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A STOCHASTIC CONTROL APPROACH TO NO-ARBITRAGE
BOUNDS GIVEN MARGINALS, WITH AN APPLICATION

TO LOOKBACK OPTIONS
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Sciences Po, Société Générale and Ecole Polytechnique

We consider the problem of superhedging under volatility uncertainty for
an investor allowed to dynamically trade the underlying asset, and statically
trade European call options for all possible strikes with some given maturity.
This problem is classically approached by means of the Skorohod Embed-
ding Problem (SEP). Instead, we provide a dual formulation which converts
the superhedging problem into a continuous martingale optimal transporta-
tion problem. We then show that this formulation allows us to recover previ-
ously known results about lookback options. In particular, our methodology
induces a new proof of the optimality of Azéma–Yor solution of the SEP for
a certain class of lookback options. Unlike the SEP technique, our approach
applies to a large class of exotics and is suitable for numerical approximation
techniques.

1. Introduction. In a financial market allowing for the dynamic trading of
a riskless asset, normalized to unity, and some given underlying assets without
restrictions, the fundamental theorem of asset pricing essentially states that the
absence of arbitrage opportunities is equivalent to the existence of a probability
measure under which the underlying asset process is a martingale. See Kreps [24],
Harrison and Pliska [18] and Delbaen and Schachermayer [14]. Then, for the pur-
pose of hedging, the only relevant information is the quadratic variation of the
assets price process under such a martingale measure. Without any further as-
sumption on the quadratic variation, the robust superhedging cost reduces to an
obvious bound which can be realized by static trading on the underlying assets;
see Cvitanić, Pham and Touzi [12] and Frey [17].

In this paper, we examine the problem of superhedging, under the condition
of no-arbitrage, when the financial market allows for the static trading of Euro-
pean call options in addition to the dynamic trading of the underlying asset with
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price process {Xt, t ≥ 0}. For simplicity, we consider the case where all available
European call options have the same maturity T . However, we idealize the finan-
cial market assuming that such European call options are available for all possible
strikes. Under the linearity (and continuity) assumption, this means that although
the joint distribution P of the process X is unknown, the modeler has access to the
function K ∈ R+ �−→ E[(XT − K)+], and therefore to the marginal distribution
μ of the random variable XT , as observed by Breeden and Litzenberger [6]. In
particular, any T -maturity vanilla derivative, with payoff g(XT ), can be perfectly
replicated by a portfolio of European calls, and has an unambiguous no-arbitrage
price

∫
g dμ, as long as g ∈ L

1(μ), which can be expressed as a linear combination
of the given prices of the underlying calls.

This problem is classically approached in the literature by means of the Sko-
rohod embedding problem (SEP) which shows up naturally due to the Dambis–
Dubins–Schwarz time change result. However, only some special cases of deriva-
tives are eligible for this approach, namely those defined by a payoff which is
invariant under rime change. The use of the SEP techniques to solve the robust
superhedging problem can be traced back to the seminal paper by Hobson [20].
The survey paper by Hobson [21] is very informative and contains the relevant
references on the subject. For a derivative security g(Xs, s ≤ t) written on an un-
derlying asset X, the idea is to search for a function λ and a martingale M such
that g(Xs, s ≤ t) ≤ λ(Xt) + Mt so that E[g(Xs, s ≤ τ)] ≤ ∫

λdμ for all stopping
times τ such that Xτ has the distribution μ determined from European call options,
as outlined above. The bound is then obtained by designing λ, M and τ such that
g(Xs, s ≤ τ) = λ(Xτ ) + Mτ .

In this paper, we develop an alternative approach which relates the robust
superhedging problem to the literature on stochastic control; see Fleming and
Soner [16]. Our approach consists of solving directly the robust superhedging
problem whose solution provides the above function λ and martingale M . As
a consequence, unlike the SEP approach which requires that the payoff of the
exotic to be invariant under time change, there is no restriction on the class of
derivative securities as the time change step is avoided. Moreover, our methodol-
ogy is related to the optimal transportation theory, and in fact opens the door to an
original new ramification in this theory by imposing naturally that the transporta-
tion be performed along a continuous martingale.

Our first main result, reported in Sections 2.3 and 2.4, provides a formulation
of the robust superhedging problem based on the Kantorovich duality in the spirit
of Benamou and Brenier [4]; see Villani [39]. A finite dimensional version of this
dual formulation was already used by Davis, Oblój and Raval [13]. Also, this du-
ality is implicitly proved for special cases of derivatives in the previous literature
based on the SEP. So the importance of our duality result lies in its generality.
Moreover, similar to the SEP approach, the solution of the dual problem provides
the corresponding optimal hedging strategy and worst case model. Finally, the dual
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formulation is suitable for numerical approximation techniques as shown by Bon-
nans and Tan [5] and Tan and Touzi [38].

Our next concern is to show that this duality result is not merely a theoreti-
cal result, but may be applied to compute things in practice. In this paper, this is
demonstrated in the context of lookback derivatives, where the robust superhedg-
ing problem is known to be induced by the Azéma–Yor solution of the SEP [1, 2].
A semi-static hedging strategy corresponding to this bound was produced by Hob-
son [20]. Our second main result, reported in Section 3, reproduces this bound by
means of our dual formulation. In particular, this provides a new presentation of the
fact that the Azéma–Yor solution of the SEP realizes the upper bound for a certain
class of lookback options. We also recover in Section 4 the robust superhedging
cost for the forward lookback option which was also derived in Hobson [20].

The results of Sections 3 and 4 are not new, and are reported here in order to
show that the optimal transportation approach is suitable to recover these known
results. Beyond rediscovering the formerly derived results in the literature, we
would like to insist on the fact that the present optimal transportation approach
complements the SEP approach by putting the emphasis on the superhedging prob-
lem whose solution provides the optimal semi-static superhedging strategy. This
feature is perfectly illustrated in the related paper [19], where:

(i) this approach is used in order to provide the optimal semi-static superhedg-
ing strategy;

(ii) by using the optimal semi-static superhedging strategy from (i), Oblój and
Spoida [31] prove an extension of the Azéma–Yor solution of the SEP to the case
of multiple intermediate marginals.

The final outcome from [19, 31] is an extension of the previous results of Brown,
Hobson and Rogers [7] and Madan and Yor [25].

We also observe that one should not expect to solve explicitly the problem of
robust superhedging, in general. Therefore, an important advantage of the optimal
transportation approach is that the corresponding dual formulation is suitable for
numerical approximation techniques; see Bonnans and Tan [5] for the case of vari-
ance options, and Tan and Touzi [38] for a class of optimal transportation problems
motivated by this paper.

Finally, we would like to emphasize that by expressing the robust bound as the
value function of a superhedging problem, we are implicitly addressing the im-
portant issue of no-arbitrage under model uncertainty, as discussed in the previous
literature; see, for example, Cox and Oblój [11] and Davis, Oblòj and Raval [13].
Indeed, if an arbitrage does exist, under some conveniently defined weak form,
the value function would be infinite. Conversely, whenever the value function is
finite, the financial market would either admit a genuine model-free arbitrage, if
existence holds for the dual problem, or some convenient notion of weak arbitrage
otherwise.
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2. Model-free bounds of derivatives securities.

2.1. The probabilistic framework. Let � := {ω ∈ C([0, T ],Rd) :ω0 = 0} be
the canonical space equipped with the uniform norm ‖ω‖∞ := sup0≤t≤T |ωt |,
B the canonical process, P0 the Wiener measure, F := {Ft }0≤t≤T the filtra-
tion generated by B and F

+ := {F+
t ,0 ≤ t ≤ T } the right limit of F, where

F+
t := ⋂

s>t Fs .
Throughout the paper, X0 is some given initial value in R

d+, and we denote

Xt := X0 + Bt for t ∈ [0, T ].
For any F-progressively measurable process α with values in S>0

d (space of defi-
nite positive symmetric matrices) and satisfying

∫ T
0 |αs |ds < ∞, P0-a.s., we define

the probability measure on (�,F),

P
α := P0 ◦ (

Xα)−1
,

where

Xα
t := X0 +

∫ t

0
α1/2

r dBr, t ∈ [0, T ],P0-a.s.

Then X is a P
α-local martingale. Following [34], we denote by PS the collection

of all such probability measures on (�,F). The quadratic variation process 〈X〉 =
〈B〉 is universally defined under any P ∈ PS , and takes values in the set of all
nondecreasing continuous functions from R+ to S>0

d . Finally, we recall from [34]
that

every P ∈PS satisfies the Blumenthal zero–one law
(2.1)

and the martingale representation property.

In this paper, we shall focus on the subset P∞ of PS consisting of all measures P
such that

X is a P-uniformly integrable martingale with values in R
d .

The restriction of the probability measures in P∞ to those induced by uniformly
integrable martingales X is motivated by our subsequent interpretation of the en-
tries Xi as price processes of financial securities.

2.2. Model-free super-hedging problem. For all P ∈ P∞, we denote

H
2
loc(P) :=

{
H ∈ H

0(P) :
∫ T

0
Tr

[
HT

t Ht d〈B〉t ] < ∞,P-a.s.
}
,

where Tr denotes the trace operator. We assume that

the interest rate is zero.
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Under the self-financing condition, for any portfolio process H , the portfolio value
process

YH
t := Y0 +

∫ t

0
Hs · dBs, t ∈ [0, T ],(2.2)

is well defined P-a.s. for every P ∈ P∞, whenever H ∈ H
2
loc. This stochastic inte-

gral should be rather denoted YH
t

P
to emphasize its dependence on P; see, how-

ever, Nutz [28].
Let ξ be an FT -measurable random variable. We introduce the subset of mar-

tingale measures

P∞(ξ) := {
P ∈P∞ :EP

[
ξ−]

< ∞}
.

The reason for restricting to this class of models is that, under the condition that
E
P[ξ+] < ∞, the hedging cost of ξ under P is expected to be −∞ whenever

E
P[ξ−] = ∞. As usual, in order to avoid doubling strategies, we introduce the set

of admissible portfolios,

H(ξ) := {
H :H ∈ H

2
loc and YH is a P-supermartingale for all P ∈ P∞(ξ)

}
.

The model-free superhedging problem is defined by

U0(ξ) := inf
{
Y0 :∃H ∈ H(ξ), YH

1 ≥ ξ,P-a.s. for all P ∈P∞(ξ)
}
.(2.3)

We call U0 the model-free superhedging bound, and we recall its interpretation
as the no-arbitrage upper bound on the market price of the derivative security ξ ,
for an investor who has access to continuous-time trading the underlying securities
with price process X.

2.3. Dual formulation of the super-hedging bound. We denote by UC(�X0)

the collection of all uniformly continuous maps from �X0 to R, where X0 ∈ R
d

is a fixed initial value, and �X0 := {ω ∈ C([0, T ],Rd+) :ω0 = X0}. The following
result is a direct adaptation from Soner, Touzi and Zhang [35].

THEOREM 2.1. Let ξ ∈ UC(�X0) be such that supP∈P∞ E
P[ξ+] < ∞. Then

U0(ξ) = sup
P∈P∞

E
P[ξ ].

Assume further that U0(ξ) is finite. Then there exists a process H ∈ H(ξ) and a
family of nondecreasing predictable processes {KP,P ∈ P∞(ξ)}, with KP

0 = 0 for
all P ∈ P∞(ξ), s.t.

ξ = U0(ξ) +
∫ 1

0
Ht · dBt − KP

1 , P-a.s. for all P ∈P∞(ξ).(2.4)

The proof is reported in Section 5.
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REMARK 2.1. A similar dual representation as in Theorem 2.1 was first ob-
tained by Denis and Martini [15] in the bounded volatility case. Notice, however,
that the family of nondominated singular measures in [15] is not included in our
set PS , and does not allow for the existence of an optimal super-hedging strategy.

While revising this paper, a new approach for the robust superhedging problem,
initiated by Nutz and von Handel [29] and Neufeld and Nutz [27], allowed for an
extension of Theorem 2.1 by Possamaï, Royer and Touzi [33].

2.4. Calibration adjusted no-arbitrage bound. In this section we special-
ize the discussion to the one-dimensional case. This is consistent with the one-
dimensional practical treatment of vanilla options on real financial markets.

We assume that, in addition to the continuous-time trading of the primitive se-
curities, the investor can take static positions on T -maturity European call or put
options with all possible strikes K ≥ 0. Then, from Breeden and Litzenberger [6],
the investor can identify that the T -marginal distribution of the underlying asset
under the pricing measure is some probability measure μ ∈ M(R), the set of all
probability measures on R.

REMARK 2.2. For the purpose of the present financial application, the mea-
sure μ has a support in R+. We consider, however, the general case μ ∈ M(R) in
order to compare our results to the Azéma–Yor solution of the SEP.

For any scalar function λ ∈ L
1(μ), the T -maturity European derivative defined

by the payoff λ(XT ) has an un-ambiguous no-arbitrage price

μ(λ) =
∫

λdμ

and can be perfectly replicated by buying and holding a portfolio of European calls
and puts of all strikes, with the density λ′′(K) at strike K (with λ′′ understood in
the sense of distributions). See Carr and Chou [8]. In particular, given the spot
price X0 > 0 of the underlying assets, the probability measure μ must satisfy∫

xμ(dx) = X0.

We now define an improvement of the no-arbitrage upper-bound by accounting for
the additional possibility of statically trading the European call options. Let

�μ :=
{
λ ∈ L

1(μ) : sup
P∈P∞

E
P
[
λ(XT )−

]
< ∞

}
and

(2.5)
�

μ
UC := �μ ∩ UC(R),

where UC(R) is the collection of all uniformly continuous maps from R to R. For
all λ ∈ �μ, we denote ξλ := ξ − λ(X1). The improved no-arbitrage upper bound
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is defined by

Uμ(ξ) := inf
{
Y0 :∃λ ∈ �

μ
UC and H ∈ H

(
ξλ)

,
(2.6)

Y
H,λ
1 ≥ ξ,P-a.s. for all P ∈ P∞

(
ξλ)}

,

where YH,λ denotes the portfolio value of a self-financing strategy with contin-
uous trading H in the primitive securities, and static trading λ in the T -maturity
European calls with all strikes

Y
H,λ
1 := YH

1 − μ(λ) + λ(XT ),(2.7)

indicating that the investor has the possibility of buying at time 0 any derivative
security with payoff λ(XT ) for the price μ(λ).

The next result is a direct application of Theorem 2.1.

PROPOSITION 2.1. Let μ ∈ M(R), and ξ ∈ UC(�X0) with supP∈P∞ E
P[ξ+] <

∞. Then

Uμ(ξ) = inf
λ∈�

μ
UC

sup
P∈P∞

{
μ(λ) +E

P
[
ξ − λ(XT )

]}
.

PROOF. Observe that

Uμ(ξ) = inf
λ∈�

μ
UC

U0(
ξ + μ(λ) − λ(XT )

)
.

For every fixed λ, if V (0) := supP∈P∞ E
P[ξ +μ(λ)−λ(XT )] < ∞, then the proof

of Theorem 2.1, reported in Section 5, applies and we get U0(ξ +μ(λ)−λ(XT )) =
V (0). On the other hand, if V (0) = ∞, then notice from the proof of Theorem 2.1
that the inequality U0(ξ + μ(λ) − λ(XT )) ≥ V (0) is still valid in this case, and
therefore U0(ξ + μ(λ) − λ(XT )) = V (0). �

REMARK 2.3. As a sanity check, let us consider the case ξ = g(XT ), for some
uniformly continuous function g with μ(|g|) < ∞ and supP∈P∞ E

P[|g(XT )|] <

∞, and let us verify that Uμ(ξ) = μ(g).
First, since g ∈ �

μ
UC, we may take λ = g, and it follows from the dual formu-

lation of Proposition 2.1 that Uμ(ξ) ≤ μ(g). On the other hand, it is easily seen
that

sup
P∈P∞

E
P
[
g(XT )

] = gconc(X0),

where gconc is the smallest concave majorant of g. Then, it follows from the dual
formulation of Proposition 2.1 that Uμ(ξ) = infλ∈�

μ
UC

μ(λ) + (g − λ)conc(X0) ≥
infλ∈�

μ
UC

μ(λ) + μ(g − λ) = μ(g) as expected.
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REMARK 2.4. Similar to the SEP approach, the dual formulation of Propo-
sition 2.1 gives access to the optimal hedging strategy and the worst case model.
This requires that we prove an additional existence result of a solution to the inf-
sup problem (λ∗,P∗). Then λ∗ is the optimal T -maturity vanilla profile, and P

∗
is the worst case model corresponding to the upper bound. The optimal dynamic
hedging strategy in the underlying asset is, as usual, obtained by representation of
the residual security ξ − λ∗(XT ); see the proof of Theorem 2.1 in Section 5.

REMARK 2.5. The dual formulation of Proposition 2.1 is suitable for numer-
ical approximation. Indeed, for each fixed multiplier λ, the maximization problem
is a (singular) stochastic control problem which may be approximated by finite
differences or Monte Carlo methods. Then optimization stage with respect to λ re-
quires an additional iteration. This issue is addressed in Tan and Bonnans [5] and
Tan and Touzi [38].

2.5. Connection with optimal transportation theory. As an alternative point of
view, one may directly imbed in the no-arbitrage bounds the calibration constraint
that the risk neutral marginal distribution of BT is given by μ.

For convenience of comparison with the optimal transportation theory, the dis-
cussion of this subsection will be focused on the no-arbitrage lower bound. A nat-
ural formulation of the calibration adjusted no-arbitrage lower bound is

	(ξ,μ) := inf
{
E
P[ξ ] :P ∈ P∞,X0 ∼P δX0 and XT ∼P μ

}
,(2.8)

where δX0 denotes the Dirac mass at the point X0. We observe that a direct proof
that 	(ξ,μ) coincides with the corresponding sub-hedging cost is not obvious in
the present context.

Under this form, the problem appears as minimizing the coupling criterion
EP[ξ ] which involves the law of the process X under P, over all those proba-
bility measures P ∈ P∞ such that the marginal distributions of X at times 0 and T

are fixed. This is the general scope of optimal transportation problems as intro-
duced by Monge and Kantorovich; see, for example, Villani [39] and Mikami and
Thieulen [26]. Motivated by the present financial application, Tan and Touzi [38]
extended the Kantorovich duality as described below. However, the above prob-
lem 	(ξ,μ) does not satisfy the assumptions in [38] so that none of the results
contained in this literature apply to our context.

The classical approach in optimal transportation consists of deriving a dual for-
mulation for problem (2.8) by means of the classical convex duality theory. Recall
that M(R+) denotes the collection of all probability measures on R+. Then, the
Legendre dual with respect to μ is defined by

	∗(ξ, λ) := sup
μ∈M(R+)

{
μ(λ) − 	(ξ,μ)

}
for all λ ∈ C0

b(R+)
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the set of all bounded continuous functions from R+ to R. Direct calculation shows
that

	∗(ξ, λ) = sup
{
E
P
[
λ(XT ) − ξ

]
:μ ∈ M(R+),P ∈ P∞,X0 ∼P δX0 and XT ∼P μ

}
= sup

{
E
P
[
λ(XT ) − ξ

]
:P ∈ P∞,X0 ∼P δX0

}
.

Observe that the latter problem is a standard (singular) diffusion control problem.
It is easily checked that 	 is convex in μ. However, due to the absence of a

uniform bound on the quadratic variation of X under P ∈ P∞, it is not obvious
whether it is lower semicontinuous with respect to μ. If the latter property were
true, then the equality 	∗∗ = 	 provides

	(ξ,μ) = sup
λ∈C0

b

{
μ(λ) − 	∗(ξ, λ)

}
,

which is formally (up to the spaces choices) the lower bound analogue of the dual
formulation of Proposition 2.1. A discrete-time analysis of this duality is con-
tained in the parallel work to the present one by Beiglböck, Henry-Labordère and
Penkner [3]. We also observe that, for special cases of payoffs ξ , this duality was
implicitly proved in the previous literature based on the SEP approach; see, for
example, Cox, Hobson and Oblój [10].

3. Application to lookback derivatives. Throughout this section, we con-
sider the one dimensional case d = 1. The derivative security is defined by the
lookback payoff

ξ = g
(
X∗

T

)
where X∗

T := max
t≤T

Xt(3.1)

and

g :R −→ R+ is a C1 nondecreasing function.(3.2)

Our main interest is to show that the optimal upper bound given by Proposition 2.1,

Uμ(ξ) = inf
λ∈�

μ
UC

{
μ(λ) + uλ(0,X0,X0)

}

reproduces the already known bound corresponding to the Azéma–Yor solution to
the Skorohod embedding problem. Here, uλ is the value function of the dynamic
version of stochastic control problem

uλ(t, x,m) := sup
P∈P∞

E
P
[
g
(
M

t,x,m
T

) − λ
(
X

t,x
T

)]
, t ≤ T , (x,m) ∈ �,(3.3)

where � := {(x,m) ∈ R
2 :x ≤ m}, and

Xt,x
u := x + (Bu − Bt), Mt,x,m

u := m ∨ max
t≤r≤u

Xt,x
r , 0 ≤ t ≤ u ≤ T .
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When the time origin is zero, we shall simply write Xx
u := X0,x

u and Mx,m
u :=

M0,x,m
u .
For the subsequent analysis, we also claim that

Uμ(ξ) = inf
λ∈�μ

{
μ(λ) + uλ(0,X0,X0)

}
,(3.4)

where �μ is defined in (2.5). This follows from the recent extension by [33], which
appeared during the revision of this paper (see Remark 2.1), and avoids placing
further conditions on μ to ensure that the function λ∗ defined in (3.14) below is
uniformly continuous.

3.1. Formulation in terms of optimal stopping. We first convert the optimiza-
tion problem uλ into an infinite horizon optimal stopping problem.

PROPOSITION 3.1. For any λ ∈ �μ, the functions uλ is independent of t and

uλ(x,m) = sup
τ∈T∞

E
P0

[
g
(
Mx,m

τ

) − λ
(
Xx

τ

)]
for all (x,m) ∈ �,(3.5)

where T∞ is the collection of all stopping times τ such that the stopped process
{Xt∧τ , t ≥ 0} is a P0-uniformly integrable martingale.

PROOF. The present argument is classical, but we could not find a clear refer-
ence. We therefore report it for completeness.

By the definition of P∞, we may write the stochastic control problem (3.3) in
its strong formulation

uλ(t, x,m) := sup
σ∈�+

E
P0

[
g
(
M

σ,t,x,m
T

) − λ
(
X

σ,t,x
T

) | (
X

σ,t,x
t ,M

σ,t,x,m
t

) = (x,m)
]
,

where

Xσ,t,x
s = x +

∫ s

t
σr dBr, Mσ,t,x,m

s := m ∨ max
t≤r≤s

Xσ,t,x
r , 0 ≤ t ≤ s ≤ T

and �+ is the set of all nonnegative progressively measurable processes, with∫ T
0 σ 2

s ds < ∞, and such that the process {Xσ,t,x
s , t ≤ s ≤ T } is a uniformly inte-

grable martingale.
We shall denote φ(x,m) := g(m) − λ(x).

(1) For a stopping time τ ∈ T∞, we define the processes σ τ
t := 1{τ∧(t/(T −t))}

and Xστ

t := ∫ t
0 σ τ

s dBs , t ∈ [t, T ]. Then the corresponding measure P
στ := P0 ◦

(Xστ
)−1 ∈P∞, and

sup
τ∈T∞

E
P0

[
φ(Xτ ,Mτ )

] ≤ sup
P∈P∞

E
P
[
φ(Xτ ,Mτ )

]
.(3.6)
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(2) To obtain the reverse inequality, we observe by the Dambis–Dubins–
Schwarz theorem (see, e.g., Karatzas and Shreve [23], Theorem 3.4.6) that the
law of (X,M) under P = P

σ ∈ P∞ is the same as the law of (Xτ ,Mτ ) under P0
where τ := ∫ T

0 σ 2
t dt is a stopping time with respected to the time-changed filtra-

tion {FB
Tt

, t ≥ 0}, Tt := inf{s : 〈B〉s > t}. In order to convert to the context of the
canonical filtration of B , we use the result of Szpirglas and Mazziotto [37]. This
allows us to conclude that equality holds in (3.6). �

In view of the previous results, we are reduced to the problem

Uμ(ξ) := inf
λ∈�

μ
0

{
μ(λ) + uλ(X0,X0)

}
,(3.7)

where

uλ(X0,X0) := sup
τ∈T∞

J (λ, τ ), J (λ, τ ) := E
P0

[
g
(
X∗

τ

) − λ(Xτ )
]

and the set �μ of (2.5) translates in the present context to

�
μ
0 =

{
λ ∈ L

1(μ) : sup
τ∈T∞

E
[
λ(Xτ )

−]
< ∞

}
.(3.8)

3.2. The main result. The endpoints of the support of the distribution μ are
denoted by

	μ := sup
{
x :μ

([x,∞)
) = 1

}
and rμ := inf

{
x :μ

(
(x,∞)

) = 0
}
.

The Azéma–Yor solution of the Skorohod embedding problem is defined by means
of the so-called barycenter function,

b(x) :=
∫
[x,∞) yμ(dy)

μ([x,∞))
1{x<rμ} + x1{x≥rμ}, x ≥ 0.(3.9)

REMARK 3.1. Hobson [20] observed that the barycenter function can be alter-
natively defined as the left-continuous inverse to the following function β . Given
the European calls prices c(x) := ∫

(y − x)+μ(dy) and X0 = ∫
yμ(dy), define the

function

β(x) := max
{

arg min
y<x

c(y)

x − y

}
for x ∈ [X0, r

μ),(3.10)

β(x) = 	μ for x ∈ [0,X0) and β(x) = x for x ∈ [rμ,∞).(3.11)

On [X0, r
μ), β(x) is the largest minimizer of the function y �−→ c(y)/(x − y)

on (−∞, x). Then, β is nondecreasing, right-continuous, and β(x) < x for all
x ∈ [X0, r

μ). Notice that β(X0) = 	μ := sup{x :μ((0, x]) > 0}.
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Finally, we introduce the Hardy–Littlewood transform μHL of μ,

μHL([y,∞)
) := inf

ξ<y

c(y)

y − ξ
= c(β(y))

y − β(y)
for all y ≥ 0,(3.12)

where the functions c and β are defined in the previous remark; see Proposi-
tion 4.10(c) in Carraro, El Karoui and Oblój [9].

The following result is a combination of [20, 32]. Our objective is to derive it
directly from the dual formulation of Proposition 2.1. Let

τ∗ := inf
{
t > 0 :X∗

t ≥ b(Xt)
}

(3.13)

and

λ∗(x) :=
∫ x

	μ

∫ y

	μ
g′(b(ξ)

) b(dξ)

b(ξ) − ξ
dy; x < rμ.(3.14)

Notice that λ∗ ∈ [0,∞] as the integral of a nonnegative function. To see that
λ∗ < ∞, we compute by the Fubini theorem that

λ∗(x) =
∫ x

	μ
g′(b(ξ)

) x − ξ

b(ξ) − ξ
b(dξ)

and we observe that (x − ξ)/(b(ξ) − ξ) is bounded near 	μ. Then λ∗(x) ≤
C(x)[g(b(x)) − g(X0)] < ∞ for some constant C(x) depending on x.

THEOREM 3.1. Let μ ∈ M(R), and ξ = g(X∗
T ) for some C1 nondecreasing

function g satisfying supP∈P∞ E
P[ξ+] < ∞, and μHL(g) < ∞. Then

Uμ(ξ) = μ
(
λ∗) + J

(
λ∗, τ ∗) = μHL(g).

The proof is reported in the subsequent section.

3.3. An upper bound for the optimal upper bound. In this section, we prove
that

Uμ(ξ) ≤ μ
(
λ∗) + J

(
λ∗, τ ∗)

.(3.15)

Our first step is to use the following construction due to Peskir [32] which provides
a guess of the value function uλ for functions λ in the subset

�̂
μ
0 := {

λ ∈ �
μ
0 :λ is convex

}
.(3.16)

By classical tools from stochastic control theory, the value function uλ(x,m) is
expected to solve the dynamic programming equation

min
{
uλ − g + λ,−uλ

xx

} = 0 on � and
(3.17)

uλ
m(m,m) = 0 for m ∈ R.
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The first part of the above DPE is an ODE for which m appears only as a parameter
involved in the domain on which the ODE must hold. Since we are restricting to
convex λ, one can guess a solution of the form

vψ(x,m) := g(m) − λ
(
x ∧ ψ(m)

) − λ′(ψ(m)
)(

x − x ∧ ψ(m)
)
,(3.18)

that is, vψ(x,m) = g(m) − λ(x) for x ≤ ψ(m) and is given by the tangent at the
point ψ(m) for x ∈ [ψ(m),m]. For later use, we observe that for x ∈ [ψ(m),m],

vψ(x,m) = g(m) − λ
(
ψ(m)

) +
∫ x

ψ(m)

∂

∂y

{
λ′(y)(x − y)

}
dy

(3.19)
= g(m) − λ(x) +

∫ x

ψ(m)
(x − y)λ′′(dy) for x ∈ [

ψ(m),m
]
,

where λ′′ is the second derivative measure of the convex function λ.
We next choose the function ψ in order to satisfy the Neumann condition

in (3.17). Assuming that λ is smooth, we obtain by direct calculation that the free
boundary ψ must verify the ordinary differential equation (ODE)

λ′′(ψ(m)
)
ψ ′(m) = g′(m)

m − ψ(m)
for all m ∈ R.(3.20)

For technical reasons, we need to consider this ODE in the relaxed sense. This
contrasts our analysis with that of Peskir [32] and Oblój [30]. Since λ is convex,
its second derivative λ′′ is well defined as measure on R+. We then introduce the
weak formulation of the ODE (3.20),∫

ψ(B)
λ′′(dy) =

∫
B

g′(m)

m − ψ(m)
dm for all B ∈ B(R)(3.21)

and we introduce the collection of all relaxed solutions of (3.20),

�λ := {
ψ right-continuous: (3.21) holds and

(3.22)
ψ(m) < m for all m ∈ R

}
.

REMARK 3.2. For later use, we observe that (3.21) implies that all functions
ψ ∈ �λ are nondecreasing. Indeed, for y1 ≤ y2, it follows from (3.21), together
with the nondecrease of g in (3.2) and the convexity of λ, that

ψ(y2) = (
λ′)−1

(
λ′(ψ(y1)+) +

∫ y2

y1

g′(m)

m − ψ(m)
dm

)

≥ (
λ′)−1(

λ′(ψ(y1)+)) ≥ ψ(y1),

where (λ′)−1 is the right-continuous inverse of the nondecreasing function λ′.
Then, by direct integration that

the function x �−→ λ(x) −
∫ x

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξ dy is affine,



DERIVATIVES BOUNDS GIVEN MARGINALS 325

where ψ−1 is the right-continuous inverse of ψ . This follows from direct differen-
tiation of the above function in the sense of generalized derivatives.

A remarkable feature of the present problem is that there is no natural boundary
condition for the ODE (3.20) or its relaxation (3.21). The following result extends
the easy part of the elegant maximality principle proved in Peskir [32] by allowing
for possibly nonsmooth functions λ. We emphasize the fact that our approach does
not need the full strength of Peskir’s maximality principle.

LEMMA 3.1. Let λ ∈ �̂
μ
0 and ψ ∈ �λ be arbitrary. Then uλ ≤ vψ .

PROOF. We organize the proof in three steps:

(1) We first prove that vψ is differentiable in m on the diagonal with

vψ
m(m,m) = 0 for all m ∈ R.(3.23)

Indeed, since ψ ∈ �λ, it follows from Remark 3.2 that

λ(x) = c0 + c1x +
∫ x

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξ dy

for some scalar constants c0, c1. Plugging this expression into (3.18), we see that

vψ(x,m) = g(m) −
(
c0 + c1ψ(m) +

∫ ψ(m)

X0

∫ ψ−1(y)

X0

g′(ξ)

ξ − ψ(ξ)
dξ dy

)

−
(
c1 +

∫ m

X0

g′(ξ)

ξ − ψ(ξ)
dξ

)(
x − ψ(m)

)

= g(m) − c0 − c1x +
∫ m

X0

g′(ξ)

ξ − ψ(ξ)

(
ψ(ξ) − x

)
dξ,

where the last equality follows from the Fubini theorem together with the fact that
g is nondecreasing and ψ(ξ) < ξ . Since g is differentiable, (3.23) follows by direct
differentiation with respect to m.

(2) For an arbitrary stopping time τ ∈ T∞, we introduce the stopping times
τn := τ ∧ inf{t > 0 : |Xt − x| > n}. Since vψ is concave in x, as a consequence of
the convexity of λ, it follows from the Itô–Tanaka formula that

vψ(x,m) ≥ vψ(Xτn,Mτn) −
∫ τn

0
vψ
x (Xt ,Mt) dBt −

∫ τn

0
vψ
m(Xt ,Mt) dMt

≥ g(Mτn) − λ(Xτn) −
∫ τn

0
vψ
x (Xt ,Mt) dBt −

∫ τn

0
vψ
m(Xt ,Mt) dMt

by the fact that vψ ≥ g − λ. Notice that (Mt − Xt) dMt = 0. Then by the Neu-
mann condition (3.23), we have v

ψ
m(Xt ,Mt) dMt = v

ψ
m(Mt,Mt) dMt = 0. Taking

expectations in the last inequality, we see that

vψ(x,m) ≥ Ex,m

[
g(Mτn) − λ(Xτn)

]
.(3.24)
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(3) We finally take the limit as n → ∞ in the last inequality. First, recall that
(Xt∧τ )t≥0 is a uniformly integrable martingale. Then, by the Jensen inequality,
λ(Xτn) ≤ E[λ(Xτ ) | Fτn]. Since λ(Xτ )

− ∈ L
1(P0), this implies that E[λ(Xτn)] ≤

E[λ(Xτ )] where we also used the tower property of conditional expectations. We
then deduce from (3.24) that

vψ(x,m) ≥ lim
n→∞Ex,m

[
g(Mτn) − λ(Xτ )

] = Ex,m

[
g(Mτ ) − λ(Xτ )

]

by the nondecrease of the process M and the function g together with the mono-
tone convergence theorem. By the arbitrariness of τ ∈ T∞, the last inequality
shows that vψ ≥ uλ. �

Our next result involves the function

ϕ(x,m) := c(x) − c0(x)1m<X0

m − x
(3.25)

with c0(x) := (X0 − x)+, (x,m) ∈ �

and we recall that c(x) := ∫
(ξ − x)+μ(dξ) is the (given) European call price with

strike x.

LEMMA 3.2. For λ ∈ �̂
μ
0 and ψ ∈ �λ, we have

μ(λ) + uλ(X0,X0) ≤ g(X0) +
∫

ϕ
(
ψ(m),m

)
g′(m)dm.

PROOF. (1) Let α ∈ R+ be an arbitrary point of differentiability of λ. Then

λ(x) = λ(α) + λ′(α)(x − α) +
∫ x

α
(x − y)λ′′(dy).

Integrating with respect to μ − δX0 and taking α < X0, this provides

μ(λ) − λ(X0)

= λ′(α)

(∫
xμ(dx) − X0

)
+

∫ (∫ x

α
(x − y)λ′′(dy)

)
(μ − δX0)(dx)

= −
∫ X0

α
(X0 − y)λ′′(dy) +

∫
1{x≥α}

∫ x

α
(x − y)+λ′′(dy)μ(dx)

+
∫

1{x<α}
∫ α

x
(y − x)λ′′(dy)μ(dx).

Then sending α to 	μ, it follows from the convexity of λ together with the mono-
tone convergence theorem that

μ(λ) − λ(X0) =
∫

(c − c0)(y)λ′′(dy).
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(2) By the inequality in Lemma 3.1, together with (3.19), we now compute that

μ(λ) + uλ(X0,X0)

≤ g(X0) +
∫ (

c(y) − c0(y)(1{y<X0} − 1{ψ(X0)<y<X0})
)
λ′′(dy)

= g(X0) +
∫ (

c(y) − c0(y)1{y<ψ(X0)}
)
λ′′(dy).

We next use the ODE (3.20) satisfied by ψ in the distribution sense. This provides

μ(λ) + uλ(X0,X0) ≤ g(X0) +
∫

c(ψ(m)) − c0(ψ(m))1{m<X0}
m − ψ(m)

g′(m)dm.

Here, we observe that the endpoints in the last integral can be taken to 0 and ∞ by
the nonnegativity of the integrand. �

We now have all ingredients to express the upper bound (3.15) explicitly in
terms of the barycenter function b of (3.9).

LEMMA 3.3. For a nondecreasing C1 payoff function g, we have

inf
λ∈�

μ
0

{
μ(λ) + uλ(X0,X0)

} ≤ μHL(g).

PROOF. Since �̂
μ
0 ⊂ �

μ
0 , we compute from Lemma 3.2 that

inf
λ∈�

μ
0

{
μ(λ) + uλ(X0,X0)

}

≤ inf
λ∈�̂

μ
0

{
μ(λ) + uλ(X0,X0)

}
(3.26)

≤ g(X0) + inf
λ∈�̂

μ
0

inf
ψ∈�λ

∫
ϕ

(
ψ(m),m

)
g′(m)dm.

In the next two steps, we prove that the last minimization problem on the right-
hand side of (3.26) can be solved by pointwise minimization inside the integral.
Then, in step (3), we compute the induced upper bound.

(1) For all λ ∈ �̂
μ
0 and ψ ∈ �λ,

∫
ϕ

(
ψ(m),m

)
g′(m)dm ≥

∫
inf
ξ<m

ϕ(ξ,m)g′(m)dm.

Observe that c(x) ≥ c0(x) for all x ≥ 0, and limx→0 c(x) − c0(x) = 0. Then

inf
ξ<m

ϕ(ξ,m) = ϕ(0,m) = 0 for m < X0.(3.27)
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On the other hand, it follows from Remark 3.1 that

inf
ξ<m

ϕ(ξ,m) = inf
ξ<m

c(ξ)

m − ξ
= c(β(m))

m − β(m)
for m ≥ X0.(3.28)

By (3.27) and (3.28), we obtain the lower bound∫
ϕ

(
ψ(m),m

)
g′(m)dm ≥

∫
ϕ

(
β(m),m

)
g′(m)dm.

(2) We now observe that the function β , obtained by pointwise minimization
in the previous step, solves the ODE (3.21). Therefore, in order to complete the
proof, it remains to verify that λ∗ ∈ �̂

μ
0 . The convexity of λ∗ is obvious. Also,

since λ∗ ≥ 0, we only need to prove that λ∗ ∈ L
1(μ). By step (1) of the proof

of Lemma 3.2, we are reduced to verifying that
∫

c(x)(λ∗)′′(dx) < ∞. Since, by
definition, λ∗ satisfies the ODE (3.21) with ψ = b−1, we directly compute that

∫
c(x)

(
λ∗)′′

(dx) =
∫

c(b−1(m))

m − b−1(m)
g′(m)dm

=
∫

g′(m)μHL([m,∞)
)
dm < ∞

by our assumption that μHL(g) < ∞.
(3) From (3.26) and the previous two steps, we have

inf
λ∈�

μ
0

{
μ(λ) + uλ(X0,X0)

} ≤ g(X0) +
∫

c(β(x))

x − β(x)
g′(x) dx

= g(X0) +
∫

μHL([y,∞)
)
g′(x) dx = μHL(g)

by a direct integration by parts. �

3.4. Completing the proof of Theorem 3.1. To complete the proof of the theo-
rem, it remains to prove that

inf
λ∈�

μ
0

{
μ(λ) + uλ(X0,X0)

} ≥ μHL(g).

To see this, we use the fact that the stopping time τ ∗ defined in (3.13) is a solution
of the Skorohod embedding problem, that is, Xτ∗ ∼ μ and (Xt∧τ∗)t≥0 is a uni-
formly integrable martingale; see Azéma and Yor [1, 2]. Moreover X∗

τ∗ ∼ μHL.
Then, for all λ ∈ �

μ
0 , it follows from the definition of uλ that uλ(X0,X0) ≥

J (λ, τ ∗), and therefore

μ(λ) + uλ(X0,X0) ≥ μ(λ) +EX0,X0

[
g
(
X∗

τ∗
) − λ(Xτ∗)

]
= EX0,X0

[
g
(
X∗

τ∗
)] = μHL(g).
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4. Forward start lookback options. In this section, we provide a second ap-
plication to the case where the derivative security is defined by the payoff

ξ = g
(
B∗

t1,t2

)
where B∗

t1,t2
:= max

t1≤t≤t2
Bt

and g satisfies the same conditions as in the previous section. We assume that the
prices of call options c1(k) and c2(k) for the maturities t1 and t2 are given for all
strikes,

c1(k) =
∫

(x − k)+μ1(dx) and c2(k) =
∫

(x − k)+μ2(dx), k ≥ 0.

We also assume that μ1 � μ2 are in convex order:

c1(0) = c2(0) and c1(k) ≤ c2(k) for all k ≥ 0.

The model-free superhedging cost is defined as the minimal initial capital which
allows to superhedge the payoff ξ , quasi-surely, by means of some dynamic trading
strategy in the underlying stock, and a static strategy in the calls (c1(k))k≥0 and
(c2(k))k≥0.

This problem was solved in Hobson [20] in the case g(x) = x. Our objective
here is to recover his results by means of our stochastic control approach.

A direct adaptation of Proposition 2.1 provides the dual formulation of this
problem as

Uμ1,μ2(ξ) = sup
(λ1,λ2)∈�μ1×�μ2

μ1(λ1) + μ2(λ2) + uλ1,λ2(X0,X0),

where

uλ1,λ2(x,m) := sup
P∈P∞

E
P

x,m

[
g
(
B∗

t1,t2

) − λ1(Bt1) − λ2(Bt2)
]
.

We next observe that the dynamic value function corresponding to the stochastic
control problem uλ1,λ2 reduces to our previously studied problem uλ2 at time t1.
Then, it follows from the dynamic programming principle that

Uμ1,μ2(ξ) = inf
(λ1,λ2)∈�μ1×�μ2

μ1(λ1) + μ2(λ2)

+ sup
P∈P∞

E
P
[
uλ2(Bt1,Bt1) − λ1(Bt1)

]
.

Since the expression to be maximized only involves the distribution of Bt1 , it fol-
lows from Remark 2.3 together with the Dambis–Dubins–Schwarz time change
formula that

Uμ1,μ2(ξ) = inf
λ2∈�

μ2
0

μ2(λ2) +
∫

uλ2(x, x)μ1(dx).
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We next obtain an upper bound by restricting attention to the subset �̂
μ2
0 of convex

multipliers of �
μ2
0 . For such multipliers, we use the inequality uλ2 ≤ vψ2 for all

ψ2 ∈ �λ2 as derived in Lemma 3.1. This provides

Uμ1,μ2(ξ)

≤ inf
λ2∈�̂

μ2
0

μ2(λ2) +
∫

vψ2(x, x)μ1(dx)

= μ1(g) + inf
λ2∈�̂

μ2
0

inf
ψ2∈�λ

μ2(λ2) − μ1(λ2) +
∫ ∫ x

ψ2(x)
(x − y)λ′′

2(dy)μ1(dx)

= μ1(g) + inf
λ2∈�̂

μ2
0

inf
ψ2∈�λ

∫ (
c2(y) − c1(y)

+
∫

(x − y)1{ψ2(x)<y<x}μ1(dx)

)
λ′′

2(dy)

= μ1(g) + inf
λ2∈�̂

μ2
0

inf
ψ2∈�λ

∫ (
c2(y) −

∫
(x − y)1{y≤ψ2(x)}μ1(dx)

)
λ′′

2(dy)

= μ1(g) + inf
λ2∈�̂

μ2
0

inf
ψ2∈�λ

∫ (
c2

(
ψ2(m)

) −
∫ (

x − ψ2(m)
)
1{m≤x}μ1(dx)

)

× g′(m)dm

m − ψ2(m)

= μ1(g) + inf
λ2∈�̂

μ2
0

inf
ψ2∈�λ

∫ (
c2(ψ2(m)) − c1(m)

m − ψ2(m)
− μ1

([m,∞)
))

g′(m)dm,

where the last equalities follow from similar manipulations as in Lemma 3.2, and in
particular make use of the ODE (3.21). Since g′ ≥ 0, we may prove, as in the case
of lookback options, that the above minimization problem reduces to the pointwise
minimization of the integrand, so that the optimal obstacle is given by

ψ∗
2 (x) = max

{
arg min

ξ<x

h(ξ)
}

where h(ξ) := c2(ξ) − c1(m)

m − ξ
, ξ < m.

Notice that h has left and right derivative at every ξ < m, with

h′(ξ) = c2(ξ) + (x − ξ)c′
2(ξ) − c1(x)

(x − ξ)2 , a.e.,

where the numerator is a nondecreasing function of ξ , takes the positive value
c2(x)− c1(x) at ξ = x, and takes the negative value X0 −x − c1(x) at ξ = 0. Then
ψ∗

2 (x) is the largest root of the equation

c2
(
ψ∗

2 (x)
) + (

x − ψ∗
2 (x)

)
c′

2
(
ψ∗

2 (x)
) = c1(x), a.e.(4.1)
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so that h is nonincreasing to the left of ψ∗
2 (m) and nondecreasing to its right.

At this point, we recognize exactly the solution derived by Hobson [20]. In
particular, ψ∗

2 induces a solution τ ∗
2 to the Skorohod embedding problem, and

we may use the expression of uλ2 as the value function of an optimal stopping
problem. Then, we may conclude the proof that the upper bound derived above is
the optimal upper bound by arguing as in Section 3.4 that

uλ2(x, x) ≥ Ex,x

[
g
(
X∗

τ∗
2

) − λ2(Xτ∗
2
)
]
.

We get that the upper bound is given by

Uμ1,μ2(ξ) = μ1(g) −
∫

g′(m)μ1
([m,∞)

)
dm

+
∫ (

c2(ψ
∗
2 (m)) − c1(m)

m − ψ∗
2 (m)

)
g′(x) dx

(4.2)
= μ1(g) −

∫ (
c′

2
(
ψ∗

2 (m)
) − c′

1(m)
)
g′(m)dm

= g
(
	μ) −

∫
c′

2
(
ψ∗

2 (m)
)
g′(m)dm

by (4.1).

5. Proof of the duality result. Let ξ :� −→ R be a measurable map with
supP∈P∞ E

P[ξ+] < ∞. If P∞(ξ) = ∅, the result is trivial. We then continue as-
suming that P∞(ξ) �= ∅ and therefore U0(ξ) > −∞. Let X0 ∈ R be such that

XH
T ≥ ξ for some H ∈ H.(5.1)

By definition of the admissibility set H(ξ), it follows that the process XH is a
P-local martingale and a P-supermartingale for any P ∈ P∞(ξ). Then, it follows
from (5.1) that X0 ≥ E

P[ξ ] for all P ∈ P∞(ξ). From the arbitrariness of X0 and P,
this shows that

U0(ξ) ≥ sup
P∈P∞(ξ)

E
P[ξ ] = sup

P∈P∞
E
P[ξ ].(5.2)

In the subsequent sections, we prove that the converse inequality holds under the
additional requirement that ξ ∈ UC(�X0). Following [35], this result is obtained
by introducing a dynamic version of the problem which is then proved to have a
decomposition leading to the required result. Due to the fact that family of proba-
bility measures P∞ is nondominated, we need to define conditional distributions
on all of the probability space without excepting any zero measure set.
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5.1. Regular conditional probability distribution. Let P be an arbitrary prob-
ability measure on �, and τ be an F-stopping time. The regular conditional prob-
ability distribution (r.c.p.d.) Pω

τ is defined by:

– for all ω ∈ �, Pω
τ is a probability measure on FT ;

– for all E ∈ FT , the mapping ω �−→ P
ω
τ (E) is Fτ -measurable;

– for every bounded FT -measurable random variable ξ , we have E
P[ξ |

Fτ ](ω) = E
P

ω
τ [ξ ], P-a.s.;

– for all ω ∈ �, Pω
τ [ω′ ∈ � :ω′(s) = ω(s),0 ≤ s ≤ τ(ω)] = 1.

The existence of the r.c.p.d. is justified in Stroock and Varadhan [36]. For a
better understanding of this notion, we introduce the shifted canonical space

�t := {
ω ∈ C

([t, T ],Rd)
:ω(t) = 0

}
for all t ∈ [0, T ],

we denote by Bt the shifted canonical process on �t , Pt
0 the shifted Wiener mea-

sure and F
t the shifted filtration generated by Bt . For 0 ≤ s ≤ t ≤ T and ω ∈ �s :

– the shifted path ωt ∈ �t is defined by

ωt
r := ωr − ωt for all r ∈ [t, T ];

– the concatenation path ω ⊗t ω̃ ∈ �s , for some ω̃ ∈ �t , is defined by

(ω ⊗t ω̃)(r) := ωr1[s,t)(r) + (ωt + ω̃r )1[t,T ](r) for all r ∈ [s, T ];
– the shifted F t

T -measurable r.v. ξ t,ω of some F s
T -measurable r.v. ξ on �s is

defined by

ξ t,ω(ω̃) := ξ(ω ⊗t ω̃) for all ω̃ ∈ �t.

Similarly, for an F
s -progressively measurable process X on [s, T ], the shifted

process {Xt,ω
r , r ∈ [t, T ]} is Ft -progressively measurable.

For notational simplicity, we set

ω ⊗τ ω̃ := ω ⊗τ(ω) ω̃, ξ τ,ω := ξτ(ω),ω, Xτ,ω := Xτ(ω),ω.

The r.c.p.d. P
ω
τ induces a probability measure P

τ,ω on F τ(ω)
T such that the

P
τ,ω-distribution of Bτ(ω) is equal to the P

ω
τ -distribution of {Bt − Bτ(ω), t ∈

[τ(ω), T ]}. Then, the r.c.p.d. can be understood by the identity

E
P

ω
τ [ξ ] = E

P
τ,ω[

ξτ,ω]
for all FT -measurable r.v. ξ.

We shall also call Pτ,ω the r.c.p.d. of P.
For 0 ≤ t ≤ T , we follow the same construction as in Section 2.1 to define

the martingale measures P
t,α for each F

t -progressively measurable S>0
d -valued

process α such that
∫ T
t |αr |dr < ∞, Pt

0-a.s. The collection of all such measures is
denoted P t

S . The subset P t∞ and the density process ât of the quadratic variation
process 〈Bt 〉 are also defined similarly.
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5.2. The duality result for uniformly continuous payoffs. Since ξ ∈ UC(�X0),
there exists a modulus of continuity function ρ such that for all t ∈ [0, T ] and
ω,ω′ ∈ �, ω̃ ∈ �t , ∣∣ξ t,ω(ω̃) − ξ t,ω′

(ω̃)
∣∣ ≤ ρ

(∥∥ω − ω′∥∥
t

)
,

where ‖ω‖t := sup0≤s≤t |ωs |, 0 ≤ t ≤ T . The main object in the present proof is
the following dynamic value process:

Vt(ω) := sup
P∈P t∞

E
P

ω
t [ξ ] for all (t,ω) ∈ [0, T ] × �.(5.3)

It follows from the uniform continuity property of ξ that{
Vt , t ∈ [0, T ]} is a right-continuous F-adapted process.(5.4)

Moreover, since supP∈P∞ E
P[ξ+] < ∞, it follows that for all P ∈ P∞(ξ) that

Vt ∈ L
1(P), and by following exactly the proof of Proposition 4.7 in [35], we see

that {Vt , t ∈ [0, T ]} is a P-supermartingale. We may then apply the Doob–Meyer
decomposition, and deduce the existence of a pair of processes (HP,KP), with
HP ∈ H

2
loc(P) and KP

P-integrable nondecreasing, such that

Vt = V0 +
∫ t

0
HP

s dBs − KP

t , t ∈ [0, T ],P-a.s.

Since V is a right-continuous semimartingale under each P ∈ P∞(ξ), it follows
from Karandikar [22] that the family of processes {HP,P ∈ P∞(ξ)} (defined
P-a.s.) can be aggregated into a process Ĥ defined on [0, T ] × � by d〈V,B〉t =
Ĥt d〈B〉t , in the sense that Ĥ = HP, dt ×dP-a.s. for all P ∈ P∞(ξ). Thus we have

Vt = V0 +
∫ t

0
Ĥs dBs − KP

t , t ∈ [0, T ],P-a.s. for all P ∈ P∞(ξ).

With X0 := V0, we see that:

– the process XĤ := X0 + ∫ .
0 Ĥs dBs is bounded from below by V which is in

turn bounded from below by MP
t := E

P
t [ξ ], t ∈ [0, T ]; since ξ ∈ L

1(P), the latter

is a P-martingale; consequently, XĤ is a P-supermartingale for all P ∈ P∞(ξ),

– and XĤ
T = VT + KP

T = ξ + KP

T ≥ ξ , P-a.s. for every P ∈ P∞(ξ).

Then V0 ≥ U0(ξ) by the definition of U0.

Notice that, as a consequence of the supermartingale property of XĤ under
every P ∈ P∞(ξ), we have

V0 + sup
P∈P∞(ξ)

E
P
[−KP

T

] ≥ sup
P∈P∞(ξ)

E
P
[
XĤ

T − KP

T

] = sup
P∈P∞(ξ)

E
P[ξ ] = V0.

Since KP

0 = 0 and KP is nondecreasing, this implies that

XĤ is a P-martingale for all P ∈ P∞(ξ)



334 A. GALICHON, P. HENRY-LABORDÈRE AND N. TOUZI

and the nondecreasing process KP satisfies the minimality condition

inf
P∈P∞(ξ)

E
P
[
KP

T

] = 0.

REMARK 5.1. A possible extension of Theorem 2.1 can be obtained for a
larger class of payoff functions ξ . Indeed, notice that the uniform continuity as-
sumption on ξ is essentially used to obtain the measurability (5.4) of dynamic
value process V defined in (5.3). In the context of the application of Section 3, such
an extension is needed in order to avoid restricting our framework to those mea-
sures μ which induce a uniformly continuous optimal static hedging λ∗. A con-
venient extension of Theorem 2.1, relaxing the uniform integrability condition, is
obtained in Possamaï, Royer and Touzi [33], building on the recent results of Nutz
and van Handel [29] and Neufeld and Nutz [27].

Acknowledgments. This version has benefited from detailed comments of
two anonymous referees. We are sincerely grateful to them for their time and effort
and, in particular, for pointing out some deficiencies of the first version.

REFERENCES

[1] AZÉMA, J. and YOR, M. (1979). Une solution simple au problème de Skorokhod. In Séminaire
de Probabilités, XIII. Lecture Notes in Math. 721 90–115. Springer, Berlin. MR0544782

[2] AZÉMA, J. and YOR, M. (1979). Le problème de Skorokhod: Compléments à “Une solution
simple au problème de Skorokhod”. In Séminaire de Probabilités, XIII. Lecture Notes in
Math. 721 625–633. Springer, Berlin. MR0544832

[3] BEIGLBÖCK, M., HENRY-LABORDÈRE, P. and PENKNER, F. (2011). Model indepen-
dent bounds for option prices: A mass transport approach. Preprint. Available at
arXiv:1106.5929.

[4] BENAMOU, J.-D. and BRENIER, Y. (2000). A computational fluid mechanics solution to the
Monge–Kantorovich mass transfer problem. Numer. Math. 84 375–393. MR1738163

[5] BONNANS, F. and TAN, X. (2011). A model-free no-arbitrage price bound for variance options.
Preprint.

[6] BREEDEN, D. T. and LITZENBERGER, R. H. (1978). Prices of state-contingent claims implicit
in options prices. J. Business 51 621–651.

[7] BROWN, H., HOBSON, D. and ROGERS, L. C. G. (2001). The maximum maximum of a
martingale constrained by an intermediate law. Probab. Theory Related Fields 119 558–
578. MR1826407

[8] CARR, P. and CHOU, A. (1997). Breaking barriers. Risk 10 139–145.
[9] CARRARO, L., EL KAROUI, N. and OBŁÓJ, J. (2012). On Azéma–Yor processes, their optimal

properties and the Bachelier-drawdown equation. Ann. Probab. 40 372–400. MR2917776
[10] COX, A. M. G., HOBSON, D. and OBŁÓJ, J. (2008). Pathwise inequalities for local time: Ap-

plications to Skorokhod embeddings and optimal stopping. Ann. Appl. Probab. 18 1870–
1896. MR2462552

[11] COX, A. M. G. and OBŁÓJ, J. (2011). Robust pricing and hedging of double no-touch options.
Finance Stoch. 15 573–605. MR2833100
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