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LOSS OF MEMORY OF HIDDEN MARKOV MODELS AND
LYAPUNOV EXPONENTS1

BY PIERRE COLLET2 AND FLORENCIA LEONARDI3

Ecole Polytechnique and Universidade de São Paulo

In this paper we prove that the asymptotic rate of exponential loss of
memory of a finite state hidden Markov model is bounded above by the differ-
ence of the first two Lyapunov exponents of a certain product of matrices. We
also show that this bound is in fact realized, namely for almost all realizations
of the observed process we can find symbols where the asymptotic exponen-
tial rate of loss of memory attains the difference of the first two Lyapunov
exponents. These results are derived in particular for the observed process
and for the filter; that is, for the distribution of the hidden state conditioned
on the observed sequence. We also prove similar results in total variation.

1. Introduction. Let (Xt)t∈Z be a Markov chain over a finite alphabet A .
We consider a probabilistic function (Zt )t∈Z of this chain, a model introduced by
Petrie (1969). More precisely, there is another finite alphabet B and for any Xt we
choose at random a Zt in B. The random choice of Zt depends only on the value
Xt of the original process at time t . The process (Zt ) is the observed process and
(Xt) is the hidden process. This model is called a hidden Markov process.

We are interested in the asymptotic loss of memory of the processes (Xt)t∈Z
and (Zt )t∈Z conditioned on the observed sequence. For example, if the condi-
tional probability of Zt given Xt does not depend on Xt , the process (Zt )t∈Z is an
independent process. Another trivial example is when there is no random choice,
namely Zt = Xt , in this case the process (Zt )t∈Z is Markovian. However, as we
will see, under natural assumptions, the process (Zt )t∈Z has infinite memory. On
the other hand, a particularly interesting question from the point of view of appli-
cations is to consider the loss of memory of the filter; that is, the distribution of
X0 conditioned on the past observed sequence Z−1, . . . ,Z−n+1 and for different
initial conditions on X−n; see, for example, Cappé, Moulines and Rydén (2005).
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Our goal is to investigate how fast these processes loose memory.
Exponential upper bounds for this asymptotic loss of memory have been ob-

tained in various papers; see, for example, Douc, Moulines and Ritov (2009), Douc
et al. (2009) and references therein. For the case of projections of Markov chains
and the relation with Gibbs measures, see Chazottes and Ugalde (2011) and refer-
ences therein.

In the present paper, under generic assumptions, we prove that the asymptotic
rate of exponential loss of memory is bounded above by the difference of the first
two Lyapunov exponents of a certain product of matrices. We also show that this
bound is in fact realized, namely for almost all realizations of the process (Zt )t∈Z,
we can find symbols where the asymptotic exponential rate of loss of memory
attains the difference of the first two Lyapunov exponents. As far as we know our
results provide the first lower bounds for the loss of memory of these processes.
Similar results (in particular lower bounds) are also obtained in the total variation
distance.

Conditioned on the observed sequence Z−1, . . . ,Z−n+1, we have considered
different possibilities for the initial distribution at time −n, namely one can either
give the initial distribution of X−n or the initial distribution of Z−n. Similarly one
can ask for the distribution of X0 (the hidden present state) or of Z0 (the observable
present state).

As an application, we consider the case of a randomly perturbed Markov chain
with two symbols. We show that the asymptotic rate of loss of memory can be
expanded in powers of the perturbation with a logarithmic singularity. This was our
original motivation coming from our previous work with Galves [Collet, Galves
and Leonardi (2008)].

The relation between product of random matrices and hidden Markov models
was previously described in Jacquet, Seroussi and Szpankowski (2008). In this
paper it was proved in particular that the first Lyapunov exponent is the opposite
of the entropy of the process.

The content of the paper is as follows. In Section 2 we give a precise definition
of the asymptotic exponential rate of loss of memory and state the main results
about the relation of this rate with the first two Lyapunov exponents.

Proofs are given in Section 3. They rely on more general propositions which
allow to treat at once the different situations of initial distributions and present
distributions. In Section 4 we give the application to the random perturbation of a
two states Markov chain.

2. Definitions and main results. Let (Xt)t∈Z be an irreducible aperiodic
Markov chain over a finite alphabet A with transition probability matrix p(·|·)
and unique invariant measure π . Without loss of generality we will assume A =
{1,2, . . . , k}. In the sequel, we will use the shorthand notation xs

r for a sequence of
symbols (xr , . . . , xs) (r ≤ s). Consider another finite alphabet B = {1,2, . . . , �},
and a process (Zt )t∈Z, a probabilistic function of the Markov chain (Xt)t∈Z
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over B. That is, there exists a matrix q(·|·) ∈ Rk×� such that for any n ≥ 0, any
zn

0 ∈ Bn+1 and any xn
0 ∈ A n+1, we have

P
(
Zn

0 = zn
0 |Xn

0 = xn
0
) =

n∏
i=0

P(Zi = zi |Xi = xi) =
n∏

i=0

q(zi |xi).(2.1)

From now on, the symbol ¯z will represent an element in BZ. Define the shift-
operator S :BZ → BZ by

(S ¯z)n = zn+1.

The shift is invertible, and its inverse is given by(
S −1

¯z
)
n = zn−1.

To state our results we will need the following hypotheses:

(H1) mini,j p(j |i) > 0, mini,m q(m|i) > 0.
(H2) det(p) �= 0.
(H3) rank(q) = k.

Note that hypothesis (H3) implies � ≥ k.
For the convenience of the reader we recall Oseledec’s theorem in finite dimen-

sion; see, for example, Katok and Hasselblatt (1995), Ledrappier (1984). As usual,
we denote by log+(x) = max(log(x),0).

OSELEDEC’S THEOREM. Let (�,μ) be a probability space and let T be a
measurable transformation of � such that μ is T -ergodic. Let Lω be a measurable
function from � to L (Rk) (the space of linear operators of Rk into itself). Assume
the function Lω satisfies ∫

log+ ‖Lω‖dμ(ω) < +∞.

Then, there exist λ1 > λ2 > · · · > λs , with s ≤ k and there exists an invariant set
�̃ ⊂ � of full measure (μ(� \ �̃) = 0) such that for all ω ∈ �̃ there exist s + 1
sub-vector spaces

Rk = V (1)
ω � V (2)

ω � · · · � V (s+1)
ω = {
0}

such that for any 
v ∈ V
(j)
ω \ V

(j+1)
ω (1 ≤ j ≤ s) we have

lim
n→+∞

1

n
log

∥∥L[n]
ω 
v∥∥ = λj ,

where L[n]
ω = LT n−1(ω) · · ·Lω. Moreover, the subspaces satisfy the relation

LωV (j)
ω ⊆ V

(j)
T ω .
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The numbers λ1, λ2, . . . , λs are called the Lyapunov exponents.
In the sequel we will use this theorem with � = BZ, μ the stationary ergodic

measure of the process (Zt )t∈Z [Cappé, Moulines and Rydén (2005)], T = S −1

and L
¯z

the linear operator in Rk with matrix given by

(L
¯z
)i,j = q(z0|i)p(j |i).

With this notation, we have, for example,

P
(
X0 = a,Z−1

−n+1 = z−1
−n+1,X−n = b

) = 〈
θb,L
[n−1]
S −1

¯z

1a

〉
,

where (
θb)i = p(i|b) and 
1a is the basis vector with component number a equal to
one.

From now on we will use the �2 norm ‖ · ‖ and the corresponding scalar product
on Rk . Note that from our definition of L

¯z
we have

sup

¯z
‖L

¯z
‖ < +∞.

Therefore we can apply Oseledec’s theorem to get the existence of the Lyapunov
exponents.

For any ¯z ∈ BZ, for probabilities ρ on A , η on B and any integer n, we define
two probabilities on A by

ν[n]
¯z,ρ

(a) =
∑

b∈A P(X0 = a,Z−1
−n+1 = z−1

−n+1,X−n = b)ρ(b)∑
b∈A P(Z−1

−n+1 = z−1
−n+1,X−n = b)ρ(b)

, a ∈ A ,

and

σ [n]
¯z,η

(a) =
∑

c∈B P(X0 = a,Z−1
−n+1 = z−1

−n+1,Z−n = c)η(c)∑
c∈B P(Z−1

−n+1 = z−1
−n+1,Z−n = c)η(c)

, a ∈ A .

These are the probabilities of X0 conditioned on the observed string z−1
−n+1 when

the distribution of X−n is ρ (resp., the distribution of Z−n is η).
When ρ is a Dirac measure concentrated on b we will simply denote the mea-

sure ν[n]
¯z,ρ

by ν
[n]
¯z,b

, and similarly for σ [n]
¯z,η

.
We can state now our main results.

THEOREM 2.1. Under the hypothesis (H1), for each a ∈ A , for any proba-
bilities ρ and ρ′ on A ,

lim sup
n→+∞

1

n
log

∣∣ν[n]
¯z,ρ

(a) − ν
[n]
¯z,ρ

′(a)
∣∣ ≤ λ2 − λ1,

μ-almost surely. Similarly, under the hypothesis (H1), for each a ∈ A , for any
probabilities η and η′ on B,

lim sup
n→+∞

1

n
log

∣∣σ [n]
¯z,η

(a) − σ
[n]
¯z,η

′(a)
∣∣ ≤ λ2 − λ1,

μ-almost surely.
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REMARK. When A = B and q is the identity matrix, (Zt )t∈Z = (Xt)t∈Z is
a Markov chain. The second part of hypothesis (H1) does not hold, but it is easy
to adapt the proof of Theorem 2.1 for this particular case. It is easy to verify re-
cursively that the matrices L[n]

¯z
are of rank one. The Lyapunov exponents can be

computed explicitly. One gets λ1 = −H(p) (the entropy of the Markov chain with
transition probability p) from the ergodic theorem, and λ2 = −∞ with multiplicity
k − 1.

THEOREM 2.2. Under hypotheses (H1)–(H2), for μ-almost all ¯z there exists
a, b, c ∈ A (which may depend on ¯z) such that

lim sup
n→+∞

1

n
log

∣∣ν[n]
¯z,b

(a) − ν[n]
¯z,c

(a)
∣∣ = λ2 − λ1.

Under hypotheses (H1)–(H3), for μ-almost all ¯z there exists a ∈ A , b, c ∈ B
(which may depend on ¯z) such that

lim sup
n→+∞

1

n
log

∣∣σ [n]
¯z,b

(a) − σ [n]
¯z,c

(a)
∣∣ = λ2 − λ1.

As a corollary, we derive equivalent results for the loss of memory of the process
(Zt )t∈Z. For any ¯z ∈ BZ, for probabilities ρ on A , η on B and any integer n, we
define two probabilities on B by

ν̃[n]
¯z,ρ

(e) =
∑

b∈A P(Z0 = e,Z−1
−n+1 = z−1

−n+1,X−n = b)ρ(b)∑
b∈A P(Z−1

−n+1 = z−1
−n+1,X−n = b)ρ(b)

, e ∈ B,

and

σ̃ [n]
¯z,η

(e) =
∑

c∈B P(Z0 = e,Z−1
−n+1 = z−1

−n+1,Z−n = c)η(c)∑
c∈B P(Z−1

−n+1 = z−1
−n+1,Z−n = c)η(c)

, e ∈ B.

COROLLARY 2.3. Under the hypothesis (H1), for each e ∈ B, for any proba-
bilities ρ and ρ′ on A ,

lim sup
n→+∞

1

n
log

∣∣ν̃[n]
¯z,ρ

(e) − ν̃
[n]
¯z,ρ

′(e)
∣∣ ≤ λ2 − λ1,

μ-almost surely. Similarly, under the hypothesis (H1), for each e ∈ B, for any
probabilities η and η′ on B,

lim sup
n→+∞

1

n
log

∣∣σ̃ [n]
¯z,η

(e) − σ̃
[n]
¯z,η

′(e)
∣∣ ≤ λ2 − λ1,

μ-almost surely.
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Moreover, under hypotheses (H1)–(H3), for μ-almost all ¯z there exists e ∈ B,
b, c ∈ A (which may depend on ¯z) such that

lim sup
n→+∞

1

n
log

∣∣ν̃[n]
¯z,b

(e) − ν̃[n]
¯z,c

(e)
∣∣ = λ2 − λ1.

Under hypotheses (H1)–(H3), for μ-almost all ¯z there exists e, b, c ∈ B (which
may depend on ¯z) such that

lim sup
n→+∞

1

n
log

∣∣σ̃ [n]
¯z,b

(e) − σ̃ [n]
¯z,c

(e)
∣∣ = λ2 − λ1.

From a practical point of view, one can prove various lower bounds for the
quantity λ2 − λ1. As an example we give the following result.

Let

� = 1

minm,i{q(m|i)} .

PROPOSITION 2.4. Under hypotheses (H1)–(H2) we have

λ2 − λ1 ≥ 1

k − 1
log

∣∣det(p)
∣∣ − k

k − 1
log�.

We now state a related result using the total variation distance between the dis-
tributions. This result will only use a weaker version of hypothesis (H3), namely

(H3′), there exists b, c ∈ B in and i ∈ A such that

q(b|i) �= q(c|i).(2.2)

Note that under this hypothesis, we do not assume any relation between the car-
dinality of A and the cardinality of B (we require of course the cardinality of B
being at least two).

We recall that the total variation distance TV(ν1, ν2) between two measures ν1
and ν2 on A is defined by

TV(ν1, ν2) = 1

2

∑
a∈A

∣∣ν1(a) − ν2(a)
∣∣.

Similar definitions are given for two measures on B.
It follows at once that under the hypothesis (H1) we have μ-almost surely

lim sup
n→+∞

1

n
log TV

(
ν[n]
¯z,ρ

(a) − ν
[n]
¯z,ρ

′(a)
) ≤ λ2 − λ1,

and similarly for the measures σ , ν̃ and σ̃ . In order to state a lower bound for these
quantities, we need to recall a result about Lyapunov dimensions.
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We denote by s the number of different Lyapunov exponents, and by mi (1 ≤
i ≤ s) the multiplicity of the exponent λi , namely

mi = dim
(
V (i)

ω

) − dim
(
V (i+1)

ω

)
.

It follows from Oseledec’s theorem that these numbers are μ-almost surely con-
stant.

THEOREM 2.5. Assume hypotheses (H1)–(H2). Then for μ-almost every ¯zand for any pair (b, c) of elements in B satisfying (H3′) we have

lim inf
n→∞

1

n
log TV

(
σ

[n]
¯z,b

, σ [n]
¯z,c

) ≥ λs − λ1 +
s∑

i=2

mi(λi − λ2)

≥ 2
(
log|detp| − k log�

)
.

REMARK. Similar lower bounds for the total variation distance between the
measures ν

[n]
¯z,b

and ν[n]
¯z,c

can be proven under hypotheses (H1)–(H2). In the case of

the total variation distance between σ̃
[n]
¯z,b

and σ̃ [n]
¯z,c

(resp., between ν̃
[n]
¯z,b

and ν̃[n]
¯z,c

) we
can prove also the same lower bounds, but this requires the full set of hypotheses
(H1)–(H3).

3. Proofs. We begin by proving some lemmas which will be useful later. We
introduce the order (Rk,≤) given by 
v ≤ 
w if and only if vi ≤ wi for all i =
1, . . . , k. When needed, we will also make use of the symbols <, > and ≥, defined
in an analogous way. Note that since the matrices L

¯z
have strictly positive entries,

if 
v ≤ 
w, then L
¯z

v ≤ L

¯z

w. We will use the notation 
1 ∈ Rk for the vector with

components (
1)i = 1 for each i = 1, . . . , k and the notation 
1a ∈ Rk for the vector
with components (
1a)a = 1 and (
1a)i = 0 for i �= a.

LEMMA 3.1. Under hypothesis (H1), if 
ξ ∈ V
(2)

¯z
\ {
0}, then 
ξ has two nonzero

components of opposite signs, μ-almost surely.

PROOF. Assume there exits 
ξ ∈ V
(2)

¯z
\ {
0} with 
ξi ≥ 0 for all i = 1, . . . , k.

Then, from hypothesis (H1) it follows that there exists α > 0 such that, for all ¯z,

L
¯z

ξ ≥ α‖
ξ‖
1.

One may take, for example,

α = 1√
k

inf
z0,i,j

q(z0|i)p(j |i) = 1√
k

inf
¯z,i,j

(L
¯z
)i,j .

We can apply L
[n−1]
S −1

¯z
to both sides, use monotonicity and take norms, to obtain

∥∥L[n]
¯z


ξ∥∥ ≥ α‖
ξ‖∥∥L[n−1]
S −1

¯z

1∥∥.
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Let 
w ∈ V
(1)

S −1

¯z
\ V

(2)

S −1

¯z
. Then

∥∥L[n−1]
S −1

¯z

w∥∥ ≤ ∥∥L[n−1]

S −1

¯z
| 
w|∥∥ ≤ ‖ 
w‖∥∥L[n−1]

S −1

¯z

1∥∥ ≤ ‖ 
w‖

α‖
ξ‖
∥∥L[n]

¯z

ξ∥∥.

Therefore

∥∥L[n]
¯z


ξ∥∥ ≥ α‖
ξ‖
‖ 
w‖

∥∥L[n−1]
S −1

¯z

w∥∥,

and using Oseledec’s theorem we have μ-almost surely that

lim
n→+∞

1

n
log

∥∥L[n]
¯z


ξ∥∥ ≥ lim
n→+∞

1

n
log

∥∥L[n−1]
S −1

¯z

w∥∥ = λ1,

which contradicts the fact that 
ξ ∈ V
(2)

¯z
\ {
0}. �

LEMMA 3.2. Under hypothesis (H1) we have Codim(V
(2)

¯z
) = 1, μ-almost

surely.

PROOF. Assume Codim(V
(2)

¯z
) ≥ 2. Since any vector 
w1 of norm one in the

cone Ck = { 
w : 
w > 0} does not belong to V
(2)

¯z
(by Lemma 3.1), the vector space

V
(2)

¯z
⊕R 
w1 is of codimension at least one, μ-almost surely. Therefore we can find

a vector 
w2 of norm one in Ck \ (V
(2)

¯z
⊕R 
w1). Note that

inf

y∈V

(2)

¯
z ,γ

‖ 
w1 − γ 
w2 − 
y‖ > 0(3.1)

since otherwise, the minimum is reached at a finite nonzero pair (γ, 
y) which
would contradict 
w2 ∈ Ck \ (V

(2)

¯z
⊕R 
w1). Let ¯z be a fixed element in BZ.

Define

γn = max
i

(L[n]
¯z


w1)i

(L
[n]
¯z


w2)i
and δn = min

i

(L[n]
¯z


w1)i

(L
[n]
¯z


w2)i
.

Let

φ = inf
¯z

min
i,j,r,s

(L
¯z
)r,j (L¯z

)s,i

(L
¯z
)s,j (L¯z

)r,i
.

It follows from hypothesis (H1) that φ > 0. Let

α = 1 − √
φ

1 + √
φ

< 1.

From the Birkhoff–Hopf theorem [see, e.g., Cavazos-Cadena (2003)], there exists
a constant β > 0 such that for all ¯z ∈ BZ and all n,

1 ≤ γn

δn

≤ 1 + βαn.(3.2)
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We now prove that
γn

1 + βαn
≤ δn+1 ≤ γn+1 ≤ γn.

To see this observe that δn+1 ≤ γn+1 by definition. We also have by monotonicity
of L

¯z

γn+1 = max
i

(L[n+1]
¯z


w1)i

(L
[n+1]
¯z


w2)i
= max

i

(LS −n

¯z
L[n]

¯z

w1)i

(L
[n+1]
¯z


w2)i

≤ max
i

(LS −n

¯z
γnL

[n]
¯z


w2)i

(L
[n+1]
¯z


w2)i
= γn

and also

δn+1 ≥ δn = γn

δn

γn

≥ γn

1 + βαn
.

Since the sequence (γn) is decreasing, there exists γ ∗ and β ′ > 0 such that∣∣γn − γ ∗∣∣ ≤ β ′αn.

On the other hand, it follows immediately from (3.2) that for any i = 1, . . . , k, we
have

−
γnβαn(L[n]

¯z

w2)i

1 + βαn
≤ (

L[n]
¯z


w1
)
i − γn

(
L[n]

¯z

w2

)
i ≤ 0.

Then there exists β ′′ > 0 such that

‖L[n]
¯z


w1 − γnL
[n]
¯z


w2‖
‖L[n]

¯z

w2‖

≤ β ′′αn.

This implies

‖L[n]
¯z


w1 − γ ∗L[n]
¯z


w2‖
‖L[n]

¯z

w2‖

≤
|γn − γ ∗|‖L[n]

¯z

w2‖

‖L[n]
¯z


w2‖
+

‖L[n]
¯z


w1 − γnL
[n]
¯z


w2‖
‖L[n]

¯z

w2‖

≤ (
β ′ + β ′′)αn.

Since 
w1 and 
w2 are linearly independent, we have 
w1 − γ ∗ 
w2 �= 
0. This and the
previous inequality imply that

lim
n→+∞

1

n
log

∥∥L[n]
¯z

( 
w1 − γ ∗ 
w2
)∥∥ ≤ λ1 + logα < λ1,

then 
w1 − γ ∗ 
w2 ∈ V
(2)

¯z
\ {0}, and this contradicts (3.1). �

The proof of Theorem 2.1 will follow from the next proposition.
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PROPOSITION 3.3. Let ( 
ψa)a∈A be a basis of Rk satisfying 
ψa ≥ 0 for any a.
Let 
θ1 > 0 and 
θ2 > 0 be two vectors in Rk . Then

lim sup
n→∞

1

n
log

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψa〉

〈
θ1,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θ2,L

[n−1]
S −1

¯z

ψa〉

〈
θ2,L
[n−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣ ≤ λ2 − λ1.

PROOF. By Lemma 3.1, since ( 
ψa)i ≥ 0 for any i = 1, . . . , k then 
ψa /∈ V
(2)

¯z
,

μ-almost surely. In the same way, from Lemma 3.1 we have


ψ = ∑
a∈A


ψa ∈ V (1)

¯z
\ V (2)

¯z
.

Note also that since ( 
ψa)a∈A form a basis of nonnegative vectors, we must have

ψi > 0 for all i = 1, . . . , k. Therefore, by Lemma 3.2 we have that for any a ∈ A ,


ψa = ua

ψ + 
ξa,(3.3)

where 
ξa ∈ V
(2)

¯z
, ua �= 0, and this decomposition is unique. Then

〈
θj ,L
[n−1]
S −1

¯z

ψa〉

〈
θj ,L
[n−1]
S −1

¯z
∑

a

ψa〉

= ua +
〈
θj ,L

[n−1]
S −1

¯z

ξa〉

〈
θj ,L
[n−1]
S −1

¯z

ψ〉 , j = 1,2.

Define for any n and ¯z

γ (n, ¯z) =
〈
θ1,L

[n−1]
S −1

¯z

ψ〉

〈
θ2,L
[n−1]
S −1

¯z

ψ〉(3.4)

and let

R = max
{

sup
i

(
θ1)i

(
θ2)i
, sup

i

(
θ2)i

(
θ1)i

}
.

Then we have

〈
θ1,L
[n−1]
S −1

¯z

ψ 〉 = k∑

i=1

(
θ1)i
(
L

[n−1]
S −1

¯z

ψ)

i ≤ R

k∑
i=1

(
θ2)i
(
L

[n−1]
S −1

¯z

ψ)

i

= R
〈
θ2,L

[n−1]
S −1

¯z

ψ 〉

and similarly 〈
θ2,L
[n−1]
S −1

¯z

ψ 〉 ≤ R

〈
θ1,L
[n−1]
S −1

¯z

ψ 〉

.

In other words for any n and ¯z,

R−1 ≤ γ (n, ¯z) ≤ R.(3.5)
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Then

〈
θ1,L
[n−1]
S −1

¯z

ψa〉

〈
θ1,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θ2,L

[n−1]
S −1

¯z

ψa〉

〈
θ2,L
[n−1]
S −1

¯z
∑

a

ψa〉

= (〈
θ1,L
[n−1]
S −1

¯z

ψ 〉)−1〈
θ1 − γ (n, ¯z)


θ2,L
[n−1]
S −1

¯z

ξa

〉
.

Note that ∣∣〈
θ1,L
[n−1]
S −1

¯z

ψ 〉∣∣ ≥ 1√

k

∥∥L[n−1]
S −1

¯z

ψ∥∥ inf

i

{
(
θ1)i

}
and ∣∣〈
θ1 − γ (n, ¯z)


θ2,L
[n−1]
S −1

¯z

ξa

〉∣∣ ≤ ∥∥
θ1 − γ (n, ¯z)

θ2

∥∥ · ∥∥L[n−1]
S −1

¯z

ξa

∥∥
≤ (‖
θ1‖ + R‖
θ2‖)∥∥L[n−1]

S −1

¯z

ξa

∥∥.
Then, using Oseledec’s theorem the result follows. �

PROOF OF THEOREM 2.1. We observe that∑
b∈A

P
(
X0 = a,Z−1

−n+1 = z−1
−n+1,X−n = b

)
ρ(b)

= ∑
b∈A

∑
x−1
−n+1∈A n−1

p(x−n+1|b)ρ(b)q(z−1|x−1)p(a|x−1)

×
n−2∏
l=1

q(z−l−1|x−l−1)p(x−l |x−l−1)

= 〈
θρ,L
[n−1]
S −1

¯z

ψa

〉
,

where 
θρ, 
ψa ∈Rk are given by

(
θρ)i = ∑
b∈A

ρ(b)p(i|b) and 
ψa = 
1a.(3.6)

Therefore,

ν[n]
¯z,ρ

(a) =
〈
θρ,L

[n−1]
S −1

¯z

ψa〉

〈
θρ,L
[n−1]
S −1

¯z
∑

a

ψa〉

,

and the first statement of Theorem 2.1 follows from Proposition 3.3 since the con-
ditions on (ψa)a∈A , 
θρ and 
θρ′ can be immediately verified using hypothesis (H1).

The second part follows similarly by noting that∑
c∈B

P
(
X0 = a,Z−1

−n+1 = z−1
−n+1,Z−n = c

)
η(c) = 〈
θη,L

[n−1]
S −1

¯z

ψa

〉
,
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where

(
θη)i = ∑
c∈B

∑
x∈A

p(i|x)q(c|x)η(c) and 
ψa = 
1a.(3.7)

This finishes the proof of Theorem 2.1. �

Before proceeding with the proof of Theorem 2.2 we will prove a useful lemma.

LEMMA 3.4. Let ( 
ψa)a∈A be a basis of Rk such that 
ψa ≥ 0 for all a. Let
�̃ be a set of full μ-measure where the Oseledec’s theorem holds. Then for any

¯z ∈ �̄, there exists a symbol a = a(¯z) ∈ A such that 
ξa ∈ V
(2)

¯z
\ V

(3)

¯z
, where 
ξa is

the unique vector in V
(2)

¯z
satisfying


ψa = ua

∑
b∈A


ψb + 
ξa

for some real number ua .

PROOF. Assume 
ξa ∈ V
(3)

¯z
for all a. Then, as Codim(V

(3)

¯z
) ≥ 2, the set { 
ψa}

generates a sub-space of co-dimension 1. This contradicts the fact that the set of
vectors { 
ψa :a ∈ A } forms a basis of Rk . �

The proof of Theorem 2.2 will follow from the next proposition.

PROPOSITION 3.5. Let ( 
ψa)a∈A be a basis of Rk satisfying 
ψa ≥ 0 for any
a. Let (
θj )j∈A be another basis of Rk such that 
θj > 0. Then for μ-almost every ¯zthere exist a ∈ A and two indices r, s ∈ {1, . . . , k} such that

lim sup
n→∞

1

n
log

∣∣∣∣
〈
θr ,L

[n−1]
S −1

¯z

ψa〉

〈
θr ,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θs,L

[n−1]
S −1

¯z

ψa〉

〈
θs,L
[n−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣ ≥ λ2 − λ1.(3.8)

PROOF. Let �̃ be a set of full μ-measure where the Oseledec’s theorem holds.
Applying Lemma 3.4, for any ¯z ∈ �̃ we find a symbol a = a(¯z) ∈ A such that


ψa = ua

∑
b∈A


ψb + 
ξa

with 
ξa ∈ V
(2)

¯z
\ V

(3)

¯z
. Let

ξ̃a(n, ¯z) =
L

[n−1]
S −1

¯z

ξa

‖L[n−1]
S −1

¯z

ξa‖

∈ V
(2)

S −n

¯z
.(3.9)
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We now show that there exist r and s such that

lim sup
n→∞

∣∣〈θ̃r (n, ¯z) − θ̃s(n, ¯z), ξ̃a(n, ¯z)
〉∣∣ > 0,

where the vectors θ̃j (n, ¯z) are defined by

θ̃j (n, ¯z) =
〈
θ1,L

[n−1]
S −1

¯z
∑

a

ψa〉

〈
θj ,L
[n−1]
S −1

¯z
∑

a

ψa〉


θj .

Assume this is not the case, namely that for any r and s,

lim
n→∞

∣∣〈θ̃r (n, ¯z) − θ̃s(n, ¯z), ξ̃a(n, ¯z)
〉∣∣ = 0.(3.10)

Choose for any n (and fixed ¯z) a normalized vector 
f (n, ¯z) orthogonal to V
(2)

S −n

¯z
.

Such a vector exists by Lemma 3.2. Note that for any j , n and ¯z, we have

0 < R−1 min
m

‖
θm‖ ≤ ∥∥θ̃j (n, ¯z)
∥∥ ≤ R max

m
‖
θm‖,

where

R = sup
j,m

sup
i

(
θj )i

(
θm)i
.

This implies that the vectors ( 
f (n, ¯z), ξ̃a(n, ¯z), θ̃1(n, ¯z), . . . , θ̃k(n, ¯z)) belong to a
compact subset of Rk+2. Therefore, we can find a subsequence (nj ) of integers
such that

lim
j→∞

( 
f (nj , ¯z), ξ̃a(nj , ¯z), θ̃1(nj , ¯z), . . . , θ̃k(nj , ¯z)
)

= (
f̄ (¯z), ξ̄a(¯z), θ̄1(¯z), . . . , θ̄k(¯z)

)
.

The vectors f̄ (¯z) and ξ̄a(¯z) have norm one, and the vectors θ̄j (¯z) have nonnegative
components and satisfy

0 < R−1 min
m

‖
θm‖ ≤ ∥∥θ̄j (¯z)
∥∥ ≤ R max

m
‖
θm‖.

We have also for any r and s〈
θ̄r (¯z) − θ̄s(¯z), ξ̄a(¯z)

〉 = 0.

We now show that the set of vectors {θ̄m(¯z)} is a basis of Rk . This follows from

∣∣det
(
θ̄1(¯z), . . . , θ̄k(¯z)

)∣∣ = ∣∣det(
θ1, . . . , 
θk)
∣∣ lim
j→∞

k∏
m=1

∣∣∣∣
〈
θ1,L

[nj−1]
S −1

¯z
∑

a

ψa〉

〈
θm,L
[nj−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣
≥ R−k

∣∣det(
θ1, . . . , 
θk)
∣∣ > 0.
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Let

ζ(n, ¯z) = 1

k

k∑
m=1

θ̃m(n, ¯z)

and

ζ̄ (¯z) = lim
j→∞ ζ(nj , ¯z) = 1

k

k∑
m=1

θ̄m(¯z).

We now observe that since all the components of the vector ζ(n, ¯z) are strictly

positive, and since by Lemma 3.1 any vector in V
(2)

S −n

¯z
has two components of

opposite sign, we get

|〈 
f (n, ¯z), ζ(n, ¯z)〉|‖ζ(n, ¯z)‖
= inf


y∈V
(2)

S −n

¯
z

∥∥∥∥ ζ(n, ¯z)‖ζ(n, ¯z)‖
− 
y

∥∥∥∥

≥ min
i

{
(ζ(n, ¯z))i‖ζ(n, ¯z)‖

}
≥ 1

kR2

minm,i(
θm)i

maxm,i(
θm)i
> 0.

Taking the limit we get

|〈f̄ (¯z), ζ̄ (¯z)〉|‖ζ̄ (¯z)‖
≥ 1

kR2

minm,i(
θm)i

maxm,i(
θm)i
> 0.

We now define the orthogonal projection P on the orthogonal f̄ ⊥ of f̄ parallel
to ζ̄ , namely for any vector v

Pv = v − ζ̄
〈f̄, v〉
〈f̄, ζ̄ 〉 .

We claim that the vectors (P(θ̄m(¯z) − θ̄m+1(¯z)))m=1,...,k−1 form a basis of f̄ ⊥.
Indeed, if this is not true, there exist real numbers α1, . . . , αk−1, with at least one
nonzero, such that

k−1∑
m=1

αmP
(
θ̄m(¯z) − θ̄m+1(¯z)

) = 0.

In other words, there exists a number α such that

k−1∑
m=1

αm

(
θ̄m(¯z) − θ̄m+1(¯z)

) = αζ̄.

But this is impossible since the vectors (θ̄m(¯z)− θ̄m+1(¯z))m=1,...,k−1 and ζ̄ (¯z) form
a basis of Rk . Since〈

f̄ (¯z), ξ̄a(¯z)
〉 = lim

j→∞
〈
f (nj , ¯z), ξ̃a(nj , ¯z)

〉 = 0,
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we obtain that the normalized vector ξ̄a(¯z) would be orthogonal to the basis
(P(θ̄m(¯z) − θ̄m+1(¯z)))m=1,...,k−1 of f̄ ⊥ which is a contradiction with (3.10). In
other words, there exists a = a(¯z), r = r(¯z) and s = s(¯z) such that

lim sup
n→∞

∣∣〈θ̃r (n, ¯z) − θ̃s(n, ¯z), ξ̃a(n, ¯z)
〉∣∣ > 0.

By Schwarz’s inequality we have

∣∣∣∣
〈
θr ,L

[n−1]
S −1

¯z

ψa〉

〈
θr ,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θs,L

[n−1]
S −1

¯z

ψa〉

〈
θs,L
[n−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣

=
‖L[n−1]

S −1

¯z

ξa‖

|〈
θ1,L
[n−1]
S −1

¯z
∑

a

ψa〉|

∣∣〈θ̃r (n, ¯z) − θ̃s(n, ¯z), ξ̃a(n, ¯z)
〉∣∣

≥
‖L[n−1]

S −1

¯z

ξa‖

‖
θ1‖‖L[n−1]
S −1

¯z
∑

a

ψa‖

∣∣〈θ̃r (n, ¯z) − θ̃s(n, ¯z), ξ̃a(n, ¯z)
〉∣∣.

Therefore, for this choice of a(¯z) ∈ A , r(¯z) and s(¯z), we have

lim sup
n→∞

1

n
log

∣∣∣∣
〈
θr ,L

[n−1]
S −1

¯z

ψa〉

〈
θr ,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θs,L

[n−1]
S −1

¯z

ψa〉

〈
θs,L
[n−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣ ≥ λ2 − λ1.

�

PROOF OF THEOREM 2.2. As in the proof of Theorem 2.1 we take for any
a ∈ A the vector 
ψa = 
1a . We also take for any b ∈ B the vector 
θb in Rk as
the vector 
θρ in (3.6) with ρ the Dirac measure concentrated on b, that is, (
θb)i =
p(i|b). Under (H2), these definitions verify the hypotheses of Proposition 3.5 and
the first part of Theorem 2.2 follows.

For the second part, we define for any c ∈ B the vector (
θc) as the vector (
θη)

in (3.7) with η the Dirac measure concentrated on c, that is,

(
θc)i = ∑
x∈A

p(i|x)q(c|x).

It follows from (H2) and (H3) that we can choose c1, . . . , ck such that (
θcj
)1≤j≤k

is a basis of Rk . The result follows again from Proposition 3.5. �

PROOF OF COROLLARY 2.3. The upper bound follows by noting that for all

¯z ∈ BZ, for any e ∈ B and for any measures ρ and ρ ′ on A , we have

ν̃[n]
¯z,ρ

(e) − ν̃
[n]
¯z,ρ

′(e) = ∑
x0∈A

q(e|x0)
(
ν[n]
¯z,ρ

(x0) − ν
[n]
¯z,ρ

′(x0)
)
,(3.11)

and applying Theorem 2.1, the second upper bound follows similarly.
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We now prove that the upper bound is reached for almost all ¯z ∈ BZ.
By (H3), as rank(q) = k there exists symbols e1, . . . , ek ∈ B such that the ma-

trix M ∈ Rk×k with elements Mi,j = q(ei |j) is invertible. For b, c ∈ A , denote
by U

[n]
b,c,¯z

and V
[n]
b,c,¯z

the vectors in Rk with elements (U
[n]
b,c,¯z

)i = ν̃
[n]
¯z,b

(ei) − ν̃[n]
¯z,c

(ei)

and (V
[n]
b,c,¯z

)i = ν
[n]
¯z,b

(i) − ν[n]
¯z,c

(i). By (3.11) we have

U
[n]
b,c,¯z

= MV
[n]
b,c,¯z

and as M is invertible

V
[n]
b,c,¯z

= M−1U
[n]
b,c,¯z

.

Then, for all a, b, c ∈ A∣∣ν[n]
¯z,b

(a) − ν[n]
¯z,c

(a)
∣∣ ≤ ∥∥V [n]

b,c,¯z
∥∥ ≤ ∥∥M−1∥∥∥∥U [n]

b,c,¯z
∥∥

≤ √
k
∥∥M−1∥∥ max

i

{∣∣ν̃[n]
¯z,b

(ei) − ν̃[n]
¯z,c

(ei)
∣∣}.

Applying the logarithm on both sides, dividing by n an taking limits, we have that
for all ¯z on a set of positive measure, for all a, b, c ∈ A , and for all e ∈ B

lim sup
n→∞

1

n
log

∣∣ν[n]
¯z,b

(a) − ν[n]
¯z,c

(a)
∣∣ ≤ max

e∈B
lim sup
n→∞

1

n
log

∣∣ν̃[n]
¯z,b

(e) − ν̃[n]
¯z,c

(e)
∣∣,

and the third part of Corollary 2.3 follows from Theorem 2.2. The last part follows
by the same arguments. �

PROOF OF PROPOSITION 2.4. It is well known that the sequence of Lyapunov
exponents satisfy

λ1 + m2λ2 + · · · + msλs = Eμ

[
log|detL

¯z
|],

where the numbers mi denote the multiplicity of λi , namely dim(V
(j)

¯z
) = mj +

· · · + ms ; see Katok and Hasselblatt (1995), Ledrappier (1984). In particular, 1 +
m2 + · · · + ms = k. Let E = Eμ[log|detL

¯z
|]. Then we have

E ≤ λ1 + (k − 1)λ2

and

λ2 − λ1 ≥ E

k − 1
− k

k − 1
λ1.

Note that by Lemma 3.1, for almost all ¯z we have

λ1 = lim
n→∞

1

n
log

∥∥L[n]
¯z


1∥∥ ≤ lim
n→∞

1

n
log‖
1‖ = 0.
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Moreover,

detL
¯z
=

(
k∏

i=1

q(z0|i)
)

det(p).

Therefore,

λ2 − λ1 ≥ 1

k − 1
log

∣∣det(p)
∣∣ + 1

k − 1

k∑
i=1

Eμ

[
logq(·|i)]

≥ 1

k − 1
log

∣∣det(p)
∣∣ − k

k − 1
log�. �

Before proving Theorem 2.5, we prove a lemma in linear algebra which will be
useful for the proof. This lemma is probably well known but we could not find a
reference. We give the proof here for the convenience of the reader.

LEMMA 3.6. Let e1, . . . , ek be a basis of Rk and assume that all the vectors
‖ej‖ have norm one. Then, for any vector v ∈Rk of norm one, we have

sup
1≤j≤k

∣∣〈v, ej 〉
∣∣ ≥ 1

k3/2(k − 1)!detA
,

where A is a matrix mapping the basis (ei) to an orthonormal basis.

PROOF. Let

δ = sup
1≤j≤k

∣∣〈v, ej 〉
∣∣.

Let (fj ) be an orthonormal basis of Rk . Let A be the matrix mapping the basis
(ej ) to the basis (fj ), namely Aej = fj for 1 ≤ j ≤ k. We have

〈v, ej 〉 = 〈
v,A−1fj

〉 = 〈
A−1t

v,fj

〉
.

Therefore, ∥∥A−1t
v
∥∥ ≤ δ

√
k

and

1 = ‖v‖ = ∥∥AtA−1t
v
∥∥ ≤ ∥∥At∥∥δ√k.

On the other hand, since (ej )� = A−1
j,� we have |A−1

j,�| ≤ 1 for 1 ≤ j ≤ k and 1 ≤ � ≤
k. This implies by the well-known formula expressing the elements of an inverse
matrix in terms of minors and determinant that for any 1 ≤ j ≤ k and 1 ≤ � ≤ k

|Aj,�| ≤ (k − 1)!
|detA−1| = (k − 1)!detA.
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Therefore ‖At‖ = ‖A‖ ≤ k(k − 1)!detA (the Hilbert–Schmidt norm), and we fi-
nally get

δ ≥ 1

k3/2(k − 1)!|detA| . �

Theorem 2.5 will be a consequence of the following proposition.

PROPOSITION 3.7. Assume hypotheses (H1)–(H2) hold. Let ( 
ψa)a∈A be a
basis of Rk satisfying 
ψa ≥ 0 for any a. Let 
θ1 > 0 and 
θ2 > 0 be two vectors in
Rk with 
θ1 independent of 
θ2. Then

lim inf
n→∞

1

n
log

∑
a∈A

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψa〉

〈
θ1,L
[n−1]
S −1

¯z
∑

a

ψa〉

−
〈
θ2,L

[n−1]
S −1

¯z

ψa〉

〈
θ2,L
[n−1]
S −1

¯z
∑

a

ψa〉

∣∣∣∣

≥ λs − λ1 +
s∑

i=2

mi(λi − λ2) ≥ 2
(
log|detp| − k log�

)
.

PROOF. As in the proof of Proposition 3.3 let


ψ = ∑
a∈A


ψa and γ (n, ¯z) =
〈
θ1,L

[n−1]
S −1

¯z

ψ〉

〈
θ2,L
[n−1]
S −1

¯z

ψ〉 .

We also define the vector 
η(n, ¯z) = 
θ1 − γ (n, ¯z)

θ2 that satisfies〈
η(n, ¯z),L

[n−1]
S −1

¯z

ψ 〉 = 0.

For any a ∈ A , we denote as before by 
ξa the unique vector in V
(2)

¯z
such that


ψa = ua

ψ + 
ξa , with ua a real number.

Let

ξ̃a(n, ¯z) =
L

[n−1]
S −1

¯z

ξa

‖L[n−1]
S −1

¯z

ξa‖

∈ V
(2)

S −n

¯z
.(3.12)

Let a2, . . . , ak be any given collection of k − 1 different elements of A . Then,
for any ¯z ∈ �, the set of vectors 
ψ, 
ξa2, . . . ,


ξak
form a basis of Rk (since 
ψ /∈ V

(2)

¯zby Lemma 3.1).
By the hypotheses (H1)–(H2) we have that for any ¯z, det(L

¯z
) �= 0, and therefore

for any integer n, det(L[n]
¯z

) �= 0. This implies that the collection of vectors

{ L
[n−1]
S −1

¯z

ψ

‖L[n−1]
S −1

¯z

ψ‖ , ξ̃a2(n, ¯z), . . . , ξ̃ak

(n, ¯z)
}

(3.13)



440 P. COLLET AND F. LEONARDI

is also a basis of Rk and

k∑
j=2

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψaj

〉
〈
θ1,L

[n−1]
S −1

¯z

ψ〉 −

〈
θ2,L
[n−1]
S −1

¯z

ψaj

〉
〈
θ2,L

[n−1]
S −1

¯z

ψ〉

∣∣∣∣

≥
k∑

j=2

‖L[n−1]
S −1

¯z

ξaj

‖
‖
θ1‖‖L[n−1]

S −1

¯z

ψ‖

∣∣〈
θ1 − γ (n, ¯z)

θ2, ξ̃aj

(n, ¯z)
〉∣∣

=
k∑

j=2

‖L[n−1]
S −1

¯z

ξaj

‖
‖
θ1‖‖L[n−1]

S −1

¯z

ψ‖

∣∣〈
η(n, ¯z), ξ̃aj
(n, ¯z)

〉∣∣.
We now apply Lemma 3.6 and obtain

k∑
j=2

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψaj

〉
〈
θ1,L

[n−1]
S −1

¯z

ψ〉 −

〈
θ2,L
[n−1]
S −1

¯z

ψaj

〉
〈
θ2,L

[n−1]
S −1

¯z

ψ〉

∣∣∣∣

≥
infa∈A ‖L[n−1]

S −1

¯z

ξa‖

‖
θ1‖‖L[n−1]
S −1

¯z

ψ‖

‖
η(n, ¯z)‖
k3/2(k − 1)!|detM| ,

where M is the matrix formed by the vectors in (3.13). We now observe that

∥∥
η(n, ¯z)
∥∥ = ∥∥
θ1 − γ (n, ¯z)


θ2
∥∥ ≥ inf

α
‖
θ1 − α 
θ2‖ =

√√√√‖
θ1‖2 − 〈
θ1, 
θ2〉2

‖
θ2‖2
> 0,

since 
θ1 is independent of 
θ2. We also have

detM =
det(L[n−1]

S −1

¯z

ψ,L

[n−1]
S −1

¯z

ξa2, . . . ,L

[n−1]
S −1

¯z

ξak

)

‖L[n−1]
S −1

¯z

ψ‖∏k

j=2 ‖L[n−1]
S −1

¯z

ξaj

‖

=
det(L[n−1]

S −1

¯z
)

‖L[n−1]
S −1

¯z

ψ‖∏k

j=2 ‖L[n−1]
S −1

¯z

ξaj

‖ det( 
ψ, 
ξa2, . . . ,

ξak

).

We observe that, for any a ∈ A, by Oseledec’s theorem we have μ-almost surely

lim inf
n→∞

1

n
log

∥∥L[n−1]
S −1

¯z

ξa

∥∥ ≥ λs.

Therefore [see, e.g., Katok and Hasselblatt (1995), Ledrappier (1984)], since

lim
n→∞

1

n
log

∣∣det
(
L

[n−1]
S −1

¯z
)∣∣ =

s∑
j=1

mjλj ,
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we get

lim inf
n→∞

1

n
log

∑
a∈A

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψa〉

〈
θ1,L
[n−1]
S −1

¯z

ψ〉 −

〈
θ2,L
[n−1]
S −1

¯z

ψa〉

〈
θ2,L
[n−1]
S −1

¯z

ψ〉

∣∣∣∣

≥ lim inf
n→∞

1

n
log

k∑
j=2

∣∣∣∣
〈
θ1,L

[n−1]
S −1

¯z

ψaj

〉
〈
θ1,L

[n−1]
S −1

¯z

ψ〉 −

〈
θ2,L
[n−1]
S −1

¯z

ψaj

〉
〈
θ2,L

[n−1]
S −1

¯z

ψ〉

∣∣∣∣

≥ λs − λ1 +
s∑

j=1

mjλj − (k − 1)λ2 − λ1

= λs − λ1 +
s∑

j=2

mj(λj − λ2),

which is the first part of the lower bound. We also have

∣∣det
(
L

[n−1]
S −1

¯z
)∣∣ = |detp|n−1

n∏
j=1

(
k∏

�=1

q(z−j , l)

)
≥ |detp|n−1�−nk.

Therefore
s∑

j=1

mjλj ≥ log|detp| − k log�.

Since all the Lyapunov exponents are nonpositive, we get

λs − λ1 +
s∑

j=2

mj(λj − λ2) ≥ λs +
s∑

j=2

mjλj

≥ 2
s∑

j=1

mjλj

≥ 2 log|detp| − 2k log�. �

PROOF OF THEOREM 2.5. The result follows immediately from Proposi-
tion 3.7 using the same choices for the vectors ( 
ψa)a∈A and (
θb)b∈B as in the
proof of Theorem 2.2. �

4. Perturbed processes over a binary alphabet. Consider the Markov chain
(Xt)t∈Z over the alphabet A = {0,1} with matrix of transition probabilities given
by

P =
(

p0 1 − p0
p1 1 − p1

)
,
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where we assume p0 �= p1 and

0 < β = min{p0,p1,1 − p0,1 − p1}.
The quantities p(j |i) are given by p(j |i) = Pi,j .

Consider also the process (Zt )t∈Z over the alphabet B = {0,1} with output
matrix qε(j |i) = P(Z0 = j |X0 = i) = (1 − ε)1{i=j} + ε1{i �=j}. From now on we
will assume ε ∈ (0,1) \ {1/2}. Then, as z0 ∈ {0,1},

L
¯z,ε

=
([

z0ε + (1 − z0)(1 − ε)
]
p0

[
z0ε + (1 − z0)(1 − ε)

]
(1 − p0)[

z0(1 − ε) + (1 − z0)ε
]
p1

[
z0(1 − ε) + (1 − z0)ε

]
(1 − p1)

)
.

We have the following equality:

λ1 + λ2 = Eμ

[
log|detL·,ε|];

see, for example, Ledrappier (1984) or Katok and Hasselblatt (1995) for a proof.
Therefore

λ1 + λ2 = P(Z0 = 0) log
(
(1 − ε)ε

∣∣p0(1 − p1) − p1(1 − p0)
∣∣)

+ P(Z0 = 1) log
(
ε(1 − ε)

∣∣p0(1 − p1) − p1(1 − p0)
∣∣)(4.1)

= log ε + log(1 − ε) + log
∣∣det(P )

∣∣.
From the above expression for L

¯z,ε
we have

L
¯z,ε

= Mz0 + εAz0,

where

Mz0 =
(

(1 − z0)p0 (1 − z0)(1 − p0)

z0p1 z0(1 − p1)

)

and

Az0 = (2z0 − 1)

(
p0 (1 − p0)

−p1 −(1 − p1)

)
.

For z0 ∈ {0,1} define the vectors


ez0 =
(

1 − z0
z0

)
and 
fz0 =

(
z0

1 − z0

)
.

These vectors have norm 1 and satisfy

Mz0 
ez1 = ρ0(z0, z1)
ez0 and Mt
z0


fz0 = 
0,

where

ρ0(z0, z1) = (1 − z1)
(
p0(1 − z0) + p1z0

) + z1
(
(1 − p0)(1 − z0) + (1 − p1)z0

)
,

since z0 and z1 equal zero or one.
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We recall that a distance d can be defined on � as follows. For ¯z and ¯z
′ in �, let

d̃
(
¯z, ¯z

′) = inf
{|i|, zi �= z′

i

}
.

Then

d
(
¯z, ¯z

′) = e−d̃(¯z,¯z
′).

We refer to Bowen (2008) for details, in particular � equipped with this distance
is a compact metric space. We now prove the following result.

LEMMA 4.1. There exist two constants ε0 > 0 and D > 0 and two continuous
functions ρ(ε, ¯z) and h(ε, ¯z) such that for any ε ∈ [0, ε0], the vectors


g(ε, ¯z) = 
ez1 + εh(ε, ¯z)

fz1

satisfy

L
¯z,ε


g(ε, ¯z) = ρ(ε, ¯z)
g
(
ε,S −1

¯z
)
.

Moreover, there is a constant U > 1 such that for any ε ∈ [0, ε0], any n and any

¯z ∈ �, ∥∥
g(ε, ¯z) − 
ez1

∥∥ ≤ Uε,
∣∣ρ(ε, ¯z) − 〈Mz1 
ez2, 
ez1〉

∣∣ ≤ Uε

and

U−1ε
1 ≤ 
g(ε, ¯z) ≤ U
1.

PROOF. The equation for 
g is equivalent to

LS ¯z,ε

g(ε,S ¯z) = ρ(ε,S ¯z)
g(ε, ¯z).(4.2)

Note that


g(ε,S ¯z) = 
ez2 + εh(ε,S ¯z)

fz2 and LS ¯z,ε

= Mz1 + εAz1 .

Taking the scalar product of both terms in equation (4.2) with 
ez1 and 
fz1 we get

ρ(ε,S ¯z) = 〈Mz1 
ez2, 
ez1〉 + εh(ε,S ¯z)〈Mz1

fz2, 
ez1〉

(4.3)
+ ε〈Az1 
ez2, 
ez1〉 + ε2h(ε,S ¯z)〈Az1


fz2, 
ez1〉
and since Mt

z1

fz1 = 0 and 〈 
fz1, 
ez1〉 = 0,

ρ(ε,S ¯z)h(ε, ¯z) = 〈Az1 
ez2,

fz1〉 + εh(ε,S ¯z)〈Az1


fz2,

fz1〉.

We denote by D the Banach space of continuous functions on [0, ε0]×� equipped
with the sup norm. On the ball BD of radius D = 4β−1 centered at the origin in D
we define a transformation T given by

T (h)(ε, ¯z) = u1(ε, ¯z) + εu2(ε, ¯z)h(ε,S ¯z)
u3(ε, ¯z) + εu4(ε, ¯z)h(ε,S ¯z)

,(4.4)



444 P. COLLET AND F. LEONARDI

where

u1(ε, ¯z) = 〈Az1 
ez2,

fz1〉, u2(ε, ¯z) = 〈Az1


fz2,

fz1〉,

u3(ε, ¯z) = 〈Mz1 
ez2, 
ez1〉 + ε〈Az1 
ez2, 
ez1〉
and

u4(ε, ¯z) = 〈Mz1

fz2, 
ez1〉 + ε〈Az1


fz2, 
ez1〉.
Direct computation shows that for all (ε, ¯z) ∈ [0, ε0] × � we have

β ≤ ∣∣u1(ε, ¯z)
∣∣ ≤ 1, β ≤ ∣∣u2(ε, ¯z)

∣∣ ≤ 1, β ≤ u1(ε, ¯z)
u3(ε, ¯z)

≤ β−1,

β − ε ≤ ∣∣u3(ε, ¯z)
∣∣ ≤ 1 + ε, β − ε ≤ ∣∣u4(ε, ¯z)

∣∣ ≤ 1 + ε.

We first prove that T maps BD into itself. Indeed for h ∈ BD , since D = 4β−1

there exists ε′
0 > 0 small enough such that for any ε ∈ [0, ε′

0],∣∣T (h)(ε, ¯z)
∣∣ ≤ 1 + εD

β − ε − εD(1 + ε)
≤ D.

We leave to the reader the proof that T (h) is a continuous function of ε and ¯z. We
now prove that T is a contraction on BD . For h and h′ in BD , since D = 4β−1

there exists ε0 > 0 small enough, and smaller than ε′
0, such that for any ε ∈ [0, ε0]

we have∣∣T (h)(ε, ¯z) − T
(
h′)(ε, ¯z)

∣∣
= ε

∣∣∣∣ u1(ε, ¯z)u4(ε, ¯z) − u2(ε, ¯z)u3(ε, ¯z)
(u3(ε, ¯z) + εu4(ε, ¯z)h(ε,S ¯z))(u3(ε, ¯z) + εu4(ε, ¯z)h

′(ε,S ¯z))
∣∣∣∣

× ∣∣h(ε, ¯z) − h′(ε, ¯z)
∣∣

≤ ε
4

(β − ε − εD(1 + ε))2

∣∣h(ε, ¯z) − h′(ε, ¯z)
∣∣ ≤ 1

2

∣∣h(ε, ¯z) − h′(ε, ¯z)
∣∣.

By the contraction mapping principle [see, e.g., Dieudonné (1969)], the map T
has a unique fixed point h in BD . It follows at once that the vectors


g(ε, ¯z) = 
ez1 + εh(ε, ¯z)

fz1

satisfy equation (4.2). The estimate on 
g(ε, ¯z) follows immediately from the fact
that h ∈ BD , and from (4.4),

h(ε, ¯z) = u1(ε, ¯z)
u3(ε, ¯z)

+O(ε).

The estimate on ρ(ε, ¯z) follows from (4.3). �

REMARK. An easy improvement of the above proof allows to show that ρ and
h depend analytically on ε in a small (complex) neighborhood of 0.
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By the estimate on 
g(ε, ¯z) of the previous lemma and Lemma 3.1 applied to the
vector 
1, we have μ-almost surely

lim
n→∞

1

n
log

∥∥L[n−1]
S −1

¯z

g(ε, ¯z)

∥∥ = lim
n→∞

1

n
log

∥∥L[n−1]
S −1

¯z

1∥∥ = λ1.

On the other hand from Lemma 4.1 it follows that

log
∥∥L[n−1]

S −1

¯z

g(ε, ¯z)

∥∥ =
n∑

j=0

logρ
(
ε,S −j

¯z
) + ∥∥
g(

ε,S −n

¯z
)∥∥.

Using again the estimate on 
g(ε, ¯z) from Lemma 4.1, the Birkhoff ergodic theorem
[Krengel (1985)] and the ergodicity of μ, we have

λ1 =
∫

logρ(ε, ¯z) dμ(¯z).
The first Lyapunov exponent λ1 is equal to H the entropy of the process (Zt )t∈Z
and this entropy has an expansion in terms of ε; see Jacquet, Seroussi and Sz-
pankowski (2008). Therefore

H = H0 +O(ε),

where H0 is the entropy of the Markov chain (Xt)t∈Z.
The following theorem is an immediate consequence of the above estimates.

THEOREM 4.2. If p0 �= p1, min{p0,p11 −p0,1 −p1} > 0 and ε > 0 is small
enough, we have μ-almost surely

lim sup
n→+∞

1

n
log

∣∣ν[n]
¯z,b

(a) − ν[n]
¯z,c

(a)
∣∣ ≤ log ε + log

∣∣det(P )
∣∣ − 2H0 +O(ε).

Moreover, for μ-almost all ¯z there is a triplet (a, b, c) (which may depend on ¯z)
where the equality holds.

PROOF. It is easy to verify that hypotheses (H1)–(H2) are satisfied. We there-
fore apply Theorems 2.1 and 2.2. The result follows from (4.1) and the above
estimate on λ1. �

As λ1 and λ2 are fixed, the above estimate also applies to the asymptotic rate of
exponential loss of memory of the measures σ [n]

¯z,η
, ν̃[n]

¯z,ρ
and σ̃ [n]

¯z,η
.
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