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ON UTILITY MAXIMIZATION UNDER CONVEX
PORTFOLIO CONSTRAINTS

BY KASPER LARSEN AND GORDAN ŽITKOVIĆ1

Carnegie Mellon University and University of Texas at Austin

We consider a utility-maximization problem in a general semimartingale
financial model, subject to constraints on the number of shares held in each
risky asset. These constraints are modeled by predictable convex-set-valued
processes whose values do not necessarily contain the origin; that is, it may
be inadmissible for an investor to hold no risky investment at all. Such a setup
subsumes the classical constrained utility-maximization problem, as well as
the problem where illiquid assets or a random endowment are present.

Our main result establishes the existence of optimal trading strategies in
such models under no smoothness requirements on the utility function. The
result also shows that, up to attainment, the dual optimization problem can be
posed over a set of countably-additive probability measures, thus eschewing
the need for the usual finitely-additive enlargement.

1. Introduction and notation.

1.1. The existing literature. The study of utility maximization in continuous-
time stochastic models of financial markets dates back to the seminal contributions
of Robert Merton [30, 31]. General complete Brownian models were considered
by Karatzas, Lehoczky and Shreve [23] and Cox and Huang [7], where the authors
used convex-analytic (duality) techniques to characterize the optimizer. Duality
techniques for incomplete Itô-process models were first developed by Karatzas et
al. [24], and in a general semimartingale setting, by Kramkov and Schachermayer
[26, 27].

Cvitanić and Karatzas [9] extended the existence results of Karatzas et al. [24]
to incorporate convex constraints on the fraction of wealth invested in the risky
securities. In the same Itô-process driven setting, Cuoco [8] attacked the primal
problem directly and established the existence of optimizers when investors face
convex constraints either on the number of shares or on the amount invested.
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Relying on a version of the optional decomposition theorem of Föllmer and
Kramkov [15], Pham [34] and Mnif and Pham [32] studied constrained optimiza-
tion in the general semimartingale setting. In [34], the author generalized the short-
fall objective considered in Föllmer and Leukert [16], while, in [32], investors,
subject to either convex constraints on the number of risky securities, or American-
type constraints on the wealth process, have been considered. As in [27], both [34]
and [32] used “Komlós-type” arguments to establish the existence of primal opti-
mizers. The question of dual existence was, however, left open (see the discussions
on page 154 in [34] and page 167 in [32]). Constraints on the fractions of wealth
invested in the risky securities were investigated in [29] by Long who established
the existence of optimizers under a number of strong additional assumptions.

Among several authors who studied the existence of optimizers for nonsmooth
utility functions, we mention Bouchard, Touzi and Zeghal [4], and we direct the
reader to consult their references. The recent counterexample of Westray and
Zheng [41] illustrates some of the counterintuitive phenomena nonsmooth dual
objectives can produce.

1.2. Our contributions. The analysis in most of the papers mentioned above
requires that the investor be allowed to choose not to invest in the risky securities at
all, with [32] serving as a notable exception. In the present paper, no such condition
is imposed: one might be forced to invest in risky assets some or all of the time;
the idea to apply constraints not containing the origin to utility-maximization prob-
lems goes back, at least, to the work [20] of Kallsen; see also [21]. The study of
such a general class of constraints is interesting from both mathematical and eco-
nomical points of view. Mathematically, this setup produces an interesting convex-
analytic situation where the support function is no longer necessarily nonnegative.
Economically, such constraints correspond to the case when some of the available
assets are not perfectly liquid and the investor is effectively forced to hold them.
The case of a terminal random endowment, studied by Cvitanić, Schachermayer
and Wang [10] and Hugonnier and Kramkov [17] among others, can be embedded
in our setting—it corresponds to a constraint which forces the investor to hold one
unit of a specific asset to maturity. Finally, a number of classical constraints, in-
cluding the prohibition or restriction of short selling, can be interpreted as convex
portfolio constraints, and fit into our framework.

There are two main results in this paper and they both apply to a general semi-
martingale model of a financial market. The first one establishes the existence of
the primal and dual optimizers in the constrained utility-maximization problem,
with the dual problem defined over a class of finitely-additive measures. The con-
jugacy of the primal and the dual value functions is an integral part of our result.
The only assumption imposed on the utility function, besides the defining proper-
ties of concavity, monotonicity and the Inada condition at zero, is the reasonable
asymptotic elasticity of [26].
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Our second result is that the finitely-additive relaxation is, up to attainment,
in fact, not necessary, and that the dual problem can be posed over a class of
countably-additive measures. This result generalizes Theorem 2.2(iv) of [26] to
our constrained case; in particular, it subsumes the case of an unspanned endow-
ment considered in [10]. The main technical difficulty we had to overcome is the
absence of semicontinuity in the appropriate direction of the dual objective func-
tion (in general, this objective is not upper semicontinuous). Our solution is based
on Theorem 2.2(iv) of [26] and methods of locally-convex convex analysis. This
countably-additive relaxation has several practical implications. First of all, the
classical stochastic-optimal-control framework and the corresponding tools and
notions, such as the dynamic programming principle and the associated Hamilton–
Jacobi–Bellman equation, rely on having stochastic processes (in our case, densi-
ties of countably-additive measures) as controls. These tools are not immediately
available or applicable in more general settings (such as the finitely-additive one).
Furthermore, the existence of ε-optimal countably-additive measures serves as a
first step toward an efficient numerical treatment of the problem.

As far as no-arbitrage-type assumptions are concerned, our main existence and
conjugacy results are provided under the abstract assumption of closedness and
boundedness in probability (convex compactness in the language of Žitković [44])
of the L0+-solid hull C(x) of the set of terminal wealths of admissible portfolios
with initial wealth x. This condition is weaker than the celebrated No Free Lunch
with Vanishing Risk (NFLVR) of Delbaen and Schachermayer [13] and is rem-
iniscent of the No Unbounded Profit with Bounded Risk (NUPBR) condition of
Karatzas and Kardaras [22]. Indeed, given the presence of constraints, the classical
NFLVR can be too strong, as the constraints will often prevent the investor from
making riskless profit, even if the asset prices would admit arbitrage in the un-
constrained market. Using a new closedness result of Czichowsky and Schweizer
[11] for sets of constrained stochastic integrals in the semimartingale topology, we
give a general and easy-to-check sufficient condition for the convex compactness
of C(x).

1.3. Notation and function spaces. All stochastic objects are defined on a fil-
tered probability space (�, F , (Ft )t∈[0,T ],P) where the T ∈ (0,∞) is the time
horizon, and the underlying filtration F := (Ft )t∈[0,T ] satisfies the usual con-
ditions. For p ∈ (0,∞], Lp denotes the Lebesgue space Lp(�, F ,P), and L0

denotes the collection of all P-a.s. equivalence classes of finite-valued random
variables on (�, F ) (topologized by convergence in probability). If not stated oth-
erwise, all processes are assumed to be càdlàg and F-adapted, with the exception
of processes which serve as integrands in stochastic integrals; those are always
assumed to be F-predictable.

While none of our results require their mention in the statements, finitely-
additive measures are used quite frequently in proofs. We naturally identify finite-
valued finitely-additive set functions on (�, F ) which vanish on P-null events with
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the topological dual ba := (L∞)∗ of L∞; see [3] for further details. The dual pair-
ing of ba and L∞ is denoted by 〈·, ·〉 : ba × L∞ → R and the (dual) norm ‖ · ‖
on ba is given by ‖Q‖ := sup{|〈Q, f 〉| :f ∈ L∞,‖f ‖L∞ ≤ 1}. We do not differ-
entiate between the elements of L1(P) and their images under the natural bidual
embedding L1 ↪→ ba. In other words, we identify a countably additive measure Q

absolutely continuous with respect to P with its Radon–Nikodym derivative dQ
dP

.
All of the spaces above admit natural positive cones, denoted by L

p
+, for

p ∈ [0,∞] or ba+ in the case of ba. The domain of the pairing 〈·, ·〉 : ba × L∞ →
R can be replaced by ba+ × L0+ by setting 〈Q, f 〉 := limn→∞〈Q, f ∧ n〉 ∈
[0,∞], for Q ∈ ba+ and f ∈ L0+. Each element Q ∈ ba+ admits the unique de-
composition (called the Yosida–Hewitt decomposition) Q = Qr + Qs into a
countably-additive measure Qr ∈ L1+ and a singular part Qs ∈ ba+ uniquely char-
acterized by the fact that Q′ ≡ 0, whenever Q′ ∈ L1+ and Q′(A) ≤ Qs(A) for all
A ∈ F .

For an ordered normed space N with the closed positive orthant N+ and y ≥ 0,
we set BN(y) := {x ∈ N :‖x‖ ≤ y}, BN+ (y) := BN(y) ∩ N+, SN(y) := {x ∈
N :‖x‖ = y} and SN+ (y) := SN(y) ∩ N+. For a dual pair (X,X∗) of vector spaces
(with the pairing denoted by 〈·, ·〉) and a map f :X → (−∞,∞], f ∗ denotes the
(X,X∗)-convex conjugate of f , that is, f ∗(y) := supx∈X(〈x, y〉 − f (x)), y ∈ X∗.
Finally, we remind the reader that the (convex-analytic) indicator χB of a subset B

of X is defined by χB(x) := 0 for x ∈ B and +∞ otherwise.

2. Problem formulation and the main results.

2.1. The asset-price model. We consider a financial market with d ∈ N risky
assets modeled by a d-dimensional càdlàg semimartingale

S = (
S

(1)
t , . . . , S

(d)
t

)
t∈[0,T ].

The existence of a numéraire asset (S
(0)
t )t∈[0,T ], with S

(0)
t := 1 for t ∈ [0, T ]—

a zero-interest money-market account—is also postulated.
A predictable S-integrable process H = (H

(1)
t , . . . ,H

(d)
t )t∈[0,T ] is called a port-

folio and its value Ht is interpreted as the number of shares of each risky asset held
by the investor at time t ∈ [0, T ]. If a portfolio H is used to implement a dynamic
trading strategy, the gains/losses accrued by time t are given by XH

t , where

XH
t := (H · S)t :=

∫ t

0

d∑
k=1

H(k)
u dS(k)

u , t ∈ [0, T ].(2.1)

The sum on the right has to be understood in the sense of vector stochastic inte-
gration; see [6, 18] and Chapter VII, Section 1a, in [37].
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2.2. Convex constraints. Let 2Rd

c denote the set of all nonempty closed and
convex subsets of Rd .

DEFINITION 2.1. A map κ : [0, T ] × � → 2Rd

c is said to be predictable if the
set

{(t,ω) ∈ [0, T ] × � :κ(t,ω) ∩ F �= ∅}
is predictable for each closed set F ⊆ Rd .

We fix a predictable constraint map κ : [0, T ] × � → 2Rd

c ; it is used as a speci-
fication of an exogenously-imposed constraint on the possible values the portfolio
H can take. The set of all portfolios H such that Ht ∈ κt for all t ∈ [0, T ], P-
a.s., will be denoted by Aκ . The investment in the money market account is not
restricted.

In addition to the constraint imposed through κ , we consider a different kind of a
constraint known as the admissibility constraint. More precisely, a portfolio H for
which the process XH := H · S there exists a constant a ≥ 0 such that XH

t ≥ −a

for all t ∈ [0, T ], P-a.s., is called admissible. Such a constraint is commonplace in
mathematical finance and is imposed to rule out doubling strategies. The set of all
admissible portfolio processes is denoted by Alow.

Combining the above the two constraints produces the class A of constrained
admissible portfolios,

A := Alow ∩ Aκ .

Many classical constraint structures can be expressed in terms of a well-chosen κ ;
see, for example, Section 3 in [8] and Chapter 5 in [25]. We do exhibit, however,
in some detail the construction that allows us to treat the presence of a random
endowment in our framework:

EXAMPLE 2.2 (Random endowment as a special case of a portfolio con-
straint). As above, let the financial market consist of the risky assets S =
(S

(1)
t , . . . , S

(d)
t )t∈[0,T ] and the riskless asset S

(0)
t := 1. Let us also assume that S

admits no arbitrage in the sense of the condition NFLVR. Consequently, there ex-
ists an equivalent σ -martingale measure Q; see [14] for the terminology.

Let us also assume that the agent receives a lump-sum random endowment
E ∈ L∞(FT ) at time T . For an arbitrary equivalent σ -martingale measure Q, the
process Ŝt , defined as a càdlàg version of the bounded martingale EQ[E |Ft ], can
be added to S to form a larger financial market. The constraint set κ is defined so
as to mimic the behavior in the original market with the presence of the random
endowment,

κt (ω) := Rd × {1}.
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Indeed, any admissible constrained portfolio in the augmented market (S, Ŝ) leads
to a total wealth of the form (H · S)T + ŜT − Ŝ0 = x + (H · S)T + E , for x :=
−EQ[E ] (under the assumption that F0 is P-trivial). Thanks to the boundedness
of E , the notions of admissibility in the two markets are equivalent.

It is possible to extend the domain of this example in various directions. For
example, to treat an unbounded random endowment, one would need to use a
more sophisticated version of the admissibility requirement or resort to a change
of numéraire.

2.3. No-arbitrage conditions on the financial market. Moving on toward our
main result, we introduce notation for the set of gains processes of admissible
constrained portfolios, as well as for certain related sets,

X c := {
(XH

t )t∈[0,T ] :H ∈ A
}
,

K := {XT :X ∈ X c},
(2.2)

C := (K − L0+) ∩ L∞,

C(x) := (x + K − L0+) ∩ L0+ for x ∈ R.

As far as technical conditions are concerned, we start with a succinct umbrella
assumption under which our main theorem holds. Natural sufficient conditions
on separate ingredients—the market and the constraint correspondence—will be
briefly described below, and then in detail in Section 4.

Following [44], we say that a subset of a topological vector space is convexly
compact if any family of closed and convex sets with the finite-intersection prop-
erty admits a nonempty intersection. In [44], it is shown that a subset of L0+ is
convexly compact if and only if it is bounded and closed in probability.

ASSUMPTION 2.3. C(x) is convexly compact for all x ∈ R, and there exists
x ∈ R such that C(x) �= ∅.

REMARK 2.4. Let us comment on the interpretation of Assumption 2.3. The
nonemptiness condition is equivalent to assuming A �= ∅, that is, that it is possible
to produce a bounded-from-below wealth process without violating the constraints.
Boundedness in probability serves as a weak no-arbitrage requirement and can be
deduced, in may cases, already from the finiteness of the expected-utility value
function. Similar weakenings of the no-arbitrage condition have already been con-
sidered in the literature; see, for example, Section 3 in [22]. The closedness re-
quirement is a natural condition for the existence of an expected-utility optimizer
and is present in virtually all widely-used no-arbitrage concepts.

Let us preview a sufficient condition for Assumption 2.3. The definitions of the
map 	S (the projection onto the predictable range map of [11]) and the support
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measure PS of S are postponed until Section 4.2. Let us mention that the below
condition (2) is always satisfied for any S if κt (ω) is polyhedral, compact, or if
it admits a continuous support function, for each t ∈ [0, T ], P-a.s.; see [12] for
details. However, [11] and [12] contain examples showing that (2) in the following
proposition is not true in general.

PROPOSITION 2.5. Assumption 2.3 holds if the following three conditions are
satisfied:

(1) A �= ∅;
(2) the projection 	S

t (ω)κt (ω) is closed, for PS -a.e.;
(3) there exist:

(a) a probability measure Q ∼ P;
(b) Ĥ ∈ A with EQ[(Ĥ · S)T ] < ∞ and Ĥ · S locally bounded;
(c) a nondecreasing predictable càdlàg process {At }t∈[0,T ], with A0 = 0,
such that

H · S − (Ĥ · S + A) is a Q-supermartingale for all H ∈ A.(2.3)

REMARK 2.6. (1) Conditions on the constraint set κ , under which property (2)
in Proposition 2.5 holds, are presented in [11].

(2) The process A in (3)(c) above is allowed to depend on the measure Q from
(3)(a) and the process Ĥ from (3)(b). It has to guarantee the supermartingale prop-
erty of H · S − (Ĥ · S + A), however, for all H ∈ A simultaneously.

(3) In the unconstrained case, the existence of a local-martingale measure for S

suffices for property (3) in the above proposition with A = 0 and Ĥ = 0. When the
constraint set forms a convex cone, the process A scales away (unlike in [22] where
the admissibility criterion is different), and the existence of a local supermartingale
measure suffices.

(4) The supermartingale requirement in Proposition 2.5 (3)(c) can be weakened
by imposing additional regularity on A and Ĥ · S. More precisely, if AT is Q-
integrable and Ĥ ·S is a Q-uniformly integrable martingale, it is enough to assume
that the process H · S − (Ĥ · S + A) is a Q-local supermartingale. Indeed, the
(full) Q-supermartingality will then immediately follow by the (DL) property of
its negative part.

We conclude this section with an example in a “Brownian” setting.

EXAMPLE 2.7 (Itô-process-driven models). Let us consider the standard Itô-
process setting used, for example, in [25]. We fix d ∈ N and let (Wt)t∈[0,T ] be
a d-dimensional Brownian motion and (Ft )t∈[0,T ] its augmented filtration. The
stock price dynamics are given by

dSt := μt dt + σt dWt, S0 := 1, t ∈ [0, T ],(2.4)
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with the d-dimensional column-vector process (μt )t∈[0,T ] and the d × d-matrix
process (σt )t∈[0,T ] are progressively measurable, and such that the integrals in (2.4)
are well defined.

With no invertibility requirements imposed on it, σt can be assumed to be a
square matrix, that is, that there are as many risky assets as there are independent
Brownian motions, without loss of generality. For later use, we define the linear-
subspace-valued process (It )t∈[0,T ]—called the span process—by

It := {σtν :ν ∈ Rd}.
As far as the constraints are concerned, we fix a closed convex constraint map

(κt )t∈[0,T ] and associate to it is the recession-cone process (Rt )t∈[0,T ] defined by

Rt := {ξ ∈ Rd :∀t > 0,∃y ∈ κt , y + tξ ∈ κt }.
In words, Rt contains all the directions in which κt is unbounded. We will also need
the barrier-cone process whose values are the polar cones of the values of Rt , that
is,

Bt := {η ∈ Rd :ηT ξ ≤ 0, for all ξ ∈ Rt }.
Consider now the following condition:

It ∩ (μt − Bt) �= ∅ on � × [0, T ].(2.5)

In words, either μt is contained in the image of σt (the typical no-arbitrage re-
quirement in the unconstrained case), or we can travel to μt from some point in
the image of σt using one of the elements of the barrier cone as a velocity vector.
We note that, by choosing an appropriate constraint structure, one can, without
loss of generality, assume that (σt )t∈[0,T ] is everywhere invertible, and, thus, that
It = Rd . For flexibility’s sake, we opt to keep both processes at the current level
of generality.

The correspondence (t,ω) → It (ω) ∩ (μt (ω) − Bt(ω))) takes values in the set
of nonempty closed subsets of Rd . Moreover, it is weakly measurable with re-
spect to the progressive σ -algebra; see Definition 18.1, page 592, of [1] for vari-
ous measurability notions for correspondences. Indeed, this follows easily from the
progressive measurability of the processes μ and σ . Therefore, we can apply the
Kuratowski–Ryll–Nardzewski Selection theorem (see Theorem 18.13, page 600,
in [1]) which guarantees the existence of a progressively measurable process
(μ̂t )t∈[0,T ] with μ̂t ∈ It ∩ (μt − Bt). Then, we can pick a process (νt )t∈[0,T ] such
that σtνt = μ̂t . This can be done, for example, through the (measurable) opera-
tion of choosing the unique minimal-norm solution of a solvable linear system,
that is, by taking the Moore–Penrose inverse; see page 35 of [2] for definitions
and example 25 on page 101 for the statement and the proof of the so-called
Tihonov-regularization representation which can be used to deduce the aforemen-
tioned measurability of the Moore–Penrose pseudoinversion.
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Assuming that the stochastic exponential E (−ν · W) is a (true) martingale, we
define the measure Qν ∼ P by dQν

dP
:= E (−ν · W)T . For two processes H , Ĥ ∈ A,

we note that finite-variation part in the semimartingale decomposition of the pro-
cess (H − H ′) · S under the probability measure Qν is absolutely continuous with
the derivative given by

(Ht − H ′
t )

T (μt − σtνt ) = (Ht − H ′
t )

T βt .

Since βt ∈ Bt , one can find the “farthest” point in κt in the direction βt . More pre-
cisely, we set Ĥt = arg maxh∈κt

hT βt . Then, it follows that (h − Ĥt )(μt − σtνt ) ≤
0, for all h ∈ κt . If one could ensure that the so-constructed process (Ĥt )t∈[0,T ]
indeed belongs to the admissible set Alow and that Ĥ · S is a Qν-martingale, part
(4) of Remark 2.6 would guarantee that the requirement (3) in Proposition 2.5 is
fulfilled in a very parsimonious way: we could simply take At := 0.

Alternatively, one can exchange some of the unpleasant regularity needed for
the above approach for the necessity of the use of a nontrivial process A. Indeed,
let the processes ν and β be as above, and let Ĥ ∈ A be such that Ĥ · S is a
Qν-martingale; Ĥt := 0 is always a possibility.

We define the process A as

At :=
∫ t

0

(
δκu(βu) − Ĥ T

u βu

)
dt,

where δκt (ξ) := suph∈κt
hT ξ is the support function of the constraint set κt . This

way, we can fulfill requirement (3) in Proposition 2.5, by checking that EQν [AT ] <

∞.
Finally, let us shortly describe a case in which no equivalent local-martingale

measure can be found in the unconstrained version of the market, but one can
still verify the conditions of Proposition 2.5. We take d := 1, σt := 1 and a
progressively-measurable process μt such that:

(1) E[∫ T
0 μ2

t dt] < ∞, but
(2) E[E (−μ · W)T ] < 1; that is, E (−μ · W) is not a true martingale.

An example of such a process μt can be based on the three-dimensional Bessel
process; see, for example, Example 2.2 in [28] for details. Girsanov’s theorem
implies that no local-martingale measure can exist for S. Indeed, the only candidate
fails to be a probability measure.

On the other hand, let us choose a constant constraint set κt := [−1,1] and take
Q := P, Ĥ := 0 and At := ∫ t

0 δκt (μt ) dt = ∫ t
0 |μu|du. For any H ∈ A, we have

(H · S)t − At =
∫ t

0
(Huμu − |μu|) du +

∫ t

0
Hu dWu,

a process which is clearly a supermartingale. Consequently, the conditions of
proposition (3) are satisfied.
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A more extreme version of the above can be constructed by simply taking
St := t and κt := (−∞,1]. The original, unconstrained, market allows for (un-
bounded) arbitrage which cannot be implemented without violating the con-
straints. Constraints still allow for a limited riskless gain, but the conditions of
Proposition 2.5(3) hold.

2.4. The primal problem. The investor’s preferences are modeled by a func-
tion U—called a utility function—which will always be assumed to satisfy the
following assumption:

ASSUMPTION 2.8. U : (0,∞) → R is a nondecreasing and concave function
with the following two properties:

∃x0 > 0, c ∈ (1,2) ∀x ≥ x0

U(2x) ≤ cU(x), lim
x↘0

U ′+(x) = ∞(2.6)

where U ′+ denotes the right derivative.

REMARK 2.9. The first part of condition (2.6) is a derivative-free restate-
ment of the notion of the reasonable asymptotic elasticity of [26] (for details, see
Lemma 6.3(i) in [26]), and it restricts the rate of growth of U in the neighbor-
hood of +∞. In particular, (2.6) implies that the Inada condition at +∞, namely,
limx→∞ U ′(x) = 0, is satisfied if U ′ is interpreted as either the left or the right
derivative.

To simplify the notation later on, we extend the definition of U by semicontinu-
ity to [0,∞) by setting U(0) = infξ>0 U(ξ) and, further, to R, by U(x) = −∞, for
x < 0. The (primal) value function u : R → [−∞,∞] of the utility-maximization
problem, parametrized by the investor’s initial wealth x ∈ R, is then defined by

u(x) := sup
X∈K

E[U(x + X)],(2.7)

where we use the convention that for ξ ∈ L0, one has E[ξ ] = −∞ whenever
E[ξ−] = ∞, even if E[ξ+] = ∞.

The monotonicity of U and the fact that U(x) = −∞ for x < 0, imply

u(x) = sup
X∈(K−L0+)

E[U(x + X)] = sup
f ∈C(x)

E[U(f )],

where sup ∅ := −∞. The monotone convergence theorem guarantees that

u(x) = sup
f ∈C

U(x + f ),

where the map U : L∞ → [−∞,∞) is a shorthand for f �→ E[U(f )] with U re-
garded as defined on (−∞,∞).
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2.5. The dual problem. To introduce the dual optimization problem we first
need to recall the notion of a support function. Let C be as in (2.2) above, and let P
denote the set of all (countably additive) probability measures on (�, F ) which are
absolutely continuous with respect to P. The support function αC of C is defined
by

P � Q → αC (Q) := sup
f ∈C

EQ[f ] ∈ (−∞,∞].(2.8)

The optimization problem (for now only formally) dual to the primal utility-
maximization problem (2.7) above is defined by its value function v : [0,∞) →
[−∞,∞],

v(y) := inf
Q∈P

(
E

[
V

(
y

dQ

dP

)]
+ yαC (Q)

)
,(2.9)

where V (y) := supx∈R(U(x) − xy) ∈ (−∞,∞], y ∈ R, is the Fenchel–Legendre
transform of −U(−·).

2.6. Main result. The following theorem extends some of the main existence
results in [10, 26] and [27] to the constrained case and shows that countably-
additive measures suffice to describe the dual value function.

THEOREM 2.10. Let u and v be defined by (2.7) and (2.9), respectively, and
assume that u(x) ∈ R for some x ∈ R. Under Assumptions 2.3 and 2.8, with x :=
inf{x ∈ R :u(x) > −∞}, the following assertions hold:

(1) The function u is concave, upper semicontinuous and nondecreasing, while
v is convex and lower semicontinuous.

(2) We have x = − infQ∈P αC (Q), where αC is defined in (2.8). Furthermore,
u(x) ∈ R for x ∈ (x,∞) and u(x) = −∞ for x ∈ (−∞, x).

(3) For each x ∈ R with u(x) ∈ R (and, in particular, for x > x), there exists
H(x) ∈ A such that

u(x) = E

[
U

(
x +

∫ T

0
H(x)

u dSu

)]
.

(4) The following conjugacy relations hold:

v(y) = sup
x∈R

(
u(x) − xy

)
, y ∈ R,(2.10)

u(x) = inf
y∈[0,∞)

(
v(y) + xy

)
, x ∈ R.(2.11)

REMARK 2.11. (1) Theorem 2.10 and Example 2.2 show that Theorem 2.2(iv)
in [26] indeed carries over to the random-endowment setting of [10] also when the
utility function U is nonsmooth. Theorem 3.1(ii) in [10] provides a link between
the primal and dual optimizers. As we discuss in the next section, we can only
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guarantee the existence of a finitely additive dual minimizer Q̂y ∈ ba and, in gen-
eral, we will not have Q̂y ∈ P . Under the additional assumption that U is strictly
concave, the dual function V is differentiable by Theorem 26.3 in [36]. We can
then extend Theorem 3.1(ii) in [10] to our setting by using the Yosida–Hewitt de-
composition of Q ∈ ba into its regular part Qr ∈ L1+ and its purely singular part
Qs as follows. For x > supQ∈P −αC (Q) we have the relation

x +
∫ T

0
H(x)

u dSu = −V ′
(
ŷ

dQ̂r
ŷ

dP

)
, P-a.s.,(2.12)

where ŷ attains the infimum in (2.10), and Q̂r
ŷ

denotes the regular part of Q̂ŷ ,

a minimizer in the generalized dual problem vba; see Section 3.1 for details. By
using the positive homogeneity of the support function αC , the proof of (2.12) is a
straightforward application of the ideas in [10].

(2) When U is not necessarily strictly concave, [4] and later [40] establish the
validity of (2.12) in the setting of Example 2.2 when V ′ is replaced by the V ’s
subdifferential ∂V . However, as discussed in their Remark 3.9.3, the authors of [4]
assume a specific relationship between the domain of U and the norm ‖E ‖L∞(FT ),
which makes it difficult to compare their setting to ours. Finally, we mention
Westray and Zheng [41] who illustrate a possible pitfall related to using ∂V in-
stead of V ′ in (2.12) when U is not strictly concave.

3. Proofs.

3.1. A relaxation of the dual problem. We first note that αC naturally extends
from P to the space ba by replacing the expectation EQ[f ] by the value 〈Q, f 〉
of the dual pairing in (2.8). With such an extended domain, αC coincides with
the convex (L∞,ba)-conjugate (χC )∗ of the convex indicator χC . It follows, in
particular, that αC is convex and σ(ba,L∞)-lower semicontinuous.

To extend the dual value function, we follow [43] and define the map V : ba →
(−∞,∞] of U by

V(Q) := sup
f ∈L∞

(
U(f ) − 〈Q, f 〉) for Q ∈ ba.(3.1)

We note that V = Û∗, for the (L∞,ba)-duality, where Û(f ) = −U(−f ). A min-
imal modification of Lemma 2.1, page 138, in [33] produces the following repre-
sentation:

V(Q) =
⎧⎨
⎩

E

[
V

(
dQr

dP

)]
, Q ∈ ba+,

∞, Q /∈ ba+.
(3.2)
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As mentioned in the Introduction, Qr denotes the regular part in the Yosida–Hewitt
decomposition Q = Qr + Qs .

With V and αC extended as above, a relaxed version of the dual value function
can be posed over the y-sphere in ba:

vba(y) := inf
Q∈Sba+ (y)

(
V(Q) + αC (Q)

)
for y ≥ 0.

Since yP can be identified with SL1

+ (y), which, in turn, admits a natural embed-
ding into Sba+ (y), it is clear that vba(y) ≤ v(y). It is the equality between the two
functions (as demonstrated in Proposition 3.14 below) that will be one of the major
steps in the proof of our main Theorem 2.10. Unfortunately, it is not true in general
that the involved quantities are σ(ba,L∞)-upper semicontinuous so this equality
cannot be deduced from the σ(ba,L∞)-density of SL1

(y) in Sba(y).
Some of the advantages that working with vba affords over v are evident from

the following result, which follows directly from the σ(ba,L∞)-compactness of
Sba+ (y) (the Banach–Alaoglu theorem) and the σ(ba,L∞)-lower semicontinuity of
V + αC .

PROPOSITION 3.1. If C �= ∅ and Assumption 2.8 holds, vba(y) admits a
minimizer for each y > 0. More precisely, there exists Q̂(y) ∈ Sba+ (y) such that

vba(y) = V(Q̂(y)) + αC (Q̂(y)).

3.2. Conjugacy of value functions.

PROPOSITION 3.2. Suppose that Assumptions 2.3 and 2.8 hold and that
u(x) ∈ R for some x ∈ R. Then:

(1) vba(y) = supx∈R(u(x) − xy), for all y ∈ R, and
(2) there exists y > 0 such that vba(y) < ∞.

PROOF. (1) By the Banach–Alaoglu theorem, Sba+ (y) is σ(ba,L∞)-compact
for any y ≥ 0. Moreover, the Lagrangian,

L(Q, (f, g)) := U(f ) − 〈Q, f − g〉:
(a) is concave in (f, g) on L∞ × L∞, and
(b) convex, and σ(ba,L∞)-lower semicontinuous in Q on ba.

Therefore, the minimax theorem (see [38]) can be used to interchange inf and sup
in (3.3) below. Also, let us note that for h ∈ L∞ and y ≥ 0, we have

sup
Q∈Sba+ (y)

〈Q, h〉 = y ess suph.
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It follows that

vba(y) = inf
Q∈Sba+ (y)

(
V(Q) + sup

g∈C
〈Q, g〉

)

= inf
Q∈Sba+ (y)

sup
f ∈L∞

(
U(f ) − 〈Q, f 〉 + sup

g∈C
〈Q, g〉

)

= inf
Q∈Sba+ (y)

sup
(f,g)∈L∞×C

(
U(f ) − 〈Q, f − g〉)(3.3)

= sup
(f,g)∈L∞×C

inf
Q∈Sba+ (y)

(
U(f ) − 〈Q, f − g〉)

= sup
(f,g)∈L∞×C

(
U(f ) − y ess sup(f − g)

)
.

We can split the last supremum according to the value of ess sup(f − g) and use
the monotonicity of U to obtain

vba(y) = sup
x∈R

sup
g∈C,f∈L∞f ≤g+x

(
U(f ) − yx

)

= sup
x∈R

sup
g∈C

(
U(x + g) − yx

) = sup
x∈R

(
u(x) − xy

)
.

(2) This is a direct consequence of the standing assumption that u is proper and
the fact that properness is preserved under conjugacy; see Theorem 12.2, page 104,
in [36]. �

3.3. Existence in the primal problem. We start with a variant of the argument
developed in the proof of Theorem 4.2 in [13], adjusted to our case of convex
constraints.

LEMMA 3.3. Under Assumption 2.3, the set C is nonempty, and σ(L∞,L1)-
closed.

PROOF. Let x ∈ R be such that C(x) is nonempty. Then, there exists X ∈ K
such that x + X ≥ 0, P-a.s., and so the constant random variable −x belongs to C ,
proving that C is nonempty.

To prove closedness, for M > 0 we define the closed L∞-ball BL∞
(M) = {f ∈

L∞ :‖f ‖∞ ≤ M}. By a version of Grothendieck’s lemma (see, e.g., Theorem 5.1
in [15]) and the convexity of C , the claim is equivalent to showing that C ∩BL∞

(M)

is closed in probability for all M > 0. So let (fn)n∈N ⊂ C ∩ BL∞
(M) converge to

f0 in probability. It is clear that f0 ∈ BL∞
(M), and we only need to show that

f0 ∈ C . We have fn + M ≥ 0, hence, fn + M ∈ C(M). By Assumption 2.3, the set
C(M) is closed in probability which ensures that f0 + M ∈ C(M); that is, there
exists H ∈ A such that f0 + M ≤ M + (H · S)T . Therefore, f0 ∈ C . �
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By using the extended definition 〈Q, f 〉 := limn→∞〈Q, f ∧ n〉 for Q ∈ P and
f ∈ L0+, we have the following characterization of the sets C and C(x).

COROLLARY 3.4. Under Assumption 2.3:

(1) f ∈ L∞ belongs to C if and only if 〈Q, f 〉 ≤ αC (Q), for all Q ∈ P ;
(2) f ∈ L0+ belongs to C(x) if and only if 〈Q, f 〉 ≤ x + αC (Q), for all Q ∈ P .

PROOF. Closedness of C implies that the convex function χC is lower
semicontinuous for the σ(L∞,L1)-topology. Therefore, χC is its own σ(L∞,
L1)-biconjugate, and consequently, χC (f ) = supQ∈P (〈Q, f 〉 − αC (Q)) which
proves (1).

For (2) we pick f ∈ C(x) and n ∈ N, and note that for some H ∈ A, we have

(f − x) ∧ n ≤ (H · S)T ∧ n ∈ C.

Therefore, for Q ∈ P , Fatou’s lemma implies that

〈Q, f − x〉 ≤ lim inf
n→∞ 〈Q, (f − x) ∧ n〉 ≤ αC (Q).

Conversely, let f ∈ L0+ be such that 〈Q, f − x〉 ≤ αC (Q) for all Q ∈ P . Then
for n ∈ N we also have 〈Q, (f − x)∧n〉 ≤ αC (Q). Hence, by (1), (f − x)∧n ∈ C ,
and so (f − x) ∧ n + x ∈ C(x), for all n ∈ N. The claim now follows directly from
the closedness of C(x) in probability. �

LEMMA 3.5. Under Assumptions 2.3 and 2.8, we have supf ∈C(x) E[U+(f )] <

∞, whenever u(x) ∈ R.

PROOF. We define the constant x′ = inf{x > 0 :U(x) ≥ 0}. If x′ = ∞ there is
nothing to prove, and so, in what follows, we assume that x′ ∈ [0,∞). By Propo-
sition 3.1, part (2), there exist y > 0 and Q ∈ Sba+ (y) such that V(Q) < ∞ and
αC (Q) < ∞. Since U(f ) ≤ V(Q) + 〈Q, f 〉 for each f ∈ L∞, in particular, for
f ∈ (x + C) ∩ L∞+ , we have

E[U+(f )] ≤ E
[
U

(
f 1{f ≥x′} + x′1{f <x′}

)]
≤ V(Q) + 〈Q, f 〉 + 〈Q, x ′〉
≤ V(Q) + αC (Q) + x′y,

which is finite and independent of the choice of f . �

Let us choose and fix constants x0 > 0 and c ∈ (1,2) as in Assumption 2.8.
For h ∈ L∞ with h ≥ x0, we then have U(2h) ≤ cU(h); iterating this inequality
produces

E[U(2mh)] ≤ cmE[U(h)] for all m ∈ N, h ∈ x0 + L∞+ .(3.4)
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PROPOSITION 3.6. Under Assumptions 2.3 and 2.8, for each x ∈ R with
u(x) ∈ R there exists f (x) ∈ C(x) such that u(x) = U(f (x)).

PROOF. The function u is clearly concave, so the existence of x ∈ R such that
u(x) < ∞ implies that it is proper, that is, that u(x) < ∞, for all x. We pick x ∈ R

with u(x) < ∞ and let {fn}n∈N ⊂ C(x) be a maximizing sequence, that is, a se-
quence in C(x) such that U(fn) → u(x). Since C(x) is bounded in probability, we
may find a sequence {gn}n∈N, of convex combinations gn ∈ conv(fn, fn+1, . . .),
which converges in probability to some f (x) ∈ L0+. The concavity of U implies
that gn is also a maximizing sequence. Furthermore, f (x) ∈ C(x) since C(x) is
closed in probability.

To show that f (x) is indeed a maximizer, we use Fatou’s lemma to conclude
that E[−U−(f (x))] ≥ lim supn E[−U−(gn)], so that it is enough to show that
E[U+(gn)] → E[U+(f (x))]. This will follow once we show that the sequence
{U+(gn)}n∈N is uniformly integrable.

We start by defining the nonnegative constant

x′ := inf{x > x0 :U(x) > 0}.
If x′ = ∞ there is nothing to prove, and so we assume that x′ ∈ [0,∞). We
argue by contradiction and assume that {U+(gn)}n∈N is not uniformly inte-
grable. Lemma 3.5 ensures that {U+(gn)}n∈N is bounded in L1. Therefore, Corol-
lary A.1.1 in [35] produces a subsequence, still labeled {U+(gn)}n∈N, ε > 0, and
a pairwise disjoint sequence of events {An}n∈N such that

E[U+(gn)1An] ≥ 2ε > 0 for all n ∈ N.

The monotone convergence theorem allows us to exchange ε in utility for bounded-
ness and obtain the existence of a sequence {rn}n∈N ⊆ L∞+ ∩ C(x) such that rn ≤ gn

and E[U+(rn)1An] ≥ ε, for all n ∈ N. Let the sequence {hn}n∈N of bounded ran-
dom variables be defined by

hn := x′ +
n∑

k=1

rk1Ak
∈ x′ + L∞+ ⊆ x0 + L∞+ .

For Q ∈ P , we have 〈Q, hn − x′ − nx〉 = ∑n
k=1〈Q, rk1Ak

− x〉 ≤ nαC(Q), so that
1
n
hn ∈ C(x + 1

n
x′) ⊆ C(x + x′) for all n ∈ N. On the other hand, since U(hn) =

U+(hn), we have

E[U(hn)] ≥
n∑

k=1

E[U+(rk)1Ak
] ≥ nε.

Using (3.4) with n = 2m for m ∈ N produces

2mε ≤ E[U(h2m)] ≤ E[U(2mx′ ∨ h2m)] ≤ cmE

[
U

(
x′ ∨ 1

2m
h2m

)]

≤ cmE

[
U

(
x′ + 1

2m
h2m

)]
≤ cmu(x + 2x′),
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which, thanks to the fact that c < 2, implies that u(x + 2x′) ≥ ε limm(2/c)m = ∞,
a statement in contradiction with the fact that u is [−∞,∞)-valued everywhere.

�

PROPOSITION 3.7. Under Assumptions 2.3 and 2.8, the primal value function
u is upper-semicontinuous.

PROOF. Thanks to u’s concavity and monotonicity, it will be enough to show
that u(x) ≥ limn u(xn) for each sequence xn ↘ x = inf{x ∈ R :u(x) > −∞} with
xn > x. We pick such a sequence {xn}n∈N and use Proposition 3.6 to construct a
sequence {fn}n∈N of random variables such that fn ∈ C(xn) and u(xn) = U(fn).
By the same argument as in the first paragraph of the proof of Proposition 3.6, we
can construct a limit g ∈ ∩nC(xn) of a sequence of forward convex combinations,
that is, gn := ∑

k αn
k fk for positive constants αn

k summing (over k) to one. By
Fatou’s lemma and Corollary 3.4(2), we have for Q ∈ P ,

〈Q, g〉 ≤ lim inf
n→∞

∑
k

αn
k 〈Q, fk〉 ≤ lim inf

n→∞
∑
k

αn
k

(
xk + αC (Q)

) = x + αC (Q),

since xn ↘ x. Corollary 3.4(2) implies that g ∈ C(x), and so u(x) ≥ U(g). Using
the ideas of the second paragraph of the proof of Proposition 3.6, we can establish
the uniform integrability of the sequence {U+(gn)}n∈N, and conclude that u(x) ≥
U(g) ≥ limn u(xn). �

REMARK 3.8. The upper-semicontinuity of the value function of a utility
maximization problem has been established in the dissertation [39] of Siorpaes,
in the setting of utility maximization with random endowment of [17] and applies
jointly to the initial wealth x and the initial quantity of the random endowment.
The proof of Proposition 3.7 uses similar ideas and generalizes the results of Sior-
paes to constrained markets, but considers only the initial-wealth variable x.

3.4. No need to relax v. We start with an observation about continuity of the
upper-hedging-price map.

LEMMA 3.9. Under the Assumption 2.3, the upper-hedging-price map,

L∞ � f �→ ρ(f ) := inf{x ∈ R :f ∈ x + C}
is convex, proper and lower σ(L∞,L1)-semicontinuous. Moreover, there exist a
constant M > 0 such that

|ρ(f )| ≤ M + ‖f ‖ for all f ∈ L∞.(3.5)

PROOF. Thanks to Assumption 2.3, there exists a constant M > 0 such that
C contains the set −M − L∞+ . Therefore, ρ(f ) ≤ ‖f ‖ + M , for any f ∈ L∞. To
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obtain the full bound (3.5), we assume, to the contrary, that there exists a sequence
{fn}n∈N in L∞ such that

ρ(fn) < −‖fn‖ − n for all n ∈ N.

Therefore, fn + ‖fn‖ + n ∈ C for each n ∈ N, and, consequently, n ∈ C , for each
n ∈ N. This is, however, in contradiction with Assumption 2.3.

Since properness of ρ follows from the bounds in (3.5), and convexity follows
directly from the definition, it remains to show that ρ is σ(L∞,L1)-lower semi-
continuous, that is, that its epigraph

epiρ = {(f, x) ∈ L∞ × R :ρ(f ) ≤ x}
is closed. This follows from the fact that epiρ = {(f, x) :f − x ∈ C} is the inverse
image of the closed set C under the continuous map (f, x) �→ f − x from L∞ × R

to L∞. �

LEMMA 3.10. Under Assumption 2.3, for each y ≥ 0, we have

inf
Q∈Sba+ (y)

αC (Q) = inf
Q∈SL1

+ (y)

αC (Q).

PROOF. For simplicity, we assume that y = 1. The set Sba+ (1) is σ(ba,L∞)-
compact by the Banach–Alaoglu theorem, so we can use the minimax theorem to
conclude that

inf
Q∈Sba+ (1)

αC (Q) = inf
Q∈Sba+ (1)

sup
f ∈C

〈Q, f 〉 = sup
f ∈C

inf
Q∈Sba+ (1)

〈Q, f 〉 = sup
f ∈C

ess inff.(3.6)

Now we focus on inf
Q∈SL1

+ (1)
αC (Q). Since αC (Q) = ∞, for Q /∈ L1 \L1+, we have

inf
Q∈SL1

+ (1)

αC (Q) = inf
Q∈S

αC (Q),

where S := {Q ∈ L1 : 〈Q,1〉 = 1}. Throughout the rest of this proof, we work with
the duality between the spaces L∞ and L1, and all notions of continuity and con-
jugation should be understood with respect to this duality and the corresponding
weak-∗ and weak topologies.

We define the map γ : L∞ → R ∪ {+∞} by

γ (f ) :=
{

x, f = x, a.s., for x ∈ R,
+∞, otherwise.

The convex conjugate γ ∗ of γ is the indicator χS of S .

γ ∗(Q) := sup
f ∈L∞

(〈Q, f 〉 − γ (f )
) = sup

x∈R

x(〈Q,1〉 − 1) = χS (Q), Q ∈ L1.

Next, we define the infimal convolution χC �γ of χC and γ by

(χC �γ )(f ) := inf
g∈L∞

(
χC (f − g) + γ (g)

)
, f ∈ L∞.
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Since γ is only finite on constants, we have

(χC �γ )(f ) = inf
x∈R

(
χC (f −x)+x

) = inf{x ∈ R :f ∈ x+ C} = ρ(f ), f ∈ L∞.

It follows from Lemma 3.9 that χC �γ is convex, proper and lsc. Consequently, we
have

(χC �γ )∗∗(0) = (χC �γ )(0) = ρ(0) = − sup
h∈C

ess infh.

On the other hand, by Theorem 2.3.1(ix), page 76, in [42], we have (χC �γ )∗ =
χ∗

C + γ ∗ = αC + χS , and so

(χC �γ )∗∗(0) = sup
Q∈L1

(〈Q,0〉 − (χC �γ )∗(Q)
)

= sup
Q∈L1

−(
αC (Q) + χS (Q)

) = − inf
Q∈S

αC (Q).

A comparison with (3.6) yields the statement. �

To prove Lemma 3.12, we need a result from [26]. We state a rephrased version
whose proof can be read off the proof of Proposition 3.2, page 924, of [26] (in
particular, no additional smoothness assumptions on V are required).

LEMMA 3.11 (Kramkov and Schachermayer). Let M ⊆ D be bounded sub-
sets of L1+ such that:

(1) the mapping D � h → E[V (h)] attains its minimum at some ĥ ∈ D;
(2) M is closed under countable convex combinations;
(3) there exists a sequence {hn}n∈N ⊆ M which converges to ĥ in probability.

Then, under Assumption 2.8, we have infh∈D E[V (h)] = infh∈M E[V (h)].
LEMMA 3.12. Under Assumptions 2.3 and 2.8, let S ⊆ Sba+ (y) be of the form

S = {Q ∈ Sba+ (y) :αC(Q) ≤ M}, for some constant M ∈ R. Then, provided that
S ∩ L1 �= ∅, we have

inf
Q∈S

V(Q) = inf
Q∈S∩L1

V(Q).(3.7)

PROOF. To simplify the notation, we assume that y = 1—the general case is
completely analogous. Let D denote the set of all (Radon–Nikodym derivatives of)
regular parts of the elements in S, and let M ⊆ D denote the set of all (Radon–
Nikodym derivatives of) elements of S ∩ L1. Since the passage to the regular part
does not increase the total mass, D is clearly bounded in L1.

The statement will follow from Lemma 3.11, once its assumptions are verified:

(1) The set S is a weak-∗ closed (and therefore compact) subset of Sba+ (1), and

V is lower semicontinuous, so there exists Q̂ ∈ Sba+ (1) at which the infimum on the
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left-hand side expression of (3.7) is achieved. It follows from representation (3.2)

that ĥ ∈ arg minh∈D E[V (h)], where ĥ := dQ̂r

dP
.

(2) Let {Qn}n∈N be a sequence of (countably additive) probability measures
in M, and let {αn}n∈N be a sequence of positive constants with

∑
n αn = 1. To

show that the probability measure Q = ∑
n αnQn belongs to M, we need to show

that αC (Q) ≤ M , that is, that 〈Q, f 〉 ≤ M , for all f ∈ C . This follows by aggrega-
tion (combined with monotone convergence) of the inequalities 〈αnQn, f 〉 ≤ αnM

over n ∈ N.
(3) We first establish an auxiliary claim. We remind the reader that for A ⊆ L0+,

A◦ denotes the polar of A, that is, A◦ := {g ∈ L0+ : E[fg] ≤ 1, for all f ∈ A}.
CLAIM 3.13. For Q ∈ S, we have Qr ∈ M◦◦.

PROOF. Let us first note that

S = {Q ∈ Sba+ (1) :αC′(Q) ≤ 0},(3.8)

where C′ ⊂ L∞ denotes the weak-∗ closed convex cone generated by C −M −L∞+ .
The inclusion ⊇ clearly holds, and for the opposite one it suffices to note that
〈Q, γ (f − M − k)〉 ≤ 0, for all Q ∈ S and all γ ≥ 0, f ∈ C and k ∈ L∞+ .

By (3.8) we have

〈Qr , g + 1〉 ≤ 〈Q, g + 1〉 = 〈Q, g〉 + 1 ≤ 1

for all Q ∈ S and g ∈ C′ with 1 + g ∈ L∞+ . Therefore, Qr ∈ A◦, for all Q ∈ S,
where A = (C′ + 1)∩ L0+. Consequently, Claim 3.13 will be proven once we show
that

A◦ ⊂ {SL1

+ (1) :αC′(Q) ≤ 0}◦◦.
To this end we argue by contradiction and assume that there exists

Q̂ ∈ A◦ \ {Q ∈ SL1

+ (1) :αC′(Q) ≤ 0}◦◦.
In other words, we assume that there exist Q̂ ∈ A◦ and ĥ ∈ {Q ∈ SL1

+ (1) :αC′(Q) ≤
0}◦ such that

〈Q̂, ĥ〉 > 1, 〈Q̂, f 〉 ≤ 1 for all f ∈ A.(3.9)

General solidity of polars and the monotone convergence theorem imply that for
all n ∈ N, we have ĥ∧n ∈ {Q ∈ SL1

+ (1) :αC′(Q) ≤ 0}◦ and, for large enough n ∈ N,

it additionally holds that 〈Q̂, ĥ ∧ n〉 > 1. Therefore, we may assume that already
ĥ ∈ L∞+ .

Trivially, (3.9) shows ĥ /∈ A, and, equivalently, ĥ−1 /∈ C′. By the Hahn–Banach
separation theorem, there exists Q̃ ∈ L1 and β ∈ R such that

〈Q̃, ĥ − 1〉 > β ≥ 〈Q̃, g〉 for all g ∈ C′.(3.10)
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Given that C′ contains M ′ − L∞+ for some M ′ ∈ R, we must have Q̃ ∈ L1+, and
since C′ is a cone, we must also have β = 0. Nontriviality of Q̃ allows us safely to
assume—by scaling, if necessary—that ‖Q̃‖1 = 1. The second inequality in (3.10)
shows Q̃ ∈ {Q ∈ SL1

+ (1) :αC′(Q) ≤ 0}. However, we have assumed that ĥ ∈ {Q ∈
SL1

+ (1) :αC′(Q) ≤ 0}◦ which implies 〈Q̃, ĥ〉 ≤ 1 and thereby contradicts the first
inequality in (3.10). �

Returning to the proof of (3), we note that the weak-∗ compactness of S (via
the Banach–Alaoglu theorem) guarantees the existence of a minimizer Q̂ ∈ S for
the left-hand side of (3.7). Thanks to representation (3.2), all we need to do is
construct a sequence {dQn

dP
}n∈N ⊂ M which converges almost surely to the regular

part dQ̂r

dP
∈ D, and for that we will use a variant of an argument in [10]. By the

bipolar theorem (see [5]), M◦◦ is the closure in probability of the solid hull of M.
Therefore, there exist sequences {fn}n∈N ⊆ L0+ and {Qn}n∈N ⊆ M such that P-a.s.

0 ≤ fn ≤ dQn

dP
, fn → dQ̂r

dP
in probability as n → ∞.

Furthermore, by passing to a subsequence, P-a.s. convergence can be substituted
for the convergence in probability. Komlós’s lemma can be used to justify the
existence of a nonnegative random variable Y and a double array {βk

n :n ∈ N, k =
1, . . . ,K(n)} with 0 ≤ βk

n ≤ 1 such that
K(n)∑
k=n

βk
n = 1, n ∈ N,

dQ̃n

dP
=

K(n)∑
k=n

βk
n

dQk

dP
→ Y, P-a.s. as n → ∞.

It follows from the convergence fn → dQ̂r

dP
that

dQ̂r

dP
= lim

n

K(n)∑
k=n

βk
nfk ≤ lim

n

K(n)∑
k=n

βk
n

dQk

dP
= Y.

By the convexity of M, we have dQ̃n

dP
∈ M, so it suffices to verify the equality

Y = dQ̂r

dP
, a.s.

Since S is weak-∗ compact, the sequence (Q̃n)n∈N ⊂ S must have an accumu-
lation point Q̃ ∈ S, which, by Proposition A.1, page 271, in [10], must satisfy
dQ̃r

dP
= Y . Assuming that P[dQ̂r

dP
< Y ] > 0, representation (3.2) produces the con-

tradiction

inf
Q∈S

V(Q) = V(Q̂) = E

[
V

(
dQ̂r

dP

)]
> E[V (Y )] = E

[
V

(
dQ̃r

dP

)]
= V(Q̃∗),

where the strict inequality is the consequence of the strict decrease of V which, in

turn, follows from the second part of (2.6). Therefore, we have Y = dQ̂r

dP
, P-a.s.,

and the proof is complete. �
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PROPOSITION 3.14. Under Assumptions 2.3 and 2.8, vba = v.

PROOF. As we already commented in the paragraph following (3.2), the in-
equality vba ≤ v is immediate. It is, therefore, enough to prove that vba(y) ≥ v(y)

for all y > 0 with vba(y) < ∞. We fix such y > 0, pick ε > 0, and choose a mini-
mizer Q̂(y) for vba(y). By Lemma 3.10, the family

SL1

ε (y) := Sba
ε (y) ∩ L1 where Sba

ε (y) := {
Q ∈ Sba+ (y) :αC (Q) ≤ αC

(
Q̂(y)) + ε

}
is nonempty. Then, by Lemma 3.12, we have

vba(y) = αC
(
Q̂(y)) + V

(
Q̂(y)) ≥ αC

(
Q̂(y)) + inf

Q∈Sba
ε (y)

V(Q)

= inf
Q∈SL1

ε (y)

(
V(Q) + αC

(
Q̂(y))) ≥ inf

Q∈SL1
ε (y)

(
V(Q) + αC (Q)

) − ε

≥ inf
Q∈SL1

+ (y)

(
V(Q) + αC (Q)

) − ε = v(y) − ε.
�

PROOF OF THEOREM 2.10. (1) The properties of the function u follow either
directly from the definition or, in the case of upper semicontinuity, from Proposi-
tion 3.7. Convexity and lower semicontinuity of vba follow from the representation
in part (1) of Proposition 3.2. Finally, v and vba are identical, by Proposition 3.14.

(2) For x ∈ R with u(x) ∈ R, there clearly exists f ∈ C such that x +f ≥ 0, and
so x + 〈Q, f 〉 ≥ 0 for all Q ∈ P . If we take the supremum over f ∈ C followed
by the infumum over Q ∈ P in this inequality, we get x ≥ supQ∈P −αC (Q), and
consequently, x ≥ supQ∈P −αC (Q) = − infQ∈P αC (Q).

On the other hand, by Corollary 3.4, for x > supQ∈P −αC (Q), we can find ε > 0
such that ε − x ∈ C . Therefore, u(x) ≥ U(ε) > −∞, and, so x ≥ x. The second
statement follows from the fact that u is proper and nondecreasing.

(3) The existence of primal optimizers is proven in Proposition 3.6.
(4) The relation (2.10) is proven in Proposition 3.2, part (1) and Proposi-

tion 3.14. The symmetric relation (2.11) follows directly from (2.10) and the upper
semicontinuity of u. �

4. A sufficient condition for Assumption 2.3. The closedness in probability
of the sets C(x), x ∈ R, is the central condition of our main results. It is, however,
not immediately obvious how to test its validity in a given model. Thanks to a
recent result of [11], a much more workable sufficient condition can be given. We
start by recalling that each (Rd -valued) semimartingale S can be represented in
terms of its predictable characteristics,

S = Sc + F + (
x1{|x|≤1}

) ∗ (μ − μ̃) + (
x1{|x|>1}

) ∗ μ,

where Sc is a continuous semimartingale, F is a predictable process of finite vari-
ation, μ is the jump measure of S and μ̃ is its compensator. Instead of explaining
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these terms we refer the reader to the standard reference [19]. Furthermore, it is
well known that there exists a nondecreasing process B , a Rd -valued process b,
a nonnegative-definite Rd×d -matrix valued process c and a Lévy-measure-valued
process �, all predictable, such that

F = b · B, [Sc, Sc] = c · B and μ̃ = � · B.

The triplet (b, c,�) is usually referred to as the triplet of semimartingale charac-
teristics of S.

It can be shown that the measure P ⊗ dB is σ -finite and can, therefore, be re-
placed by an equivalent probability measure on the predictable sets of � × [0, T ],
which we denote by PS . We refer the reader to [11] for a discussion and the inter-
pretation of the probability measure PS (this measure is denoted by PB in [11]), as
well as for the proof of the following proposition.

PROPOSITION 4.1 (Czichowsky and Schweizer [11]). There exists a pre-
dictable process {	S

t }t∈[0,T ], with values in the orthogonal projections in Rd with
the following property. For predictable processes θ,ϕ with θ being S-integrable,
the following two statements are equivalent:

(1) ϕ is S-integrable with θ · S and ϕ · S indistinguishable, and
(2) 	Sθ = 	Sϕ, PS -a.e.

We fix a version of such a 	S and we call it the projection on the predictable
range of S. One can think of 	Sθ as the “relevant” portion of θ , as far as stochastic
integration with respect to S is concerned. It was shown in [11] that closedness of
the set of constrained stochastic integrals is closely related to the interplay between
	S and the constraint κ :

THEOREM 4.2 (Czichowsky and Schweizer [11]). Let κ and Aκ be as in Sec-
tion 2.2. Then the set of stochastic integrals {H ·S :H ∈ Aκ} is closed with respect
to the semimartingale topology if and only if 	S

t (ω)κt (ω) is a closed subset of Rd ,
PS -a.e.

REMARK 4.3. Since closedness of the set 	S
t (ω)κt (ω) is going to play a

prominent role in the sequel, let us briefly comment on its financial interpreta-
tion. It states, essentially, that when the constraints are imposed, one should take
into account those aspects of the portfolio that actually matter for the evolution
of the wealth process; see Section 3 of [11] for a detailed explanation. In most
models of interest, 	S is the identity; that is, there are no “redundant” assets, and
the closedness condition is automatically satisfied. For other sufficient conditions,
see [11]. Let us mention that closedness is guaranteed for all semimartingales S

when, for example, with probability one, for each t ∈ [0, T ] one of the following
three properties holds:
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(1) κt (ω) compact,
(2) κt (ω) is polyhedral (i.e., representable as an intersection of finitely many

half-planes) or
(3) the support map Rd � x �→ supy∈κt (ω) xT y of κt (ω) is continuous.

Using Theorem 4.2 as one of the central ingredients, we can prove the suffi-
ciency of our conditions for convex compactness of C(x) in Proposition 2.5. For
the reader’s convenience, we repeat its statement below:

PROPOSITION 2.5. Assumption 2.3 holds if the following three conditions are
satisfied:

(1) A �= ∅;
(2) the projection 	S

t (ω)κt (ω) is closed, for PS -a.e.;
(3) there exist:

(a) a probability measure Q ∼ P;
(b) Ĥ ∈ A with EQ[(Ĥ · S)T ] < ∞ and Ĥ · S locally bounded;
(c) a nondecreasing predictable càdlàg process {At }t∈[0,T ], with A0 = 0,
such that

H · S − (Ĥ · S + A) is a Q-supermartingale for all H ∈ A.(4.1)

PROOF. The condition A �= ∅ implies that C(x) �= ∅ for some x ∈ R, so it
will be enough to show that C(x) is convexly compact.

First, we show that C(x) is closed in probability. Let {fn}n∈N be a sequence in
C(x) with

fn = x + (Hn · S)T − gn → f in probability,

where Hn ∈ A and gn ∈ L0+, for all n ∈ N. By passing to a sequence of convex
combinations (justified by Komlós’s theorem and the fact that our constraints are
convex) we can—and will—assume that gn = 0, P-a.s., for all n ∈ N. It therefore
suffices to find H ∈ A such that (H · S)T ≥ limn→∞(Hn · S)T .

Let N denote the set of all pairs (Q,A) [with Q as in (3)(a) and A as in (3)(c)]
for which there exists Ĥ as in (3)(b) such that (4.1) holds. We fix (Q,A) ∈ N so
that for each element V n in the sequence

V n = (Hn − Ĥ ) · S, n ∈ N,

the process V n − A is a Q-supermartingale. In particular, we have

V n
t − At ≥ EQ[V n

T − AT |Ft ]
= EQ[(Hn · S)T |Ft ] − EQ[AT + (Ĥ · S)T |Ft ]
≥ −Mt,



UTILITY MAXIMIZATION UNDER CONSTRAINTS 689

where Mt = EQ[x + (Ĥ · S)T + AT |Ft ] is a Q-martingale. Indeed, (Ĥ · S)T ∈
L1(Q) by assumption and AT ∈ L1(Q) because the process −A = (Ĥ −Ĥ ) ·S −A

is a Q-supermartingale.
From the above we conclude that the processes V n − A + M − M0, n ∈ N, are

uniformly lower bounded Q-supermartingales starting at zero. Therefore, we can
use the Komlós-type lemma (Lemma 5.2(1), page 14, in [15]) to extract a Fatou-
convergent sequence of convex combinations. By the convexity of our constraint
sets, these convex combinations are still of the form (H̃ n − Ĥ ) · S − A + M −
M0 and converge toward a lower bounded Q-supermartingale, which we write in
the form V − A + M − M0, for some semimartingale V . Using the properties of
Fatou-convergence and the already assumed convergence of the terminal values
(Hn · S)T , we have

V0 ≤ 0 and VT = f − x − (Ĥ · S)T .

Since the processes M and A are independent of n, we also have Fatou-
convergence of V n toward V . It is important to note that Fatou-convergence is
measure-independent (as long as we stay in the same equivalence class), so that, for
each pair (Q′,A′) ∈ N , the Q′-supermartingale V n − A′ Fatou-converges toward
V − A′. The processes Ĥ · S and A′ are locally bounded (Ĥ · S is by assumption
whereas A′ is thanks to predictability and the càdlàg property) so all V n − A′ are
locally bounded from below, with the same localization sequence. It follows that
their Fatou limit V −A′ is a locally-bounded-from-below local Q′-supermartingale
for each (Q′,A′) ∈ N .

The next step is to apply a version of the optional decomposition theorem
developed in [15], namely Theorem 3.1 on page 6. We need to check that all
of its assumptions are satisfied, that is, that the family S of semimartingales
S = {(H − Ĥ ) · S :H ∈ A} satisfies:

(1) S is predictably convex (in the language of [15]);
(2) S contains processes locally bounded from below;
(3) S is closed in the semimartingale topology for uniformly-bounded from

below sequences (Assumption 3.1 in [15]);
(4) S contains the constant process 0.

Indeed, (1) follows from the convexity of κ , (2) holds thanks to the local bounded-
ness of Ĥ · S, (3) is the content of Theorem 4.2 and (4) is true by the construction
of S .

Therefore, the fact that V −A is a Q-local supermartingale for each (Q,A) ∈ N
and Theorem 3.1 in [15] allow us to conclude that there exists H ∈ A such that

V = V0 + (H − Ĥ ) · S − C

for some nondecreasing, nonnegative, cádlág, and adapted process C. We then
have the representation

f = x + VT + (Ĥ · S)T = x + (H · S)T + V0 − CT ≤ x + (H · S)T .
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To finish the proof we need to show that C(x) is bounded in probability. For
f ∈ C(x) we let H ∈ A be such that x + H · S ≥ f and pick (Q,A) ∈ N . Then

EQ[f ] ≤ x + EQ
[(

(H − Ĥ ) · S)
T − AT

] + EQ[(Ĥ · S)T + AT ] ≤ M0,

where—as before—M0 = x + EQ[(Ĥ · S)T + AT ] < ∞. This shows that C(x) is
bounded in L1(Q), so, by Markov’s inequality, it is bounded in probability under
Q and, by equivalence, also under P. �
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