that for notational sim-
plicity the Lyapunov function V (x) should be understood as being the function
V (x) × 1 defined on X2. The following proposition establishes part of (A3) under
a condition implied by Lemma 6.

PROPOSITION 4. Consider the controlled MC as defined in Algorithm 3 with
α∗ ∈ (0,1/2), V (x) := cπ−η(x) and assume that there exist C > 0 and β ∈ [0,1)

such that for all (θ, x) ∈ � × X

sgn(θ)
(
αexp(θ)(x) − α∗

)≤ −[α∗ ∧ (1/2 − α∗)
]+ CV β(x)/ exp

(|θ |).
Let γmax ∈ (0, α∗ ∧ (1/2 − α∗)). Then for any γ ∈ (0, γmax] and θ, x ∈ � × X and
the Lyapunov function w :� → [1,∞) defined by w(θ) := exp(|θ |)
Pγ,θw(θ, x) ≤ w(θ)

− γw(θ)


(
I
{|θ | ≤ γmax

}
C−1

(
2 + α∗ ∧

(
1

2
− α∗

))
+ V β(x)

w(θ)

)
,

with


(z) = (α∗ ∧ (1
2 − α∗

))− γmax − Cz.
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PROOF. For |θ | > γ and since for all x, y+ ∈ X2 |α(x, y+) − α∗| ≤ 1, one can
write (with θ+ = θ + γ [α(x, y+) − α∗])

w(θ+) = w
(
θ + γ

[
α(x, y+) − α∗

])
= exp

(|θ | + sgn(θ)γ
[
α(x, y+) − α∗

])
.

Now since γ ≤ 1, from the inequality exp(u) ≤ 1+u+u2 valid for |u| ≤ 1, one
obtains

w(θ+) ≤ w(θ)
(
1 + γ sgn(θ)

[
α(x, y+) − α∗

]+ γ 2).
Taking the conditional expectations yields for |θ | > γ and by assumption

Pγ,θw(θ, x) ≤ w(θ)
(
1 + γ sgn(θ)

[
αexp(θ)(x) − α∗

]+ γ 2)
≤ w(θ) − γw(θ)

([
α∗ ∧ (1/2 − α∗)

]− CV β(x)/ exp
(|θ |)− γmax

)
.

Also notice that for any θ ∈ � we have |θ+| ≤ |θ | + γ , whence w(θ+) ≤
w(θ) exp(γ ) ≤ w(θ)(1 + γ + γ 2) ≤ w(θ)(1 + 2γ ) for all γ ≤ γmax ≤ 1. From this
inequality and the display above, we deduce for all θ, x ∈ �×X and γ ∈ (0, γmax],

Pγ,θw(θ, x) ≤ w(θ) − γw(θ)
[(

α∗ ∧ (1
2 − α∗

))− γmax

− I
{|θ | ≤ γmax

}(
2 + α∗ ∧ (1

2 − α∗
))

− CV β(x)/w(θ)
]
. �

PROOF OF THEOREM 6 IN THE CASE OF ALGORITHM 3. First notice that
there exists i0 ∈ N such that supi≥i0

γ −1
i+1 − γ −1

i < α∗ ∧ (1
2 − α∗) − γmax with

γmax := supi≥i0
γi . We show that (A2) and (A3) are satisfied and conclude with

Theorem 2 and Corollary 1, for i ≥ i0. Let η, ι ∈ (0,1), β ∈ (0, ι/3], and define
V (x) ∝ π−η(x), such that V β(x) ≥ 1 ∨ (− logπ(x))1/p (which is possible since
for any a1, a2,M > 0, sup0≤u≤M ua1 | logu|a2 < ∞). From Theorem 4, there exist
b,R > 0 such that for any θ, x ∈ � × X,

PθV (x) ≤ [V (x) − a−1(θ)V ι(x)
]
I{x /∈ C} + bI{x ∈ C},

with a(θ) = [exp(θ) ∨ exp(−2θ)]/a0 (for some a0 > 0) and C = B(0,R). Now
with w(θ) = exp(|θ |) from Lemma 6 there exists C > 0 such that

αexp(θ)(x) ≥ 1/2 − C
V β(x)

exp(−θ)
for θ ≤ 0 and x ∈ X,

αexp(θ)(x) ≤ C+
(− logπ(x))1/p ∨ 1

exp(θ)
≤ C

V β(x)

exp(θ)
for θ ≥ 0 and x ∈ X.

One can apply Proposition 4, leading to the existence of C > 0 such that for any
θ, x ∈ � × X,

Pγ,θw(θ, x) ≤ w(θ) − γw(θ)


([
c(θ) + V β(x)

w(θ)

]
I{x /∈ C} + d(θ)I{x ∈ C}

)
,
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with

c(θ) = C−1
I
{|θ | ≤ γmax

}(
2 + α∗ ∧ (1

2 − α∗
))

,

d(θ) = supx∈C V β(x)

w(θ)
+ C−1

I
{|θ | ≤ γmax

}(
2 + α∗ ∧

(
1

2
− α∗

))

and


(z) = α∗ ∧ (1
2 − α∗

)− γmax − Cz.

Notice that from our choice of i0 supi≥i0
γ −1
i+1 − γ −1

i < 
(0) and that we have
ι/β ≥ 3 > p
 = 1 in (A3). Clearly here e(θ) = w(θ). Now the condition β ≤ ι/3
implies (A3)(5) as for any ε > 0, on V β(x)/e(θ) ≥ ε

a(θ)w(θ)e−1(θ)

V ι−β(x)
= exp(2|θ |)

a0V ι−β(x)
≤ ε−2a−1

0

V ι−3β(x)
< ∞,

and we conclude. �

5.3.2. Proof for the accelerated version: Algorithm 4. The arguments are sim-
ilar to those of Section 5.3.1, but here w(θ) is here of a different form. The fol-
lowing proposition is similar to Proposition 4 but takes this change of Lyapunov
function into account.

PROPOSITION 5. Consider Algorithm 4 with α∗ ∈ (0,1/2), let w(θ) := 1 +
|θ |2 and assume that there exists C > 0 and β ∈ [0,1) such that for any θ, x ∈
� × X

sgn(θ)
(
αexp(θ)(x) − α∗

)≤ −[α∗ ∧ (1/2 − α∗)
]+ CV β(x)/ exp

(|θ |).
Let γmax ∈ (0, α∗ ∧ (1/2 − α∗)). Then there exists C′ > 0 such that for any γ ∈
(0, γmax] and θ, x ∈ � × X,

Pθ,γ w(θ, x) ≤ w(θ)

− γw(θ)

(
I
{|θ | ≤ 1

}
C′−1(α∗ ∧ (1/2 − α∗)

)+ V β(x)/ exp
(|θ |))

with


(z) = 2
[
α∗ ∧ (1/2 − α∗) − γmax − C′z

]
.

PROOF. With θ+ = θ + γ (1 + |θ |)[α(x, y) − α∗] we have

w(θ+) = w(θ) + 2γ |θ |(|θ | + 1
)

sgn(θ)
(
α(x, y) − α∗

)
+ γ 2(1 + |θ |)2[α(x, y) − α∗

]2
≤ w(θ) + 2γ |θ |(|θ | + 1

)
sgn(θ)

(
α(x, y) − α∗

)+ 2γ 2w(θ)
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so

Pθ,γ w(θ, x) ≤ w(θ) + 2γ |θ |(|θ | + 1
)[−[α∗ ∧ (1/2 − α∗)

]+ CV β(x)/ exp
(|θ |)]

+ 2γ 2w(θ).

Notice that for |θ | ≥ 1 we have |θ |(1 + |θ |) ≥ 1 + |θ |2. Consequently for any
|θ | ≥ 1 and x ∈ X such that −[α∗ ∧ (1/2 − α∗)] + CV β(x)/ exp(|θ |) ≤ 0

Pθ,γ w(θ, x) ≤ w(θ) + 2γw(θ)
[−[α∗ ∧ (1/2 − α∗)

]+ γ + CV β(x)/ exp
(|θ |)]

≤ w(θ) − 2γw(θ)
[
α∗ ∧ (1/2 − α∗) − γ − 2CV β(x)/ exp

(|θ |)].
Notice that for any θ ∈ �, |θ |(1 + |θ |) ≤ (1 + |θ |)2 ≤ 2(1 + |θ |2). For the specific
case −[α∗ ∧ (1/2 − α∗)] + CV β(x)/ exp(|θ |) ≥ 0, we therefore have

Pθ,γ w(θ, x) ≤ w(θ)

+ 2γ 2w(θ)
[−[α∗ ∧ (1/2 − α∗)

]+ γ /2 + CV β(x)/ exp
(|θ |)]

≤ w(θ) + 2γw(θ)
[−[α∗ ∧ (1/2 − α∗)

]+ γ + 2CV β(x)/ exp
(|θ |)],

and for any θ, x ∈ � × X one has

Pθ,γ w(θ, x) ≤ w(θ) − 2γw(θ)
[−2CV β(x)/ exp

(|θ |)− γ
]
.

We can now combine these intermediate results, yielding for any θ, x ∈ � × X

Pθ,γ w(θ, x) ≤ w(θ) − γ 2w(θ)
[
α∗ ∧ (1/2 − α∗) − γmax

− I
{|θ | ≤ 1

}(
α∗ ∧ (1/2 − α∗)

)
− 2CV β(x)/ exp

(|θ |)],
and we conclude. �

PROOF OF THEOREM 6 IN THE CASE OF ALGORITHM 4. The beginning of
the proof is similar to that of Algorithm 3 by using Proposition 5 and Lemma 6,
but here we set β ∈ (0, ι/2). This leads to the existence of C > 0 such that for any
θ, x ∈ � × X,

Pγ,θw(θ, x) ≤ w(θ) − γw(θ)


([
c(θ) + V β(x)

exp(|θ |)
]
I{x /∈ C} + d(θ)I{x ∈ C}

)
,

with

c(θ) = C′−1
I
{|θ | ≤ 1

}(
α∗ ∧ (1

2 − α∗
))

,

d(θ) = 2
supx∈C V β(x)

exp(|θ |) + C′−1
I
{|θ | ≤ 1

}(
α∗ ∧

(
1

2
− α∗

))

and


(z) = 2
[(

α∗ ∧ (1
2 − α∗

))− γmax − C′z
]
.
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Notice that from our choice of i0, supi≥i0
γ −1
i+1 − γ −1

i < 
(0) and that we have
ι/β ≥ 2 > p
 = 1 in (A3). Now the condition β < ι/2 implies (A3)(5) as for any
ε > 0 there exist C′′ ∈ (0,∞) such that on V β(x)/e(θ) ≥ ε [since here e(θ) =
exp(|θ |)]

a(θ)w(θ)e−1(θ)

V ι−β(x)
= exp(|θ |)[1 + |θ |2]

a0V ι−β(x)
≤ C′′ 1 + (logV (x))2

V ι−2β(x)
< ∞,

and we conclude. �

APPENDIX A: APPENDIX FOR SECTION 1

PROOF OF LEMMA 1. For any k ≥ 1, we introduce the stopping times τ(k) :=
inf{i > k : (θi,Xi) ∈ C}. We proceed by contradiction and observe first that if the
claim did not hold, then there would be an integer iw ≤ n < ∞ such that with
positive probability the stopping time τ(n) would be infinite, that is, Pθ,x(τ (n) =
∞) > 0. We establish a result similar to [13], Proposition 11.3.3, page 266, but
take care of the inhomogeneity and do not require the same precision. We introduce
the following notation for simplicity: Wi := Wi(θi,Xi) and for any m ∈ N, τm :=
τ(n)∧m (we omit the dependence on n in order to alleviate notation). Assumption
(2.1) implies that for i ≥ n + 1,

Eθ,x

[
Wi+1I

{
τm ≥ i + 1

}]
= Eθ,x

[
WiI

{
τm ≥ i + 1

}+Eθ,x[Wi+1 − Wi | Fi]I{τm ≥ i + 1
}]

≤ Eθ,x

[
WiI

{
τm ≥ i

}]−Eθ,x

[
δi+1I

{
τm ≥ i + 1

}]
,

and consequently, we can establish

Eθ,x

[ ∞∑
i=n+1

δi+1I
{
τm − 1 ≥ i

}]≤ Eθ,x[Wn+1] −Eθ,x[Wτm] ≤ Eθ,x[Wn+1].

Now, by using the trivial inequality Eθ,x[I{τ(n) = ∞}∑∞
i=n+1δi+1I{τm − 1 ≥

i}] ≤ Eθ,x[∑∞
i=n+1δi+1I{τm − 1 ≥ i}] and the monotone convergence theorem

(thanks to our assumptions on {δi}) we obtain the contradictory statement

Pθ,x

(
τ(n) = ∞) ∞∑

i=n+1

δi+1 ≤ Eθ,x[Wn+1] < ∞.

We therefore conclude that for any i ≥ iw , Pθ,x(τ (i) = ∞) = 0, and the result
follows. �
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APPENDIX B: APPENDIX FOR SECTION 3

We state the following result for the reader’s convenience.

THEOREM 7 (see [2] for a proof). Assume (A5). For any M ∈ (M0,M1] there
exist δ0 > 0 and λ0 > 0 such that, for all n ≥ 1, all ϑ0 ∈ WM0 , all sequences ρ =
{ρk} of nonnegative real numbers and all sequences {ςk} ⊂ �N of nθ -dimensional
vectors satisfying

sup
1≤k≤n

ρk ≤ λ0 and sup
1≤k≤n

∣∣∣∣∣
k∑

j=1

ρjςj

∣∣∣∣∣≤ δ0,

we have for k = 1, . . . , n, w(ϑk) ≤ M , where ϑk = ϑk−1 + ρkh(ϑk−1) + ρkςk .

APPENDIX C: PROOFS FROM SECTION 5

Before proving Lemmas 2–5 we state and prove an intermediate result.

LEMMA 7. Let c,p > 0 be constants. Then there exist constants M =
M(c,p) ∈ (0,∞) and x0 = x0(c,p) ∈ (0,∞) such that∫ ∞

0
exp
(−c

[
(x + z)p − xp])dz ≤ Mx1−p for all x ≥ x0.

PROOF. By a change of variable u = c(x + z)p , we obtain∫ ∞
0

exp
(−c

[
(x + z)p − xp])dz = ecxp

cp

∫ ∞
cxp

e−uu1/p−1 du.

Integration by parts yields∫ ∞
cxp

e−uu1/p−1 du = e−cxp (
cxp)1/p−1 +

(
1

p
− 1
)∫ ∞

cxp
e−uu1/p−2 du.(C.1)

Now, if p ≥ 1, this is enough to yield the claim. Suppose then p ∈ (0,1), and fix a
constant λ ∈ (0,1). By (C.1),

(1 − λ)

∫ ∞
cxp

e−uu1/p−1 du = e−cxp (
cxp)1/p−1

+
∫ ∞
cxp

e−uu1/p−1
[(

1

p
− 1
)

1

u
− λ

]
du.

Now, if cxp ≥ ( 1
p

− 1) 1
λ

, the latter integrand is negative. Setting

x0 :=
[(

1

p
− 1
)

1

λc

]1/p

,
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we therefore have for x ≥ x0 the desired bound
∫ ∞

0
exp
(−c

[
(x + z)p − xp])dz ≤ (cxp)1/p−1

cp(1 − λ)
= c1/p−2

p(1 − λ)
x1−p.

We remark that the constant λ ∈ (0,1) can be used to optimize the value constants
M and x0. �

PROOF OF LEMMA 2. First from assumption (A7)(2) there exist R�,C� > 0
such that for all x ∈ Bc(0,R�), we have

�′(x) ≤ −C�|x|p−1,

and consequently for all x ∈ Bc(0,R�) and z ≥ 0, we have

π(x + sgn(x)z)

π(x)
= exp

(
sgn(x)

∫ z

0
�′(x + sgn(x)t

)
dt

)

≤ exp
(
−C�

p

[∣∣|x| + z
∣∣p − |x|p]).

Consequently for any x ∈ Bc(0,R�) we deduce that

π(x) ≤ [π(−R�) ∨ π(R�)
]
exp
(
C�/p|R�|p) exp

(−C�/p|x|p).(C.2)

We deduce that there exists R1 ≥ R� such that[
π(−R�) ∨ π(R�)

]
exp
(
C�/p|R�|p) exp

(−C�/pR
p
1

)≤ inf
x∈B(0,R�)

π(x),

and from π(·) > 0, its continuity and the fact that it is monotone on both
(−∞,−R�] and [R1,∞) we deduce the first statement. Now from (C.2) we de-
duce that there exists C1 > 0 such that for x ∈ [R1,∞)

π(x) = π
(
ϒ(x)

)≤ C1 exp
(−C�

∣∣ϒ(x)
∣∣p)

which implies the existence of Cϒ,1,Cϒ,2,Rϒ > 0 such that for any x ∈ X such
that |x| ≥ Rϒ ∣∣ϒ(x)

∣∣∨ |x| ≤ Cϒ,1
(− log

(
π(x)/Cϒ,2

))1/p
.(C.3)

From above we have the upper bound

Iγ (x) ≤
∫ ∞

0
exp
(−C�γ/p

[∣∣x + sgn(x)z
∣∣p − |x|p])dz.

We can conclude with the result of Lemma 7. We proceed similarly with
Jγ (x) by noticing that �(x) − �(x − sgn(x)z) = sgn(x)

∫ 0
−z �′(x + sgn(x)t)dt ≤

−C�/p[|x|p − |x − sgn(x)z|p] and again conclude with Lemma 7 above. �
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PROOF OF LEMMA 3. Let η ∈ (0,1), and consider

PσV (x) =
∫

X
V (y)min

{
1,

π(y)

π(x)

}
qσ (x, y)dy

+ V (x)

∫
X

(
1 − min

{
1,

π(y)

π(x)

})
qσ (x, y)dy

=
∫
Ax

V (y)qσ (x, y)dy +
∫
Rx

V (y)
π(y)

π(x)
qσ (x, y)dy

+ V (x)

∫
Rx

(
1 − π(y)

π(x)

)
qσ (x, y)dy,

where Ax := {y ∈ R :π(y) ≥ π(x)} and Rx := {y ∈ R :π(y) < π(x)} are the re-
gions of (almost) sure acceptance and possible rejection, respectively. From this
expression, we obtain

PσV (x)

V (x)
− 1 =

∫
Ax

(
V (y)

V (x)
− 1
)
qσ (x, y)dy

+
∫
Rx

[(
V (y)

V (x)

π(y)

π(x)
− 1
)

+
(

1 − π(y)

π(x)

)]
qσ (x, y)dy

(C.4)

=
∫
Ax

[(
π(y)

π(x)

)−η

− 1
]
qσ (x, y)dy

+
∫
Rx

{[(
π(y)

π(x)

)1−η

− 1
]

+
[
1 − π(y)

π(x)

]}
qσ (x, y)dy.

Notice that thanks to (A7) and Lemma 2 limx→∞ ϒ(x) = −∞ and that for R suffi-
ciently large, for any x ≥ R we have that Ax = [ϒ(x), x] and Rx = (−∞,ϒ(x))∪
(x,∞). Then with y = x ± z and by taking into account that the support of qσ (z)

is included in [−σ,σ ], we have

PσV (x)

V (x)
− 1 =

∫ (x−ϒ(x))∧σ

0

(
φx,−η,−1(z) − 1

)
qσ (z)dz

+
∫ σ

0

[(
φx,1−η,1(z) − 1

)− (φx,1,1(z) − 1
)]

qσ (z)dz

+ I
{
σ ≥ x − ϒ(x)

}
×
∫ σ

x−ϒ(x)

[(
φx,1−η,−1(z) − 1

)− (φx,1,−1(z) − 1
)]

qσ (z)dz

and therefore, because x − ϒ(x) > x, we may write

PσV (x)

V (x)
− 1 =

∫ σ∧x

0
ψx(z)qσ (z)dz

+ I{σ ≥ x}
∫ σ

x

[(
φx,1−η,1(z) − 1

)− (φx,1,1(z) − 1
)]

qσ (z)dz
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+ I{σ ≥ x}
∫ (x−ϒ(x))∧σ

x∧σ

(
φx,−η,−1(z) − 1

)
qσ (z)dz

+ I
{
σ ≥ x − ϒ(x)

}
×
∫ σ

x−ϒ(x)

[(
φx,1−η,−1(z) − 1

)− (φx,1,−1(z) − 1
)]

qσ (z)dz,

and we conclude by using that π(ϒ(x)) = π(x) and the intermediate change of
variable z′ = ϒ(x) − x + z. �

PROOF OF LEMMA 4. Note first that for s ∈ {−1,1}, because φx,η,s(z) :=
[π(x + sz)/π(x)]η = exp[η(�(x + sz) − �(x))],

φ′
x,η,s(z) = ηs�′(x + sz)φx,η,s(z) and

φ′′
x,η,s(z) = [η2∣∣�′(x + sz)

∣∣2 + η�′′(x + sz)
]
φx,η,s(z).

We now prove the desired upper bounds on ψx(z) by considering the follow-
ing three cases: (a) 0 ≤ z ≤ c0/|�′(x)|, (b) c0/|�′(x)| ≤ z ≤ C0/|�′(x)| and
(c) C0/|�′(x)| ≤ z ≤ x for an appropriate choice of the constants c0,C0 > 0 to
be determined.

Case (a) 0 ≤ z ≤ c0/|�′(x)|. We consider a first-order Taylor expansion of ψx(z)

at z0 = 0 with integral error form and obtain

ψx(z) = zη�′(x) + z(1 − η)�′(x) − z�′(x)

+
∫ z

0

[
φ′′

x,−η,−1(t) + φ′′
x,1−η,1(t) − φ′′

x,1,1(t)
]
(z − t)dt

=
∫ z

0
ax,η(t)(z − t)dt,

where

ax,η(t) := η2[∣∣�′(x − t)
∣∣2 − η�′′(x − t)

]
φx,−η,−1(t)

+ [(1 − η)2∣∣�′(x + t)
∣∣2 + (1 − η)�′′(x + t)

]
φx,1−η,1(t)

− [∣∣�′(x + t)
∣∣2 + �′′(x + t)

]
φx,1,1(t).

We seek to upperbound ax,η(t). We choose ε0 ∈ (0, η(1 − η)) and first show that
for any c0 ∈ (0, ε0/2),

lim
x→∞ inf

0≤z≤c0/|�′(x)|φx,1,1(z) > 1 − ε0/2.(C.5)

Indeed, for 0 ≤ z ≤ c0/|�′(x)| and x large enough to ensure �′(x) < 0, we have for
some ξx,z ∈ [x, x + z], the following Taylor expansion:

�(x + z) − �(x) = �′(x)z + 1

2
z2�′′(x + ξx,z)

≥ −c0 − c2
0

2

|�′′(x + ξx,z)|
|�′(x)|2
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and with (A7)(1) the last term vanishes as x → ∞, and we conclude by the as-
sumption that −c0 > −ε0/2.

Now choose ε1, ε2, ε3 > 0. From (C.5) and (A7)(1) there exists R > 0 such
that for any x ≥ R, inf|z|≤c0/|�′(x)| φx,1,1(z) ≥ 1 − ε0, sup|t |≤c0/|�′(x)| |�′′(x + t)|/
|�′(x + t)|2 ≤ ε1, sup|t |≤c0/|�′(x)| |�′(x − t)|2/|�′(x + t)|2 ≤ 1 + ε2 and
sup|t |≤c0/|�′(x)| |�′′(x + t)|/|�′(x)|2 ≤ ε3/c0. With these, and observing that for the
values considered here we have 0 ≤ φx,−η,−1(t), φx,1−η,1(t), φx,1,1(t) ≤ 1, we ob-
tain the following upper bound:

ax,η(t) ≤ ∣∣�′(x)
∣∣2 |�′(x + t)|2

|�′(x)|2
[
η(η + ε1)(1 + ε2)

+ (1 − η)(1 − η + ε1) − (1 − ε1)(1 − ε0)
]
.

We consider then the case where ε0, ε1 and ε3 are chosen small enough so that the
term in brackets in the last display is negative. We note now that since for some
ξx,t ∈ [x, x + t],

�′(x + t) = �′(x) + t�′′(x + ξx,t ).

Then with 0 ≤ t ≤ c0/|�′(x)|2 we have

�′(x + t)

�′(x)
≥ 1 − c0

|�′′(x + ξx,t )|
|�′(x)|2 ,

which leads to the following upper bound:

ax,η(t) ≤ ∣∣�′(x)
∣∣2(1 − ε3)

[
η(η + ε1)(1 + ε2)

+ (1 − η)(1 − η + ε1) − (1 − ε1)(1 − ε0)
]
.

Notice that by our choice of ε0 above, we have η2 + (1 −η)2 − (1 − ε0) ≤ −η(1 −
η). Now since ε1, ε2, ε3 > 0 can be chosen arbitrarily small above, we conclude
about the existence of M > 0, c0 > 0 and R > 0 such that for any x ≥ R

sup
|t |≤c0/|�′(x)|

ax,η(t) ≤ −M
∣∣�′(x)

∣∣2,
and we therefore conclude that in such a case, for 0 ≤ z ≤ c0/|�′(x)|

ψx(z) ≤ −M 1
2z2∣∣�′(x)

∣∣2.
Case (b) c0/|�′(x)| ≤ z ≤ C0/|�′(x)|. First notice that ψx(0) = 0 and inspect the

derivative of this function and aim to prove that it is negative. For any x ∈ X we
have

ψ ′
x(z) = η�′(x − z)φx,−η,−1(z) + (1 − η)�′(x + z)φx,1−η,1(z)

− �′(x + z)φx,1,1(z)

= �′(x + z)

[
η
�′(x − z)

�′(x + z)
φx,−η,−1(z) + (1 − η)φx,1−η,1(z) − φx,1,1(z)

]
.
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Because �′(x + z) < 0 and the two first terms in brackets form a convex combi-
nation, the second line of (5.7) will be established for c0/|�′(x)| ≤ z ≤ C0/|�′(x)|
once we will have shown that for x ≥ 0 sufficiently large,

φx,1,1(z) ≤
(

�′(x − z)

�′(x + z)
φx,−η,−1(z)

)
∧ φx,1−η,1(z).

Clearly 1 ≥ φx,1−η,1(z) = φ
1−η
x,1,1(z) ≥ φx,1,1(z), so we are left with showing that

φx,1,1(z) ≤ �′(x−z)
�′(x+z)

φx,−η,−1(z), or equivalently,

π(x + z)

π(x)

(
π(x − z)

π(x)

)η

≤ �′(x − z)

�′(x + z)
.

We consider the following Taylor expansion:

�(x + z) − �(x) + η
[
�(x − z) − �(x)

]
= z�′(x) + 1

2z2�′′(x + ξx,z) + η
[−z�′(x) + 1

2z2�′′(x + ξx,−z)
]

= (1 − η)z�′(x) + 1
2z2[�′′(x + ξx,z) + η�′′(x + ξx,−z)

]
for some ξx,z ∈ [0, z] and ξx,−z ∈ [−z,0]. For now choose any C0 > c0 and notice
that for c0/|�′(x)| ≤ z ≤ C0/|�′(x)|, we have that

(1 − η)z�′(x) ≤ −c0(1 − η),

z2[∣∣�′′(x + ξx,z)
∣∣+ η

∣∣�′′(x + ξx,−z)
∣∣]≤ C2

0
|�′′(x + ξx,z)| + η|�′′(x + ξx,−z)|

|�′(x)|2 .

Let ε1 ∈ (0, c0(1−η)), and choose ε2 > 0 such that exp(−c0(1−η)+ε1) < 1−ε2.
By (A7)(1) we can conclude by letting x be sufficiently large to ensure that for
c0/|�′(x)| ≤ z ≤ C0/|�′(x)|,

π(x + z)

π(x)

(
π(x − z)

π(x)

)η

≤ exp
(−c0(1 − η) + ε1

)
< 1 − ε2 ≤ �′(x − z)

�′(x + z)
.

Now using the result of case (a) we conclude that

ψx(z) ≤ ψx

(
c0

|�′(x)|
)

≤ −M

2
c2

0.

Case (c) C0/|�′(x)| ≤ z < x. We have the following simple bound:

ψx(z) ≤
(

π(x)

π(x − z)

)η

− 1 +
(

π(x + z)

π(x)

)1−η

.(C.6)
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We inspect, for C0/|�′(x)| ≤ z ≤ x and x large enough, the following difference:

�(x + z) − �(x) =
∫ z

0
�′(x + t)dt

≤
∫ C0/|�′(x)|

0
�′(x + t)dt

≤ −C0 sup
0≤t≤C0/|�′(x)|

∣∣∣∣�
′(x + t)

�′(x)

∣∣∣∣,
and we can similarly obtain a bound on

�(x) − �(x − z) ≤ −C0 sup
0≤t≤C0/|�′(x)|

∣∣∣∣�
′(x − t)

�′(x)

∣∣∣∣.
From (A7)(1) and the Taylor expansion �′(x + t) = �′(x) + z�′′(x + ξx,t ), we

conclude that for C0 and x sufficiently large enough, we can ensure that the upper
bound in (C.6) is negative.

The proof is now concluded by choosing c0 as in (a), which leads to the first line
of (5.7), C0 as in (c) and R large enough to cover cases (b) and (c), which imply
the second line of (5.7). �

PROOF OF LEMMA 5. We start with T1(σ, x)+T2(σ, x), and with the notation
of Lemma 2, we obtain

T1(σ, x) + T2(σ, x) ≤
∫ x

0

[(
π(x − z)

π(x)

)−η

− 1
]
qσ (z)dz

+
∫ ∞

0

(
π(x + z)

π(x)

)1−η

qσ (z)dz

≤ q

σ

[
Jη(x) − x

]+ q̄

σ
I1−η(x).

For σ ≥ x, because φϒ(x),−η,−1(z) ≤ 1 in the integration domain,

T3(σ, x) ≤ 0.

For σ ≥ x − ϒ(x) ≥ x we have on the one hand

T3(σ, x) =
∫ 0

ϒ(x)

[
φϒ(x),−η,−1(z) − 1

]
qσ

(
z + x − ϒ(x)

)
dz

≤ q

σ

(
ϒ(x) +

∫ 0

ϒ(x)
φϒ(x),−η,−1(z)dz

)

≤ q

σ

(
ϒ(x) +

∫ −ϒ(x)

0
φϒ(x),−η,1(z)dz

)

≤ q

σ

(
ϒ(x) + C

∣∣ϒ(x)
∣∣1−p)

,
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where we have used Lemma 2. On the other hand we also have

T4(σ, x) =
∫ σ−(x−ϒ(x))

0

[(
π(ϒ(x) − z)

π(ϒ(x))

)1−η

− π(ϒ(x) − z)

π(ϒ(x))

]

× qσ

(
z + x − ϒ(x)

)
dz

≤ q̄

σ

∫ ∞
0

(
π(ϒ(x) − z)

π(ϒ(x))

)1−η

dz

≤ C

σ

(−ϒ(x)
)1−p

,

where we have again used Lemma 2. We now conclude. �

PROOF OF LEMMA 6. For any x ∈ X let AZ(x) := {z ∈ Z :π(x +z)/π(x) ≥ 1}
and RZ(x) := Ac

Z(x) (where the complement is with respect to Z) and A(x) :=
x + AZ(x). Without loss of generality we focus on the case x > 0. From Lemma 2
there exists R1 > 0 such that for any x ≥ R1, RZ(x) = (−∞,−x +ϒ(x))∪ (0,∞)

and AZ(x) = [−x+ϒ(x),0], where ϒ(x) is as in Lemma 2. For x ≥ R1 and σ ≤ 1,
we have the inequalities

ασ (x) =
∫

Z
min

{
1,

π(x + z)

π(x)

}
qσ (z)dz

= 1 +
∫
RZ(x)

[
π(x + z)

π(x)
− 1
]
qσ (z)dz

≥ 1 −
∫
RZ(x)

qσ (z)dz

= 1

2
−
∫ (−x+ϒ(x))/σ

−∞
q(z)dz

≥ 1

2
−
∫ −x/σ

−∞
q(z)dz.

Now with μ1 < ∞ the first-order moment of q , we notice that from Chebyshev’s
inequality and for x ≥ R1, ∫ ∞

x/σ
q(z)dz ≤ σR−1

1 × μ1

from which we deduce the first statement for σ ≤ 1 and x ≥ R1. Now for x ≥ R1
and σ ≥ 1,

ασ (x) ≤ q̄

σ

(∫
AZ(x)∪RZ(x)

min
{

1,
π(x + z)

π(x)

}
dz

)

≤ q̄

σ

(
2Cϒ,1

(− log
(
π(x)/Cϒ,2

))1/p
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+
∫ ∞

0

π(ϒ(x) − z)

π(ϒ(x))
dz +

∫ ∞
0

π(x + z)

π(x)
dz

)

≤ C
(− log(π(x)/Cϒ,2))

1/p

σ
,

where we have used the results of Lemma 2 to upper bound the Lebesgue measure
of AZ(x) and the last two integrals. We now turn to the case 0 ≤ x ≤ R1. Let M > 0
such that

∫∞
M q(z)dz ≤ 1/4 and σ ≤ 1 and with φx(z) = π(x + z)/π(x)

ασ (x) = 1 + 1

σ

∫
Z

(
1 ∧ π(x + z)

π(x)
− 1
)
q

(
z

σ

)
dz

≥ 1 +
∫ −M

−∞

(
1 ∧ π(x + σz)

π(x)
− 1
)
q(z)dz

+
∫ ∞
M

(
1 ∧ π(x + σz)

π(x)
− 1
)
q(z)dz

−
∫ M

−M

∣∣∣∣π(x + σz)

π(x)
− 1
∣∣∣∣q(z)dz

≥ 1 − 2
∫ ∞
M

q(z)dz − 2Mq̄ sup
x∈B(0,R1),z∈B(0,M)

∣∣φ′
x(z)

∣∣σ,

and we deduce the first statement of the lemma. We now consider the case 0 ≤ x ≤
R1 and σ ≥ 1. There exists (cf. the proof of Lemma 2) R2 > 0 such that for all
x ≤ R1

ασ (x) ≤ σ−1
∫ R2

−R2

q(z/σ)dz + σ−1
∫ −R2

−∞
π(x + z)

π(x)
q(z/σ )dz

+ σ−1
∫ ∞
R2

π(x + z)

π(x)
q(z/σ )dz.

From the proof of Lemma 2, we have the bound π(x+z)/π(x) ≤ C1 exp(−C2|z|p)

for some C1,C2 > 0 and since q(z) ≤ q̄ , we deduce the existence of C > 0 such
that for x ≤ R1 and σ ≥ 1 we have ασ (x) ≤ C/σ . �
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