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QUANTITATIVE VERSION OF THE KIPNIS–VARADHAN
THEOREM AND MONTE CARLO APPROXIMATION OF

HOMOGENIZED COEFFICIENTS1
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This article is devoted to the analysis of a Monte Carlo method to approx-
imate effective coefficients in stochastic homogenization of discrete elliptic
equations. We consider the case of independent and identically distributed
coefficients, and adopt the point of view of the random walk in a random
environment. Given some final time t > 0, a natural approximation of the ho-
mogenized coefficients is given by the empirical average of the final squared
positions re-scaled by t of n independent random walks in n independent
environments. Relying on a quantitative version of the Kipnis–Varadhan the-
orem combined with estimates of spectral exponents obtained by an original
combination of PDE arguments and spectral theory, we first give a sharp es-
timate of the error between the homogenized coefficients and the expectation
of the re-scaled final position of the random walk in terms of t . We then
complete the error analysis by quantifying the fluctuations of the empirical
average in terms of n and t , and prove a large-deviation estimate, as well as a
central limit theorem. Our estimates are optimal, up to a logarithmic correc-
tion in dimension 2.

1. Main result and structure of the proof.

1.1. Main result. We consider the discrete elliptic operator −∇∗ · A∇ , where
∇∗· and ∇ are the discrete backward divergence and forward gradient, respectively.
For all x ∈ Z

d , A(x) is the diagonal matrix whose entries are the conductances
ωx,x+ei

of the edges (x, x+ei ) starting at x, where (ei )i∈{1,...,d} denotes the canon-
ical basis of R

d . Let B denote the set of unoriented edges of Z
d . We call the family

of conductances ω = (ωe)e∈B the environment. This environment is symmetric in
the sense that for all x, y ∈ Z

d with |x − y| = 1, we have e = (x, y) = (y, x), so
that ωx,y = ωy,x = ωe. The environment ω is random, and we write P for its distri-
bution (with corresponding expectation E). We make the following assumptions:

(H1) the measure P is invariant under translations,
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(H2) the conductances are i.i.d.,2

(H3) there exists 0 < α < β such that α ≤ ωe ≤ β almost surely.

Under these conditions, standard homogenization results ensure that there exists
some deterministic symmetric matrix Ahom such that the solution operator of the
deterministic continuous differential operator −∇ ·Ahom∇ describes the large scale
behavior of the solution operator of the random discrete differential operator −∇∗ ·
A∇ almost surely [for this statement, (H2) can in fact be replaced by the weaker
assumption that the measure P is ergodic with respect to the group of translations]
(see [17]).

The operator −∇∗ · A∇ is the infinitesimal generator of a stochastic process
(X(t))t∈R+ which can be defined as follows. Given an environment ω, it is the
Markov process whose jump rate from a site x ∈ Z

d to a neighboring site y is
given by ωx,y . We write Pω

x for the law of this process starting from x ∈ Z
d .

It is proved in [13] that under the averaged measure PPω
0 , the re-scaled process√

εX(ε−1t) converges in law, as ε tends to 0, to a Brownian motion whose in-
finitesimal generator is −∇ · Ahom∇ , or in other words, a Brownian motion with
covariance matrix 2Ahom (see also [1, 15, 17] for prior results). We will use this
fact to construct computable approximations of Ahom. As proved in [5], this in-
variance principle holds as soon as (H1) is true, (H2) is replaced by the ergodicity
of the measure P and (H3) by the integrability of the conductances. Under the
assumptions (H1)–(H3), [23] strengthens this result in another direction, showing
that for almost every environment,

√
εX(ε−1t) converges in law under Pω

0 to a
Brownian motion with covariance matrix 2Ahom. This has been itself extended to
environments which do not satisfy the uniform ellipticity condition (H3) (see [2–4,
18, 19]).

Let (Y (t))t∈N denote the sequence of consecutive sites visited by the ran-
dom walk (X(t))t∈R+ [note that the “times” are different in nature for X(t) and
Y(t)]. This sequence is itself a Markov chain that satisfies for any two neighbors
x, y ∈ Z

d ,

Pω
x

[
Y(1) = y

] = ωx,y

pω(x)
,

where pω(x) = ∑
|z|=1 ωx,x+z. We simply write p(ω) for pω(0). Let us introduce

a “tilted” version of the law P on the environments, that we write P̃ and define by

dP̃(ω) = p(ω)

E[p] dP(ω).(1.1)

The reason why this measure is natural to consider is that it makes the environment
seen from the position of the random walk Y a stationary process [see (3.2) for a
definition of this process].

2(H2) obviously implies (H1) in the present form. Yet for most qualitative (and some quantitative)
results (H2) can be weakened and may not imply (H1) any longer.
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Interpolating between two integers by a straight line, we can think of Y as a
continuous function on R+. With this in mind, it is also true that there exists a
matrix Adisc

hom such that, as ε tends to 0, the re-scaled process
√

εY (ε−1t) converges
in law under P̃Pω

0 to a Brownian motion with covariance matrix 2Adisc
hom. Moreover,

Adisc
hom and Ahom are related by (see [5], Theorem 4.5(ii))

Ahom = E[p]Adisc
hom = 2dE[ωe]Adisc

hom.(1.2)

Given that the numerical simulation of Y saves some operations compared to the
simulation of X (there is no waiting time to compute, and the running time is equal
to the number of steps), we will focus on approximating Adisc

hom. More precisely, we
fix once and for all some ξ ∈ R

d with |ξ | = 1, and define

σ 2
t = t−1

ẼEω
0
[(

ξ · Y(t)
)2]

,(1.3)

σ 2 = 2ξ · Adisc
homξ = 2ξ · Ahomξ

E[p] .(1.4)

It follows from results of [13] (or [5], Theorem 2.1) that σ 2
t tends to σ 2 as t tends

to infinity. We now describe a Monte Carlo method to approximate σ 2
t . Using the

definition of the tilted measure (1.1), one can see that

σ 2
t = ẼEω

0 [(ξ · Y(t))2]
t

= EEω
0 [p(ω)(ξ · Y(t))2]

tE[p] .(1.5)

Assuming that we have easier access to the measure P than to the tilted P̃, we
prefer to base our Monte Carlo procedure on the right-hand side of the second
identity in (1.5). Let Y (1), Y (2), . . . be independent random walks evolving in the
environments ω(1),ω(2), . . . , respectively. We write Pω

0 for their joint distribution,
all random walks starting from 0, where ω stands for (ω(1),ω(2), . . .). The family
of environments ω is itself random, and we let P

⊗ be the product distribution
with marginal P. In other words, under P

⊗, the environments ω(1),ω(2), . . . are
independent and distributed according to P. Our computable approximation of σ 2

t

is defined by

Ân(t) = p(ω(1))(ξ · Y (1)(t))2 + · · · + p(ω(n))(ξ · Y (n)(t))2

ntE[p] .(1.6)

In Ân(t), the expectation E[p] = 2dE[ωe] comes into play. This expectation can
be easily computed, so we assumed that we did so beforehand.

The main result of this paper is the following optimal bounds on the distribution
of the error |Ân(t) − σ 2|.

THEOREM 1.1. Under the assumptions (H1)–(H3), there exist C,c > 0 such
that, for any n ∈ N

∗, any ε > 0 and any t large enough,

P
⊗Pω

0
[∣∣Ân(t) − σ 2∣∣ ≥ (

Cμd(t) + ε
)
/t
] ≤ exp

(
−nε2

ct2

)
,(1.7)
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where σ 2 and Ân(t) are defined, respectively, in (1.4) and (1.6), and

μd(t) =
{

lnq t, for d = 2,
1, for d > 2,

for some q > 0 depending only on α and β .

This result precisely quantifies the convergence rate of a method proposed by
Papanicolaou in [21] in the beginning of the eighties to approximate the homoge-
nized coefficients Ahom numerically.

For completeness of the analysis we also prove a central limit theorem (and
identify the limiting variance) for the quantity

√
n(t)(Ân(t)(t)−σ 2

t ) for all n : N →
N such that n(t) tends to infinity with t .

Let us quickly discuss the sharpness of these results. If A was a periodic matrix
(or even a constant matrix) we would get the same estimate as in Theorem 1.1, ex-
cept in dimension 2 for which no logarithmic correction would be needed [in the
setting of Theorem 1.1, we conjecture that q = 1 is the optimal exponent in (1.7)].
Numerical tests illustrating (1.7) for d = 2 are reported and commented on in Sec-
tion 6 of this article.

1.2. Structure of the proof. Although the result of Theorem 1.1 is purely prob-
abilistic (we estimate a distribution) its proof involves both nontrivial probabilistic
arguments (martingale decomposition and Kipnis–Varadhan theory, large devia-
tion estimates) and nontrivial arguments of elliptic theory (Harnack inequality, De
Giorgi–Nash–Moser theory and Lp-theory). What allows us to combine these ar-
guments is spectral theory. This makes the overall structure of the proof interesting
and rather unusual.

The starting point of the proof is the observation that∣∣Ân(t) − σ 2∣∣ ≤ ∣∣Ân(t) − σ 2
t

∣∣+ ∣∣σ 2
t − σ 2∣∣.

The result then follows from the following two estimates:

∣∣σ 2
t − σ 2∣∣ ≤ C

μd(t)

t
,(1.8)

P
⊗Pω

0
[∣∣Ân(t) − σ 2

t

∣∣ ≥ ε/t
] ≤ exp

(
−nε2

ct2

)
(1.9)

(see Theorems 3.1 and 4.1). The second estimate is a large deviation estimate. Its
proof is standard once we are given sharp upper bounds on the transition proba-
bilities of the random walk in the random environment—which are also by now
standard under assumption (H3). The proof is given in Section 4 for complete-
ness. The central limit theorem for the quantity

√
n(t)(Ân(t)(t) − σ 2

t ) is given in
Proposition 5.1 and proved in Section 5.

The core of this article is the estimate (1.8). We call its left-hand side the sys-
tematic error. As proved in the celebrated paper [13] by Kipnis and Varadhan (see
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also [5]), the systematic error vanishes as t goes to infinity as soon as the measure
P is ergodic under translations. The strategy to prove this result is to find a de-
composition of Y(t) · ξ into a martingale plus a remainder, in such a way that the
remainder term becomes negligible in the limit, and conclude using the orthogo-
nality of the increments of the martingale and ergodicity. The approach taken up
by [13] is based on the spectral analysis of the (self-adjoint) operator of the envi-
ronment viewed by the particle. More precisely, it is shown that in order for this
decomposition with negligible remainder to exist, it suffices that the spectral mea-
sure of this operator, once projected on the “local drift” d [see (3.4)], satisfies some
integrability condition (IC) at the edge of the spectrum. Condition (IC) is then seen
to be equivalent to asking d to belong to the function space H−1, a fact which is
automatically true due to certain symmetry considerations that were systematized
in [5].

Our proof of (1.8) consists of two steps. We first make the argument of Kipnis
and Varadhan quantitative in Section 2. That is, we show that stronger integrabil-
ity conditions than (IC) on the spectral measure can be turned into quantitative
estimates on the systematic error—this is a general result of independent interest.

In the second step, addressed in Section 3, we prove that indeed (IC) can be
strengthened to higher integrability properties, provided ergodicity is replaced by
the stronger assumption that the conductances are i.i.d., the hypothesis (H2). This
result is the main achievement of this article. In [9], we had taken advantage of
spectral theory to turn results of [11] into bounds on spectral exponents. In the
present paper we go the other way around, and make systematic use of the interplay
between estimates on the spectral measure and iterates of the elliptic operator.
There is a twist in the analysis at this point. In [9] spectral theory is somehow
only used at the end of the argument to re-phrase in terms of spectral exponents
the results on systematic errors obtained by PDE arguments in [11]. Here spectral
theory enters the proof itself and is used in combination with PDE arguments. This
approach has the advantage of revealing the very nice structure of the problem
under consideration.

Let us point out that although the results of this paper are proved under assump-
tions (H1)–(H3), the assumption (H2) on the statistics of ω is only used to obtain
the variance estimate of [10], Lemma 2.3. In particular, (H2) can be weakened as
follows:

• the distribution of ωz,z+ei
may, in addition, depend on ei ,

• independence can be replaced by finite correlation length CL > 0, that is, for all
e, e′ ∈ B, ωe and ωe′ are independent if |e − e′| ≥ CL.

Notation. So far we have already introduced the probability measures Pω
0

(distribution of Y ), Pω
0 (distribution of Y (1), Y (2), . . .), P [i.i.d. distribution for

ω = (ωe)e∈B], P̃ [tilted measure defined in (1.1)] and P
⊗ (product distribution of

ω with marginal P). It will be convenient to define P̃
⊗ as the product distribution
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of ω with marginal P̃. For convenience, we write P0 as a shorthand notation for
PPω

0 , P̃0 for P̃Pω
0 , P

⊗
0 for P

⊗Pω
0 and P̃

⊗
0 for P̃

⊗Pω
0 . The corresponding expectations

are written accordingly, replacing “P” by “E” with the appropriate typography. We
write | · | for the Euclidian norm of R

d .
Finally, � and � stand, respectively, for ≤ and ≥ up to multiplicative constants

(which depend only on the bounds α and β on the conductances and the dimen-
sion d , if not otherwise stated).

2. Quantitative version of the Kipnis–Varadhan theorem. The Kipnis–
Varadhan theorem [13] concerns additive functionals of reversible Markov pro-
cesses. It gives conditions for such additive functionals to satisfy an invariance
principle. The proof of the result relies on a decomposition of the additive func-
tional as the sum of a martingale term plus a remainder term, the latter being shown
to be negligible. In this section, which can be read independently of the rest of the
paper, we give conditions that enable us to obtain some quantitative bounds on this
remainder term.

We consider discrete and continuous times simultaneously. Let (ηt )t≥0 be a
Markov process defined on some measurable state space ℵ (here, t ≥ 0 stands ei-
ther for t ∈ N or for t ∈ R+). We denote by Px the distribution of the process
started from x ∈ ℵ, and by Ex the associated expectation. We assume that this
Markov process is reversible and ergodic with respect to some probability mea-
sure ν. We write Pν for the law of the process started from the distribution ν, and
Eν for the associated expectation.

To the Markov process is naturally associated a semi-group (Pt )t≥0 defined, for
any f ∈ L2(ν), by

Ptf (x) = Ex

[
f (ηt )

]
.

Each Pt is a self-adjoint contraction of L
2(ν). In the continuous-time case, we

assume further that the semi-group is strongly continuous, that is to say, that Ptf

converges to f in L
2(ν) as t tends to 0, for any f ∈ L

2(ν). We let L be the L
2(ν)-

infinitesimal generator of the semi-group. It is self-adjoint in L
2(ν), and we fix the

sign convention so that it is a positive operator (i.e., Pt = e−tL).
Note that, in general, one can see using spectral analysis that there exists a

projection P such that Ptf converges to Pf as t tends to 0, t > 0. Changing
L

2(ν) to the image of the projection P , and P0 for P , one recovers a strongly
continuous semigroup of contractions, and one can still carry the analysis below
replacing L

2(ν) by the image of P when necessary.
In discrete time, we set L = Id −P1. Again, L is a positive self-adjoint operator

on L
2(ν). Note that we slightly depart from the custom of defining the generator

as P1 in order to match more closely the continuous-time situation.
We denote by 〈·, ·〉 the scalar product in L

2(ν). For any function f ∈ L
2(ν) we

define the spectral measure of L projected on the function f as the measure ef on
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R+ that satisfies, for any bounded continuous 
 : R+ → R, the relation〈
f,
(L)f

〉 = ∫

(λ)def (λ).(2.1)

The Dirichlet form associated to L is given by

‖f ‖2
1 =

∫
λdef (λ).(2.2)

We denote by H 1 the completion of the space {f ∈ L
2(ν) :‖f ‖1 < +∞} with

respect to this ‖ · ‖1 norm, taken modulo functions of zero ‖ · ‖1 norm. This turns
(H 1,‖ · ‖1) into a Hilbert space, and we let H−1 denote its dual. One can identify
H−1 with the completion of the space {f ∈ L

2(ν) :‖f ‖−1 < +∞} with respect to
the norm ‖ · ‖−1 defined by

‖f ‖2−1 =
∫

λ−1 def (λ).

Indeed, for all f ∈ L
2(ν), the linear form{ (

L
2(ν) ∩ H 1,‖ · ‖1

) → R,

φ �→ 〈f,φ〉,
has norm ‖f ‖−1, and thus defines an element of H−1 (with norm ‖f ‖−1) iff
‖f ‖−1 is finite. The notion of spectral measure introduced in (2.1) for functions
of L

2(ν) can be extended to elements of H−1. Indeed, let 
 : R+ → R be a con-
tinuous function such that 
(λ) = O(λ−1) as λ → +∞. One can check that the
map { (

L
2(ν) ∩ H−1,‖ · ‖−1

) → H 1,

f �→ 
(L)f,

extends to a bounded linear map on H−1. One can then define the spectral measure
of L projected on the function f as the measure ef such that for any continuous 


with 
(λ) = O(λ−1), (2.1) holds. With a slight abuse of notation, for all f ∈ H−1

and g ∈ H 1, we write 〈f,g〉 for the H−1 − H 1 duality product between f and g.
For any f ∈ H−1, we define (Zf (t))t≥0 as

Zf (t) =
∫ t

0
f (ηs)ds or Zf (t) =

t−1∑
s=0

f (ηs),(2.3)

according to whether we consider the continuous or the discrete time cases. In the
continuous case, the meaning of (2.3) is unclear a priori. Yet it is proved in [5],
Lemma 2.4, that for any t ≥ 0 the map{

L
2(ν) ∩ H−1 → L

2(Pν),

f �→ Zf (t),

can be extended by continuity to a bounded linear map on H−1, and moreover,
that (2.3) coincides with the usual integral as soon as f ∈ L

1(ν). The following
theorem is due to [5], building on previous work of [13].
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THEOREM 2.1. (i) For all f ∈ H−1, there exists (Mt)t≥0, (ξt )t≥0 such that
Zf (t) defined in (2.3) satisfies the identity Zf (t) = Mt + ξt , where (Mt) is a
square-integrable martingale with stationary increments under Pν (and the nat-
ural filtration), and (ξt ) is such that

t−1Eν

[
(ξt )

2] −−−→
t→+∞ 0.(2.4)

As a consequence, t−1/2Zf (t) converges in law under Pν to a Gaussian random
variable of variance σ 2(f ) < +∞ as t goes to infinity, and

t−1Eν

[(
Zf (t)

)2] −−−→
t→+∞ σ 2(f ).(2.5)

(ii) If, moreover, f ∈ L
1(ν) and, for some t > 0, sup0≤t≤t |Zf (t)| is in L

2(ν),
then the process t �→ √

εZf (ε−1t) converges in law under Pν to a Brownian mo-
tion of variance σ 2(f ) as ε goes to 0.

Remarks. The additional conditions appearing in statement (ii) are automatically
satisfied in discrete time, due to the fact that H−1 ⊆ L

2(ν) in this case. In the
continuous-time setting and when f ∈ L

1(ν), the process t �→ Zf (t) is almost
surely continuous, and sup0≤t≤t |Zf (t)| is indeed a well-defined random variable.

Under some additional information on the spectral measure of f , we can esti-
mate the rates of convergence in the limits (2.4) and (2.5). For any γ > 1 and q ≥ 0,
we say that the spectral exponents of a function f ∈ H−1 are at least (γ,−q) if∫ μ

0
def (λ) = O

(
μγ lnq(μ−1)) (μ → 0).(2.6)

Note that the phrasing is consistent, since if (γ ′,−q ′) ≤ (γ,−q) for the lexico-
graphical order, and if the spectral exponents of f are at least (γ,−q), then they
are at least (γ ′,−q ′). In [20], it was found more convenient to consider, instead
of (2.6), a condition of the following form:∫ μ

0
λ−1 def (λ) = O

(
μγ−1 lnq(μ−1)) (μ → 0).(2.7)

One can easily check that conditions (2.6) and (2.7) are equivalent. Indeed, on the
one hand, one has the obvious inequality∫ μ

0
def (λ) ≤ μ

∫ μ

0
λ−1 def (λ),

which shows that (2.7) implies (2.6). On the other hand, one may perform a kind
of integration by parts (use Fubini’s theorem),∫ μ

0
λ−1 def (λ) =

∫ μ

0

∫ +∞
δ=λ

δ−2 dδ def (λ)

=
∫ +∞
δ=0

δ−2
∫ δ∧μ

λ=0
def (λ)dδ
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and obtain the converse implication by examining separately the integration over
δ in [0,μ) and in [μ,+∞).

For all γ > 1 and q ≥ 0, we set

ψγ,q(t) =
⎧⎪⎨
⎪⎩

t1−γ lnq(t), if γ < 2,
t−1 lnq+1(t), if γ = 2,
t−1, if γ > 2.

(2.8)

The quantitative version of Theorem 2.1 is as follows.

THEOREM 2.2. If the spectral exponents of f ∈ H−1 are at least (γ,−q),
then the decomposition Zf (t) = Mt + ξt of Theorem 2.1 holds with the additional
property that

t−1Eν

[
(ξt )

2] = O
(
ψγ,q(t)

)
(t → +∞).

Moreover,

σ 2(f ) − Eν[Zf (t)2]
t

= O
(
ψγ,q(t)

)
(t → +∞).

PROOF. In the continuous-time setting, the argument for the first estimate is
very similar to the one of [20], Proposition 8.2, and we do not repeat the details
here. It is based on the observation that

1

t
Eν

[
(ξt )

2] = 2
∫ 1 − e−λt

λ2t
def (λ).(2.9)

One needs to take into account the possible logarithmic terms that appear in (2.7)
and which are not considered in [20]. Some care is also needed because we do not
assume that f ∈ L

2(ν). Yet one can easily replace the bound involving the L
2(ν)

norm of f by its H−1 norm. The second part of the statement is given by [20],
Proposition 8.3.

We now turn to the discrete time setting. In this context, identity (2.9) should be
replaced by

1

t
Eν

[
(ξt )

2] = 2
∫ 1 − (1 − λ)t

λ2t
def (λ).

By definition, L = Id − P1, where P1 is the semi-group at time 1. Hence, the
spectrum of L is contained in [0,2]. One can then follow the same computations
as before to prove the first part of Theorem 2.2.

Somewhat surprisingly, the second part of the statement requires additional at-
tention in the discrete time setting. Indeed, in the continuous case, the argument
of [20], Proposition 8.3 (which already appears in [5]) is that Zf (t) and ξ(t) are
orthogonal in L

2(Pν), a fact obtained using the invariance under time symmetry.
This orthogonality is only approximately valid in the discrete-time setting. Indeed,
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let us recall that Zf (t) is given by (2.3), while ξt is obtained as the limit in L
2(Pν)

of

−uε(ηt ) + uε(η0),

where uε = (ε +L)−1f . Using time symmetry, what we obtain is that ξt is orthog-
onal to (Zf (t) + f (ηt )). As a consequence, the cross-product Eν[Zf (t)ξt ], which
is equal to 0 in the proof of [20], Proposition 8.3, is in the present case equal to
−Eν[f (ηt )ξt ]. Yet spectral analysis ensures that this term is equal to∫ 1 − (1 − λ)t

λ
def (λ) = O(1) (t → +∞),

which is what we need to obtain the second claim of the theorem. �

3. The systematic error. We now come back to the analysis of the Monte
Carlo approximation of the homogenized coefficients within assumptions (H1)–
(H3). The aim of this section is to estimate the difference between σ 2

t and the
quantity σ 2 we wish to approximate [both being defined in (1.3)]. This difference,
that we refer to as the systematic error after [10], is shown to be of order 1/t as t

tends to infinity, up to a logarithmic correction in dimension 2.

THEOREM 3.1. Under assumptions (H1)–(H3), there exists q ≥ 0 such that,
as t tends to infinity,

σ 2
t − σ 2 =

{
O
(
t−1 lnq(t)

)
, if d = 2,

O
(
t−1), if d > 2.

(3.1)

Theorem 3.1 is a discrete-time version of [20], Corollary 2.6. Its proof makes
use of an auxiliary process that we now introduce.

Let (θx)x∈Zd be the translation group that acts on the set of environments as fol-
lows: for any pair of neighbors y, z ∈ Z

d , (θxω)y,z = ωx+y,x+z. The environment
viewed by the particle is the process defined by

ω(t) = θY(t)ω.(3.2)

One can check that (ω(t))t∈N is a Markov chain whose generator is given by

−Lf (ω) = 1

p(ω)

∑
|z|=1

ω0,z

(
f (θzω) − f (ω)

)
,(3.3)

so that Eω
0 [f (ω(1))] = (I − L)f (ω). Moreover, the measure P̃ defined in (1.1) is

reversible and ergodic for this process [5], Lemma 4.3(i). As a consequence, the
operator L is (positive and) self-adjoint in L

2(P̃).
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The proof of Theorem 3.1 relies on spectral analysis. For any function f ∈
L2(P̃), let ef be the spectral measure of L projected on the function f . This mea-
sure is such that, for any positive continuous function 
 : [0,+∞) → R+, one
has

Ẽ
[
f 
(L)f

] =
∫


(λ)def (λ).

For any γ > 1 and q ≥ 0, we recall that we say that the spectral exponents of a
function f are at least (γ,−q) if (2.6) holds.

Let us define the local drift d in direction ξ as

d(ω) = Eω
0
[
ξ · Y(1)

] = 1

p(ω)

∑
|z|=1

ω0,zξ · z.(3.4)

As we shall prove at the end of this section, we have the following bounds on the
spectral exponents of d.

PROPOSITION 3.2. Under assumptions (H1)–(H3), there exists q ≥ 0 such
that the spectral exponents of the function d are at least⎧⎪⎪⎨

⎪⎪⎩
(2,−q), if d = 2,
(d/2 + 1,0), if 3 ≤ d ≤ 5,
(4,−1), if d = 6,
(4,0), if d ≥ 7.

(3.5)

Let us see how this result implies Theorem 3.1. In order to do so, we also need
the following information that is a consequence of Proposition 3.2.

COROLLARY 3.3. Let

dt (ω) = Eω
0
[
d
(
ω(t)

)]
(3.6)

be the image of d by the semigroup at time t associated with the Markov chain
(ω(t))t∈N. There exists q ≥ 0 such that

Ẽ
[
(dt )

2] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
(
t−2 lnq(t)

)
, if d = 2,

O
(
t−(d/2+1)

)
, if 3 ≤ d ≤ 5,

O
(
t−4 ln(t)

)
, if d = 6,

O
(
t−4), if d ≥ 7.

PROOF. This result is the discrete-time analog of [9], Corollary 1. It is ob-
tained the same way, noting that

Ẽ
[
(dt )

2] =
∫

(1 − λ)2t ded(λ)

and that the support of the measure ed is contained in [0,2]. �
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We are now in position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. The proof has the same structure as for the
continuous-time case of [20], Proposition 8.4. Note that [5], Theorem 2.1, ensures
that

lim
t→∞σ 2

t

(def)= lim
t→∞ t−1

E0
[(

ξ · Y(t)
)2] = σ 2.(3.7)

The starting point is the observation that, under P̃0, the process defined by

Nt = ξ · Y(t) −
t−1∑
s=0

d
(
ω(s)

)
(3.8)

is a square-integrable martingale with stationary increments. On the one hand,
following (2.3), we denote by Zd(t) the sum appearing in the right-hand side of
(3.8). From Proposition 3.2 and Theorem 2.2, we learn that there exist σ and q ≥ 0
such that

tσ 2 − Ẽ0
[(

Zd(t)
)2] =

{
O
(
lnq(t)

)
, if d = 2,

O(1), if d > 2.
(3.9)

On the other hand, since Nt is a martingale with stationary increments,

Ẽ0
[
(Nt)

2] = tẼ0
[
(N1)

2].(3.10)

As in the proof of Theorem 2.2 in the discrete time case, we then use that ξ · Y(t)

is orthogonal to (Zd(t) + d(ω(t))) to turn (3.8) into

t−1
Ẽ0

[
(Nt )

2] = t−1
Ẽ0

[(
ξ · Y(t)

)2]+ t−1
Ẽ0

[(
Zd(t)

)2]
(3.11)

+ 2t−1
Ẽ0

[
d
(
ω(t)

)(
ξ · Y(t)

)]
.

We already control the left-hand side and the second term of the right-hand side
of (3.11). In order to quantify the convergence of t−1

Ẽ0[(ξ · Y(t))2] it remains to
control the last term. In particular, provided we show that

Ẽ0
[
d
(
ω(t)

)(
ξ · Y(t)

)] =
{

O
(
lnq(t)

)
, if d = 2,

O(1), if d > 2,
(3.12)

(3.11), (3.9), (3.10) and (3.7) imply first that σ 2 = Ẽ0[(N1)
2] − σ 2, and then the

desired quantitative estimate (3.1). We now turn to (3.12) and write

Ẽ0
[
d
(
ω(t)

)(
ξ · Y(t)

)] =
t−1∑
s=0

Ẽ0
[
d
(
ω(t)

)(
ξ · (Y(s + 1) − Y(s)

))]

=
t−1∑
s=0

Ẽ0
[
dt−s−1

(
ω(s + 1)

)(
ξ · (Y(s + 1) − Y(s)

))]
,
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where we have used the Markov property at time s + 1, together with the defini-
tion (3.6) of dt−s−1. Using Cauchy–Schwarz inequality and the stationarity of the
process (ω(t))t∈N under Ẽ0, this sum is bounded by

|ξ |2
t−1∑
s=0

Ẽ
[
(dt−s−1)

2]1/2
.

Estimate (3.12) then follows from Corollary 3.3. The proof of the theorem is com-
plete. �

Proposition 3.2 is a discrete-time counterpart of [9], Theorem 5. In [9], The-
orem 5, however, we had proved, in addition, that the spectral exponents are at
least (d/2 − 2,0), which is sharper than the exponents of Proposition 3.2 for
d > 10. In particular, for d > 10 the bounds of [9], Theorem 5, follow from re-
sults of [20], whose adaptation to the discrete time setting is not straightforward.
As shown above, the present statement is sufficient to prove the optimal scaling
of the systematic error, and we do not investigate further this issue (see, however,
Remark 3.10). The proof of Proposition 3.2 is rather involved and one may won-
der whether this is worth the effort in terms of the application we have in mind,
namely, Theorem 3.1. In order to obtain the optimal convergence rate in Theo-
rem 3.1 we need the spectral exponents to be larger than (2,0). Proving that the
exponents are at least (2,0) is rather direct using results of [10] (see the first three
steps of the proof of Proposition 3.2). Yet proving that they are larger than (2,0)

for d > 2 is as involved as proving Proposition 3.2 itself. This is the reason why
we display the complete proof of Proposition 3.2—although the precise values of
the spectral exponents are not that important in the context of this paper.

There are two new features in the proof of Proposition 3.2 with respect to our
previous works:

• First, the discrete elliptic operator we consider here is slightly different than the
operator considered in [10] since the zero-order term is now random as well—
the adaptation of the results of [10] is only technical though;

• The string of arguments is different than in the proof of [9], Theorem 5. In
particular, the starting point of [9] was an estimate obtained in [11] based on
the crucial use of a covariance estimate. In [11] the main quantity of interest
was a systematic error. In the present proof the main quantity of interest is the
spectral exponents at the first place. This twist of points of view allows us to
reduce the proof to a suitable use of the variance estimate only, and reveals the
general structure of the problem.

This proof does not only complete the proof of Theorem 3.1 but allows us to shed
some new light on our conjecture in [9] on the optimal values of the spectral expo-
nents (see Remark 3.10).
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As already mentioned, this proof makes extensive use of tools developed by the
authors, and by Otto. For the reader’s convenience, we recall five useful auxiliary
results from [8, 10, 11]: a spectral gap estimate and bounds on Green’s functions.

LEMMA 3.4 ([10], Lemma 2.3). Let a = {ai}i∈N be a sequence of i.i.d. ran-
dom variables with range [α,β]. Let X be a Borel measurable function of a ∈ R

N

(i.e., measurable w.r.t. the smallest σ -algebra on R
N for which all coordinate func-

tions R
N � a �→ ai ∈ R are Borel measurable; cf. [14], Definition 14.4).

Then we have

var[X] ≤
〈 ∞∑

i=1

sup
ai

∣∣∣∣∂X

∂ai

∣∣∣∣2
〉

var[a1],(3.13)

where supai
| ∂X
∂ai

| denotes the supremum of the modulus of the ith partial derivative

∂X

∂ai

(a1, . . . , ai−1, ai, ai+1, . . .)

of X with respect to the variable ai ∈ [α,β].

Let h : Zd → R be some function. We define its forward and backward discrete
gradients ∇ and ∇∗ as

∇h(x) :=
⎡
⎢⎣

h(x + e1) − h(x)
...

h(x + ed) − h(x)

⎤
⎥⎦ , ∇∗h(x) :=

⎡
⎢⎣

h(x) − h(x − e1)
...

h(x) − h(x − ed)

⎤
⎥⎦ ;

the discrete backward divergence of some vector field V : Zd → R
d is given by the

“formal” scalar product between ∇∗ and V , that is,

∇∗ · V (x) =
d∑

i=1

(
Vi(x + ei ) − Vi(x)

)
.

To avoid confusion, when a function h : Zd × Z
d → R, (x, z) �→ h(x, z) depends

on two variables, we denote by ∇1h (resp., ∇∗
1 h) the forward (resp., backward)

discrete gradient with respect to the first variable (x here) and by ∇2h (resp., ∇∗
2 h)

the forward (resp., backward) discrete gradient with respect to the second variable
(z here). We further use the notation ∇k,ih := ∇kh · ei for the forward discrete
gradients in direction ei (and likewise for the backward gradients), i ∈ {1, . . . , d}.

We define discrete Green’s functions as follows.

DEFINITION 3.5 (Discrete Green’s function). Let d ≥ 2. Let ω be an environ-
ment, pω : Zd → R, x �→ ∑

|z−x|=1 ωx,z and A be the associated diagonal matrix
on Z

d defined by A(x) = diag(ωx,x+e1, . . . ,ωx,x+ed
). For all T > 0, the Green

function GT (·, ·;ω) : Zd × Z
d → Z

d, (x, y) �→ GT (x, y;ω) associated with the
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environment ω is defined for all y ∈ Z
d as the unique space square-integrable so-

lution to ∫
Zd

T −1pω(x)GT (x, y;ω)v(x)dx

(3.14)
+
∫

Zd
∇v(x) · A(x)∇1GT (x, y;ω)dx = v(y)

for all square-integrable functions v : Zd → R, where
∫
Zd dy denotes the sum over

all y ∈ Z
d .

The existence and uniqueness of discrete Green’s functions is a consequence
of Riesz’s representation theorem. In the rest of this article we use the shorthand
notation GT (x, y) for GT (x, y;ω). Note that GT is stationary in the sense that
(x, y) �→ GT (x + z, y + z) has the same statistics as (x, y) �→ GT (x, y). This will
be used for the gradient of the Green function as follows: for all q > 0,〈∣∣∇2GT (x, y)

∣∣q 〉 = 〈∣∣∇1GT (x − y,0)
∣∣q 〉.(3.15)

The next two lemmas give estimates on the Green function and its derivatives.

LEMMA 3.6 ([8], Lemma 3.2). There exists c > 0 depending only on α,β and
d such that for every environment ω and for all T > 0, the Green function GT

satisfies the pointwise estimates: for all x, y ∈ Z
d ,

for d > 2 GT (x, y) �
(
1 + |x − y|)2−d exp

(
−c

|x − y|√
T

)
,(3.16)

for d = 2 GT (x, y) � ln
( √

T

1 + |x − y|
)

exp
(
−c

|x − y|√
T

)
.(3.17)

LEMMA 3.7 ([10], Lemma 2.9). Let ω be an environment, T > 0, and let GT

be the associated Green function. Then, for d ≥ 2, there exists p > 2 depending
only on α,β and d such that for all T > 0, p ≥ r ≥ 2, k > 0 and R � 1,∫

R≤|z|≤2R

∣∣∇1GT (z,0)
∣∣r dz � Rd(R1−d)r min

{
1,

√
T R−1}k.(3.18)

Note that this lemma shows that ∇1GT (z,0) has the optimal decay (1 + |z|)1−d

(i.e., the decay of the Green function of the Laplace operator) when integrated on
dyadic annuli (plus the exponential, or superalgebraic decay).

COROLLARY 3.8 ([10], Corollary 2.3). For every environment ω and for all
T > 0 and x, y ∈ Z

d , ∣∣∇1GT (x, y;ω)
∣∣, ∣∣∇2GT (x, y;ω)

∣∣ � 1

(the multiplicative constant depending only on α,β and d).



MONTE CARLO APPROXIMATION OF HOMOGENIZED COEFFICIENTS 1559

Note that the versions of these lemmas proved in [10] and [8] cover the case
when the zero-order term is constant, namely, T −1 in place of T −1pω(x). The
proofs adapt mutatis mutandis using the uniform bounds 0 < 2dα ≤ pω ≤ 2dβ .

The last lemma we shall need is the following double convolution estimate.

LEMMA 3.9 ([9], Lemma 6). Let d > 2, T � 1 and let gT : Zd → R
+ be given

by

gT (x) = (
1 + |x|)2−d exp

(
−c

|x|√
T

)

for some c > 0. Let hT : Zd → R
+ be such that∫
|x|≤R

hT (x)2 � 1

and for all R � 1 and all j ∈ N,∫
2jR≤|x|<2j+1R

hT (x)2 dx �
(
2jR

)d−2(d−1)
.

Then, ∫
Zd

∫
Zd

∫
Zd

gT (w)gT

(
w′)hT (z − w)hT

(
z − w′)dz dw dw′

(3.19)

� 1 +
⎧⎪⎨
⎪⎩

T 3−d/2, if 5 ≥ d > 2,
lnT , if d = 6,
1, if d > 6.

We are in position to prove Proposition 3.2.

PROOF OF PROPOSITION 3.2. Our starting point is the following inequality
which holds for every nonnegative measure κ :

∫ T −1

0
dκ(λ) � T −4

∫ ∞
0

1

(T −1 + λ)4 dκ(λ),(3.20)

which follows from the fact that for λ ≤ T −1, T −4

(T −1+λ)4 � 1. The variable T −1 for
T large plays the role of μ in (2.6). In what follows we make the standard identi-
fication between stationary functions (z,ω) �→ f (z,ω) of both the space variable
z ∈ Z

d and the environment ω and their translated versions at 0 ω �→ f (0, θzω) de-
pending on the environment only. We define φT as the unique stationary solution
to

T −1φT (x) − 1

pω(x)
∇∗ · A(x)∇φT = 1

pω(x)
∇∗ · A(x)ξ,(3.21)
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whose existence and uniqueness follow from the Riesz representation theorem in
L

2(P̃) using the identification between the stationary function φT and its version
defined on the environment only (see a similar argument of [17]). In particular,
with the notation d = 1

pω(x)
∇∗ · A(x)ξ ,

φT = (
T −1 + L

)−1
d,

where L is the operator defined in (3.3), and the spectral theorem ensures that

Ẽ
(
φ2

T

) = Ẽ
(
d
(
T −1 + L

)−2
d
) =

∫ ∞
0

1

(T −1 + λ)2 ded(λ),

where ed is the spectral measure of L projected on the drift d. We also let ψT be
the unique stationary solution to

T −1ψT (x) − 1

pω(x)
∇∗ · A(x)∇ψT (x) = φT (x),(3.22)

whose existence and uniqueness also follows from the Riesz representation theo-
rem in the probability space as well. This time,

ψT = (
T −1 + L

)−2
d,

and the spectral theorem yields

Ẽ
(
ψ2

T

) = Ẽ
(
d
(
T −1 + L

)−4
d
) =

∫ ∞
0

1

(T −1 + λ)4 ded(λ).

From now on, we shall use the shorthand notation 〈u〉 := Ẽ(u) and var[u] = 〈(u −
〈u〉)2〉 for all u ∈ L

2(P̃). In particular, the identity above turns into∫ ∞
0

1

(T −1 + λ)4 ded(λ) = var[ψT ],(3.23)

since 〈ψT 〉 = 1
E[p]

∫
ψT p dP = T

E[p]
∫

φT p dP = 0 using equations (3.22) and
(3.21).

The streamline of the proof is to obtain bounds on the spectral exponents via
(3.20) and (3.23) by proving bounds on the variance of ψT .

The rest of the proof, which is dedicated to the estimate of var[ψT ], is divided
into five steps. As a starting point we appeal to the variance estimate of Lem-
ma 3.4 that we apply to ψT . This requires us to estimate the susceptibility of ψT

with respect to the random coefficients. In view of (3.22) it is not surprising that
we will have to estimate not only the susceptibility of ψT but also of φT and of
some Green function with respect to the random coefficients. In the first step, we
establish the susceptibility estimate for the Green function. In step 2 we turn to the
susceptibility estimate for the approximate corrector φT . We then show in step 3
that, relying on [10], this implies that the spectral exponents are at least{

(2,−q), for d = 2,
(2,0), for d > 2.

(3.24)
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In step 4 we estimate the susceptibility of ψT . We conclude the proof of the propo-
sition in step 5.

Step 1. Susceptibility of the Green function.
We shall prove for all e = (z, z′) ∈ B, z ∈ Z

d , z′ = z + ei ,

∂GT

∂ωe

(x, y) = −T −1(GT (z, y)GT (x, z) + GT

(
z′, y

)
GT

(
x, z′))

(3.25)
− ∇2,iGT (x, z)∇1,iGT (z, y)

and

sup
ωe

∣∣∇1,iGT (z, y)
∣∣ � ∣∣∇1,iGT (z, y)

∣∣+ T −1gT (y − z),

(3.26)
sup
ωe

∣∣∇2,iGT (y, z)
∣∣ � ∣∣∇2,iGT (y, z)

∣∣+ T −1gT (y − z),

where gT : Zd → R
+ satisfies for some constant c > 0 (depending on α,β, d)

gT (x) = (
1 + |x|)2−d exp

(
−c

|x|√
T

)
(3.27)

for d > 2, and

gT (x) =
∣∣∣∣ln

( √
T

1 + |x|
)∣∣∣∣ exp

(
−c

|x|√
T

)
(3.28)

for d = 2.
We define the elliptic operator LT as

(LT u)(x) = ∑
x′,|x−x′|=1

ωx,xT
−1u(x) + ∑

x′,|x−x′|=1

ωx,x′
(
u(x) − u

(
x′)),

so that for all y ∈ Z
d , (3.14) takes the form(

LT GT (·, y)
)
(x) = δ(x − y).(3.29)

Recalling that the edges are not oriented, a formal differentiation of this equation
with respect to ωe = ωz,z′ = ωz′,z yields

LT

(
∂GT

∂ωe

(·, y)

)
(x) + T −1GT (x, y)

(
δ(x − z) + δ

(
x − z′))

+ (
GT (z, y) − GT

(
z′, y

))
δ(x − z) + (

GT

(
z′, y

)− GT

(
z′, y

))
δ
(
x − z′)

= 0.

Using (3.29), this identity turns into

LT

(
∂GT

∂ωe

(·, y) + T −1(GT (z, y)GT (·, z) + GT

(
z′, y

)
GT

(·, z′))

+ ∇2,iGT (·, z)∇1,iGT (z, y)

)
(x) = 0.
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Provided that the argument of LT is well defined (i.e., GT is differentiable
w.r.t. ωe) and that it is square-integrable on Z

d , it vanishes identically by the Riesz
representation theorem—which is the desired identity (3.25).

To turn this into a rigorous argument, one may first consider finite differences
of parameter h > 0 instead of a derivative w.r.t. ωe, use that LT is bijective on the
set of square-integrable functions on Z

d and then pass to the limit h → 0. We refer
the reader to [10], proof of Lemma 2.5, for details, and directly turn to (3.26).

From (3.25) with x = z and x = z′, we infer that

∂∇1,iGT (z, y)

∂ωe

= −∇1,i∇2,iGT (z, z)∇1,iGT (z, y)(3.30)

− T −1(GT (z, y)∇1,iGT (z, z) + GT

(
z′, y

)∇1,iGT

(
z, z′)).

Using the uniform pointwise estimate of Corollary 3.8 and the uniform estimate
on the Green function of Lemma 3.6, we obtain (3.26) by considering (3.30) as an
ODE for ∇1,iGT (z, y) in function of ωe.

Step 2. Susceptibility of φT .
In this step we shall prove that for e = (z, z′) ∈ B, z ∈ Z

d and z′ = z + ei ,

∂φT

∂ωe

(x) = −(∇iφT (z) + ξi

)∇2,iGT (x, z)

(3.31)
− T −1φT (z)

(
GT (x, z) + GT

(
x, z′)),

sup
ωe

∣∣φT (x)
∣∣ � ∣∣φT (x)

∣∣
+ (∣∣∇iφT (z)

∣∣+ 1
)

(3.32)

× (∣∣∇2,iGT (x, z)
∣∣+ T −1/2gT (x − z)

)
,

sup
ωe

∣∣∣∣∂φT

∂ωe

(x)

∣∣∣∣ � (∣∣∇iφT (z)
∣∣+ 1

)(∣∣∇2,iGT (x, z)
∣∣+ T −1/2gT (x − z)

)
(3.33)

and for all n ∈ N,

sup
ωe

∣∣∣∣∂(φT (x)n+1)

∂ωe

∣∣∣∣
�

(∣∣∇iφT (z)
∣∣+ 1

)(∣∣∇2,iGT (x, z)
∣∣+ T −1/2gT (x − z)

)
(3.34)

× (∣∣φT (x)
∣∣+ (∣∣∇iφT (z)

∣∣+ 1
)(∣∣∇1,iGT (z, x)

∣∣+ T −1/2gT (x − z)
))n

.

As for the Green function, we rewrite the defining equation for φT as

(LT φT )(x) − ∇∗ · A(x)ξ = 0.(3.35)
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Formally differentiating (3.35) w.r.t. ωe yields

LT

∂φT

∂ωe

(x) − (∇iφT (x) + ξi

)(
δ(x − z) − δ

(
x − z′))

+ T −1φT (x)
(
δ(x − z) + δ

(
x − z′)) = 0,

which, using (3.29), turns into

LT

(
∂φT

∂ωe

− (∇iφT + ξi)
(
GT (·, z) − GT

(·, z′))

+ T −1φT

(
GT (·, z) + GT

(·, z′)))(x) = 0.

This (formally) shows (3.31).
To turn this into a rigorous argument, we may combine (3.25) with the Green

representation formula

φT (x) =
∫

Zd
GT (x, y)∇∗ · A(y)ξ dy,

which holds since GT (x, ·) is integrable on Z
d by Lemma 3.6, and use standard

results of commutation of integration and differentiation.
We now turn to (3.33). This estimate follows from (3.31), (3.26) and the follow-

ing two facts:

|φT | � √
T(3.36)

and

sup
ωe

∣∣∇iφT (z)
∣∣ � ∣∣∇iφT (z)

∣∣+ 1.(3.37)

The starting point to prove (3.36) is the Green representation formula in the form
of ∣∣φT (x)

∣∣ = ∣∣∣∣
∫

Zd
GT (x, y)∇∗ · A(y)ξ dy

∣∣∣∣
=

∣∣∣∣
∫

Zd
∇2GT (x, y) · A(y)ξ dy

∣∣∣∣(3.38)

�
∫

Zd

∣∣∇2GT (0, y)
∣∣dy.

The claim would easily follow if we had the estimate

∣∣∇2GT (0, y)
∣∣ � (

1 + |y|)1−d exp
(
−c

|y|√
T

)
.

Although this estimate does not hold pointwise, it holds when square-integrated
on dyadic annuli, as shows Lemma 3.7 with “p = 2 and k large.” The claim



1564 A. GLORIA AND J.-C. MOURRAT

(3.36) thus follows from a dyadic decomposition of space in (3.38) combined with
Cauchy–Schwarz’s inequality and Lemma 3.7 (a similar calculation is displayed,
e.g., in [8], proof of Lemma 4).

For (3.37), we first note that (3.31) implies

∂∇iφT (z)

∂ωe

= −(∇iφT (z) + ξi

)(∇2,iGT

(
z′, z

)− ∇2,iGT (z, z)
)

+ T −1φT (z)
(∇1,iGT (z, z) + ∇1,iGT

(
z, z′)),

which (seen as an ODE w.r.t. ωe) yields the claim using the uniform bound
|∇1GT |, |∇2GT | � 1 of Corollary 3.8 and (3.36).

Estimate (3.32) is a direct consequence of (3.33), whereas (3.34) follows from
the Leibniz’s rule combined with (3.31), (3.32) and (3.33).

Step 3. Proof of (3.24).
The estimates (3.24) of the spectral exponents follow from the more general

estimates; for all q > 0 there exists γ (q) > 0 such that

〈|φT |q 〉 � {
lnγ (q) T , for d = 2,
1, for d > 2,

(3.39)

combined with the fact that∫ T −1

0
ded(λ) � T −2

∫ ∞
0

1

(T −1 + λ)2 ded(λ) = T −2〈φ2
T

〉
.

The proof of (3.39) is an easy adaptation of [10], proof of Proposition 2.1, which
already covers the case of a constant coefficient in the zero order term of LT , that
is, for T −1φT instead of T −1pωφT (no randomness in the zero order term). We
only point out what needs to be changed in [10], proof of Proposition 2.1.

The first step to apply the variance estimate of Lemma 3.4 is to show that φT

is measurable with respect to the cylindrical topology associated with the random
variables. This is proved exactly as in [10], Lemma 2.6.

The auxiliary [10], Lemmas 2.4 and 2.5, are replaced by the susceptibility esti-
mates (3.26), (3.32), (3.33) and (3.34) of steps 1 and 2, which have, however, the
additional term T −1/2gT (x − z) next to |∇2,iGT (x, z)|.

In the proof of [10], Proposition 2.1, the terms |∇2,iGT (x, z)| are either esti-
mated by the Green function GT (x, z) itself [in which case the additional term
T −1/2gT (x − z) is of higher order], or they are controlled on dyadic annuli by
Lemma 3.7. By definition (3.27) for d > 2 and (3.28) for d = 2 of the function gT ,
it is easy to see that for all r ≥ 2, k > 0 and R � 1: for d > 2,∫

R≤|x−z|<2R

(
T −1/2gT (x − z)

)r dz � Rd(R1−d)r min
{
1,

√
T R−1}k,

whereas for d = 2∫
R≤|x−z|<2R

(
T −1/2gT (x − z)

)r dz � R2(R−1)r lnq T min
{
1,

√
T R−1}k.
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These scalings coincide with those of Lemma 3.7 (with a possible additional log-
arithmic correction for d = 2).

Hence, the proof of [10], Proposition 2.1, adapts mutatis mutandis to the present
case, and we have (3.39).

Step 4. Susceptibility of ψT .
In this step we shall prove that for all e = (z, z′), z ∈ Z

d and z′ = z + ei and for
all x ∈ Z

d ,

∂ψT

∂ωe

(x) = −∇2,iGT (x, z)∇iψT (z) − T −1GT (x, z)ψT (z)

− T −1GT

(
x, z′)ψT

(
z′)

− (∇iφT (z) + ξi

) ∫
Zd

GT (x, y)pω(y)∇2,iGT (y, z)dy(3.40)

− T −1φT (z)

∫
Zd

GT (x, y)pω(y)
(
GT (y, z) + GT

(
y, z′))dy

+ GT (x, z)φT (z) + GT

(
x, z′)φT

(
z′)

and

sup
ωe

∣∣∣∣∂ψT

∂ωe

(x)

∣∣∣∣
� gT (z − x)

(∣∣∇iψT (z)
∣∣+ T −1∣∣ψT (z)

∣∣+ νd(T )
(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣))

(3.41)
+ (

1 + ∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣)

×
∫

Zd
gT (y − x)

(∣∣∇2,iGT (y, z)
∣∣+ T −1gT (y − z)

)
dy,

where

νd(T ) =

⎧⎪⎪⎨
⎪⎪⎩

T , for d = 2,√
T , for d = 3,

lnT , for d = 4,
1, for d > 4.

(3.42)

The starting point is again the Green representation formula

ψT (x) =
∫

Zd
GT (x, y)pω(y)φT (y)dy,

associated with (3.22) in the form

T −1pωψT − ∇∗ · A∇ψT = pωφT .
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Differentiated w.r.t. ωe it turns into

∂ψT (x)

∂ωe

=
∫

Zd

∂GT (x, y)

∂ωe

pω(y)φT (y)dy

+
∫

Zd
GT (x, y)

∂pω(y)

∂ωe

φT (y)dy

+
∫

Zd
GT (x, y)pω(y)

∂φT (y)

∂ωe

dy.

Combined with (3.25), (3.31) and the Green representation formula itself, this
shows (3.40).

We now turn to (3.41) and treat each term of the right-hand side of (3.40) sepa-
rately. We begin with the supremum of the third line of (3.40), and claim that

sup
ωe

∣∣∣∣(∇iφT (z) + ξi

) ∫
Zd

GT (x, y)pω(y)∇2,iGT (y, z)dy

∣∣∣∣
�

(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)(3.43)

×
∫

Zd
gT (y − x)

(∣∣∇2,iGT (y, z)
∣∣+ T −1gT (y − z)

)
dy,

which is proved:

• using (3.37) to bound the supremum in ωe of |∇iφT (z)| by |∇iφT (z)| itself,
• bounding |∇iφT (z)| by the triangle inequality |φT (z)| + |φT (z′)|,
• replacing the Green function GT by gT using Lemma 3.6,
• and appealing to (3.26) to estimate the supremum in ωe of |∇2,iGT (y, x)|.
This shows that this term is controlled by the second term of the right-hand side of
(3.41).

The supremum of the term in the fourth line of (3.40) is also estimated by the
second term of the right-hand side of (3.41), namely,

sup
ωe

∣∣∣∣T −1φT (z)

∫
Zd

GT (x, y)pω(y)
(
GT (y, z) + GT

(
y, z′))dy

∣∣∣∣
(3.44)

�
(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)T −1

∫
Zd

gT (y − x)gT (y − z)dy.

It is enough to bound the Green function by gT using Lemma 3.6, and to apply
(3.32) for x = z to control supωe

|φT (z)|, and use that |∇1GT |, |∇2GT |, T −1/2 ×
GT � 1 by Corollary 3.8 and Lemma 3.6.

The suprema of the last two terms of (3.40) is bounded by

sup
ωe

∣∣GT (x, z)φT (z) + GT

(
x, z′)φT

(
z′)∣∣

(3.45)
�

(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)gT (z − x)
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and therefore controlled by the first term of the right-hand side of (3.41). The
argument is similar to the proof of (3.44).

The subtle terms are the first three ones, for which we have to estimate the
suprema of |∇iψT (z)|, |ψT (z)| and |ψT (z′)| w.r.t. ωe.

We begin with the following two estimates

sup
ωe

∣∣ψT (z)
∣∣ � ∣∣ψT (z)

∣∣+ (∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣+ 1

)
νd(T )

(3.46)
+ sup

ωe

∣∣∇iψT (z)
∣∣,

sup
ωe

∣∣∇iψT (z)
∣∣ � ∣∣∇iψT (z)

∣∣+ (∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣+ 1

)
νd(T )

(3.47)
+ T −1 sup

ωe

∣∣ψT (z)
∣∣,

which (seen as a linear system) show that there exists some T∗ > 0 such that for
all T ≥ T ∗,

sup
ωe

∣∣ψT (z)
∣∣ � ∣∣ψT (z)

∣∣+ (∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣+ 1

)
νd(T )

(3.48)
+ ∣∣∇iψT (z)

∣∣,
sup
ωe

∣∣∇iψT (z)
∣∣ � ∣∣∇iψT (z)

∣∣+ (∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣+ 1

)
νd(T )

(3.49)
+ T −1∣∣ψT (z)

∣∣.
To prove (3.46) we consider (3.40) as an ODE on ψT (z), bound ψT (z′) by ψT (z)+
|∇iψT (z)| and use (3.43), (3.44) and (3.45) (for x = z), so that (3.40) turns into∣∣∣∣∂ψT

∂ωe

(z)

∣∣∣∣ � sup
ωe

{∣∣∇2,iGT (z, z)
∣∣∣∣∇iψT (z)

∣∣}+ T −1GT (z, z)
∣∣ψT (z)

∣∣
+ T −1GT

(
z, z′)(∣∣ψT (z)

∣∣+ sup
ωe

∣∣∇iψT (z)
∣∣)

+ (
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)

×
(

1 +
∫

Zd
gT (y − z)

(∣∣∇2,iGT (y, z)
∣∣+ T −1gT (y − z)

)
dy

)
.

Using Corollary 3.8 and Lemma 3.6 in the form of |∇1GT |, |∇2GT |, T −1GT � 1,
and bounding the gradient of the Green function by gT in the integral, we obtain∣∣∣∣∂ψT

∂ωe

(z)

∣∣∣∣ � sup
ωe

{∣∣∇iψT (z)
∣∣}+ ∣∣ψT (z)

∣∣
+ (

1 + ∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣)(1 +

∫
Zd

gT (y)2 dy

)
.
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Noting that by definitions (3.27) and (3.28) of gT we have
∫
Zd gT (y)2 dy � νd(T ),

this inequality turns into∣∣∣∣∂ψT

∂ωe

(z)

∣∣∣∣ � sup
ωe

{∣∣∇iψT (z)
∣∣}+ ∣∣ψT (z)

∣∣
+ νd(T )

(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣).

Seen as an ODE for ψT , this implies (3.46).
We now turn to (3.47) and infer from (3.40) that

∂∇iψT (z)

∂ωe

= −∇1,i∇2,iGT (z, z)∇iψT (z) − T −1∇1,iGT (z, z)ψT (z)

− T −1∇1,iGT

(
z, z′)ψT

(
z′)

− (∇iφT (z) + ξi

) ∫
Zd

∇2,iGT (z, y)pω(y)∇2,iGT (y, z)dy

− T −1φT (z)

∫
Zd

∇2,iGT (z, y)pω(y)
(
GT (y, z) + GT

(
y, z′))dy

+ ∇1,iGT (z, z)φT (z) + ∇1,iGT

(
z, z′)φT

(
z′).

Repeating the string of arguments leading from (3.40) to (3.46), we deduce (3.47)
and therefore (3.48) and (3.49). Combining the inequality |ψT (z′)| ≤ |ψT (z)| +
|∇iψT (z)| with (3.48) and (3.49) yields the last estimate we need:

sup
ωe

∣∣ψT

(
z′)∣∣ � ∣∣ψT (z)

∣∣+ (∣∣φT (z)
∣∣+ ∣∣φT

(
z′)∣∣+ 1

)
νd(T ) + ∣∣∇iψT (z)

∣∣.(3.50)

We are finally in position to conclude the proof of (3.41). The last four terms
are controlled by (3.43), (3.44) and (3.45). Using (3.49), (3.48) and (3.50), and
Corollary 3.8 and Lemma 3.6, the first three terms of the right-hand side of (3.40)
are controlled by the first term of the right-hand side of (3.41). Estimate (3.41) is
proved.

Step 5. Estimate of var[ψT ] for d > 2 and conclusion.
We apply the variance estimate of Lemma 3.4 to ψT

var[ψT ] �
∑
e∈B

〈
sup
ωe

∣∣∣∣∂ψT (0)

∂ωe

∣∣∣∣
2〉

(3.51)

and appeal to (3.41). We distinguish two contributions in this sum and define

Ae := gT (z)
(∣∣∇iψT (z)

∣∣+ T −1∣∣ψT (z)
∣∣+ νd(T )

(
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)),

Be := (
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣) ∫

Zd
gT (y)

(∣∣∇2,iGT (y, z)
∣∣+ T −1gT (y − z)

)
dy.
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The contribution associated with Ae is estimated as follows:∑
e∈B

〈
A2

e

〉
�

∑
e∈B

〈
gT (z)2(∣∣∇iψT (z)

∣∣2 + T −2∣∣ψT (z)
∣∣2

+ νd(T )2(1 + ∣∣φT (z)
∣∣2 + ∣∣φT

(
z′)∣∣2))〉

�
(∑

z∈Zd

gT (z)2
)(〈|∇ψT |2〉+ T −2〈ψ2

T

〉+ νd(T )2(1 + 〈
φ2

T

〉))

� νd(T )
(〈|∇ψT |2〉+ T −2〈ψ2

T

〉+ νd(T )2(1 + 〈
φ2

T

〉))
by stationarity of φT , ψT and ∇ψT . This is a nonlinear estimate since 〈ψ2

T 〉 and
〈|∇ψT |2〉 appear in the right-hand side whereas we want to estimate 〈ψ2

T 〉. We
then appeal to the elementary a priori estimate〈|∇ψT |2〉 � 〈

φ2
T

〉1/2〈
ψ2

T

〉1/2
,

which we obtain by testing (3.22) with the test solution ψT , integrating by parts,
using the bounds on A and Cauchy–Schwarz’s inequality. Using, in addition,
Young’s inequality, the estimate turns into

∑
e∈B

〈
A2

e

〉− 1

C

〈
ψ2

T

〉
� Cνd(T )2〈φ2

T

〉+ νd(T )3(1 + 〈
φ2

T

〉)

for all C > 0 and T large enough.
Combined with (3.39) for q = 2 and the definition of νd(T ), this turns into, for

all C > 0,

∑
e∈B

〈
A2

e

〉− 1

C

〈
ψ2

T

〉
� C

⎧⎨
⎩

T 3/2, for d = 3,
ln3 T , for d = 4,
1, for d > 4.

(3.52)

We now turn to the term associated with Be, which we split into two terms
Be = Be,1 + Be,2, where

Be,1 = (
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣)T −1

∫
Zd

gT (y)gT (y − z)dy,

Be,2 = (
1 + ∣∣φT (z)

∣∣+ ∣∣φT

(
z′)∣∣) ∫

Zd
gT (y)

∣∣∇2,iGT (y, z)
∣∣dy.

In particular, we shall prove that

∑
e∈B

〈Be〉2 �
∑
e∈B

〈
B2

e,1
〉+ ∑

e∈B

〈
B2

2,e

〉
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T 3/2, for d = 3,
T , for d = 4,√

T , for d = 5,
lnT , for d = 6,
1, for d > 6.

(3.53)
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We start with the sum of B2
e,1 on B. Since gT is deterministic and φT is stationary,

∑
e∈B

〈
B2

e,1
〉
�

(
1 + 〈

φ2
T

〉1/2)

×
∫

Zd

∫
Zd

∫
Zd

T −1gT (y)gT

(
y′)gT (y − z)gT

(
y′ − z

)
dy dy′ dz.

Using (3.39) with q = 2 and the definitions (3.28) and (3.27) of gT to estimate the
integral, we conclude that the first term of the left-hand side of (3.53) is controlled
by the right-hand side of (3.53). A formal argument to estimate the triple integral
is as follows. By the exponential decay of gT , it is enough to integrate on the set
|y|, |y′| �

√
T and |y − z| + |y′ − z| �

√
T , and the integral essentially behaves

as the integral on the ball of radius
√

T in Z
3d of T −1(1 + |x|)4(2−d), whence the

bounds

∑
e∈B

〈
B2

e,1
〉
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 3/2, for d = 3,
T , for d = 4,√

T , for d = 5,
1, for d = 6,
T −1/2, for d = 7,
T −1 lnT , for d = 8,
T −1, for d > 8.

To rigorously prove that the right-hand side of (3.53) is an upper bound for∑
e∈B〈B2

e,1〉, we may simply note that for d > 2, if we define hT (z) := √
T

−1 ×
gT (z), then for all z ∈ Z

d ,

hT (z) �
(
1 + |z|)1−d exp

(
−c

|z|√
T

)
,

and gT and hT satisfy the assumptions of Lemma 3.9, which yields the desired
upper bound.

We turn to the sum of B2
e,2 on B:

∑
e∈B

〈
B2

e,2
〉
�

〈
d∑

i=1

∫
Zd

(
1 + ∣∣φT (z)

∣∣+ ∣∣φT (z + ei )
∣∣)

×
∫

Zd

∫
Zd

gT (y)gT

(
y′)∣∣∇2,iGT (y, z)

∣∣
× ∣∣∇2,iGT

(
y′, z

)∣∣dy dy′ dz

〉
.

Since gT is deterministic, one can take it out of the expectation. We then choose
p > 2 such that the higher integrability result of Lemma 3.7 applies, and use
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Hölder’s inequality in probability with exponents (p/(p − 2),p,p). By station-
arity of φT and of GT [in the form of (3.15)], this estimate turns into∑

e∈B

〈
B2

e,2
〉
�

〈|φT |p/(p−2)〉(p−2)/p

×
∫

Zd

∫
Zd

∫
Zd

gT (y)gT

(
y′)

× 〈∣∣∇1GT (y − z,0)
∣∣p〉1/p

× 〈∣∣∇1GT

(
y′ − z,0

)∣∣p〉1/p dy dy′ dz.

We then introduce the notation hT (x) := 〈|∇1GT (x,0)|p〉1/p . By Lemma 3.7 and
Corollary 3.8, we have for all R � 1,∫

|z|≤R
hT (x)2 dx � 1

and for all R � 1 and j ∈ N,∫
2jR≤|z|<2j+1R

hT (x)2 dx ≤
(∫

2jR≤|z|<2i+1R
hT (x)p dx

)2/p

�
(
2jR

)2−d
.

Hence, gT and hT satisfy the assumptions of Lemma 3.9, and
∑

e∈B〈B2
e,2〉 is

bounded by the right-hand side of (3.53).
We are in position to estimate var[ψ2

T ]. Choosing C large enough in (3.52) to
absorb the term 1

C
var[ψ2

T ] in the left-hand side of (3.51), and using (3.53) we
obtain the estimate

var
[
ψ2

T

]
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T 3/2, for d = 3,
T , for d = 4,√

T , for d = 5,
lnT , for d = 6,
1, for d > 6.

(3.54)

We may conclude the proof. Estimate (3.24) proved in step 3 yields the desired
spectral exponent for d = 2, whereas the combination of (3.54) with (3.20) and
(3.23) yields the desired spectral exponents for d > 2. �

REMARK 3.10. The structure of the proof can be summarized as follows:

(a) The starting point is the optimal estimates of 〈φ2
T 〉 (up to logarithmic cor-

rection for d = 2).
(b) The variance estimate applied to ψT and combined with elliptic theory

shows there exists a map F such that〈
ψ2

T

〉 ≤ F
(
T ,

〈|∇ψT |2〉, 〈ψ2
T

〉
,
〈
φ2

T

〉)
.
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(c) By an a priori estimate, 〈|∇ψT |2〉 � 〈ψ2
T 〉1/2〈φ2

T 〉1/2.
(d) Combined with Young’s inequality and (c), (b) turns into〈

ψ2
T

〉 ≤ F̃
(
T ,

〈
φ2

T

〉)
for some map F̃ , and yields the claim.

In view of this, a possible strategy to prove optimal scalings of the spectral expo-
nents in any dimension would be to proceed by induction. Set φ1,T ≡ φT , and for
all k ≥ 1 define φk,T as the unique weak solution to

T −1φk+1,T (x) − 1

pω(x)
∇∗ · A(x)∇ψk+1,T (x) = ψk,T (x),

and apply the strategy described above to obtain optimal bounds on 〈φ2
k+1,T 〉 as-

suming optimal bounds on 〈φ2
k,T 〉 (which would yield optimal spectral exponents

up to dimension 4k − 2—with a logarithmic correction in dimension 4k − 2). The
main difficulty is to work out a suitable map Fk in step (b).

4. The random fluctuations. In this section, we show that the computable
quantity Ân(t) defined in (1.6) is a good approximation of σ 2

t in the sense that its
random fluctuations are small as soon as n/t2 is large. We write N

∗ for N \ {0}.

THEOREM 4.1. There exists c > 0 such that, for any n ∈ N
∗, ε > 0 and t large

enough,

P
⊗
0

[∣∣Ân(t) − σ 2
t

∣∣ ≥ ε/t
] ≤ exp

(
−nε2

ct2

)
.

Note that σ 2
t is the mean value of Ân(t), and moreover, Ân(t) consists of a

sum of i.i.d. random variables. We will thus obtain Theorem 4.1 by using classi-
cal techniques from large deviation theory. The important point is that the i.i.d.
random variables under consideration are uniformly exponentially integrable. To
see this, we use a sharp upper bound on the transition probabilities of the ran-
dom walk recalled in the following theorem. We refer the reader to [12] or [24],
Theorem 14.12, for a proof.

THEOREM 4.2. There exists a constant c1 > 0 such that, for any environment
ω with conductances in [α,β], any t ∈ N

∗ and x ∈ Z
d ,

Pω
0
[
Y(t) = x

] ≤ c1

td/2 exp
(
−|x|2

c1t

)
.

From Theorem 4.2 we deduce the following result.
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COROLLARY 4.3. Let c1 be given by Theorem 4.2. For all λ < 1/c1, one has

sup
t∈N∗

Ẽ0

[
exp

(
λ
|Y(t)|2

t

)]
< +∞.

PROOF. Let δ = 1/c1 − λ. By Theorem 4.2,

Eω
0
[
eλ|Y (t)|2/t ] ≤ c1t

−d/2
∑

x∈Zd

e−δ|x|2/t .

If the sum ranges over all x ∈ (N∗)d , it is easy to bound it by a convergent integral,

t−d/2
∑

x∈(N∗)d
e−δ|x|2/t ≤ t−d/2

∫
R

d+
e−δ|x|2/t dx =

∫
R

d+
e−δ|x|2 dx.

By symmetry, the estimate carries over to the sum over all x ∈ (Z∗)d . The same
argument applies for the sum over all x = (x1, . . . , xd) having exactly one compo-
nent equal to 0, and so on. �

The following lemma shows that the log-Laplace transform of (ξ ·Y (t))2

t
− σ 2

t is
bounded by a parabola in a neighborhood of 0, uniformly over t .

LEMMA 4.4. There exist λ1 > 0 and c2 such that, for any λ < λ1 and any
t ∈ N

∗,

ln Ẽ0

[
exp

(
λ

(
(ξ · Y(t))2

t
− σ 2

t

))]
≤ c2λ

2.

PROOF. It is sufficient to prove that there exists c3 such that, for any λ small
enough and any t ,

Ẽ0

[
exp

(
λ

(
(ξ · Y(t))2

t
− σ 2

t

))]
≤ 1 + c3λ

2.

We use the series expansion of the exponential to rewrite this expectation as

+∞∑
k=0

λk

k! Ẽ0

[(
(ξ · Y(t))2

t
− σ 2

t

)k]
.

The term corresponding to k = 0 is equal to 1, whereas the term for k = 1 van-
ishes. The remaining sum, for k ranging from 2 to infinity, can be controlled using
Corollary 4.3 combined with the bound

Ẽ0

∣∣∣∣(ξ · Y(t))2

t
− σ 2

t

∣∣∣∣
k

≤ 2Ẽ0

[
(ξ · Y(t))2k

tk

]
,

which follows from the definition of σ 2
t and Jensen’s inequality. �
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We are now in position to prove Theorem 4.1.

PROOF OF THEOREM 4.1. From the definition of P̃ given in (1.1), we can
write

P
⊗
0

[
Ân(t) − σ 2

t ≥ ε/t
] = P̃

⊗
0

[
(ξ · Y (1)(t))2 + · · · + (ξ · Y (n)(t))2

nt
− σ 2

t ≥ ε/t

]
.

Let λ > 0. We bound the latter probability using Chebyshev’s inequality,

P
⊗
0

[
Ân(t) − σ 2

t ≥ ε/t
]

≤ Ẽ
⊗
0

[
exp

(
λ

(
(ξ · Y (1)(t))2 + · · · + (ξ · Y (n)(t))2

t
− nσ 2

t

))]
(4.1)

× exp
(
−nλε

t

)

≤ Ẽ0

[
exp

(
λ

(
(ξ · Y(t))2

t
− σ 2

t

))]n

exp
(
−nλε

t

)
.

By Lemma 4.4, the right-hand side of (4.1) is bounded by

exp
(
n

(
c2λ

2 − λε

t

))

for all λ small enough. Choosing λ = ε/2c2t (which is small enough for t large
enough), we obtain

P
⊗
0

[
Ân(t) − σ 2

t ≥ ε/t
] ≤ exp

(
− nε2

4c2t2

)
.(4.2)

The probability of the symmetric event

P
⊗
0

[
σ 2

t − Ân(t) ≥ 2ε/t
]

can be handled the same way, so the proof is complete. �

5. Central limit theorem. In this short section, we complete the analysis by
showing that the quantity

√
n(t)(Ân(t)(t) − σ 2

t ) satisfies a central limit theorem.

PROPOSITION 5.1. Let (n(t))t∈N∗ be any sequence tending to infinity with t .
Under the measure P

⊗
0 and as t tends to infinity, the random variable√

n(t)
(
Ân(t)(t) − σ 2

t

)
converges in distribution to a Gaussian random variable of variance

v =
(

3
E[p2]
E[p]2 − 1

)
σ 4.
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PROOF. Let us define

V(t) = p(ω)(ξ · Yt )
2

tE[p] − σ 2
t

and

V(k)(t) = p(ω(k))(ξ · Y (k)
t )2

tE[p] − σ 2
t ,

so that

Ân(t)(t) − σ 2
t = 1

n(t)

n(t)∑
k=1

V(k)(t).

Let also vt = E0[V(t)2]. Note that for any t , (V(k)(t))k∈N are i.i.d. centered ran-
dom variables under P

⊗
0 . From the Lindeberg–Feller theorem (see, e.g., [6], Theo-

rem 2.4.5), we know that in order to show∑n(t)
k=1 V(k)(t)√

n(t)

(distr.)−−−→
t→+∞ Gaussian(0, v),

it suffices to check that

vt −−−→
t→+∞ v(5.1)

and that for any ε > 0,

E0
[
V(t)21{V(t)≥ε

√
n(t)}

] −−−→
t→+∞ 0.(5.2)

We learn from [23] that for almost every environment and as t tends to infinity,
ξ · Yt/

√
t converges in distribution under Pω

0 to a Gaussian random variable of
variance σ 2, that we write σG, where G is a standard Gaussian random variable.
In order to justify that for almost every environment, ξ · Yt/

√
t converges in dis-

tribution to (σG)2, we need some uniform integrability property, since the square
function is unbounded. But this uniform integrability is a direct consequence of
Theorem 4.2. Hence, under P0 and as t tends to infinity, the random variable

p(ω)(ξ · Yt )
2

tE[p](5.3)

converges in distribution to

p(ω)

E[p] (σG)2,

where ω follows the distribution P, and is independent of G. For the foregoing
reason, the squares of the random variables in (5.3) are uniformly integrable as t

varies. Since we know, moreover, that limt→+∞ σ 2
t = σ 2, we thus obtain

lim
t→+∞ vt = E

[(
p(ω)

E[p] (σG)2 − σ 2
)2]

.
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We obtain (5.1) by expanding this expectation, recalling that the fourth moment of
G is equal to 3.

Similarly, Theorem 4.2 gives us sufficient control to guarantee that (5.2) holds,
so the proof is complete. �

6. Numerical validation and comments. In this section, we illustrate on a
simple two-dimensional example the sharpness of the estimates of the systematic
error and of the random fluctuations obtained in Theorems 3.1 and 4.1.

In the numerical tests, each conductivity of B takes the value α = 1 or β = 4
with probability 1/2. In this simple case, the homogenized matrix is given by
Dykhne’s formula, namely, Ahom = √

αβId = 2Id (see, e.g., [8], Appendix A). For
the simulation of the random walk, we generate (and store) the environment along
the trajectory of the walk. In particular, this requires us to store up to a constant
times t data. In terms of computational cost, the expensive part of the computa-
tions is the generation of the randomness. In particular, to compute one realization
of Ât2(t) costs approximately the generation of t2 × 4t = 4t3 random variables.
A natural advantage of the method is its full scalability; the t2 random walks used
to calculate a realization of Ât2(t) are completely independent.

We first test the estimate of the systematic error: up to a logarithmic correction,
the convergence is proved to be linear in time. In view of Theorem 4.1, typical fluc-
tuations of t (Ân(t)(t)−σ 2

t ) are of order no greater than t/
√

n(t), and thus become
negligible when compared with the systematic error as soon as the number n(t) of
realizations satisfies n(t) � t2. We display in Table 1 an estimate of the system-
atic error t �→ |Ahom − E[p]

2 Ân(t)(t)| obtained with n(t) = K(t)t2 realizations. The
systematic error is plotted on Figure 1 in function of the time in logarithmic scale
(crosses). It matches quite well the function f : t �→ Ct−1 ln t [for C > 0 chosen so
that f (1280) = |Ahom − E[p]

2 Ân(640)(1280)|] which is plotted as a solid line. This
is consistent with Theorem 3.1 and supports the fact that the spectral exponents
are (2,0) for d = 2 [and not (2,−q) for some q > 0].

We now turn to the random fluctuations of Ân(t)(t). Theorem 4.1 gives us a
Gaussian upper bound on the tail of the fluctuations of t (Ân(t) − σ 2

t ), measured
in units of t/

√
n, whereas Proposition 5.1 proves the corresponding central limit

TABLE 1
Systematic error |Ahom − E[p]

2 Ân(t)(t)| in function of the final time t for K(t)t2 realizations

t 10 20 40 80 160 320 640 1280

K(t) 104 104 104 104 104 104 4.0103 103

Systematic 9.27E–02 5.31E–02 3.09E–02 1.71E–02 9.58E–03 5.45E–03 2.93E–03 1.66E–03
error
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FIG. 1. Systematic error |Ahom − E[p]
2 Ân(t)(t)| in function of the final time t for n(t) = K(t)t2

realizations (logarithmic scale).

theorem, that is, convergence in distribution of t (Ât2(t) − σ 2
t ) to a Gaussian ran-

dom variable. The Figures 2–7 display the histograms of t
E[p]

2 (Ât2(t) − σ 2
t ) for

t = 10,20,40 and 80 [with 10,000 realizations of Ât2(t) in each case, and σ 2
t

approximated by the empirical mean of Ât2(t) over the 10,000 realizations]. As
expected, they look Gaussian. In addition, Proposition 5.1 also gives the limiting
variance. Table 2 displays the limiting variance (E[p]/2)2v = 9.08 and the empir-
ical variances for t = 10,20,40,80,160 and 320, which are in good agreement.

FIG. 2. Histogram of the re-scaled fluctuations for t = 10.
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FIG. 3. Histogram of the re-scaled fluctuations for t = 20.

To conclude this article, let us quickly compare the Monte Carlo approach under
consideration here to other approaches to approximate homogenized coefficients.
Another possibility to approximate effective coefficients is to directly solve the

FIG. 4. Histogram of the re-scaled fluctuations for t = 40.



MONTE CARLO APPROXIMATION OF HOMOGENIZED COEFFICIENTS 1579

FIG. 5. Histogram of the re-scaled fluctuations for t = 80.

so-called corrector equation. In this approach, a first step toward the derivation of
error estimates is a quantification of the qualitative results proved by Künnemann
[17] (and inspired by Papanicolaou and Varadhan’s treatment of the continuous

FIG. 6. Histogram of the re-scaled fluctuations for t = 160.



1580 A. GLORIA AND J.-C. MOURRAT

FIG. 7. Histogram of the re-scaled fluctuations for t = 320.

case [22]) and Kozlov [16]. In the stochastic case, such an equation is posed on the
whole Z

d , and we need to localize it on a bounded domain, say the hypercube QR

of side R > 0. As shown in a series of papers by Otto and the first author [10, 11],
and the first author [8], there are three contributions to the L

2-error in probability
between the true homogenized coefficients and its approximation. The dominant
error in small dimensions takes the form of a variance: it measures the fact that
the approximation of the homogenized coefficients by the average of the energy
density of the corrector on a box QR fluctuates. This error decays at the rate of
the central limit theorem R−d in any dimension (with a logarithmic correction for
d = 2). The second error is a systematic error: it is due to the fact that we have
modified the corrector equation by adding a zero-order term of strength T −1 > 0
(as is standard in the analysis of the well-posedness of the corrector equation). The
scaling of this error depends on the dimension and saturates at dimension 4. It is of
higher order than the random error up to dimension 8. The last error is due to the
use of boundary conditions on the bounded domain QR . Provided there is a buffer

TABLE 2
Empirical variance of E[p]

2 t (Ât2(t) − σ 2
t ) and limiting variance from Proposition 5.1

t 10 20 40 80 160 320 ∞
Variance 9.86 9.46 9.49 9.46 9.36 9.06 9.08
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region, this error is exponentially small in the distance to the buffer zone measured
in units of

√
T .

This approach has two main drawbacks. First, the numerical method only con-
verges at the central limit theorem (CLT) scaling in terms of R up to dimension 8,
which is somehow disappointing from a conceptual point of view (although this is
already fine in practice). Second, although the size of the buffer zone is roughly in-
dependent of the dimension, its cost with respect to the central limit theorem scal-
ing dramatically increases with the dimension (recall that in dimension d , the CLT
scaling is R−d , so that in high dimension, we may consider smaller R for a given
precision, whereas the use of boundary conditions requires R � √

T in any di-
mension). Based on ideas of the second author in [20], we have taken advantage of
the spectral representation of the homogenized coefficients (originally introduced
by Papanicolaou and Varadhan to prove their qualitative homogenization result)
in order to devise and analyze new approximation formulas for the homogenized
coefficients in [9]. In particular, this has allowed us to get rid of the restriction on
dimension, and exhibit refinements of the numerical method of [8] which converge
at the central limit theorem scaling in any dimension (thus avoiding the first men-
tioned drawback). Unfortunately, the second drawback is inherent to the type of
method used: if the corrector equation has to be solved on a bounded domain QR ,
boundary conditions need to be imposed on the boundary ∂QR . Since their values
are actually also part of the problem, a buffer zone seems mandatory—with the
notable exception of the periodization method, whose analysis is yet still unclear
to us, especially when spatial correlations are introduced in the coefficients.

In this paper we have analyzed a method which does not suffer from the draw-
backs mentioned above: the random walk in random environment approach. In
particular, following [21] we have obtained an approximation of the homogenized
coefficients by the numerical simulation of a random walk up to some large time.
Compared to the deterministic approach based on the approximate corrector equa-
tion, the advantage of the present approach is that its convergence rate and compu-
tational costs are dimension-independent. In addition, the environment only needs
to be generated along the trajectory of the random walker, so that much less in-
formation has to be stored during the calculation. This may be quite an important
feature of the Monte Carlo method in view of the discussion of [8], Section 4.3.

A more thorough comparison of these numerical approaches in two and three
dimensions, for correlated and uncorrelated examples, will be the object of a forth-
coming work [7].
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