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HITTING TIME FOR BESSEL PROCESSES—WALK ON MOVING
SPHERES ALGORITHM (WOMS)1

BY MADALINA DEACONU AND SAMUEL HERRMANN

Inria and Université de Lorraine, and Université de Bourgogne

In this article we investigate the hitting time of some given boundaries
for Bessel processes. The main motivation comes from mathematical finance
when dealing with volatility models, but the results can also be used in opti-
mal control problems. The aim here is to construct a new and efficient algo-
rithm in order to approach this hitting time. As an application we will con-
sider the hitting time of a given level for the Cox–Ingersoll–Ross process.
The main tools we use are on one side, an adaptation of the method of images
to this particular situation and on the other side, the connection that exists
between Cox–Ingersoll–Ross processes and Bessel processes.

1. Introduction. The aim of this paper is to study the hitting time of some
curved boundaries for the Bessel process. Our main motivations come from mathe-
matical finance, optimal control and neuroscience. In finance Cox–Ingersoll–Ross
processes are widely used to model interest rates. As an application, in this article
we will consider the simulation of the first hitting time of a given level for the
CIR by using its relation with the Bessel process. In neuroscience the firing time
of a neuron is usually modelled as the hitting time of a stochastic process asso-
ciated with the membrane potential behavior; for introduction of noise in neuron
systems, see Part I Chapter 5 in [7]. The literature proposes different continuous
stochastic models like, for instance, the family of integrate-and-fire models; see
Chapter 10 in [6]. Most of them are related to the Ornstein–Uhlenbeck process
which appears in a natural way as extension of Stein’s model, a classical discrete
model. In Feller’s model, generalized Bessel processes appear as a more realistic
alternative to the Ornstein–Uhlenbeck process; see, for instance, [10] for a compar-
ison of these models. Therefore the interspike interval, which is interpreted as the
first passage time of the membrane potential through a given threshold is closely
related to the first hitting time of a curved boundary for some Bessel processes.

Our main results and the main algorithm are obtained for the case of Bessel pro-
cesses. We use in our numerical method the particular formula that we obtain for
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the hitting time of some curved boundaries for the Bessel process and the connec-
tion that exists between a Bessel process and the Euclidean norm of a Brownian
motion when calculating the hitting position. As an application we consider the
hitting time of a given level for the Cox–Ingersoll–Ross process. In order to obtain
this, we use first of all the connections that exist between CIR processes and Bessel
processes and second, the method of images for this particular situation.

The study of Bessel processes and their hitting times occupies a huge portion
of mathematical literature. Let us only mention few of them: Göing-Jaeschke and
Yor [8] consider a particular case of CIR processes which are connected with radial
Ornstein–Uhlenbeck processes and their hitting times; L. Alili and P. Patie [1]
investigate as a special situation the Bessel processes via some boundary crossing
identities for diffusions having the time inversion property; recently, Salminen and
Yor considered the hitting time of affine boundaries for the 3-dimensional Bessel
process [16].

In a recent paper Hamana and Matsumoto [9] gave explicit expressions for the
distribution functions and the densities of the first hitting time of a given level for
the Bessel process. Their results cover all the cases. Let us also mention a recent
work of Byczkowski, Malecki and Ryznar [2]. By using an integral formula for
the density of the first hitting time of a given level of the Bessel process, they are
able to obtain uniform estimates of the hitting time density function.

In all these papers the formulae are explicit and are hard to use for a numerical
purposes as they exhibit Bessel functions. The main idea of this paper is to get
rid of this difficulty by using two important tools: first of all the method of im-
ages that allow us to obtain, for some particular boundaries, an explicit form for
the density of the hitting time, and second, the connection between δ-dimensional
Bessel processes and the Euclidean norm of a δ-dimensional Brownian motion in
order to get the simulated exit position. By coupling these ingredients we are able
to construct a numerical algorithm that is easy to implement and very efficient and
which approaches the desired hitting time.

We will use here a modified version of the random walk on spheres method
which was first introduced by Muller [13] in 1956. This procedure allows us to
solve a Dirichlet boundary value problem. The idea is to simulate iteratively, for the
Brownian motion, the exit position from the largest sphere included in the domain
and centered in the starting point. This exit position becomes the new starting point
and the procedure goes on until the exit point is close enough to the boundary. Let
us notice that the simulation of the exit time from a sphere is numerically costly.

The method of images was introduced in 1969 by Daniels [4] as a tool to con-
struct nonlinear boundaries for which explicit calculations for the exit distribu-
tion for the Brownian motion are possible. The method was developed also in
Lerche [11]. We adapt this method for the Bessel process by using the explicit
form of its density. For some particular curved boundaries we can explicitly eval-
uate the density of the Bessel hitting time.
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The paper is organized as follows. First we present some new results on hitting
times for Bessel processes. Second, we construct the new algorithm for approach-
ing the hitting time, the so called walk on moving spheres algorithm. Finally we
present some numerical results and as a particular application the evaluation of the
hitting time of a given level for the Cox–Ingersoll–Ross process.

2. Hitting time for Bessel processes. Bessel processes play an important role
both in the study of stochastic processes like Brownian motion and in various
theoretical and practical applications as, for example, in finance.

Let us consider the δ-dimensional Bessel process starting from y, the solution
of the following stochastic differential equation:⎧⎪⎨

⎪⎩
Z

δ,y
t = Z

δ,y
0 + δ − 1

2

∫ t

0

(
Zδ,y

s

)−1 ds + Bt,

Z
δ,y
0 = y, y ≥ 0,

(2.1)

where (Bt )t≥0 is a one-dimensional Brownian motion. We denote

ν = δ

2
− 1,(2.2)

the index of this process. We call δ the dimension of the process. This terminology
is coming from the fact that, in the case of positive integer δ ∈ N, a δ-dimensional
Bessel process can be represented as the Euclidean norm of a δ-dimensional Brow-
nian motion. This will be a key point in our numerical method.

The density of this process starting from y is given by

py(t, x) = x

t

(
x

y

)ν

exp
(
−x2 + y2

2t

)
Iν

(
xy

t

)
for t > 0, y > 0, x ≥ 0,(2.3)

where Iν(z) is the Bessel function whose expression gives

Iν(z) =
∞∑

n=0

(
z

2

)ν+2n 1

n!�(ν + n + 1)
.(2.4)

When starting from y = 0, the density of Z
δ,0
t is

p0(t, x) = 1

2ν

1

tν+1

1

�(ν + 1)
xδ−1 exp

(
−x2

2t

)
for t > 0, x ≥ 0.(2.5)

2.1. The method of images for Bessel processes. In this section, we investigate
the first hitting time of a curved boundary for the Bessel process starting from the
origin. Let ψ(t) denote the boundary, and introduce the following stopping time:

τψ = inf
{
t > 0;Zδ,0

t ≥ ψ(t)
}
.(2.6)
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For some suitable choice of the boundary, the distribution of τψ can be explicitly
computed. The idea is given by the following remark on the method of images
(see, e.g., [4] for the origin of this method and [11] for a complete presentation):

Fundamental idea. Suppose that F is a positive σ -finite measure satisfying
some integrability conditions (to be specified later on), and define

u(t, x) = p0(t, x) − 1

a

∫
R+

py(t, x)F (dy)(2.7)

for some real constant a > 0. Let

ψ(t) = inf
{
x ∈ R;u(t, x) < 0

}
for all t > 0.

Then u(t, x) is solution of the partial differential equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
(t, x) = 1

2

∂2u

∂x2 (t, x) − δ − 1

2

∂

∂x

(
1

x
u(t, x)

)
, on R+ × R,

u
(
t,ψ(t)

) = 0, for all t > 0,

u(0, ·) = δ0(·), on (−∞,ψ(0+)].
(2.8)

From this remark we deduce an interesting expression for the hitting time. We can
prove that

τψ = inf
{
t > 0;u(

t,Z
δ,0
t

) = 0
}
.

This means simply that in order to obtain information on the hitting time it suffices
to look for u(t,Z

δ,0
t ) = 0.

Let us express this in a general result.

THEOREM 2.1. Let F(dy) be a positive σ -finite measure such that
∫ ∞

0 p0(t,√
εy)F (dy) < ∞ for all ε > 0. Let a > 0 and define the function

u(t, x) = p0(t, x) − 1

a

∫
R+

py(t, x)F (dy).(2.9)

Consider ψ(t) such that u(t,ψ(t)) = 0. Then the probability density function of
τψ is given by

P0(τψ ∈ dt)
(2.10)

=
[
−1

2

∂u

∂x
(t, x)

∣∣∣
x=ψ(t)

+ 1

2

∂u

∂x
(t, x)

∣∣∣
x=0

− δ − 1

2x
u(t, x)

∣∣∣
x=0

]
dt.

PROOF. We will only point out the main ideas for the proof in this case as it
follows mainly the ideas introduced in [11]. A complete description of the method
and this result for the Brownian motion case can be found in [11].

Let us consider

u(t, x) = p0(t, x) − 1

a

∫
R+

py(t, x)F (dy),(2.11)
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where F(dy) is a measure on R+. We consider ψ(t) the solution of u(t,ψ(t)) = 0.
Let us define as before τψ = inf{t ≥ 0;Zδ,0

t ≥ ψ(t)}. Then u(t, x)dx = P(τψ >

t,Z
δ,0
t ∈ dx) and

P0(τψ > t) =
∫ ψ(t)

0
u(t, x)dx.(2.12)

In order to get the distribution of τψ we have to evaluate the derivative of
P0(τψ > t). By using equality (2.12) we obtain

P0(τψ ∈ dt)

=
(
−ψ ′(t)u

(
t,ψ(t)

) −
∫ ψ(t)

0

∂u

∂t
(t, x)dx

)
dt(2.13)

=
(
−1

2

∫ ψ(t)

0

∂2u

∂x2 (t, x)dx + δ − 1

2

∫ ψ(t)

0

∂

∂x

(
1

x
u(t, x)

)
dx

)
dt,

as u(t, x) is solution of partial differential equation (2.8). We thus obtain

P0(τψ ∈ dt) =
(
−1

2

∂u

∂x
(t, x)

∣∣∣
x=ψ(t)

+ δ − 1

2ψ(t)
u
(
t,ψ(t)

)
(2.14)

+
(

1

2

∂u

∂x
(t, x) − δ − 1

2x
u(t, x)

)∣∣∣
x=0

)
dt.

As δ−1
2ψ(t)

u(t,ψ(t)) = 0, and this ends the proof of the theorem. �

The idea behind the method of images is that for some particular forms of
F(dy), we can derive explicit formulae of the hitting time distribution. More pre-
cisely:

PROPOSITION 2.2. Let us denote, for δ = 2ν + 2 > 0 and a > 0 by

Supp(τψ) =
[
0,

(
a

�(ν + 1)2ν

)1/(ν+1)]
.

We define, for all t ∈ Supp(τψ), the function

ψa(t) =
√

2t log
a

�(ν + 1)tν+12ν
.(2.15)

Then the probability density of τψ has its support in Supp(τψ) and is given by

P0(τψ ∈ dt) = 1

2at

(
2t log

a

�(ν + 1)tν+12ν

)ν+1

1Supp(τψ )(t)dt.(2.16)
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PROOF. By using the expression in (2.3) we remark first that

y2ν+1py(t, x) = x2ν+1px(t, y).(2.17)

Let us consider, as in Theorem 2.1,

u(t, x) = p0(t, x) − 1

a

∫
R+

py(t, x)F (dy),(2.18)

with F(dy) = y2ν+11{y>0} dy. In this situation the function u defined in (2.18)
gives

u(t, x) = p0(t, x) − 1

a
x2ν+1

(2.19)

=
(

1

2ν

1

tν+1

1

�(ν + 1)
exp

(
−x2

2t

)
− 1

a

)
x2ν+1.

For simplicity we will write ψ instead of ψa . Following the result in the Theo-
rem 2.1, we are looking for ψ(t) such that u(t,ψ(t)) = 0. This yields

x = ψ(t) =
√

2t log
a

�(ν + 1)tν+12ν
(2.20)

under the obvious condition tν+1 ≤ a
�(ν+1)2ν .

We can now notice that

p0
(
t,ψ(t)

) = 1

a

(
ψ(t)

)2ν+1
,

and we can prove easily that

∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
− x

t
p0(t, x).

We obtain, after replacing in (2.10) and after applying the Theorem 2.1, for this
particular case,

P0(τψ ∈ dt) = 1

2t
ψ(t)p0

(
t,ψ(t)

)
dt

= 1

2at
ψ2ν+2(t)dt

= 1

2at

(
2t log

a

�(ν + 1)tν+12ν

)ν+1

dt,

which gives the desired result. �

The second boundary which allows us to express explicit results is obtained by
using the Markov property for the Bessel process.
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PROPOSITION 2.3. Let us, for δ = 2ν + 2 > 0, s > 0 and a > 0 fixed, denote
by

Supp(τψ) =
⎧⎨
⎩

[0,+∞), for a ≥ 1,[
0,

s

(1/a)1/(ν+1) − 1

]
, for 0 < a < 1.

For t ∈ Supp(τψ) we define the function

ψa(t) =
√

2t (t + s)

s

[
(ν + 1) log

(
1 + s

t

)
+ loga

]
.(2.21)

Then the probability density function of the hitting time τψ is given by

P0(τψ ∈ dt)

= 1

�(ν + 1)

1

t

(
t + s

s

)ν[
log

(
a

(
t + s

t

)ν+1)]ν+1

(2.22)

× exp
[
− t + s

s
log

(
a

(
t + s

t

)ν+1)]
1Supp(τψ )(t)dt.

PROOF. We will only sketch the proof as it follows the same ideas as the one
of the Theorem 2.1. Let us consider the measure F(dy) = p0(s, y)dy for s > 0
fixed. Then, when evaluating the corresponding u(t, x), we have

u(t, x) = p0(t, x) − 1

a

∫
R+

p0(s, y)py(t, x)dy

= p0(t, x) − 1

a
p0(t + s, x)

= 1

2ν

1

�(ν + 1)
x2ν+1

[
1

tν+1 exp
(
−x2

2t

)
− 1

a

1

(t + s)ν+1 exp
(
− x2

2(t + s)

)]
,

by using the Markov property. We obtain the form of ψ(t) by the condition
u(t,ψ(t)) = 0 which gives

ψ(t) =
√

2t (t + s)

s

[
(ν + 1) log

(
1 + s

t

)
+ loga

]
,

(2.23) ⎧⎨
⎩

for t ≥ 0 if a ≥ 1,

for t ≤ s

(1/a)1/(ν+1) − 1
if a < 1.

In order to obtain the distribution of τψ , one has only to evaluate

∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
− s

t (t + s)
xp0(t, x),(2.24)

and u(t,x)
x

for x = 0 and x = ψ(t) and replace the values in the general form (2.14).
The expression (2.22) follows. �
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REMARK 2.4. We can notice that the function ψa(t) defined by (2.21) satis-
fies, for large times, {

ψa(t) � √
t, for a = 1,

ψa(t) � t, for all a > 1.

In particular, we can approach large times by considering this kind of boundary.

A new boundary can be obtained by using the Laplace transform of the square
of the δ-dimensional Bessel process starting from x. More precisely:

PROPOSITION 2.5. Let, for δ = 2ν + 2 > 0, λ > 0 and a > 0 fixed,

ψa(t) = λt

1 + 2λt
+ t

√(
λ

1 + 2λt

)2
+ 2

t
log

a(1 + 2λt)ν+1

2νtν+1�(ν + 1)
(2.25)

for all t ∈ Supp(τψ), where Supp(τψ) is defined by

Supp(τψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0,

1

(2ν�(ν + 1)/a)1/(ν+1) − 2λ

]
,

if λ <
1

2

(
2ν�(ν + 1)

a

)1/(ν+1)

,

[0,+∞),

if λ ≥ 1

2

(
2ν�(ν + 1)

a

)1/(ν+1)

.

(2.26)

Then the probability density function of the hitting time is given by

P0(τψ ∈ dt)
(2.27)

=
√(

λ

1 + 2λt

)2
+ 2

t
log

a(1 + 2λt)ν+1

2νtν+1�(ν + 1)
p0

(
t,ψ(t)

)
1Supp(τψ )(t)dt.

PROOF. We present only the main ideas as the result follows as above
from the general method in Theorem 2.1 applied to the measure F(dy) =
y2ν+1e−λy2

1{y≥0} dy. For this measure u(t, x) takes the form

u(t, x) = p0(t, x) − 1

a

∫
R+

py(t, x)F (dy)

= p0(t, x) − 1

a

∫
R+

py(t, x)y2ν+1e−λy2
dy

= p0(t, x) − 1

a

∫
R+

x2ν+1px(t, y)e−λy2
dy

= p0(t, x) − x2ν+1

a
E

(
e−λZ

δ,x
t

)
.
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By using the expression of the Laplace transform for Z
δ,x
t we obtain

u(t, x) = p0(t, x) − x2ν+1

a

1

(1 + 2λt)δ/2 exp
(
− λx

1 + 2λt

)
.(2.28)

We consider first the equality u(t,ψ(t)) = 0 in (2.28), and this gives the form of
ψ(t) in (2.25). Afterwards, we can evaluate once again in this particular situation

∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
−

(
x

t
− λt

1 + 2λt

)
p0(t, x).

For this particular case, there is only one nonvanishing term in expression (2.10)
of P0(τψ ∈ dt), that is, the term −(x

t
− λt

1+2λt
)p0(t, x) of ∂u

∂x
(t, x) for x = ψ(t),

and this is exactly given by the right-hand side of formula (2.27). �

COROLLARY 2.6. The previous results give, for δ = 2:

(1) for a > 0, 0 ≤ t ≤ a and ψ(t) =
√

2t log a
t
, the density of the hitting time

τψ is

P0(τψ ∈ dt) = 1

2a
log

(
a

t

)
1{0≤t≤a}(t)dt;

(2) for s > 0, a > 0, 0 ≤ t ≤ sa
1−a

and ψ(t) =
√

2t (t+s)
s

log(a t+s
t

), the probabil-
ity density function of τψ is given by

P0(τψ ∈ dt)

= t + s

t
log

(
a
t + s

t

)
exp

[
− t + s

t
log

(
a
t + s

t

)]
1{

0≤t≤sa/(1−a)

}(t)dt;

(3) for a > 0 and ψ(t) = λt
1+2λt

+ t
√

( λ
1+2λt

)2 + 2
t

log a(1+2λt)
t

, for t ∈
Supp(τψ), where

Supp(τψ) =

⎧⎪⎪⎨
⎪⎪⎩

[0,+∞), if λ ≥ 1

2a
,[

0,
a

1 − 2λa

]
, if λ <

1

2a
,

(2.29)

the probability density function of τψ is

P0(τψ ∈ dt) =
√(

λ

1 + 2λt

)2
+ 2

t
log

a(1 + 2λt)

t
p0

(
t,ψ(t)

)
1Supp(τψ )(t)dt.
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2.2. Approximation of the first hitting time for Bessel processes starting from
the origin. In this section we will construct a stepwise procedure, the so-called
random walk on moving spheres (WoMS) algorithm, which allows us to approach
the first time the standard Bessel process hits a given level l > 0. Of course,
this stopping time τl = inf{t > 0;Zδ,x

t = l} can be characterized by its well-
known Laplace transform computed by solving an eigenvalue problem. Indeed if
(Z

δ,x
t , t ≥ 0) is the Bessel process starting from x, of index ν = δ

2 − 1, then for
ν > 0 and x ≤ l, we get

Ex

[
e−λτl

] = x−νIν(x
√

2λ)

l−νIν(l
√

2λ)
, x > 0 and E0

[
e−λτl

] = (l
√

2λ)ν

2ν�(ν + 1)

1

Iν(l
√

2λ)
.

Here Iν denotes the modified Bessel function. This Laplace transform can be used
to describe the following tail distribution: Ciesielski and Taylor [3] proved that, for
δ = 2ν + 2 ∈ N

∗,

P0(τl > t) = 1

2ν−1�(ν + 1)

∞∑
k=1

jν−1
ν,k

Jν+1(jν,k)
e
(−j2

ν,k/(2l2))t
,

where Jν is the Bessel function of the first kind, and (jν,k)ν,k is the associated
sequence of its positive zeros.

We are looking for a numerical approach for the hitting time and these formulae
are not easy to handle and approach, in particular we cannot compute the inverse
cumulative function! The aim of this section is to construct an easy and efficient
algorithm without need of inverting the Laplace transform and without using dis-
cretization schemes since the hitting times are unbounded. In the next step we
will extend this procedure to the hitting time of time-dependent boundaries like
straight lines, useful in the description of the hitting time of a given level for the
CIR process (the Laplace transform is then unknown).

2.2.1. Hitting time of a given level for the Bessel process with positive integer
dimension δ. Let us consider δ independent one-dimensional Brownian motions
(B

(k)
t , t ≥ 0), 1 ≤ k ≤ δ. Then the Bessel process of index δ starting from 0, satis-

fies the following property:

(
Z

δ,0
t , t ≥ 0

)
has the same distribution as

(√(
B

(1)
t

)2 + · · · + (
B

(δ)
t

)2
, t ≥ 0

)
.

Let

τl = inf
{
t ≥ 0;Zδ,0

t ≥ l
}
.(2.30)

In particular, we can express τl by using the first time when the δ-dimensional
Brownian motion B = (B(1), . . . ,B(δ)) exits from the Euclidean ball D centered
in the origin with radius l. Approximating the exit time and the exit position for
the 2-dimensional Brownian motion of a convex domain was already studied by



HITTING TIMES FOR BESSEL PROCESSES 2269

Milstein [12]. He used the so-called random walk on spheres algorithm which
allows one to approach the exit location and the exit time through an efficient
algorithm. The exit position is really simple to obtain (as it is uniformly distributed
on the circle) while the exit time is much more difficult to approach. That is why
we will construct an adaptation of this initial procedure in order to obtain nice and
efficient results concerning the Bessel process exit time.

Let us introduce now our walk on moving spheres (WoMS) algorithm. We first
define a continuous function ρ : R2 → R+ which represents the distance to the
boundary of D,

ρ(x) = inf
{‖x − y‖;y ∈ Dc} = l − ‖x‖.(2.31)

For any small enough parameter ε > 0, we will denote by Dε the sphere centered
at the origin with radius l − ε,

Dε = {x ∈ D; ‖x‖ ≤ l − ε} = {
x ∈ D;ρ(x) ≥ ε

}
.(2.32)

Algorithm (A1) for δ = 2. Let us fix a parameter 0 < γ < 1.
Initialization: Set X(0) = (X1(0),X2(0)) = 0, θ0 = 0, �0 = 0, A0 = γ 2l2e/2.
First step: Let (U1,V1,W1) be a vector of three independent random variables
uniformly distributed on [0,1]. We set⎧⎨

⎩
θ1 = A0U1V1, �1 = �0 + θ1,

X(1)ᵀ = (
X1(1),X2(1)

)ᵀ = X(0)ᵀ + ψA0(θ1)

(
cos(2πW1)

sin(2πW1)

)
,

where

ψa(t) =
√

2t log
a

t
, t ≤ a, a > 0.(2.33)

At the end of this step we set A1 = γ 2ρ(X(1))2e/2.
The nth step: While X(n − 1) ∈ Dε , simulate (Un,Vn,Wn) a vector of three
independent random variables uniformly distributed on [0,1] and define⎧⎨

⎩
θn = An−1UnVn, �n = �n−1 + θn,

X(n)ᵀ = (
X1(n),X2(n)

)ᵀ = X(n − 1)ᵀ + ψAn−1(θn)

(
cos(2πWn)

sin(2πWn)

)
.

(2.34)

At the end of this step we set An = γ 2ρ(X(n))2e/2.
When X(n − 1) /∈ Dε the algorithm is stopped: we set θn = 0, �n = �n−1 and
X(n) = X(n − 1).
Outcome: The hitting time �n and the exit position X(n).

REMARK 2.7. The WoMS algorithm describes a D-valued Markov chain
(X(n), n ≥ 0). Each step corresponds to an exit problem for the 2-dimensional
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Brownian motion. If X(n) = x, then we focus our attention to the exit problem of
the ball centered in x and of radius (ψa(t), t ≥ 0): the exit location corresponds to
X(n+1) and the exit time to θn+1. Of course the choice of the parameter a plays a
crucial role since the moving sphere has to belong to the domain D as time elapses.
When the Markov chain X is close to the boundary ∂D, we stop the algorithm and
obtain therefore a good approximation of the exit problem of D.

Comparison with the classical (WoS) algorithm: at each step, the nth step of the
classical walk on spheres (WoS) is based on the exit location and exit time, which
are mutually independent, for the Brownian paths exiting from a ball centered in
X(n− 1) and with radius γρ(X(n− 1)). The exit location is uniformly distributed
on the sphere while the exit time is characterized by its Laplace transform. There-
fore, if one knows X(n − 1), then the diameter of the sphere is deterministic. For
the WoMS the center of the ball should also be X(n − 1), but the radius is random,
smaller than γρ(X(n− 1)). The exit location will also be uniformly distributed on
the sphere, but the exit time will be much easier to simulate: in particular, you do
not need to evaluate the Bessel functions.

The stochastic process (X(n), n ≥ 0) is a homogeneous Markov chain stopped
at the first time it exits from Dε . In the following, we shall denote Nε this stopping
time which represents in fact the number of steps in the algorithm:

Nε = inf
{
n ≥ 0;X(n) /∈ Dε}.

We just notice that X(Nε) /∈ Dε by its definition.
Algorithm (A1) is presented in the 2-dimensional case. Of course we can con-

struct a generalization of this procedure for the δ-dimensional Bessel process when
δ ∈ N

∗. For notational simplicity, we use a slightly different method: instead of
dealing with a Markov chain (X(n), n ∈ N) living in R

δ we shall consider its
squared norm, which is also (surprisingly) a Markov chain. At each step, we shall
construct a couple of random variables (ξn,χ(n)) associated to an exit problem,
the first coordinate corresponds to an exit time and the second one to the norm of
the exit location.

We introduce some notation: S δ represents the unit ball in R
δ and π1 : Rδ → R

the projection on the first coordinate.

Algorithm (A2). Let us fix a parameter 0 < γ < 1.
Initialization: Set χ(0) = 0, ξ0 = 0, �0 = 0, A0 = (γ 2l2e/(ν + 1))ν+1 �(ν+1)

2 .
The nth step: While

√
χ(n − 1) < l − ε, we choose Un a uniform distributed

random vector on [0,1]�ν+2, Gn a standard Gaussian random variable and Vn an
uniformly distributed random vector on S δ . Consider Un, Gn and Vn independent.
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We set ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξn =
(

An−1

�(ν + 1)2ν
Un(1) · · ·Un

(�ν + 2
))1/(ν+1)

exp
{
−ν − �ν

ν + 1
G2

n

}
,

�n = �n−1 + ξn,

χ(n) = χ(n − 1) + 2π1(Vn)
√

χ(n − 1)ψAn−1(ξn) + ψ2
An−1

(ξn),

(2.35)

where

ψa(t) =
√

2t log
a

�(ν + 1)tν+12ν
,

(2.36)

t ≤ tmax(a) :=
[

a

�(ν + 1)2ν

]1/(ν+1)

, a > 0.

At the end of this step we set

An = (
γ 2(

l −
√

χ(n)
)2

e/(ν + 1)
)ν+1 �(ν + 1)

2
.

When
√

χ(n) ≥ l −ε the algorithm is stopped: we then set ξn = 0, �n = �n−1 and
χ(n) = χ(n − 1).
Outcome: The hitting time �n and the value of the Markov chain χ(n).

It is obvious that for the particular dimension δ = 2, that is, ν = 0, the stopping
times obtained by Algorithms (A1) and (A2) have the same distribution. More-
over, for each n, χ(n) has the same distribution as ‖X(n)‖2. In other words, if the
number of steps of (A1) and (A2) are identical in law, the number of steps will be
denoted in both cases Nε .

THEOREM 2.8. Set δ ∈ N
∗. The number of steps Nε of the Algorithm WoMS

(A2) is almost surely finite. Moreover, there exist constants Cδ > 0 and ε0(δ) > 0,
such that

E
[
Nε] ≤ Cδ| log ε| for all ε ≤ ε0(δ).

THEOREM 2.9. Set δ ∈ N
∗. As ε goes to zero, �Nε converges in distribution

toward τl , the hitting time of the δ-dimensional Bessel process (with cumulative
distribution function F ), which is almost surely finite. Moreover, for any α > 0
small enough,(

1 − ε√
2απ

)
Fε(t − α) ≤ F(t) ≤ Fε(t) for all t > 0,(2.37)

where Fε(t) := P(�Nε ≤ t).
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These results and the key ideas of the proofs are adapted from the classical
random walk on spheres (WoS); see [12].

PROOF OF THEOREM 2.8. Step 1. Let us estimate the number of steps. Since
(χ(n), n ≥ 0) is a homogeneous Markov chain, we introduce the operator Pxf

defined, for any nonnegative function f : R+ → R+, by

Pxf :=
∫

R+
f (y)P(x,dy),

where P(x,dy) is the transition probability of the Markov chain. By definition,
χ(n + 1) depends only on χ(n), Vn and ξn. Let us note that, by construction, Vn

and ξn are independent. Moreover using the result developed in the Appendix, the
density of ξn(

2ν�(ν+1)
An−1

)1/(ν+1) is given by

μ(r) = (ν + 1)ν+2

�(ν + 2)
rν(− log r)ν+11[0,1](r).(2.38)

If we denote σd , the uniform surface measure on the unit sphere in R
d , we get

Pxf =
∫ 1

0

∫
S δ

f
(
x + 2π1(u)

√
xK(x, r) + K2(x, r)

)
μ(r)dr σ δ(du),(2.39)

with K(x, r) defined by

K(x, r) = ψA

([
A

2ν�(ν + 1)

]1/(ν+1)

r

)
,(2.40)

and A depending on x in the following way:

A =
(

γ 2(l − √
x)2e

ν + 1

)ν+1 �(ν + 1)

2
.

We can observe the following scaling property: ψA(A1/(ν+1)t) = A1/(2ν+2)ψ1(t).
Therefore the definition of ψ1 leads to

K(x, r) = γ (l − √
x)

√
er

ν + 1
log

1

rν+1 = γ (l − √
x)

√
er(− log r).(2.41)

Step 2. Using classical potential theory for discrete time Markov chains (see, e.g.,
Theorem 4.2.3 in [14]), we know that

φ(x) = Ex

(
Nε−1∑
n=0

g
(
χ(n)

))

satisfies, for any nonnegative function g,{
φ(x) = Pxφ + g(x), 0 ≤ x < (l − ε)2,

φ
(
(l − ε)2) = 0.

(2.42)
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In particular, for g = 1, we obtain that φ(x) = Ex[Nε]. In order to get an upper-
bound for the averaged number of steps, it suffices to apply a comparison result.
Let us first define the constant Cδ ,

Cδ =
(

ν + 1

ν + 2

)ν+2 e

�(ν + 2)

1

2δ
σ δ(Sδ).(2.43)

We choose the function

Uε(x) = {
log

(
(l − √

x)/ε
) − log(1 − γ )

}
/
(
Cδγ

2)
, 0 ≤ x < l2,(2.44)

which satisfies Uε(x) ≥ PxU
ε + 1, for all 0 < x < (l − ε)2 (see Lemma 2.10

for the definition of the constant and for the inequality) and Uε(x) ≥ 0 for all
0 < x < (l − ε)2. A classical comparison result related to the potential theory (see,
e.g., Theorem 4.2.3 in [14]) implies that Ex[Nε] ≤ Uε(x) for all x ∈ [0, (l − ε)2]
and consequently leads to the announced statement. �

LEMMA 2.10. Let us define, for small ε > 0, Uε(x) = {log((l − √
x)/ε) −

log(1 − γ )}/(Cδγ
2) for x ∈ [0, l2[ and where the constant Cδ is given by (2.43)

and γ is related to the definition of the WoMS. Then, for any x ∈]0, (l − ε)2[, the
following inequality yields

PxU
ε − Uε(x) ≤ −1.

We recall that PxU
ε is defined by (2.39) and (2.41).

PROOF. We will split the proof into several steps.
Step 1. First of all, we observe that Uε ≥ − log(1 − γ )/(Cδγ

2) in the domain
[0, (l − ε)2]. Let us consider now χ(0) = x ∈ [0, (l − ε)2] and y in the support
of the law of χ(1) and let us prove that Uε(y) ≥ 0. By the definition of χ(1) we
obtain

χ(1) ≤ sup
y∈[−1,1],t∈[0,tmax(A)]

(
x + 2y

√
xψA(t) + ψ2

A(t)
)
,

where A = (γ 2(l − √
x)2e/(ν + 1))ν+1 �(ν+1)

2 and both ψA and tmax are defined
by (2.36). The right-hand side of the preceding inequality is increasing with respect
to y so that

χ(1) ≤
(√

x + sup
t∈[0,tmax(A)]

ψA(t)
)2

.

Furthermore, for a > 0 the maximum of the function ψa is reached for tmax(a) =
1
e
( a
�(ν+1)2ν )1/(ν+1) and is equal to

sup
t∈[0,tmax(a)]

ψa(t) =
{

2(ν + 1)

e

(
a

�(ν + 1)2ν

)1/(ν+1)}1/2

.(2.45)
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Finally using the definition of A and the inequality x ≤ (l − ε)2, we find the fol-
lowing lower bound:

l −
√

χ(1) ≥ (l − √
x)(1 − γ ) ≥ ε(1 − γ ).

We can therefore conclude that, for any y in the support of the law of χ(1) (even
for y ≥ (l−ε)2), Uε(y) ≥ 0 which ensures that Uε is well defined and nonnegative
in the domain of the operator Px .

Step 2. Furthermore the Taylor expansion yields

Uε(y) ≤ Uε(x) +
√

x − √
y

Cδγ 2(l − √
x)

− (
√

x − √
y)2

2Cδγ 2(l − √
x)2 + (

√
x − √

y)3

3Cδγ 2(l − √
x)3 ,

(2.46)
x, y ∈ [0, l2[.

If χ(0) = x and y is in the support of the random variable χ(1), then

√
y − √

x =
√

x + 2π1(u)
√

xK(x, r) + K2(x, r) − √
x

≥ π1(u)K(x, r).

By expansion (2.46) and the definition of the operator Px given by (2.39), the
following upper-bound for the operator Px holds:

PxU
ε =

∫ 1

0

∫
S δ

Uε(x + 2π1(u)
√

xK(x, r) + K2(x, r)
)
μ(r)dr σ δ(du),

≤ Uε(x) −
∫ 1

0

∫
S δ

π1(u)K(x, r)

Cδγ 2(l − √
x)

μ(r)dr σ δ(du)

−
∫ 1

0

∫
Sδ+

π2
1 (u)K2(x, r)

2Cδγ 2(l − √
x)2 μ(r)dr σ δ(du)

−
∫ 1

0

∫
S δ

π3
1 (u)K3(x, r)

3Cδγ 2(l − √
x)3 μ(r)dr σ δ(du),

where

Sδ+ := {
u ∈ S δ :π1(u) > 0

}
.(2.47)

Due to symmetry properties, the first and the third integral terms vanish.
Then (2.41) leads to

PxU
ε ≤ Uε(x) − I

Cδ

∫
Sδ+

π2
1 (u)σ δ(du)

with

I = (ν + 1)ν+2e

2�(ν + 2)

∫ 1

0
rν+1(− log r)ν+2 dr.
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The description of the probability density function in the Appendix leads to the
following explicit value:

I =
(

ν + 1

ν + 2

)ν+2 e

�(ν + 2)
.

In order to complete the proof, it suffices to choose the particular constant given
by (2.43) after noticing that∫

Sδ+
π2

1 (u)σ δ(du) = 1

2δ
σ δ(Sδ). �

PROOF OF THEOREM 2.9. The proof is split in two parts. First, the steps of
the algorithm and the hitting time of the Bessel process of index ν shall be related
to stopping times of a δ-dimensional Brownian motion (ν = δ

2 − 1). Second, we
point out that the corresponding stopping times are close together by evaluating
deviations of the Brownian paths.

Step 1. Let B = (B(1),B(2), . . . ,B(δ)) be a δ-dimensional Brownian motion.
Then the norm of B has the same distribution as a Bessel process of index ν; see,
for instance, [15]. Hence the first hitting time τl is identical in law to the stopping
time

Tl = inf{t ≥ 0;Bt /∈ D},
where D is the Euclidean ball centered at the origin and of radius l. We introduce
then a procedure in order to come close to Tl . For the first step we shall focus
our attention to the first exit time of a moving sphere centered at the origin and
of radius ψa(t) defined by (2.36), we denote ξ̂1 this stopping time. Of course this
moving sphere should always stay in D, so we choose a such that the maximum
of ψa stays smaller than l. By (2.45), we get

sup
t≤a

ψa(t) < l ⇐⇒ a <
�(ν + 1)

2

(
el2

ν + 1

)ν+1

.

For a = A0 = �(ν+1)
2 (

eγ 2l2

ν+1 )ν+1 with a parameter γ < 1, the condition is satisfied,

supt≤a ψa(t) = γ 2ν+2l < l. Let us describe the law of (ξ̂1,B
ξ̂1

). The norm of the
Brownian motion is identical in law with the Bessel process; therefore Proposi-
tion 2.2 implies that the density function of ξ̂1 is given by (2.16) with a replaced
by A0. Using the law described in Proposition A.1, we can prove that ξ̂1 has the
same distribution as (

A0

�(ν + 1)2ν

)1/(ν+1)

e−Z,

where Z is Gamma distributed with parameters α = ν + 2 and β = 1
ν+1 . By con-

struction we deduce that ξ̂1
(d)= ξ1 where ξ1 is defined in the Algorithm WoMS (A2).

Knowing the stopping time, we can easily describe the exit location since the
Brownian motion is rotationnaly invariant: B

ξ̂1
is then uniformly distributed on
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FIG. 1. Walk on moving spheres.

the sphere of radius ψA0(ξ̂1). Hence

(
ξ̂1,‖B

ξ̂1
‖) (d)= (

ξ1, χ(1)
)

and ξ̂1 < Tl .

By this procedure we can construct a sequence of stopping times (ξ̂n, n ≥ 1) and
define �̂n = ξ̂1 + · · · + ξ̂n; �̂n is the first time after �̂n−1 such that the Brownian
motion exits from a sphere centered in B

�̂n−1
of radius ψan initialized at time

�̂n−1. See Figure 1. The moving sphere should stay in the domain D, so we choose

an = (
γ 2(l −

√
B

�̂n−1
)2e/(ν + 1)

)ν+1 �(ν + 1)

2
.

Using the same arguments as before and by the Markov property for the Brow-
nian motion, we obtain the identities in law

(an, n ≥ 1)
(d)= (An,n ≥ 1),

(
�̂n,‖B

�̂n
‖)

n≥1
(d)= (

�n,χ(n)
)
n≥1

with �̂n < Tl and �n, An, χ(n) defined in the Algorithm WoMS (A2). Conse-
quently defining N̂ε = inf{n ≥ 0;B

�̂n
/∈ Dε}, the following identity yields

(
�̂

N̂ε ,‖B
�̂

N̂ε
‖) (d)= (

�Nε,χ
(
Nε)) and �̂

N̂ε < Tl .(2.48)

Step 2. Let us now estimate the difference between �̂
N̂ε and Tl . By (2.48) we first

deduce

F(t) := P(τl ≤ t) = P(Tl ≤ t) ≤ Fε(t) := P(�Nε ≤ t), t > 0.(2.49)

Furthermore, for any small α > 0,

1 − F(t) = P(Tl > t, �̂
N̂ε ≤ t − α) + P(Tl > t, �̂

N̂ε > t − α)

≤ P(Tl > t, �̂
N̂ε ≤ t − α) + P(�̂

N̂ε > t − α)(2.50)

≤ P(Tl > t, �̂
N̂ε ≤ t − α) + 1 − Fε(t − α).
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At time �̂
N̂ε the Brownian motion is in the ε-neighborhood of the boundary ∂D,

hence l − ‖B
�̂

N̂ε
‖ ≤ ε. Using the strong Markov property, we obtain

P(Tl > t, �̂
N̂ε ≤ t − α) ≤ Fε(t − α) sup

y∈D\Dε
Py(Tl > α).(2.51)

Since the Brownian motion is rotationally invariant, it suffices to choose y = (l −
ε,0, . . . ,0). Due to the convexity of D, the following upper-bound holds:

Py(Tl > α) ≤ P0

(
sup

0≤t≤α

B
(1)

t < ε
)

= P0
(
2
∣∣B(1)

α

∣∣ < ε
) ≤ ε√

2απ
.(2.52)

Combining (2.49) for the upper-bound and (2.50), (2.51) and (2.52) for the lower-
bound yields the announced estimation (2.37). �

2.2.2. The first time the Bessel process of index ν hits a decreasing curved
boundary. The algorithm developed in the previous paragraph can be adapted
to the problem of hitting a deacreasing curved boundary. Let us define

τ = inf
{
t ≥ 0 :Zδ,0

t = l(t)
}

where l is decreasing and l(0) > 0.(2.53)

ASSUMPTION 2.11. There exists a constant �min > 0 which bounds the
derivative of l

l′(t) ≥ −�min ∀t ≥ 0.

The procedure then also consists in building a WoMS which reaches a neigh-
borhood of the boundary. But instead of dealing with a fixed boundary as in Sec-
tion 2.2.1, that is a ball of radius l, we shall in this section introduce the following
moving boundary: the ball centered in the origin and of radius l(t). The arguments
developed in order to prove Theorems 2.8 and 2.9 will be adapted to this new
context.

Algorithm (A3):
Let us define the following positive constants:

L = max
(
l(0),�min,

√
ν + 1

)
, κ = 2ν

5ν+1L2ν+2 �(ν + 1).(2.54)

Initialization: Set χ(0) = 0, ξ0 = 0, �0 = 0, A0 = κ(l(0) − √
χ(0))2(ν+1).

The nth step: While the condition

l(�n−1) −
√

χ(n − 1) > ε

[denoted by C(n − 1)] holds, we simulate Un an uniform distributed random
vector on [0,1]�ν+2, Gn a standard Gaussian random variable and Vn a uni-
formly distributed random vector on S δ . Un, Gn and Vn have to be indepen-
dent. We then construct (ξn,�n,χ(n)) using (2.35). At the end of this step we
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set An = κ(l(�n) − √
χ(n))2(ν+1).

The algorithm stops when C(n − 1) is not longer satisfied: we set ξn = 0 and so
�n = �n−1 and χ(n) = χ(n − 1).
Outcome The exit position χ(n) and the exit time.

Let us note that the stochastic process (χ(n), n ≥ 0) is not a Markov chain
since the sequence (An)n≥0 depends on both (�n,χ(n)). That is why we define
the following Markov chain:

Rn := (
�n,χ(n)

) ∈ R
2+

stopped at the first time the condition C(n) is not satisfied. In the following, we
shall denote Nε this stopping time (number of steps of the algorithm):

Nε = inf
{
n ≥ 0; l(�n) −

√
χ(n) ≤ ε

}
.

THEOREM 2.12. The number of steps Nε of the Algorithm WoMS (A3) is
almost surely finite. Moreover, there exist a constant Cδ > 0 and ε0(δ) > 0, such
that

E
[
Nε] ≤ Cδ| log ε| for all ε ≤ ε0(δ).

THEOREM 2.13. As ε goes to zero, �Nε converges in distribution toward τ

defined by (2.53) (with cumulative distribution function F ), which is almost surely
finite. Moreover, for any α > 0 small enough,(

1 − ε√
2απ

)
Fε(t − α) ≤ F(t) ≤ Fε(t) for all t > 0,(2.55)

where Fε(t) := P(�Nε ≤ t).

PROOF OF THEOREM 2.12. The proof is based mainly on arguments already
presented in Theorem 2.8. So we let the details of the proof to the reader and focus
our attention to the main ideas.

(1) The process (�n,χ(n)) is a homogeneous Markov chain and the associated
operator is given by

Pt,xf :=
∫
(s,y)∈R

2+
f (s, y)P

(
(t, x), (ds,dy)

)
,(2.56)

where f is a nonnegative function and P((t, x), (ds,dy)) is the transition proba-
bility of the chain. The chain starts with (�0, χ(0)) = (0,0) and is stopped the first
time when l(�n) − √

χ(n) ≤ ε. Classical potential theory ensures that

φ(t, x) = Et,x

(
Nε−1∑
n=0

g
(
�n,χ(n)

))
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is solution of the following equation:{
φ(t, x) = Pt,xφ + g(t, x), (t, x) ∈ Dε,

φ(t, x) = 0, ∀(t, x) ∈ ∂Dε,
(2.57)

with Dε = {(t, x) ∈ R
2+ : l(t)−√

x ≤ ε}. For the particular choice g = 1, we obtain
φ(t, x) = Et,x[Nε], and therefore the averaged number of step is given by φ(0,0).

(2) In order to point out an upper-bound for the averaged number of steps, we
use a comparison result: we are looking for a function U(t, x) such that{

U(t, x) ≥ Pt,xU + 1, ∀(t, x) ∈ Dε,

U(t, x) ≥ 0, ∀(t, x) ∈ ∂Dε.
(2.58)

For such a particular function, we can deduce φ(t, x) ≤ U(t, x). Let us define

U(t, x) = c log
(

l(t) − √
x

ε

)
1{l(t)−√

x≥0},

with some constant c > 0 which shall be specified later on. The positivity assump-
tion on the boundary ∂Dε is trivial. Moreover since l is a decreasing function,
(2.56) implies

Pt,xU =
∫
(s,y)∈R

2+
U(s, y)P

(
(t, x), (ds,dy)

)
(2.59)

≤
∫
(s,y)∈R

2+
U(t, y)P

(
(t, x), (ds,dy)

)
.

By using the Taylor expansion, we get

U(t, y) ≤ U(t, x) − c

√
y − √

x

l(t) − √
x

− c

2

(
√

y − √
x)2

(l(t) − √
x)2 − c

3

(
√

y − √
x)3

(l(t) − √
x)3 ,

(2.60)
(x, y) ∈ R

2+.

Using similar arguments and similar bounds as those presented in Lemma 2.10,
the odd powers in the Taylor expansion do not play any role in the integral (2.59).
Therefore we obtain

Pt,xU ≤ U(t, x) − c

2

∫
(s,y)∈R

2+

(
√

y − √
x)2

(l(t) − √
x)2 P

(
(t, x), (ds,dy)

)

≤ U(t, x) − c

2

∫ 1

0

∫
Sδ+

π2
1 (u)K2(x, r)

(l(t) − √
x)2 μ(r)dr σ δ(du),

where Sδ+ is given in (2.47), and K is defined by (2.40) with A = κ(l(s) −√
x)2(ν+1). We have now

Pt,xU ≤ U(t, x) − c(ν + 1)

2

(
2K

�(ν + 1)

)1/(ν+1)(∫
S δ+

π2
1 (u)σ δ(du)

)

×
(∫ 1

0
r(− log r)μ(r)dr

)
.
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An appropriate choice of the constant c leads to (2.58). Finally we get

E
[
Nε] ≤ U(0,0) = c log

(
l(0)/ε

)
. �

PROOF OF THEOREM 2.13. The arguments are similar to those developed for
Theorem 2.9, and the extension of the convergence result to curved boundaries
is straightforward. That is why we shall not repeat the proof, but just focus our
attention on the only point which is quite different. We need to prove that the
Markov chain Rn = (�n,χ(n)) stays in the domain D0 = {(t, x) : 0 ≤ x ≤ l2(t)}
so that the hitting time τ defined by (2.53) satisfies τ > �Nε . In other words, if the
Markov chain Rn = (�n,χ(n)) for the nth step is equal to (s, x), then Rn+1 should
belong to {(t, x) : t ≥ s, x ≤ l2(t)}. In the WoMS setting, for t ≥ s, this means that
the ball centered in x and of time-dependent radius ψA(t − s) always belongs as
time elapses to the ball centered in 0 of radius l(t). We recall that

A = κ
(
l(s) − √

x
)2(ν+1)

.

Therefore we shall prove that

∀t ≥ s ψA(t − s) + √
x ≤ l(t).(2.61)

In fact, due to Assumption 2.11 and the definition of ψA, it suffices to obtain

ψA(t − s) ≤ l(s) − √
x − �min(t − s) ∀s ≤ t ≤ s + W 2,(2.62)

where

W =
(

A

�(ν + 1)2ν

)1/(2ν+2)

=
(

κ

�(ν + 1)2ν

)1/(2ν+2)(
l(s) − √

x
)

= 1

L
√

5

(
l(s) − √

x
)
.

Due to the definition of the constant L, we have

0 ≤ W ≤ 1

2�min

2(l(s) − √
x)�min√

((2ν + 2)/e) + 4(l(s) − √
x)�min

≤ 1

2�min

{√
2ν + 2

e
+ 4

(
l(s) − √

x
)
�min −

√
2ν + 2

e

}
.

The right-hand side of the preceding inequality is the positive root of the polyno-
mial function P(X) = �minX

2 + √
2(ν + 1)/eX − (l(s) − √

x). We deduce that
P(W) ≤ 0. By (2.45) and P(W) ≤ 0, we obtain

sup
t≥s

ψA(t − s) =
(

2(ν + 1)

e

)1/2

W

≤ l(s) − √
x − �minW

2

≤ l(s) − √
x − �min(t − s) ∀s ≤ t ≤ s + W 2.
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Finally we have proved (2.62) and so (2.61). �

If Assumption 2.11 is not satisfied, then it is difficult to have a general de-
scription of an iterated procedure in order to simulate hitting times. However the
particular form of the function ψa defined by (2.36) permits us to describe a WoMS
algorithm for the square root boundaries. Let us therefore consider the following
functions:

ψa(t) =
√

2t log
a

�(ν + 1)tν+12ν
and f (t) = √

r − ut,(2.63)

well defined for t ≤ t0 := min(α1/(ν+1), r
u
) where α = a(�(ν + 1)2ν)−1.

The algorithm is essentially based on the following result (the constants r and u

associated with the hitting problem of a square root boundary for the Bessel pro-
cess shall be specified in the proof of Proposition 2.15).

LEMMA 2.14. Let us define

Fν(r, u) = 1

2

(
er

ν + 1

)ν+1
�(ν + 1)e−u/2, r > 0, u > 0.(2.64)

If a = Fν(r, u), then

ψa(t) ≤ f (t) for all 0 ≤ t ≤ α1/(ν+1).(2.65)

PROOF. We are looking for a particular value a depending on both r and u

such that the following bound holds: ψa(t) ≤ f (t), for all 0 ≤ t ≤ t0. Since t ≤ t0,
it suffices to prove that

2t log
α

tν+1 ≤ r − ut ⇐⇒ g(t) := t

(
2 log

α

tν+1 + u

)
≤ r.

Let us compute the maximum of the function g on the interval [0, t0], with t0 fixed,

g′(t) = 2 log
α

tν+1 + u − 2(ν + 1).

We have

g′(t) = 0 ⇐⇒ log
α

tν+1 = ν + 1 − u

2
⇐⇒ tν+1 = α exp

{
u

2
− ν − 1

}
.

In other words the maximum of the function g is reached for

tmax = α1/(ν+1) exp
{

u

2(ν + 1)
− 1

}

and is equal to

g(tmax) = gmax = 2(ν + 1)α1/(ν+1)e(u/(2(ν+1)))−1.
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Choosing gmax ≤ r we obtain in particular (2.65), which means

α ≤
(

er

2(ν + 1)

)ν+1

e−u/2 ⇐⇒ a ≤ 1

2

(
er

ν + 1

)ν+1

�(ν + 1)e−u/2.

For a0 = 1
2( er

ν+1)ν+1�(ν + 1)e−u/2, we get (2.65) since t0 = α1/(ν+1). �

The aim is now to construct an algorithm which permits us to approximate the
hitting time of the square root boundary. Therefore we consider a Bessel process
of dimension δ which hits the decreasing curved boundary f (t) given by (2.63).

Algorithm (A4)—the square root boundary: l(t) = √
β0 − β1t with β0 > 0,

β1 > 0.
Let κ ∈]0,1[.
Initialization: Set χ(0) = 0, ξ0 = 0, �0 = 0, A0 = κFν(β0, β1).
The (n + 1)th step: While the condition

l(�n) −
√

χ(n) > ε
(
denoted by C(n)

)
holds, we define

An = κFν

((
l(�n) −

√
χ(n)

)2
, β1

(
1 −

√
χ(n)

l(�n)

))
,(2.66)

where Fν is defined by (2.64), and we simulate Un+1, a uniformly distributed
random vector on [0,1]�ν+2, Gn+1, a standard Gaussian random variable and
Vn+1, a uniformly distributed random vector on S δ . Un+1, Gn+1 and Vn+1 have to
be independent. We then construct (ξn+1,�n+1, χ(n + 1)) using (2.35).
The algorithm stops when C(n) is not longer satisfied: we set ξn+1 = 0 and so
�n+1 = �n and χ(n + 1) = χ(n).

PROPOSITION 2.15. The statements of Theorems 2.12 and 2.13 are true for
Algorithm (A4) associated with the square root boundary.

PROOF. All the arguments developed for decreasing boundaries with lower-
bounded derivatives are easily adapted to the square root boundary. We leave the
details to the reader and focus our attention to the following fact: the stochastic
process (�n,χ(n), n ≥ 0) stays in the domain D0 defined by

D0 = {
(t, x) ∈ R

2+ : l(t) − √
x > 0

}
.

In the WoMS setting, for t ≥ s, this means that for (�n,χ(n)) = (s, x) ∈ D0 the
following step leads to

√
χ(n + 1) < l(�n+1). By (2.35), it suffices to prove that√

x + ψA(t) < l(s + t)
(2.67)

for all t ∈ {
u ≥ 0 : min

(
l(s + u),ψA(u)

) ≥ 0
}
,
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with A = κFν((l(s) − √
x)2, β1(1 −

√
x

l(s)
)), since χ(n + 1) ≤ (

√
χ(n) +

ψAn(ξn+1))
2. By Lemma 2.14 and due to the coefficient κ , we have

ψA(t) <

√(
l(s) − √

x
)2 − β1

(
1 −

√
x

l(s)

)
t .

Hence (
l(s + t) − √

x
)2 − ψA(t)2

>
(√

l(s)2 − β1t − √
x
)2 − (

l(s) − √
x
)2 + β1

(
1 −

√
x

l(s)

)
t

> 2
√

x
(
l(s) −

√
l2(s) − β1t

) − β1
√

x

l(s)
t ≥ 0.

This leads directly to (2.67). �

REMARK 2.16. The whole study points out a new efficient algorithm in order
to simulate Bessel hitting times for given levels or curved boundaries. We can use
this algorithm in two generalized situations:

(1) We have assumed that the Bessel process starts from the origin. Of course
the procedure presented here can also be applied to Bessel processes starting from
x > 0. It suffices to change the initialization step!

(2) We focused our attention to the Bessel process, but we linked also the ini-
tial problem to the exit time of a δ-dimensional Brownian motion from a ball of
radius l. Algorithm (A1) extended to higher dimensions can also be used in order
to evaluate exit times of general compact domains whose boundary is regular.

3. Numerical results. In this part we will illustrate the previous results on
some numerical examples. Let us figure first an outcome of our algorithm, the exit
position from a sphere with radius depending on time. The figure below is giving
this result for an radius l = 1 and a precision ε = 10−3.

Let us compare our algorithm with existing results. Consider the classical Eu-
ler scheme for a Brownian motion, and evaluate the first hitting time and hitting
position from a disk with given radius.
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FIG. 2. Distribution of the hitting time [Euler scheme and WoMS Algorithm (A1)]—Histogram of
the angle for the exit position.

First of all we can verify that the distribution of the hitting time for the WoMS
algorithm matches the distribution of the hitting time of a given level for the 2-
dimensional Bessel process. Figure 2 gives this result for a starting disk with ra-
dius 1, a precision ε = 10−3 and a number of simulations N = 20,000. In the Euler
scheme the time step is �t = 10−4.

We can also test the fact that the exit position is uniformly distributed on the
circle. In order to do this we can evaluate the angle of the exit position in our
WoMS procedure and show that it is a uniformly distributed random variable with
values in [−π,π ]. Figure 2 also shows the histogram of the result for a disk of
radius 1 an ε = 10−3 and 20,000 simulations.

Let us now present a simulation with Algorithm (A2). We consider the hit-
ting time of the level l = 2 for the Bessel process of index ν = 2, and we il-
lustrate Theorem 2.8 by Figure 3. The curve represents the averaged number of
steps versus the precision ε = 10−k , k = 1, . . . ,7. We can observe that the num-
ber of steps is better than suspected since the curve is sub-linear. We obtain the
following values (for γ = 0.9 and 100,000 simulations in order to evaluate the
mean).

ε 10−1 10−2 10−3 10−4

E[Nε] 4.0807 7.53902 9.50845 10.83133

ε 10−5 10−6 10−7

E[Nε] 10.94468 11.30869 11.62303

FIG. 3. Averaged number of step of Algorithm (A2) versus ε.
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ν 0 0.5 1 1.5 2
E[Nε] 6.819 7.405 8.270 8.887 9.594

ν 2.5 3 3.5 4
E[Nε] 10.256 10.542 10.995 11.096

FIG. 4. Averaged number of step of Algorithm (A2) versus δ = 2ν + 2.

Finally we present the dependence of the averaged number of steps of Algo-
rithm (A2) with respect to the dimension of the Bessel process. See Figure 4. For
that purpose, we simulate hitting time of the level l = 2 with ε = 10−3, γ = 0.9,
50,000 simulations for each estimation of the averaged value, and the dimension
of the Bessel process takes value in the set {2,3, . . . ,18}.

4. Application to the Cox–Ingersoll–Ross process. We now aim to estimate
the hitting time of a level l > 0 for (Xδ

t , t ≥ 0), a Cox–Ingersoll–Ross process. The
CIR process is the solution of the following stochastic differential equation:⎧⎨

⎩ dXδ
t = (

a + bXδ
t

)
dt + c

√∣∣Xδ
t

∣∣ dBt,

Xδ
0 = x0,

(4.1)

where x0 ≥ 0, a ≥ 0, b ∈ R, c > 0 and (Bt , t ≥ 0) is a standard Brownian motion.
We denote here δ = 4a/c2.

We will first recall a connection between this stochastic process and (Y δ(t), t ≥
0), the square of the Bessel process BESQ(δ), the solution of the equation

Y δ(t) = y0 + δt + 2
∫ t

0

√∣∣Y δ(s)
∣∣ dBs, t ≥ 0.(4.2)

LEMMA 4.1. The CIR process has the same distribution as (Xt , t ≥ 0) which
is defined by ⎧⎪⎨

⎪⎩
Xt = ebtY δ

(
c2

4b

(
1 − e−bt )),

X0 = Y δ(0),

(4.3)

where Y is the square of a Bessel process in dimension δ = 4a/c2; see [15].

PROOF. Let us only sketch some ideas of the proof. Let Y δ(t) be the square of
the δ-dimensional Bessel process. By applying Itô’s formula, we get the stochastic
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differential equation satisfied by the process Xt ,

dXt = bXt dt + ebt d
(
Y

(
c2

4b

(
1 − e−bt )))

= bXt dt + bδ
c2

4b
dt + 2ebt

√∣∣e−btXt

∣∣ dB(c2/(4b))(1−e−bt )(4.4)

= (a + bXt)dt + 2ebt/2
√

|Xt |dB(c2/(4b))(1−e−bt ),

where δ = 4a/c2. Let us remark that

c2

4b

(
1 − e−bt ) =

∫ t

0
ρ2(s)ds with ρ(t) = c

2
e−bt/2.

We can deduce that there exists a Brownian motion (βt , t ≥ 0) such that

B(c2/(4b))(1−e−bt ) =
∫ t

0
ρ(s)dβs

for all t ≥ 0. With this notation, equation (4.4) gives

dXt = (a + bXt)dt + 2ebt/2
√

|Xt |ρ(t)dβt

= (a + bXt)dt + c

√
|Xt |dβt ,

and X0 = Y(0). This proves that the process (Xt , t ≥ 0) has the same distribution
as the CIR process given by (4.1). �

Let us consider the hitting time of a given level l for the CIR process and denote
it by Tl . This time is defined by

Tl = inf
{
s ≥ 0;Xδ

s = l
}
.

The previous Lemma 4.1 gives also an equivalence (in distribution) connecting the
hitting time of the CIR process and the hitting time of the square of a δ-dimensional
Bessel process.

PROPOSITION 4.2. The hitting time Tl of a level l > 0 for a CIR process has
the same distribution as − 1

b
log(1 − 4b

c2 τψ) where

τψ = inf
{
t ≥ 0;Y δ(t) = l

(
1 − 4b

c2 t

)}
,

and Y δ is the square of a Bessel process of dimension δ = 4a/c2.

PROOF. By using Lemma 4.1, τψ has the same distribution as T l given by

T l = inf
{
s ≥ 0;Y δ

(
c2

4b

(
1 − e−bs)) = le−bs

}
.(4.5)
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Define t = c2

4b
(1 − e−bs), so we have two situations:

First case: If b < 0, let s = η(t) where

η(t) = −1

b
log

(
1 − 4b

c2 t

)
for t ≥ 0.

The map η is a strictly nondecreasing function, and we thus get thus

T l = inf
{
η(t); t ≥ 0, Y δ(t) = l

(
1 − 4b

c2 t

)}

= η

(
inf

{
t ≥ 0;Y δ(t) = l

(
1 − 4b

c2 t

)})
.

Second case: If b ≥ 0, let also s = η(t). In this case the variable t takes its values
only on the interval [0, c2

4b
). So

T l = inf
{
η(t);0 ≤ t ≤ c2

4b
,Y δ(t) = l

(
1 − 4b

c2 t

)}
.

The condition 0 ≤ t ≤ c2

4b
can be omitted in the estimation of the infimum as the

boundary to hit: 1 − 4bt
c2 is negative outside this interval, and the Bessel process is

always positive. Furthermore the function η is also nondecreasing for b ≥ 0, and
the result is thus obtained. �

Application of Algorithm (A4):
An immediate consequence of Proposition 4.2 is that the hitting time Tl is re-

lated to the first time the Bessel process of dimension δ = 4a/c2 reaches the curved

boundary: f (t) =
√

l(1 − 4b
c2 t). We are able to apply Algorithm (A4) if 4a/c2 ∈ N

∗
and b > 0 (the boundary is then decreasing). Let us denote by Nε the number of
steps of (A4) and �Nε , the approximated hitting time of the Bessel process associ-
ated with the particular curved boundary f . Combining Propositions 2.15 and 4.2
leads to(

1 − ε√
2απ

)
P

(
�Nε ≤ c2

4b

(
1 − e−bt ) − α

)
≤ P(Tl ≤ t)

≤ P

(
�Nε ≤ c2

4b

(
1 − e−bt ))

for α small enough and t > 0.

APPENDIX: SIMULATION OF RANDOM VARIABLES

Let us introduce simulation procedures related to particular probability density
functions.
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PROPOSITION A.1. Let Z be a random variable with Gamma distribution
Gamma(α,β), that is,

P(Z ∈ dz) = 1

�(α)βα
zα−1e−z/β1{z>0} dz, α > 0, β > 0.

Then W = exp(−Z) has the following distribution:

P(W ∈ dr) = 1

�(α)βα
(− log r)α−1r1/β−11[0,1](r)dr.

In particular the stopping time τψ defined by (2.16) has the same law as
[ a
�(ν+1)2ν ]1/(ν+1)e−Z . Here Z is a Gamma distributed random variable with pa-

rameters α = ν + 2 and β = 1
ν+1 .

PROOF. Let f be a nonnegative function. Using suitable changes of variables,
we obtain

E
[
f (W)

] = 1

�(α)βα

∫ ∞
0

f
(
e−z)zα−1e−z/β dz

= 1

�(α)βα

∫ 1

0
f (r)(− log r)α−1r1/β−1 dr.

In order to end the proof it suffices to multiply W by a constant and use once again
a change of variables formula. �

We need to simulate Gamma distributed variables. Let us just recall some com-
mon facts.

PROPOSITION A.2. (i) If α ∈ N (so-called Erlang distributions), then the
Gamma distributed variables Z has the same law as

−β log(U1 · · ·Uα),

where (Ui)1≤i≤α are independent uniformly distributed random variables. Hence
W defined by W = exp(−Z) can be simulated by

(U1U2 · · ·Uα)β.

(ii) If α − 1/2 ∈ N, then Z has the same law as

−β log(U1 · · ·U�α) + βN2

2
,

where (Ui)1≤i≤�α are i.i.d. uniformly distributed random variables, and N is an
independent standard Gaussian r.v.; see, for instance, [5], Chapter IX.3.
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