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SOLVING OPTIMAL STOPPING PROBLEMS VIA EMPIRICAL
DUAL OPTIMIZATION

BY DENIS BELOMESTNY1

Duisburg-Essen University

In this paper we consider a method of solving optimal stopping prob-
lems in discrete and continuous time based on their dual representation.
A novel and generic simulation-based optimization algorithm not involving
nested simulations is proposed and studied. The algorithm involves the op-
timization of a genuinely penalized dual objective functional over a class of
adapted martingales. We prove the convergence of the proposed algorithm
and demonstrate its efficiency for optimal stopping problems arising in op-
tion pricing.

1. Introduction. Let (�, F , (Ft )t≥0,P) be a standard filtered probability
space, and let Zt be an adapted process satisfying

E sup
t∈[0,T ]

|Zt |2 < ∞.

Consider the following optimal stopping problem:

Y ∗ = sup
τ∈T [0,T ]

E[Zτ ],(1.1)

where T [0, T ] is the set of stopping times taking values in [0, T ] for some
T > 0. Solving the optimal stopping problem (2.1) is straightforward in low di-
mensions. However, many problems arising in practice have high dimensions, and
these applications have forced the development of simulation-based algorithms
for optimal stopping problems. There are basically two approaches toward solving
optimal stopping problems: a primal approach and a dual approach. Solving high-
dimensional optimal stopping problems by the primal approach and Monte Carlo
is a challenging task because the determination of the optimal value function in the
primal approach uses a backward dynamic programming principle that seems to be
incompatible with the forward nature of Monte Carlo simulation. Much research
was focused on the development of fast methods to compute approximations to
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the optimal value function. One of the most successful algorithms, and the one
adopted most widely by practitioners, is the Longstaff–Schwartz algorithm. It is
based on approximating the conditional expectations by the least-squares regres-
sion on a given basis of functions and hence boils down to solving a quadratic
optimization problem. During the last century, the primal approach was, in effect,
the only method available, but in recent years another quite different “dual” ap-
proach has been discovered by Rogers (2002) and Haugh and Kogan (2004) that is
based on a dual representation for the optimal value function. The dual represen-
tation involves the minimization of the dual objective functional over the set of all
adapted martingales M, where the minimum is attained at some “optimal” mar-
tingale M∗ that coincides with the martingale in the Doob–Meyer decomposition
of the value process. In fact, finding such an optimal martingale is as difficult as
solving the original stopping problem. The so-called martingale duality approach
aims at approximating the “optimal” martingale and then uses this approxima-
tion to compute upper bounds by Monte Carlo. There are two types of algorithms
toward approximating the “optimal” martingale M∗. The first one needs a prelim-
inary estimate for the value process Y ∗ in order to approximate the Doob mar-
tingale M∗. The early paper of Andersen and Broadie (2004) uses, for example,
the Longstaff–Schwartz algorithm to construct a pilot estimate for Y ∗ and then
employs sub-simulation to approximate M∗. Another dual algorithm that does not
involve sub-simulation, was suggested in Belomestny, Bender and Schoenmak-
ers (2009), where an approximation for the martingale M∗ was constructed using
martingale representation theorem and an approximation of the value process. Let
us note that the performance of the above two methods deteriorate sharply as the
number of exercise dates increases. The second type of algorithms is based on
the direct optimization of the dual objective functional over a parameterized set of
martingales and does not require a preliminary estimate of Y ∗. The recent work
of Desai, Farias and Moallemi (2013) uses optimization and sub-simulation to ap-
proximate M∗ and Y ∗

t simultaneously in an efficient way. However, it becomes
less efficient in the case of continuous optimal stopping problems, as it involves
sub-simulations at each time step. Another “pure” dual algorithm was proposed
in Rogers (2010) and further refined in Schoenmakers, Huang and Zhang (2011).
Let us finally mention the recent work of Christensen (2011) where a quite dif-
ferent approach was proposed that uses neither the dual representation nor Monte
Carlo. This approach is based on the excessive function characterization of the
value function for continuous optimal stopping problems.

The contribution of the current paper is threefold. On the one hand, we propose
a novel dual optimization-based algorithm for solving optimal stopping problem
in discrete and continuous time which does not require nested Monte Carlo sim-
ulations. Our algorithm makes use of the martingale representation theorem to
parametrize the set of martingales we optimize over. This allows us to obtain sur-
prisingly good results in a number of benchmark option pricing problems using
rather generic sets of basis functions (trigonometric polynomials) to approximate
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the integrand in the martingale representation theorem. In the previous literature
one was able to obtain such bounds only by using either many sub-simulations or
special basis functions [e.g., European deltas in Belomestny, Bender and Schoen-
makers (2009) or excessive functions in Christensen (2011)]. On the other hand,
we propose a novel approach toward variance reduction based on the genuine pe-
nalization of the dual objective functional. Last but not the least, we rigorously
analyze the convergence of the proposed dual algorithm and derive the correspond-
ing convergence rates. Note that as opposed to the Longstaff–Schwartz algorithm,
the convergence of dual algorithms has not been yet rigorously studied. Even the
convergence of the well-known primal-dual Andersen–Broadie algorithm is not an
obvious issue, as the errors stemming from the Longstaff–Schwartz algorithm are
to be taken into account in a proper way; see, for example, Belomestny (2011).

The paper is organized as follows. In Section 2 we formulate the main algorithm
and address the convergence issue. In Section 3 we discuss how to build up a class
of martingales with good approximation properties using the so-called martingale
representation. Section 4 contains several numerical examples illustrating the ef-
ficiency of our approach. Section 5 concludes the paper. Finally, in Section 6 the
proofs of the main results together with some auxiliary results are collected. In
particular, we derive a novel concentration inequality for some empirical process
over parameterized classes of martingales.

2. Main results.

2.1. Empirical penalized dual algorithm. Consider the following optimal
stopping problem:

Y ∗
t = ess sup

τ∈T [t,T ]
E[Zτ |Ft ], t ∈ [0, T ],(2.1)

where T [t, T ] is the set of stopping times taking values in [t, T ] for some T > 0.

Let A stand for the space of all adapted martingales starting at 0, then we have the
following dual representation [see Rogers (2002)] for the value process Y ∗

t :
Y ∗

t = inf
M∈A

(
Mt + E

[
sup

u∈[t,T ]
(Zu − Mu)

∣∣Ft

])
.(2.2)

The infimum is attained by taking M = M∗, where

Y ∗
t = Y ∗

0 + M∗
t − A∗

t

is the Doob–Meyer decomposition of the supermartingale Y ∗
t , M∗ being a martin-

gale and A∗ being an increasing process with A∗
0 = 0. Moreover, the identity

Y ∗
t = M∗

t + sup
u∈[t,T ]

(
Zu − M∗

u

)
(2.3)
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holds for all t ∈ [0, T ] with probability 1. Hence, for an arbitrarily chosen adapted
martingale M with M0 = 0, the value

E
[

sup
u∈[0,T ]

(Zu − Mu)
]

(2.4)

defines an upper bound for Y ∗
0 , and the upper bound will be tight if M mini-

mizes (2.4). On the other hand, we are interested in martingales M leading to
the random variable supt∈[0,T ](Zt −Mt) with a low variance, since this would im-
ply faster convergence of a Monte Carlo estimate for (2.4). By compromising both
requirements, one ends up with the optimization problem

inf
M∈A

{
E
[

sup
t∈[0,T ]

(Zt − Mt)
]
+ λ

√
Var
[

sup
t∈[0,T ]

(Zt − Mt)
]}

,(2.5)

where λ is a nonnegative number determining the degree of penalization by the
variance. Note that due to (2.3) the Doob martingale M∗ is one solution of the
optimization problem (2.5).

Fixing a set of martingales M ⊂ A and replacing the true quantities in (2.5)
by their empirical counterparts, we arrive at the following empirical optimization
problem:

Mn = arg inf
M∈M

(
1

n

n∑
j=1

Z(j)(M) + λ
√

Vn(M)

)
, λ > 0,(2.6)

where Z(j)(M), j = 1, . . . , d are i.i.d random variables having the same distribu-
tion as

Z(M) = sup
s∈[0,T ]

(Zs − Ms)(2.7)

and

Vn(M) = 1

n(n − 1)

∑
1≤i<j≤n

(
Z(i)(M) − Z(j)(M)

)2
.(2.8)

The approach based on the empirical optimization problem (2.6) has several obvi-
ous advantages. First, it delivers “true” upper bound without use of sub-simulation,
thus resulting in a nonnested Monte Carlo. Second, it does not exclusively focus on
finding Doob martingale and takes advantage of the richness [see Schoenmakers,
Huang and Zhang (2011)] of the class A∗ of adapted martingales starting at 0 and
satisfying

Y ∗ = sup
t∈[0,T ]

(Zt − Mt), a.s.(2.9)

Another useful feature of our algorithm which will be proved in the next section is
that the variance of the r.v. Z(Mn) = sups∈[0,T ](Zs −Mn,s) is, with high probabil-
ity, bounded by a multiple of the r.v.

inf
M∈M,M ′∈A∗ d

(
M,M ′),
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where d is a deterministic metric on A. The above property implies that the vari-
ance of Z(Mn) can be made arbitrary small by considering classes of martingales
M with better approximation properties with respect to the solution class A∗. Last
but not least, our approach is applicable to the case of continuous optimal stopping
problems, as it does not involve regression (or subsimulations) at each discretiza-
tion step as in other approaches based on the dynamic programming formulation.

2.2. Convergence. Let (�,ρ) be a metric space. Furthermore, let M =
{M(ψ) :ψ ∈ �} be a family of adapted continuous local martingales defined on
(�, F ,P).

DEFINITION 2.1. A quadratic ρ-modulus ‖M‖ρ of a family M = {M(ψ) :
ψ ∈ �} of continuous local martingales is defined as an R+ ∩{∞}-valued stochas-
tic process t �→ ‖M‖ρ,t given by

‖M‖ρ,t = ess sup
ψ,φ∈�

ψ =φ

√〈M(ψ) − M(φ)〉t
ρ(ψ,φ)

, t ∈ [0, T ],

where 〈M〉 stands for the quadratic variation process of the continuous local mar-
tingale M .

For a given subset �̃ of the metric space (�,ρ) denote by N(ε, �̃, ρ) the small-
est number of closed balls, with ρ-radius ε > 0, which cover the set �̃ and define

J (δ) =
∫ δ

0

√
log
[
1 + N(ε, �̃, ρ)

]
dε

for all δ > 0. Denote also by M∗ = {M(ψ) :ψ ∈ �∗} a subset of M containing all
martingales M that fulfill (2.3). In the sequel we shall assume that the family M
is rich enough so that M∗ is not empty. Let us now formulate the main result on
the convergence of E[Z(Mn)] for Mn defined in (2.6).

THEOREM 2.2. Let M = {M(ψ) :ψ ∈ �̃} be a family of continuous local
martingales satisfying ‖M‖ρ,T ≤ � almost surely, for some finite �. Let also ψ∗
be an element of �∗ such that ρ(ψ,ψ∗) ≤ σ for all ψ ∈ �̃ and some σ < ∞. Set

C = C(�̃) =
∫ σ

0
ε−1J (ε)

√
log
[
1 + N(ε, �̃, ρ)

]
dε,

and assume that C < ∞. Fix some κ > 0 and 0 < δ < 1 with J (1) log(1/δ) ≤ √
n,

and define

Mn = arg inf
M∈M

(
1

n

n∑
j=1

Z(j)(M) + (κ + λn(δ/4)
)√

Vn(M)

)
,(2.10)
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where Z(j)(M), j = 1, . . . , n, and Vn(M) are defined in (2.7) and (2.8), respec-
tively, and λn(α) = 4(2

√
2 log(2/α)+C)/

√
n for any α > 0. Then it holds for some

constant C > 0 (not depending on δ, n and κ) with probability at least 1 − δ,

0 ≤ Y(Mn) − Y ∗ ≤ C
(
κ + 2λn(δ/4)

)
inf

ψ∈�̃
R
(
ψ,ψ∗),(2.11)

√
V (Mn) ≤ C

(
1 + 2λn(δ/4)

κ

)
inf

ψ∈�̃
R
(
ψ,ψ∗),(2.12)

where Y(M) = E[sups∈[0,T ](Zs − Ms)], V (M) = Var[sups∈[0,T ](Zs − Ms)] and

R
(
ψ,ψ∗)= ρ

(
ψ,ψ∗)√1 ∨ ∣∣log

(
ρ
(
ψ,ψ∗))∣∣

for any ψ ∈ �.

REMARK 2.3. Note that Y(Mn) and V (Mn) are random variables measurable
w.r.t. the σ -algebra generated by the paths used to compute Mn.

REMARK 2.4. The condition C < ∞ roughly means that J (ε) = O(ε1/2+δ)

as ε → 0 for some δ > 0.

Discussion. Theorem 2.2 shows that the martingale Mn delivered by our algo-
rithm has a nice property that the corresponding approximation error Y(Mn) − Y ∗
and the square root variance

√
V (Mn) can be bounded from above with high prob-

ability by the quantities proportional to the smallest distance between the classes of
martingales M and A∗ as measured by ρ. Hence, if the set M contains at least one
martingale solving (2.3) we get, as expected, Y(Mn) = Y ∗ with probability 1 − δ.

In general, the larger is the class M, the smaller is the above distance. However, if
the class M is infinite-dimensional, maximizing the empirical objective functional
in (2.10) over M may not be well defined or even if Mn exists, it might be difficult
to compute. Instead, one can restrict the maximization to a sequence of finite-
dimensional approximating spaces Mn = {M(ψ) :ψ ∈ �n} such that

⋃
n �n is

dense in �∗. Such a sequence of approximating spaces is usually called a sieve. We
are interested in sieves that are compact, nondecreasing (Mn ⊂ Mn+1 ⊂ · · · ⊂ M)
and such that for any n ∈ N and some ψ∗ ∈ �∗ there exists an element πnψ

∗ in �n

satisfying ρ(ψ∗, πnψ
∗) → 0 as n → ∞, where πn can be regarded as a projection

of ψ∗ to �n. For such sieves Theorem 2.2 implies that

V (Mn)
P−→ 0, n → ∞,(2.13)

provided C(�n)/
√

n remains bounded as n → ∞. In the next section we discuss
how to get the martingale sieves Mn in a constructive way. The asymptotic rela-
tion (2.13) implies that the variance of the Monte Carlo estimate of Y(Mn),

Ym(Mn) = 1

m

n+m∑
j=n+1

Z(j)(Mn),
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based on a new, independent sequence of r.v.(
Z(n+1)(Mn), . . . ,Z

(n+m)(Mn)
)

has the standard deviation of order o(1/
√

m) as m,n → ∞. Therefore one can
speak about fast convergence rates in this situation. Let us mention at this place
that the primal-dual algorithm of Andersen and Broadie (2004) has the same vari-
ance “self-reduction” property [see Chen and Glasserman (2007)]: nearer is the
preliminary regression estimate Yt of the value function to the true one, the lower
variance has the r.v. supt∈[0,T ](Zt − Mt) with M based on Y. However, the results
on the speed of the variance decay in dependence on the number of basis functions
and Monte Carlo paths used in regression step are not yet available in the literature.

REMARK 2.5. If the class �̃ is of Vapnik–Cervonenkis type, that is,

N(ε, �̃, ρ) � ε−β, ε → 0

for some β > 0, then the quantity J (δ) is finite for any δ > 0.

REMARK 2.6. A natural question is whether the bounds of Theorem 2.2 can
be achieved without using the penalization by empirical variance. The answer is, in
general, no. To see this, let Zt be an uniformly integrable submartingale. Then Zt

admits the so-called Doob–Meyer decomposition

Zt = Z0 + Mt + At,

where Mt with M0 = 0 is a uniformly integrable martingale, and At is an increas-
ing predictable process. Using the optional sampling theorem, we derive

Y ∗ = sup
τ∈T [0,T ]

E[Zτ ] = E[ZT ] = Z0 + E[AT ].

Define M∗
t = Mt +E[AT |Ft ]−E[AT ], then Y ∗ = supt∈[0,T ](Zt −M∗

t ) with prob-
ability 1. Furthermore, the martingale M̃ = M fulfills

Y ∗ = E
[

sup
t∈[0,T ]

(Zt − M̃t )
]
,

and if AT is not deterministic, then Y ∗ = supt∈[0,T ](Zt −M̃t ) = Z0 +AT with pos-
itive probability. Hence, M̃ solves, along with M∗, the original dual problem (2.2),
but does not have the almost sure property (2.3). Consider now the empirical opti-
mization problem

Mn = arg inf
M∈{M∗,M̃}

(
1

n

n∑
j=1

Z(j)(M)

)

with Z(M) = supt∈[0,T ](Zt − Mt). Due to CLT, it obviously holds

lim inf
n→∞ P(Mn = M̃) = lim inf

n→∞ P

(
n∑

j=1

ξj < 0

)
> 0,
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where ξ1, . . . , ξn are i.i.d. random variables distributed as AT − E[AT ]. Therefore

V (Mn) = V (M̃) = Var
[

sup
t∈[0,T ]

(Zt − M̃t )
]
= Var[AT ] > 0

with positive probability for any natural number n and the bound (2.12) does not
hold any longer.

3. Martingales via martingale representations. Suppose that Zt = Gt(Xt),

where Gt : Rd → R is a Hölder function on [0, T ] × R and Xt is a d-dimensional
Markov process solving the following system of SDE’s:

dXt = μ(t,Xt) dt + σ(t,Xt) dWt, X0 = x.(3.1)

The coefficient functions μ : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×m are
supposed to be Lipschitz in space and 1/2-Hölder continuous in time, with m de-
noting the dimension of the Brownian motion W = (W 1, . . . ,Wm)� under mea-
sure P. It is well known that under the assumption that a martingale Mt is square
integrable and is adapted to the filtration generated by Wt, there is a square inte-
grable (row vector valued) process Ht = (H 1

t , . . . ,Hm
t ) satisfying

Mt =
∫ t

0
Hs dWs.(3.2)

It is not hard to see that in the Markovian setting Y ∗
t = V (t,Xt), it holds Hs =

ψ(s,Xs) for some vector function ψ(s, x) = (ψ1(s, x), . . . ,ψm(s, x)) satisfying∫ T

0
E
[∣∣ψ(s,Xs)

∣∣2]ds < ∞.

As a result,

Mt = Mt(ψ) =
∫ t

0
ψ(s,Xs) dWs.

Thus, the set of adapted square-integrable martingales can be “parameterized” by
the set L2,P ([0, T ] × R

d) of square-integrable m-dimensional vector functions ψ

on [0, T ] × R
d that satisfy ‖ψ‖2

2,P := ∫ T
0 E[|ψ(s,Xs)|2]ds < ∞. Let �∗ be a set

of ψ ∈ L2,P ([0, T ] × R
d) such that Mt(ψ) solves (2.3). Choose a family of finite-

dimensional linear models of functions, called sieves, with good approximation
properties. We consider linear sieves of the form

�K = {β1φ1 + · · · + βKφK :β1, . . . , βK ∈ C},(3.3)

where φ1, . . . , φK are some given vector functions with components from the
space of bounded continuous functions Cb([0, T ] × R

d), and C is a compact set
in R. Next define a class of adapted square-integrable martingales via

MK = {Mt(ψ) :ψ ∈ �K

}
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and set

Mn := arg inf
M∈MKn

(
1

n

n∑
j=1

Z(j)(M) + (κ + λn)
√

Vn(M)

)
,(3.4)

where Kn → ∞ as n → ∞. As can be easily seen√〈
M − M ′〉

T ≤ √
T · sup

x∈Rd

sup
t∈[0,T ]

∣∣ψ(t, x) − ψ ′(t, x)
∣∣

= √
T · ρ(ψ,ψ ′)

with Mt = Mt(ψ) and M ′
t = Mt(ψ

′) for any ψ,ψ ′ ∈ Cb([0, T ] × R
d) × · · · ×

Cb([0, T ] × R
d). Hence the quadratic ρ -modulus of the family MK is bounded

by
√

T with probability 1. For many linear sieves of the form (3.3) and diffusion
processes X, it holds that

log
[
1 + N(ε,�K,ρ)

]
� Kd+1 log(1/ε), ε → 0

and in this situation we have with probability at least 1 − δ√
V (Mn) = O(an),

where an = infψ∈�Kn,ψ∗∈�∗ ρ(ψ,ψ∗), provided Kd+1
n /

√
n = O(1) for n → ∞.

4. Numerical study. In this section we test our algorithm on several bench-
mark examples related to American/Bermudan option pricing problems arising in
finance. Let us first give some general details on the implementation of our algo-
rithm. First, we need to construct a set of approximating martingales. To this end
we are going to use the martingale representation theorem as described in Sec-
tion 3. It is known [see, e.g., Belomestny, Bender and Schoenmakers (2009)] that
in the Markovian setting Y ∗

t = V (t,Xt) and under some rather general assump-
tions on the diffusion process X in (3.1) the Doob martingale M∗ with M∗

0 = 0
has a representation

M∗
t =
∫ t

0

d∑
i=1

∂V (u,Xu)

∂Xi
σ i(u,Xu)dWu.(4.1)

Fix now some linear space �̃ of functions ψ : [0, T ]×R
d → R

d . The equality (4.1)
motivates us to consider the following optimization problem:

ψn,λ := arg inf
ψ∈�̃

{
1

n

n∑
j=1

Z(j)(ψ)

(4.2)

+ λ

√√√√ 1

n(n − 1)

∑
1≤i<j≤n

(
Z(i)(ψ) − Z(j)(ψ)

)2}
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with

Z(j)(ψ) := sup
t∈[0,T ]

[
Gt

(
X

(j)
t

)− M
(j)
t (ψ)

]
,(4.3)

M
(j)
t (ψ) :=

∫ t

0

d∑
i=1

σ i(u,X(j)
u

)
ψi

(
u,X(j)

u

)
dW(j)

u(4.4)

and some λ > 0, where (W
(j)
t ,X

(j)
t ) ∈ R

m × R
d, j = 1, . . . , n, is the set of trajec-

tories obtained, for example, by discretizing the system of SDEs (3.1).

REMARK 4.1. The construction of the class (4.4) of approximating martin-
gales is based on some prior information on the underlying process in form of
the matrix σ. Moreover, this construction implies that we are actually aiming at
approximating the Doob martingale M∗ in this case.

REMARK 4.2. Let us discuss the choice of the penalization parameter λ in
more details. On the one side, the parameter λ can be chosen according to The-
orem 2.2, that is, λ = κ + 4(2

√
2 log(2/α) + C)/

√
n for some κ > 0 and α > 0.

This choice, however, requires knowledge of

C = C(�̃) =
∫ σ

0
ε−1J (ε)

√
log
[
1 + N(ε, �̃, ρ)

]
dε,

which might be difficult to compute in concrete situations. On the other side, λ can
be found empirically by minimizing the “out of sample” variance and mean of the
r.v. Z(Mn). This would require some additional computational efforts.

In all examples below we use the Euler scheme and ndisc = 200 discretization
points to approximate (3.1). The integral in (4.4) can be then easily approximated
through the sum

ndisc∑
l=1

d∑
i=1

σ i(ul,X
(j)
ul

)
ψi

(
ul,X

(j)
ul

)(
W(j)

ul+1
− W(j)

ul

)
.

As to the choice of linear space �̃, we are striving for the most generic choice
not involving special functions like European deltas as in Belomestny, Bender and
Schoenmakers (2009). In all examples to follow we first make a basic variable
transformation and then use trigonometric bases. Let us also comment on the opti-
mization problem (4.2) which is convex (at least for n large enough), provided �̃

is a linear space. Note, however, that the objective functional in (4.2) is, in general,
not smooth. In order to avoid computational problems related to the nonsmooth-
ness of Z(ψ), we smooth it [see Nesterov (2005) for some theoretical justification]
and consider instead Z the functional

Zp(ψ) = p−1 log
(∫ T

0
exp
(
p
(
Gs(Xs) − Ms(ψ)

))
ds

)
,(4.5)
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where Mt(ψ) = ∫ t
0
∑d

i=1 σ i(u,Xu)ψi(u,Xu)dWi
u. An alternative expression for

Zp(ψ) is

Zp(ψ) = Z(ψ) + p−1 log
(∫ T

0
exp
(
p
(
Zs − Ms(ψ) − Z(ψ)

))
ds

)
.(4.6)

It follows from representation (4.6) that

0 ≤ Zp(ψ) − Z(ψ) ≤ p−1 logT .

Hence Zp(ψ) → Z(ψ) as p → ∞. The advantage of using Zp(ψ) instead of
Z(ψ) is that the standard gradient-based optimization routines can be used to com-
pute ψn,λ.

4.1. American put on a single asset. We start with analyzing the continuously
exercisable American put option on a single asset, the simplest American-type
option. We assume the asset price follows the geometric Brownian motion process

dXt = rXt dt + σXt dWt,

where r = 0.06, σ = 0.4, Wt is the standard Brownian motion, and the stock pays
no dividends. The option has a strike price of K = 100 and a maturity of T = 0.5,

and the payoff upon exercise at time t is G(Xt) = e−rt (K − Xt)
+.

In our implementation of (4.2) we take �̃L to be a linear space of functions
ψ : [0, T ] × R

d �→ R such that

ψ(t, x) ∈ span
{
ζk

(
yt (x)

)
, ξk

(
yt (x)

)
, k = 0, . . . ,L

}
,

where yt (x) = 1
T −t

log(x/K) and

ζk(z) =
⎧⎨⎩

0, z < −0.5,

sin(k · z), |z| ≤ 0.5,

1, z > 0.5,

ξk(z) =
⎧⎨⎩

0, z < −0.5,

cos(k · z), |z| ≤ 0.5,

1, z > 0.5.

Table 1 is obtained using the following two-step procedure. First, we generate
n = 10,000 “training” paths on which we solve optimization (4.2) to get ψn,λ. In
the second step we use N = 100,000 new paths to test the martingale resulting
from ψn,λ and to get the final estimate

Yn,λ(N) = 1

N

n+N∑
j=n+1

Z(j)(ψn,λ).

The values in Table 1 are reported together with the standard deviations obtained
by repeating the “testing” step 100 times. The times in the last column of the
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TABLE 1
Upper bounds for the standard one-dimensional American put with parameters

K = 100, r = 0.06, T = 0.5 and σ = 0.4 obtained using the linear space �̃5. Values for two
different values of the parameter λ are presented

X0 True value Upper bound Y104,0(105) Upper bound Y104,2(105) Time (sec)

80 21.6059 21.63044 (0.04354) 21.64156 (0.01321) 53
90 14.9187 14.92159 (0.01750) 14.93001 (0.00576) 51

100 9.9458 9.93455 (0.01354) 9.94712 (0.00423) 47
110 6.4352 6.41561 (0.01329) 6.42911 (0.00479) 47
120 4.0611 4.03417 (0.01127) 4.04883 (0.00392) 43

table give the duration of the “training” step. By inspecting Table 1 one can draw
several conclusions. First, the values of the upper bound Y104,2(105) are almost
exact. Second, the penalization with the empirical variance (λ = 2) reduces the
standard deviation by a factor of three. Finally, our approach is able to compete
with the very powerful method of Christensen (2011) (perhaps with a little bit
longer computational time).

4.2. American puts on the cheapest of d assets. In this section, we study the
performance of our approach for multiasset American options, where traditional
lattice techniques usually suffer from serious numerical constraints. Specifically,
we price the American put option on the cheapest of d assets. This example was
also studied by Rogers (2002). The risk-neutral dynamics for d-dimensional un-
derlying process X is given by

dXi
t = rXi

t dt + σiX
i
t dWi

t , i = 1, . . . , d,

where W 1
t , . . . ,Wd

t are d independent Brownian motions. The payoff at time t is
equal to

G(Xt) = e−rt
(
K − min

k=1,...,d
Xk

t

)+
.

In our numerical experiment we take d = 2, σi = σ = 0.4, r = 0.06 and K = 100
and consider linear space �̃L of functions ψ : [0, T ] × R

d �→ R
2 such that

ψ1(t, x) ∈ span
{
ζk

(
y1
t (x)

)
, ξk

(
y1
t (x)

)
, ζk

(
y1
t (x)

)
1
(
y1
t ≤ y2

t

)
,

ξk

(
y1
t (x)

)
1
(
y1
t ≤ y2

t

)
,(4.7)

ζk

(
y1
t (x) + y2

t (x)
)
, ξk

(
y1
t (x) + y2

t (x)
)
, k = 0, . . . ,L

}
and

ψ2(t, x) ∈ span
{
ζk

(
y2
t (x)

)
, ξk

(
y2
t (x)

)
, ζk

(
y2
t (x)

)
1
(
y2
t ≤ y1

t

)
,

ξk

(
y2
t (x)

)
1
(
y2
t ≤ y1

t

)
,(4.8)

ζk

(
y1
t (x) + y2

t (x)
)
, ξk

(
y1
t (x) + y2

t (x)
)
, k = 0, . . . ,L

}
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TABLE 2
Upper bounds (with standard deviations) for the 2-dimensional Bermudan min-puts with

parameters K = 100, r = 0.06, σ = 0.4

X1
0 X2

0 True value (FD) Upper bound Y104,0(105) Upper bound Y104,2(105) Times (sec)

80 80 37.30 37.65877 (0.02832) 37.65921 (0.00912) 67
100 100 25.06 25.16745 (0.02341) 25.17551 (0.00778) 63
120 120 15.92 15.93370 (0.01949) 15.94191 (0.00611) 61

with ζk, ξk defined in Section (4.1) and y1
t (x) = 1

T −t
log(x1/K), y2

t (x) =
1

T −t
log(x2/K).

Table 2 is again obtained using a two-step procedure as described in Section 4.1
and the linear space �̃7. The results can be significantly improved by adding to �̃7
some special functions, like European deltas or harmonic functions.

4.3. Bermudan max-calls on d assets. This is a benchmark example studied
in Broadie and Glasserman (1997), Haugh and Kogan (2004) and Rogers (2002)
among others. Specifically, the model with d identically distributed assets is con-
sidered, where each underlying has dividend yield δ. The risk-neutral dynamic of
assets is given by

dXk
t

Xk
t

= (r − δ) dt + σ dWk
t , k = 1, . . . , d,

where Wk
t , k = 1, . . . , d , are independent one-dimensional Brownian motions and

r, δ, σ are constants. At any time t ∈ {t0, . . . , tI } the holder of the option may
exercise it and receive the payoff

G(Xt) = e−rt (max
(
X1

t , . . . ,X
d
t

)− K
)+

.

We consider a two-dimensional example where ti = iT /I, i = 0, . . . , I , with
T = 3, I = 9. In order to construct the linear space �̃L we again use the func-
tions ψ : [0, T ] × R

d �→ R
2 with coordinate functions defined in (4.7) and (4.8),

respectively. Table 3 is obtained by setting L = 7. One can observe that the re-

TABLE 3
Bounds (with standard deviations) for 2-dimensional Bermudan max call with parameters

κ = 100, r = 0.05, σ = 0.2, δ = 0.1

X1
0 X2

0 Upper bound Y104,0(105) Upper bound Y104,2(105) A&B Price interval Time (sec)

90 90 8.07742 (0.00832) 8.08012 (0.00313) [8.053, 8.082] 58
100 100 14.01900 (0.01405) 14.02131 (0.00466) [13.892, 13.934] 61
110 110 21.60967 (0.01798) 21.62144 (0.00521) [21.316, 21.359] 64
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TABLE 4
Bounds (with standard deviations) for d-dimensional Bermudan max-call with parameters

κ = 100, r = 0.05, σ = 0.2, δ = 0.1

d Upper bound Y104,0(105) Upper bound A&B price interval Time (sec)

3 11.28986 (0.00939) 11.29100 (0.00326) [11.265, 11.308] 73
5 16.68231 (0.01405) 16.69506 (0.00467) [16.602, 16.655] 80

sults of Table 3 are especially good for small values of X0. For example, the upper
bound Y104,2(105) for X0 = (90,90) almost coincides with the exact value Y ∗

0 and
was previously obtained only by using either European deltas [see Belomestny,
Bender and Schoenmakers (2009)] or many sub-simulations; see Andersen and
Broadie (2004). As can be seen from Table 4, the upper bound [X0 = (90, . . . ,90)]
remains tight as the dimension d increases.

5. Conclusion. This paper proposes an efficient and self-contained dual al-
gorithm for solving optimal stopping problems in discrete and continuous time
which is based on the direct minimization of the penalized dual objective func-
tional over a genuinely parameterized set of martingales. We analyze the asymp-
totic properties of the estimated value function and show that its variance can be
made arbitrarily small by a proper choice of approximating martingales. From the
methodological point of view, the probabilistic tools developed in the paper can be
used to analyze the convergence of various types of empirical optimization prob-
lems arising in computational stochastics and finance.

6. Proofs of main results.

6.1. Proof of Theorem 2.2. Let us first sketch the main steps of the proof. Our
main interest lies in estimating the quantities Y(Mn) − Y ∗ and V (Mn). In order
to obtain these estimates we need a kind of uniform (over M ∈ M) concentration
inequality for the empirical process

En(M) = 1

n

n∑
j=1

(
Z(j)(M) − E

[
Z(M)

])= 1

n

n∑
j=1

Z(j)(M) − Y(M)

that gives probabilistic bounds for
√

n · En(M) in terms of the empirical variance
Vn(M). Indeed, such an inequality would allow us to get an upper bound for the
quantity Y(Mn) + κ

√
Vn(Mn) with κ > 0 in terms of Qn(Mn), where

Qn(M) = 1

n

n∑
j=1

Z(j)(M) + (κ + λn(δ/2)
)√

Vn(M).
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Unfortunately, the usual concentration inequalities could not be used here, as they
would provide us with the bounds in terms of the true variance V (M) and not
in terms of the empirical one Vn(M). However, there is another, less-known type
of concentration inequalities for self-normalized empirical processes [see Bercu,
Gassiat and Rio (2002)], and this is exactly what we need. We extend the above
inequalities to the case of general family of random variables. As a next step, in
order to derive a bound for V (Mn), we need a kind of uniform concentration in-
equality for the empirical process �n(ψ) = (V (M(ψ)) − Vn(M(ψ))) that holds
uniformly over the set �̃ and gives probabilistic bounds for

√
n · �n(ψ) in terms

of ρ(ψ,ψ∗) for any fixed ψ∗ ∈ �∗. The latter type of inequality cannot be derived
from the well-known concentration inequalities for selfbounding random variables
[see, e.g., Devroye and Lugosi (2008)], since variance V (M) is a highly nonlin-
ear function of M and the random variable Z(M) is usually not bounded. The
corresponding concentration inequality making use of the local subgaussianity of
V (M), is presented in Section 6 and can be interesting in its own right. Finally,
using the inequality Qn(Mn) ≤ Qn(M), that holds for any M ∈ M, we will arrive
at (2.11) and (2.12).

Part 1: The following proposition allows us to derive uniform bounds for the
empirical process

√
n · En(M) in terms of the empirical variance Vn(M).

PROPOSITION 6.1. Let X be a family of centered and normalized random
variables on a common probability space (�, F ,P) with finite bracketing number
in L2(P) such that

lim sup
n→∞

E
[

sup
X∈X

max
∣∣√n · En[X]∣∣]≤ C < ∞

for some positive constant C = C(X), where

En[X] = 1

n

n∑
j=1

X(j)

and X(1), . . . ,X(n) are i.i.d. copies of the element X ∈ X. Define

Wn(X) = En[X]√
Vn(X)

with

Vn(X) = 1

n

n∑
j=1

(
X(j))2.

Then for any κ > 0 and α >
√

2, one can find some positive θ and n0 depending
on X, α and κ such that, for n ≥ n0 and for any x ∈ [0, θ

√
n]

P
(

sup
X∈X

∣∣√n · Wn(X)
∣∣≥ (x + αC)

)
≤ 2 exp

(
− x2

4α2(1 + κ)

)
.
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For the case of noncentered and nonnormalized random variables X, one can
derive from Proposition 6.1 the following corollary.

COROLLARY 6.2. Let X be a family class of random variables on a common
probability space (�, F ,P) with finite bracketing number in L2(P) such that

sup
X∈X

E|X|2 < ∞

and

lim sup
n→∞

E
[

sup
X∈X

∣∣√n · En[X − EX]∣∣]≤ C < ∞

for some positive constant C = C(X). Define

Wn(X) = En[X] − E[X]√
Vn(X)

with

Vn(X) = 1

n

n∑
j=1

(
X(j) − En[X])2.

Then for any κ > 0 and α >
√

2, one can find some positive θ and n0 depending
on X, α and κ such that, for n ≥ n0 and for any x ∈ [0, θ

√
n],

P
(

sup
X∈X

∣∣√n · Wn(X)
∣∣≥ √

2(x + αC)

1 − √
2(x + αC)/n

)
≤ 2 exp

(
− x2

4α2(1 + κ)

)
,

provided
√

2(x + αC) < n. As a result, by fixing some δ > 0 with log(1/δ) ≤ √
n

and taking x = 2α
√

(1 + κ) log(4/δ), we get with probability at least 1 − δ

sup
X∈X

∣∣√n · Wn(X)
∣∣≥ 2

√
2α · (2√(1 + κ) log(2/δ) + C

)
for all n > n0.

Part 2: Next we need the concentration inequality for the empirical process√
n · (Vn(M) − V (M)). The following proposition is proved in Section 6.5.

PROPOSITION 6.3. Let M = {M(ψ) :ψ ∈ �̃} be a family of continuous lo-
cal martingales, where �̃ is a subspace of the metric space (�,ρ). Suppose that
‖M‖ρ,T ≤ � a.s. for some finite � and

J =
∫ 1

0

√
log
[
1 + N(ε, �̃, ρ)

]
dε < ∞.
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Denote �n(ψ) = Vn(M(ψ)) − V (M(ψ)) for any ψ ∈ �, then for any fixed ψ∗ ∈
M∗ such that supψ∈�̃ ρ(ψ,ψ∗) < ∞ it holds

P
(

sup
ψ∈�̃

∣∣∣∣
√

n · �n(ψ)

R2(ψ,ψ∗)

∣∣∣∣> U

)
≤ exp

(
−D · U

J

)
for any U > 0 and some constant D > 0 depending on �, where

R
(
ψ,ψ ′)= ρ

(
ψ,ψ ′)√1 ∨ ∣∣log

(
ρ
(
ψ,ψ ′))∣∣

for any ψ,ψ ′ ∈ �.

Part 3: Now we can begin with the proof of Theorem 2.2. By Corollary 6.2 it
holds for any ψ ∈ �̃ with probability at least 1 − δ/2,

Y(Mn) + κ
√

Vn(Mn) ≤ 1

n

n∑
j=1

Z(j)(Mn) + (κ + λn(δ/4)
)√

Vn(Mn)

≤ 1

n

n∑
j=1

Z(j)(M(ψ)
)+ (κ + λn(δ/4)

)√
Vn

(
M(ψ)

)
≤ Y
(
M(ψ)

)+ (κ + 2λn(δ/4)
)√

Vn

(
M(ψ)

)
.

Proposition 6.3 implies that with probability at least 1 − δ/4,

Vn

(
M(ψ)

)≤ V
(
M(ψ)

)+ JD−1 log(4/δ)
R2(ψ,ψ∗)√

n

≤ V
(
M(ψ)

)+ CR2(ψ,ψ∗)
for some universal constant C, provided J log(1/δ) ≤ √

n. Hence, using the ele-
mentary inequality

√
a + b ≤ √

a + √
b, we get

Y(Mn)+κ
√

Vn(Mn) ≤ Y
(
M(ψ)

)+(κ+2λn(δ/4)
)[√

V
(
M(ψ)

)+√
CR
(
ψ,ψ∗)]

with probability at least 1 − 3δ/4. By the Burkholder–Davis–Gundy inequality,

Y
(
M(ψ)

)− Y ∗ ≤ �ρ
(
ψ,ψ∗)

and V (M(ψ)) ≤ �2ρ2(ψ,ψ∗) for any ψ ∈ �̃. Therefore

Y(Mn) − Y ∗ ≤ 2
√

C�
(
1 + κ + 2λn(δ/4)

)
R
(
ψ,ψ∗)

and √
Vn(Mn) ≤ 2

√
C�κ

−1(1 + κ + 2λn(δ/4)
)

R
(
ψ,ψ∗).
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Using again Proposition 6.3, we get with probability at least 1 − δ,√
V (Mn) ≤√Vn(Mn) + √

CR
(
ψ,ψ∗)

≤ 3
√

C�κ
−1(1 + κ + 2λn(δ/4)

)
R
(
ψ,ψ∗).

Part 4: To finish the proof of Theorem 2.2, it suffices to prove the following
proposition.

PROPOSITION 6.4. Let �̃ be a subspace of the metric space (�,ρ) such
that ρ(ψ,ψ∗) ≤ σ for some ψ∗ ∈ �∗, all ψ ∈ �̃ and some σ > 0. Define
M = {M(ψ) :ψ ∈ �̃} and set

C =
∫ σ

0
ε−1J (ε)

√
log
[
1 + N(ε, �̃, ρ)

]
dε.

If ‖M‖ρ,T ≤ � a.s. and C < ∞, then there is a constant A depending on �, such
that

lim sup
n→∞

E
[

sup
M∈M

∣∣Gn

[
Z(M)

]∣∣]≤ AC

with

Gn

[
Z(M)

]= 1√
n

n∑
j=1

(
Z(j)(M) − E

[
Z(M)

])
.

PROOF. We follow the proof of Lemma 19.34 in van der Vaart (1998) with
some straightforward modifications. It holds

Gn

(
M(ψ)

)= 1√
n

n∑
j=1

(
Z(j)(M(ψ)

)− E
[
Z(j)(M(ψ)

)])

= 1√
n

n∑
j=1

(
Z(j)(M(ψ)

)− Z(j)(M(ψ∗)))

+ 1√
n

n∑
j=1

(
E
[
Z(j)(M(ψ∗))]− E

[
Z(j)(M(ψ)

)])
,

since Var[Z(M(ψ∗))] = 0. Setting

KT = sup
ψ∈�̃

sup
t∈[0,T ]

∣∣Mt(ψ) − Mt

(
ψ∗)∣∣,

we derive∣∣Z(M(ψ)
)− Z

(
M
(
ψ∗))∣∣≤ KT ,

∣∣E[Z(M(ψ)
)]− E

[
Z
(
M
(
ψ∗))]∣∣≤ E[KT ].
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As a result,

E sup
ψ∈�̃

∣∣Gn

(
M(ψ)

)
1
{
KT > a(σ)

√
n
}∣∣≤ √

n · E
[(

KT + E[KT ])1{KT > a(σ)
√

n
}]

≤ 2
√

n · E
[
KT · 1

{
KT > a(σ)

√
n
}]

,

where we set

a(σ ) = J (σ )√
log[1 + N(σ, �̃, ρ)]

.

Under the condition ‖M‖ρ,T ≤ � a.s. one can prove that

P
(

sup
ψ,φ∈�̃,

ρ(ψ,φ)≤δ

sup
t∈[0,T ]

∣∣Mt(ψ) − Mt(φ)
∣∣> x

)
≤ 2e−x2/CJ 2(δ)(6.1)

for all x > 0, where C is a universal constant depending only on �. Inequality (6.1)
implies

E
[
KT ·1{KT > a(σ)

√
n
}]≤ 2a(σ )

√
ne−na2(σ )/CJ 2(σ )+2

∫ ∞
a(σ )

√
n
e−x2/CJ 2(σ ) dx.

Fix an integer q0 such that σ ≤ 2−q0 ≤ 2σ. For each natural number q > q0, there

exists a nested sequence of partitions �̃ =⋃Nq

i=1 �̃qi of �̃ into Nq disjoint subsets
such that ρ(ψ,φ) ≤ 2−q for any ψ,φ ∈ �̃qi and Nq ≤ N(2−q+1, �̃, ρ). Denote

�qi = sup
ψ,φ∈�̃qi

sup
t∈[0,T ]

∣∣Mt(ψ) − Mt(φ)
∣∣,

and then (6.1) implies

E
[
�2

qi

]≤ 2
∫ ∞

0
xe−x2/CJ 2(2−q ) dx = CJ 2(2−q).

Choose for each q ≥ q0 a fixed element ψqi from each partioning set �̃qi, and set

�q

[
Z
(
M(ψ)

)]= Z(ψqi), �q

[
Z
(
M(ψ)

)]= �qi if ψ ∈ �̃qi .

Then �q[Z(M(ψ))] and �q[Z(M(ψ))] run through a set of Nq functions if ψ

runs through �̃. Define for each fixed n and q ≥ q0 numbers and indicator func-
tions

aq = J
(
2−q)/√log[1 + Nq+1],

Aq−1
[
Z
(
M(ψ)

)]
= 1
{
�q0

[
Z
(
M(ψ)

)]≤ √
naq0, . . . ,�q−1

[
Z
(
M(ψ)

)]≤ √
naq−1

}
,

Bq

[
Z
(
M(ψ)

)]
= 1
{
�q0

[
Z
(
M(ψ)

)]≤ √
naq0, . . . ,�q−1

[
Z
(
M(ψ)

)]≤ √
naq−1,

�q

[
Z
(
M(ψ)

)]
>

√
naq

}
.
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Now decompose

Z
(
M(ψ)

)− �q0

[
Z
(
M(ψ)

)]
=

∞∑
q=q0+1

(
Z
(
M(ψ)

)− �q

[
Z
(
M(ψ)

)])
Bq

[
Z
(
M(ψ)

)]

+
∞∑

q=q0+1

(
�q

[
Z
(
M(ψ)

)]− �q−1
[
Z
(
M(ψ)

)])
Aq−1

[
Z
(
M(ψ)

)]
.

We observe that either all of the Bq[Z(M(ψ))] are zero, in which case the
Aq−1[Z(M(ψ))] are 1, or alternatively, Bq1[Z(M(ψ))] = 1 for some q1 > q0
(and zero for all other q), in which case Aq[Z(M(ψ))] = 1 for q < q1 and
Aq[Z(M(ψ))] = 0 for q ≥ q1. Our construction of partitions and choice of q0
also ensure that

a(σ ) = J (σ )√
log[1 + N(σ, �̃, ρ)]

≤ J (2−q0)√
log[1 + N(2−q0−1, �̃, ρ)]

≤ aq0,

whence Aq0[Z(M(ψ))] = 1. Next we apply the empirical process Gn to both series
on the right-hand side of separately, take absolute values, and next take suprema
over ψ ∈ �̃. Because the partitions are nested, �q[Z(M(ψ))]Bq[Z(M(ψ))] ≤
�q−1[Z(M(ψ))]Bq[Z(M(ψ))] ≤ √

naq−1. The last inequality holds if
Bq[Z(M(ψ))] = 0 and also if Bq[Z(M(ψ))] = 1 by definition. Furthermore, as
Bq[Z(M(ψ))] is indicator of the event �q[Z(M(ψ))] >

√
naq, it follows

√
naq · E

[
�q

[
Z
(
M(ψ)

)]
Bq

[
Z
(
M(ψ)

)]]≤ E
[(

�q

[
Z
(
M(ψ)

)])2
Bq

[
Z
(
M(ψ)

)]]
≤ J 2(2−q)

by the choice of �q[Z(M(ψ))]. Because |Gn[Z(M(ψ))]| ≤ Gn[Z′]+2
√

n ·E[Z′]
if |Z(M(ψ))| ≤ Z′, we obtain by the triangle inequality and Lemma A.1 that the
quantity

E

∥∥∥∥∥
∞∑

q=q0+1

Gn

(
Z
(
M(ψ)

)− �q

[
Z
(
M(ψ)

)])
Bq

[
Z
(
M(ψ)

)]∥∥∥∥∥
�̃

is bounded by∑
q=q0+1

E
∥∥Gn�q

[
Z
(
M(ψ)

)]
Bq

[
Z
(
M(ψ)

)]∥∥
�̃

+ 2
√

n

∞∑
q=q0+1

∥∥E{�q

[
Z
(
M(ψ)

)]
Bq

[
Z
(
M(ψ)

)]}∥∥
�̃

�
∞∑

q=q0+1

[
aq−1 log[1 + Nq] + CJ

(
2−q)√log[1 + Nq] + J 2(2−q)

aq

]
.
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In view of the definition of aq, the series on the right can be bounded by

a multiple of the series
∑∞

q=q0+1 J (2−q)
√

log[1 + Nq]. To establish a similar
bound for the second part of equation (6.2), note that there are at most Nq dif-
ferences �q[Z(M(ψ))] − �q−1[Z(M(ψ))] and at most Nq−1 indicator func-
tions Aq−1[Z(M(ψ))]. Because the partitions are nested, (�q[Z(M(ψ))] −
�q−1[Z(M(ψ))])Aq−1[Z(M(ψ))] is bounded by �q−1[Z(M(ψ))]Aq−1 ×
[Z(M(ψ))] ≤ √

naq−1. Moreover, E[�q[Z(M(ψ))] − �q−1[Z(M(ψ))]]2 ≤
CJ 2(2−q). Hence∥∥∥∥∥

∞∑
q0+1

Gn

(
�q

[
Z
(
M(ψ)

)]− �q−1
[
Z
(
M(ψ)

)])
Aq−1

[
Z
(
M(ψ)

)]∥∥∥∥∥
�̃

≤
∞∑

q=q0+1

[
aq−1 log(1 + Nq) + CJ

(
2−q)√log[1 + Nq]].

Again this is bounded above by a multiple of the series
∑∞

q=q0+1 J (2−q) ×√
log[1 + Nq]. To conclude the proof it suffices to consider the terms

�q0[Z(M(ψ))]. Because |�q0[Z(M(ψ))]| ≤ KT ≤ a(δ)
√

n ≤ aq0

√
n and

E
(
�q0

[
Z
(
M(ψ)

)])2 ≤ E
[

sup
t∈[0,T ]

(
Mt(ψq0i ) − Mt

(
ψ∗))]2 ≤ 4�2σ 2

by the Burkholder–Davis–Gundy inequality, we have

E
∥∥Gn�q0

[
Z
(
M(ψ)

)]∥∥
�̃ � aq0 log[1 + Nq0] + σ

√
log[1 + Nq0].

By the choice of q0, this is bounded by a multiple of the first few items of the
series

∞∑
q=q0+1

J
(
2−q)√log[1 + Nq].

�

6.2. Proof of Proposition 6.1. The proof can be routinely carried out along
with lines of Bercu, Gassiat and Rio (2002).

6.3. Proof of Proposition 6.3. In order to prove Proposition 6.3 we need the
following lemma.

LEMMA 6.5. Denote

Q
(
ψ,ψ ′)= ρ

(
ψ,ψ ′)√log log

(
ρ2
(
ψ,ψ ′)∨ e2

)
for any ψ,ψ ′ ∈ �. There is ε > 0 such that for any ψ,ψ ′ ∈ � and ψ∗ ∈ �∗, it
holds

E
{

exp
(
θ

[√
n · (�n(ψ) − �n(ψ

′))
Q(ψ,ψ∗) · Q(ψ,ψ ′)

])
− 1
}

≤ Cθ2
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for some constant C > 0, provided |θ | ≤ ε.

PROOF. Without loss of generality, we may, and do, assume that � = 1. Fix
a martingale M∗ = M(ψ∗) ∈ M∗. Since Z(M∗) = E[Z(M∗)] almost surely, we
have for arbitrary M = M(ψ),M ′ = M(ψ ′) ∈ M

Vn(M) − Vn

(
M ′)

= 1

n(n − 1)

∑
1≤i<j≤n

(
Z̃(i)(M) − Z̃(j)(M)

)2
− 1

n(n − 1)

∑
1≤i<j≤n

(
Z̃(i)(M ′)− Z̃(j)(M ′))2

= 1

n(n − 1)

∑
1≤i<j≤n

(
Z̃(i)(M) − Z̃(i)(M ′)− Z̃(j)(M) + Z̃(j)(M ′))

× (Z̃(i)(M) − Z̃(j)(M) + Z̃(i)(M ′)− Z̃(j)(M ′))
= 1

n(n − 1)

∑
1≤i<j≤n

(
Z(i)(M) − Z(i)(M ′)− Z(j)(M) + Z(j)(M ′))
× (Z̃(i)(M) − Z̃(j)(M) + Z̃(i)(M ′)− Z̃(j)(M ′))

with Z̃(i) = Z(i)(M) − Z(i)(M∗), i = 1, . . . , n. Set

ξi = Z(i)(M) − Z(i)(M ′), ζi = Z̃(i)(M) + Z̃(i)(M ′), i = 1, . . . , n,

then

Vn(M) − Vn

(
M ′)= 1

n(n − 1)

∑
1≤i<j≤n

(ξi − ξj )(ζi − ζj )

= 1

n(n − 1)

∑
1≤i<j≤n

ξiζi − 1

n(n − 1)

∑
1≤i<j≤n

ξiζj

− 1

n(n − 1)

∑
1≤i<j≤n

ξj ζi + 1

n(n − 1)

∑
1≤i<j≤n

ξj ζj

= 2

n

n∑
i=1

ξiζi − 1

n(n − 1)

∑
i =j

ξiζj .

Hence

Vn(M) − V (M) − (Vn

(
M ′)− V

(
M ′))

(6.2)

= 2

n

n∑
i=1

(
ξiζi − E[ξiζi])− 1

n(n − 1)

∑
i =j

(
ξiζj − E[ξiζj ]).
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Note that (ξ1, ζ1), . . . , (ξn, ζn) is a family of i.i.d. random two-dimensional vectors
such that

|ξi | ≤ sup
t∈[0,T ]

∣∣M(i)
t − M

′(i)
t

∣∣, i = 1, . . . , n

and

|ζi | ≤ 2 sup
t∈[0,T ]

∣∣M(i)
t − M

∗(i)
t

∣∣, i = 1, . . . , n.

Lemma A.3 implies that for any x > 0,

P
( |ξi |√

〈M(i) − M ′(i)〉T log log(〈M(i) − M ′(i)〉T ∨ e2)
≥ x

)
≤ C(α)e−αx2

and

P
( |ζi |√

〈M(i) − M∗(i)〉T log log(〈M(i) − M∗(i)〉T ∨ e2)
≥ x

)
≤ C(α)e−αx2/4.

As a result,

P
( |ξi |

ρ(ψ,ψ ′)
√

log log(ρ2(ψ,ψ ′) ∨ e2)
≥ x

)
≤ C(α)e−αx2

and

P
( |ζi |

ρ(ψ,ψ∗)
√

log log(ρ2(ψ,ψ∗) ∨ e2)
≥ x

)
≤ C(α)e−αx2/4

for i = 1, . . . , n. Using representation (6.2), we get
√

n(�n(ψ) − �n(ψ
′))

R(ψ,ψ∗) · R(ψ,ψ ′)

= 2√
n

n∑
i=1

(̃
ξi ζ̃i − E[̃ξi ζ̃i])− 1√

n(n − 1)

∑
i<j

(̃
ξi ζ̃j − E[̃ξi ζ̃j ])

− 1√
n(n − 1)

∑
j<i

(̃
ξi ζ̃j − E[̃ξi ζ̃j ])

= T1,n + T2,n + T3,n,

where the “normalized” random variables

ξ̃i = ξi

ρ(ψ,ψ ′)
√

log log(ρ2(ψ,ψ ′) ∨ e2)
,

ζ̃i = ζi

ρ(ψ,ψ∗)
√

log log(ρ2(ψ,ψ∗) ∨ e2)
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satisfy

P
(|̃ζi | ∨ |̃ξi | ≥ x

)≤ C(α)e−αx2/4, i = 1, . . . , n.(6.3)

The inequalities in (6.3) immediately imply

P
(|̃ξi ζ̃i | > x

)≤ P
(|̃ξi |2 + |̃ζi |2 > 2x

)≤ P
(|̃ξi | >

√
2x
)+ P

(|̃ζi | >
√

2x
)

≤ 2C(α) exp(−αx/2).

Consider first the term T1,n. For any θ ∈ R we have

E
[
exp(θT1,n)

]= n∏
i=1

E
[
exp
(
θ
(̃
ξi ζ̃i − E[̃ξi ζ̃i])/√n

)]
.(6.4)

Since the random variables ξ̃i ζ̃i − E[̃ξi ζ̃i], i = 1, . . . , n, possess finite moments of
any order and have zero mean, it holds

log E
[
exp
(
ε
(̃
ξi ζ̃i − E[̃ξi ζ̃i]))]= 1

2σ 2ε2 + o
(
ε2), i = 1, . . . , n

as ε → 0, where σ 2 = E(̃ξi ζ̃i − E[̃ξi ζ̃i])2. Hence the inequality

E
[
exp
(
ε
(̃
ξi ζ̃i − E[̃ξi ζ̃i]))]≤ eC1ε

2
(6.5)

holds for sufficiently small ε and any C1 > σ 2/2. Combining (6.4) with (6.5), we
get for all n ∈ N and sufficiently small θ > 0,

E
[
exp(θT1,n) − 1

]≤ eC1θ
2 − 1 ≤ C2θ

2.

Turn now to the terms T2,n and T3,n. We need the following proposition to esti-
mate T2,n and T3,n.

PROPOSITION 6.6. Let (X1, Y1), . . . , (Xn,Yn) be a sequence of i.i.d. centered
random vectors in R

2 such that E|Xi |p < ∞ and E|Yi |p < ∞ for all i = 1, . . . , n,

and some p ≥ 2. Then

E
∣∣∣∣ ∑
1≤i<j≤n

XiYj

∣∣∣∣p

≤ Cp max

{ ∑
1≤i<j≤n

E|Xi |pE|Yj |p,

n−1∑
i=1

E|Xi |p
(

n∑
j=i+1

E|Yj |2
)p/2

,(6.6)

n∑
j=2

E|Yj |p
(j−1∑

i=1

E|Xi |2
)p/2

,

( ∑
1≤i<j≤n

E|Xi |2E|Yj |2
)p/2

}

for some constant C > 0 not depending on p.



2012 D. BELOMESTNY

PROOF. Denote Qn =∑1≤i<j≤n XiYj and

Vj =
j−1∑
i=1

XiYj , j = 2, . . . , n.

It is clear that T2,n =∑n
j=2 Vj and (Vj , j = 2, . . . , n) is a forward martingale-

difference sequence (see the Appendix for definition) with respect to σ -algebras
Fj = σ((X1, Y1), . . . , (Xj ,Yj )), j = 2, . . . , n. By the martingale Rosenthal in-
equality (see Proposition A.2 in the Appendix),

E
[|Qn|p]≤ B(p/ logp)max

{
n∑

j=2

E|Vj |p,E

(
n∑

j=2

E
[
V 2

j |Fj−1
])p/2}

and

E|Vj |p ≤ B(p/ logp) · E|Yj |p max

{j−1∑
i=1

E|Xi |p,

(j−1∑
i=1

E|Xi |2
)p/2}

(6.7)

for all j = 2, . . . , n. Then

E

(
n∑

j=2

E
[
V 2

j |Fj−1
])p/2

= E

( ∑
1≤i<j≤n

|Xi |2E|Yj |2 + 2
n∑

j=3

∑
1≤k<l≤j−1

XkXlE|Yj |2
)p/2

≤ 2p/2−1E
( ∑

1≤i<j≤n

|Xi |2E|Yj |2
)p/2

+ 2p−1E

∣∣∣∣∣ ∑
1≤k<l≤n−1

XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
p/2

.

By the Rosenthal inequality,

E
( ∑

1≤i<j≤n

|Xi |2E|Yj |2
)p/2

= E

(
n−1∑
i=1

|Xi |2
n∑

j=i+1

E|Yj |2
)p/2

(6.8)

≤ B(p/2) log−1(p/2)max

{
n−1∑
i=1

E|Xi |p
[

n∑
j=i+1

E|Yj |2
]p/2

,

( ∑
1≤i<j≤n

E|Xi |2E|Yj |2
)p/2

}
.
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Using the Jensen inequality, we get for 2 ≤ p < 4

E

∣∣∣∣∣ ∑
1≤k<l≤n−1

XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
p/2

≤
( ∑

1≤k<l≤n−1

E|XkXl|2
(

n∑
j=l+1

E|Yj |2
)2)p/4

.

Moreover, ( ∑
1≤k<l≤n−1

E|XkXl|2
(

n∑
j=l+1

E|Yj |2
)2)p/4

(6.9)

≤
( ∑

1≤i<j≤n

E|Xi |2E|Yj |2
)p/2

.

Combining (6.7), (6.8) and (6.9), we arrive at the inequality (6.6). Thus Lemma 6.6
is proved for all 2 ≤ p < 4. Suppose now that the inequality (6.6) holds for p ≤
m − 1 with some m > 4. Let us prove it for p = m. It follows from the previous
steps, that we only need to obtain an upper bound for the term

E

∣∣∣∣∣ ∑
1≤k<l≤n−1

XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
m/2

.

Our induction hypothesis gives that the quantity

E

∣∣∣∣∣ ∑
1≤k<l≤n−1

XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
m/2

is bounded by

Cm/2 max

{ ∑
1≤k<l≤n−1

E

∣∣∣∣∣XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
m/2

,

n−2∑
k=1

E|Xk|m/2

(
n−1∑

l=k+1

|Xl|2
n∑

j=l+1

E|Yj |2
)m/4

,

(6.10)
n−1∑
l=2

|Xl|m/2

(
n∑

j=l+1

E|Yj |2
)m/2( l−1∑

k=1

E|Xk|2
)m/4

,

( ∑
1≤k<l≤n−1

E
[|Xk|2|Xl|2]

(
n∑

j=l+1

E|Yj |2
)2)m/4}

.
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Let us consider, for example, the first term in the above maximum. Using the in-
equality (

E
n∑

k=1

|Uk|p
)2

≤ max

{
n∑

k=1

E|Uk|2p,

(
n∑

k=1

E|Uk|
)2p}

(6.11)

that holds for any p > 1 and any sequence of independent r.v. U1, . . . ,Un with
E|Uk|2p < ∞, we get

∑
1≤k<l≤n−1

E

∣∣∣∣∣XkXl

n∑
j=l+1

E|Yj |2
∣∣∣∣∣
m/2

= ∑
1≤k<l≤n−1

E|XkXl|m/2

(
n∑

j=l+1

E|Yj |2
)m/2

≤
[

n−1∑
i=1

E|Xi |m/2

(
n∑

j=i+1

E|Yj |2
)m/4]2

and[
n−1∑
i=1

E|Xi |m/2

(
n∑

j=i+1

E|Yj |2
)m/4]2

≤ max

{
n−1∑
i=1

E|Xi |m
(

n∑
j=i+1

E|Yj |2
)m/2

,

( ∑
1≤i<j≤n

E|Xi |2E|Yj |2
)m/2

}
.

To see that inequality (6.11) holds, just note that the function

h(t) = log

[
n∑

k=1

E|Uk|t
]

is convex in the domain t > 1. Due to convexity of h(t), we have(
n∑

k=1

E|Uk|p
)2p−1

≤
( n∑

k=1

E|Uk|2p

)p−1
(

n∑
k=1

E|Uk|
)p

for any p > 1. Hence(
n∑

k=1

EU
p
k

)2

≤
( n∑

k=1

E|Uk|2p

)2(p−1)/(2p−1)
(

n∑
k=1

E|Uk|
)2p/(2p−1)

≤ max

{
n∑

k=1

E|Uk|2p,

(
n∑

k=1

E|Uk|
)2p}

.

Other terms on the right-hand side of (6.10) can be handled in a similar way. �
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Let us proceed with estimating the term T2,n. Without loss of generality we may
assume that E[̃ξ ] = E[̃ζ ] = 0. Note that for any natural p > 0,

E
[|̃ξ |p] ≤ 2pC(α)

∫ ∞
0

xp−1 exp
(−αx2)dx

= 2pC(α)

(2α)p/2

∫ ∞
0

yp−1 exp
(−y2/2

)
dy

≤ p
√

2πC(α)

(2α)p/2 E
[|Z|p],

where Z ∼ N(0,1). Similarly

E
[|̃ζ |p]≤ 2p/2p

√
2πC(α)

αp/2 E
[|Z|p].

As a result, we get from Proposition 6.6

E
[|T2,n|p]≤ Cp max

{
n1−p/2(n − 1)1−pE

[|Z|2p],
n−p/2(n − 1)1−p/2E

[|Z|p], (n − 1)−p/2}
for some constant C > 0 and any p > 1. Hence for any θ ∈ R,

E
[
exp(θT2,n) − 1

]= ∞∑
k=2

θk

k! E
[
T k

2,n

]

≤
∞∑

k=2

|θ |k
k!

Bk
1

(n − 1)k/2 E
[
Z2k]

= E
[
exp
(
B1|θ |Z2/

√
n − 1

)]− 1 − B1|θ |E[Z2]/√n − 1(6.12)

= 1√
1 − 2B1|θ |/√n − 1

− 1 − B1|θ |/√n − 1

≤ B2θ
2,

provided B1|θ |/√n − 1 < 1/2, where B1 and B2 are two constants not depending
on k and n. Analogously to (6.12), one can prove that

E
[
exp(θT3,n) − 1

]≤ B3θ
2

for sufficiently small |θ |. Hence by the Cauchy–Schwarz inequality,

E
[
eθ(T1,n+T2,n+T3,n) − 1

]≤ [Ee2θT1,n
]1/2[Ee4θT2,n

]1/4[Ee4θT3,n
]1/4 − 1

≤ B4θ
2

for some constant B4 > 0. Lemma 6.5 is proved. �
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Let us proceed with the proof of Proposition 6.3. Let {�̃m}m∈N be a sequence
of finite subsets of �̃ such that �̃m ↑ �̃ as m → ∞. Introduce the disjoint sets

Hp = {ψ ∈ �̃ : 2−p−1 < ρ
(
ψ,ψ∗)≤ 2−p}

for any p ∈ Z. Without loss of generality we may assume that Hp are empty
for p < 0. For every m ∈ N, denote by q(m,p) the smallest integer such that
q(m,p) > p and that each of the closed balls with centers in �̃m ∩ Hp and ρ-
radius 2 · 2−q(m,p) contains exactly one point in �̃m ∩ Hp. Then it is clear that
Card(�̃m ∩ Hp) ≤ N(2−q(m,p), �̃ ∩ Hp,ρ). Next let us introduce some mappings
π

m,p
r : �̃m ∩ Hp → �̃

m,p
r , p ≤ r ≤ q(m,p), defined by

πm,p
r = λm,p

r ◦ λ
m,p
r+1 ◦ · · · ◦ λ

m,p
q(m,p),

where the sets �̃
m,p
r ⊂ �̃m ∩ Hp and the mappings λ

m,p
r : �̃m ∩ Hp → �̃

m,p
r are

specified in the following way. For p ≤ r < q(m,p), choose �̃
m,p
r and define λ

m,p
r

such that they satisfy the following two conditions: Card(�̃
m,p
r ) ≤ N(2−r , �̃ ∩

Hp,ρ) and ρ(ψ,λ
m,p
r (ψ)) ≤ 2 ·2−r for every ψ ∈ �̃m ∩Hp. For r = q(m,p), put

�̃
m,p
q(m,p) = �̃m ∩ Hp and denote by λ

m,p
q(m,p) the identical mapping on �̃m ∩ Hp. In

terms of the mappings π
m,p
r which have been introduced, we consider the chaining

given as follows: for every n ∈ N and ψ ∈ �̃ ∩ Hp ,

∣∣�n(ψ)
∣∣≤ q(m,p)∑

r=p+1

∣∣�n

(
πm,p

r (ψ)
)− �n

(
π

m,p
r−1 (ψ)

)∣∣+ ∣∣�n

(
πm,p

p (ψ)
)∣∣.

Since ρ(π
m,p
r (ψ),π

m,p
r−1 (ψ))/ρ(ψ,ψ∗) ≤ 2−r+p+1 and ρ(π

m,p
r (ψ),ψ∗)/

ρ(ψ,ψ∗) ≤ 2 on �̃m ∩Hp, it follows from Lemma 6.5 and Lemma 8.2 in Kosorok
(2008) that

E
[
exp
(
θ sup

ψ∈�̃m∩Hp

{√
n|�n(π

m,p
r (ψ)) − �n(π

m,p
r−1 (ψ))|

R2(ψ,ψ∗)

})
− 1
]

≤ E
[
exp
(
θ sup

ψ∈�̃m∩Hp

{Q(π
m,p
r−1 (ψ),π

m,p
r (ψ))Q(π

m,p
r (ψ),ψ∗)

R2(ψ,ψ∗)

×
√

n|�n(π
m,p
r (ψ)) − �n(π

m,p
r−1 (ψ))|

Q(π
m,p
r−1 (ψ),π

m,p
r (ψ))Q(π

m,p
r (ψ),ψ∗)

})
− 1
]

≤ Kp−24−r+p+1 log
(
1 + N

(
2−r , �̃ ∩ Hp,ρ

))
for all |θ | ≤ ε, some δ > 0 and some constant K > 0. Moreover note that
N(2−r , �̃ ∩ Hp,ρ) ≤ N(2−r+p+1, �̃, ρ). Next

E
[
exp
(
θ sup

ψ∈�̃m∩Hp

{ |√n · �n(π
m,p
p (ψ))|

R2(ψ,ψ∗)

})
− 1
]

� p−2 log
(
1 + N

(
21+p, �̃, ρ

))
.
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Finally, we get for any P > 0,

E
[
exp
(
θ sup

ψ∈�̃m∩(H1∪···∪HP )

|√n · �n(ψ)|
R2(ψ,ψ∗)

)
− 1
]

�
P∑

p=1

p−2
q(m,p)∑
r=p+1

4−r+p+1 log
(
1 + N

(
2−r+p+1, �̃, ρ

))

�
P∑

p=1

p−2
∫ 1

0
log
(
1 + N(

√
ε, �̃, ρ)

)
dε

�
∫ 1

0

√
log
(
1 + N(ε, �̃, ρ)

)
dε.

The proof of Proposition 6.3 is accomplished by letting m → ∞ and P → ∞.

APPENDIX

The following lemma is a straightforward generalization of Lemma 19.33 in
van der Vaart (1998).

LEMMA A.1. Let X be a finite collection of bounded real valued random
variables defined on a common probability space (�, F ,P), then

E
∥∥Gn[X]∥∥X � supX∈X |X|√

n
log
(
1 + |X |)+ max

X∈X

√
E
[|X|2]√log

(
1 + |X |),

where Gn[X] = 1
n

∑n
j=1(X

(j) − E[X]) and X(1), . . . ,X(n) are i.i.d. copies of X.

Given a sequence of σ -algebras (Fn), n ≥ 1 on some probability space
(�, F ,P), we call a sequence of integrable r.v. Yn to be a forward martingale-
difference sequence w.r.t. (Fn) if:

• F1 ⊆ F2 ⊆ · · ·;
• Yn is Fn-measurable;
• E[Yn|Fn−1] = 0 a.s. for any n ≥ 1.

The following proposition can be found in Hitczenko (1990).

PROPOSITION A.2. Let (Xk) be a forward martingale-difference sequence
relative to Fk such that E|Xk|p < ∞ for some p ≥ 2 and k = 1, . . . , n; then

E

∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
p

≤ B
(
k log−1 k

)
max

{
n∑

k=1

E|Xk|p,E

[
n∑

k=1

E
[
X2

k |Fk−1
]]p/2}

for some constant B not depending on k.
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The next inequality can be found in de la Peña, Klass and Lai (2004).

LEMMA A.3. For any continuous local martingale (Mt)t∈[0,T ] with M0 = 0

P
( sup0≤t≤T |Mt |√

〈M〉T log log(〈M〉T ∨ e2)
≥ x

)
≤ C(α)e−αx2

,

where α is a real number in (0,1/2) and C(α) is a positive constant.
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