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MAXIMIZING FUNCTIONALS OF THE MAXIMUM IN THE
SKOROKHOD EMBEDDING PROBLEM AND AN APPLICATION

TO VARIANCE SWAPS

BY DAVID HOBSON AND MARTIN KLIMMEK1

University of Warwick

The Azéma–Yor solution (resp., the Perkins solution) of the Skorokhod
embedding problem has the property that it maximizes (resp., minimizes)
the law of the maximum of the stopped process. We show that these con-
structions have a wider property in that they also maximize (and minimize)
expected values for a more general class of bivariate functions F(Wτ ,Sτ ) de-
pending on the joint law of the stopped process and the maximum. Moreover,
for monotonic functions g, they also maximize and minimize E[∫ τ

0 g(St ) dt]
amongst embeddings of μ, although, perhaps surprisingly, we show that for
increasing g the Azéma–Yor embedding minimizes this quantity, and the
Perkins embedding maximizes it.

For g(s) = s−2 we show how these results are useful in calculating model
independent bounds on the prices of variance swaps.

Along the way we also consider whether μn converges weakly to μ is a
sufficient condition for the associated Azéma–Yor and Perkins stopping times
to converge. In the case of the Azéma–Yor embedding, if the potentials at zero
also converge, then the stopping times converge almost surely, but for the
Perkins embedding this need not be the case. However, under a further condi-
tion on the convergence of atoms at zero, the Perkins stopping times converge
in probability (and hence converge almost surely down a subsequence).

1. Introduction. Let W = (Wt)t≥0 be Brownian motion, null at 0, and μ

a centered probability measure. Then the Skorokhod embedding problem (SEP)
(Skorokhod [21]) is to find a stopping time τ such that the stopped process satis-
fies Wτ ∼ μ. There are many classical solutions to this problem (for a survey, see
Obłój [16]), and further solutions continue to appear in the literature, including
most recently Hirsch et al. [9]. Further impetus to the investigation of old and new
solutions is derived from the connections between solutions of the SEP and model
independent bounds for the prices of options; for a survey, see Hobson [10].

Given the multiplicity of solutions to the SEP, it is natural to search for embed-
dings with additional optimality properties. In particular, if � is a functional of
the stopped Brownian path (Wt)0≤t≤τ , then these constructions aim to maximize
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� over (a suitable subclass of) embeddings of μ. For example, if F is an increas-
ing function, and St = sups≤t Ws , then the Azéma–Yor solution [2] maximizes
E[F(Sτ )] over uniformly integrable embeddings, and the Perkins embedding [17]
minimizes the same quantity.

Our goal in this paper is to extend this result to functions F = F(Wτ ,Sτ ). Then,
subject to regularity conditions, our first result (Theorem 5.3) is that:

Suppose Fs(w, s)/(s − w) is monotonic decreasing in w. Then E[F(Wτ ,Sτ )] is mini-
mized (resp., maximized) over uniformly integrable embeddings τ of μ by the Azéma–
Yor (resp., Perkins) embedding.

This result is a tool in the derivation of our second result, Theorem 7.1, which,
again subject to regularity conditions is as follows:

Suppose g is increasing. Then E[∫ τ
0 g(Su)du] is minimized (resp., maximized) over

uniformly integrable embeddings τ of μ by the Azéma–Yor (resp., Perkins) embedding.

One approach to finding extremal values of E[F(Wτ ,Sτ )] is to utilize the work
of Kertz and Rösler [13], Vallois [23] and Rogers [20] who characterize the pos-
sible joint laws of (Wτ ,Sτ ). These characterizations take the form of constraints
on the possible laws of (Wτ ,Sτ ), but that still leaves our problem as a constrained
optimization problem. In fact, there are parallels between equation 3.2 of Theo-
rem 3.1 of Rogers [20], and some of the quantities that arise in our study (see
Remark 5.7), but we shall not make direct use of this connection.

At first sight the second result above may appear counterintuitive. After all, for
increasing g the Azéma–Yor embedding maximizes the law of g(Sτ ) so one might
also expect it to maximize the law of

∫ τ
0 g(Su) du. However, the exact opposite is

true, and the Azéma–Yor embedding minimizes the expected value of this quantity.
We return to this issue in Remark 7.2, where we explain this phenomenon.

One of our tools for solving the above problems is to solve the problem in the
case where μ has bounded support, and to approach the case of a general mea-
sure by approximation. In order to carry out this program we need to analyze
when and whether convergence of probability measures is sufficient to guaran-
tee that the associated Azéma–Yor and Perkins embeddings converge. This proves
to be a delicate question. Under the additional (and necessary) hypothesis that∫
R

|x|μn(dx) → ∫
R

|x|μ(dx), then indeed the Azéma–Yor embedding of μn con-
verges almost surely to the Azéma–Yor embedding of μ. However, this need not
be the case for the Perkins embedding, and the sequence of Perkins embeddings of
μn may fail to converge on an almost sure basis.

We note that although the focus in this paper is on functionals involving the
running maximum, there is a parallel set of results for functionals involving the
running minimum process. The corresponding results can be easily proved by fol-
lowing the proofs given for the maximum and making the appropriate changes.
Alternatively, given a Brownian motion W and a centered target law μ, let μ̃ be
the measure μ reflected around zero. Then, with It = infs≤t Ws , the problem of
minimizing E[F(Wτ , Iτ )] over embeddings τ of μ is equivalent to minimizing
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E[F(−Wτ̃ ,−Sτ̃ )], over embeddings τ̃ of μ̃. See the next section and Section 8.1
for calculations along these lines.

2. A variance swap on squared returns. The original motivation for our
study came from financial mathematics and the pricing of variance swaps, and
one of the contributions of this article is to establish a link between variance swap
bounds and Skorokhod embedding theory. The implications of this connection are
the subject of related work [11]. Informed by the results presented here, but neces-
sarily using different methods, Hobson and Klimmek [11] show how to construct
model-independent bounds and hedging strategies for a general family of variance
swaps. In this section we outline the link between variance swaps and the second
result from the Introduction.

Let X = (Xt)0≤t≤T represent the discounted price of a financial asset. Un-
der the assumption of no-arbitrage, there exists a measure under which X is a
(local)-martingale. We may suppose that there exists a filtered probability space
(�, F ,F,P) such that B is a F-Brownian and such that Xt = BAt for a (possi-
bly discontinuous) time-change t → At , null at 0. (If X is continuous, then the
existence of such a time-change is guaranteed by the Dambis–Dubins–Schwarz
theorem, and in general the existence is guaranteed by Monroe [15], Theorem 2.)
Since X is a nonnegative price process we suppose it has starting value X0 = B0 =
x0 > 0.

Now suppose that we know the prices of put and call options with maturity T .
Knowledge of put and call option prices with expiry time T is equivalent to knowl-
edge of the marginal law of process at time T ; see Breeden and Litzenberger [3].
Suppose that XT ∼ μ and that μ is centered at x0, and has support in R

+. We will
determine bounds for the fair value of a variance swap given the terminal law μ.
Note that if XT ∼ μ, then AT is a solution of the Skorokhod embedding problem
for μ in B .

Following Demeterfi et al. [7] we define the pay-out V = V ((Xs)0≤s≤T ) of an
idealized variance swap as

VT =
∫ T

0

d[X,X]t
(Xt−)2 =

∫ T

0

(
dXc

t

Xt−

)2

+ ∑
0≤t≤T

(
�Xt

Xt−

)2

,(2.1)

where �Xt = Xt − Xt−, and Xc is the continuous part of X.
Let Ac be the continuous part of A. Note that dAc

t = (dXc
t )

2 = d[X,X]ct . Let
SX = (SX

t )t≥0 (resp., SB ) be the process of the running maximum of X (resp., B),
and let IX (resp., IB ) denote the corresponding infimum. Then we have Xt ≤
SX

t ≤ SB
At

, and it follows that path-by-path with �BAt = BAt − BAt− that

VT ≥
∫ T

0

d[X,X]ct
(SX

t−)2
+ ∑

0≤t≤T

(
�Xt

SX
t−

)2

(2.2)

≥
∫ T

0

dAc
t

(SB
At−)2

+ ∑
0≤t≤T

(
�BAt

SB
At−

)2

.
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We suppose that X has a second moment. Then (Xt)0≤t≤T is a square-integrable
martingale and we find that

E

[∫ T

0

dAc
t

(SB
At−)2

+ ∑
0≤t≤T

(
�BAt

SB
At−

)2]
= E

[∫ T

0

dAc
t + �At

(SB
At−)2

]

= E

[∫ T

0

dAt

(SB
At−)2

]
(2.3)

≥ E

[∫ AT

0

du

(SB
u )2

]
.

We say that τ is an embedding of μ if τ is a stopping time for which Bτ has
law μ [we write Bτ ∼ μ or μ = L(Bτ )]. Let S ≡ S(B,μ) be the set of stopping
times which embed μ, and let SUI = SUI(B,μ) be the subset of S(B,μ) for which
(Bt∧τ )t≥0 is uniformly integrable. The inequalities above imply that the fair value
of VT is bounded below by

inf
τ∈SUI(B,μ)

E

[∫ τ

0

du

(SB
u )2

]
.(2.4)

Similarly, using the inequality IB
At

≤ IX
t ≤ Xt we find that the fair value of VT is

bounded above by

sup
τ∈SUI(B,μ)

E

[∫ τ

0

du

(IB
u )2

]
.(2.5)

This problem can be converted into a problem concerning the maximum SB by a
reflection argument; see Section 8.1.

Now let G(b, s) = (s−b)2

s2 . Then by Itô’s lemma,

G
(
Bτ ,S

B
τ

) = G(0,0) +
∫ τ

0

du

(SB
u )2 −

∫ τ

0

2(SB
u − Bu)

(SB
u )2 dBu.

It follows that if
∫ τ∧t

0 2(SB
u − Bu)(S

B
u )−2 dBu is a uniformly integrable martingale,

then

E

[∫ τ

0

du

(SB
u )2

]
= E

[
(SB

τ − Bτ )
2

(SB
τ )2

]
,

and the question of bounding the fair value of VT is transformed into a question of
maximizing or minimizing expressions of the form E[F(Bτ , Sτ )] over embeddings
of μ. We return to the calculation of the variance swap bound in Section 8.1.
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3. Preliminaries. Let (�, F ,F,P) be a filtered probability space satisfy-
ing the usual conditions and supporting a Brownian motion W = (Wt)t≥0 with
W0 = 0, and sufficiently rich that F0 contains a further uniform random variable
which is independent of W . Let μ be a centered probability measure. To exclude
trivialities we assume that μ is not δ0, the unit mass at 0. We say that τ is an em-
bedding of μ if τ is a stopping time for which Wτ has law μ [we write Wτ ∼ μ or
μ = L(Wτ )] and we say that τ is uniformly integrable if the family (Wt∧τ )t≥0 is
uniformly integrable.

Let S ≡ S(W,μ) be the set of stopping times which embed μ, and let SUI ≡
SUI(W,μ) be the subset of S(W,μ) consisting of uniformly integrable stopping
times. For SUI(W,μ) to be nonempty we must have that μ is centered [i.e.,∫
R

|x|μ(dx) < ∞ and
∫
R

xμ(dx) = 0]. In this context (Brownian motion and cen-
tered target laws) a result of Monroe [14] gives that a stopping time is uniformly
integrable if and only if it is minimal (in the sense that if τ is minimal and σ ≤ τ

with Wσ ∼ Wτ , then σ ≡ τ almost surely). The class of minimal stopping times is
a natural class of “good” (in the sense of small) stopping times.

For the Brownian motion W , started at 0, we write Hx for the first hitting time
of x, and for a set A, HA = inf{u ≥ 0 :Wu ∈ A}.

For a process (Yt )t≥0 and a stopping time σ , we write Yσ = (Y σ
t )t≥0 for the

stopped process Yσ
t = Yσ∧t .

Given a centered probability measure μ, let Xμ be a random variable with
law μ, and define C(x) ≡ Cμ(x) = E[(Xμ − x)+] and P(x) ≡ Pμ(x) = E[(x −
Xμ)+]. Then C and P are monotonic convex functions with C(0) = P(0). Then
U(x) = Uμ(x) = E[|Xμ − x|] = C(x) + P(x) is (minus) the potential associated
with μ. Conversely any convex function U with limx→±∞(U(x) − |x|) = 0 is the
potential of some centered probability measure μ (Chacon [4]).

If μ has an atom at zero, then we write μ∗ for the measure obtained by omitting
the atom at 0, and then rescaling to get a probability measure. Thus μ∗(A) =
μ(A\{0})/(1−μ({0})). Finally, we write x̂ = x̂μ for the upper limit on the support
of μ [so x̂μ = sup{x :Cμ(x) > 0}] and x̌ = x̌μ for the corresponding lower limit
x̌μ = inf{x :Pμ(x) > 0}.

3.1. The Azéma–Yor solution. For x ≥ 0, up to the upper limit on the support
of μ, define β = βμ by

β(x) = arg min
y<x

Cμ(y)

x − y
.(3.1)

Then β is an increasing function with β(x) < x, see Figure 1. Where the arg min
is not uniquely defined it is not important which value we choose. However, we fix
one by insisting that β is right-continuous, or equivalently by choosing the largest
value for which the minimum is attained. Observe that at x = 0, β takes the value
of the infimum of the support of μ. For x equal to, or to the right of, the upper
limit on the support of μ we set β(x) = x.
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FIG. 1. For each x, the value of β(x) is determined by finding the tangent line to Cμ originating
at x: β(x) is the horizontal co-ordinate of the point of contact between the tangent line and Cμ. [If
Cμ includes a straight line section, then this point of contact may not be uniquely defined, in which
case we take β(x) to be the largest value of the horizontal co-ordinate at which contact occurs.] The
stopping time τβ associated to this construction is given by the first time that an excursion from the
maximum crosses below β .

For an increasing function β : R+ �→ R with β(x) ≤ x let τβ be given by

τβ = inf
{
u :Wu ≤ β(Su)

}
.(3.2)

Then τAY ≡ τAY
μ , the Azéma–Yor stopping time for μ, is given by τAY

μ ≡ τβμ .
Thus we have τβμ ∈ SUI(W,μ), and moreover, for F increasing, τβμ maximizes
E[F(Sτ )] over τ ∈ SUI(W,μ) (Azéma–Yor [1, 2], Rogers [19]).

Note that τβμ does not maximize this quantity over all embeddings, but it does
give the maximum over uniformly integrable (i.e., minimal) embeddings.

Let b ≡ bμ be the right-continuous inverse to β . Then b is the barycenter func-
tion and for x < x̂μ, b(x) is given by

b(x) = E[Xμ|Xμ ≥ x].(3.3)

The barycentre b(x) is defined up to the upper limit of the support of μ and is a
nonnegative, nondecreasing function with b(x) ≥ x. We set b(x) = x for x ≥ x̂μ.
(The reverse barycentre b̌(x) = E[X|X ≤ x] is defined analogously to the barycen-
tre.)

It is more standard to define the barycenter function as in (3.3) and to set β to
be the inverse barycenter function, but the two approaches are equivalent, and our
approach via potentials allows for a unified treatment with the Perkins construction
in the next section.

If μ has an interval with no mass, then b is constant over that interval, and β

has a jump. If μ has an atom at x then b has a jump at x [unless the atom is at
the upper limit x̂ of the support of μ in which case b(x̂) = x̂] and β is constant
over a range of s. From the definition of τβ [see (3.2)] and excursion theory (see
Rogers [20], equation 2.13), we have

exp
(
−

∫ s

0

dr

r − β(r)

)
= P(Sτβ ≥ s)(3.4)
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and then also P(Sτβ ≥ s) = P(Wτβ ≥ β(s)) = μ(β(s),∞). Note that it does
not matter which convention we use for β(s) here since μ places no mass on
(β(s−), β(s+)).

EXAMPLE 3.1. If μ = U [−1,1], then Cμ(x) = (x − 1)2/4 and Pμ(x) = (x +
1)2/4 (at least for −1 = x̌μ ≤ x ≤ x̂ = 1). Then the barycenter function is given
by b(x) = (x + 1)/2 for −1 ≤ x ≤ 1 and hence β(s) = 2s − 1 for 0 ≤ s ≤ 1. It
follows that SτAY

μ
≡ b(WτAY

μ
) is uniformly distributed on [0,1].

LEMMA 3.2. If μ places mass on (x,∞), then (r −β(r))−1 is integrable over
[0, x].

PROOF. This follows immediately from (3.4) and P(Sτβ ≥ x) ≥ P(Wτβ ≥
x) > 0. �

3.2. The Perkins solution. For x > 0 define α+
μ = α+ : R+ → R− by

α+(x) = arg min
y<0

Cμ(x) − Pμ(y)

x − y
(3.5)

and for x < 0 define α−
μ = α− : R− → R+ by

α−(x) = arg max
y>0

Pμ(x) − Cμ(y)

y − x
.(3.6)

Then α± are monotonic functions, see Figure 2. If the arg min (resp., the arg max)
is not uniquely defined, we take the largest value (in modulus) for which the
minimum (resp., the maximum) is attained; in this way α+ : R+ �→ R− is right-
continuous and α− is left-continuous. Again, none of the subsequent analysis will
depend on this convention. For convenience we will sometimes write α as short-
hand for α±.

If Pμ (resp., Cμ) is differentiable at α+(x) [resp., α−(x)], then α+(x) [resp.,
α−(x)] satisfies

Cμ(x) − Pμ(α+(x))

x − α+(x)
= P ′

μ

(
α+(x)

)
(3.7)

[resp., Pμ(x) − Cμ(α−(x)) = C′
μ(α−(x))(x − α−(x))].

Let a± be the inverse to α± and let ā(w) = w for w > 0 and ā(w) = a+(w)

for w < 0. Recall the definition of I as the infimum process for W so that It =
infs≤t Ws .

For a pair of monotonic functions α+ : R+ �→ R− (nonincreasing) and α− :
R− �→ R+ (nondecreasing) define the stopping time

τα = inf
{
u > 0 :Wu ≤ α+(Su)

} ∧ inf
{
u > 0 :Wu ≥ α−(Iu)

}
.
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FIG. 2. Suppose that μ has no atoms. Then for x > 0, a−(x) is the horizontal co-ordinate of the
point where the tangent line to C at (x,C(x)) intersects with P . Alternatively, it is the horizontal
co-ordinate of the point where the tangent line to C emanating from (b(x),0) intersects with P . [We
may instead consider the inverse α− of a−: for y < 0, α−(y) > 0 is the horizontal co-ordinate of the
point such that the tangent to C at α−(y) crosses P at (y,P (y)).] These definitions extend naturally
to the case where the convex function C has kinks or straight-line segments. Similarly, a+(z) is
found by drawing tangents to P emanating from the reverse barycenter function evaluated at z < 0
and determining intersection points with C. The stopping rule associated with this construction is to
stop the Brownian motion when its running maximum or minimum exit the region determined by α+
and α−.

Suppose μ does not have an atom at zero. Then the Perkins [17] embedding
τP ≡ τP

μ ≡ τP(μ) is given by τP
μ = ταμ .

If μ has an atom at zero, then we use independent randomization to set τP = 0
with probability μ({0}); and otherwise τP = ταμ . More precisely, in the case where
μ has an atom at zero we set the Perkins embedding to be

τP =
{

0, if Z ≤ μ(0),
ταμ, if Z > μ(0),

where Z is a uniform random variable which is measurable with respect to F0.
Here α±

μ are the quantities defined in (3.5) and (3.6) for μ. Note that if μ∗ is ob-
tained from μ by removing any mass at zero, and rescaling to give a probability
measure, then although Cμ∗ and Pμ∗ are scalar multiples of Cμ and Pμ, respec-
tively, nonetheless we have α±

μ∗ ≡ α±
μ .

Note that if μ has an atom at zero, then we need F0 to be nontrivial in order to be
able to define the Perkins embedding. Note further that since there are potentially
many uniform random variables Z which are measurable with respect to F0, if
μ({0}) > 0, then the Perkins embedding is not unique. Sometimes it is convenient
to think about the Perkins embedding associated with an identified F0 random
variable Z, in which case we write τP,Z

μ instead of just τP
μ .

The results of Perkins [17] show that τP
μ ∈ SUI(W,μ) and moreover, for F

increasing, τP minimizes E[F(Sτ )] over τ ∈ S(W,μ), and not just SUI(W,μ)

(Perkins [17], although the representation via (3.5) and (3.6) is due to Hobson and
Pedersen [12]).
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EXAMPLE 3.3. If μ = U [−1,1], then P = Pμ and C = Cμ are as given in
Example 3.1 and, from (3.7), α+(s) is the unique root of the equation P ′(α)(s −
α) = C(s) − P(α). It is easily verified that this root is given by α+(s) = s − 2

√
s.

Similarly, α−(i) = i + 2
√|i|. It can be shown that P(Sτα ≥ s) = P(Wτα ≥ s) =

P(Wτα ≤ s − 2
√

s) = 1 − √
s.

EXAMPLE 3.4. Notwithstanding the above example, in general it is difficult
to derive an explicit form for the stopping boundary associated with the Perkins
stopping time. Here we give a second example where analytic expressions, albeit
complicated ones, can be derived.

Suppose the target law is a centered Pareto distribution with support [−1,∞)

and density function f (x) = 2(x + 2)−3. Then for k ≥ −1, C(k) = (2 + k)−1 and
P(k) = k + (2 + k)−1, and for k < −1, C(k) = −k, P(k) = 0.

Then, for the Azéma–Yor embedding, β solves C(β) = (s − β)|C′(β)| and
β(s) = (s/2) − 1.

For the Perkins embedding, α+(s) solves P ′(α+) = (C(s) − P(α+))/(s − α+),
and we have (after some algebra)

α+(s) = −2s2 − 5s + √
s4 + 6s3 + 12s2 + 8s

2s − 1 + s2 .

The expression for α− is α−(i) = −3i−2i2+
√

−(i4+6i3+12i2+8i)

2i+1+i2 .

If μ has an interval in R+ (resp., R−) with no mass, then α− (resp., α+) has
a jump (unless that interval is contiguous with zero, in which case α± starts at a
nonzero value). If μ has an atom in (0,∞) [resp., (−∞,0)], then α− (resp., α+)
is constant over a range of values.

LEMMA 3.5. Suppose x > 0. If μ places mass on [x,∞), then (r −α+(r))−1

is integrable over (0, x).

PROOF. We have (Wu ≥ α+(Su); ∀u ≤ Hx) ⊇ (τα ≥ Hx) ⊇ (Wτα ≥ x), and
then by excursion theory [recall (3.4)],

exp
(
−

∫ x

0

dr

r − α+(r)

)
= P

(
Wu ≥ α+(Su); ∀u ≤ Hx

) ≥ μ
([x,∞)

)
> 0. �

4. Convergence of measures and convergence of embeddings. Let (μn)n≥1
be a sequence of measures, and write Un, βn and αn as shorthand for Uμn , βμn

and αμn , with a similar convention for other functionals.
Suppose that, for each n, μn is centered and that (μn)n≥1 converges weakly

to μ, where μ is also centered. Then it does not follow that Un → Uμ, nor that
βn → βμ, nor that αn → αμ. However, with the correct additional hypotheses,
then these types of convergence are equivalent.

Our first key result is the following.
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PROPOSITION 4.1. Let (μn) be a sequence of measures such that μn ⇒ μ

and E[|Xμn |] → E[|Xμ|]. Then bn(x) → b(x) at continuity points x < x̂ of b.

PROOF. Chacon [4] shows that if μn ⇒ μ and Un(0) → U(0), then Un → U

pointwise. Since Cn(x) = (Un(x) + x)/2 it follows trivially that Cn → C point-
wise, where Cn(x) = Cμn(x) and C(x) = Cμ(x).

Recall that x is a discontinuity point of b if and only if there is an atom of μ at x.
Suppose x < x̂ is a continuity point of b. Then (3.3) gives b(x) = x + C(x)

μ([x,∞))
and

bn(x) = x + Cn(x)

μn([x,∞))
→ x + C(x)

μ([x,∞))
= b(x). �

COROLLARY 4.2. Let (μn) be a sequence of measures such that μn ⇒ μ

and E[|Xμn |] → E[|Xμ|]. Then βn(s) → β(s) at continuity points s < x̂ of β .
Moreover, if x̂ < ∞, then for each z > x̂, lim infβn(z) ≥ x̂.

PROOF. Since bn(x̂ − ε) < x̂ + ε for sufficiently large n we have for these
same n that βn(x̂ + ε) ≥ x̂ − ε. �

COROLLARY 4.3. Under the assumptions of Proposition 4.1, τβn → τβ al-
most surely.

PROOF. Let D be the set of discontinuity points of β . If Sτβ /∈ D, then Wτβ =
β(Sτβ ), and it follows that

(ω : τβn �→ τβ) ⊆ (ω :Sτβ ∈ D) ∪ (
ω :Sτβ /∈ D,Wτβ = β(Sτβ ), τβn �→ τβ

)
.

For any stopping time σ write: let Hσ
x = inf{u ≥ σ :Wu = x}.

Case 1: x̂ = ∞. Note that since β is increasing, D is countable and P(Sτβ ∈
D) = 0.

First we argue that on (ω :Sτβ = x) we have that for sufficiently large n,
Sτβn

≥ x: since there are only countably many values of s < x on which the value
of Wu gets below Su = s, and on each of these excursions W stays above β(S), for
sufficiently large n, W must stay above βn(S) also.

Hence lim infn Sτβn
≥ Sτβ almost surely. Then on {ω :Sτβ = x /∈ D,Wτβ =

β(x)}, we have τβn(ω) → τβ(ω) unless inf{Wu : τβ ≤ u ≤ H
τβ

Sτβ
} = Wτβ = β(x)

and βn(x) < β(x). But, almost surely, on any interval of positive length Brown-
ian motion goes below its starting value. In particular, the set (ω :Sτβ /∈ D,Wτβ =
β(Sτβ ), τβn �→ τβ) has probability zero.

Case 2: x̂ < ∞ and μ({x̂}) = 0. The only paths for which issues of convergence
might be different to the previous case are those for which Sτβ = x̂. But since μ

has no atom at x̂, P(Sτβ = x̂) = P(Wτβ = x̂) = 0 and τβn → τβ almost surely.
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Case 3: x̂ < ∞ and μ({x̂}) > 0. In this case β(x̂−) := limy↑x̂ β(y) < β(x̂) = x̂.
We show that on the set (Sτβ = x̂) we have lim τβn = τβ , almost surely. Off the set
(Sτβ = x̂) convergence follows exactly as in the previous cases.

First we argue that lim supn Sτβn
≤ x̂ almost surely. Fix z > x̂, then given 0 <

ε < z − x̂, there exists N such that for n ≥ N , βn(x̂ + ε) > x̂ − ε. Hence, for
sufficiently large n,

(
ω :Sτβn

(ω) ≥ z
) ⊆ (

ω : inf{Wu :Hx̂+ε ≤ u ≤ Hz} ≥ x̂ − ε
)
.

But

P
(
inf{Wu :Hx̂+ε ≤ u ≤ Hz} ≥ x̂ − ε

) ≤ exp
(
−

∫ z

x̂+ε

dy

y − (x̂ − ε)

)
= 2ε

z − x̂ + ε
.

By choosing ε small compared with (z − x̂) we deduce that lim supn Sτβn
≤ z for

any z > x̂.
Now we argue that on Sτβ = x̂ we have lim infWτβn

≥ x̂ almost surely. Coupled
with the result from the previous paragraph we can then conclude that on Wτβ = x̂

we have τβn → Hx̂ = τβ .
Given δ and ε < x̂ − β(x̂−) − δ, there exists N such that for all n > N , βn(x̂ −

ε) < β(x̂−) + ε < x̂ − δ. Then
(
ω :Wτβn

(ω) < x̂ − δ, Sτβ (ω) = x̂
) ⊆ (

ω : inf{Wu :Hx̂−ε ≤ u ≤ Hx̂} ≤ x̂ − δ
)

∪ (ω :Sτβn
< x̂ − ε, Sτβ = x̂).

By similar arguments to those in case 1 we can prove that the final event has small
probability. Moreover, using that the fact that the probability that an event occurs
is smaller than the expected number of times that it occurs,

P
(
ω : inf{Wu :Hx̂−ε ≤ u ≤ Hx̂} ≤ x̂ − δ

) ≤
∫ x̂

x̂−ε

dy

y − (x̂ − δ)
= ln

(
δ/(δ − ε)

)
.

By choosing ε compared to δ this probability can be made arbitrarily small. �

Note that if τβn → τβ almost surely, then by the continuity of Brownian motion
Wτβn

→ Wτβ almost surely and μn ⇒ μ.
We can summarize the results as follows:

PROPOSITION 4.4. Suppose that (μn)n≥1 and μ are centered and that
E[|Xμn |] → E[|Xμ|]. Then the following are equivalent:

(i) μn ⇒ μ and E[|Xμn |] → E[|Xμ|];
(ii) Un(x) → Uμ(x) for each x ∈ R;

(iii) βn → β at continuity points s of β , provided s is less than or equal to the
upper limit on the support of μ;

(iv) τβn

a.s.−→ τβ ;
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(v) Wτβn

a.s.−→ Wτβ .

Now we want to prove a similar result for the Perkins embedding.

LEMMA 4.5. Let (μn)n≥1 be a sequence of centered probability measures
such that μn ⇒ μ and E[|Xn|] → E[|Xμ|]. Then a±

n (x) → a±(x) at continuity
points x ∈ (x̌, x̂)\{0} of a. Moreover α±

n (x) → α±(x) at nonzero continuity points
x̌ < x < x̂ of μ.

PROOF. We prove the result for (a+
n , a+), the other case being similar. The

extension from a± to α± follows as in Corollary 4.2.
Again we have that x < 0 is a discontinuity point of a+ if and only if there is

an atom of μ at x. Suppose that x is not an atom of μ. Then, recall (3.7), a+(x)

is the unique solution in z of P(x) + P ′(x)(z − x) = C(z). Moreover, for any
ãn(x) ∈ (a+

n (x+), a+
n (x−)),

Pn(x) + P ′
n(x+)

(
ãn(x) − x

) ≥ Cn

(
ãn(x)

)
,

Pn(x) + P ′
n(x−)

(
ãn(x) − x

) ≤ Cn

(
ãn(x)

)
.

Suppose a+
n (x) → γ (down a subsequence if necessary). Then since P ′

n(x±) →
P ′(x),

P(x) + P ′(x)(γ − x) ≥ C(γ ) ≥ P(x) + P ′(x)(γ − x).

Hence γ = a+(x) and a+
n (x) → a(x). �

PROPOSITION 4.6. Suppose that (μn)n≥1 and μ are centered and that
E[|Xμn |] → E[|Xμ|].
(a) Suppose there exists an open interval I containing 0 such that μn(I) = μ(I) =

0. Then the following are equivalent:
(i) μn ⇒ μ and E[|Xμn |] → E[|Xμ|];

(ii) Un(x) → Uμ(x) for each x ∈ R;
(iii) α±

n → α± at continuity points of α± which lie within the range of the
support of μ;

(iv) τP
μn

a.s.−→ τP
μ;

(v) WτP
μn

a.s.−→ WτP
μ

.

(b) More generally, suppose μn ⇒ μ and E[|Xμn |] → E[|Xμ|]. Then, α±
n → α±

at continuity points of α± which lie within the range of the support of μ.
Suppose further that μn({0}) → μ({0}). Then there exists a sequence of

Perkins embeddings of μn such that τP
μn

converges in probability to a Perkins
embedding τP

μ of μ. In particular, if Zn converges in probability to Z, then the

Perkins embeddings (τP,Zn
μn

)n≥1 converge in probability to the Perkins embed-

ding τP,Z
μ of μ.
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Thus, if μn ⇒ μ, E[|Xμn |] → E[|Xμ|] and μn({0}) → μ({0}), then if
(τP,Zn

μn
)n≥1 is a sequence of Perkins embeddings of (μn)n≥1, then there ex-

ists a subsequence nk along which lim τ
P,Znk
μnk

exists almost surely, and is a
Perkins embedding of μ.

PROOF. For part (a) the equivalence of (i) and (ii) follows as before. Lem-
ma 4.5 gives that (ii) implies (iii). It follows from the pathwise construction of ταn

(and the existence of the interval I which is not charged by μn so that τP
μn

≡ ταn )
that τP

μn
→ τP

μ almost surely and hence we have (iii) implies (iv). The continuity
of Brownian motion allows us to deduce (v), from which (i) follows immediately.

For part (b) the statement about the convergence of α±
n follows as before. For

the other results, suppose first that μ({0}) = 0 and μn({0}) = 0 for all sufficiently
large n. Recall that τα = inf{u :Wu ≤ α+(Su) or Wu ≥ α−(Iu)} and for η > 0
define the stopping time

ρα,η = ταη,

where α+
η (s) = min{α+(s),−η}, α−

η (i) = max{α−(i), η}. Note that ρα,η is the
Perkins embedding of a law which places no mass on (−η,η).

We have that αn → α at nonzero continuity points. Let α±
n,η = ∓max{∓α±

n (s),

η} and let ραn,η be the Perkins embedding for Bταn,η . Then α±
n,η → α±

η at continuity
points and by the pathwise construction of ραn,η, we have ραn,η → ρα,η almost
surely. In particular, given δ, ε > 0 there exists N0 such that for all n ≥ N0

P
(|ραn,η − ρα,η| > ε

)
< δ/2.

Note that on |Wτα | > η we have ρα,η = τα with a similar statement for αn. We
can choose η > 0 so that μ([−2η,2η]) < δ/6 and then N1 so that for n ≥ N1,
μn([−η,η]) < δ/3. Then

(|ταn − τα| > ε
) ⊆ (|Wτα | ≤ η

) ∪ (|Wταn
| ≤ η

)
∪ (|ταn − τα| > ε, |Wτα | > η, |Wταn

| > η
)

and the set (|ταn − τα| > ε) has probability at most δ.
It follows that ταn → τα in probability, and hence that there is almost sure con-

vergence down a subsequence. Furthermore, down the same subsequence Wταn
→

Wτα almost surely.
Now suppose that μ({0}) = 0 and that limμn({0}) = 0. Recall the definition of

μ∗
n as the measure μn with probability mass at zero removed, and then rescaled

to be a probability measure, and note that αμ∗
n

≡ αμn . Then also μ∗
n ⇒ μ and

Uμ∗
n
→ Uμ pointwise.

Then, τP,Zn
μn

= 0 for Zn ≤ μn({0}) and τP,Zn
μn

= ταn otherwise, so that τP,Zn
μn

→
τα in probability. Moreover, down a subsequence, τP,Zn

μn
→ τα almost surely.
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It remains to consider the case where μ({0}) > 0. For ε < 1, writing An =
(Zn ≤ μn({0}),Z > μ({0})) and Bn = (Zn > μn({0}),Z ≤ μ({0})),

(∣∣τP,Zn
μn

− τP,Z
μ

∣∣ > ε
) ⊆ An ∪ Bn ∪ (

Zn > μn

({0}),Z > μ
({0}), |ταn − τα| > ε

)

and τP,Zn
μn

→ τP,Z
μ in probability. As before, there is almost sure convergence down

a subsequence. �

REMARK 4.7. One easy and natural way to guarantee that Zn → Z is to take
Zn = Z with probability one, or in other words to use the same independent ran-
domization variable for each embedding.

REMARK 4.8. Suppose that μ is less than or equal to ν in convex order (we
write μ ≤cx ν). Then Uμ ≤ Uν . However, it does not follow that βμ ≥ βν , and so
it does not follow that τAY

μ ≤ τAY
ν . Similarly, we do not have that |α±

μ | ≤ |α±
ν | nor

τP
μ ≤ τP

ν .
Nonetheless, given μ it is possible to choose μn increasing to μ in convex order

and such that the barycenters are decreasing, and hence the stopping times τAY
μn

are monotonically increasing and converge to μ. This idea is used extensively in
Azéma and Yor [2], see also Revuz and Yor [18], Section VI.5, and also below in
the proof of Theorem 7.1.

Similar remarks apply for the Perkins embedding.

EXAMPLE 4.9. In Proposition 4.4 it does not hold that βn(s) → β(s) for s

beyond the upper limit on the support of μ.
Suppose μ = 1

2(δ1 + δ−1) and μn = (1 − n−2)1
2(δ1 + δ−1) + n−2 1

2(δn + δ−n).
Then Uμ(0) = 1 and Un(0) = 1 + n−1 − n−2 → 1.

We have bn is piecewise constant, and bn(x) = 0 for x < −n, bn(x) = n/(2n2 −
1) for −n ≤ x < −1, bn(x) = 1 + n−1 − n−2 for −1 ≤ x < 1 and bn(x) = n for
1 ≤ x < n. Then βn(s) → β∞(s) where β∞(s) = −1 for s ≤ 1 and β∞(s) = 1 for
s > 1. In contrast, β(s) = −1 for s < 1 and β(s) = s for s ≥ 1.

EXAMPLE 4.10. If αn → αμ, but Un(0) �→ Uμ(0), then in general μn �⇒ μ.
Suppose μ = p(δ1 + δ−1) + (1 − 2p)δ0 and μn = q(δ1 + δ−1) + (1 − 2q)δ0.

Then αn ≡ αμ but μn �⇒ μ unless p = q .

EXAMPLE 4.11. Suppose αn → αμ at continuity points of αμ and Un(0) →
Uμ(0), but μn({0}) does not tend to μ({0}). Then it does not follow that ταn con-
verges in probability, although even then we may still have μn ⇒ μ.

Let μ = 1
4(δ1 + δ−1) + 1

2δ0, and for n > 1 let μn consist of masses of size
{
n + 1

4n
; 1

2
; n − 1

4n

}
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at {−1,1/n,1}, respectively. Then α±(x) = ∓1, α+
n (x) = −1 and α−

n (x) = 1/n

for −1/n ≤ x < 0 and α−
n (x) = 1 for x < −1/n. Further, τα = H±1 and

ταn =
⎧⎨
⎩

H1/n, if H1/n < H−1/n;
H−1, if H1/n > H−1/n and H−1 < H1;
H1, if H1/n > H−1/n and H1 < H−1.

Then, if En is the event that ταn = H1/n, then P(En) = 1/2 and for n > m,

P(En|Em) = P(Em|En) = P1/n(H1/m < H−1/m) = n + m

2n
.

Hence P(En ∩ Ec
m) = (n − m)/4n which does not tend to zero as n → ∞ for

fixed m. Hence

P
(|ταn − ταm | > ε

) ≥ P
(
H±1 − H±1/2 > ε,En ∩ Ec

m

) �→ 0

and the sequence (ταn)n≥1 is not Cauchy in probability.

EXAMPLE 4.12. Suppose αn → αμ at continuity points of αμ and Un(0) →
Uμ(0) and μn({0}) = 0 = μ({0}). If there is no interval I containing 0 on which
μn(I) = 0 = μ(I), then it need not follow that ταn → τα almost surely, although
there is convergence in probability by Proposition 4.6(b).

Let μ = U{−1,+1} and for n > 2 let μn consist of masses of size

{
n(1 + 2−n)

2(1 + n)
; 1

1 + n
; n(1 − 2−n)

2(1 + n)

}

at {−1, n2−n,1}, respectively. Then α±(x) = ∓1, α+
n (x) = −1 and α−

n (x) = n2−n

for −2−n ≤ x < 0 and α−
n (x) = 1 for x < −2−n. Further, τα = H±1 and

ταn =
⎧⎨
⎩

Hn2−n, if Hn2−n < H−2−n ;
H−1, if Hn2−n > H−2−n and H−1 < H1;
H1, if Hn2−n > H−2−n and H1 < H−1.

Then, if En is the event that ταn �= τα , then P(En) = 1/(n + 1) and for n > m,

P(Em ∩ En) = P(En)P(Em|En) = 1

(1 + n)

n2−n + 2−m

m2−m + 2−m

= P(En)P(Em) + n2m−n

(1 + n)(1 + m)
.

Then by the Kochen–Stone lemma (Durrett [8], Exercise 1.6.19), En happens in-
finitely often, almost surely. In particular, almost surely, τP

μn
does not converge.
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5. Objective functions as terminal values. Our goal is to prove that for a
suitable class of bivariate functions F(w, s), the Azéma–Yor and Perkins embed-
dings, which are well known to maximize and minimize E[F(Wτ ,Sτ )] in the spe-
cial case where F does not depend on w and F is increasing in s, continue to
optimize this quantity even when there is nontrivial dependence on w.

ASSUMPTION 5.1. Throughout we assume that F : {(w, s) ∈ R × R+;w ≤
s} �→ R+ is a continuous function and hence is bounded on compact sets. We
further assume that the partial derivative Fs exists and is continuous.

We are interested in functions F which are monotonic in the following sense
(note that in our terminology increasing is a synonym for nondecreasing).

DEFINITION 5.2. F satisfies F-MON↑ or F-MON↓ if:

F-MON↑ Fs(w, s)/(s − w) is monotonic increasing in w.
F-MON↓ Fs(w, s)/(s − w) is monotonic decreasing in w.

For r ≤ x̂ ≤ ∞ and η ∈ {β,α+} define

λη(r) = Fs(η(r), r)

r − η(r)
,

�η(s) = ∫ s
0 λη(r) dr and �

(1)
η (s) = ∫ s

0 rλη(r) dr . Set �̄η = sups<x̂ |�η(s)|. Define

�η(w, s) = ∫ s
0 λη(r)(r − w)dr ; whence �η(w, s) = �

(1)
η (s) − w�η(s). Finally,

define ξβ(w) by

ξβ(w) = F
(
w,b(w)

) − �β

(
w,b(w)

)
and ξα+(w) by

ξα+(w) = F
(
w, ā(w)

) − �α+
(
w, ā(w)

)
,

where ā(w) = w for w ≥ 0 and ā(w) = a+(w) for w < 0. Note that ξβ(w) [resp.,
ξα(w)] does not depend on the convention chosen for b(w) [resp., a+(w)].

5.1. Target laws with bounded support. In this section we suppose μ has
bounded support so that x̌ and x̂ are finite. This assumption will be relaxed in
the next section.

THEOREM 5.3. Suppose that μ has bounded support and that F-MON↑
holds. Then

sup
τ∈SUI(W,μ)

E
[
F(Wτ ,Sτ )

] = E
[
F(WτAY

μ
, SτAY

μ
)
]
,(5.1)

inf
τ∈SUI(W,μ)

E
[
F(Wτ ,Sτ )

] = E
[
F(WτP

μ
, SτP

μ
)
]
.(5.2)
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REMARK 5.4. In the case where μ has no atoms (so that the arg min in (3.1)
is strictly increasing and E[X|X ≥ x] = E[X|X > x]), then we can write

E
[
F(Wτβ , Sτβ )

] =
∫

R

F
(
w,bμ(w)

)
μ(dw).(5.3)

This formula need not hold if μ has atoms.
In cases where μ has a strictly positive density ρ on (x̌, x̂) and β is differen-

tiable, the expression in (5.3) can be rewritten as

E
[
F(Wτβ , Sτβ )

] =
∫

R

F
(
β(s), s

)
P(Sτβ ∈ ds)

(5.4)
=

∫
R

F
(
β(s), s

)
ρ

(
β(s)

)
β ′(s) ds,

where we use the fact that in the atom-free case

μ
([

β(s),∞)) = P
(
Wτβ ≥ β(s)

) = P(Sτβ ≥ s).

A similar remark applies to E[F(WτP
μ
, SτP

μ
)] = ∫

R
F(w, ā(w))μ(dw).

REMARK 5.5. The requirement that the infimum in (5.2) is taken over τ ∈
SUI(W,μ) (and not over all embeddings) is necessary, as can be seen by consider-
ing F(w, s) = −(s − w)3. However, if we restrict attention to functions F which
are increasing in s, then we may replace the infimum in (5.2) with an infimum over
all embeddings.

The key to the proof of the theorem is the following lemma.

LEMMA 5.6. Suppose F satisfies F-MON↑. Then, for all w ≤ s

ξα+(w) + �α+(w, s) ≤ F(w, s) ≤ ξβ(w) + �β(w, s)

with equality on the left at w = s and w = α+(w) and equality on the right at
w = β(s).

PROOF. For η ∈ {β,α+} define

Lη(w, s) =
[
F(w, s) − ξη(w) −

∫ s

0
λη(r)(r − w)dr

]
.(5.5)

We will show that Lα+(w, s) ≥ 0 with equality at w = s and w = α+(s), and
Lβ(w, s) ≤ 0 with equality at w = β(s).

Consider the latter inequality first:

Lβ(w, s) = F(w, s) − ξβ(w) −
∫ s

0
λβ(r)(r − w)dz

= F(w, s) − F
(
w,b(w)

) +
∫ b(w)

0
drFs

(
β(r), r

) r − w

r − β(r)
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−
∫ s

0
drFs

(
β(r), r

) r − w

r − β(r)

=
∫ s

b(w)

{
Fs(w, r)

r − w
− Fs(β(r), r)

r − β(r)

}
(r − w)dr.

If b(w) < r < s, then since β is increasing, w < β(r) and by F-MON↑ the inte-
grand is negative. If s < r < b(w), then w > b(r) and the integrand is positive.
Thus Lβ(w, s) ≤ 0 as required. Clearly, there is equality at s = b(w).

For Lα+ a similar calculation to the one above shows that

Lα+(w, s) =
∫ s

ā(w)

{
Fs(w, r)

r − w
− Fs(α

+(r), r)

r − α+(r)

}
(r − w)dr.

To see that Lα+(w, s) ≥ 0, consider w ≥ 0 and w < 0 separately. For w ≥ 0,
ā(w) = w and for w < r < s, α+(r) ≤ α+(w) ≤ w so that the integrand is positive
and Lα+(w, s) ≥ 0. For w < 0, ā(w) = a(w), and then if a(w) < r < s, we have
w > α+(r) and the integrand is positive. Otherwise if s < r < a(w), w < α+(r)

and the integrand is negative. In either case, allowing for the limits on the integral,
Lα+(w, s) ≥ 0. Equality holds at w = s and w = α+(s). �

REMARK 5.7. Essentially, the idea behind Lemma 5.6 and the proof of The-
orem 5.3 is to interpret the embedding property and Doob’s (in)-equality for the
martingale W as linear constraints on the possible joint laws of (Wτ ,Sτ ), with as-
sociated Lagrange multipliers. Thus, if the joint law is given by ν(dw,ds), then∫
s≥r (w − r)ν(dw,ds) = 0 (which is equivalent to (3.2) in Rogers [20]). There is

an identity of this form for each r and when they are integrated against a family of
Lagrange multipliers λη(r) we obtain

0 =
∫ ∞

0
λη(r)

∫
s≥r

(w − r)ν(dw,ds) =
∫

ν(dw,ds)

∫
0≤r≤s

λη(r)(w − r) dr.

The integrand of this last expression appears as the last term in (5.5).

It remains to prove Theorem 5.3. The main idea for the proof of the theo-
rem is that provided that �̄β and �̄α+ are finite, then for τ ∈ SUI(W,μ) both
(�α+(Wτ

t , Sτ
t ))t≥0 and (�β(Wτ

t , Sτ
t ))t≥0 are uniformly integrable martingales.

[By Itô’s formula, d�η(Wt, St ) = −�η(St ) dWt since the finite variation term in-
volves the product (St − Wt)dSt and when S is increasing we must also have
St − Wt = 0.] It follows that E[�β(Wτ ,Sτ )] = 0 and

E
[
ξα+(Wτ )

] ≤ E
[
F(Wτ ,Sτ )

] ≤ E
[
ξβ(Wτ )

]
,

which, given the forms of ξα and ξβ leads to the first result given in the Introduc-
tion.
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REMARK 5.8. The processes (�α+(Wτ
t , Sτ

t ))t≥0 and (�β(Wτ
t , Sτ

t ))t≥0 be-
long to the class of Azéma–Yor martingales. A martingale M = (Mt)t≥0 is an
Azéma–Yor martingale if Mt = G(SX

t ) − (SX
t − Xt)g(St ) for X a martingale and

G′ = g; see [2].

REMARK 5.9. An alternative derivation of (the right inequality of) Lemma 5.6
is to look for pathwise inequalities F(Wt, St ) ≤ ξ(Wt) + Mt such that Mt is a
Markovian function of Wt and St and such that there is equality at St = b(Wt).

If Mt = �(Wt, St ) and � is appropriately differentiable, then M must be an
Azéma–Yor martingale �(Wt, St ) = −H(St ) + H ′(St )(St − Wt) for some H .
Further, if there is to be equality at s = b(w), then we must have ξ(w) =
F(w,b(w)) − �(w,b(w)). Then we want conditions on F such that there is an
inequality F(w, s) ≤ ξ(w) + �(w, s), or equivalently

∫ s

b(w)
Fs(w, r) dr = F(w, s) − F

(
w,b(w)

)

≤ �(w, s) − �
(
w,b(w)

) =
∫ s

b(w)
�s(w, r) dr

=
∫ s

b(w)
H ′′(r)(r − w)dr.

From this it follows that a sufficient condition is Fs(w, r) ≤ H ′′(r)(r − w) for
r > b(w) and the reverse inequality for r < b(w), which holds if F-MON↑ holds
and H ′′(s) = Fs(β(s), s)/(s − β(s)).

PROOF OF THEOREM 5.3. Consider first the bound associated with the
Azéma–Yor embedding. �̄β depends on the combination of μ and F .

Suppose that μ has an atom at x̂. By Lemma 3.2 (r − β(r))−1 is integrable
near zero so that if μ has an atom at x̂, then r − β(r) is bounded below for
r < x̂ and �̄β < ∞. Since τ ∈ SUI(W,μ) implies (Wτ

t )t≥0 is bounded, and
since �β(s) and �(1)(s) are bounded, we have that �β(Wτ

t , Sτ
t ) is a bounded

local martingale and hence E[�β(Wτ
t , Sτ

t )] = 0, which can be re-expressed as

E[�(1)
β (Sτ )] = E[Wτ�β(Sτ )]. In view of Lemma 5.6 we have

F(Wτ ,Sτ ) ≤ ξβ(Wτ ) + �β(Wτ ,Sτ ).(5.6)

Thus

E
[
F(Wτ ,Sτ )

] ≤
∫

ξβ(w)μ(dw).

Note that for τ = τβ , we have equality in (5.6) and hence equality in this last
expression.



SKOROKHOD EMBEDDINGS AND VARIANCE SWAPS 2039

Now suppose there is no atom at x̂. Fix τ ∈ SUI(W,μ) and let σn = τ ∧Hx̌−1/n

and μn = L(Wσn). Then Uμn → Uμ for each x and by bounded convergence we
have both

E
[
F(Wτ ,Sτ )

] = E
[
limF(Wσn, Sσn)

] = lim E
[
F(Wσn, Sσn)

]
and

E
[
F(WτAY

μ
, SτAY

μ
)
] = E

[
limF(WτAY

μn
, SτAY

μn
)
] = lim E

[
F(WτAY

μn
, SτAY

μn
)
]
.

The result follows from the previous case on comparing σn with τAY
μn

.
The proof of (5.2) is identical except that there is no need to separate the case

where there is an atom at x̂, since by Lemma 3.5 (r − α+(r))−1 is integrable near
zero and hence the fact that μ has bounded support is sufficient for �̄α+ < ∞. �

There are a parallel pair of results based on F-MON↓, the proofs of which are
very similar.

LEMMA 5.10. Suppose F satisfies F-MON↓. Then, for all w ≤ s

ξβ(w) + �β(w, s) ≤ F(w, s) ≤ ξα+(w) + �α+(w, s)

with equality on the right at s = w and s = a(w) and equality on the left at s =
b(w).

THEOREM 5.11. Suppose F-MON↓ holds. Then

inf
τ∈S(W,μ)

E
[
F(Wτ ,Sτ )

] = E
[
F(WτAY

μ
, SτAY

μ
)
]
,

sup
τ∈SUI(W,μ)

E
[
F(Wτ ,Sτ )

] = E
[
F(WτP

μ
, SτP

μ
)
]
.

EXAMPLE 5.12. Suppose μ = U [−1,1] and F(w, s) = (s − w)c for c > −1
(with c �= 0). Then for c ≥ 2 F-MON↓ holds, for 0 < c ≤ 2 F-MON↑ holds and
for −1 < c < 0, F-MON↓ holds again.

Write BAY and BP for the bounds associated with the Azéma–Yor and Perkins
embeddings.

Recall the expressions for β and α from Examples 3.1 and 3.3.
For the Azéma–Yor embedding, β(s) = 2s − 1 and the law of the Sτβ is a uni-

form on [0,1]. The associated bound (as a function of the parameter c) is given
by

BAY(c) = E
[
F(WτAY

μ
, SτAY

m u)
] =

∫ 1

−1

(
b(w) − w

)c dw

2
=

∫ 1

0

(
s − β(s)

)c
ds

=
∫ 1

0
(1 − s)c ds = 1

c + 1
.
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FIG. 3. All uniformly integrable embeddings have the same expected value when c = 2. Note the
reversal of the bounds at c = 2: for 0 < c < 2 Theorem 5.3 applies while for c > 2 Theorem 5.11
applies. For c < 0, the Perkins bound is infinite and the Azéma–Yor bound is finite. The Perkins bound
as a function of c is discontinuous at c = 0.

For the Perkins bound, note that for c < 0, F(s, s) = ∞, and so BP(c) = 0. For
c > 0, F(s, s) = 0 and using the substitution w = α+(s) = s − 2

√
s,

BP(c) = E
[
F(WτP

μ
, SτP

μ
)
] =

∫ 0

−1

(
a+(w) − w

)c dw

2

= 2c

(c + 1)(c + 2)
.

Results for a range of c are plotted in Figure 3. Observe that for c = 2, BAY(2) =
BP(2) = 1/3 and all uniformly integrable embeddings for the terminal law are
consistent with the same expected payoff. The reason for this will become clear in
Section 7 and will correspond to the choice g ≡ 1.

In fact Assumption 5.1 is not satisfied for −1 < c < 1. Nonetheless, for c in this
range and ε > 0 we can let Fε(w, s) = hε(s − w) where hε(x) = xc for x ≥ ε and
hε(x) = εc + cεc−1(x − c) for x < ε. Then Fε does satisfy Assumption 5.1, and
F and Fε satisfy F-MON↑ or F-MON↓ together. Then arguments of Theorem 5.3
provide the upper and lower bounds for Fε , and letting ε ↓ 0 we obtain the pictured
bounds for F .

EXAMPLE 5.13. Suppose again that μ = U [−1,1]. Let F(w, s) = (s−w)2

sc .
Note that for each c either F-MON↑ or F-MON↓ (or both) holds, so that the
Azéma–Yor and Perkins embeddings give extremal values for E[F(Wτ ,Sτ )].
Consider the Azéma–Yor bound as a function of the parameter c (defined for
c < 1),

BAY(c) =
∫ 1

−1

(b(w) − w)2

b(w)c

dw

2
=

∫ 1

0

(s − β(s))2

sc
ds =

∫ 1

0

(s − 1)2

sc
ds

= 2

(1 − c)(2 − c)(3 − c)
.
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FIG. 4. For 1 < c < 3/2 the Azéma–Yor upper bound is infinite while the Perkins lower bound is
finite.

For the Perkins bound we have (for c < 3/2)

BP(c) =
∫ 0

−1

(a+(w) − w)2

a+(w)

dw

2

=
∫ 1

0

2
√

s

sc
(1 − √

s) ds

= 1

(3/2 − c)(2 − c)
.

Observe that the expressions for BAY(·) and BP(·) co-incide at c = 0 where
both F-MON↑ and F-MON↓ hold. See Figure 4.

6. General centered target measures.

THEOREM 6.1. Fix τ ∈ SUI(W,μ). Suppose, in addition to Assumption 5.1,
that F ≥ 0, that

E
[
F(WH±n, SH±n); τ ≥ H±n

] → 0(6.1)

and that if (μn)n≥1 is any sequence of measures which is increasing in convex
order for which μn ⇒ μ, Uμn(0) → Uμ(0) and μn({0}) → μ({0}), then both

E
[
F(WτAY

μn
, SτAY

μn
)
] → E

[
F(WτAY

μ
, SτAY

μ
)
]

(6.2)

and

E
[
F(WτP

μn
, SτP

μn
)
] → E

[
F(WτP

μ
, SτP

μ
)
]
.(6.3)

Then if F-MON↑ holds,

E
[
F(WτP

μ
, SτP

μ
)
] ≤ E

[
F(Wτ ,Sτ )

] ≤ E
[
F(WτAY

μ
, SτAY

μ
)
]
,

whereas, if F-MON↓ holds, then

E
[
F(WτAY

μ
, SτAY

μ
)
] ≤ E

[
F(Wτ ,Sτ )

] ≤ E
[
F(WτP

μ
, SτP

μ
)
]
.
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PROOF. Suppose F-MON↑ holds (the proof for F-MON↓ is similar). Given
τ ∈ SUI(W,μ), let σn = τ ∧ H±n, μn = L(Wσn) and define τAY

μn
and τP

μn
to be the

Azéma–Yor and Perkins stopping times associated with μn.
We have, using monotone convergence, (6.1), Theorem 5.3 and finally (6.2),

E
[
F(Wτ ,Sτ )

] = E
[
limF(Wσn, Sσn);σn = τ ≤ H±n

]
= lim E

[
F(Wσn, Sσn)I{τ≤H±n}

]
= lim E

[
F(Wσn, Sσn)I{τ<H±n} + F(WH±n, SH±n)I{τ≥H±n}

]
= lim E

[
F(Wσn, Sσn)

]
≤ lim E

[
F(WτAY

μn
, SτAY

μn
)
] = E

[
F(WτAY

μ
, SτAY

μ
)
]
.

Similarly

lim E
[
F(Wσn, Sσn)

] ≥ lim E
[
F(WτP

μn
, SτP

μn
)
] = E

[
F(WτP

μ
, SτP

μ
)
]
. �

COROLLARY 6.2. Suppose that F(w, s) ≤ A(1 + |w|k + sk) for k ≥ 1 and
that μ has finite k + ε moment, for some positive ε. Then the hypotheses (6.1),
(6.2) and (6.3) are all satisfied, and the conclusions of Theorem 6.1 hold.

PROOF. By Doob’s submartingale inequality for (|Wt∧τ |k+ε)t≥0, for any τ ∈
SUI(W,μ),

mk+ε
P(τ > H±m) < E

[|Wτ |k+ε] < ∞.

Then

E
[
F(WH±n, SH±n); τ ≥ H±n

] ≤ A
(
1 + 2nk)

P(τ > H±n) → 0.

For (6.2) we have that τβn → τβ almost surely. Moreover, since μn ≤cx μ

there exists a stopping time (ρn say) with ρn ≥ τβn and ρn ∈ SUI(W,μ). For
such a ρn, E[|Wρn |k+ε] = ∫

R
|x|k+εμ(dx) < ∞ by hypothesis, and then (defin-

ing W ∗
t = sups≤t |Ws |) by Doob’s Lp inequality E[(W ∗

ρn
)k+ε] ≤ D < ∞ for some

constant D, independent of n.
Set Fn = F(WτAY

μn
, SτAY

μn
) and F = F(WτAY

μ
, SτAY

μ
), then Fn → F almost surely.

The goal is to show that E[Fn] → E[F ] which will follow if supn E[(Fn)
p] < ∞,

for then (Fn)n≥1 is uniformly integrable. We have that if |w| ≤ x and s ≤ x, then
with p = 1 + k/ε,

F(w, s)p ≤ Ap(
1 + 2xk)p ≤ Ap3p(

1 + xkp)
.

Hence

E
[
Fp

n

] ≤ Ap3p(
1 + E

[(
W ∗

τn

)kp]) ≤ Ap3p(
1 + E

[(
W ∗

ρn

)kp]) ≤ Ap3p(1 + D) < ∞.

For (6.3), consider a subsequence n(k). Then down a further subsequence
τP
μn

→ τP
μ almost surely and down this subsequence (6.3) holds by identical ar-

guments as in the case for the Azéma–Yor embedding. Hence (6.3) holds. �
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7. Objective functions as running costs. Our original aim in studying func-
tions F(w, s) was as an aid in the analysis of the expected values of integrals of
the form

∫ τ
0 g(St ) dt . Motivated by the variance swap problem in mathematical

finance we asked:

Given g and μ, what is the range of possible values of E[∫ τ
0 g(Su)du] over embeddings

τ of μ in Brownian motion?

Our aim is to reduce this problem to the case previously considered, but to use the
extra structure to prove more powerful results under weaker hypotheses.

The expected value of
∫ τ

0 g(Su) du is intimately related to the value of
E[G(Wτ ,Sτ )] where G(w, s) = (s − w)2g(s). Indeed, if g is continuously dif-
ferentiable, then by Itô’s lemma,

G(Wτ ,Sτ ) = G(0,0) +
∫ τ

0
g(Su) du −

∫ τ

0
2(Su − Wu)g(Su) dWu,(7.1)

so that if g(0) is finite [and then G(0,0) = 0], and if(∫ τ∧t

0
2(Su − Wu)g(Su) dWu

)
t≥0

is a uniformly integrable martingale, then E[∫ τ
0 g(Su) du] = E[G(Wτ ,Sτ )].

If g is increasing (resp., decreasing), then G satisfies G-MON↓ (resp., G-
MON↑), and we can apply the results of previous sections to deduce that the
Azéma–Yor and Perkins solutions give bounds E[∫ τ

0 g(Su) du] over embeddings
τ of μ.

THEOREM 7.1. Suppose g : R+ �→ R+ is a positive function and that μ is
centered.

(i) Suppose g is increasing. Then

inf
τ∈S(W,μ)

E

[∫ τ

0
g(Su) du

]
= E

[∫ τAY
μ

0
g(Su) du

]

and

sup
τ∈SUI(W,μ)

E

[∫ τ

0
g(Su) du

]
= E

[∫ τP
μ

0
g(Su) du

]
.

(ii) Suppose g is decreasing. Then

inf
τ∈S(W,μ)

E

[∫ τ

0
g(Su) du

]
= E

[∫ τP
μ

0
g(Su) du

]

and

sup
τ∈SUI(W,μ)

E

[∫ τ

0
g(Su) du

]
= E

[∫ τAY
μ

0
g(Su) du

]
.
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REMARK 7.2. As we remarked in the Introduction, at first sight this result
is counterintuitive. Given increasing g, the Azéma–Yor stopping time maximizes
E[g(Sτ )] over τ ∈ SUI(W,μ), and it seems plausible that it might also maximize
E[∫ τ

0 g(Su) du]. In fact the exact opposite is true. The explanation is that for the
Azéma–Yor embedding there is co-monotonicity2 between Sτ and Wτ , and con-
ditional on Sτ ≥ s, the stopping time occurs quite soon [and certainly before W

drops below β(s)], whereas for the Perkins embedding, conditional on Sτ ≥ s,
there are paths which will only be stopped when W goes below α+(s). Thus, for
increasing g when we wish to maximize the time (before τ ) for which S is large,
this is best achieved by the Perkins embedding: although relatively few paths will
have large S (most will have already been stopped) those with a large maximum
will spend a long time after first hitting s before being stopped.

EXAMPLE 7.3. Recall Example 5.13. Suppose μ = U [−1,1] and g(s) = s−c.
Then, for c < 0, (1 − c)−1(2 − c)−1(3 − c)−1 ≤ E[∫ τ

0 S−c
u du] ≤ (2 − c)−1(3/2 −

c)−1.
For 0 < c < 1, (2− c)−1(3/2− c)−1 ≤ E[∫ τ

0 S−c
u du] ≤ (1− c)−1(2− c)−1(3−

c)−1, for 1 ≤ c < 3/2, (2−c)−1(3/2−c)−1 ≤ E[∫ τ
0 S−c

u du] ≤ ∞ and for c ≥ 3/2,
E[∫ τ

0 S−c
u du] = ∞ for all embeddings τ .

Note that for c = 0, E[τ ] is independent of τ and equal to the variance of μ.

EXAMPLE 7.4. Recall the calculations from Example 3.4. Let the target law μ

with support [−1,∞) satisfy μ(dx) = 2
(x+2)3 dx. Let g(s) = 1

c+s
for c > 0 which

is decreasing in s.
The Azéma–Yor upper bound can be calculated explicitly to be

BAY(c) =
∫ ∞
−1

(b(w) − w)2

b(w) + c

2

(w + 2)3 dw

= 2(log(c) − log(2))

c − 2
.

The expression for the Perkins lower bound is given by

BP(c) =
∫ ∞
−1

(a+(w) − w)2

a+(w) + c

2

(w + 2)3 dw.

The expression for α+ is too complicated for the expression above to have an
analytic representation. However, the values can be computed numerically for dif-
ferent c.

2A pair of random variables X and Y is co-monotonic if P(X ≤ x,Y ≤ y) = min{P(X ≤ x),P(Y ≤
y)} for all x and y.
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The rest of this section is devoted to a proof of Theorem 7.1. We split the proof
into four separate parts.

PROOF OF THEOREM 7.1(i): LOWER BOUND. Suppose first that g is
monotonic increasing and that we are interested in minimizing the quantity
E[∫ τ

0 g(Su) du] over embeddings τ of μ in W . Note that it is sufficient to re-
strict attention to SUI(W,μ): for nonminimal τ ∈ S(W,μ) there exists τ̃ ≤ τ with
τ̃ ∈ SUI(W,μ), and then

∫ τ
0 g(Su) du ≥ ∫ τ̃

0 g(Su) du for each ω ∈ �.
Suppose temporarily that g is bounded and continuously differentiable. Later

we will relax this assumption. Then G(w, s) = (s − w)2g(s) satisfies G-MON↓.
For τ ∈ SUI(W,μ) let σn = τ ∧ H±n, let μn = L(Wσn), βn be the inverse

barycenter of μn and finally let τAY
μn

be the Azéma–Yor stopping rule associated
with the law μn so that τAY

μn
= τβn = inf{u :Wu ≤ βn(Su)}. Then, by Proposi-

tion 4.4, since Uμn ↑ Uμ, τβn → τβ almost surely.
If a stopping time ρ is such that ρ ≤ H±n, then E[ρ] < ∞ and for u ≤ ρ,

(Su − Wu)g(Su) is bounded. Then if Mt = ∫ t
0 (Su − Wu)g(Su) dWu, we have that

(M
ρ
t )t≥0 is an L2 bounded martingale for which

E
[
Mρ∞

] = E

[∫ ρ

0
(Su − Wu)g(Su) du

]
= 0.(7.2)

It follows that

E

[∫ σn

0
g(Su) du

]
= E

[
(Sσn − Wσn)

2g(Sσn)
]

≥ E
[
(Sτβn

− Wτβn
)2g(Sτβn

)
]

= E

[∫ τβn

0
g(Su) du

]
,

where we have used (7.1) and (7.2) twice and Theorem 5.11. Then it follows from
the Fatou lemma that

lim E

[∫ σn

0
g(Su) du

]
≥ lim E

[∫ τβn

0
g(Su) du

]

(7.3)

≥ E

[
lim inf

∫ τβn

0
g(Su) du

]

and by monotone convergence and the fact that τβn → τβ almost surely,

E

[∫ τ

0
g(Su) du

]
≥ E

[∫ τβ

0
g(Su) du

]

as required.



2046 D. HOBSON AND M. KLIMMEK

Finally we remove the temporary assumptions on g. Given g is monotonic in-
creasing we can find an increasing sequence of bounded, continuously differen-
tiable (increasing) functions gm which approximate g from below. Then, by mono-
tone convergence

E

[∫ τ

0
g(Su) du

]
= lim

m
E

[∫ τ

0
gm(Su) du

]
≥ lim

m
E

[∫ τβ

0
gm(Su) du

]

= E

[∫ τβ

0
g(Su) du

]
.

Note that this same argument will apply in all four parts of Theorem 7.1, and
henceforth without loss of generality we will assume that g is continuously differ-
entiable and bounded by ḡ.

PROOF OF THEOREM 7.1(ii): LOWER BOUND. Case 1: There exists an open
interval I ⊆ [−1,1] containing 0 with μ(I) = 0.

Given τ ∈ S(W,μ), let σm = τ ∧ H±m. Let μm = L(Wσm). Write τP
m for the

Perkins embedding of μm. Note that μm ⇒ μ, Uμm(0) → Uμ(0) and μm(I) = 0.
Then, τP

m = ταm and by Proposition 4.6(a), ταm → τα almost surely. Then exactly
as in (7.3), but now using Theorem 5.3 to give that the lower bound is attained by

the Perkins embedding, we conclude that E[∫ τ
0 g(Su) du] ≥ E[∫ τP

μ

0 g(Su) du].
Case 2: General μ. Given any subsequence, by Proposition 4.6(b) we may take

a further subsequence down which τP
m → τP almost surely. Then down this subse-

quence the result holds, as in case 1. Since the first subsequence was arbitrary we
are done.

PROOF OF THEOREM 7.1(ii): UPPER BOUND. Now consider the upper bound
in Theorem 7.1(ii). Rather than attempting to find a dominating random variable
which will allow us to use the reverse Fatou lemma in place of the Fatou lemma
above we will use a slightly different approach based on defining a sequence of
intermediate stopping times.

Let τ be any element of SUI(W,μ). Suppose g is bounded, continuously differ-
entiable and monotonic decreasing, and that μ has support in a bounded interval
[x̌, x̂]. Then, as above, E[∫ τ

0 g(Su) du] = E[G(Wτ ,Sτ )]. Moreover, we can con-
clude from Theorem 5.3 that

sup
τ∈SUI(W,μ)

E

[∫ τ

0
g(Su) du

]
= E

[∫ τβ

0
g(Su) du

]
.

It remains to remove the assumptions on μ.
Given ε, let Uε(x) = max{Uμ(x) − ε, |x|}, and let x̌ε and x̂ε be the left and

right-hand endpoints of the interval Iε = {x :Uε(x) > |x|}.
Let σε = τ ∧ inf{u :Wu /∈ Iε}. Let μ̄ε be the law of Wσε , and let Ūε be the

associated potential. Then Ūε = Uε on I c
ε and Uε ≤ Ūε ≤ Uμ.
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FIG. 5. The potentials Ũε increase monotonically as ε decreases. Moreover, over a range of x,
depending on εn, we have β̃εn (x) ≡ β(x), and hence, the inverse barycentre functions converge
monotonically.

Now let Ũε be the largest convex function such that Ũε(x) = |x| on I c
ε and

Ũε ≤ Uμ. It follows that Ũε is actually equal to U on an interval Ĩε = [c̃ε, d̃ε]. If
ε is small enough, then 0 ∈ Ĩε . See Figure 5. Further, Uε ≤ Ūε ≤ Ũε ≤ U and in
terms of the associated measures με ≤cx μ̄ε ≤cx μ̃ε ≤cx μ, where μ̃ε is such that
Uμ̃ε

= Ũε , and we recall that ≤cx denotes “less than or equal to in convex order.”
Then, by a theorem of Strassen [22] (or for a more explicit construction in our
context, Chacon and Walsh [5]), given σε there exists a stopping time σ̃ε such that
σε ≤ σ̃ε almost surely, and μ̃ε = L(Wσ̃ε

).
Now consider a sequence εn decreasing to zero. Let β̃εn be the inverse barycen-

tre associated with μ̃εn , and let τ̃n be the Azéma–Yor stopping time associated
with β̃εn . The introduction of the stopping times σ̃εn gives extra structure which
means that not only do the barycenters converge (as in Proposition 4.4), but also
that they converge monotonically.

LEMMA 7.5. β̃n ↓ β and τ̃n ↑ τβ almost surely.

PROOF. Write x̌n (resp., x̂n, cn, dn) for x̌εn (resp., x̂εn, cεn, dεn).
Then, for s ≤ b(cn), β̃n(s) = x̌n ≥ β(s), for b(c̃n) < s < x̂n, β̃n(s) = β(s) and

for s ≥ x̂n, β̃n(s) = s ≥ β(s).
Monotonicity in n of τ̃n follows immediately. �

It follows from the results for bounded target distributions that

E

[∫ σn

0
g(Su) du

]
≤ E

[∫ σ̃n

0
g(Su) du

]
= E

[
G(Wσ̃n

, Sσ̃n
)
] ≤ E

[
G(Wτ̃n

, Sτ̃n
)
]

= E

[∫ τ̃n

0
g(Su) du

]
.
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We have that the integral inside the first expectation converges monotonically to∫ τ
0 g(Su) du, whereas the integral inside the final expression converges monotoni-

cally to
∫ τβ

0 g(Su) du. Hence E[∫ τ
0 g(Su) du] ≤ E[∫ τβ

0 g(Su) du] as required.

PROOF OF THEOREM 7.1(i): UPPER BOUND. The final element of Theo-
rem 7.1 is the upper bound in the case of monotonically increasing g. Recall that
we suppose that g is continuously differentiable, and bounded by ḡ.

If μ has bounded support, then Theorem 5.11 applies directly, so we assume
that the support of μ is unbounded.

If μ /∈ L2, then for each τ ∈ S(W,μ) we have E[τ ] = ∞ and using the

fact that E[Hε ∧ τP
μ] ≤ E[Hε ∧ Hα+(ε)] < ∞, we have that E[∫ τP

μ

0 g(Su) du] ≥
g(ε)E[∫ τP

μ

Hε∧τP
μ

du] = ∞, and there is nothing to prove.

So suppose μ ∈ L2. Then the area between the curves Uμ(x) and |x| is finite.
Let Uε(x) = max{Uμ(x) − ε, |x|} and related quantities be defined as above.
This time, since Ũε ≡ Uμ on Ĩε we have that αμ̃ε

= αμ on some sub-interval
Íε ⊆ Ĩε of the form Íε = [ćε, d́ε], and as ε ↓ 0, Íε increases to the support of μ.

Now

E

[∫ τ

0
g(Su) du

]
= lim

ε↓0
E

[∫ σε

0
g(Su) du

]

and

E

[∫ σε

0
g(Su) du

]
≤ E

[∫ σ̃ε

0
g(Su) du

]
≤ E

[∫ τP(μ̃ε)

0
g(Su) du

]
.

But

E

[∫ τP(μ̃ε)

0
g(Su) du

]
= E

[∫ τP(μ̃ε)∧Hćε∧H
d́ε

0
g(Su) du

]

+ E

[∫ τP(μ̃ε)

τP(μ̃ε)∧Hćε∧H
d́ε

g(Su) du

]
.

Since αμ̃ε
= αμ on Íε and we have that τP(μ̃ε) ∧ Hćε

∧ H
d́ε

is monotonically
increasing as ε ↓ 0 and hence the first term on the right-hand side converges

to E[∫ τP(μ)
0 g(Su) du]. Meanwhile, the second term is bounded by ḡE[τP(μ̃ε) −

τP(μ̃ε) ∧ Hćε
∧ H

d́ε
]. This last quantity is at most ḡ multiplied by the area be-

tween the potentials Uμ and Uμ́ε
where μ́ε = L(WτP(μ̃ε)∧Hć∧H

d́
). However, as ε

tends to zero this area tends to zero. Hence E[∫ τ
0 g(Su) du] ≤ E[∫ τP(μ)

0 g(Su) du].
�

8. An application and extensions.

8.1. Variance swap on the sum of squared returns. We now return to the ques-
tion which originally motivated this paper which was to find model-independent
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bounds for variance swaps given the terminal law of the underlying asset price
process or equivalently, call prices with expiry T for all strikes. Using the re-
sults developed in this article we will show how to bound the idealized variance
swap based on squared returns, introduced in Section 2. The results in this article
motivated further work on model-independent bounds and hedging strategies for
variance swaps in a general setting; see Hobson and Klimmek [11].

As in Section 2, let X = (Xt)0≤t≤T be a square-integrable martingale started
at X0 = x0 with XT ∼ μ, where μ is centered at x0 and supported on R+.
Recall from (2.1) the definition for the payoff of an idealized variance swap
VT = V ((Xs)0≤s≤T ) = ∫ T

0 (Xt−)−2 d[X,X]t . By (2.4) and (2.5) we have

inf
τ∈SUI(B,μ)

E

[∫ τ

0

du

(SB
u )2

]
≤ E[VT ] ≤ sup

τ∈SUI(B,μ)

E

[∫ τ

0

du

(IB
u )2

]
.

Let μ̃ be the measure μ reflected around 0, so that μ̃ is a measure on R−, and
observe that

sup
τ∈SUI(B,μ)

E

[∫ τ

0

du

(IB
u )2

]
= sup

τ∈SUI(B̃,μ̃)

E

[∫ τ

0

du

(SB̃
u )2

]
,

where B̃ is a Brownian motion started at −x0, with maximum process SB̃ . Now
we apply Theorem 7.1 to see that

E

[∫ τP
μ

0

du

(SB
u )2

]
≤ E[VT ] ≤ E

[∫ τP
μ̃

0

du

(SB̃
u )2

]
.

Note that the Perkins embedding for τμ̃ is determined by the monotonic functions
α±

μ̃
where α±

μ̃
(x) = −α∓

μ (−x).

EXAMPLE 8.1. Suppose that X0 = 1 and μ = U [0,2]. Shifting the quantities
calculated in Example 3.1 to allow for the starting value X0 = 1 it is clear that
α+

μ : [1,2] → [0,1] is defined α+
μ (s) = s − 2

√
s − 1 and α−

μ : [0,1] → [1,2] is

defined α−
μ (i) = i + √

1 − i. Hence the lower bound can be calculated,

E

[∫ τP
μ

0

du

S2
u

]
= E

[(
1 −

BτP
μ

SτP
μ

)2]
=

∫ 1

0

(
1 − x

a+
μ (x)

)2 dx

2
= π

2
− 2 log 2.

For the upper bound, first considering gε(s) = s−2 ∧ ε−2 and then letting ε ↓ 0,

E

[∫ τP
μ̃

0

du

S̃2
u

]
= E

[(
1 −

B̃τP
μ̃

S̃τP
μ̃

)2]
=

∫ 1

0

(
1 − x

a−
μ (x)

)2 dx

2
= ∞.
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8.2. Extension to diffusions. Suppose that (Xt)t≥0 is a time-homogeneous dif-
fusion on I ⊆ R. More specifically, let σ : I → (0,∞) and b : I → R be Lipschitz
functions, and define (Xt)t≥0 to be the solution to

dXt = σ(Xt) dBt + b(Xt) dt, X0 = x0,

where (Bt )t≥0 is a Brownian motion.
Let s : I → R be the strictly increasing and C2 scale function of X,

s(x0) = 0, s′(x) = exp
(
−

∫ x

0
2

b(u)

σ (u)2 du

)

and let h = s−1.
Consider the problem of maximizing (or minimizing) E[F(Xτ ,S

X
τ )] over min-

imal embeddings τ of μ. Since Mt = s(Xt) is a local martingale it follows that it
can be represented as Mt = WA(t), for some (continuous) time-change t → A(t).
Define the measure ν by ν(G) = μ(s−1(G)) for Borel sets G ⊆ s(I ). Notice that
σ is a minimal embedding of ν in W if and only if τ = A−1(σ ) is a minimal
embedding of ν in M and hence a minimal embedding of μ in X.

Define the function F̂ by F̂ (w, s) = F(h(w),h(s)). Then

F
(
Xτ ,S

X
τ

) = F
(
h(WAτ ), h(SAτ )

) = F̂ (WAτ , SAτ ).(8.1)

LEMMA 8.2. Suppose F satisfies F-MON↑. Then F̂ satisfies F̂ -MON↑ if
Fs < 0 and h is concave or if Fs > 0 and h is convex.

Similarly, suppose F satisfies F-MON↓. Then F̂ satisfies F̂ -MON↓ if Fs < 0
and h is convex or if Fs > 0 and h is concave.

PROOF. The result follows from the expression

F̂s(x, s)

s − x
= h′(s)Fs(h(x), h(s))

h(s) − h(x)

h(s) − h(x)

s − x
.(8.2) �

Note that h is convex (concave) when s is concave (convex), and since
2s′′(x)/s′(x) = −σ(x)2/b(x), the scale function is concave if b(x) > 0 for all x.

PROPOSITION 8.3. Suppose ν = μ ◦ h is centered about zero, and suppose
b > 0. Suppose F satisfies F-MON↑ and is increasing in s. Then

sup
τ∈SUI(X,μ)

E
[
F

(
Xτ ,S

X
τ

)] = E
[
F̂ (WτAY

ν
, SτAY

ν
)
]
,

inf
τ∈SUI(X,μ)

E
[
F

(
Xτ ,S

X
τ

)] = E
[
F̂ (WτP

ν
, SτP

ν
)
]
.
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REMARK 8.4. Whilst necessary to apply the results of the Brownian setting,
the assumption that ν ≡ μ ◦ h is centered is not as innocuous as might first ap-
pear, and in the setting of a transient diffusion it is natural to wish to consider
embeddings for target laws which, after transformation by the scale function, are
not centered. For example, let X be a three-dimensional Bessel process, started at
one. Then s(x) = −1/x + 1 and h(m) = 1/(1 − m). Now let μ be any probability
measure on R

+ with
∫
R+ x−1μ(dx) ≤ 1. Then, there exists a minimal embedding

of μ in X, but only if
∫
R+ x−1μ(dx) = 1 does this embedding correspond to a

uniformly integrable embedding of M ≡ 1 − X−1.
See Cox and Hobson [6] (and the references therein) for a further discussion of

this issue, and of the construction of embeddings in Brownian motion of noncen-
tered target laws.
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