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LONG RUNS UNDER A CONDITIONAL LIMIT DISTRIBUTION

BY MICHEL BRONIATOWSKI AND VIRGILE CARON

Université Pierre Et Marie Curie, LSTA

This paper presents a sharp approximation of the density of long runs of a
random walk conditioned on its end value or by an average of a function of its
summands as their number tends to infinity. In the large deviation range of the
conditioning event it extends the Gibbs conditional principle in the sense that
it provides a description of the distribution of the random walk on long sub-
sequences. An approximation of the density of the runs is also obtained when
the conditioning event states that the end value of the random walk belongs to
a thin or a thick set with a nonempty interior. The approximations hold either
in probability under the conditional distribution of the random walk, or in
total variation norm between measures. An application of the approximation
scheme to the evaluation of rare event probabilities through importance sam-
pling is provided. When the conditioning event is in the range of the central
limit theorem, it provides a tool for statistical inference in the sense that it
produces an effective way to implement the Rao–Blackwell theorem for the
improvement of estimators; it also leads to conditional inference procedures
in models with nuisance parameters. An algorithm for the simulation of such
long runs is presented, together with an algorithm determining the maximal
length for which the approximation is valid up to a prescribed accuracy.

1. Context and scope. This paper explores the asymptotic distribution of a
random walk conditioned on its final value as the number of summands increases.
Denote Xn

1 := (X1, . . . ,Xn) a set of n independent copies of a real random variable
X with density pX on R and S1,n := X1 + · · · + Xn. We consider approximations
of the density of the vector Xk

1 = (X1, . . . ,Xk) on R
k when S1,n = nan, and an is

a convergent sequence. The integer valued sequence k := kn is such that

0 ≤ lim sup
n→∞

k/n ≤ 1(K1)

together with

lim
n→∞n − k = ∞.(K2)

Therefore we may consider the asymptotic behavior of the density of the trajectory
of the random walk on long runs. For the sake of applications we also address
the case when S1,n is substituted by U1,n := u(X1) + · · · + u(X1) for some real
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valued measurable function u, and when the conditioning event is (U1,n = u1,n)

where u1,n/n converges as n tends to infinity. A complementary result provides
an estimation for the case when the conditioning event is a large set in the large
deviation range, (U1,n ∈ nA) where A is a Borel set with nonempty interior with
Eu(X) < essinfA; two cases are considered, according to the local dimension
of A at its essential infimum point essinfA.

The interest in this question stems from various sources. When k is fixed (typ-
ically k = 1) this is a version of the Gibbs conditional principle which has been
studied extensively for fixed an �= EX, therefore under a large deviation condition.
Diaconis and Freedman [13] have considered this issue also in the case k/n → θ

for 0 ≤ θ < 1, in connection with de Finetti’s theorem for exchangeable finite se-
quences. Their interest was related to the approximation of the density of Xk

1 by the
product density of the summands Xi’s, and therefore on the validity of the indepen-
dence of the Xi ’s under conditioning. Their result is in the spirit of Van Camper-
hout and Cover [22], and parallels can be drawn with Csiszár’s [10] asymptotic
conditional independence result, when the conditioning event is (S1,n > nan) with
an fixed and larger than EX. In the same vein and under the same large deviation
condition Dembo and Zeitouni [11] considered similar problems. This question is
also of importance in statistical physics. Numerous papers pertaining to structural
properties of polymers deal with this issue, and we refer to [12] and [23] for a
description of those problems and related results. In the moderate deviation case,
Ermakov [15] also considered a similar problem when k = 1.

The approximation of conditional densities is the basic ingredient for the nu-
merical estimation of integrals through improved Monte Carlo techniques. Rare
event probabilities may be evaluated through importance sampling techniques; ef-
ficient sampling schemes consist of the simulation of random variables under a
proxy of a conditional density, often with respect to conditioning events of the
form (U1,n > nan); optimizing these schemes has been a motivation for this work.

In parametric statistical inference, conditioning on the observed value of a statis-
tic leads to a reduction of the mean square error of some estimate of the parameter;
the famous Rao–Blackwell and Lehmann–Scheffé theorems can be implemented
when a simulation technique produces samples according to the distribution of the
data conditioned on the value of some observed statistics. In these applications
the conditioning event is local, and when the statistic is of the form U1,n, then the
observed value u1,n satisfies limn→∞ u1,n/n = Eu(X). Such is the case in expo-
nential families when U1,n is a sufficient statistic for the parameter. Other fields of
applications pertain to parametric estimation where conditioning by the observed
value of a sufficient statistic for a nuisance parameter produces optimal inference
via maximum likelihood in the conditioned model. In general this conditional den-
sity is unknown; the approximation produced in this paper provides a tool for the
solution of these problems.

For both importance sampling and for the improvement of estimators, the ap-
proximation of the conditional density of Xk

1 on long runs should be of a special
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form: it has to be a density on R
k , easy to simulate, and the approximation should

be sharp. For these applications the relative error of the approximation should be
small on the simulated paths only. Also for inference via maximum likelihood un-
der nuisance parameters the approximation has to be accurate on the sample itself
and not on the entire space.

Our first set of results provides a very sharp approximation scheme; numerical
evidence on exponential runs with length n = 1000 provide a relative error of the
approximation of order less than 100% for the density of the first 800 terms when
evaluated on the sample paths themselves, thus on the significant part of the sup-
port of the conditional density; this very sharp approximation rate is surprising in
such a large dimensional space, and it illustrates the fact that the conditioned mea-
sure occupies a very small part of the entire space. Therefore the approximation of
the density of Xk

1 is not performed on the sequence of entire spaces Rk , but merely
on a sequence of subsets of Rk which contain the trajectories of the conditioned
random walk with probability going to 1 as n tends to infinity; the approximation
is performed on typical paths.

The extension of our results from typical paths to the whole space R
k holds:

convergence of the relative error on large sets imply that the total variation distance
between the conditioned measure and its approximation goes to 0 on the entire
space. So our results provide an extension of Diaconis and Freedman [13] and
Dembo and Zeitouni [11] who considered the case when k is of small order with
respect to n; the conditions which are assumed in the present paper are weaker than
those assumed in the previously cited works; however, in contrast with their results,
we do not provide explicit rates for the convergence to 0 of the total variation
distance on R

k .
It would have been of interest to consider sharper convergence criteria than the

total variation distance; the χ2-distance, which is the mean square relative error,
cannot be bounded through our approach on the entire space R

k , since it is only
suitable for large sets of trajectories (whose probability goes to 1 as n increases);
this is not sufficient to bound its expected value under the conditional sampling.

This paper is organized as follows. Section 2 presents the approximation scheme
for the conditional density of Xk

1 under the conditioning point sequence (S1,n =
nan). In Section 3, it is extended to the case when the conditioning family of
events is written as (U1,n = u1,n). The value of k for which this approximation is
appropriate is discussed; an algorithm for the implementation of this rule is pro-
posed. Algorithms for the simulation of random variables under the approximating
scheme are also presented. Section 4 extends the results of Section 3 when condi-
tioning on large sets. Two applications are presented in Section 5; the first one per-
tains to Rao–Blackwellization of estimators, hence on the application of the results
of Section 3 when the conditioning point is such that limn→∞ u1,n/n = Eu(X); in
the second application the result of Section 4 is used to derive small variance es-
timators of rare event probabilities through importance sampling; in this case the
conditioning event is in the range of the large deviation scale.
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The main steps of the proofs are in the core of the paper; some of the technical-
ities are left to the Appendix.

2. Random walks conditioned on their sum.

2.1. Notation and hypothesis. In this section the conditioning point event is
written as

En := (S1,n = nan).

We assume that X satisfies the Cramér condition; that is, X has a finite moment
generating function �(t) := E[exp(tX)] in a nonempty neighborhood of 0. Denote

m(t) := d

dt
log�(t),

s2(t) := d

dt
m(t),

μ3(t) := d

dt
s2(t).

The values of m(t), s2 and μ3(t) are the expectation, the variance and the kurtosis
of the tilted density

πα(x) := exp(tx)

�(t)
p(x),(1)

where t is the unique solution of the equation m(t) = α when α belongs to the
support of X. Conditions on �(t) which ensure existence and uniqueness of t are
referred to as steepness properties; we refer to [4], page 153 ff., for all properties
of moment generating functions used in this paper. Denote �α the probability
measure with density πα .

We also assume that the characteristic function of X is in Lr for some r ≥ 1
which is necessary for the Edgeworth expansions to be performed.

The probability measure of the random vector Xn
1 on R

n conditioned upon En

is denoted Pnan . We also denote Pnan the corresponding distribution of Xk
1 con-

ditioned upon En; the vector Xk
1 then has a density with respect to the Lebesgue

measure on R
k for 1 ≤ k < n, which will be denoted pnan . For a general r.v. Z with

density p, p(Z = z) denotes the value of p at point z. Hence, pnan(x
k
1) = p(Xk

1 =
xk

1 |S1,n = nan). The normal density function on R with mean μ and variance τ at
x is denoted n(μ, τ, x). When μ = 0 and τ = 1, the standard notation n(x) is used.

2.2. A first approximation result. We first put forward a simple result which
provides an approximation of the density pnan of the measure Pnan on R

k when k

satisfies (K1) and (K2). For i ≤ j denote

si,j := xi + · · · + xj .
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Denote a := an omitting the index n for clarity.
We make use of the following property which states the invariance of condi-

tional densities under tilting: For 1 ≤ i ≤ j ≤ n, for all a in the range of X, for
all u and s

p(Si,j = u|S1,n = s) = πa(Si,j = u|S1,n = s),(2)

where Si,j := Xi + · · · + Xj together with S1,0 = s1,0 = 0. By the Bayes formula
it holds that

pna

(
xk

1
)= k−1∏

i=0

p(Xi+1 = xi+1|Si+1,n = na − s1,i)(3)

=
k−1∏
i=0

πa(Xi+1 = xi+1)
πa(Si+2,n = na − s1,i+1)

πa(Si+1,n = na − s1,i)

=
[

k−1∏
i=0

πa(Xi+1 = xi+1)

]
πa(Sk+1,n = na − s1,k)

πa(S1,n = na)
.(4)

Denote Sk+1,n and S1,n the normalized versions of Sk+1,n and S1,n under the sam-
pling distribution �a . By (4)

pna

(
xk

1
)= [k−1∏

i=0

πa(Xi+1 = xi+1)

]

×
√

n√
n − k

πa(Sk+1,n = (ka − s1,k)/(sa
√

n − k))

πa(S1,n = 0)
.

A first order Edgeworth expansion is performed in both terms of the ratio in the
above display; see Remark 5 below. This yields, assuming (K1) and (K2), the
following:

PROPOSITION 1. For all xk
1 in R

k

pna

(
xk

1
)= [k−1∏

i=0

πa(Xi+1 = xi+1)

]

×
[
n((ka − s1,k)/(s(t

a)
√

n − k))

n(0)

√
n

n − k
(5)

×
(

1 + μ3(t
a)

6s3(ta)
√

n − k
H3

(
ka − s1,k

s(ta)
√

n − k

))
+ O

(
1√
n

)]
,

where H3(x) := x3 − 3x. The value of ta is defined through m(ta) = a.
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Despite its appealing aspect, (5) is of poor value for applications, since it does
not yield an explicit way to simulate samples under a proxy of pna for large values
of k. The other way is to construct the approximation of pna step by step, ap-
proximating the terms in (3) one by one and using the invariance under the tilting
at each step, which introduces a product of different tilted densities in (4). This
method produces a valid approximation of pna on subsets of R

k which contain
the trajectories of the conditioning random walk with larger and larger probability,
going to 1 as n tends to infinity.

This introduces the main focus of this paper.

2.3. A recursive approximation scheme. We introduce a positive sequence εn

which satisfies

lim
n→∞ εn

√
n − k = ∞,(E1)

lim
n→∞ εn(logn)2 = 0.(E2)

It will be shown that εn(logn)2 is the rate of accuracy of the approximating
scheme.

We denote a the generic term of the convergent sequence (an)n≥1. For clarity
the dependence on n of all quantities involved in the subsequent development is
omitted in the notation.

2.3.1. Approximation of the density of the runs. Define a density gna(y
k
1) on

R
k as follows. Set

g0(y1|y0) := πa(y1)

with y0 arbitrary, and for 1 ≤ i ≤ k − 1 define g(yi+1|yi
1) recursively.

Set ti to be the unique solution of the equation

mi := m(ti) = n

n − i

(
a − s1,i

n

)
,(6)

where s1,i := y1 + · · · + yi . The tilted adaptive family of densities πmi is the basic
ingredient of the derivation of approximating scheme. Let

s2
i := d2

dt2

(
logEπmi exp(tX)

)
(0)

and

μi
j := dj

dtj

(
logEπmi exp(tX)

)
(0), j = 3,4,

which are the second, third and fourth cumulants of πmi . Let

g
(
yi+1|yi

1
)= CipX(yi+1)n(αβ + a,β, yi+1)(7)



2252 M. BRONIATOWSKI AND V. CARON

be a density where

α = ti + μi
3

2s2
i (n − i − 1)

,(8)

β = s2
i (n − i − 1)(9)

and Ci is a normalizing constant.
Define

gna

(
yk

1
) := g0(y1|y0)

k−1∏
i=1

g
(
yi+1|yi

1
)
.(10)

We then have:

THEOREM 2. Assume (K1) and (K2) together with (E1) and (E2). Let Yn
1 be

a sample from density pna . Then

pna

(
Y k

1
) := p

(
Xk

1 = Y k
1 |S1,n = na

)
(11)

= gna

(
Y k

1
)(

1 + oPna

(
εn(logn)2)).

PROOF. The proof uses Bayes’s formula to write p(Xk
1 = Y k

1 |S1,n = na) as a
product of k conditional densities of the individual terms of the trajectory evaluated
at Y k

1 . Each term of this product is approximated by an Edgeworth expansion which
together with the properties of Y k

1 under Pna completes the proof. This proof is
rather long, and we have deferred its technical steps to the Appendix.

Denote S1,0 = 0 and S1,i := S1,i−1 + Yi . It holds that

p
(
Xk

1 = Y k
1 |S1,n = na

)= p(X1 = Y1|S1,n = na),

k−1∏
i=1

p
(
Xi+1 = Yi+1|Xi

1 = Y i
1,S1,n = na

)
(12)

=
k−1∏
i=0

p(Xi+1 = Yi+1|Si+1,n = na − S1,i )

by independence of the r.v.’s Xi’s.
Define ti through

m(ti) = n

n − i

(
a − S1,i

n

)
a function of the past r.v.’s Y i

1 , and set mi := m(ti) and s2
i := s2(ti). By (2)

p(Xi+1 = Yi+1|Si+1,n = na − S1,i)

= πmi
(
Xi+1 = Yi+1|Sn

i+1 = na − S1,i

)
= πmi (Xi+1 = Yi+1)

πmi (Si+2,n = na − S1,i+1)

πmi (Si+1,n = na − S1,i )
,
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where we used the independence of the Xj ’s under πmi . A precise evaluation of
the dominating terms in this latest expression is needed in order to handle the
product (12).

Under the sequence of densities πmi the i.i.d. r.v.’s Xi+1, . . . ,Xn define a
triangular array which satisfies a local central limit theorem, and an Edge-
worth expansion. Under πmi , Xi+1 has expectation mi and variance s2

i . Cen-
ter and normalize both the numerator and denominator in the fraction which
appear in the last display. Denote πn−i−1 the density of the normalized sum
(Si+2,n − (n − i − 1)mi)/(si

√
n − i − 1) when the summands are i.i.d. with

common density πmi . Accordingly πn−i is the density of the normalized sum
(Si+1,n − (n− i)mi)/(si

√
n − i) under i.i.d. πmi sampling. Hence, evaluating both

πn−i−1 and its normal approximation at point Yi+1,

p(Xi+1 = Yi+1|Si+1,n = na − S1,i)

=
√

n − i√
n − i − 1

πmi (Xi+1 = Yi+1)
πn−i−1((mi − Yi+1)/si

√
n − i − 1)

πn−i(0)
(13)

:=
√

n − i√
n − i − 1

πmi (Xi+1 = Yi+1)
Ni

Di

.

The sequence of densities πn−i−1 converges pointwise to the standard normal den-
sity under (E1) which implies that n − i tends to infinity for all 1 ≤ i ≤ k, and an
Edgeworth expansion to order 5 is performed for the numerator and the denomina-
tor. The main arguments used in order to obtain the order of magnitude of the in-
volved quantities are (i) a maximal inequality which controls the magnitude of mi

for all i between 0 and k−1 (Lemma 22), (ii) the order of the maximum of the Yi’s
(Lemma 23). As proved in the Appendix,

Ni = n(−Yi+1/si
√

n − i − 1) · A · B + OPna

(
1

(n − i − 1)3/2

)
,(14)

where

A :=
(

1 + aYi+1

s2
i (n − i − 1)

− a2

2s2
i (n − i − 1)

+ oPna (εn logn)

n − i − 1

)
(15)

and

B :=

⎛⎜⎜⎜⎝
1 − μi

3

2s4
i (n − i − 1)

(a − Yi+1)

− μi
3 − s4

i

8s4
i (n − i − 1)

− 15(μi
3)

2

72s6
i (n − i − 1)

+ OPna ((logn)2)

(n − i − 1)2

⎞⎟⎟⎟⎠ .(16)

The OPna (
1

(n−i−1)3/2 ) term in (14) is uniform on (mi − Yi+1)/si
√

n − i − 1. Turn
back to (13) and perform the same Edgeworth expansion in the denominator, which
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is written as

Di = n(0)

(
1 − μi

4 − 3s4
i

8s4
i (n − i)

− 15(μi
3)

2

72s6
i (n − i)

)
+ OPna

(
1

(n − i)3/2

)
.(17)

The terms in g(Yi+1|Y i
1) follow from an expansion in the ratio of the two expres-

sions (14) and (17) above. The Gaussian contribution is explicit in (14) while the

term exp(
μi

3
2s4

i (n−i−1)
Yi+1) is the dominant term in B . Turning to (13) and com-

paring with (11) it appears that the normalizing factor Ci in g(Yi+1|Y i
1) com-

pensates the term
√

n−i

�(ti )
√

n−i−1
exp(

−aμi
3

2s2
i (n−i−1)

), where the term �(ti) comes from

πmi (Xi+1 = Yi+1). Furthermore the product of the remaining terms in the above
approximations in (14) and (17) form the 1 + oPna (εn(logn)2) approximation rate,
as claimed. Details are deferred to the Appendix. This yields

p
(
Xk

1 = Y k
1 |S1,n = na

)= (1 + oPna

(
εn(logn)2))g0(Y1|Y0)

k−1∏
i=1

g
(
Yi+1|Y i

1
)
,

which completes the proof of the theorem. �

That the variation distance between Pnan and Gnan tends to 0 as n → ∞ is
stated in Section 3.

REMARK 3. When the Xi’s are i.i.d. with a standard normal density, then the
result in the above approximation theorem holds with k = n − 1 implying that
p(Xn−1

1 = xn−1
1 |S1,n = na) = gna(x

n−1
1 ) for all xn−1

1 in R
n−1. This extends to

the case when they have an infinitely divisible distribution. However, formula (11)
holds true without the error term only in the Gaussian case. Similar exact formulas
can be obtained for infinitely divisible distributions using (12) where no use of
tilting is made. Such formulas are used to produce Figures 1, 2, 3 and 4 in order to
assess the validity of the selection rule for k in the exponential case.

REMARK 4. The density in (7) is a slight modification of πmi . The modi-
fication from πmi (yi+1) to g(yi+1|yi

1) is a small shift in the location parameter
depending both on a and on the skewness of p, and a change in the variance: large
values of Xi+1 have smaller weight for large i, so that the distribution of Xi+1
tends to concentrate around mi as i approaches k.

REMARK 5. In Theorem 2, as in Proposition 1, Theorem 8 or Lemma 23, we
use an Edgeworth expansion for the density of the normalized sum of the (n −
i)th row of some triangular array of row-wise independent r.v.’s with a common
density. Consider the i.i.d. r.v.’s X1, . . . ,Xn with common density πa(x) where a
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FIG. 1. ERE(k) (solid line) along with upper and lower bound of CI(k) (dotted line) as a function
of k with n = 100 and a such that Pn 	 10−8.

may depend on n but remains bounded. The Edgeworth expansion with respect
to the normalized density of S1,n under πa can be derived following closely the
proof given, for example, in [16], page 532 ff., by substituting the cumulants of
p by those of πa . Denote ϕa(z) the characteristic function of πa(x). Clearly for
any δ > 0 there exists qa,δ < 1 such that |ϕa(z)| < qa,δ and since a is bounded,
supn qa,δ < 1. Therefore inequality (2.5) in [16], page 533 holds. With ψn defined
as in [16], (2.6) holds with ϕ replaced by ϕa and σ by s(ta); (2.9) holds, which
completes the proof of the Edgeworth expansion in the simple case. The proof is
analogous for higher order expansions.

FIG. 2. ERE(k) (solid line) along with upper and lower bound of CI(k) (dotted line) as a function
of k with n = 100 and a such that Pn 	 10−8.
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FIG. 3. ERE(k) (solid line) along with upper and lower bound of CI(k) (dotted line) as a function
of k with n = 1000 and a such that Pn 	 10−8.

2.3.2. Sampling under the approximation. Applications of Theorem 2 in im-
portance sampling procedures and in Statistics require a reverse result. So assume
that Y k

1 is a random vector generated under Gna with density gna . Can we state that
gna(Y

k
1 ) is a good approximation for pna(Y

k
1 )? This holds true. We state a simple

lemma in this direction.
Let Rn and Sn denote two p.m.’s on R

n with respective densities rn and sn.

LEMMA 6. Suppose that for some sequence εn which tends to 0 as n tends to
infinity

rn
(
Yn

1
)= sn

(
Yn

1
)(

1 + oRn
(εn)
)

(18)

FIG. 4. ERE(k) (solid line) along with upper and lower bound of CI(k) (dotted line) as a function
of k with n = 1000 and a such that Pn 	 10−8.
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as n tends to ∞. Then

sn

(
Yn

1
)= rn

(
Yn

1
)(

1 + oSn
(εn)
)
.(19)

PROOF. Denote

An,εn := {yn
1 : (1 − εn)sn

(
yn

1
)≤ rn

(
yn

1
)≤ sn

(
yn

1
)
(1 + εn)

}
.

It holds for all positive δ,

lim
n→∞Rn(An,δεn) = 1.

Write

Rn(An,δεn) =
∫

1An,δεn

(
yn

1
) rn(yn

1 )

sn(y
n
1 )

sn

(
yn

1
)
dyn

1 .

Since

Rn(An,δεn) ≤ (1 + δεn)Sn(An,δεn),

it follows that

lim
n→∞Sn(An,δεn) = 1,

which proves the claim. �

As a direct by-product of Theorem 2 and Lemma 6 we obtain:

THEOREM 7. Assume (K1) and (K2) together with (E1) and (E2). Let Y k
1 be

a sample with density gna . It holds that

pna

(
Y k

1
)= gna

(
Y k

1
)(

1 + oGna

(
εn(logn)2)).

3. Random walks conditioned by a function of their summands. This sec-
tion extends the above results to the case when the conditioning event is written
as

U1,n := u1,n(20)

with

U1,n := u(X1) + · · · + u(Xn),

where the function u is real valued and the sequence u1,n/n converges. The char-
acteristic function of the random variable u(X) is assumed to belong to Lr for
some r ≥ 1. Let pU denote the density of U = u(X) and denote pX the density
of X.

Assume

φU(t) := E
[
exp(tU)

]
< ∞(21)
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for t in a nonempty neighborhood of 0. Define the functions m(t), s2(t) and μ3(t)

as the first, second and third derivatives of logφU(t).
Denote

πα
U(u) := exp(tu)

φU(t)
pU(u)(22)

with m(t) = α, and α belongs to the support of PU, the distribution of U.
We also introduce the family of densities

πα
u (x) := exp(tu(x))

φU(t)
pX(x).(23)

3.1. Approximation of the density of the runs. Assume that the sequence εn

satisfies (E1) and (E2).
Define a density gu1,n

(yk
1) on R

k as follows. Set

m0 := u1,n/n

and

g0(y1|y0) := πm0
u (y1)(24)

with y0 arbitrary and, for 1 ≤ i ≤ k − 1, define g(yi+1|yi
1) recursively. Denote

u1,i := u(y1) + · · · + u(yi).
Set ti to be the unique solution of the equation

mi := m(ti) = u1,n − u1,i

n − i
,(25)

and let

s2
i := d2

dt2

(
logE

π
mi
U

exp(tU)
)
(0)

and

μi
j := dj

dtj

(
logE

π
mi
U

exp(tU)
)
(0), j = 3,4,

which are the second, third and fourth cumulants of π
mi

U . A density g(yi+1|yi
1) is

defined as

g
(
yi+1|yi

1
)= CipX(yi+1)n

(
αβ + m0, β,u(yi+1)

)
.(26)

Here

α = ti + μi
3

2s4
i (n − i − 1)

,(27)

β = s2
i (n − i − 1),(28)
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and the Ci is a normalizing constant.
Set

gu1,n

(
yk

1
) := g0(y1|y0)

k−1∏
i=1

g
(
yi+1|yi

1
)
.(29)

THEOREM 8. Assume (K1) and (K2) together with (E1) and (E2). Then (i)

pu1,n

(
Y k

1
) := p

(
Xk

1 = Y k
1 |U1,n = u1,n

)= gu1,n

(
Y k

1
)(

1 + oPu1,n

(
εn(logn)2))

and (ii)

pu1,n

(
Y k

1
)= gu1,n

(
Y k

1
)(

1 + oGu1,n

(
εn(logn)2)).

PROOF. We only sketch the initial step of the proof of (i), which rapidly fol-
lows the same path as that in Theorem 2.

As in the proof of Theorem 2, evaluate

p(Xi+1 = Yi+1|Ui+1,n = u1,n − U1,i )

= pX(Xi+1 = Yi+1)
pU(Ui+2,n = u1,n − U1,i+1)

pU(Ui+1,n = u1,n − U1,i)

= pX(Xi+1 = Yi+1)

pU(Ui+1 = u(Yi+1))
pU
(
Ui+1 = u(Yi+1)

)pU(Ui+2,n = u1,n − U1,i+1)

pU(Ui+1,n = u1,n − U1,i )
.

Use the invariance of the conditional density with respect to the change of sam-
pling defined by π

mi

U to obtain

p(Xi+1 = Yi+1|Ui+1,n = u1,n − U1,i)

= pX(Xi+1 = Yi+1)

pU(Ui+1 = u(Yi+1))
π

mi

U
(
Ui+1 = u(Yi+1)

)πmi

U (Ui+2,n = u1,n − U1,i+1)

π
mi

U (Ui+1,n = u1,n − U1,i)

= pX(Xi+1 = Yi+1)
etiu(Yi+1)

φU(ti)

π
mi

U (Ui+2,n = u1,n − U1,i+1)

π
mi

U (Ui+1,n = u1,n − U1,i)
,

and proceed via the Edgeworth expansions in the above expression, following ver-
batim the proof of Theorem 2. We omit details. The proof of (ii) follows from
Lemma 6. �

We turn to a consequence of Theorem 8.
For all δ > 0, let

Ek,δ :=
{
yk

1 ∈ R
k :
∣∣∣∣pu1,n

(yk
1) − gu1,n

(yk
1)

gu1,n
(yk

1)

∣∣∣∣< δ

}
,

which by Theorem 8 satisfies

lim
n→∞Pu1,n

(Ek,δ) = lim
n→∞Gu1,n

(Ek,δ) = 1.(30)
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It holds that

sup
C∈B(Rk)

∣∣Pu1,n
(C ∩ Ek,δ) − Gu1,n

(C ∩ Ek,δ)
∣∣

≤ δ sup
C∈B(Rk)

∫
C∩Ek,δ

gu1,n

(
yk

1
)
dyk

1 ≤ δ.

By (30)

sup
C∈B(Rk)

∣∣Pu1,n
(C ∩ Ek,δ) − Pu1,n

(C)
∣∣< ηn

and

sup
C∈B(Rk)

∣∣Gu1,n
(C ∩ Ek,δ) − Gu1,n

(C)
∣∣< ηn

for some sequence ηn → 0; hence

sup
C∈B(Rk)

∣∣Pu1,n
(C) − Gu1,n

(C)
∣∣< δ + 2ηn

for all positive δ. Applying Scheffé’s lemma, we have proved:

THEOREM 9. Under the hypotheses of Theorem 8 the total variation distance
between Pu1,n

and Gu1,n
goes to 0 as n tends to infinity, and

lim
n→∞

∫ ∣∣pu1,n

(
yk

1
)− gu1,n

(
yk

1
)∣∣dyk

1 = 0.

REMARK 10. This result is to be compared with Theorem 1.6 in [13] and
Theorem 2.15 in [11] which provides a rate for this convergence for small k’s
under some additional conditions on the moment generating function of U.

3.1.1. Approximation under other sampling schemes. In statistical applica-
tions the r.v.’s Yi’s in Theorems 2 and 8 may in certain cases be sampled under
some other distribution than Pna or Gna .

Consider the following situation.
The model consists of an exponential family P := {Pθ,η, (θ, η) ∈ N } defined

on R with canonical parametrization (θ, η) and sufficient statistics (t, u) defined
on R through the densities

pθ,η(x) := dPθ,η(x)

dx
= exp

(
θt (x) + ηu(x) − K(θ,η)

)
h(x).(31)

We assume that both θ and η belong to R. The natural parameter space N is a
convex set in R

2 defined as the domain of

k(θ, η) := exp
(
K(θ,η)

)= ∫ exp
(
θt (x) + ηu(x)

)
h(x) dx.
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For the statistician, θ is the parameter of interest whereas η is a nuisance one.
The unknown parameter of the i.i.d. sample Xn

1 := (X1, . . . ,Xn) observed as Xn
1 :=

(X1, . . . ,Xn) is (θT , ηT ).
Conditioning on a sufficient statistic for the nuisance parameter produces a new

exponential family which is free of η. For any θ denote η̂θ the MLE of ηT in
model (31) parametrized in η, when θ is fixed. A classical solution for the estima-
tion of θT consists in maximizing the likelihood

L
(
θ |Xn

1
) := n∏

i=1

pθ,η̂θ (Xi)

with respect to θ . This approach produces satisfactory results when η̂θ is a consis-
tent estimator of ηθ . However for curved exponential families, it may happen that
for some θ the likelihood

Lθ

(
η|Xn

1
) := n∏

i=1

pθ,η(Xi)

is multimodal with respect to η which may produce misestimation in η̂θ , leading
in turn to inconsistency in the resulting estimates of θT ; see [20].

Consider gu1,n,(θ,η) defined in (29) for fixed (θ, η), with u1,n := u(X1) + · · · +
u(Xn). Since u1,n is sufficient for η, pu1,n,(θ,η) is independent of η for all k. As-
sume at present that the density gu1,n,(θ,η) on R

k approximates pu1,n,(θ,η) on the
sample Xn

1 generated under (θT , ηT ); it follows then that inserting any value η0
in (29) does not change the value of the resulting likelihood

Lη0

(
θ |Xk

1
) := gu1,n,(θ,η0)(Xi).

Optimizing Lη0(θ |Xk
1) with respect to θ produces a consistent estimator of θT . We

refer to [5] for examples and discussion.
Let Yn

1 be i.i.d. copies of Z with distribution Q and density q; assume that
Q satisfies the Cramér condition

∫
(exp(tx))q(x) dx < ∞ for t in a nonempty

neighborhood of 0. Let V1,n := u(Y1) + · · · + u(Yn), and define

qu1,n

(
yk

1
) := q

(
Yk

1 = yk
1 |V1,n = u1,n

)
with distribution Qu1,n

. The following theorem then holds:

THEOREM 11. Assume (K1) and (K2) together with (E1) and (E2). Then, with
the same hypotheses and notation as in Theorem 8,

p
(
Xk

1 = Y k
1 |U1,n = u1,n

)= gu1,n

(
Y k

1
)(

1 + oQu1,n

(
εn(logn)2)).

Also the total variation distance between Qu1,n
and Pu1,n

goes to 0 as n tends
to infinity.

PROOF. It is enough to check that Lemmas 21, 22 and 23 hold when Y satisfies
the Cramér condition. �
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REMARK 12. In the previous discussion Q = PθT,ηT
and Xn

1 are independent
copies of X with distribution Pθ,η0 .

3.2. For how long is the approximation valid? This section provides a rule
leading to an effective choice of the crucial parameter k in order to achieve a
given accuracy bound for the relative error in Theorem 8(ii). The accuracy of the
approximation is measured through

ERE(k) := EGu1,n
1Dk

(
Y k

1
)pu1,n

(Y k
1 ) − gu1,n

(Y k
1 )

pu1,n
(Y k

1 )
(32)

and

VRE(k) := VarGu1,n
1Dk

(
Y k

1
)pu1,n

(Y k
1 ) − gu1,n

(Y k
1 )

pu1,n
(Y k

1 )
(33)

respectively, the expectation and the variance of the relative error of the approxi-
mating scheme when evaluated on

Dk := {yk
1 ∈ R

k such that
∣∣gu1,n

(
yk

1
)
/pu1,n

(
yk

1
)− 1

∣∣< δn

}
with εn(logn)2/δn → 0 and δn → 0; therefore Gu1,n

(Dk) → 1. The r.v.’s Y k
1 are

sampled under gu1,n
. Note that the density pu1,n

is usually unknown. The argument
is somehow heuristic and informal; nevertheless the rule is simple to implement
and provides good results. We assume that the set Dk can be substituted by R

k in
the above formulas, therefore assuming that the relative error has bounded vari-
ance, which would require quite a lot of work to be proved under appropriate con-
ditions, but which seems to hold, at least in all cases considered by the authors. We
keep the above notation omitting therefore any reference to Dk .

Consider a two-sigma confidence bound for the relative accuracy for a given k,
defining

CI(k) := [ERE(k) − 2
√

VRE(k),ERE(k) + 2
√

VRE(k)
]
.

Let δ denote an acceptance level for the relative accuracy. Accept k until δ

belongs to CI(k). For such k, the relative accuracy is certified up to the level 5%
roughly.

The calculation of VRE(k) and ERE(k) should be carried out as follows.
Write

VRE(k)2 = EPX

( g3
u1,n

(Y k
1 )

pu1,n
(Y k

1 )2pX(Y k
1 )

)

− EPX

( g2
u1,n

(Y k
1 )

pu1,n
(Y k

1 )pX(Y k
1 )

)2

=: A − B2.
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By the Bayes formula,

pu1,n

(
Y k

1
)= pX

(
Y k

1
)np(Uk+1,n/(n − k) = m(tk))

(n − k)p(U1,n/n = u1,n/n)
.(34)

The following lemma holds; see [17] and [19].

LEMMA 13. Let U1, . . . ,Un be i.i.d. random variables with common density
pU on R and satisfying the Cramér conditions with m.g.f. φU. Then with m(t) = u,

p(U1,n/n = u) =
√

nφn
U(t) exp(−ntu)

s(t)
√

2π

(
1 + o(1)

)
when |u| is bounded.

Introduce

D :=
[
π

m0
U (m0)

pU(m0)

]n
and

N :=
[
π

mk

U (mk)

pU(mk)

](n−k)

with mk defined in (25) and m0 = u1,n/n. Define t by m(t) = m0. By (34) and
Lemma 13 it holds that

pu1,n

(
Y k

1
)=√ n

n − k
pX
(
Y k

1
)D
N

s(t)

s(tk)

(
1 + oPu1,n

(1)
)
.

The approximation of A is obtained through Monte Carlo simulation. Define

A
(
Y k

1
) := n − k

n

(
gu1,n

(Y k
1 )

pX(Y k
1 )

)3(N

D

)2 s2(tk)

s2(t)
,(35)

and simulate L i.i.d. samples Y k
1 (l), each one made of k i.i.d. replicates under pX.

Set

Â := 1

L

L∑
l=1

A
(
Y k

1 (l)
)
.

We use the same approximation for B . Define

B
(
Y k

1
) :=

√
n − k

n

(
gu1,n

(Y k
1 )

pX(Y k
1 )

)2(N

D

)
s(tk)

s(t)
(36)

and

B̂ := 1

L

L∑
l=1

B
(
Y k

1 (l)
)
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with the same Y k
l (l)’s as above.

Set

VRE(k) := Â − (B̂)2,(37)

which is a suitable approximation of VRE(k).
The curve k → ERE(k) is a proxy for (32) and is obtained through

ERE(k) := 1 − B̂.

A proxy of CI(k) can now be defined as

CI(k) := [ERE(k) − 2
√

VRE(k),ERE(k) + 2
√

VRE(k)
]
.(38)

We now check the validity of the above approximation, comparing CI(k) with
CI(k) on a toy case.

Consider u(x) = x. The case when pX is a centered exponential distribution
with variance 1 allows for an explicit evaluation of CI(k) making no use of
Lemma 13. The conditional density pna is calculated analytically, the density gna

is obtained through (10), hence providing a benchmark for our proposal. The terms
Â and B̂ are obtained by Monte Carlo simulation following the algorithm pre-
sented below. Figures 1, 2 and 3, 4 show the increase in δ w.r.t. k in the large
deviation range, with a such that P(S1,n > na) 	 10−8. We have considered two
cases, when n = 100 and when n = 1000. These figures show that the approxi-
mation scheme is quite accurate, since the relative error is fairly small. Also they
show that ERE and CI provide good tools for the assessing the value of k.

Algorithms 1 and 2 produce the curve k → CI(k). The resulting k = kδ is the
longest run length for which gu1,n

a good proxy for pu1,n
.

The calculation of gu1,n
(yk

1) above requires the value of

Ci =
(∫

pX(x)n
(
αβ + m0, β,u(x)

)
dx

)−1

.

This can be done through Monte Carlo simulation.

REMARK 14. Solving ti = m−1(mi) might be difficult. It may happen that
the inverse function of m is at hand, but even when pX is the Weibull density and
u(x) = x, this is not the case. We can replace step ∗ by

ti+1 := ti − (m(ti) + ui)

(n − i)s2(ti)
.

Indeed since

m(ti+1) − m(ti) = − 1

n − i

(
m(ti) + ui

)
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Input : yk
1 , pX, n, u1,n

Output : gu1,n
(yk

1)

Initialization:
t0 ← m−1(m0);
g0(y1|y0) ← (24);

Procedure :
for i ← 1 to k − 1 do

mi ← (25);
ti ← m−1(mi) ∗;
α ← (27);
β ← (28);
Calculate Ci ;
g(yi+1|yi

1) ← (26);
end
Compute gu1,n

(yk
1) ← (29);

Return : gu1,n
(yk

1)

Algorithm 1: Evaluation of gu1,n
(yk

1).

use a first order approximation to derive that ti+1 can be substituted by τi+1 defined
as

τi+1 := ti − 1

(n − i)s2(ti)

(
m(ti) + ui

)
.

When limn→∞ u1,n/n = Eu(X), the values of the function s2(·) are close to
Var[u(X)], and the above approximation is appropriate. For the large deviation
case, the same argument applies, since s2(ti) keeps close to s2(ta).

3.2.1. Simulation of typical paths of a random walk under a conditioning point.
By Theorem 8(ii), gu1,n

and the density of pu1,n
approach each other on a family

of subsets of R
k which contain the typical paths of the random walk under the

conditional density with probability going to 1 as n increases. By Lemma 6 large
sets under Pu1,n

are also large sets under Gu1,n
. It follows that long runs of typical

paths under pu1,n
can be simulated as typical paths under gu1,n

defined in (29) at
least for large n.

The simulation of a sample Xk
1 with gu1,n

can be fast and easy when
limn→∞ u1,n/n = Eu(X). Indeed the r.v. Xi+1 with density g(xi+1|xi

1) is obtained
through a standard acceptance-rejection algorithm. The values of the parameters
which appear in the Gaussian component of g(xi+1|xi

1) in (7) are easily calcu-
lated, and the dominating density can be chosen for all i as pX. The constant in
the acceptance rejection algorithm is then 1/

√
2πβ . This is in contrast with the
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Input : pX, δ, n, u1,n, L

Output : kδ

Initialization: k = 1
Procedure :

while δ /∈ CI(k) do
for l ← 1 to L do

Simulate Y k
1 (l) i.i.d. with density pX;

A(Y k
1 (l)) := (35) using Algorithm 1;

B(Y k
1 (l)) := (36) using Algorithm 1;

end
Calculate CI(k) ← (38);
k := k + 1;

end
Return : kδ := k

Algorithm 2: Calculation of kδ .

case when the conditioning value is in the range of a large deviation event, that is,
limn→∞ u1,n/n �= Eu(X), which appears in a natural way in importance sampling
estimation for rare event probabilities; then MCMC techniques can be used.

Denote N the c.d.f. of a normal variate with parameter (μ,σ 2) and N−1 its
inverse.

REMARK 15. Simulation of Y1 can be performed through the method sug-
gested in [1].

Input : p, μ, σ 2

Output : Y

Initialization:
Select a density f on [0,1] and a positive constant K such that

p(N−1(x)) ≤ Kf (x) for all x in [0,1]
Procedure : while Z < p(N−1(X)) do

Simulate X with density f ;
Simulate U uniform on [0,1] independent of X;
Compute Z := KUf (X);

end
Return : Y := N−1(X)

Algorithm 3: Simulation of Y with density proportional to p(x)n(μ,σ 2, x).
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Input : pX, δ, n, u1,n

Output : Y k
1

Initialization:
Set k ← kδ with Algorithm 2;
t0 ←= m−1(m0);

Procedure :
Simulate Y1 with density (24);
u1,1 ← u(Y1);
for i ← 1 to k − 1 do

mi ← (25);
ti ← m−1(mi);
α ← (27);
β ← (28);
Simulate Yi+1 with density g(yi+1|yi

1) using Algorithm 3;
u1,i+1 ← u1,i + u(Yi+1);

end
Return : Y k

1

Algorithm 4: Simulation of a sample Y k
1 with density gu1,n

.

Figures 5, 6, 7 and 8 present a number of simulations of random walks condi-
tioned on their sum with n = 1000 when u(x) = x. In the Gaussian case, when the
approximating scheme is known to be optimal up to k = n − 1, the simulation is
performed with k = 999 and two cases are considered: the moderate deviation case
is assumed to be modeled when P(S1,n > na) = 10−2 (Figure 5); that this range of
probability is in the “moderate deviation” range is a commonly assessed statement
among statisticians. The large deviation case pertains to P(S1,n > na) = 10−8

(Figure 6). The centered exponential case with n = 1000 and k = 800 is presented
in Figures 7 and 8, under the same events.

In order to check the accuracy of the approximation, Figures 9, 10 (normal case,
n = 1000, k = 999) and Figures 11, 12 (centered exponential case, n = 1000, k =
800) present the histograms of the simulated Xi’s together with the tilted densities
at point a which are known to be the limit density of X1 conditioned on En in
the large deviation case, and to be equivalent to the same density in the moderate
deviation case, as can be deduced from [15]. The tilted density in the Gaussian
case is the normal with mean a and variance 1; in the centered exponential case
the tilted density is an exponential density on (−1,∞) with parameter 1/(1 + a).

Consider now the case when u(x) = x2. Figure 13 presents the case when
X is N(0,1), n = 1000, k = 800, P(U1,n = u1,n) 	 10−2. We present the his-
tograms of the Xi ’s together with the graph of the corresponding tilted density;
when X is N(0,1), then X2 is χ2. It is well known that when u1,n/n is fixed to
be larger than 1, then the limit distribution of X1 conditioned on (U1,n = u1,n)
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FIG. 5. Trajectories in the normal case for Pn = 10−2.

tends to N(0, a) which is the Kullback–Leibler projection of N(0,1) on the set
of all probability measures Q on R with

∫
x2 dQ(x) = a := limn→∞ u1,n/n. This

distribution is precisely g0(y1|y0) defined above. Also consider (26); the expan-
sion using the definitions (27) and (28) prove that as n → ∞ the dominating
term in gi(yi+1|yi

1) is precisely N(0,m0), and the terms including y4
i+1 in the

exponential stemming from n(αβ + m0, β,u(yi+1)) are of order O(1/(n − i));
the terms depending on yi

1 are of smaller order. The fit which is observed in
Figure 13 is in accordance with the above statement in the LDP range (when
limn→∞ u1,n/n �= 1), and with the MDP approximation when limn→∞ u1,n/n = 1
and lim infn→∞(u1,n − n)/

√
n �= 0, following [15].

4. Conditioning on large sets. The approximation of the density

pAn

(
Xk

1 = Y k
1
) := p

(
Xk

1 = Y k
1 |U1,n ∈ An

)

FIG. 6. Trajectories in the normal case for Pn = 10−8.
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FIG. 7. Trajectories in the exponential case for Pn = 10−2.

FIG. 8. Trajectories in the exponential case for Pn = 10−8.

FIG. 9. Histogram of the Xi ’s in the normal case with n = 1000 and k = 999 for Pn = 10−2. The
curve represents the associated tilted density.
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FIG. 10. Histogram of the Xi ’s in the normal case with n = 1000 and k = 999 for Pn = 10−8. The
curve represents the associated tilted density.

of the runs Xk
1 under large sets (U1,n ∈ An) for Borel sets An with nonempty inte-

rior follows from the above results through integration. Here, in the same vein as
previously, Y k

1 is generated under PAn . An application of this result for the evalu-
ation of rare event probabilities through importance sampling is briefly presented
in the next section. The present section pertains to the large deviation case.

4.1. Conditioning on a large set defined through the density of its dominating
point. We focus on cases when (U1,n ∈ An) can be expressed as (U1,n/n ∈ A)

where A is a fixed Borel set (independent of n) with essential infimum α larger
than EU and which can be described as a “thin” or “thick” Borel set according to
its local density at point α.

FIG. 11. Histogram of the Xi ’s in the exponential case with n = 1000 and k = 800 for Pn = 10−2.
The curve represents the associated tilted density.
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FIG. 12. Histogram of the Xi ’s in the exponential case with n = 1000 and k = 800 for Pn = 10−8.
The curve represents the associated tilted density.

The starting point is the approximation of pnv on R
k for large values of k under

the conditioning point

U1,n/n = v

when v belongs to A. Denote gnv the corresponding approximation defined in (29).
It holds that

pnA

(
xk

1
)= ∫

A
pnv

(
Xk

1 = xk
1
)
p(U1,n/n = v|U1,n ∈ nA)ds.(39)

In contrast with the classical importance sampling approach for this problem we
do not consider the dominating point approach, but merely realize a sharp approx-

FIG. 13. Histogram of the Xi ’s in the normal case with n = 1000, k = 800 and u(x) = x2 for
Pn = 10−2. The curve represents the associated tilted density.
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imation of the integrand at any point of the domain A and consider the dominating
contribution of all those distributions in the evaluation of the conditional density
pnA. A similar point of view has been considered in [3] for sharp approximations
of Laplace-type integrals in R

d .
Turning to (39) it appears that what is needed is a sharp approximation for

p(U1,n/n = v|U1,n ∈ nA) = p(U1,n/n = v)1A(v)

P (U1,n ∈ nA)
(40)

with some uniformity for v in A. We will assume that A is bounded above in order
to avoid further regularity assumptions on the distribution of U.

Recall that the essential infimum essinfA = α of the set A with respect to the
Lebesgue measure is defined through

α := inf
{
x : for all ε > 0,

∣∣[x, x + ε] ∩ A
∣∣> 0

}
with inf∅ := −∞.

We assume that α > −∞, which is tantamount to saying that we do not consider
very thin sets (e.g., not Cantor-type sets).

The density of the point α in A will not be measured in the ordinary way,
through

d(α) := lim
ε→0

|A ∩ [α − ε,α + ε]|
ε

,

but through the more appropriate quantity

M(t) := t

∫
A−α

e−ty dy, t > 0.

For any set A, 0 ≤ M(t) ≤ 1. If there exists an interval [α,α + ε] ⊂ A, then
limt→∞ M(t) = 1. As an example, for a self similar set A := Ap defined as Ap :=⋃

n∈Z pnIp where p > 2 and Ip := [(p − 1)/p,1], it holds that 0 = essinfAp and
pAp = Ap . Consequently for any t ≥ 0, M(tp) = M(t) and M(tp) = M(t) for all
t ≥ 0; it follows that

inf
1≤u≤p

M(u) = lim inf
t→∞M(t) ≤ lim sup

t→∞
M(t) = sup

1≤u≤p

M(u).

Define

Mn(t) := M(nt)/t =
∫
A−α

e−ty dy

and

�n(t) := n logφU(t) + logMn(t) − nαt

for all t > 0 such that φU(t) is finite. We borrow from [2] the following results.
Define μn(t) := (1/n) logMn(t) which is for all n ≥ 1 a decreasing function of

t on (0,∞), and which is negative for large n. Also μ′
n(t) = μ′

1(nt) and μ′
1 are

nondecreasing on (0,∞).
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Let μ := limt→∞ μ′
1(t) and μ := limt→0 μ′

1(t). Then according to [2] the fol-
lowing holds:

LEMMA 16. Under the above notation and hypotheses, the equation � ′
n(t) =

0 has a unique solution tn in (0, t0) for α in (EU + μ,∞) where t0 :=
sup{t :φU(t) < ∞}. Furthermore if α > EU + μ, then there exists a compact set
K ⊂ (0, t0) such that tn ∈ K for all n.

Assume that α > EU + μ. Define ψn(t) := � ′′
n(t), and suppose that for any

λ > 0,

lim
n→∞ sup

|u|<λ

ψn(tn + u/
√

ψn(tn))

ψn(tn)
= 1,(41)

where tn is a solution of � ′
n(t) = 0 in the range (0, t0). It can be proved that (41)

holds, for example, when t → logM(t)/t is a regularly varying function at infinity
with index ρ ∈ (0,1), that is, logM(t)/t ∈ Rρ(∞); see [2], Lemma 2.2.

We also assume that

lim sup
t→∞

t
(
logM(t)

)
< ∞,(42)

which holds, for example, when log(M(t)/t) ∈ Rρ(∞), for 0 ≤ ρ < 1.
Theorem 2.1 in [2] provides a general result to be inserted in (40); we take the

occasion to correct a misprint in this result.

THEOREM 17. Assume (41) and (42) together with the aforementioned con-
ditions on the r.v. U. Then for α > EU + μ,

P(U1,n ∈ nA) = φn
U(tn)Mn(tn)e

−ntnα

√
ψn(tn)

√
2π

(
1 + o(1)

)
as n → ∞,(43)

with tn satisfying � ′
n(t) = 0 provided that the function x → P(U1,n ∈ nA + x) is

nonincreasing for n large enough. In particular, this last condition holds if

(i) (Petrov): A = (α,∞) or A = [α,∞); in this case Mn(t) = 1/t ; note that
in this case the classical result is slightly different, since

P(U1,n > na) = φn
U(ta)e−ntaa

tas(ta)
√

2π

(
1 + o(1)

)
as n → ∞

with m(ta) = a and a > EU; this is readily seen to be equivalent to (43) when
A = (a,∞).

(ii) U has a symmetric unimodal distribution.
(iii) U has a strongly unimodal distribution.
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The shape of A near α is reflected in the behavior of the function M(t) for large
values of t . As such, the larger the n, the more relevant is the shape of A near α.

Note further that Mn(t)e
−ntα = ∫A e−nty dy from which we see that α plays no

role in (43). Hence α can be replaced by any number γ such that
∫
A−γ e−ty dy

converges. Further tn is independent of α. The so-called dominating point α of A

can therefore be defined as

α := lim
t→∞ log

∫
A

e−ty dy.

In order to examine further the role played in (43) by the regularity of A near its
essential infimum α, introduce the pointwise Hölder dimension of A at α as

δ(α) := logG(ε)

− log ε
,

where

G(ε) := ∣∣A ∩ [α,α + ε]∣∣ for positive ε.

We refer to Proposition 2.1 in [2] for a set of Abel–Tauber-type results which link
the properties of M(t) at infinity with those of G at 0. For example, it follows that
G(ε) ∼ εδ(α) (as ε → 0) if and only if M(t) ∼ ct−δ(α)+1�(1 + δ(α)) (as t → ∞).
Consequently if Mn(t) → 1 as t → ∞, then M(t) ∼ t as t → ∞ and G(ε) ∼ ε as
ε → 0.

Asymptotic formulas for the numerator in (40) are well known and have a long
history, going back to [19]. It holds that

p(U1,n/n = v) =
√

nenvtvφU(tv)√
2πs(tv)

(
1 + o(1)

)
as n → ∞(44)

with tv defined as m(tv) = v.
Plugging in (44) and (43) in (39) provides an expression for the density of the

runs. For applications the only relevant case is developed in the following para-
graph.

4.2. Conditioning on a thick set. In the case when A = (a,∞) or with a >

Eu(X) or, more generally, when A is a thick set in a neighborhood of its essential
infimum [i.e., when limt→∞ M(t) = 1] a simple asymptotic evaluation for (40)
when A is unbounded can be obtained. Indeed an expansion of the ratio yields

p(U1,n/n = v|U1,n > na) = (nt exp
(−nt (v − a)

))
1A(v)

(
1 + o(1)

)
(45)

with m(t) = a, indicating that U1,n/n is roughly exponentially distributed on A

with expectation a + 1/nt . This result is used in Section 5 in order to derive esti-
mators of some rare event probabilities through importance sampling.

In order to obtain a sharp approximation for pnA(Xk
1 = Y k

1 ) it is necessary to in-
troduce an interval (a, a+cn) which contains the principal part of the integral (39).
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Let cn denote a positive sequence such that the following condition (C) holds:

lim
n→∞ncn = ∞,

sup
n≥1

ncn

(n − k)
< ∞

and denote c the current term cn.
Define on R

k the density

gnA

(
yk

1
)

(46)

:= nm−1(a)
∫ a+c
a gnv(y

k
1)(exp(−nm−1(a)(v − a))) dv

1 − exp(−nm−1(a)c)
.

The density

nm−1(a)(exp(−nm−1(a)(v − a)))1(a,a+c)(v)

1 − exp(−nm−1(a)c)
,(47)

which appears in (46) approximates p(U1,n/n = v|a < U1,n/n < a + c). Further-
more due to Theorem 8 gnv(Y

k
1 ) approximates pnv(Y

k
1 ) when Y k

1 results from sam-
pling under PnA. For a discussion on the maximal value of k for which a given
relative accuracy is attained, see [6].

The variance function V of the distribution of U is defined on the span of U
through

v → V (v) := s2(m−1(v)
)
.

Denote (V) the condition

sup
n≥1

√
n

∫ ∞
a

V ′(v)
(
exp
(−nm−1(a)(v − a)

))
dv < ∞.

THEOREM 18. Assume (E1), (E2), (C), (V). Then for any positive δ < 1:
(i)

pnA

(
Xk

1 = Y k
1
)= gnA

(
Y k

1
)(

1 + oPnA
(δn)
)

(48)

and (ii)

pnA

(
Xk

1 = Y k
1
)= gnA

(
Y k

1
)(

1 + oGnA
(δn)
)
,(49)

where

δn := max
(
εn(logn)2,

(
exp(−nc)

)δ)
.(50)

PROOF. See the Appendix. �
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REMARK. Most distributions used in statistics satisfy (V); numerous papers
have focused on the properties of variance functions and classification of distribu-
tions; see, for example, [18] and references therein.

COROLLARY 19. Under the hypotheses of Theorem 18 the total variation dis-
tance between PnA and GnA goes to 0 as n tends to infinity, that is,

lim
n→∞

∫ ∣∣pnA

(
yk

1
)− gnA

(
yk

1
)∣∣dyk

1 = 0.

5. Applications.

5.1. Rao–Blackwellization of estimators. This example illustrates the role of
Theorem 8 in statistical inference; the conditioning event is local, in the range
where limn→∞ u1,n/n = Eu(X).

In statistics the following situation is often encountered. A model P consists
of a family of densities pθ where the parameter θ is assumed to belong to R

d ,
and a sample of i.i.d. r.v.’s Xn

1 is observed, with each of the Xi’s having den-
sity pθT

where θT is unknown; denote X1, . . . ,Xn the observed data set. Let
U1,n := u(X1) + · · · + u(Xn) and let u1,n := u(X1) + · · · + u(Xn), which usu-
ally satisfies limn→∞ u1,n/n = Eu(X). A preliminary estimator θ̂ (Xn

1) is chosen,
which may have the advantage of being easily computable, at the cost of having
poor efficiency, approaching θT loosely in terms of the MSE. The famous Rao–
Blackwell theorem asserts that the MSE of the conditional expectation of θ̂ (Xn

1)

given the observed value u1,n of any statistic improves on the MSE of θ̂ (Xn
1). When

u1,n is sufficient for θ the reduction is maximal, leading to the unbiased minimal
variance estimator for θT when θ̂ (Xn

1) is unbiased (Lehmann–Scheffé theorem).
The conditional density pu1,n

(xn
1 ) := p(Xn

1 = xn
1 |U1,n = u1,n) is usually un-

known, and Rao–Blackwellization of estimators cannot be performed in many
cases. Simulations of long runs of length k = kn under a proxy of pu1,n

(xk
1)

provide an easy way to improve the preliminary estimator, averaging values of
θ̂ ((Xk

1)(l))1≤l≤L where the samples (Xk
1(l))’s are obtained under the approxima-

tion of pu1,n
(xk

1) and L runs are performed.

Consider the Gamma density

fρ,θ (x) := θ−ρ

�(ρ)
xρ−1 exp

(
−x

θ

)
for x > 0.(51)

As ρ varies in R
+ and θ is positive, the density belongs to an exponential family

γr,θ with parameters r := ρ −1 and θ , and sufficient statistics are t (x) := logx and
u(x) := x, respectively, for r and θ . Given an i.i.d. sample Xn

1 := (X1, . . . ,Xn)

with density γrT ,θT
the resulting sufficient statistics are, respectively, t1,n :=

logX1 +· · ·+ logXn and u1,n := X1 +· · ·+Xn. We consider the parametic model
(γrT ,θ , θ ≥ 0) assuming rT known.

Definition (29) shows that gu1,n
depends on the unknown parameter θT . It can

be seen that u1,n is nearly sufficient for θ in gu1,n
in the sense that the value of
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gu1,n
(Xk

1) does not vary when θT is substituted by any other value θ of the pa-
rameter and the Xi’s are generated under any density γrT ,θ ′ (see [5]) this is indeed
in agreement with the statement of Theorem 11. Hence on one hand , u1,n can be
used to obtain improved estimators of θT and on the other hand, gu1,n

can be used
to simulate samples distributed under a proxy of pu1,n

using any θ in lieu of θT

in (29), as is done in the following procedure:
A first unbiased estimator of θT is chosen as

θ̂2 := X1 + X2

2rT
.

Given an i.i.d. sample Xn
1 with density γrT ,θT

the Rao–Blackwellized estimator of
θ̂ is defined as

θRB,2 := E(θ̂2|U1,n)

whose variance is less than Var θ̂2.
Consider k = 2 in gu1,n

(yk
1), and let (Y1, Y2) be distributed according to

gu1,n
(y2

1). Replicates of (Y1, Y2) induce an estimator of θRB,2 for fixed u1,n. It-
erating on the simulation of the runs Xn

1 produces for n = 100 an i.i.d. sample
of θRB,2’s from which Var θRB,2 is estimated. The resulting variance shows a net
improvement with respect to the estimated variance of θ̂2. It is of some interest to
investigate this gain in efficiency as the number of terms involved in θ̂k increases
together with k. As k approaches n the variance of θ̂k approaches the Cramér–Rao
bound. Figure 14 shows the decay of the variance of θ̂k . We note that whatever
the value of k the estimated value of the variance of θRB,k is constant, and is
quite close to the Cramér–Rao bound. This is indeed an illustration of Lehmann–
Scheffé’s theorem.

FIG. 14. Variance of θ̂k , the initial estimator (dotted line), along with the variance of θRB,k , the
Rao–Blackwellized estimator (solid line) with n = 100 as a function of k.
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5.2. Importance sampling for rare event probabilities. Here we consider the
application of the approximating scheme under a conditioning event defined
through a large set, where this event is also on the large deviation scale. A de-
velopment of the present section is presented in [6] and in Section 3 of [9]; see
also [7]. Consider the estimation of the large deviation probability for the mean
of n i.i.d. r.v.’s u(Xi) satisfying the conditions of this paper. This is a benchmark
problem in the study of rare events; we refer to [8] for the background of this
section.

Let u1,n := na for fixed a larger than Eu(X). The probability to be estimated is

Pn := P(U1,n > u1,n).

The importance sampling procedure substitutes the empirical estimator

P̂n := 1

L

L∑
l=1

1
(
U1,n(l) > u1,n

)
(52)

= 1

L

L∑
l=1

1

(
n∑

i=1

u
(
Xi(l)

)
> u1,n

)

by

P IS,g
n := 1

L

L∑
l=1

p(u(X1(l))) · · ·p(u(Xn(l)))

g(u(X1(l)) · · ·u(Xn(l)))
1

(
n∑

i=1

u
(
Xi (l)

)
> u1,n

)
.(53)

In the above display (53) the sample Xn
1(l) is generated under i.i.d. sampling with

distribution PX and the L samples are i.i.d. In display (53) the sample Xn
1(l) is gen-

erated under the density g on R
n (under which the Xi’s may not be independent).

The L samples Xn
1(l) are i.i.d.

It is well known that the optimal sampling density is

popt
(
xn

1
) := p

(
Xn

1 = xn
1 |U1,n > u1,n

)
,

which is not achievable since it presumes a known Pn. This optimal sampling den-
sity produces the zero variance estimator Pn itself with L = 1. However approx-
imating popt(x

n
1 ) sharply at least on the first k coordinates for large k produces a

large hit rate for the importance sampling procedure, and pushes the importance
factor toward 1.

Define the sampling density g on R
n as

g
(
xn

1
) := gnA

(
xk

1
) n∏
i=k+1

πa
u (xi),

where gnA is defined in (46), and πa
u is the density defined in (23). The approx-

imating density gnA has been used to simulate the k first Xi’s and the remaining
n− k’s are i.i.d. with the classical tilted density. The classical IS scheme coincides
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FIG. 15. Ratio of the empirical value of the MSE of the adaptive estimate w.r.t. the empirical MSE
of the i.i.d. twisted one (dotted line) along with the true value of this ratio (solid line) as a function
of k.

with the present one with the difference that k = 1 and gAn(x1) = πa
u (x1), that is,

simulating under an i.i.d. sampling scheme with common density πa
u .

Simulation under gnA is performed through a double step procedure: In the
first step, randomize the value of U1,n/n on (a,+∞) according to a proxy of its
distribution conditioned on U1,n > na; hence simulate a random variable S on
(a,+∞) with density

pS(s) := nm−1(an)
(
exp
(−nm−1(a)(s − a)

))
1(a,+∞)(s).(54)

Then plug in nS in lieu of u1,n in (29) and iterate. This is equivalent to consider-
ing each point in the target set as a dominating point, weighted by its conditional
density under (U1,n > na). Simulation of S under (54) instead of (47) is slightly
suboptimal but much simpler. It can be proved that the MSE of the estimate of Pn

in this new IS sampling scheme is reduced by a factor
√

(n − k)/n with respect
to the classical scheme when calculated on large subsets of Rk ; see [6]. Figure 15
shows, in a simple case, the ratio of the empirical value of the MSE of the adap-
tive estimate w.r.t. the empirical MSE of the i.i.d. twisted one, in the exponential
case with Pn = 10−2 and n = 100. The value of k grows from k = 0 (i.i.d. twisted
sample) to k = 70 (according to the rule presented in [6]). This ratio stabilizes to√

n − k/
√

n for L = 2000. The abscissa is k and the solid line is k → √
n − k/

√
n.

REMARK 20. In the present context, Dupuis and Wang [14] have shown that
i.i.d. sampling schemes can produce “rogue paths” which may alter the properties
of the estimate, and the estimation of its variance. They consider an i.i.d. random
sample Xn

1 where X1 has a normal distribution N(1,1) and

En :=
{
xn

1 :
x1 + · · · + xn

n
∈ A

}
,
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where A = (−∞, a) ∪ (b,+∞) with a < 1 < b. The quantity to be estimated is
P(En).

Assuming that a + b < 2, the standard i.i.d. IS scheme introduces the dominat-
ing point b and the family of i.i.d. tilted r.v.’s with common N(b,1) distribution.
“Rogue paths” generated under N(b,1) may hit the set (−∞, a) with small proba-
bility under the sampling scheme, hence producing a very large importance factor.
The resulting variance of the estimate is very sensitive with respect to these val-
ues, as exemplified in their Table 1, page 24. Simulation of paths according to
GnS with S defined in (54) produces their constructive samples which yield both
a hit rate close to 100% and an importance factor close to P(En). We refer to [6]
for discussion and examples. We also note that Dupis and Wang [14] propose an
adaptive tilting scheme, based on the product of the πmi , 1 ≤ i ≤ n, which yields
an efficient IS algorithm.

APPENDIX

For clarity the current term an is denoted a in all proofs.

A.1. Three lemmas pertaining to the partial sum under its final value. We
state three lemmas which describe some functions of the random vector Xn

1 condi-
tioned on En. The r.v. X is assumed to have expectation 0 and variance 1.

LEMMA 21. It holds that EPna (X1) = a,EPna (X1X2) = a2 + O( 1
n
),

EPna (X
2
1) = s2(t) + a2 + O( 1

n
) where m(t) = a.

PROOF. Using

pna(X1 = x) = pS2,n
(na − x)pX1(x)

pS1,n
(na)

=
πa

S2,n
(na − x)πa

X1
(x)

πa
S1,n

(na)
,

normalizing both πa
S2,n

(na − x) and πa
S1,n

(na) and making use of a first order

Edgeworth expansion in those expressions yields EPna (X
2
1) = s2(t) + a2 + O( 1

n
).

A similar expansion for the joint density pna(X1 = x,X2 = y), with the same tilted
distribution πa produces the limit expression of EPna (X1X2). �

LEMMA 22. Assume (E1). Then (i) max1≤i≤k |mi | = a + oPna (εn). Also
(ii) max1≤i≤k s2

i , max1≤i≤k μi
3 and max1≤i≤k μi

4 tend in Pna probability to the
variance, skewness and kurtosis of πa where a := limn→∞ an.

PROOF. (i) Define

Vi+1 := m(ti) − a

= Si+1,n

n − i
− a.
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We state that

max
0≤i≤k−1

|Vi+1| =oPna (εn),(55)

namely for all positive δ

lim
n→∞Pna

(
max

0≤i≤k−1
|Vi+1| > δεn

)
= 0,

which we obtain following the proof of Kolmogorov maximal inequality. Define

Ai := ((|Vi+1| ≥ δεn

)
and

(|Vj | < δεn for all j < i + 1
))

from which (
max

0≤i≤k−1
|Vi+1| > δεn

)
=

k−1⋃
i=0

Ai.

It holds that

EPnaV
2
k =

∫
∪Ai

V 2
k dPna +

∫
(∪Ai)

c
V 2

k dPna

≥
∫
∪Ai

(
V 2

i + 2(Vk − Vi)Vi

)
dPna +

∫
(∪Ai)

c

(
V 2

i + 2(Vk − Vi)Vi

)
dPna

≥
∫
∪Ai

V 2
i dPna

≥ δ2ε2
n

k−1∑
j=0

Pna(Aj )

= δ2ε2
nPna

(
max

0≤i≤k−1
|Vi+1| >δεn

)
.

The third line above follows from EVi(Vk − Vi) = 0 which is proved below.
Hence

Pna

(
max

0≤i≤k−1
|Vi+1| >δεn

)
≤ VarPna (Vk)

δ2ε2
n

= 1

δ2ε2
n(n − k)

(
1 + o(1)

)
,

where we used Lemma 21; therefore (55) holds under (E1). Direct calculation
yields EPna (Vi(Vk − Vi)) = 0, which completes the proof of (i).

(ii) follows from (i) since limn→∞ max1≤i≤k m(ti) = a. �

We also need the order of magnitude of max(|X1|, . . . , |Xk|) under Pna which
is stated in the following result.

LEMMA 23. It holds that max(|X1|, . . . , |Xn|) = OPna (logn).
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PROOF. Set |X1| := X−
i + X+

i with X−
i := −min(0,Xi), X+

i := max(0,Xi);
it is enough to prove that maxi X−

i = OPna (logn) and maxi X+
i = OPna (logn).

Since E[exp(tX)] is finite in a nonempty neighborhood of 0 so are E[exp(tX−)]
and E[exp(tX+)]. We hence prove the lemma for positive r.v.’s Xi ’s only.

Denote a the current term of the sequence an. For all t it holds that

Pna

(
max(X1, . . . ,Xn) > t

) ≤ nPna(Xn > t)

= n

∫ ∞
t

πa(Xn = u)
πa(S1,n−1 = na − u)

πa(S1,n = na)
du.

Let τ be such that m(τ) = a. Denote s := s(τ ). Center and normalize both S1,n and
S1,n−1with respect to the density πa in the last line above, denoting πa

n the density
of S1,n := (S1,n − na)/s

√
n when X has density πa with mean a and variance s2,

we obtain

Pna

(
max(X1, . . . ,Xn) > t

)
≤ n

√
n√

n − 1

×
∫ ∞
t

πa(Xn = u)
πa

n−1(S1,n−1 = (na − u − (n − 1)a)/(s
√

n − 1))

πa
n (S1,n = 0)

du.

Under the sequence of densities πa the triangular array (X1, . . . ,Xn) obeys a first
order Edgeworth expansion

Pna

(
max(X1, . . . ,Xn) > t

)
≤ n

√
n√

n − 1

∫ ∞
t

πa(Xn = u)
n((a − u)/s

√
n − 1)P(u, i, n) + o(1)

n(0) + o(1)
du

≤ nCst
∫ ∞
t

πa(Xn = u)du

for some constant Cst independent of n and τ and

P(u, i, n) := 1 + P3
(
(a − u)/s

√
n − 1

)
,

where P3(x) = μ3
6s3 (x3 − 3x) is the third Hermite polynomial; s2 and μ3 are the

second and third centered moments of πa . We have used the fact that the sequence
a converges to bound all moments of the tilted densities πa . We used uniformity on
u in the remaining term of the Edgeworth expansions. Making use of the Chernoff
inequality to bound �a(Xn > t),

Pna

(
max(X1, . . . ,Xn) > t

)≤ nCst
�(t + λ)

�(t)
e−λt

for any λ such that φ(t + λ) is finite. For t such that

t/ logn → ∞
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it holds that

Pna

(
max(X1, . . . ,Xn) < t

)→ 1,

which proves the lemma. �

A.2. Proof of the approximations resulting from Edgeworth expansions in
Theorem 2. We complete the calculation leading to (15) and (16).

Set Zi+1 := (mi − Yi+1)/si
√

n − i − 1.
It then holds that

πn−i−1(Zi+1)

= n(Zi+1)

⎡⎢⎢⎣1 + 1√
n − i − 1

P3(Zi+1) + 1

n − i − 1
P4(Zi+1)

+ 1

(n − i − 1)3/2 P5(Zi+1)

⎤⎥⎥⎦(56)

+ OPna

(
P5(Zi+1)

(n − i − 1)3/2

)
.

We perform an expansion in n(Zi+1) up to order 3, with a first order term
n(−Yi+1/(si

√
n − i − 1)), namely

n(Zi+1)

= n
(−Yi+1/(si

√
n − i − 1)

)
(57)

×

⎛⎜⎜⎜⎝
1 + Yi+1mi

s2
i (n − i − 1)

+ m2
i

2s2
i (n − i − 1)

(
Y 2

i+1

s2
i (n − i − 1)

− 1
)

+ m3
i

6s3
i (n − i − 1)3/2

n(3)(Y ∗/(si
√

n − i − 1))

n(−Yi+1/(si
√

n − i − 1))

⎞⎟⎟⎟⎠ ,

where Y ∗ = 1
si

√
n−i−1

(−Yi+1 + θmi) with |θ | < 1.
Lemmas 22 and 23 provide the orders of magnitude of the random terms in the

above displays when sampling under Pna .
Use those lemmas to obtain

Yi+1mi

s2
i (n − i − 1)

= Yi+1

n − i − 1

(
a + oPna (εn)

)
(58)

and

m2
i

s2
i (n − i − 1)

= 1

n − i − 1

(
a + oPna (εn)

)2
.
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Also when (E1) and (E2) holds, then the dominant terms in the bracket in (57) are
precisely those in the two displays just above. This yields

n(Zi+1) = n

( −Yi+1

si
√

n − i − 1

)⎛⎜⎜⎝1 + aYi+1

s2
i (n − i − 1)

− a2

2s2
i (n − i − 1)

+oPna (εn logn)

n − i − 1

⎞⎟⎟⎠ .

We now need a precise evaluation of the terms in the Hermite polynomials
in (56). This is achieved using Lemmas 22 and 23 which provide uniformity
on i between 1 and k = kn in all terms depending on the sample path Y k

1 . The
Hermite polynomials depend upon the moments of the underlying density πmi .
Since π

mi

1 has expectation 0 and variance 1 the terms corresponding to P1 and

P2 vanish. For up to order 4 polynomials, write P3(x) = μ
(i)
3

6(si )
3 H3(x), P4(x) =

(μi
3)

2

72(si )
6 H6(x) + μ

(i,n)
4 −3(si )

4

24(si )
4 H4(x) with H3(x) := x3 − 3x, H4(x) := x4 − 6x2 + 3

and H6(x) := x6 − 15x4 + 45x2 − 15.
Using Lemma 22 it appears that the terms in xj , j ≥ 3 in P3 and P4 will play

no role in the asymptotic behavior in (56) with respect to the constant term in
P4 and the term in x from P3. Indeed substituting x by Zi+1 and dividing by
n − i − 1, the term in x2 in P4 is OPna (logn)2/(n − i)2 where we have used
Lemma 22. These terms are of smaller order than the term −3x in P3 which is

− μi
3

2s4
i (n−i−1)

(a − Yi+1) = 1
n−i−1OPna (logn).

It holds that

P3(Zi+1)√
n − i − 1

= − μi
3

2s4
i (n − i − 1)

(mi − Yi+1)

+ μi
3(mi − Yi+1)

3

6(si)6(n − i − 1)2 ,

which yields

P3(Zi+1)√
n − i − 1

= − μi
3

2s4
i (n − i − 1)

(a − Yi+1) + OPna (logn)3

(n − i − 1)2 .(59)

For the term of order 4 it holds that

P4(Zi+1)

n − i − 1
= 1

n − i − 1

(
(μi

3)
2

72s6
i

H6(Zi+1) + μi
4 − 3s4

i

24s4
i

H4(Zi+1)

)
,

which yields

P4(Zi+1)

n − i − 1
= μi

4 − 3s4
i

8s4
i (n − i − 1)

− 15(μi
3)

2

72s6
i (n − i − 1)

+ OPna ((logn)2)

(n − i − 1)2 .(60)
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The fifth term in the expansion plays no role in the asymptotics.
In summary, comparing the remainder terms in (59) and (60), we obtain

πn−i−1(Zi+1) = n
(−Yi+1/(si

√
n − i − 1)

) · A · B + OPna

(
P5(Zi+1)

(n − i − 1)3/2

)
,

where A and B are given in (15) and (16).

A.3. Final step of the proof of Theorem 2. We make use of the following
version of the law of large numbers for triangular arrays; see [21] Theorem 3.1.3.

THEOREM 24. Let Xi,n, 1 ≤ i ≤ k denote an array of row-wise real ex-
changeable r.v.’s and limn→∞ k = ∞. Let ρn := EX1,nX2,n. Assume that for
some finite �, EX2

1,n ≤ �. If for some doubly indexed sequence (ai,n) such that

limn→∞
∑k

i=1 a2
i,n = 0 it holds that

lim
n→∞ρn

(
k∑

i=1

a2
i,n

)2

= 0

and then

lim
n→∞

k∑
i=1

ai,nXi,n = 0

in probability.

Denote

κi
1 := μi

3

2s4
i

, κi
2 := μi

4 − 3s4
i

8s4
i

+ 15(μi
3)

2

72s6
i

,

μ∗
1 := κi

1 + a

s2
i

, μ∗
2 := κi

1 − a

2s2
i

.

By (13), (14) and (17)

p(Xi+1 = Yi+1|Si+1,n = na − S1,i )

=
√

n − i√
n − i − 1

πmi (Xi+1 = Yi+1)
n(−Yi+1/(si

√
n − i − 1))

n(0)
A(i)

with

A(i) :=
(

1 + μ∗
1Yi+1

n − i − 1
− μ∗

2a

n − i − 1
− κi

2

n − i − 1
+ oPna (εn logn)

n − i − 1

)
/(

1 − κi
2

n − i
+ OPna

(
1

(n − i)3/2

))
.
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We perform a second order expansion in both the numerator and the denominator
of the above expression, which yields

A(i) = exp
(

μ∗
1Yi+1

n − i − 1
− a

2s2
i (n − i − 1)

− aκi
1

n − i − 1
(61)

+ oPna (εn logn)

n − i − 1

)
A′(i).

The term exp(
μ∗

1Yi+1
n−i−1 + a

2s2
i (n−i−1)

) in (61) is captured in g(Yi+1|Y i
1).

The term A′(i) in (61) is expressed as

A′(i) := Qi
1 · Qi

2

with

Qi
1 := exp

(
−
(

κi
2

(n − i − 1)(n − i)
+ (κi

2)
2

2(n − i)2

+ 1

2

(
μ∗

1Yi+1

n − i − 1
− aμ∗

2

n − i − 1
− κi

2

n − i − 1

)2))
and

Qi
2 := exp(B1)

exp(B2)
,

where

B1 := oPna (ε
2
n(logn)2)

(n − i − 1)2 + μ∗
1Yi+1

(n − i − 1)2 oPna (εn logn)

+ μ∗
2a

(n − i − 1)2 oPna (εn logn) + oPna (ε
2
n(logn))2

(n − i − 1)2 + o
(
u2

1
)
,

B2 := κi
2

n − i
OPna

(
1

(n − i)3/2

)
+ OPna

(
1

(n − i)3

)

+ OPna

(
1

(n − i)3/2

)
+ o

((
κi

2

n − i
+ OPna

(
1

(n − i)3/2

))2)
with

u1 = μ∗
1Yi+1

n − i − 1
− μ∗

2a

n − i − 1
− κi

2

n − i − 1
+ oPna (εn logn)

n − i − 1
.

We first prove that

k−1∏
i=0

A′(i) = 1 + oPna

(
εn(logn)2)(62)
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as n tends to infinity.
Since

p
(
Xk

1 = Y k
1 |Sn

i+1 = na
)= g0(Y1|Y0)

k−1∏
i=0

g
(
Yi+1|Y i

1
) k−1∏

i=0

A′(i)
k−1∏
i=0

Li,

where

Li := C−1
i

�(ti)

√
n − i√

n − i − 1
exp
(
− aκi

1

n − i − 1

)
,

the completion of the proof will follow from

k−1∏
i=0

Li = 1 + oPna

(
εn(logn)2).(63)

The proof of (62) is achieved in two steps.

CLAIM 25.
∏k−1

i=0 Qi
1 = 1 + oPna (εn(logn)2).

By Lemma 22 the random terms μi
j deriving from πmi satisfy

max
1≤i≤k

∣∣μi
j − μj

∣∣= oPna (1)

as n tends to ∞, where μj is the j th cumulant of πa where a:= limn→∞ a is
finite. Therefore we may substitute μi

j by μj in order to check the convergence of
all subsequent series.

Expanding Q1 define, for any positive β1, β2, β3 and β4

A1
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ κi
2

(n − i − 1)(n − i)

∣∣∣∣< β1

}
,

A2
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ (κi
2)

2

(n − i − 1)2

∣∣∣∣< β2

}
,

A3
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ (μ∗
2a)2

(n − i − 1)2

∣∣∣∣< β3

}

and

A4
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ μ∗
2κ

i
2a

(n − i − 1)2

∣∣∣∣< β4

}
.

It clearly holds that

lim
n→∞Pna

(
Aj

n

)= 1, j = 1, . . . ,4.
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Let for any positive β5,

A5
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ κi
1κ

i
2Yi+1

(n − i − 1)2

∣∣∣∣< β5

}
.

If limn→∞ Pna(A
5
n) = 1, then limn→∞ Pna(A

j
n), j = 6,7 where

A6
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ μ∗
1κ

i
2Yi+1

(n − i − 1)2

∣∣∣∣< β6

}
,

A7
n :=

{
1

εn(logn)2

k−1∑
i=0

∣∣∣∣ μ∗
1μ

∗
2aYi+1

(n − i − 1)2

∣∣∣∣< β7

}
.

Apply Theorem 24 with Xi,n = Yi+1 and ai,n = 1
εn(logn)2(n−i−1)2 . By Lemma 21,

EPnaY
2
1 = s2(0) + a + O

(
1

n

)
.

Hence EPna [Y 2
1 ] ≤ � for some finite �. Furthermore ρn = a2 + O( 1

n
). Both con-

ditions in Theorem 24 are fullfilled. Indeed,

lim
n→∞

k∑
i=1

a2
n,i = lim

n→∞
1

ε2
n(logn)4(n − k)3 = 0,

which holds under (E1), as holds

lim
n→∞ρn

(
k∑

i=1

an,i

)2

= lim
n→∞

a2

ε2
n(logn)4(n − k)2 = 0.

Therefore, for i = 5,6,7

lim
n→∞Pna

(
Ai

n

)= 1.

Define for any positive β8,

A8
n :=

{
1

εn(logn)2

k−1∑
i=0

(μ∗
1)

2Y 2
i+1

(n − i − 1)2 < β8

}
.

Apply Theorem 24 with Xi,n = Y 2
i+1 and ai,n = 1

εn(logn)2(n−i−1)2 .
The following holds:

lim
n→∞

k∑
i=1

a2
n,i = 0

when (E1) holds.
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By Lemma 21,

EPnaY
4
1 = EπaY 4

1 + O

(
1

n

)
,

which entails that such that EY 4
1 ≤ � < ∞ for some �. Also

EPna

(
Y 2

1 Y 2
2
)= (s2(0) + a

)(
s2(0) + a

)+ O

(
1

n

)
and

lim
n→∞ρn

(
1

εn(logn)2

k−1∑
i=0

1

(n − i − 1)2

)2

= 0

under (E1). Hence

lim
n→∞Pna

(
A8

n

)= 1.

It follows that, noting that An is the intersection of the events Ai
n, j = 1, . . . ,8

lim
n→∞Pna(An) = 1.

To summarize, we have proved that, under (E1),

Q1 = 1 + oPna

(
εn(logn)2).

CLAIM 26.
∏k−1

i=0 Qi
2 = 1 + oPna (εn(logn)2).

This is equivalent to proving that the sum of the terms in B1 (resp., in B2) is of
order oPna (εn(logn)2).

The four terms in the sum of the terms in B1 are, respectively, of order
oPna (ε

2
n(logn)4)/(n− k), oPna (εn(logn)3)/(n− k), oPna (aεn(logn)2)/(n− k) and

oPna (εn(logn)2)/(n − k) using Lemma 22. The sum of the terms o(u2
1) is of order

less than these. Assuming (E1) all these terms are oPna (εn(logn)2).
For the sum of terms in B2, by uniformity of the Edgeworth expansion with re-

spect to Y k
1 it holds that

∑k
i=1 B2 = OPna ((n−k)−1/2) = oPna (εn(logn)2) by (E1).

We now turn to the proof of (63).
Define

u := −x
μi

3

2s4
i (n − i − 1)

+ (x − a)2

2s2
i (n − i − 1)

.

Use the classical bounds

1 − u + u2

2
− u3

6
≤ e−u ≤ 1 − u + u2

2
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to obtain on both sides of the above inequalities the second order approximation
of C−1

i through integration with respect to p. The upper bound yields

C−1
i ≤ �(ti) + κi

1

n − i − 1
�′(ti) + 1

s2
i (n − i − 1)

(
�′′(ti) − 2a�′(ti) + a2)

+ OPna

(
1

(n − i − 1)2

)
from which

Li ≤
√

n − i√
n − i − 1

exp
(
− aκi

1

n − i − 1

)

×

⎛⎜⎜⎜⎝
1 + κi

1

n − i − 1
mi

−s2
i + m2

i − 2ami + a2

2s2
i (n − i − 1)

+ OPna

(
1

(n − i − 1)2

)
⎞⎟⎟⎟⎠ ,

where the approximation term is uniform on the Y k
1 .

Substituting
√

n−i√
n−i−1

and exp(− aκi
1

n−i−1) by their expansions 1 + 1
2(n−i−1)

+
O( 1

(n−i−1)2 ) and 1 − aκi
1

n−i−1 + (aκi
1)

2

(n−i−1)2 + O( a2

(n−i−1)2 ) in the upper bound of Li

above yields

Li ≤
(

1 + 1

2(n − i − 1)
− aκi

1

n − i − 1
+ (aκi

1)
2

2(n − i − 1)2 + o

(
1

(n − i − 1)2

))

×
(

1 + κi
1mi

n − i − 1
− s2

i + m2
i − 2ami + a2

2s2
i (n − i − 1)

+ OPna

(
1

(n − i − 1)2

))
.

Using Lemma 22, m2
i − 2ami + a2 = oPna (aεn) and therefore

Li ≤
(

1 + 1

2(n − i − 1)
− aκi

1

n − i − 1
+ (aκi

1)
2

(n − i − 1)2 + o

(
1

(n − i − 1)2

))

×
(

1 + κi
1a

n − i − 1
− 1

2(n − i − 1)
+ oPna (aεn)

n − i − 1

)
.

Write
k∏

i=1

Li ≤
k∏

i=1

(1 + Mi)

with

Mi = (aκi
1)

2

(n − i − 1)2 + oPna (aεn)

n − i − 1
.

Under (E1),
∑k−1

i=0 Mi is oPna (εn(logn)2). This completes the proof of the theo-
rem.
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A.4. Proof of Theorem 18. The following lemma (see [17], Corollary 6.4.1)
provides an asymptotic formula for the tail probability of U1,n under the hypothe-
ses and notation of Section 3. Define

IU(x) := xm−1(x) − logφU
(
m−1(x)

)
.

LEMMA 27. Under the same hypotheses as above,

P

(
U1,n

n
> a

)
= exp(−nIU(a))√

2π
√

nψ(a)

(
1 + O

(
1√
n

))
,

where ψ(a) := tas(ta).

LEMMA 28. Suppose that (V) holds. Then (i) EPnA
U1 = a + o(1), (ii)

EPnA
U2

1 = 1 + s2(t) + o(1) and (iii) EPnA
U1U2 = a2 + o(1) where m(t) = a.

PROOF. It holds that

EPnA
U1 =

∫ ∞
a

(EPnv U1)p(U1,n/n = v|U1,n > na)dv.

Integration by parts yields

EPnA
U1 = a +

∫ ∞
a

P (U1,n/n > v|U1,n > na)dv.

Using Lemma 27 and the Chernoff inequality,∫ ∞
a

P (U1,n/n > v|U1,n > na)dv

≤ √
2πψ(a)

√
n

∫ ∞
a

exp
(
n
(
IU(a) − IU(v)

))
dv,

where ψ(a) = ts(t).
Finally, using IU(v) > I

′
U(a)v + IU(a) − aI

′
U(a) and integrating∫ ∞

a
P (U1,n/n > v|U1,n > na)dv ≤

√
2πψ(a)√
nI

′
U(a)

.

Hence, EPnA
U1 = a + o(1).

Insert EPnv U2
1 = v2 + s2

U(t) + O( 1
n
) into

EpnA
U2

1 =
∫ ∞
a

(
EPnv U2

1
)
p(U1,n/n = v|U1,n > na)dv.

First, via integration by parts, Lemma 13 and the Chernoff inequality,∫ ∞
a

v2p(U1,n/n = v|U1,n > na)dv = a2 + o(1).
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Second, ∫ ∞
a

V (v)p(U1,n/n = v|U1,n > na)dv

= s2(t) + 2
∫ ∞
a

V
′
(v)P (U1,n/n > v|U1,n > na)dv,

which tends to s2(t) as n → ∞ using again the Chernoff inequality, condition (V)
and Lemma 13.

The third term is handled similarly due to the fact that the O(1/n) term consists
of a sum of powers of v.

The proof of (iii) is similar to the above. �

Lemma 28 yields the maximal inequality stated in Lemma 22 under the con-
dition (U1,n > na). We also need the order of magnitude of the maximum of
(|U1|, . . . , |Uk|) under PnA which is stated in the following result.

LEMMA 29. It holds that

max
(|U1|, . . . , |Un|)= OPnA

(logn).

PROOF. Using the same argument as in Lemma 23 we consider the case when
the r.v.’s Ui take nonnegative values. We prove that

lim
n→∞PnA

(
max(U1, . . . ,Un) > tn

)= 0

when

lim
n→∞

tn

logn
= ∞.

For fixed d it holds that

PnA

(
max(U1, . . . ,Un) > tn

)
=
∫ a+d

a
P
(
max(U1, . . . ,Un) > tn|U1,n/n = v

)
× p(U1,n/n = v|U1,n/n > a)dv

+
∫ ∞
a+d

P
(
max(U1, . . . ,Un) > tn|U1,n/n = v

)
× p(U1,n/n = v|U1,n/n > a)dv

=: I + II.

Now

II ≤ P(U1,n/n > a + d)

P (U1,n/n > a)
,
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which tends to 0 by Lemma 27.
Furthermore by Lemma 23, limn→∞ P(max(U1, . . . ,Un) > tn|U1,n/n = v) =:

limn→∞ rn = 0 when v ∈ (a, a + d). Hence

I ≤ rn
(
1 + o(1)

)→ 0.

This proves the lemma. �

We now prove (48).
Step 1. We first prove that the integral (39) can be reduced to its principal part,

namely that

pnA

(
Y k

1
)= (1 + oPnA

(1)
)

(64)

×
∫ a+c

a
p
(
Xk

1 = Y k
1 |U1,n/n = v

)
p(U1,n/n = v|U1,n > na)dv

holds for any fixed c > 0.
Apply Bayes’s formula to obtain

pnA

(
Y k

1
)= npX(Y k

1 )

(n − k)

×
∫∞
a p(Uk+1,n/(n − k) = n/(n − k)(t − kU1,k/n)) dt

P (U1,n > na)
,

where U1,k := U1,k

k
.

Denote

I := P(Uk+1,n/(n − k) > mk + nc/(n − k))

P (Uk+1,n/(n − k) > mk)

with

mk := n

n − k

(
a − kU1,k

n

)
.

Then (64) holds whenever I → 0 (under PnA).
Under PnA it holds that

U1,n = a + OPnA

(
1

nm−1(a)

)
.

A similar result as Lemma 22 holds under condition (U1,n > na), using Lemma 28;
namely it holds that

max
0≤i≤k−1

|Ui+1,n| = a + oPnA
(εn).

Using both results

mk = a + OPnA
(vn)(65)
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with vn = max(εn,
1

(n−k)m−1(a)
) which tends to 0.

We now prove that I → 0. Using once more Lemma 27 yields

I = m−1(mk)s(m
−1(mk))

m−1(mk + nc/(n − k))s(m−1(mk + nc/(n − k)))

× exp
(
−(n − k)

(
IU

(
mk + nc

n − k

)
− IU(mk)

))
.

Now by convexity of the function IU

exp
(
−(n − k)

(
IU

(
mk + nc

n − k

)
− IU(mk)

))
≤ exp

(−ncm−1(mk)
)

= exp
(
−nc

[
m−1(a) + 1

V (a + θOPnA
(vn))

OPnA
(vn)

])
for some θ in (0,1). Therefore the above upper bound tends to 0 under PnA

when (C) holds. By monotonicity of t → m(t) and condition (C) the ratio in I

is bounded.
We have proved that

I = OPnA

(
exp(−nc)

)
.

Step 2. We claim that (48) holds uniformly in v in (a, a + c) when Y k
1 is gener-

ated under PnA. This result follows from a similar argument as used in Theorem 8
where (48) is proved under the local sampling Pnv . A close look at the proof shows
that (48) holds whenever Lemmas 22 and 23, stated for the variables Ui’s instead
of Xi’s hold under PnA. Those lemmas are substituted by Lemmas 28 and 29 here
above.

Inserting (48) in (64) yields

pnA

(
Y k

1
)= (∫ a+c

a
gnv

(
Y k

1
)
p(U1,n/n = v|U1,n > na)dv

)
× (1 + opnA

(
max

(
εn(logn)2,

(
exp(−nc)

)δ)))
for some δ < 1.

The conditional density of U1,n/n given (U1,n > na) is stated in (45) which
holds uniformly in v on (a, a + c).

In summary we have proved

pnA

(
Y k

1
)= (nm−1(a)

∫ a+c

a
gnv

(
Y k

1
)

exp
(−nm−1(a)(v − a)

)
dv

)
× (1 + opnA

(
max

(
εn(logn)2,

(
exp(−nc)

)δ)))
as n → ∞ for any positive δ < 1.
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In order to obtain the approximation of pnA by the density gnA it is enough to
observe that

nm−1(a)

∫ a+c

a
gnv

(
Y k

1
)

exp
(−nm−1(a)(v − a)

)
dv

= 1 + o
PnA

(
exp(−nc)

)
as n → ∞ which completes the proof of (48). The proof of (49) follows from (48)
and Lemma 6.
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