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ERROR DISTRIBUTIONS FOR RANDOM GRID APPROXIMATIONS
OF MULTIDIMENSIONAL STOCHASTIC INTEGRALS1

BY CARL LINDBERG AND HOLGER ROOTZÉN

Chalmers University of Technology and Gothenburg University

This paper proves joint convergence of the approximation error for sev-
eral stochastic integrals with respect to local Brownian semimartingales, for
nonequidistant and random grids. The conditions needed for convergence are
that the Lebesgue integrals of the integrands tend uniformly to zero and that
the squared variation and covariation processes converge. The paper also pro-
vides tools which simplify checking these conditions and which extend the
range for the results. These results are used to prove an explicit limit theorem
for random grid approximations of integrals based on solutions of multidi-
mensional SDEs, and to find ways to “design” and optimize the distribution
of the approximation error. As examples we briefly discuss strategies for dis-
crete option hedging.

1. Introduction. The error in numerical approximations of stochastic inte-
grals is a random variable, or, if one also is interested in the “time” development
of the error, a stochastic process. Hence the most precise evaluation of the error,
which is possible to obtain, is to derive the distribution of the error. The proto-
type example is the Euler method for the stochastic integral

∫ t
0 f (B(s), s) dB(s),

for a Brownian motion B . The Euler method approximates the integrand with a
step-function which is constant between the “evaluation times” (or, in finance ter-
minology, “intervention times”) of the grid i/n; i = 0,1, . . . . This leads to the
approximation

∫ t
0 f ◦ ηn dB(s), with ηn(t) = i/n on the intervals [i/n, (i + 1)/n).

In Rootzén (1980) it is shown that the approximation error Un = n1/2 ∫ t
0 (f − f ◦

ηn) dB(s) converges stably in distribution,

Un ⇒s

1√
2

∫ t

0
f ′(B(s), s) dW(s),

where W is a Brownian motion independent of B and f ′(x, y) = ∂f (x,y)
∂x

, and
where Rényi’s quite useful concept of stable convergence means that Un converges
jointly with any sequence which converges in probability.
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The intuition behind this result is that “the small wiggles of a Brownian path
are asymptotically independent of the global behavior of the path.” The result has
seen much further development, in particular, to the error in numerical solution
schemes for SDEs, and has recently found significant application in measuring the
risks associated with discrete hedging. A brief overview of some of this literature
is given below.

The present paper generalizes this result in three ways: to joint convergence
of the approximation error for several stochastic integrals, to local Brownian
semimartingales instead of Brownian motions, and to nonequidistant and random
evaluation times. The tools which help us quantify the intuition given above is
Girsanov’s theorem which shows how a multidimensional Brownian motion is af-
fected by a change of measure, and Lévy’s characterization of a multidimensional
Brownian motion in terms of its square variation processes.

The conditions needed for convergence apply more generally than to approxi-
mation schemes. They are that the Lebesgue integrals of the integrands tend uni-
formly to zero in probability and that the square variation and covariation processes
converge in probability. We additionally provide tools which simplify checking
these conditions and which extend the range of the results. Further we apply these
results to prove an explicit limit theorem for approximations of integrals based on
solutions of multidimensional SDEs.

One center of interest for this paper is the possibility to improve approximation
by using variable and random grids. In particular we study approximation schemes
where the evaluation times i/n are replaced by time points given by the recursion
τn

0 = 0 and

τn
k+1 = τn

k + 1

nθ(τn
k )

for a positive adapted process θ(t). We also study how the function θ can be chosen
to design the approximation error so that it has desirable properties. For example,
these could be homogeneous evolution of risk, or how to make the approximation
error have minimal standard deviation.

A main motivation for writing this paper is to provide tools to study discrete
hedging which uses random intervention times. We exemplify these possibilities
by using the general results to exhibit a “no bad days” strategy and a minimum
standard deviation strategy for the Black–Scholes model.

Weak convergence theory for approximations of stochastic integrals and solu-
tions to stochastic differential equations is developed in Rootzén (1980), Kurtz
and Protter (1991a, 1991b, 1996) and, in particular, an extensive study of the Eu-
ler method for SDEs is provided by Jacod and Protter (1998). This theory has
been used and extended to solve and analyze various aspects of approximation
and hedging error problems in mathematical finance. As examples we mention
Duffie and Protter (1992), Bertsimas, Kogan and Lo (2000), Hayashi and Myk-
land (2005), Tankov and Voltchkova (2009), Brodén and Wiktorsson (2010) and
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Fukasawa (2011). A Malliavin calculus approach to discrete hedging is used in
Gobet and Temam (2001) and in a number of papers, which also consider variable
but deterministic grids, by Geiss and coworkers; see Geiss and Toivola (2009) and
the references therein. The main theoretical tool of Hayashi and Mykland (2005) is
related to our general result, as discussed further below. The quite interesting paper
Fukasawa (2011) also studies random grid approximations, for one-dimensional
processes. The setting of Fukasawas paper is more or less in the middle between
our Theorems 2.2 and 3.3. The conditions used by Fukasawa are rather different
from ours, and there does not seem to be any simple relations between his results
and ours.

Now a brief overview of the paper. The next section, Section 2, contains the
basic general theorem on multidimensional convergence for stochastic integrals
with respect to local multidimensional Brownian semimartingales, and the tools
to check conditions and extend the result. In Section 3 we give the explicit re-
sult for random grid approximations of stochastic integrals based on the solution
of a multidimensional SDE. Section 4 investigates ways to design and optimize
approximation errors, and in Section 5 this is applied to discrete financial hedging.

2. General results. This section contains two main results. The first one gives
a means to establish multidimensional convergence of the distribution of stochastic
integrals with more and more rapidly varying integrands, and the second one shows
how convergence of integrals with simple integrands can be extended to more gen-
eral integrands. In addition, Lemma 2.8 provides tools to check the assumptions of
the theorems. Our main aim is the error in approximations of stochastic integrals,
but the results may in fact also have more general use.

Let � = C(R+,Rd) be the space of continuous Rd -valued functions defined
on R+, define Bt = {Bi

t }1≤i≤d by Bt(ω) = ω(t), let P be the probability measure
which makes B a Brownian motion starting at 0 and let Ft be the completion
of the σ -algebra generated by {Bs;0 ≤ s ≤ t}. Further write F for the smallest
σ -algebra which contains all the Ft . Until further notice is given all random vari-
ables we consider are defined on the filtered probability space (�, (Ft ), F ,P).
Weak convergence will be for random variables (or “processes”) with values in
C([0, T ],RK), the space of continuous K-dimensional functions defined on the
time interval [0, T ], and with respect to the uniform metric. Usually the dimension
K of the processes will be clear from the context, and then we, for brevity, write
C[0, T ], instead of C([0, T ],RK), and just write ⇒ for weak convergence.

Weak convergence is stable (or “Rényi-stable”) if it holds on any subset of F ,
and the convergence is mixing (or “Rényi-mixing”) if, in addition, the limit is the
same on any subset. In the present setting this is specified by the definition which
follows below. To appreciate part (ii) of the definition, recall that convergence in
distribution often is written as Xn ⇒ X, but that in this notation X is not a random
variable defined on some probability space. It is just a convenient notation for
the limiting distribution of Xn. However, one can, of course, construct a random
variable with this distribution, to give X a life of its own.
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DEFINITION 2.1. (i) Let (Xn)n≥1 be a sequence of random variables de-
fined on the same probability space (�, F ,P) and with values in C[0, T ]. Then
(Xn)n≥1 converges stably if E[Uf (Xn)] converges for any bounded continuous
function f :C[0, T ] → R and any bounded measurable random variable U de-
fined on (�, F ,P). If, in addition,

lim
n

E[Uf (Xn)] = E[U ] lim
n

E[f (Xn)],(1)

then the convergence is mixing.
(ii) If (Xn)n≥1 converges stably, then it is always possible to enlarge the prob-

ability space and construct a new random variable X on the enlarged probabil-
ity space such that limn E[Uf (Xn)] = E[Uf (X)] for all bounded random vari-
ables U ; see Aldous and Eagleson (1978). Thus, with this construction we can
write stable convergence as Xn ⇒s X. If the convergence, in addition, is mixing,
then X is independent of F , and we write Xn ⇒m X.

It is straightforward to see that to establish stable or mixing convergence it is
enough to prove convergence of E[Uf (Xn)] for strictly positive U with EU = 1.
Further, see Aldous and Eagleson (1978), Xn ⇒s X if and only if (Y n,Xn) ⇒
(Y,X∗) for any sequence of random variables Yn →p Y which converges in prob-
ability if and only if Xn ⇒ X with respect to P(·|A) for any set A with P(A) > 0.
(In the middle statement, convergence is with respect to the product topology.)
Finally, if stability (or mixing) holds with respect to a sigma-algebra F and the
sigma-algebra F ′ is independent of F , then it also holds with respect to the sigma-
algebra generated by F and F ′.

Let X = (Xj , j = 1, . . . , d) be a continuous d-dimensional Brownian semi-
martingale defined on the space (�, (Ft ), F ,P) by

Xj(t) =
d∑

k=1

∫ t

0
Gj,k(s) dBk(s) +

∫ t

0
aj (s) ds(2)

with Gj,k and aj adapted, and with
∫ T

0 G2
j,k ds < ∞ and

∫ T
0 a2

j ds < ∞ a.s. for
all j, k. Further let {Hn

i,j } = {Hn
i,j ;1 ≤ i, j ≤ d} be a d × d-dimensional array of

Ft -adapted processes such that
∫ T

0 (Hn
i,j )

2 dt < ∞ a.s. for each i, j , and write

{Hn
i,j · Xj } = {Hn

i,j · Xj ;1 ≤ i, j ≤ d}
(3)

=
{∫ t

0
Hn

i,j (s) dXj (s);1 ≤ i, j ≤ d

}
0≤t≤T

.

Thus {Hn
i,j · Xj } takes values in C([0, T ],Rd×d). In the following we let →p

denote convergence in probability and take “positive” to mean the same as “non-
negative.”

The form of the second condition, equation (5) of the following theorem re-
quires some explanation. For simplicity of exposition suppressing the index k, it
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says that
∫ t

0 Hn
i,jGjH

n
l,mGm ds converges in probability to some absolutely con-

tinuous limit, which we temporarily write as
∫ t

0 C(i,j),(l,m) ds. Since limits of pos-
itive variable are positive, we further assume that for each t and ω the array
{C(i,j),(l,m)(t)} is “positive definite,” that is, equivalently, that it can be obtained
as the covariances of some d × d array of random variables. The diagonal ele-
ments C(i,j),(i,j)(t) of the array are obtained from the limits of

∫ t
0 (Hn

i,j )
2G2

j ds

and hence it is natural to write them as C(i,j),(i,j)(t) = (Hi,j )
2G2

j . Further, tak-
ing positive square roots we may then more generally write C(i,j),(l,m)(t) =
Hi,jGjHl,mGmρ(i,j),(l,m). The array {ρ(i,j),(l,m)} then is the “correlation array”
corresponding to the covariances {C(i,j),(l,m)(t)}. This gives the formulation (5).
(If some Gj is zero, we just set the corresponding Hi,j ’s and off-diagonal elements
of ρ to zero, and the diagonal elements to 1.)

Further, it is possible to find a “root” of {ρ(i,j),(l,m)(t)}, that is, an array
{σ(i,j),(l,m)(t)} such that ρ(i,j),(l,m)(t) = ∑

1≤r,s≤d σ(i,j),(r,s)σ(r,s),(l,m). This can
be seen by reordering the index set {(i, j);1 ≤ r, s ≤ d}, linearly, say lexicographi-
cally, making the corresponding reordering of {ρ(i,j),(i,j)} into a matrix which then
is positive definite, finding a root of this matrix, and then making the identification
back to the array ordering.

THEOREM 2.2. Suppose that {Hn
i,j } satisfies

sup
0≤t≤T

∣∣∣∣
∫ t

0
Hn

i,j ds

∣∣∣∣ →p 0, n → ∞,1 ≤ i, j ≤ d,(4)

and that for k = 1, . . . , d∫ t

0
Hn

i,jGj,kH
n
l,mGm,k ds →p

∫ t

0
Hi,jGj,kHl,mGm,kρ

k
(i,j),(l,m) ds(5)

as n → ∞, for i, j, l,m = 1, . . . , d , and for some correlation array processes ρk =
(ρk

(i,j),(l,m);k = 1, . . . , d) and processes {Hi,j : 1 ≤ i, j ≤ d} such that all Hi,jGj

are positive. Let σk(t) be an arbitrary root of ρk(t); see the discussion just before
the theorem. Then, for X given by (2),

{Hn
i,j · Xj } ⇒s

{
d∑

r,s,k=1

Hi,jGj,kσ
k
(i,j),(r,s) · Wr,s,k

}
(6)

as n → ∞, where W = (Wr,s,k;1 ≤ r, s, k ≤ d) is a d × d × d-dimensional Brow-
nian motion which is independent of F .

This result simplifies in the special case when X is just a Brownian motion B;
see the following corollary. The corollary is close to Theorem A.1 of Hayashi and
Mykland (2005). Differences are that the corollary makes the basic condition (4)
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explicit, gives a more detailed description of the limit distribution and has the more
powerful conclusion of stable convergence.

In Theorem 2.2 we, for simplicity of notation, considered a quadratic array
{Hn

i,j · Xj : 1 ≤ i, j ≤ d}. This does not involve any loss of generality, but still,
for later use in the proof of Theorem 2.2, it is convenient to formulate the corol-
lary for a rectangular array.

COROLLARY 2.3. Suppose that (4) is satisfied for i = 1, . . . , d1, j = 1, . . . , d2

and that ∫ t

0
Hn

i,kH
n
j,k ds →p

∫ t

0
Hi,kHj,kρ

k
i,j ds, n → ∞,(7)

as n → ∞, for some correlation matrix processes ρk = σk(σ k)′, where i, j =
1, . . . , d1, k = 1, . . . , d2, and positive processes {Hi,k : i = 1, . . . , d1, k = 1, . . . ,

d2}, and for 0 ≤ t ≤ T . Then

{Hn
i,k · Bk} ⇒s

{
d1∑

j=1

Hi,kσ
k
i,j · Wj,k

}
(8)

as n → ∞, where W = {Wj,k : j = 1, . . . , d1, k = 1, . . . , d2} is a Brownian motion
which is independent of F .

The following lemma plays an important role in the proofs.

LEMMA 2.4. Suppose that η(t) and Hn(t) are real-valued random processes
with

∫ S
0 η(t)2 dt < ∞ a.s. and with lim supn→∞

∫ S
0 Hn(t)2 dt < ∞ a.s. for some

positive constant S ≤ ∞. Suppose further that

sup
0≤t≤S

∣∣∣∣
∫ t

0
Hn ds

∣∣∣∣ →p 0, n → ∞.

Then

sup
0≤t≤S

∣∣∣∣
∫ t

0
Hnη ds

∣∣∣∣ →p 0, n → ∞.(9)

PROOF. Suppose first that there exists a sequence {ηk} of processes such that
∫ S

0

(
η(t) − ηk(t)

)2
dt →p 0 as k → ∞,

sup
0≤t≤S

∣∣∣∣
∫ t

0
Hnηk(s) ds

∣∣∣∣ →p 0 as n → ∞ for each k.
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Then, by the Cauchy–Schwarz inequality,

lim sup
n

sup
0≤t≤S

∣∣∣∣
∫ t

0
Hnη ds

∣∣∣∣ ≤ lim sup
n

sup
0≤t≤S

∣∣∣∣
∫ t

0
Hnηk ds

∣∣∣∣
+ lim sup

n
sup

0≤t≤S

∣∣∣∣
∫ t

0
Hn(η − ηk) ds

∣∣∣∣
≤ 0 +

√
lim sup

n

∫ S

0
(Hn)2 dt

√∫ S

0
(η − ηk)2 dt,

which tends to 0 as k → ∞, so that (9) holds.
Thus the lemma follows if there exist a sequence {ηk} which satisfies the two

requirements above.
Now, for each k there exists a continuous process η̃k , measurable in t and ω,

such that P(
∫ S

0 (η(t)− η̃k(t))
2 dt > 1/k) ≤ 1/k. Briefly, to see this note that if η(t)

is approximated by convolving it with a sequence of “approximate δ-functions,”
for example, with a sequence of centered normal densities with variance parame-
ters tending to 0, then the convolutions are measurable in t and ω and for almost
all ω converge to η[·,ω) in L2[0, S]. The existence of the sequence η̃k follows at
once from this, since convergence a.s. implies convergence in probability.

Next, with 1A denoting the indicator function of a set A, for η̃k,m(t) =∑[mS]
i=0 η̃k(iS/m)1{t∈[iS/m,(i+1)S/m)} it follows that∫ S

0

(
η̃k(t) − η̃k,m(t)

)2
dt →a.s. 0 as m → ∞

and thus, choosing mk suitably, ηk = ∑[mkS]
i=0 η̃k(iS/mk)1{t∈[iS/mk,(i+1)S/mk)} sat-

isfies the first one of the two relations above. Furthermore, the second one is easily
seen to hold for ηk of this form. �

PROOF OF THEOREM 2.2 AND COROLLARY 2.3. We do this in reverse order,
and first prove Corollary 2.3. For simplicity of notation we only prove the corollary
for a two-dimensional Brownian motion, that is, for the case d = 2. The general
case is the same.

By Rootzén [(1980), Theorem 1.2], each marginal process {Hn
i,j · Bj(t),0 ≤

t ≤ T } is tight C([0, T ],R), and then also the entire d × d-dimensional sequence
{Hn

i,j · Bj(t),0 ≤ t ≤ T ,1 ≤ i, j ≤ d} is tight C([0, T ],Rd×d), so only stable
finite-dimensional convergence remains to be proved. We prove this in two steps,
where the first one follows along the lines of Rootzén (1980) and the second step
uses the Cramér–Wold device. A final third step uses Corollary 2.3 to prove Theo-
rem 2.2.

Step 1: Let {ψn
i ; i = 1,2} be adapted processes such that, for i = 1,2,

sup
0≤t≤T

∣∣∣∣
∫ t

0
ψn

i ds

∣∣∣∣ →p 0(10)
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and such that ∫ t

0
(ψn

i )2 ds →p

∫ t

0
(ψi)

2 ds(11)

for some ψ1,ψ2 > 0,0 ≤ t ≤ T . To make inverses well defined, we, without loss
of generality, can assume that the ψn

i (t) are defined also for t > T , and such
that equations (10) and (11) hold with T replaced by S for any S > 0, and with
ψi(t) = 1 for t > T and i = 1,2. This does not involve the result to be proved nor
the assumptions, and hence can be done without loss of generality.

Let C[0,∞) = C([0,∞),R) be the space of continuous real valued functions
defined on [0,∞) and endowed with the topology of uniform convergence on
compact sets; see Whitt (1970). Let the random variable U > 0 satisfy EU = 1,
and assume the functional f :C[0,∞) → R is bounded and continuous. Further,
set τn(t) = ∫ t

0 (ψn
1 )2 ds + ∫ t

0 (ψn
2 )2 ds, let τ(t) = limn→∞ τn(t) = ∫ t

0 (ψ1)
2 ds +∫ t

0 (ψ2)
2 ds and define τ−1

n by τ−1
n (t) = inf{s : τn(s) > t}. Additionally let W̃ be

a one-dimensional Brownian motion which is independent of F . We first prove
that

EUf

(∫ τ−1
n (·)

0
ψn

1 dB1 +
∫ τ−1

n (·)
0

ψn
2 dB2

)
→ Ef (W̃ (·)),(12)

for each such U , so that
∫ τ−1

n (·)
0 ψn

1 dB1 + ∫ τ−1
n (·)

0 ψn
2 dB2 ⇒m W̃ , on C[0,∞).

Now, define a new probability measure Q by dQ/dP = U , and write EQ for
expectation taken with respect to Q. Then, by Girsanov’s theorem [Rogers and
Williams (2000), Theorem IV 38.5] there exists an adapted square integrable pro-
cess c = (c1, c2) such that (B̃(t) = (B1(t) − ∫ t

0 c1(s) ds,B2(t) − ∫ t
0 c2(s) ds) is a

Brownian motion under Q.
Hence,

EUf

(∫ τ−1
n (·)

0
ψn

1 dB1 +
∫ τ−1

n (·)
0

ψn
2 dB2

)

= EQf

(∫ τ−1
n (·)

0
ψn

1 dB̃1 +
∫ τ−1

n (·)
0

ψn
2 dB̃2(13)

+
∫ τ−1

n (·)
0

ψn
1 c1 ds +

∫ τ−1
n (·)

0
ψn

2 c2 ds

)
.

Under Q the process
∫ τ−1

n (·)
0 ψn

1 dB̃1 + ∫ τ−1
n (·)

0 ψn
2 dB̃2 has the same distribution

as W̃ [Rogers and Williams (2000), Theorem IV 34.1]. Further, by Lemma 2.4,
we have that

∫ t
0 ψn

1 c1 ds + ∫ t
0 ψn

2 c2 ds →p 0 in C[0, S], for any fixed S. Since f is
bounded and continuous on C[0,∞), these two facts prove (12), and hence mixing
convergence on C[0,∞).
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It thus follows from τn →p τ that (τn,
∫ τ−1

n (·)
0 ψn

1 dB1 + ∫ τ−1
n (·)

0 ψn
2 dB2)) ⇒s

(τ, W̃ ), and hence, by composing τ−1
n with τn [cf. Billingsley (1999), page 145],

that ∫ t

0
ψn

1 dB1 +
∫ t

0
ψn

2 dB2 ⇒s W̃ (τ (t))(14)

in C[0,∞), and hence, in particular, in C[0, T ].
Step 2: Finite-dimensional stable convergence now follows by standard but no-

tationally complicated Cramér–Wold arguments. To lessen complications we here
only consider two basic cases, and leave the general argument to the reader. Thus,
first, let ψn

i (s) = bi1{0≤s≤ti}Hn
1,i (s) for i = 1,2, with 0 < t1, t2 ≤ T . Equation (7)

implies that

τn(t) →p τ(t) = b2
1

∫ t∧t1

0
(H1,1)

2 ds + b2
2

∫ t∧t2

0
(H1,2)

2 ds

so that by (14),

b1

∫ t∧t1

0
Hn

1,1 dB1 + b2

∫ t∧t2

0
Hn

1,2 dB2

⇒s W̃

(
b2

1

∫ t∧t1

0
(H1,1)

2 ds + b2
2

∫ t∧t2

0
(H1,2)

2 ds

)
.

Now, using elementary properties of Brownian motion together with Rogers
and Williams [(2000), Theorem IV 34.1] we have that W̃ (b2

1

∫ t∧t1
0 (H1,1)

2 ds +
b2

2

∫ t∧t2
0 (H1,2)

2 ds) has the same distribution, and the same dependency with any
F -measurable variable, as

b1

∫ t∧t1

0
H1,1 dW1,1 + b2

∫ t∧t2

0
H1,2 dW1,2

for independent Brownian motions W1,1,W1,2, so that we by (14) have es-
tablished that b1

∫ t∧t1
0 Hn

1,1 dB1 + b2
∫ t∧t2

0 Hn
1,2 dB2 ⇒s b1

∫ t∧t1
0 H1,1 dW1,1 +

b2
∫ t∧t2

0 H1,2 dW1,2, for any real numbers b1, b2. In particular stable two-
dimensional convergence of (Hn

1,1 · B1(t1),H
n
1,2 · B2(t2)) to (

∫ t1
0 H1,1 dW1,1,∫ t2

0 H1,2 dW1,2) follows by Cramér–Wold.
If we instead take ψn

1 = b1I{0≤s≤t1}Hn
1,1(s) + b2I{0≤s≤t2}Hn

2,1(s) and ψn
2 = 0

then, by (7),

τn(t) →p τ(t)

= b2
1

∫ t∧t1

0
(H1,1)

2 ds + 2b1b2

∫ t∧t1∧t2

0
H1,1H2,1ρ

1
1,2 ds

+ b2
2

∫ t∧t2

0
(H2,1)

2 ds.
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Furthermore, similarly as before and recalling that the matrix σ 1 is a root of the
correlation matrix ρ1, it can be seen that then W̃ (τ (·)) has the same distribution,
and the same dependency with any F -measurable variable, as

b1

(∫ t∧t1

0
H1,1σ

1
1,1 dW1,1 +

∫ t∧t1

0
H1,1σ

1
1,2 dW2,1

)

+ b2

(∫ t∧t2

0
H2,1σ

1
2,1 dW1,1 +

∫ t∧t2

0
H2,1σ

1
2,2 dW2,1

)
.

Reasoning as above we get that

b1

∫ t1

0
Hn

1,1 dB1 + b2

∫ t2

0
Hn

2,1 dB1

⇒s b1

∫ t1

0
H1,1σ

1
1,1 dW1,1 + b1

∫ t1

0
H1,1σ

1
1,2 dW2,1

+ b2

∫ t2

0
H2,1σ

1
2,1 dW1,1 + b2

∫ t2

0
H2,1σ

1
2,2 dW2,1

for independent Brownian motions W1,1,W2,1. Since b1 and b2 are arbitrary, this
proves stable two-dimensional convergence of (Hn

1,1 ·B1(t1),H
n
2,1 ·B1(t2)). A gen-

eral proof of Corollary 2.3 is only notationally more complicated.
We next use Corollary 2.3 to obtain the conclusion of Theorem 2.2.

Step 3: By Lemma 2.4, if Hn
i,j satisfies (4), then sup0≤t≤T | ∫ t

0 Hn
i,j ai ds| →p 0,

for all i, j , and hence the general result follows if we can prove that the result of
the theorem holds for the case when all ai are identically zero. Thus, to find the
limit of {Hn

i,j · Xj } one only has to consider
{

d∑
k=1

Hn
i,jGj,k · Bk

}
.

Again by Lemma 2.4, if Hn
i,j satisfies (4), then

sup
0≤t≤T

∣∣∣∣
∫ t

0
Hn

i,jGj,k ds

∣∣∣∣ →p 0.(15)

Now, making the definition Hn
(i,j),k := Hn

i,jGj,k and replacing the index i in (8)
by the “multiindex” (i, j), convergence of the array {Hn

i,jGj,k · Bk} follows from

Corollary 2.3 with d1 = d2, d2 = d . The result (6) then follows by summing over
k and writing Wl,m,k for W(l,m),k . �

We now change to a more general setup, from Brownian semimartingales to
general processes (Hn,Xn) which are defined on filtered probability spaces �n =
(�n, F n,Pn, (F n

t )0≤t<∞). Here F n is a Pn-complete σ -algebra and (F n
t )0≤t<∞

is a filtration which satisfies the usual hypotheses (but which is not necessarily
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generated by a Brownian motion). The following definition is key to our goal. We
give it for vector valued processes. The definition for matrix valued processes is
analogous.

DEFINITION 2.5. Let (Xn)n≥1 be a sequence of continuous Rd -valued semi-
martingales defined on �n, n ≥ 1 and assume that Xn ⇒ X. The sequence Xn

is good if for any sequence of Rd×d -valued adapted càdlàg stochastic processes
(Hn)n≥1 defined on �n such that (Hn,Xn) ⇒ (H,X), there exists a filtration
(Gt ) such that X is a semimartingale and H is an adapted càdlàg process, and
{Hn

i,j · Xn
j } ⇒ {Hi,j · Xj }.

The following criterion is sufficient for goodness; see, for example, Theorem 2.2
in Kurtz and Protter (1991a).

DEFINITION 2.6. A sequence of continuous Rd -valued semimartingales
(Xn)n≥1 is said to have uniformly controlled variations (UCV) if for each n ≥ 1,
there exist decompositions Xn = Mn + An such that

sup
n

En

{
[Mn,Mn]T +

∫ T

0
|dAn

s |
}

< ∞.

The next theorem combined with Theorem 2.3 will give the asymptotic dis-
tributions of approximation errors for stochastic integrals. If, in addition to the
conditions of the theorem, f is bounded, then the result follows from Theorem 3.5
in Kurtz and Protter (1991b). However, in the present setting the result holds also
without the boundedness condition, and it is further possible to give a quite simple
proof. In the theorem, 0 = τn

0 < τn
1 < · · · < ∞ are {Ft }-stopping times, and ηn is

defined by ηn(t) = τn
k , τn

k ≤ t < τn
k+1.

THEOREM 2.7. Let Y be a continuous Rd -valued {Ft }-semimartingale on
[0, T ], and suppose that f = (f1, . . . , fd) is continuously differentiable. Assume
that ηn(t) tends to the identity in probability for t ∈ [0, T ], and let {λn} be a posi-
tive sequence converging to infinity. Further, set

Un = λn

∫ (
f (Y ) − f (Y ◦ ηn)

)
dY

:= λn

d∑
i=1

∫ (
fi(Y ) − fi(Y ◦ ηn)

)
dYi

and define

Zn
ij (t) = λn

∫ t

0

(
Yi(s) − Yi ◦ ηn(s)

)
dYj (s).(16)
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Suppose that (Zn)n≥1 is good, and that (Zn,Y ) ⇒ (Z,Y ). Then Un ⇒ U on
[0, T ], where

U =
d∑

i,j=1

∫
∂fj (Y )

∂yi

dZij .

Since ηn is nondecreasing, pointwise convergence in probability in [0, T ], as
assumed in the theorem, is equivalent to uniform convergence in probability in
[0, T ]. Below we will use this without further comment.

PROOF OF THEOREM 2.7. For simplicity of exposition, we assume that d = 1.
By the continuous mapping theorem we have that (Zn,Y,Y ) ⇒ (Z,Y,Y ). Since
Y is continuous, and ηn converges uniformly in probability to the unity, this in turn
can be seen to imply that (Zn,Y ◦ ηn,Y ) ⇒ (Z,Y,Y ), for example, by using the
Skorokhod translation of convergence in distribution to convergence a.s.

We now define

g(x, y) = f (x) − f (y)

x − y
,

where we make the continuous choice g(x, x) = f ′(x) when the denominator van-
ishes. The function g is uniformly continuous on [0, T ]2, so the continuous map-
ping theorem gives that (Zn, g(Y,Y ◦ ηn)) ⇒ (Z,f ′(Y )). Now,

Un = λn

∫ (
f (Y ) − f (Y ◦ ηn)

)
dY =

∫
g(Y,Y ◦ ηn) dZn.

But since (Zn)n≥1 is good, we have that∫
g(Y,Y ◦ ηn) dZn ⇒

∫
f ′(Y ) dZ,

which proves the theorem for d = 1. �

The next lemma provides a tool for verification of criteria like (4) and (7). In the
lemma we specialize to stopping times (cf. the Introduction) defined recursively by
τn

0 = 0 and

τn
k+1 =

(
τn
k + 1

nθ(τn
k )

)
∧ T(17)

for some adapted stochastic process θ . As before, let

ηn(t) = τn
k , τn

k ≤ t < τn
k+1 for k = 1,2, . . .(18)

and write Ep = E
∫ 1

0 B(s)p ds = ∫ 1
0 sp/2EB(1)p ds = EB(1)p/(p/2 + 1) so that

E1 = E
∫ 1

0 B(s) ds = 0 and E2 = E
∫ 1

0 B(s)2 ds = 1/2.
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In the lemma we will assume that the function a(t); t ∈ [0, T ] is locally
bounded, that is, that to any ε > 0 there exists a localizing stopping time ν = νε

such that a(t ∧ν); t ∈ [0, T ] is bounded, and such that P(ν < T ) < ε. In particular,
if a is continuous on [0, T ], then a is locally bounded.

LEMMA 2.8. Assume that a and θ are adapted processes such that a is locally
bounded, θ is strictly positive and a(t)/θ(t)p/2 is a.s. Riemann integrable over
[0, T ], and let τn

k and ηn be defined by (17) and (18). Set

ψn(t) = np/2
∞∑

k=0

a(τn
k )

(
B(t) − B(τn

k )
)p1{τn

k ≤t<τn
k+1}.(19)

Further assume that ηn tends to the identity in probability. Then

sup
0≤t≤T

∣∣∣∣
∫ t

0
ψn(s) ds − Ep

∫ t

0

a(s)

θ(s)p/2 ds

∣∣∣∣ →p 0(20)

as n → ∞, for p = 1,2.

PROOF. If we prove the lemma under the additional restriction that a is
bounded, then it follows in general, since it then holds for a(t) replaced by a(t ∧ν)

for any localizing stopping time ν, and this in turn implies that (20) holds with
probability greater than 1 − ε, for arbitrary ε. Thus we assume in the rest of this
proof that a is uniformly bounded, so that in particular the expectations exist.

To ease notation we below sometimes will write τk instead of τn
k and define

F̄k = Fτk
. Clearly

np/2E

{∫ τk+1

τk

a(τk)
(
B(t) − B(τk)

)p
dt

∣∣∣F̄k

}
= np/2a(τk)

∫ 1/nθ(τk)

0
EB(t)p dt

= Ep

a(τk)

nθ(τk)p/2+1 .

Recalling the definition of ηk ,
k−1∑
k′=1

Ep

a(τk′)

nθ(τk′)p/2+1 = Ep

∫ τk

0

a ◦ ηn(s)

θ ◦ ηn(s)p/2 ds

and hence

Xk :=
∫ τk

0
ψn ds − Ep

∫ τk

0

a ◦ ηn(s)

θ ◦ ηn(s)p/2 ds

is a martingale with index set Z+.
In the following we show that

∑
k E((Xk+1 − Xk)

2|F̄k) → 0. By the functional
central limit theorem for martingales [see, e.g., Rootzén (1983), Theorem 3.5] this
in turn implies that

max
k

|Xk| = max
k

∣∣∣∣
∫ τn

k

0
ψn ds − Ep

∫ τn
k

0

a ◦ ηn(s)

θ ◦ ηn(s)p/2 ds

∣∣∣∣ →p 0(21)
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as n → ∞. Using the Cauchy–Schwarz inequality in the second step, elementary
properties of Brownian motion in the third and that (τk+1 − τk) = 1/(nθ(τk)) in
the fourth step, we have that∑

k

E[(Xk+1 − Xk)
2|F̄k]

≤ ∑
k

E

[(∫ τk+1

τk

ψn dt

)2∣∣∣F̄k

]

≤ np
∑
k

a(τk)
2(τk+1 − τk)

∫ τk+1

τk

E
[(

B(t) − B(τk)
)2p|F̄k

]
dt

= E2p

p + 1
np

∑
k

a(τk)
2(τk+1 − τk)

p+2

≤ E2p

p + 1
max

k

(
a(τk)

nθ(τk)p/2+1

) ∑
k : τk<T

(
a(τk)

nθ(τk)p/2+1

)
.

It follows from the Riemannn integrability of a/θp/2 that in the last expression
above the first factor tends to 0 and that the second tends to

∫ T
0 a(s)/θ(s)p/2 ds, so

that the product tends to zero. This completes the proof of (21).
The assumption that a is bounded and straightforward computation show that

E
∫ T

0 ψ2
n ds is bounded in n, and since furthermore maxk{τn

k+1 − τn
k } →p 0, we

can apply the Cauchy–Schwarz inequality, to see that

max
k

sup
τn
k ≤t<τn

k+1

∣∣∣∣
∫ t

τ n
k

ψn ds

∣∣∣∣ ≤
(

max
k

{τn
k+1 − τn

k }
∫ T

0
ψ2

n ds

)1/2

→p 0

for n → ∞. Together with (21) this shows that

sup
0≤t≤T

∣∣∣∣
∫ t

0
ψn ds − Ep

∫ t

0

a ◦ ηn(s)

θ ◦ ηn(s)p/2 ds

∣∣∣∣ →p 0.(22)

By assumption a/θp/2 is Riemann integrable, and hence

sup
0≤t≤T

∣∣∣∣
∫ t

0

a(s)

θ(s)p/2 ds −
∫ t

0

a ◦ ηn(s)

θ ◦ ηn(s)p/2 ds

∣∣∣∣ →a.s. 0.(23)

The triangle inequality together with (22) and (23) completes the proof of the
lemma. �

3. Approximation of stochastic integrals. We now use the results from the
previous section to find the explicit form of the asymptotic distribution of the sum
of the errors in approximating d stochastic integrals where the integrands are func-
tions of the solution to a d-dimensional SDE and where the integrators are the same
solutions to the SDE. The following condition is used in the theorem.
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CONDITION 3.1. Let the measurable functions α(·) : Rd → Rd, β(·) : Rd →
Rd×d satisfy

|α(x)| + |β(x)| ≤ C(1 + |x|),
where x ∈ Rd for some constant C and

|α(x) − α(y)| + |β(x) − β(y)| ≤ D|x − y|,
where x, y ∈ Rd for some constant D.

This condition ensures that the SDE has an unique continuous solution. Fur-
ther, we will need the following lemma, which is given as Lemma 2.5 in Rootzén
(1983).

LEMMA 3.2. Suppose {Zn}n≥1 is a sequence of positive discrete time stochas-
tic processes, adapted to their respective filtrations {F n}n≥1 and that τn is a stop-
ping time with respect to F n for each n. Then

τn∑
j=1

E(Zn
j |F n

j−1) →p 0

implies that

τn∑
j=1

Zn
j →p 0.

THEOREM 3.3. Let Y be the solution of the SDE

dY (t) = α(Y (t)) dt + β(Y (t)) dB(t),(24)

where B is a d-dimensional Brownian motion, α,β satisfy Condition 3.1 and Y(0)

is independent of B and satisfies EY(0)2 < ∞. Then the error in the Euler-type
approximation scheme defined by

Un(t) = n1/2
∫ t

0

(
f (Y (u)) − f

(
Y ◦ ηn(u)

))
dY (u)

:= n1/2
d∑

i=1

∫ t

0

(
fi(Y (u)) − fi

(
Y ◦ ηn(u)

))
dYi(u),

where f = (f1, . . . , fd) is continuously differentiable and the grid is given by (17)
with supt∈[0,T ] θ(t) < ∞ a.s. and 1/θ a.s. Riemann integrable, satisfies

Un ⇒
d∑

r,k=1

∫ t

0
�r,k(u) dWr,k(u)
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on [0, T ], where

�r,k(t) =
∑d

i,j=1(∂fj/∂yi)(Y (t))βi,r (Y (t))βj,k(Y (t))√
2θ(t)

,

and W is an d ×d-dimensional Brownian motion, independent of B . In particular,

sup
0≤t≤T

|Un(t)| ⇒ sup
0≤t≤T

∣∣∣∣∣
d∑

r,k=1

∫ t

0
�r,k(u) dWr,k(u)

∣∣∣∣∣.
PROOF. For the convenience of the reader we begin by recalling that {Xn}n≥1

is Op(an) for some sequence an if

lim
c→∞ lim sup

n→∞
P[|Xn/an| ≥ c] = 0

or, equivalently, if {Xn/an}n≥1 is tight. We first assume that the coefficients α

and β are uniformly bounded, and prove that the result holds under this extra as-
sumption. The general result for unbounded coefficients then follows by an easy
localization argument which is given at the end of the proof. We again write F̄v

instead of Fτv and often suppress the explicit dependence on n and, for example,
write τv instead of τn

v .
Since 1/θ is Riemann integrable, and hence pathwise bounded a.s., and

supt∈[0,T ] θ(t) < ∞ a.s., it follows that ηn tends to t uniformly a.s. By Theo-
rem 5.2.1 in Øksendal (2003) there exists a unique t-continuous solution Y to
equation (24).

The first part of the proof consists of proving that

{Zn
i,j } =

{√
n

∫ t

0

(
Yi(s) − Yi ◦ ηn(s)

)
dYj (s)

}
converges jointly with Y . We do this by showing that the conditions of Theorem 2.2
are satisfied for the choices Hn

i,j = √
n(Yi − Yi ◦ ηn) and Gj,k = βj,k .

The bounded variation part of Yi − Yi ◦ ηn can be seen to give contributions
which are Op(1/n), and thus, using the triangle inequality and writing 1v(s) =
1{τv≤s<τv+1}, it can be seen that (4) follows if we show that

√
n sup

t∈[0,T ]

∣∣∣∣
∫ t

0

∑
v

∫ s

τv

1v(s)βi,j (u) dBj (u) ds

∣∣∣∣ →p 0(25)

for 1 ≤ i, j ≤ d .
Now,

√
n

∫ t

0

∑
v

∫ s

τv

1v(s)βi,j (u) dBj (u) ds

= √
n

∫ t

0

∑
v

∫ s

τv

1v(s)
(
βi,j (u) − βi,j (τv)

)
dBi(u) ds(26)

+ √
n

∫ t

0

∑
v

1v(s)βi,j (τv)
(
Bi(u) − Bi(τv)

)
ds.
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The last term tends to zero in probability by Lemma 2.8 with p = 1, since Riemann
integrability of 1/

√
θ follows from Riemann integrability of 1/θ .

We next show that also the first term on the right-hand side is negligible. Let
C denote a generic deterministic constant whose value may change from one ap-
pearance to the next. Since τv+1 is measurable with respect to F̄v it follows from
Condition 3.1, Itô’s isometry, and the assumption that the constants in (24) are
bounded that

E

[∫ s

τv

(
βi,j (u) − βi,j (τv)

)2
du

∣∣∣F̄v

]
≤ C

∫ s

τv

E[|Y(u) − Y(τv)|2|F̄v]du

≤ C

∫ s

τv

(u − τv) du(27)

≤ C(τv+1 − τv)
2.

Define

�v(t) = √
n

∫ t∧τv+1

τv

∫ s∧τv+1

τv

(
βi,j (u) − βi,j (τv)

)
dBi(u) ds,

so that the first term on the right-hand side of (26) equals
∑

v �v(t). Using Doob’s
inequality together with the Cauchy–Schwarz inequality in the second step and
(27) in the third step we have that

E
[

sup
τv≤t<τv+1

|�v(t)|
∣∣F̄v

]

≤ √
n(τv+1 − τv)E

[
sup

τv≤s<τv+1

∣∣∣∣
∫ s

τv

(
βi,j (u) − βi,j (τv)

)
dBi(u)

∣∣∣∣∣∣∣F̄v

]

≤ C
√

n(τv+1 − τv)E

[∫ τv+1

τv

(
βi,j (u) − βi,j (τv)

)2
du

∣∣∣F̄v

]1/2

≤ C
√

n(τv+1 − τv)
2.

Thus, by the definition (17),∑
v

E
[

sup
τv≤t<τv+1

|�v(t)|
∣∣F̄v

]
≤ C

√
n

∑
v

(τv+1 − τv)
2

≤ C
√

n
1

n
T sup

0≤t≤T

1

θ(t)
→a.s. 0.

According to Lemma 3.2 it follows that
∑

v supτv≤t<τv+1
|�v(t)| →p 0. Hence,

sup
0≤t≤T

∣∣∣∣∑
v

�v(t)

∣∣∣∣ ≤ ∑
v

sup
τv≤t<τv+1

|�v(t)| →p 0,

which completes the proof that the first term in the right-hand side of (26) tends
uniformly to zero in probability.
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Completely similar, but more complex computation show that for any indexes
i, j, k, l,m, and using Lemma 2.8 with p = 2 for j = m and computations similar
to (but simpler than) the proof of Lemma 2.8 for j 
= m,

n

∫ t

0

∑
v

∫ s

τv

1v(s)βi,j (u) dBj (u)

∫ s

τv

1v(s)βl,m(z) dBm(z)βj,k(s)βm,k(s) ds

= n

∫ t

0

∑
v

βi,j (τv)βj,k(τv)βl,m(τv)βm,k(τv)

× (
Bj(s) − Bj(τv)

)(
Bm(s) − Bm(τv)

)
1v(s) ds + op(1)

→p

1

2

∫ t

0
βi,j (s)βj,k(s)βl,m(s)βm,k(s)/θ(s)δj,m ds,

where δj,m is 1 if j = m and zero otherwise. Recalling that Gj,k = βj,k , and as

before approximating Hn
i,j (s) = √

n(Yi(s) − Yi ◦ ηn(s)) by
∑d

k=1
∑

v

∫ s
τv

1v(s)×
βi,k(u) dBk(u) it follows that condition (5) of Theorem 2.2 holds as∫ t

0
Hn

i,jGj,kH
n
l,mGm,k ds →p

1

2

d∑
r=1

∫ t

0
βi,rβl,rβj,kβm,k/θ ds.(28)

Now we recognize that the choice Hi,jGj,kσ
k
(i,j),(r,s) = δr,sβj,kβi,r/

√
2θ satisfies

equation (28). Hence,

{Zn
i,j } = {Hn

i,j · Yj } ⇒s

{
d∑

r,k=1

βj,kβi,r√
2θ

· Wr,k

}
.(29)

Arguments similar to those above show that {Hn
i,j ·Yj } has uniformly controlled

variations and hence are good. Stable convergence implies that the left-hand side
of (29) converges jointly with Y . The first conclusion of the theorem now follows
from Theorem 2.7, for the case when the coefficients are bounded.

To remove the restriction that the coefficients are bounded, for general αi, βi,j

define coefficients αc
i = (−c) ∨ αi ∧ c and βc

i,j = (−c) ∨ βi,j ∧ c. Theorem 5.2.1
in Øksendal (2003) still yields unique t-continuous solution Y c to (24) for these
functions. Let Un,c be defined from αc

i , β
c
i,j in the same way as Un is defined

from αi, βi,j . With obvious notation, we have already proved that Un,c ⇒ Uc, as
n → ∞ for each fixed c. Since P(supt∈[0,T ] |Y c(t) − Y(t)| > 0) → 0, as c → ∞
also Uc ⇒ U . Further,

lim sup
n

P
(

sup
t∈[0,T ]

|Un,c − Un| > 0
)

≤ P
(
inf

{
t : max{max{|αi(Ȳt )|},max{|βi,j (Ȳt )|}} ≥ c

} ≤ T
) → 0

as c → ∞. Hence, Theorem 3.2 in Billingsley (1999) gives that Un ⇒ U , which
proves that the first result of the theorem holds also for the general case.

The second conclusion follows from from the first by the continuous mapping
theorem, since the supremum mapping is continuous. �
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4. Designing the error in approximations of stochastic integrals. In decid-
ing on which approximation scheme to use to compute a stochastic integral—or,
to decide on a hedging strategy—one has to balance the error with the number of
intervention times N = Nn = max{k; τn

k < T }. In this section we will investigate
two such schemes. The first one could be called the “no bad days” strategy, and
simply consists in choosing the stopping times {τk} where the stochastic integral
is evaluated—or the times when the portfolio is rehedged—in such a way that the
error is a Wiener process. In the second strategy we bound the expected number of
evaluation times and minimize the asymptotic standard deviation of the approxi-
mation error under this restriction.

The setting of this section is the following: suppressing the superscript n the
stopping times are given by (17), that is, τ0 = 0 and

τk+1 =
(
τk + 1

nθ(τk)

)
∧ T(30)

with θ adapted and positive, and the distribution of the approximation error ε(t)

satisfies

√
nε(t) ⇒

∫ t

0

f (s)√
θ(s)

dW(t)(31)

for some adapted process f (s) ≥ 0 and Wiener process W which is independent
of θ and f . Here it should be noted that (31) is more general than it looks at
first; for example, the approximation error in Theorem 3.3 satisfies this for f (t) =√

1
2

∑d
k,m=1 �2

k,m(t).
It is straightforward to find the asymptotic number of evaluation times.

PROPOSITION 4.1. Suppose that θ is Riemann integrable a.s. and that
inf0≤t≤T θ(t) > 0 a.s. Then

lim
n→∞

Nn

n
=

∫ T

0
θ(t) dt a.s.

If, in addition, E[sup0≤t≤T θ(t)] < ∞, then

lim
n→∞E

Nn

n
=

∫ T

0
Eθ(t) dt.

PROOF. Suppose first θ is of the form

θ(t) =
k∑

i=0

θi1[ai ,ai+1)(t)(32)

for some random variables θi > 0 and constants 0 = a0 < a1 < · · · < ak = T ,
and with 1[ai ,ai+1) the indicator function of the interval [ai, ai+1). For each ω, it
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is easily seen that the number of intervention times in the interval [ai, ai+1) is
nθi(ai+1 − ai) + O(1), and hence

Nn

n
=

k∑
i=0

θi(ai+1 − ai) + O

(
1

n

)
=

∫ T

0
θ(t) dt + O

(
1

n

)
→

∫ T

0
θ(t) dt

as n → ∞. If θ̃ ≤ θ and θ̃ is of the form (32) then, with obvious notation, Nn(θ̃) ≤
Nn(θ) + O(1), and the corresponding bound with all the inequalities reversed is
also true.

Now, by assumption θ is Riemann integrable, and hence can be approximated
arbitrarily well from below and above by functions of the form (32). This proves
the first assertion of the proposition.

Furthermore, Nn/n ≤ T sup0≤t≤T θ(t) + 1/n, and hence the second assertion
follows from the first one by dominated convergence. �

In the rest of this section we assume that we “are in the asymptotic regime,” that
is, that n is so large that we, to the degree of approximation needed, may assume
that the limits above can be replaced by equalities. Thus, below we will assume
that

EN = n

∫ T

0
Eθ(t) dt, ε(t) = 1√

n

∫ t

0

f (s)√
θ(s)

dW(t),(33)

so that in particular Eε(t)2 = 1
n

∫ t
0 E

f (s)2

θ(s)
ds.

The no bad days strategy: It is at once seen, supposing that f 2 is Riemann
integrable, that if we choose θ(t) = cf (t)2, for some constant c, then

ε(t) = 1√
cn

W(t)

and

EN = cn

∫ T

0
Ef 2(s) ds.

Thus, in a financial setting, with this choice of θ , there are no “days” where the
hedging error grows quicker than during other days, and hence a trader can sleep
equally well (or equally badly!) each night.

Minimal standard deviation: We will now, supposing that f is Riemann inte-
grable, show that the solution of the optimization problem

inf{θ : θ≥0,adapted}
{√

Eε2(T ) : EN ≤ nC
}

is given by θ(t) = Cf (t)/(
∫ T

0 Ef (s) ds). For this choice

EN = nC, ε(t) =
√∫ T

0 Ef ds

nC

∫ t

0

√
f dW.
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Thus in particular, for the optimal strategy the standard deviation is
√

Eε(T )2 =∫ T
0 Ef ds/

√
nC.

Now, write θ̃ = nθ . With this notation Eε(T )2 = E
∫ T

0 f 2/θ̃ ds and the restric-
tion is E

∫ T
0 θ̃ ≤ nC. Applying the Cauchy–Schwarz inequality twice, it follows

that
(

E

∫ T

0
f ds

)2

≤
(

E

√∫ T

0
f 2/θ̃ ds

√∫ T

0
θ̃ ds

)2

≤ E

(∫ T

0
f 2/θ̃ ds

)
E

(∫ T

0
θ̃ ds

)

and hence

Eε(t)2 ≥ (E
∫ T

0 f ds)2

nC
.

However, above we have seen that θ = Cf/(
∫ T

0 Ef ds) achieves this bound, and
hence is the optimal choice.

5. Application to hedging. An important application of the results in the pre-
vious section is to hedging of financial derivatives. Here we treat the simplest
Black–Scholes model and only give a brief comment on more complicated prob-
lems. The limit distribution of the Black–Scholes hedging error for equidistant
deterministic grids has been studied, for example, in Bertsimas, Kogan and Lo
(2000) and Hayashi and Mykland (2005). [We have not been able to follow the
proof of Theorem 1.b in Bertsimas, Kogan and Lo (2000); specifically, we could
not understand the use of Lemma 5.1 from Duffie and Protter (1992).]

We distinguish between complete and incomplete financial markets. In complete
markets, all derivatives can be replicated (hedged) perfectly by trading in a self-
financing way in the underlying and a money market account. The approximation
error distribution we analyze is here the total hedging error. In an incomplete mar-
ket, an investor who hedges a contract will still choose a hedging portfolio which
is, in some sense, optimal for her purposes. In this case, the error we obtain is rel-
ative to this optimal hedging portfolio. We give now an application of the results
in the previous section to hedging in the complete Black–Scholes market.

We assume that a stock S follows the Black–Scholes model. In other words, we
model the stock as a geometric Brownian motion, which has the dynamics

dS(t) = μS(t) dt + σS(t) dB(t)

for μ,σ > 0, where B is a Brownian motion, and S(0) = s > 0. Further, we have
a risk-free money market account with dynamics

dR(t) = rR(t) dt
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for r > 0, where R(0) = 1. It is well known that the price of a so-called call option
with payoff max(S(T )−K,0) at the deterministic terminal time T , for some strike
price K , is at time t

�(t) = �(d+)S(t) − Ke−(T −t)�(d−),

where � denotes the standard normal cumulative distribution function and

d±(t) = log(S(t)/K) + (r ± σ 2/2)(T − t)

σ
√

T − t
.

Now, if we set

Y(t) =
(

S(t)

R(t)

)

and f = (�(d+),−�(d−)Ke−rT ), we get that

�(t) =
∫

f (Y (t)) dY (t)

gives the self-financing price process of the call option. This is of the form con-
sidered in Theorem 3.3, with d = 2 and β1,1(t) = σS(t), and all other β-s equal
to zero. Thus, using the stopping times (17), Theorem 3.3 gives that the hedging
error satisfies

√
n
(
�(t) − � ◦ ηn(t)

) ⇒
∫ t

0

df1

dx1
(s)σ 2S(s)2/

√
2θ(s) dW(s)

=
∫ t

0

φ(d+(t))σS(s)√
2θ(s)(T − s)

dW(s)

with φ(t) = d�(t)/dt the standard normal density function.
Consider now an investor who hedges a call option, but who only adjusts her

hedge at some stopping times {τk}k≥1 of her own choosing. If she wants to have a
“uniform” increase of the error and make it approximately a Brownian motion, she
should use the “no bad days” strategy from the previous section. This would mean
that she would use the stopping times (30) with θ(t) = cφ(d+(t))2σ 2S(t)2/(2(T −
t)). However, this leads to a (purely) technical difficulty: θ(t) tends to 0 as t → T

if S(T ) ∈ R \ K and to ∞ if S(T ) = K . This means that the assumption of a.s.
Riemann integrability of 1/θ is not satisfied on [0, T ], nor is the assumption that
supt∈[0,T ] θ(t) < ∞ on [0, T ]. A theoretical (and in fact also practical) solution is
to instead only evaluate the hedging strategy up to a constant time V < T , with V

close to T . Theorem 3.3 gives that the hedging error up until V for large cn then
approximately is distributed as W(t)/

√
cn.

Alternatively, the minimum standard deviation strategy and the same reasoning
as above lead to choosing

θ(t) = Cφ(d+(t))σS(t)√
2(T − t)

/(
n

∫ V

0
E

[
φ(d+(s))σS(s)√

2(T − s)

]
ds

)
,(34)
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where C is the expected number of evaluation times. This yields the approximate
distribution √∫ V

0
E

[
φ(d+(s))σS(s)

C
√

2(T − s)

]
ds

∫ t

0

√
φ(d+(s))σS(s)√

2(T − s)
dW(s)(35)

for the hedging error, for n large.
It is now completely straightforward to add one or more stocks to the portfolio

and, using, for example, that
∫ t

0 f1/
√

θ dW1 + ∫ t
0 f2/

√
θ dW2 has the same distri-

bution as
∫ t

0

√
f 2

1 + f 2
1 /

√
θ dW , to find the optimal stopping times and the result-

ing error when the hedges for all of the stocks are adjusted at the same time points.
This is how portfolio hedging is done in practice. We leave these calculations to
the reader.

An alternative and equally interesting application of our results is to the field of
portfolio optimization. For example, in managing a large equity portfolio a track-
ing error arises due to that it is expensive, or otherwise infeasible, to rebalance the
portfolio back to its optimal state too frequently. Since the optimal portfolio to be
held by the investor is always known, we are exactly in the setting of the present
paper. Here, too, we leave the calculations to the reader.
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