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APPROXIMATING STOCHASTIC VOLATILITY BY
RECOMBINANT TREES1

BY ERDINÇ AKYILDIRIM2, YAN DOLINSKY3 AND H. METE SONER4

University of Zurich, ETH Zurich and ETH Zurich

A general method to construct recombinant tree approximations for
stochastic volatility models is developed and applied to the Heston model for
stock price dynamics. In this application, the resulting approximation is a four
tuple Markov process. The first two components are related to the stock and
volatility processes and take values in a two-dimensional binomial tree. The
other two components of the Markov process are the increments of random
walks with simple values in {−1,+1}. The resulting efficient option pricing
equations are numerically implemented for general American and European
options including the standard put and calls, barrier, lookback and Asian-type
pay-offs. The weak and extended weak convergences are also proved.

1. Introduction. Contrary to many mathematical models, the discrete coun-
terpart of the celebrated Black–Scholes model [4] came after its continuous ver-
sion, and it is generally accepted that this simple binomial approximation by Cox
et al. [8] has been instrumental in the better understanding and the applicability
of the model. Rubinstein [28] states that “the Black and Scholes model is widely
viewed as one of the most successful in the social sciences and perhaps, including
its binomial extension, the most widely used formula, with embedded probabili-
ties, in human history.”

This widespread use and practicality is extended by further research. In par-
ticular, stochastic volatility models have been introduced to address the volatility
smiles observed in option markets and the heavy tails and high peaks of the un-
derlying asset distributions. Hull and White [19], Chesney and Scott [5], Stein
and Stein [29], Heston [17] and Hagan et al. [16] among many others, assume
a bivariate diffusion framework in which a separate stochastic process represents
the dynamics of asset price volatility. In all these models, the asset price process St
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and its volatility factor process Yt satisfy the following stochastic differential equa-
tions:

dSt = St

[
μdt + f (Yt ) dWt

]
,

dYt = μY (Yt ) dt + σY (Yt ) dZt ,

with correlated Brownian motions W,Z and different choices for the functions
μY (y), σY (y) and f (y).

In this paper, we construct an approach that provides a recombining tree approx-
imation for all stochastic volatility models of the above type. This approximation
as the Cox–Ross–Rubinstein (CRR) model easily constructs a discrete time finan-
cial market that itself is arbitrage free and as such allows for simple analysis of
related complex instruments.

For specificity, we implement our methodology on the Heston model. Well
known among stochastic volatility models, it deserves special attention because of
its ability to provide closed-form solutions for European options through Fourier
transform. This unique feature allows for an efficient and quick calibration of the
model to European options. However, for derivative products with early exercise
features such as American options, closed-form solutions do not exist even under
the Heston model. Hence, numerical methods such as binomial tree, finite differ-
ence schemes or Monte Carlo simulation have to be used to evaluate American and
other exotic options under stochastic volatility models.

In any market with a nonconstant volatility, the CRR methodology encounters
a basic difficulty. Indeed, since the volatility changes at each time, the nodes do
not recombine on the lattice, and this fact results in an exponential and thus a
computationally explosive tree that cannot be used in many realistic situations.
Nelson and Ramaswamy [24] were the first to construct a computationally simple
binomial process which approximates a diffusion process given in the form

dYt = μ(Y, t) dt + σ(Y, t) dZt .

They solve the node recombination problem by transforming the process given in
the above equation into a process X(Y, t) such that the instantaneous volatility of
the transformed process is constant. Hilliard and Schwartz [18] follow this method
to develop binomial trees for continuous-time risk-neutralized diffusion processes
of a special form.

Our main tool is to apply correlated random walks in order to approximate dif-
fusion processes. A correlated random walk is a generalized random walk in the
sense that the increments are not identically and independently distributed, but they
only satisfy some Markov-type of conditions. The exact definition will be given in
Section 3. These processes naturally lie on a grid, and their Markov structure al-
lows for an efficient computation of option prices.

The idea to use correlated random walks for approximating diffusion processes
goes back to Gruber and Schweizer [15] and to Kusuoka [22]. In [15], the authors
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prove a convergence result for one-dimensional diffusion processes that satisfies
stronger regularity conditions than those that appear in stochastic volatility models.
In [22], Kusuoka uses (also in one dimension) an original technique to modify ran-
dom walks in order to get a diffusion in the limit. Again the regularity conditions
that he assumes are stronger than those that are required in stochastic volatility
models.

Our approach is also similar to that of Kusuoka and modifies the correlated
random walks on a multi-dimensional binomial tree by adding a predictable pro-
cess times

√
h where h is the size of the time step. We then use this freedom to

choose the predicable process together with an appropriate choice of the condi-
tional probabilities to construct a Markov process that weakly converges to the
stochastic volatility model. This construction is explained in Section 3. The weak
convergence of our approximation is given in Section 4. Then the approximating
martingale measures are constructed so that the modified tree under these mea-
sures asymptotically matches the first two conditional moments. This fact allows
for a straightforward convergence proof. We also note that this approach was suc-
cessively used by the last two authors [9] to prove convergence of a market with
trading costs.

Our extensive numerical experimentation is reported in our final section. In gen-
eral, weak convergence does not provide any error estimation. However, binomial-
type approximations of diffusion models have a convergence rate of (�t)1/2 which
we accept it to be true. We leave the detailed description of the computational
studies to that section and here simply state that our algorithm works efficiently
compared to all existing methods for the Heston model.

We emphasize that our tool can also be applied for a general type of stochastic
volatility models (see Remark 4.2). There is also GARCH approach to stochastic
volatility models that we refer the reader to Duan [10–13], Nelson [23], Ritchken
and Trevor [27] and the references therein.

Clearly, there are several other successful computational approaches to stochas-
tic models, including the ones based on partial differential equations, semi-analytic
methods and Monte Carlo simulations. Here we do not survey all these results but
compare our numerical results with the appropriate ones in the section that outlines
our numerical experimentations.

In the literature, tree-based methods have also been considered. Beliaeva and
Nawalkha [2] authored the most recent of these studies; see [2] and the references
therein. However, our approach differs from these earlier studies in two funda-
mental ways. First, our approximation is recombinant by construction, while in
the previous studies recombination is achieved through truncation. Also, our tree
is arbitrage free, and we provide a proof of convergence.

2. The Heston model. Consider the Heston model,

dSt = St (r dt + √
νt dWt),

dνt = κ(θ − νt ) dt + η
√

νt dW̃t ,
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with initial conditions S0, ν0 > 0, given positive parameters r, κ, θ, η and two
Brownian motions W,W̃ with a constant correlation ρ ∈ (−1,1). The constant
r > 0 is the interest rate and S is the stock price process. As it is standard, we also
assume that

2κθ > η2.

Then, the Heston equation has a unique positive solution in R
2+; see, for in-

stance, [7].
The main goal of this paper is to construct a discrete approximation of this

model. For this purpose, it is more convenient to work with a transformed system
of affine equations driven by independent Brownian motions. Therefore, we set

xt := lnSt , yt := νt

η
− ρxt ,

so that

dxt = μx(xt , yt ) dt + √
ησ(xt , yt ) dWt ,

(2.1)
dyt = μy(xt , yt ) dt +

√
η
(
1 − ρ2

)
σ(xt , yt ) dBt ,

where

μx(x, y) := r − 1

2
η(y + ρx), μy(x, y) := κθ

η
− ρr + 1

2
(ρη − 2κ)(y + ρx),

Bt := Wt − ρW̃t√
1 − ρ2

, σ (x, y) :=
√

(y + ρx)+,

and z+ = max(0, z). One may directly verify that B is also a standard Brownian
motion independent of W .

3. Derivation of the approximation. We fix a time horizon, or equivalently
a maturity, T > 0 and a time discretization

h := T

n
,

with a large integer n. We then use two-dimensional correlated random walks to
approximate the diffusion processes given by (2.1). Indeed, consider the random
walks {X(n)

k , Y
(n)
k }n

k=0 of the form

X
(n)
k := x0 + √

hη

k∑
i=1

ξX
i ,(3.1)

Y
(n)
k := y0 +

√
hη

(
1 − ρ2

) k∑
i=1

ξY
i ,(3.2)
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where x0 := ln(s0), y0 := (ν0/η) − ρx0 and (ξX, ξY )’s are random variables with
values in {−1,1}. In the sequel, we always use the initial data

ξX
0 = ξY

0 = 0.

We construct a probabilistic structure so that the four tuple (X
(n)
k , Y

(n)
k , ξX

k , ξY
k )

forms a Markov chain weakly approximating the solution of (2.1). To achieve this
we also need to introduce a modification of this discrete Markov chain. Indeed, for
given predictable processes α̂, β̂ , we introduce

X̂
(n)
k := X

(n)
k + √

hηα̂kξ
X
k ,(3.3)

Ŷ
(n)
k := Y

(n)
k +

√
hη

(
1 − ρ2

)
β̂kξ

Y
k , k = 1, . . . , n.(3.4)

Clearly, the convergence of (X,Y ) is equivalent to that of (X̂, Ŷ ) as∥∥X̂(n) − X(n)
∥∥ = O(

√
h),

∥∥Ŷ (n) − Y (n)
∥∥ = O(

√
h),

where for any exponent k, we use the standard notation O(hk) to denote a generic
random variable of the order hk and o(hk) denotes a random variable that con-
verges to zero after divided by hk .

Our goal is to construct a sequence of probability measures P(n) and stochastic
processes α̂(n), β̂(n) such that{(

X̂
(n)
[nt/T ], Ŷ

(n)
[nt/T ]

)}T
t=0 ⇒ {

(xt , yt )
}T
t=0,

where ⇒ denotes weak convergence. We provide the definitions in the next sec-
tion.

In view of the martingale convergence Theorem 7.4.1 in [14], to establish this
convergence, it is essentially sufficient to match the first and the second conditional
moments. Indeed, for a positive integer k, set

Fk = σ
{
ξX

1 , . . . , ξX
k , ξY

1 , . . . , ξY
k

}
,

and let E(n)
k [·] be the conditional expectation E

(n)[·|Fk] with respect to the proba-
bility measure P(n). Then the moment matching conditions are the following equa-
tions:

E
(n)
k−1

[
X̂

(n)
k − X̂

(n)
k−1

] = μx

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),(3.5)

E
(n)
k−1

[
Ŷ

(n)
k − Ŷ

(n)
k−1

] = μy

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),(3.6)

E
(n)
k−1

[(
X̂

(n)
k − X̂

(n)
k−1

)2] = ησ 2(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),(3.7)

E
(n)
k−1

[(
Ŷ

(n)
k − Ŷ

(n)
k−1

)2] = η
(
1 − ρ2)

σ 2(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h).(3.8)

We also need conditions on the covariances. However, since W and B in (2.1)
are independent, this condition is simply reduced to the requirement that ξX

k and
ξY
k are conditionally independent given Fk−1.
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Observe that we need to solve four equations, and the number of unknowns or
parameters to choose are four as well; the corrections α̂, β̂ and two probabilities,

pk := P
(n)
k−1

(
ξX
k = 1

)
, qk := P

(n)
k−1

(
ξY
k = 1

)
.(3.9)

This construction would provide a financial market which is asymptotically ar-
bitrage free. However, a slight modification of the above procedure would also
ensure that each discrete market itself is free of arbitrage. In our model, the dis-
crete stochastic process {

exp(−rkh) exp
(
X̂

(n)
k

)}n

k=0,

is the approximation of the discounted price process. Hence, we replace the first
order condition (3.5) by requiring that above process is a martingale, that is,

E
(n)
k−1

[
exp(−rh) exp

(
X̂

(n)
k

) − exp
(
X̂

(n)
k−1

)] = 0.(3.10)

In fact, (3.5) and (3.10) are asymptotically equivalent and both would be sufficient
to prove convergence. However, in our numerical experimentation we observe that
this modification is substantially better than the nonmodified version. We continue
by constructing P

(n) and α̂(n), β̂(n) satisfying equations (3.10) and (3.6)–(3.8). In-
deed, by (3.10) we directly calculate that

(1 + α̂k)E
(n)
k−1

[
ξX
k

] − α̂k−1ξ
X
k−1 = o(h).

Hence (
1 + α̂

(n)
k

)
(α̂k−1)E

(n)
k−1

[
ξX
k

]
ξX
k−1 = (α̂k−1)

2 + o(h).

We use this and calculate that

E
(n)
k−1

((
X̂

(n)
k − X̂

(n)
k−1

)2) = ηh
(
(1 + α̂k)

2 − (
α̂

(n)
k−1

)2 + o(h)
) + o(h).

We expect that the difference α̂k − α̂k−1 to be of order h. Hence, the above expres-
sion simplifies to

E
(n)
k−1

((
X̂

(n)
k − X̂

(n)
k−1

)2) = ηh(1 + 2α̂k) + o(h).

We now compare the above equation with (3.7) to conclude that

1 + 2α̂k = σ 2(
X

(n)
k−1, Y

(n)
k−1

) + o(h).

Using (3.6) and (3.8), we obtain the same equation for β̂ . Hence, we conclude that

α̂k = β̂k = σ 2(X
(n)
k−1, Y

(n)
k−1) − 1

2
+ o(h).

We use the above identity and the freedom on the order o(h) to define the processes
α̂, β̂ below. The below definition contains a certain truncation that is within the
o(h) margin. Although this correction is asymptotically small, it allows us to obtain
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several bounds in the convergence proof and also enables to construct transition
probabilities that always remain in the unit interval; see (3.12), below. So we now
define

α̂k := β̂k := max{An,σ
2(X

(n)
k−1, Y

(n)
k−1)} − 1

2
, 1 ≤ k ≤ n,(3.11)

where

An =
(

κθ

η
+ |ρ|r

)√
h

η(1 − ρ2)
,

and we set

α̂
(n)
0 = β̂

(n)
0 = 0.

To reiterate once again, the function An is chosen to ensure that the probabili-
ties that are defined in (3.12), below, remain in the unit interval. Although, this is
clearly crucial for our analysis, in our numerical implementation we do not use
this truncation and instead modify (3.12) to ensure that these are true probabilities.

The above construction together with the conditional independence of the in-
crements ensure the second moment matching. We now use the first order condi-
tions (3.10) and (3.6) to construct the transition probabilities. Indeed, recall that
by (3.9),

pk := P
(n)
k−1

(
ξX
k = 1

)
,

and rewrite (3.10) as

pk exp
(√

hη
[
(1 + α̂k) − α̂k−1ξ

X
k−1

])
+ (1 − pk) exp

(−√
hη

[
(1 + α̂k) + α̂k−1ξ

X
k−1

]) = exp(rh).

This implies that pk must be given by

pk = exp(rh + √
ηhα̂k−1ξ

X
k−1) − exp(−√

ηh(1 + α̂k))

exp(
√

ηh(1 + α̂k)) − exp(−√
ηh(1 + α̂k))

.(3.12)

In view of the truncation introduced in (3.11), pk ∈ [0,1] for all large n.
We now recall that

qk := P
(n)
k−1

(
ξY
k = 1

)
,

and use (3.6) to arrive at

qk = 1

2
+ α̂k−1

2(1 + α̂k)
ξY
k−1 +

√
hμy(X

(n)
k−1, Y

(n)
k−1)

2
√

η(1 − ρ2)(1 + α̂k)
.
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Since qk must take values in the unit interval, we modify it in the following way:

qk =
(

min
{

1,
1

2
+ α̂k−1

2(1 + α̂k)
ξY
k−1 +

√
hμy(X

(n)
k−1, Y

(n)
k−1)

2
√

η(1 − ρ2)(1 + α̂k)

})+
.(3.13)

Set

�k := (
X

(n)
k , Y

(n)
k , ξX

k , ξY
k

)
.

Then, we claim that � is a Markov process. Indeed, recall that the independence
of the Brownian motions in (2.1) implies the conditional independence of the in-
crements ξX and ξY . Hence

P
(n)(ξX

k = a, ξY
k = b|�k−1

) = P
(n)
k−1

(
ξX
k = a

)
P

(n)
k−1

(
ξY
k = b

)
.(3.14)

Moreover, in view of (3.1) and (3.2), the set{
X

(n)
k = X

(n)
k−1 + c,Y

(n)
k = Y

(n)
k−1 + d, ξX

k = a, ξY
k = b

}
is empty unless c = aηh and d = bηh

√
1 − ρ2, and in this case it is equal to {ξX

k =
a, ξY

k = b}. Therefore, the transition probabilities of the process � are determined
by

P
(n)(ξX

k = 1, ξY
k = 1|�k−1

) = pkqk.

Moreover, there is a simple transformation between �k and

�̂k := (
X̂

(n)
k , Ŷ

(n)
k , ξX

k , ξY
k

)
.

Hence, one may consider the process �̂ as the basic approximating Markov pro-
cess.

4. Main convergence result. In this section, we first briefly recall the concept
of weak convergence of probability measures and then state our main convergence
result. For more information on weak convergence, we refer the reader to the books
of Billingsley [3] and Ethier and Kurtz [14].

For any càdlàg stochastic process {Z(t)}Tt=0 with values in some Euclidean
space R

d , let PZ be the distribution of Z on the canonical space D([0, T ];Rd)

equipped with the Skorohod topology (for details see [3]), that is, for any Borel set
D ⊂ D([0, T ];Rd), PZ(D) = P{Z ∈ D}. For a sequence of Rd -valued, stochas-
tic processes Z(n) we use the notation Z(n) ⇒ Z to indicate that the probability
measures PZ(n)

, converge vaguely to P
Z on the space D([0, T ];Rd).

We are now ready to state the main convergence theorem which is the main
theoretical foundation of our numerical scheme. It will be proved in Section 6.
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THEOREM 4.1. For any n ∈ N, let P
(n) be the probability measure de-

fined by (3.14). Consider the stochastic processes {X(n)
[nt/T ]}Tt=0, {X̂(n)

[nt/T ]}Tt=0 and

{Y (n)
[nt/T ]}Tt=0 under P(n). Let (x, y) be the unique solution of (2.1). Then{(

X
(n)
[nt/T ], Y

(n)
[nt/T ]

)}T
t=0 ⇒ {

(xt , yt )
}T
t=0(4.1)

and {(
X̂

(n)
[nt/T ], Y

(n)
[nt/T ]

)}T
t=0 ⇒ {

(xt , yt )
}T
t=0(4.2)

on the space D([0, T ]) ×D([0, T ]).

REMARK 4.2. For the Heston model, one applies a transformation that decor-
relates the Brownian motions. However, this decorrelation is not necessary and
used only to simplify the procedure. Indeed, consider a general two-dimensional
diffusion

dxt = μx(xt , yt ) dt + σx(xt , yt ) dWt ,

dyt = μy(xt , yt ) dt + σy(xt , yt ) dW̃t ,

where W,W̃ are two-standard Brownian motions with a correlation ρ. Introduce
the two-dimensional correlated random walk {X(n)

k , Y
(n)
k }n

k=0 by

X
(n)
k := x0 + √

h

k∑
i=1

ξX
i ,

Y
(n)
k := y0 + √

h

k∑
i=1

ξY
i .

As before, we consider a small modification of the correlated random walks

X̂
(n)
k := X

(n)
k + √

hα̂kξ
X
k ,

Ŷ
(n)
k := Y

(n)
k + √

hβ̂kξ
Y
k , k = 1, . . . , n.

In this case, the moment matching conditions are the following equations:

E
(n)
k−1

[
X̂

(n)
k − X̂

(n)
k−1

] = μx

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),

E
(n)
k−1

[
Ŷ

(n)
k − Ŷ

(n)
k−1

] = μy

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),

E
(n)
k−1

[(
X̂

(n)
k − X̂

(n)
k−1

)2] = σ 2
x

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),

E
(n)
k−1

[(
Ŷ

(n)
k − Ŷ

(n)
k−1

)2] = σ 2
y

(
X

(n)
k−1, Y

(n)
k−1

)
h + o(h),

E
(n)
k−1

[(
X̂

(n)
k − X̂

(n)
k−1

)(
Ŷ

(n)
k − Ŷ

(n)
k−1

)] = σx

(
X

(n)
k−1, Y

(n)
k−1

)
σy

(
X

(n)
k−1, Y

(n)
k−1

)
ρh + o(h).
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We solve these equations as in the Heston case and obtain that

α̂k = σ 2
x (X

(n)
k−1, Y

(n)
k−1) − 1

2
, β̂k = σ 2

y (X
(n)
k−1, Y

(n)
k−1) − 1

2
.

The transition probabilities are also given by

P
(n)
k−1

(
ξX
k = 1, ξY

k = 1
) = 1

4
+ α̂k−1ξ

X
k−1 + μx

√
h

4(1 + α̂k)
+ β̂k−1ξ

Y
k−1 + μy

√
h

4(1 + β̂k)

+ ρσxσy + α̂k−1β̂k−1ξ
X
k−1ξ

Y
k−1

4(1 + α̂k)(1 + β̂k)
,

P
(n)
k−1

(
ξX
k = 1, ξY

k = −1
) = 1

4
+ α̂k−1ξ

X
k−1 + μx

√
h

4(1 + α̂k)
− β̂k−1ξ

Y
k−1 + μy

√
h

4(1 + β̂k)

− ρσxσy + α̂k−1β̂k−1ξ
X
k−1ξ

Y
k−1

4(1 + α̂k)(1 + β̂k)
,

P
(n)
k−1

(
ξX
k = −1, ξY

k = 1
) = 1

4
− α̂k−1ξ

X
k−1 + μx

√
h

4(1 + α̂k)
+ β̂k−1ξ

Y
k−1 + μy

√
h

4(1 + β̂k)

− ρσxσy + α̂k−1β̂k−1ξ
X
k−1ξ

Y
k−1

4(1 + α̂k)(1 + β̂k)
,

P
(n)
k−1

(
ξX
k = −1, ξY

k = −1
) = 1

4
− α̂k−1ξ

X
k−1 + μx

√
h

4(1 + α̂k)
− β̂k−1ξ

Y
k−1 + μy

√
h

4(1 + β̂k)

+ ρσxσy + α̂k−1β̂k−1ξ
X
k−1ξ

Y
k−1

4(1 + α̂k)(1 + β̂k)
,

where in the above formulas, functions μx,μy, σx, σy are all evaluated at

(X
(n)
k−1, Y

(n)
k−1). However, the above terms do not necessarily lie in the interval [0,1].

In that case, we apply a truncation of the form min(1,max(0, ·)).
REMARK 4.3. We emphasize that our approximation method using correlated

random walks and the above convergence result can easily be extended to more
general multidimensional diffusions. The key idea is the introduction of X̂-type
processes which differ from the original random walk X only by a predictable
process α̂ times the increment ξX . We then use this freedom (viz., the function α̂)
to construct transition probabilities that match the first and the second conditional
moments of the original diffusion. The approximating process has essentially the
same dimension as the original diffusion process. However, we need to augment
the state space by adding the increments like ξX . But these increments take values
in the discrete set {−1,+1} so do not increase the complexity of the approxima-
tion.
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Our next remark is toward American options.

REMARK 4.4. In general, the usual weak convergence is not sufficient for
the convergence of American options prices. Indeed, the latter also requires
the “good” behavior of the filtrations. In his unpublished manuscript (see [1],
Sections 15–16), David Aldous introduced the concept of extended weak con-
vergence to address this problem. Briefly his definition is as follows. A se-
quence Z(n) :n → D([0, T ];Rd), extended weak converges to a stochastic pro-
cess Z : → D([0, T ];Rd), if for any k and continuous bounded functions
ψ1, . . . ,ψk ∈ C(D([0, T ];Rd)),(

Z(n),Zn,1, . . . ,Zn,k) ⇒ (
Z,Z(1), . . . ,Z(k)) in D

([0, T ];Rd+k),
where for any t ≤ T , 1 ≤ i ≤ k and n ∈ N,

Z
n,i
t = Ê(n)(ψi

(
Z(n))|FZ(n)

t

)
, Z

(i)
t = Ê

(
ψi(Z)|FZ

t

)
,

Ê(n) denotes the expectation on the probability space on which Z(n) is defined
and Ê denotes the expectation on the probability space on which Z is defined. In
the formulas above FZ(n)

and FZ are the filtrations which are generated by Z(n)

and Z, respectively. The notion of extended weak convergence provides (in ad-
dition to the standard weak convergence of stochastic processes) convergence of
filtrations. In particular, Aldous proved (see [1], Section 17) that under uniform
integrability of the payoffs, extended weak convergence implies convergence of
optimal stopping values. However, it is known that when the proof of weak con-
vergence relies on martingale techniques (like our proof), then the standard weak
convergence implies extended weak convergence. For details, we refer the reader
to [1], Section 21.

5. Discrete pricing equations. In this section, we apply the approximation
developed in Section 3 to price American put and lookback options.

5.1. American put. Consider an American put option with a strike price K .
We are interested in approximating its value given by

V = sup
τ∈T[0,T ]

E
(
e−rτ (K − Sτ )

+)
,

where T[0,T ] is the set of all stopping times with respect to the filtration generated
by S, with values in the set [0, T ]. We approximate the discounted stock price by
the discrete time martingales{

e−rkheX̂
(n)
k

}n

k=0, n ∈ N,
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constructed in Section 3. For any n ∈N, let Tn be the set of all stopping times with
respect to the filtration Fk (again constructed in Section 3), with values in the set
{0,1, . . . , n}. Define

V (n) := max
τ∈Tn

E
(n)(e−rτh(

K − S0e
X̂

(n)
τ

)+)
.

In view of Theorem 4.1 and Remark 4.4, we directly conclude that

lim
n→∞V (n) = V.

Next, we describe a dynamical programming algorithm for the calculation
of V (n). Observe that for a given k ∈ {0, . . . , n} the random variables X

(n)
k and

Y
(n)
k take values on the grid

x0 + (2l − k)
√

ηh, 0 ≤ l ≤ k,

y0 + (2m − k)

√
η
(
1 − ρ2

)
h, 0 ≤ m ≤ k,

respectively. For nonnegative integers m, l ≤ k ≤ n and ξx, ξy ∈ {−1,+1}, let

V
(n)
k (l,m, ξx, ξy)

be the value of the option at time k when the Markov process is given by

Z�k = (
X

(n)
k , Y

(n)
k , ξX

k , ξY
k

) = Fk(l,m, ξx, ξy)

:= (
x0 + (2l − k)

√
ηh, y0 + (2m − k)

√
η
(
1 − ρ2

)
h, ξx, ξy

)
.

The above function Fk is invertible with an inverse F−1
k . We sometimes, with an

abuse of notation, write

V
(n)
k−1(�) = V (n)(F−1

k−1(�)
)

for any four tuple � given by Fk−1(l,m, ξx, ξy) for some (l,m, ξx, ξy). With this
convention, it is not straightforward to state the dynamic programming equation
(see, e.g., [26], Chapter 1),

V
(n)
k−1(�) = max

{(
K − S0 exp(X̂k−1)

)+
,E(n)[V (n)

k (�k)|�k−1 = �
]}

.(5.1)

We continue by rewriting the dynamic programming equation in an algorithmic
manner. In view of (3.11)–(3.13), for any 1 ≤ k ≤ n and 0 ≤ l,m ≤ k − 1, we
define

Xk := x0 + (2l − k)
√

ηh,

Yk := y0 + (2m − k)

√
η
(
1 − ρ2

)
h,
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where both of the above are functions of (l,m), but this dependence is suppressed
in the notation. Similarly, we define two probabilities

pk(l,m, ξx, ξy) := exp(rh + √
ηh�k−1ξx) − exp(−√

ηh�k)

exp(
√

ηh�k) − exp(−√
ηh�k)

,

qk(l,m, ξx, ξy) :=
(

min
{

1,
1

2
+ αk−1(l − ξx,m − ξy)ξy

2�k

+
√

hμy,k

2
√

η(1 − ρ2)�k

})+
,

where α
(n)
0 ≡ 0 and

αk(l,m) := max(An,σ
2(Xk−1,Yk−1)) − 1

2
,

�k := 1 + α
(n)
k (l,m),

μy,k := μy(Xk−1,Yk−1).

As we remarked earlier, in our actual numerical codes, we simply define α = (σ 2 −
1)/2 without the truncation with An and instead truncate pk , above, to ensure that
it stays within the unit interval.

Observe that

pk(l,m, ξx, ξy) = P
(n)(ξX

k = 1|�k−1 = Fk−1(l,m, ξx, ξy)
)
,

qk(l,m, ξx, ξy) = P
(n)(ξY

k = 1|�k−1 = Fk−1(l,m, ξx, ξy)
)
.

Moreover,

P
(n)
k−1

(
ξX
k = 1, ξY

k = 1
) = pk(l,m, ξx, ξy)qk(l,m, ξx, ξy).

One can easily obtain expressions for the other three probabilities as well.
We are now ready to restate the dynamic programming equation (5.1). Indeed,

V
(n)
k (l,m, ξx, ξy) is the unique solution of the following recursive relations:

V (n)
n (l,m, ξx, ξy) = (

K − exp (Xn + √
ηhαnξx)

)+
,

and for 1 ≤ k ≤ n,

V
(n)
k−1(l,m, ξx, ξy) = max

{(
K − exp(Xk−1 + √

ηhαk−1ξx)
)+

,E
(
V

(n)
k

)}
,

where

E
(
V

(n)
k

)
= E

(n)[V (n)
k (�k)|�k−1 = Fk−1(l,m, ξx, ξy)

]
=

1∑
i,j=0

P
(n)
k−1

(
ξX
k = 2i − 1, ξY

k = 2j − 1
)
V

(n)
k (l + i,m + j,2i − 1,2j − 1)
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=
1∑

i,j=0

[
1 − i + (2i − 1)pk(l,m, ξx, ξy)

][
1 − j + (2j − 1)qk(l,m, ξx, ξy)

]
× V

(n)
k (l + i,m + j,2i − 1,2j − 1).

Then our approximation is simply given by

Vn = V
(n)
0 (0,0,0,0).

5.2. Lookback options. Consider a lookback put option with a fixed strike K ,
that is, an option with payoff (K −min0≤t≤T St )

+. Again, we want to approximate
the price

V̂ = E

(
e−rT

(
K − min

0≤t≤T
St

)+)
.

Since the running minimum of the processes{
exp

(
X

(n)
k

)}n

k=0, n ∈ N

lies on a grid, we will use these processes instead of the martingale exp(X̂
(n)
k ).

The advantage of the processes exp(X
(n)
k ) becomes clear when we describe the

dynamical programming algorithm below.
We set

V̂ (n) = E
(n)

(
e−rT

(
K − S0 exp

(
min

0≤i≤n
X

(n)
i

))+)
.(5.2)

By Theorem 4.1 we conclude that V̂ (n) converges to V̂ .
First, we observe that the random variable

zk := min
0≤i≤k

i∑
j=1

ξX
j

takes values on the grid {−k,1 − k, . . . ,0}.
Using the notation and the conventions of the previous subsection, for 0 ≤ k ≤

n, we let V̂
(n)
k (l,m, z, ξx, ξy) to be the option price at time k. The extra state vari-

able z denotes the value of the running minimum zk at time k. Then, V̂ (n) is the
unique solution of

V̂ (n)
n (l,m, z, ξx, ξy) = (

K − S0 exp(−√
ηhz)

)+
,

and for 1 ≤ k ≤ n,

V̂
(n)
k−1(l,m, z, ξx, ξy) = max

{(
K − S0 exp(−√

ηhz)
)+

, Ê
(
V

(n)
k

)}
,
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where

Ê
(
V

(n)
k

) =
1∑

i,j=0

P
(n)
k−1

(
ξX
k = 2i − 1, ξY

k = 2j − 1
)

× V̂
(n)
k (l + i,m + j, z + χ{i=0,z+2l=k−1},2i − 1,2j − 1),

and χQ is the characteristic set of Q. Finally,

V̂n = V̂
(n)
0 (0,0,0,0,0).

6. Proof of Theorem 4.1. In this section we provide a proof of Theorem 4.1.
Our main tool is the martingale convergence result of Theorem 7.4.1 in [14].

In view of (3.1)–(3.4) and (3.11), we have the following inequality for all suffi-
ciently large n: ∣∣X̂(n)

k

∣∣ ≥ ∣∣X(n)
k

∣∣ − 1
3

(∣∣X(n)
k

∣∣ + ∣∣Y (n)
k

∣∣ + 1
)
,∣∣Ŷ (n)

k

∣∣ ≥ ∣∣Y (n)
k

∣∣ − 1
3

(∣∣X(n)
k

∣∣ + ∣∣Y (n)
k

∣∣ + 1
)
.

Therefore,∣∣X(n)
k

∣∣ + ∣∣Y (n)
k

∣∣ ≤ 3
(∣∣X̂(n)

k

∣∣ + ∣∣Ŷ (n)
k

∣∣ + 1
)
, k = 0,1, . . . , n.(6.1)

This together with (3.3)–(3.4) and (3.11) imply that there exists a constant c > 0
satisfying

∣∣X(n)
k − X̂

(n)
k

∣∣ + ∣∣Y (n)
k − Ŷ

(n)
k

∣∣ ≤ c(1 + |X̂(n)
k | + |Ŷ (n)

k |)√
n

,

(6.2)
k = 0,1, . . . , n.

It is sufficient to establish that{(
X̂

(n)
[nt/T ], Ŷ

(n)
[nt/T ]

)}T
t=0 ⇒ {

(xt , yt )
}T
t=0.(6.3)

Indeed, from (6.2) it follows that

X̂
(n)
k − c(1 + |X̂(n)

k | + |Ŷ (n)
k |)√

n
≤ X

(n)
k ≤ X̂

(n)
k + c(1 + |X̂(n)

k | + |Ŷ (n)
k |)√

n
,

Ŷ
(n)
k − c(1 + |X̂(n)

k | + |Ŷ (n)
k |)√

n
≤ Y

(n)
k ≤ Ŷ

(n)
k + c(1 + |X̂(n)

k | + |Ŷ (n)
k |)√

n
.

From (6.3) it follows that the sequences{(
X̂

(n)
[nt/T ] −

c(1 + |X̂(n)
[nt/T ]| + |Ŷ (n)

[nt/T ]|)√
n

, Ŷ
(n)
[nt/T ] −

c(1 + |X̂(n)
[nt/T ]| + |Ŷ (n)

[nt/T ]|)√
n

)}
,

{(
X̂

(n)
[nt/T ] +

c(1 + |X̂(n)
[nt/T ]| + |Ŷ (n)

[nt/T ]|)√
n

, Ŷ
(n)
[nt/T ] +

c(1 + |X̂(n)
[nt/T ]| + |Ŷ (n)

[nt/T ]|)√
n

)}
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converge weakly to {(xt , yt )}Tt=0. Thus Theorem 4.1 follows from (6.3). For any
0 ≤ k ≤ n, set

A
n,x
k =

k∑
j=1

E
(n)
j−1

(
X̂

(n)
j − X̂

(n)
j−1

)
, A

n,y
k =

k∑
j=1

E
(n)
j−1

(
Ŷ

(n)
j − Ŷ

(n)
j−1

)
,

M
n,x
k = X̂

(n)
k − A

n,x
k , M

n,y
k = Ŷ

(n)
k − A

n,y
k ,

A
n,x,x
k =

k∑
j=1

E
(n)
j−1

((
M

n,x
j − M

n,x
j−1

)2)
, A

n,y,y
k =

k∑
j=1

E
(n)
j−1

((
M

n,y
j − M

n,y
j−1

)2)
,

A
n,x,y
k =

k∑
j=1

E
(n)
j−1

((
M

n,x
j − M

n,x
j−1

)(
M

n,y
j − M

n,y
j−1

))
.

Notice that the processes An,x,An,y,An,x,x,An,y,y,An,x,y are predictable, and the
processes Mn,x,Mn,y are martingales.

We now fix a large N > 0 and define the stopping times by

σn = min
{
k :

∣∣X̂(n)
k

∣∣ + ∣∣Ŷ (n)
k

∣∣ ≥ N
} ∧ n, n ∈N.

Using (3.1), (3.2) and (6.2), we conclude that for all k ≤ σn,

X̂
(n)
k − X̂

(n)
k−1 = O(1/

√
n) and Ŷ

(n)
k − Ŷ

(n)
k−1 = O(1/

√
n),

where in this section o(·) and O(·) are defined uniformly in space, that is,
O(1/

√
n) is a function which is bounded by a deterministic constant over

√
n,

and
√

no(1/
√

n) converges uniformly to zero as n tends to infinity.
By Theorem 7.4.1 in [14], (6.3) would result from the following relations:

lim
n→∞ max

1≤k≤σn

∣∣∣∣∣An,x
k − h

k−1∑
i=0

μx

(
X̂

(n)
i , Ŷ

(n)
i

)∣∣∣∣∣ = 0 a.s.,(6.4)

lim
n→∞ max

1≤k≤σn

∣∣∣∣∣An,y
k − h

k−1∑
i=0

μy

(
X̂

(n)
i , Ŷ

(n)
i

)∣∣∣∣∣ = 0 a.s.,(6.5)

lim
n→∞ max

1≤k≤σn

∣∣∣∣∣An,x,x
k − ηh

k−1∑
i=0

σ 2(
X̂

(n)
i , Ŷ

(n)
i

)∣∣∣∣∣ = 0 a.s.,(6.6)

lim
n→∞ max

1≤k≤σn

∣∣∣∣∣An,y,y
k − η

(
1 − ρ2)

h

k−1∑
i=0

σ 2(
X̂

(n)
i , Ŷ

(n)
i

)∣∣∣∣∣ = 0 a.s.,(6.7)

lim
n→∞ max

1≤k≤σn

∣∣An,x,y
k

∣∣ = 0 a.s.(6.8)

The rest of the proof is devoted to the verification of the above identities.
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We start with a proof of (6.4). Since σ 2(x, y) is Lipschitz continuous, (3.1),
(3.2) and (3.11) imply that

|α̂k − α̂k−1| = O(
√

h).

In view of (6.1), for k < σn, we have

−1
2 ≤ αk ≤ ĉ(N + 1)

for some constant ĉ. Since the event k < σn is Fk−1-measurable,

P
(n)(ξX

k = 1 and k < σn|�k−1
) = χ{k<σn}P(n)(ξX

k = 1|�k−1
) = χ{k<σn}pk.

We now use the above estimates, the definition (3.12) of the transition probability
pk and Taylor expansion. Then, on the set k < σn,

P
(n)(ξX

k = 1|�k−1
)

= rh + √
ηh(1 + α̂k−1ξ

X
k−1 + α̂k) − ηh(1/2 + α̂k) + o(h)

2
√

ηh(1 + α̂k) + o(h)
(6.9)

= rh + √
ηh(1 + α̂k−1ξ

X
k−1 + α̂k) − ηh(1/2 + α̂k)

2
√

ηh(1 + α̂k)
+ o(

√
h)

= 1

2
+ α̂k−1

2(1 + α̂k)
ξX
k−1 + rh − η(1/2 + α̂k)h

2(1 + α̂k)
+ o(h).

We thus conclude that on the event k < σn, the following estimate holds:

E
(n)
k−1

[
X̂

(n)
k − X̂

(n)
k−1

]
= √

ηhE
(n)
k−1

[
(1 + α̂k)ξ

X
k − α̂k−1ξ

X
k−1

]
= √

ηh
[
(1 + α̂k)

(
2P(n)(ξX

k = 1|�k−1
) − 1

) − α̂k−1ξ
X
k−1

]
= rh − η

(1
2 + α̂k

)
h + o(h)

= μx

(
X̂

(n)
k−1, Ŷ

(n)
k−1

)
h + o(h),

where the last equality follows from the definition of α̂, the Lipschitz continuity of
μ(x, y) and (6.2). Then (6.4) follows directly from the above estimate.

We continue with a proof of (6.5). We start with the definition of qk and use
the truncation introduced in (3.11). On k < σn, this fields the following esti-
mate:

2 × P
(n)(ξY

k = 1|�k−1
) − 1 = α̂k−1

1 + α̂k

ξY
k−1 +

√
hμy(X

(n)
k−1, Y

(n)
k−1)√

η(1 − ρ2)(1 + α̂k)
.
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As before we directly estimate the on k − 1 ≤ σn,

E
(n)
k−1

(
Ŷ

(n)
k − Ŷ

(n)
k−1

)
=

√
η
(
1 − ρ2

)
h
(
(1 + α̂k)

(
2P(n)(ξY

k = 1|�k−1
) − 1

) − α̂kξ
Y
k−1

)
= μy

(
X̂

(n)
k−1, Ŷ

(n)
k−1

)
h + o(h).

Again, the last equality follows from (6.2) and the fact that μy(x, y) is Lipschitz
continuous. This completes the proof of (6.5).

We continue with the quadratic estimates. Indeed, by (6.9), on k < σn,

2 × P
(n)(ξX

k = 1|�k−1
) − 1 = α̂k−1

1 + α̂k

ξX
k−1 + o(

√
h).

Since An,x is predictable, on k < σn,

E
(n)
k−1

((
M

n,x
k − M

n,x
k−1

)2) = E
(n)
k−1

((
X̂

(n)
k − X̂

(n)
k−1

)2) + o(h)

and

E
(n)
k−1

((
X̂

(n)
k − X̂

(n)
k−1

)2)
= ηh

(
(1 + α̂k)

2 + (α̂k−1)
2 − 2α̂k−1(1 + α̂k)ξ

X
k−1

(
2P(n)(ξX

k = 1|�k−1
) − 1

))
= ηh

(
1 + 2α̂

(n)
k

)
= ηhσ 2(

X̂
(n)
k−1, Ŷ

(n)
k−1

)
,

and (6.6) follows. Relation (6.7) is proved similarly.
It remains to establish (6.8). The processes An,x,An,y are predictable. Thus,

from (3.14) it follows that, on k < σn,

E
(n)
k−1

((
M

n,x
k − M

n,x
k−1

)(
M

n,y
k − M

n,y
k−1

))
= E

(n)
k−1

((
X̂

(n)
k − X̂

(n)
k−1

)(
Ŷ

(n)
k − Ŷ

(n)
k−1

)) + o(h)

= E
(n)
k−1

(
X̂

(n)
k − X̂

(n)
k−1

)
E

(n)
k−1

(
Ŷ

(n)
k − Ŷ

(n)
k−1

) + o(h)

= o(h),

where we used the fact that ξX
k and ξY

k are conditionally independent.

7. Numerical results. In this section, we present numerical results from our
model for European and American vanilla, lookback, geometric and arithmetic
Asian options under the Heston dynamics. Our computations are obtained by a
direct implementation of the methodology described in the previous sections. In
particular, we explicitly refrained from using known numerical techniques that
improve the performance of the trees. This is done to ensure the replicability of
our reported results.
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7.1. Vanillas. In Tables 1, 2 and 3, we use the same parameter sets as in Beli-
aeva and Nawalkha [2], that is, for European call and put options: strike K = 100;
initial stock prices: S0 = 90,95,100,105,110; maturities: T = 1 month, 3 months
and 6 months; initial volatility values:

√
ν0 = 0.2,0.3,0.4; interest rate: r = 0.05;

vol of vol: η = 0.1; mean reversion rate: κ = 3; long run vol: θ = 0.04; and corre-
lation: ρ = −0.7. For American put options: K = 100, S0 = 90,100,110; T =
1 month, 3 months and 6 months;

√
ν0 = 0.2,0.4; ρ = −0.1,−0.7; r = 0.05;

η = 0.1; κ = 3, θ = 0.04.
Tables 1 and 2 show the convergence of European put and call prices computed

by our method compared to the closed form solutions of Heston [17]. In the Eu-
ropean case, one can calculate errors as Heston’s solution is available in closed
form. The option prices computed for the number of time steps N = 200, 350 and
500 illustrate very good convergence to the closed form solutions as reported in
Tables 1 and 2. Furthermore, one can verify that the put-call parity holds exactly
for option prices at each of these time steps sizes. Clearly, this is the outcome of
the fact that our price process in any step size is a martingale.

Table 3 reports the difference between the American put prices obtained from
our method and those obtained by the control variate (CV) technique of [2].
The table shows that our numbers are in good agreement with those obtained
by the CV method. The first three largest differences between the models are
(0.27%,0.26%,0.22%), and on average there is a difference of 0.10% per op-
tion. We should point out to the reader that the CV technique computes the value
of the put option via the formula

CV American Price = Tree American + (Closed Form Euro − Tree Euro).

According to Beliaeva and Nawalkha [2], this method is particularly useful for
longer maturity options.

Chockalingam and Muthuraman [6] develop a partial differential equations
(PDE) based finite difference method to price American options under stochastic
volatility. More specifically, they transform the free boundary problem resulting
from the pricing of American options into a sequence of fixed-boundary prob-
lems of European type. The prices listed in Tables 4 and 5 are taken from [6] as
a benchmark for our tree-based method. The authors provide the values arising
from the projected successive over relaxation (PSOR) method and the component-
wise splitting (CS) method. They state that other PDE-based methods (see Iko-
nen and Toivanen [20] for a detailed analysis) fall between these two in terms of
speed/accuracy and ease of implementation. As test parameters, they use the most
common parameter values for American options under the Heston dynamics in the
PDE-based literature: K = 10, r = 0.1, η = 0.9, κ = 5.0, θ = 0.16 and ρ = 0.1,
T = 0.25,

√
ν0 = 0.25,0.5. Following [6], we take the prices computed by Ikonen

and Toivanen [20] (using the CS method together with a very fine grid) as the ref-
erence values. From Tables 4 and 5, one can clearly conclude that our results for
both N = 250 and N = 350 are very close to reference values.



TREE APPROXIMATION OF STOCHASTIC VOLATILITY 2195

TABLE 1
Convergence of European put prices versus analytical solution of Heston [17]. Parameters:

K = 100, r = 0.05, η = 0.1, κ = 3.0, θ = 0.04 and ρ = −0.7

Tree Error %

S(0)
√

ν0 T N = 200 N = 350 N = 500
Analytical

solution N = 200 N = 350 N = 500

90 0.2 0.0833 9.6541 9.6533 9.6533 9.6533 0.01 0.00 0.00
95 0.2 0.0833 5.2059 5.2084 5.2077 5.2074 −0.03 0.02 0.01

100 0.2 0.0833 2.0953 2.0960 2.0965 2.0971 −0.08 −0.05 −0.03
105 0.2 0.0833 0.6082 0.6047 0.6050 0.6053 0.48 −0.10 −0.06
110 0.2 0.0833 0.1267 0.1271 0.1270 0.1265 0.11 0.48 0.35
90 0.3 0.0833 9.9913 9.9900 9.9900 9.9905 0.01 0.00 0.00
95 0.3 0.0833 6.0147 6.0170 6.0162 6.0155 −0.01 0.02 0.01

100 0.3 0.0833 3.1308 3.1288 3.1290 3.1302 0.02 −0.05 −0.04
105 0.3 0.0833 1.4001 1.3955 1.3955 1.3967 0.25 −0.08 −0.09
110 0.3 0.0833 0.5365 0.5374 0.5372 0.5367 −0.05 0.13 0.09
90 0.4 0.0833 10.5687 10.5670 10.5668 10.5668 0.02 0.00 0.00
95 0.4 0.0833 6.9357 6.9363 6.9352 6.9335 0.03 0.04 0.02

100 0.4 0.0833 4.1893 4.1864 4.1861 4.1852 0.10 0.03 0.02
105 0.4 0.0833 2.3280 2.3232 2.3229 2.3222 0.25 0.04 0.03
110 0.4 0.0833 1.1893 1.1897 1.1893 1.1882 0.09 0.13 0.09
90 0.2 0.25 9.5736 9.5693 9.5694 9.5698 0.04 0.00 0.00
95 0.2 0.25 5.9691 5.9685 5.9693 5.9692 0.00 −0.01 0.00

100 0.2 0.25 3.3742 3.3774 3.3794 3.3770 −0.08 0.01 0.07
105 0.2 0.25 1.7420 1.7393 1.7402 1.7410 0.06 −0.10 −0.05
110 0.2 0.25 0.8290 0.8249 0.8253 0.8259 0.37 −0.13 −0.08
90 0.3 0.25 10.5941 10.5879 10.5882 10.5893 0.04 −0.01 −0.01
95 0.3 0.25 7.3343 7.3327 7.3329 7.3316 0.04 0.02 0.02

100 0.3 0.25 4.8279 4.8331 4.8340 4.8310 −0.06 0.04 0.06
105 0.3 0.25 3.0420 3.0379 3.0391 3.0388 0.11 −0.03 0.01
110 0.3 0.25 1.8368 1.8320 1.8319 1.8325 0.23 −0.03 −0.03
90 0.4 0.25 11.8375 11.8281 11.8288 11.8287 0.07 0.00 0.00
95 0.4 0.25 8.8120 8.8081 8.8070 8.8035 0.10 0.05 0.04

100 0.4 0.25 6.3762 6.3790 6.3786 6.3735 0.04 0.09 0.08
105 0.4 0.25 4.5066 4.5005 4.5004 4.4976 0.20 0.06 0.06
110 0.4 0.25 3.1099 3.1035 3.1025 3.1011 0.28 0.08 0.05
90 0.2 0.5 9.7547 9.7545 9.7606 9.7572 −0.03 −0.03 0.04
95 0.2 0.5 6.7258 6.7248 6.7185 6.7199 0.09 0.07 −0.02

100 0.2 0.5 4.4355 4.4369 4.4320 4.4312 0.10 0.13 0.02
105 0.2 0.5 2.8077 2.8159 2.8100 2.8107 −0.11 0.18 −0.02
110 0.2 0.5 1.7286 1.7289 1.7275 1.7240 0.27 0.28 0.20
90 0.3 0.5 11.0786 11.0792 11.0845 11.0807 −0.02 −0.01 0.03
95 0.3 0.5 8.2445 8.2422 8.2367 8.2363 0.10 0.07 0.00

100 0.3 0.5 5.9835 5.9830 5.9784 5.9763 0.12 0.11 0.04
105 0.3 0.5 4.2450 4.2504 4.2449 4.2443 0.02 0.15 0.02
110 0.3 0.5 2.9647 2.9640 2.9623 2.9582 0.22 0.20 0.14
90 0.4 0.5 12.6195 12.6199 12.6231 12.6171 0.02 0.02 0.05
95 0.4 0.5 9.9373 9.9318 9.9260 9.9223 0.15 0.10 0.04

100 0.4 0.5 7.7110 7.7069 7.7017 7.6965 0.19 0.13 0.07
105 0.4 0.5 5.9065 5.9075 5.9015 5.8978 0.15 0.17 0.06
110 0.4 0.5 4.4841 4.4806 4.4779 4.4716 0.28 0.20 0.14
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TABLE 2
Convergence of European call prices versus analytical solution of Heston [17]. Parameters:

K = 100, r = 0.05, η = 0.1, κ = 3.0, θ = 0.04, and ρ = −0.7

Tree Error %

S(0)
√

ν0 T N = 200 N = 350 N = 500
Analytical

solution N = 200 N = 350 N = 500

90 0.2 0.0833 0.0699 0.0691 0.0691 0.0691 1.13 −0.05 0.02
95 0.2 0.0833 0.6217 0.6242 0.6235 0.6232 −0.23 0.17 0.06

100 0.2 0.0833 2.5111 2.5118 2.5122 2.5129 −0.07 −0.04 −0.02
105 0.2 0.0833 6.0240 6.0205 6.0208 6.0211 0.05 −0.01 −0.01
110 0.2 0.0833 10.5425 10.5429 10.5428 10.5423 0.00 0.01 0.00
90 0.3 0.0833 0.4071 0.4058 0.4058 0.4063 0.20 −0.12 −0.12
95 0.3 0.0833 1.4305 1.4328 1.4320 1.4313 −0.06 0.10 0.05

100 0.3 0.0833 3.5466 3.5446 3.5448 3.5460 0.02 −0.04 −0.04
105 0.3 0.0833 6.8159 6.8113 6.8113 6.8125 0.05 −0.02 −0.02
110 0.3 0.0833 10.9523 10.9532 10.9530 10.9525 0.00 0.01 0.00
90 0.4 0.0833 0.9845 0.9828 0.9826 0.9826 0.19 0.02 0.00
95 0.4 0.0833 2.3515 2.3521 2.3510 2.3493 0.10 0.12 0.07

100 0.4 0.0833 4.6051 4.6022 4.6019 4.6010 0.09 0.03 0.02
105 0.4 0.0833 7.7438 7.7390 7.7387 7.7380 0.08 0.01 0.01
110 0.4 0.0833 11.6051 11.6055 11.6051 11.6040 0.01 0.01 0.01
90 0.2 0.25 0.8158 0.8115 0.8116 0.8120 0.47 −0.05 −0.05
95 0.2 0.25 2.2113 2.2107 2.2116 2.2114 −0.01 −0.03 0.01

100 0.2 0.25 4.6164 4.6196 4.6216 4.6192 −0.06 0.01 0.05
105 0.2 0.25 7.9842 7.9815 7.9824 7.9832 0.01 −0.02 −0.01
110 0.2 0.25 12.0712 12.0671 12.0675 12.0682 0.03 −0.01 −0.01
90 0.3 0.25 1.8363 1.8301 1.8305 1.8316 0.26 −0.08 −0.06
95 0.3 0.25 3.5766 3.5750 3.5751 3.5738 0.08 0.03 0.03

100 0.3 0.25 6.0701 6.0753 6.0762 6.0732 −0.05 0.03 0.05
105 0.3 0.25 9.2842 9.2802 9.2813 9.2810 0.04 −0.01 0.00
110 0.3 0.25 13.0790 13.0742 13.0741 13.0747 0.03 0.00 0.00
90 0.4 0.25 3.0797 3.0703 3.0710 3.0709 0.29 −0.02 0.00
95 0.4 0.25 5.0542 5.0503 5.0493 5.0457 0.17 0.09 0.07

100 0.4 0.25 7.6184 7.6212 7.6208 7.6157 0.04 0.07 0.07
105 0.4 0.25 10.7488 10.7428 10.7426 10.7399 0.08 0.03 0.03
110 0.4 0.25 14.3521 14.3457 14.3447 14.3433 0.06 0.02 0.01
90 0.2 0.5 2.2237 2.2235 2.2296 2.2262 −0.11 −0.12 0.15
95 0.2 0.5 4.1948 4.1938 4.1875 4.1889 0.14 0.12 −0.03

100 0.2 0.5 6.9045 6.9060 6.9010 6.9002 0.06 0.08 0.01
105 0.2 0.5 10.2767 10.2849 10.2790 10.2797 −0.03 0.05 −0.01
110 0.2 0.5 14.1976 14.1979 14.1965 14.1930 0.03 0.03 0.02
90 0.3 0.5 3.5476 3.5483 3.5535 3.5497 −0.06 −0.04 0.11
95 0.3 0.5 5.7135 5.7112 5.7057 5.7053 0.14 0.10 0.01

100 0.3 0.5 8.4525 8.4520 8.4474 8.4453 0.09 0.08 0.03
105 0.3 0.5 11.7140 11.7194 11.7140 11.7133 0.01 0.05 0.01
110 0.3 0.5 15.4337 15.4330 15.4313 15.4272 0.04 0.04 0.03
90 0.4 0.5 5.0885 5.0889 5.0921 5.0861 0.05 0.06 0.12
95 0.4 0.5 7.4063 7.4008 7.3950 7.3913 0.20 0.13 0.05

100 0.4 0.5 10.1800 10.1759 10.1707 10.1655 0.14 0.10 0.05
105 0.4 0.5 13.3755 13.3765 13.3705 13.3668 0.07 0.07 0.03
110 0.4 0.5 16.9532 16.9496 16.9469 16.9406 0.07 0.05 0.04
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TABLE 3
Comparison of American put prices calculated with our method and with the control variate
technique of Beliaeva and Nawalkha [2]. Parameters: K = 100, r = 0.05, η = 0.1, κ = 3.0,

θ = 0.04, and ρ = −0.7

Tree Control variate
S(0) ρ

√
ν0 T N = 250 N = 200 Difference %

90 −0.1 0.2 0.0833 10.0000 10.0000 0.00
100 −0.1 0.2 0.0833 2.1236 2.1254 −0.08
110 −0.1 0.2 0.0833 0.1090 0.1091 −0.05

90 −0.7 0.2 0.0833 10.0000 9.9997 0.00
100 −0.7 0.2 0.0833 2.1249 2.1267 −0.08
110 −0.7 0.2 0.0833 0.1273 0.1274 −0.07

90 −0.1 0.4 0.0833 10.7123 10.7100 0.02
100 −0.1 0.4 0.0833 4.2194 4.2158 0.08
110 −0.1 0.4 0.0833 1.1666 1.1667 −0.01

90 −0.7 0.4 0.0833 10.6843 10.6804 0.04
100 −0.7 0.4 0.0833 4.2183 4.2140 0.10
110 −0.7 0.4 0.0833 1.1942 1.1939 0.02

90 −0.1 0.2 0.25 10.1713 10.1706 0.01
100 −0.1 0.2 0.25 3.4729 3.4747 −0.05
110 −0.1 0.2 0.25 0.7726 0.7736 −0.13

90 −0.7 0.2 0.25 10.1222 10.1206 0.02
100 −0.7 0.2 0.25 3.4790 3.4807 −0.05
110 −0.7 0.2 0.25 0.8405 0.8416 −0.13

90 −0.1 0.4 0.25 12.1880 12.1819 0.05
100 −0.1 0.4 0.25 6.5023 6.4964 0.09
110 −0.1 0.4 0.25 3.0952 3.0914 0.12

90 −0.7 0.4 0.25 12.1245 12.1122 0.10
100 −0.7 0.4 0.25 6.4989 6.4899 0.14
110 −0.7 0.4 0.25 3.1512 3.1456 0.18

90 −0.1 0.2 0.5 10.6521 10.6478 0.04
100 −0.1 0.2 0.5 4.6531 4.6473 0.12
110 −0.1 0.2 0.5 1.6857 1.6832 0.15

90 −0.7 0.2 0.5 10.5682 10.5637 0.04
100 −0.7 0.2 0.5 4.6691 4.6636 0.12
110 −0.7 0.2 0.5 1.7899 1.7874 0.14

90 −0.1 0.4 0.5 13.3279 13.3142 0.10
100 −0.1 0.4 0.5 8.0231 8.0083 0.18
110 −0.1 0.4 0.5 4.5554 4.5454 0.22

90 −0.7 0.4 0.5 13.2431 13.2172 0.20
100 −0.7 0.4 0.5 8.0204 7.9998 0.26
110 −0.7 0.4 0.5 4.6328 4.6201 0.27

7.2. Exotics. Our numerical experimentation confirms that backward recur-
sion yields quite fast and accurate results for the two-dimensional problems like
European and American vanilla option pricing problems. However, our numerical
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TABLE 4
American put prices determined with our tree approach and finite difference methods. Parameters:

K = 10, r = 0.1, η = 0.9, κ = 5.0, θ = 0.16, and ρ = 0.1, T = 0.25,
√

ν0 = 0.25

S0

Method Grid size 8 9 10 11 12

PSOR (40, 16, 8) 2.0000 1.0952 0.4966 0.2042 0.0838
(60, 32, 66) 2.0000 1.1037 0.5142 0.2105 0.0815

(120, 64, 130) 2.0000 1.1064 0.5182 0.2126 0.0819
(240, 128, 258) 2.0000 1.1071 0.5193 0.2133 0.0820

Componentwise (40, 16, 8) 2.0004 1.1003 0.4991 0.2035 0.0828
splitting (60, 32, 66) 2.0000 1.1043 0.5147 0.2104 0.0813

(120, 64, 130) 2.0000 1.1066 0.5183 0.2126 0.0819
(240, 128, 258) 2.0000 1.1073 0.5194 0.2133 0.0820

Transformation (40, 16, 8) 2.0000 1.0952 0.4966 0.2042 0.0838
procedure (60, 32, 66) 2.0000 1.1035 0.5142 0.2105 0.0815

(120, 64, 130) 2.0000 1.1063 0.5181 0.2126 0.0819
(240, 128, 258) 2.0000 1.1071 0.5193 0.2133 0.0820

Our tree method N

150 2.0000 1.1086 0.5155 0.2140 0.0825
250 2.0000 1.1079 0.5190 0.2140 0.0822
350 2.0000 1.1074 0.5193 0.2134 0.0828

Reference value 2.0000 1.1076 0.5200 0.2137 0.0820

experimentation also reveals that the straightforward application of the recursive
method takes too long on a personal computer when another continuous variable
is introduced to price an exotic option. Hence, in order to substantially speed up
the computations, we use our discrete equations as a discretization scheme for our
Monte Carlo (MC) simulation. In other words, we carry out the MC simulation on
the tree.

It is also important to note that our main concern in this section is to show the
pure application of our computation method. There are many well-known tech-
niques in the literature which improve the speed and the accuracy of tree and MC
methods. However, as in the backward recursion we refrain from using any of these
techniques.

Below we outline results for the geometric, arithmetic Asian and for lookback
options.

We start with the geometric Asian and let

GT = exp
(

1

T

∫ T

0
ln(St ) dt

)



TREE APPROXIMATION OF STOCHASTIC VOLATILITY 2199

TABLE 5
American put prices determined with our tree approach and finite difference methods. Parameters:

K = 10, r = 0.1, η = 0.9, κ = 5.0, θ = 0.16, and ρ = 0.1, T = 0.25,
√

ν0 = 0.5

S0

Method Grid size 8 9 10 11 12

PSOR (40, 16, 8) 2.0691 1.3139 0.7720 0.4293 0.2324
(60, 32, 66) 2.0760 1.3292 0.7908 0.4442 0.2405

(120, 64, 130) 2.0775 1.3320 0.7940 0.4467 0.2419
(240, 128, 258) 2.0779 1.3329 0.7951 0.4476 0.2424

Componentwise (40, 16, 8) 2.0676 1.3094 0.7646 0.4232 0.2297
splitting (60, 32, 66) 2.0758 1.3287 0.7900 0.4435 0.2401

(120, 64, 130) 2.0774 1.3317 0.7936 0.4463 0.2417
(240, 128, 258) 2.0780 1.3328 0.7949 0.4474 0.2423

Transformation (40, 16, 8) 2.0691 1.3140 0.7721 0.4294 0.2325
procedure (60, 32, 66) 2.0760 1.3291 0.7908 0.4442 0.2405

(120, 64, 130) 2.0775 1.3319 0.7940 0.4467 0.2419
(240, 128, 258) 2.0780 1.3329 0.7951 0.4476 0.2424

Our tree method N

150 2.0791 1.3362 0.7957 0.4495 0.2435
250 2.0786 1.3338 0.7964 0.4501 0.2435
350 2.0790 1.3339 0.7964 0.4485 0.2440

Reference value 2.0784 1.3336 0.7960 0.4483 0.2428

be the geometric mean of St over time t during [0, T ]. Then the payoff of a fixed
strike geometric Asian call is given by max(GT −K,0). Kim and Wee [21] provide
semi-closed solutions for the price of geometric Asian options under the Heston
model. We compare our results with theirs.

Table 6 displays a comparison between prices from the semi-closed solution
and those from our MC simulation on tree with N = 300 and number of sim-
ulations (NumSim) = 105,5 ∗ 105,106. As benchmark prices, we use the val-
ues given in Table 5 from [21] for the parameter values: S0 = 100, ν0 = 0.09,
r = 0.05, κ = 1.15, θ = 0.348, ρ = −0.64, η = 0.39. As it is clear from the
table, our numerical scheme provides a very good approximation for the ana-
lytical prices. For NumSim = 106, we get the three largest percentage errors as
(0.40%,0.34%,0.28%) and the average percentage error is 0.11%. Table 7 shows
the 95% confidence intervals for the prices computed for different numbers of sim-
ulations.

Table 8 includes our results for arithmetic Asian options under the Heston
model. We carry out the simulations as in the same way described previously. Let

AT = exp
(

1

T

∫ T

0
St dt

)
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TABLE 6
Comparison of our method and the semi-closed solution for fixed-strike geometric Asian call

options for: S0 = 100, ν0 = 0.09, r = 0.05, κ = 1.15, θ = 0.348, ρ = −0.64, η = 0.39

MC on tree with N = 300 Difference %

NumSim NumSim

T K 105 5 ∗ 105 106 Semi-closed
solution 105 5 ∗ 105 106

0.2 90 10.6598 10.6551 10.6562 10.6571 0.02 −0.02 −0.01
0.2 95 6.6006 6.5970 6.5888 6.5871 0.20 0.15 0.03
0.2 100 3.4699 3.4564 3.4510 3.4478 0.64 0.25 0.09
0.2 105 1.4697 1.4610 1.4611 1.4552 1.00 0.40 0.40
0.2 110 0.4730 0.4742 0.4719 0.4724 0.14 0.38 −0.10
0.4 90 11.7310 11.7111 11.7077 11.7112 0.17 0.00 −0.03
0.4 95 8.0988 8.1067 8.0877 8.0894 0.12 0.21 −0.02
0.4 100 5.1480 5.1746 5.1641 5.1616 −0.26 0.25 0.05
0.4 105 3.0414 3.0060 3.0040 3.0018 1.32 0.14 0.07
0.4 110 1.5555 1.5776 1.5679 1.5715 −1.02 0.39 −0.23
0.5 90 12.2974 12.2495 12.2330 12.2329 0.53 0.14 0.00
0.5 95 8.7711 8.7668 8.7753 8.7553 0.18 0.13 0.23
0.5 100 5.9036 5.9151 5.9008 5.8971 0.11 0.31 0.06
0.5 105 3.7150 3.7120 3.7165 3.7072 0.21 0.13 0.25
0.5 110 2.1622 2.1692 2.1595 2.1589 0.15 0.48 0.03
1 90 14.5646 14.6087 14.5937 14.5779 −0.09 0.21 0.11
1 95 11.6287 11.5518 11.5474 11.5551 0.64 −0.03 −0.07
1 100 8.9708 8.9378 8.9530 8.9457 0.28 −0.09 0.08
1 105 6.8003 6.7392 6.7505 6.7559 0.66 −0.25 −0.08
1 110 5.0161 4.9878 4.9704 4.9722 0.88 0.31 −0.04
1.5 90 16.3889 16.4588 16.5200 16.5030 −0.69 −0.27 0.10
1.5 95 13.7324 13.7764 13.7690 13.7625 −0.22 0.10 0.05
1.5 100 11.3599 11.3247 11.3304 11.3374 0.20 −0.11 −0.06
1.5 105 9.2487 9.2187 9.2076 9.2245 0.26 −0.06 −0.18
1.5 110 7.4342 7.3959 7.4019 7.4122 0.30 −0.22 −0.14
2 90 18.0757 18.1112 18.0816 18.0914 −0.09 0.11 −0.05
2 95 15.6133 15.6021 15.5211 15.5640 0.32 0.24 −0.28
2 100 13.3624 13.3245 13.2833 13.2933 0.52 0.24 −0.08
2 105 11.2855 11.2862 11.2627 11.2728 0.11 0.12 −0.09
2 110 9.4243 9.4840 9.4901 9.4921 −0.71 −0.09 −0.02
3 90 20.6523 20.4276 20.5149 20.5102 0.69 −0.40 0.02
3 95 18.3985 18.2361 18.2884 18.3060 0.51 −0.38 −0.10
3 100 16.2151 16.2555 16.2609 16.2895 −0.46 −0.21 −0.18
3 105 14.5000 14.4330 14.4046 14.4531 0.32 −0.14 −0.34
3 110 12.6065 12.8177 12.7982 12.7882 −1.42 0.23 0.08

be the arithmetic average of St over time t during [0, T ]. Then the payoff of a fixed
strike arithmetic Asian call is given by max(AT − K,0). Pages and Printems [25]
use the functional quantization based quadrature formula to price vanilla calls
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TABLE 7
Confidence intervals for fixed-strike geometric Asian call options for: S0 = 100, ν0 = 0.09,

r = 0.05, κ = 1.15, θ = 0.348, ρ = −0.64, η = 0.39

Confidence intervals 95%
NumSim = 105 NumSim = 5 ∗ 105 NumSim = 106

(10.6135,10.7060) (10.6345,10.6758) (10.6416,10.6708)

(6.5609,6.6402) (6.5793,6.6147) (6.5763,6.6014)

(3.4397,3.5001) (3.4429,3.4699) (3.4415,3.4605)

(1.4501,1.4894) (1.4522,1.4698) (1.4548,1.4673)

(0.4623,0.4838) (0.4694,0.4790) (0.4685,0.4753)

(11.6678,11.7941) (11.6829,11.7394) (11.6877,11.7277)

(8.0438,8.1538) (8.0820,8.1313) (8.0703,8.1051)

(5.1027,5.1932) (5.1543,5.1948) (5.1498,5.1784)

(3.0065,3.0764) (2.9904,3.0216) (2.9930,3.0150)

(1.5308,1.5803) (1.5665,1.5887) (1.5601,1.5758)

(12.2270,12.3679) (12.2181,12.2808) (12.2108,12.2552)

(8.7094,8.8328) (8.7391,8.7944) (8.7557,8.7949)

(5.8516,5.9556) (5.8919,5.9384) (5.8843,5.9172)

(3.6735,3.7566) (3.6934,3.7306) (3.7034,3.7297)

(2.1305,2.1938) (2.1551,2.1833) (2.1495,2.1694)

(14.4642,14.6650) (14.5638,14.6536) (14.5619,14.6255)

(11.5367,11.7208) (11.5109,11.5927) (11.5186,11.5763)

(8.8888,9.0528) (8.9013,8.9744) (8.9272,8.9789)

(6.7282,6.8724) (6.7072,6.7713) (6.7278,6.7732)

(4.9538,5.0784) (4.9601,5.0154) (4.9508,4.9899)

(16.2635,16.5144) (16.4023,16.5152) (16.4800,16.5599)

(13.6150,13.8498) (13.7239,13.8289) (13.7319,13.8061)

(11.2523,11.4676) (11.2765,11.3729) (11.2963,11.3645)

(9.1503,9.3471) (9.1749,9.2626) (9.1766,9.2387)

(7.3457,7.5226) (7.3563,7.4355) (7.3739,7.4299)

(17.9261,18.2253) (18.0442,18.1782) (18.0342,18.1289)

(15.4721,15.7544) (15.5392,15.6651) (15.4767,15.5654)

(13.2303,13.4945) (13.2656,13.3835) (13.2416,13.3249)

(11.1626,11.4084) (11.2315,11.3409) (11.2240,11.3013)

(9.3113,9.5373) (9.4334,9.5345) (9.4544,9.5258)

(20.4610,20.8436) (20.3429,20.5123) (20.4547,20.5750)

(18.2156,18.5814) (18.1549,18.3174) (18.2310,18.3459)

(16.0417,16.3885) (16.1781,16.3329) (16.2062,16.3157)

(14.3343,14.6656) (14.3594,14.5067) (14.3525,14.4566)

(12.4514,12.7617) (12.7476,12.8878) (12.7489,12.8476)

and Asian calls in the Heston model. The numbers computed from MC method,
Romberg log-extrapolation and K-interpolation of Romberg and their standard de-
viations in the parenthesis are tabulated for comparison; see Table 4 in [25] for a
more detailed explanation of the results. We test our model using the numbers re-
ported in their paper. As one can observe from Table 8, our prices together with the
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TABLE 8
Comparison of our method and the functional quantization method by Pages and Printems [25] for

arithmetic Asian options. Parameters: S0 = 50, ν0 = 0.01, r = 0.05, κ = 2, θ = 0.01, ρ = 0.5,
η = 0.1

Our method

N = 300, NumSim = 106

K 108-MC
Crude MC
reference

Romberg on
crude FQ

K-interpol.
of Romberg Price Conf. int.

44 6.92 (0.08%) 6.92 (0.01%) 6.92 (0.01%) 6.9196 (6.9139, 6.9252)
45 5.97 (0.10%) 5.97 (0.04%) 5.97 (0.02%) 5.9768 (5.9712, 5.9825)
46 5.03 (0.11%) 5.03 (0.05%) 5.03 (0.02%) 5.0334 (5.0278, 5.0390)
47 4.11 (0.14%) 4.12 (0.09%) 4.11 (0.04%) 4.1117 (4.1062, 4.1172)
48 3.245 (0.16%) 3.25 (0.17%) 3.24 (0.05%) 3.2506 (3.2453, 3.2559)
49 2.46 (0.20%) 2.47 (0.32%) 2.46 (0.04%) 2.4673 (2.4624, 2.4723)
50 1.79 (0.26%) 1.80 (0.63%) 1.79 (0.03%) 1.7926 (1.7882, 1.7970)
51 1.25 (0.31%) 1.26 (1.16%) 1.25 (0.17%) 1.2541 (1.2503, 1.2580)
52 0.84 (0.39%) 0.85 (2.06%) 0.84 (0.37%) 0.8430 (0.8398, 0.8463)
53 0.54 (0.50%) 0.56 (3.73%) 0.545 (0.78%) 0.5502 (0.5475, 0.5529)
54 0.34 (0.63%) 0.36 (6.58%) 0.34 (1.37%) 0.3485 (0.3464, 0.3506)
55 0.21 (0.81%) 0.23 (11.53%) 0.21 (2.15%) 0.2159 (0.2142, 0.2176)
56 0.125 (1.04%) 0.15 (19.96%) 0.125 (2.84%) 0.1317 (0.1303, 0.1330)

confidence intervals are in accordance with the only reference values for arithmetic
Asian options under the Heston dynamics which can be found in the literature.

It is clear that when we price a lookback option using backward recursion, we
also need another continuous variable holding the running max or min. But in this
case, we can constrain this variable to take values on a tree as well. However, it
still remains more efficient to apply our MC method on the tree. Table 9 presents
numerical results obtained by the standard MC method and our numerical method
for fixed strike lookback call options. As comparison we used simple Monte Carlo
simulations based on a Euler method. The table contains prices for N = 3000 and
NumSim = 105. As one can see from the last column, the numbers obtained from
our numerical method differ only slightly from the prices computed by the Euler
MC method.

In terms of the theoretical complexity, we require n3 many computations for n

many time steps in the difference equations case. This is similar to that of PDE
approach. More precisely, Table 10 provides average running times for the op-
tions in Tables 1–9. The computer used is a standard laptop with an Intel Core i7
M620@2.67 GHz CPU and a 4 GB memory. The algorithm was implemented in
MATLAB.

8. Concluding remarks. In this paper, we have developed a recombining tree
approximation of the Heston model. Our approach is very general and applies to
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TABLE 9
Comparison of our method and Euler simulation for lookback call option with fixed strike.

Parameters: S0 = 100, ν0 = 0.16, r = 0.05, κ = 3, θ = 0.04, ρ = −0.7, η = 0.1

Euler simulation Our method

N = 3000, NumSim = 105 N = 3000, NumSim = 105

T K Price Confidence interval Price Confidence interval Difference %

0.2 90 23.4527 (23.3844, 23.5210) 23.4679 (23.3996, 23.5362) 0.06
0.2 95 18.5511 (18.4827, 18.6196) 18.5459 (18.4776, 18.6142) 0.03
0.2 100 13.5145 (13.4464, 13.5825) 13.6562 (13.5878, 13.7246) 1.05
0.2 105 9.2629 (9.1987, 9.3272) 9.2620 (9.1978, 9.3262) 0.01
0.2 110 6.0746 (6.0185, 6.1306) 6.0899 (6.0340, 6.1457) 0.25
0.4 90 27.7252 (27.6333, 27.8172) 27.7378 (27.6461, 27.8296) 0.05
0.4 95 22.7931 (22.7015, 22.8846) 22.7784 (22.6869, 22.8698) 0.06
0.4 100 17.8937 (17.8017, 17.9857) 17.9052 (17.8136, 17.9969) 0.06
0.4 105 13.5301 (13.4415, 13.6187) 13.6541 (13.5649, 13.7434) 0.92
0.4 110 10.0038 (9.9224, 10.0852) 10.0978 (10.0160, 10.1796) 0.94
0.5 90 29.1737 (29.0738, 29.2735) 29.2407 (29.1405, 29.3409) 0.23
0.5 95 24.2728 (24.1733, 24.3722) 24.3094 (24.2095, 24.4093) 0.15
0.5 100 19.4547 (19.3542, 19.5552) 19.5036 (19.4033, 19.6038) 0.25
0.5 105 15.1074 (15.0099, 15.2049) 15.0772 (14.9801, 15.1742) 0.20
0.5 110 11.4637 (11.3730, 11.5544) 11.4401 (11.3498, 11.5305) 0.21
1 90 34.1211 (33.9910, 34.2511) 34.1944 (34.0646, 34.3242) 0.21
1 95 29.4579 (29.3273, 29.5886) 29.4015 (29.2720, 29.5311) 0.19
1 100 24.6878 (24.5573, 24.8184) 24.7163 (24.5855, 24.8470) 0.12
1 105 20.1960 (20.0686, 20.3234) 20.3721 (20.2443, 20.4999) 0.87
1 110 16.5429 (16.4206, 16.6652) 16.4579 (16.3367, 16.5791) 0.51
1.5 90 37.6113 (37.4587, 37.7640) 37.8563 (37.7035, 38.0091) 0.65
1.5 95 33.2861 (33.1314, 33.4408) 33.0959 (32.9428, 33.2491) 0.57
1.5 100 28.5915 (28.4380, 28.7451) 28.3913 (28.2386, 28.5440) 0.70
1.5 105 24.2427 (24.0913, 24.3941) 24.1616 (24.0107, 24.3124) 0.33
1.5 110 20.4593 (20.3131, 20.6054) 20.4385 (20.2919, 20.5850) 0.10
2 90 41.0722 (40.8963, 41.2481) 41.0605 (40.8861, 41.2350) 0.03
2 95 36.6204 (36.4454, 36.7953) 36.5932 (36.4185, 36.7680) 0.07
2 100 31.9362 (31.7612, 32.1112) 32.0618 (31.8874, 32.2361) 0.39
2 105 27.8954 (27.7220, 28.0688) 27.7302 (27.5578, 27.9026) 0.59
2 110 24.0406 (23.8719, 24.2093) 23.8907 (23.7223, 24.0591) 0.62
3 90 47.0043 (46.7881, 47.2205) 47.0854 (46.8698, 47.3010) 0.17
3 95 42.6606 (42.4453, 42.8759) 42.5750 (42.3599, 42.7901) 0.20
3 100 38.6746 (38.4588, 38.8903) 38.3630 (38.1469, 38.5790) 0.81
3 105 34.5038 (34.2898, 34.7177) 34.2793 (34.0657, 34.4929) 0.65
3 110 30.7339 (30.5229, 30.9449) 30.4407 (30.2312, 30.6502) 0.95

all stochastic volatility models with a factor equation. Low-dimensional European
and American option equations can be solved by a straightforward backward recur-
sion. We have done extensive numerical experimentation with the resulting pricing
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TABLE 10
Average running times for options in Tables 1–9

Time in seconds

European put and call N = 200 5.71
(Tables 1 and 2) N = 350 30.37

N = 500 89.27

American put N = 250 13.97
(Table 3)

American put N = 150 3.15
(Tables 4 and 5) N = 250 14.66

N = 350 40.50

Geometric Asian NumSim = 105 8.17
(Tables 6 and 7) NumSim = 5 ∗ 105 40.91

NumSim = 106 81.79

Arithmetic Asian N = 300 98.65
(Table 8) NumSim = 106

Lookback N = 3000 94.54
(Table 9) NumSim = 105

equations. These results, reported in the previous section, confirm the efficiency of
the method.
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