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ADAPTIVE GIBBS SAMPLERS AND RELATED MCMC METHODS

BY KRZYSZTOF ŁATUSZYŃSKI1,2,3, GARETH O. ROBERTS3

AND JEFFREY S. ROSENTHAL2

University of Warwick, University of Warwick and University of Toronto

We consider various versions of adaptive Gibbs and Metropolis-within-
Gibbs samplers, which update their selection probabilities (and perhaps also
their proposal distributions) on the fly during a run by learning as they go
in an attempt to optimize the algorithm. We present a cautionary example of
how even a simple-seeming adaptive Gibbs sampler may fail to converge. We
then present various positive results guaranteeing convergence of adaptive
Gibbs samplers under certain conditions.

1. Introduction. Markov chain Monte Carlo (MCMC) is a commonly used
approach to evaluating expectations of the form θ := ∫

X f (x)π(dx), where π is an
intractable probability measure, for example, known up to a normalizing constant.
One simulates (Xn)n≥0, an ergodic Markov chain on X , evolving according to a
transition kernel P with stationary limiting distribution π and, typically, takes er-
godic average as an estimate of θ . The approach is justified by asymptotic Markov
chain theory (see, e.g., [30, 40]). Metropolis algorithms and Gibbs samplers (to
be described in Section 2) are among the most common MCMC algorithms; cf.
[26, 33, 40].

The quality of an estimate produced by an MCMC algorithm depends on proba-
bilistic properties of the underlying Markov chain. Designing an appropriate tran-
sition kernel P that guarantees rapid convergence to stationarity and efficient sim-
ulation is often a challenging task, especially in high dimensions. For Metropo-
lis algorithms there are various optimal scaling results [4, 10, 11, 34, 38–40, 43]
which provide “prescriptions” of how to do this, though they typically depend on
unknown characteristics of π .

For random scan Gibbs and Metropolis-within-Gibbs samplers, a further design
decision is choosing the selection probabilities (i.e., coordinate weightings) which
will be used to select which coordinate to update next. These are usually chosen
to be uniform, but some recent work [12, 15, 23, 25, 27, 45] has suggested that
nonuniform weightings may sometimes be preferable.
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For a very simple toy example to illustrate this issue, suppose X = [0,1] ×
[−100,100], with π(x1, x2) ∝ x100

1 (1 + sin(x2)). Then with respect to x1, this π

puts almost all of the mass right up against the line x1 = 1. Thus, repeated Gibbs
sampler updates of the coordinate x1 provide virtually no help in exploring the
state space, and do not need to be done often at all (unless the functional f of in-
terest is extremely sensitive to tiny changes in x1). By contrast, with respect to x2,
this π is a highly multi-modal density with wide support and many peaks and val-
leys, requiring many updates to the coordinate x2 in order to explore the state space
appropriately. (Of course, as with any Gibbs sampler, repeatedly updating one co-
ordinate does not help with distributional convergence; it only helps with sampling
the entire state space to produce good estimates.) Thus, an efficient Gibbs sampler
for this example would not update each of x1 and x2 equally often; rather, it would
update x2 very often and x1 hardly at all. Of course, in this simple example, it is
easy to see directly that x1 should be updated less than x2, and furthermore, such
efficiencies would only improve the sampler by approximately a factor of 2. How-
ever, in a high-dimensional example (cf. [12]), such issues could be much more
significant, and also much more difficult to detect manually.

One promising avenue to address this challenge is adaptive MCMC algorithms.
As an MCMC simulation progresses, more and more information about the target
distribution π is learned. Adaptive MCMC attempts to use this new information
to redesign the transition kernel P on the fly, based on the current simulation out-
put. That is, the transition kernel Pn used for obtaining Xn|Xn−1 may depend on
{X0, . . . ,Xn−1}. So, in the above toy example, a good adaptive Gibbs sampler
would somehow automatically “learn” to update x1 less often, without requiring
the user to determine this manually (which could be difficult or impossible in a
very high-dimensional problem).

Such adaptive algorithms are only valid if their ergodicity can be established.
Unfortunately the stochastic process (Xn)n≥0 for an adaptive algorithm is no
longer a Markov chain; the potential benefit of adaptive MCMC comes at the
price of requiring more sophisticated theoretical analysis. There is substantial and
rapidly growing literature on both theory and practice of adaptive MCMC (see,
e.g., [1–3, 5–9, 13, 14, 17–19, 22, 41, 42, 44, 46–48]) which includes coun-
terintuitive examples where Xn fails to converge to the desired distribution π

(cf. [5, 9, 22, 41]), as well as many results guaranteeing ergodicity under various
assumptions. Most of the previous work on ergodicity of adaptive MCMC has con-
centrated on adapting Metropolis and related algorithms, with less attention paid to
ergodicity when adapting the selection probabilities for random scan Gibbs sam-
plers.

Motivated by such considerations, in the present paper we study the ergodicity
of various types of adaptive Gibbs samplers. To our knowledge, proofs of ergodic-
ity for adaptively-weighted Gibbs samplers have previously been considered only
by [24], and we shall provide a counter-example below (Example 3.1) to demon-
strate that their main result is not correct. In view of this, we are not aware of any
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valid ergodicity results in the literature that consider adapting selection probabili-
ties of random scan Gibbs samplers, and we attempt to fill that gap herein.

This paper is organized as follows. We begin in Section 2 with basic definitions.
In Section 3 we present a cautionary Example 3.1, where a seemingly ergodic
adaptive Gibbs sampler is in fact transient (as we prove formally later in Section 6)
and provides a counter-example to Theorem 2.1 of [24]. Next, we establish various
positive results for ergodicity of adaptive Gibbs samplers. We consider adaptive
random scan Gibbs samplers (AdapRSG) which update coordinate selection prob-
abilities as the simulation progresses, adaptive random scan Metropolis-within-
Gibbs samplers (AdapRSMwG) which update coordinate selection probabilities as
the simulation progresses and adaptive random scan adaptive Metropolis-within-
Gibbs samplers (AdapRSadapMwG) that update coordinate selection probabili-
ties as well as proposal distributions for the Metropolis steps. Positive results in
the uniform setting are discussed in Section 4, whereas Section 5 deals with the
nonuniform setting. In each case, we prove that under reasonably mild conditions,
the adaptive Gibbs samplers are guaranteed to be ergodic, although our cautionary
example does show that it is important to verify some conditions before applying
such algorithms.

2. Preliminaries. Gibbs samplers are commonly used MCMC algorithms for
sampling from complicated high-dimensional probability distributions π in cases
where the full conditional distributions of π are easy to sample from. To define
them, let (X , B(X )) be a d-dimensional state space where X = X1 ×· · ·× Xd and
write Xn ∈ X as Xn = (Xn,1, . . . ,Xn,d). We shall use the shorthand notation

Xn,−i := (Xn,1, . . . ,Xn,i−1,Xn,i+1, . . . ,Xn,d)

and similarly X−i = X1 × · · · × Xi−1 × Xi+1 × · · · × Xd .
Let π(·|x−i ) denote the conditional distribution of Zi |Z−i = x−i where Z ∼ π .

The random scan Gibbs sampler draws Xn given Xn−1 (iteratively for n =
1,2,3, . . .) by first choosing one coordinate at random according to some selection
probabilities α = (α1, . . . , αd) (e.g., uniformly), and then updating that coordinate
by a draw from its conditional distribution. More precisely, the Gibbs sampler
transition kernel P = Pα is the result of performing the following three steps.

ALGORITHM 2.1 [RSG(α)]. (1) Choose coordinate i ∈ {1, . . . , d} according
to selection probabilities α, that is, with P(i = j) = αj .

(2) Draw Y ∼ π(·|Xn−1,−i ).
(3) Set Xn := (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d).

Whereas the standard approach is to choose the coordinate i at the first step uni-
formly at random, which corresponds to α = (1/d, . . . ,1/d), this may be a sub-
stantial waste of simulation effort if d is large and variability of coordinates differs
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significantly. This has been discussed theoretically in [27] and also observed em-
pirically, for example, in Bayesian variable selection for linear models in statistical
genetics [12, 45].

Throughout the paper we denote the transition kernel of a random scan Gibbs
sampler with selection probabilities α as Pα and the transition kernel of a single
Gibbs update of coordinate i is denoted as Pi , hence, Pα = ∑d

i=1 αiPi .
We consider a class of adaptive random scan Gibbs samplers where selec-

tion probabilities α = (α1, . . . , αd) are subject to optimization within some subset
Y ⊆ [0,1]d of possible choices. Therefore a single step of our generic adaptive
algorithm for drawing Xn given the trajectory Xn−1, . . . ,X0 and current selection
probabilities αn−1 = (αn−1,1, . . . , αn−1,d) amounts to the following steps, where
Rn(·) is some update rule for αn.

ALGORITHM 2.2 (AdapRSG). (1) Set αn := Rn(α0, . . . , αn−1,Xn−1, . . . ,

X0) ∈ Y .
(2) Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn.
(3) Draw Y ∼ π(·|Xn−1,−i ).
(4) Set Xn := (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d).

Algorithm 2.2 defines Pn, the transition kernel used at time n, and αn here plays
the role of �n in the more general adaptive setting of, for example, [9, 41]. Let
πn = πn(x0, α0) denote the distribution of Xn induced by Algorithm 2.1 or 2.2,
given starting values x0 and α0, that is, for B ∈ B(X ),

πn(B) = πn((x0, α0),B) := P(Xn ∈ B|X0 = x0, α0).(1)

Clearly, if one uses Algorithm 2.1 then α0 = α remains fixed and πn(x0, α)(B) =
P n

α (x0,B). By ‖ν − μ‖TV denote the total variation distance between probability
measures ν and μ. Let

T (x0, α0, n) := ‖πn(x0, α0) − π‖TV.(2)

We call the adaptive Algorithm 2.2 ergodic if T (x0, α0, n) → 0 for π -almost every
starting state x0 and all α0 ∈ Y .

We shall also consider random scan Metropolis-within-Gibbs samplers that in-
stead of sampling from the full conditional at step (2) of Algorithm 2.1 [resp., at
step (3) of Algorithm 2.2], perform a single Metropolis or Metropolis–Hastings
step [20, 29]. More precisely, given Xn−1,−i , the ith coordinate Xn−1,i is up-
dated by a draw Y from the proposal distribution QXn−1,−i

(Xn−1,i , ·) with the
usual Metropolis acceptance probability for the marginal stationary distribution
π(·|Xn−1,−i ). Such Metropolis-within-Gibbs algorithms were originally proposed
by [29] and have been very widely used. Versions of this algorithm which adapt
the proposal distributions QXn−1,−i

(Xn−1,i , ·) were considered by, for example,
[19, 42], but always with fixed (usually uniform) coordinate selection probabili-
ties. If instead the proposal distributions QXn−1,−i

(Xn−1,i , ·) remain fixed, but the
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selection probabilities αi are adapted on the fly, we obtain the following algorithm
[where qx,−i (x, y) is the density function for Qx,−i (x, ·)].

ALGORITHM 2.3 (AdapRSMwG). (1) Set αn := Rn(α0, . . . , αn−1,Xn−1, . . . ,

X0) ∈ Y .
(2) Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn.
(3) Draw Y ∼ QXn−1,−i

(Xn−1,i , ·).
(4) With probability

min
(

1,
π(Y |Xn−1,−i )qXn−1,−i

(Y,Xn−1,i)

π(Xn−1|Xn−1,−i )qXn−1,−i
(Xn−1,i , Y )

)
,(3)

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d);
otherwise, reject the proposal and set Xn = Xn−1.

Ergodicity of AdapRSMwG is considered in Sections 4.2 and 5 below. Of course,
if the proposal distribution QXn−1,−i

(Xn−1,i , ·) is symmetric about Xn−1, then the
q factors in the acceptance probability (3) cancel out, and (3) reduces to the simpler
probability min(1, π(Y |Xn−1,−i )/π(Xn−1|Xn−1,−i )).

We shall also consider versions of the algorithm in which the proposal dis-
tributions QXn−1,−i

(Xn−1,i , ·) are also chosen adaptively, from some family
{Qx−i ,γ }γ∈�i

with corresponding density functions qx−i ,γ , as in, for example, the
statistical genetics application [12, 45]. Versions of such algorithms with fixed se-
lection probabilities are considered by, for example, [19] and [42]. They require
additional adaptation parameters γn,i that are updated on the fly and are allowed
to depend on the past trajectories. More precisely, if γn = (γn,1, . . . , γn,d) and
Gn = σ {X0, . . . ,Xn,α0, . . . , αn, γ0, . . . , γn}, then the conditional distribution of
γn given Gn−1 can be specified by the particular algorithm used, via a second
update function R′

n. If we combine such proposal distribution adaptions with coor-
dinate selection probability adaptions, this results in a doubly-adaptive algorithm,
as follows.

ALGORITHM 2.4 (AdapRSadapMwG). (1) Set αn := Rn(α0, . . . , αn−1,

Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Y .
(2) Set γn := R′

n(α0, . . . , αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ �1 × · · · × �n.
(3) Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, that

is, with P(i = j) = αj .
(4) Draw Y ∼ QXn−1,−i ,γn−1,i

(Xn−1,i , ·).
(5) With probability given by (3),

min
(

1,
π(Y |Xn−1,−i )qXn−1,−i ,γn−1,i

(Y,Xn−1,i)

π(Xn−1|Xn−1,−i )qXn−1,−i ,γn−1,i
(Xn−1,i , Y )

)
,
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accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d);
otherwise, reject the proposal and set Xn = Xn−1.

Ergodicity of AdapRSadapMwG is considered in Sections 4.3 and 5 below.

3. A counter-example. Adaptive algorithms destroy the Markovian nature of
(Xn)n≥0, and are thus notoriously difficult to analyze theoretically. In particular,
it is easy to be tricked into thinking that a simple adaptive algorithm “must” be
ergodic when in fact it is not.

For example, Theorem 2.1 of [24] states that ergodicity of adaptive Gibbs sam-
plers follows from the following two simple conditions:

(i) αn → α a.s. for some fixed α ∈ (0,1)d ; and
(ii) the random scan Gibbs sampler with fixed selection probabilities α induces

an ergodic Markov chain with stationary distribution π .

Unfortunately, this claim is false, that is, (i) and (ii) alone do not guarantee
ergodicity, as the following example and proposition demonstrate. (It seems that in
the proof of Theorem 2.1 in [24], the same measure is used to represent trajectories
of the adaptive process and of a corresponding nonadaptive process, which is not
correct and thus leads to the error.)

EXAMPLE 3.1. Let N = {1,2, . . .}, and let the state space X = {(i, j) ∈ N ×
N : i = j or i = j + 1}, with target distribution given by π(i, j) ∝ j−2. On X ,
consider a class of adaptive random scan Gibbs samplers for π , as defined by
Algorithm 2.2, with update rule given by

Rn

(
αn−1,Xn−1 = (i, j)

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1

2
+ 4

an

,
1

2
− 4

an

}
, if i = j ,{

1

2
− 4

an

,
1

2
+ 4

an

}
, if i = j + 1

(4)

for some choice of the sequence (an)
∞
n=0 satisfying 8 < an ↗ ∞.

Example 3.1 satisfies assumptions (i) and (ii) above. Indeed, (i) clearly holds
since αn → α := (1

2 , 1
2), and (ii) follows immediately from the standard Markov

chain properties of irreducibility and aperiodicity; cf. [30, 40]. However, if an in-
creases to ∞ slowly enough, then the example exhibits transient behavior and is
not ergodic. More precisely, we shall prove the following proposition.

PROPOSITION 3.2. There exists a choice of the (an) for which the process
(Xn)n≥0 defined in Example 3.1 is not ergodic. Specifically, starting at X0 = (1,1),



72 K. ŁATUSZYŃSKI, G. O. ROBERTS AND J. S. ROSENTHAL

FIG. 1. Trace plot of Xn,1 from Example 3.1.

we have P(Xn,1 → ∞) > 0, that is, the process exhibits transient behavior with
positive probability, so it does not converge in distribution to any probability mea-
sure on X . In particular, ‖πn − π‖TV � 0.

REMARK 3.3. In fact, we believe that in Proposition 3.2, P(Xn,1 → ∞) = 1,
though to reduce technicalities we only prove that P(Xn,1 → ∞) > 0, which is
sufficient to establish nonergodicity.

A detailed proof of Proposition 3.2 is presented in Section 6. We also simulated
Example 3.1 on a computer [with the (an) as defined in Section 6], resulting in
the trace plot of Xn,1 (Figure 1) which illustrates the transient behavior since Xn,1
increases quickly and steadily as a function of n:

4. Ergodicity—the uniform case. We now present positive results about er-
godicity of adaptive Gibbs samplers under various assumptions. Results of this
section are specific to uniformly ergodic chains. (Recall that a Markov chain with
transition kernel P is uniformly ergodic if there exist M < ∞ and ρ < 1 s.t.
‖P n(x, ·) − π(·)‖TV ≤ Mρn for every x ∈ X ; see, e.g., [30, 40] for this and other
notions related to general state space Markov chains.) In some sense this is a se-
vere restriction, since most MCMC algorithms arising in statistical applications are
not uniformly ergodic. However, truncating the variables involved at some (very
large) value is usually sufficient to ensure uniform ergodicity without affecting the
statistical conclusions in any practical sense, so the results of this section may be
sufficient for a pragmatic user. The nonuniform case is considered in the following
Section 5.

To continue, recall that RSG(α) stands for random scan Gibbs sampler with se-
lection probabilities α as defined by Algorithm 2.1, and AdapRSG is the adaptive
version as defined by Algorithm 2.2. For notation, let 
d−1 := {(p1, . . . , pd) ∈
R

d :pi ≥ 0,
∑d

i=1 pi = 1} be the (d − 1)-dimensional probability simplex, and let

Y := [ε,1]d ∩ 
d−1(5)
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for some 0 < ε ≤ 1/d . We shall assume that all our selection probabilities are in
this set Y .

REMARK 4.1. The above assumption may seem constraining, it is, however,
irrelevant in practice. The additional computational effort on top of the unknown
optimal strategy α∗ (that may be in 
d−1 − Y ) is easily controlled by setting ε :=
(Kd)−1 that effectively upperbounds it by 1/K . The argument can be easily made
rigorous, for example, in terms of the total variation distance or the asymptotic
variance.

4.1. Adaptive random scan Gibbs samplers. The main result of this section is
the following theorem.

THEOREM 4.2. Let the selection probabilities αn ∈ Y for all n, with Y as
in (5). Assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y .
(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.

Then AdapRSG is ergodic, that is,

T (x0, α0, n) → 0 as n → ∞.(6)

Moreover, if:

(a′) supx0,α0
|αn − αn−1| → 0 in probability,

then convergence of AdapRSG is also uniform over all x0, α0, that is,

sup
x0,α0

T (x0, α0, n) → 0 as n → ∞.(7)

REMARK 4.3. (1) Assumption (b) will typically be verified for β = (1/d, . . . ,

1/d); see also Proposition 4.8 below.
(2) We expect that most adaptive random scan Gibbs samplers will be designed

so that |αn − αn−1| ≤ an for every n ≥ 1, x0 ∈ X , α0 ∈ Y , and ω ∈ �, for some
deterministic sequence an → 0 (which holds, e.g., for the adaptations considered
in [12]). In such cases, (a′) is automatically satisfied.

(3) The sequence αn is not required to converge and, in particular, the amount
of adaptation, that is,

∑∞
n=1 |αn − αn−1|, is allowed to be infinite.

(4) In Example 3.1, condition (a′) is satisfied but condition (b) is not.
(5) If we modify Example 3.1 by truncating the state space to say X̃ = X ∩

({1, . . . ,M}× {1, . . . ,M}) for some 1 < M < ∞, then the corresponding adaptive
Gibbs sampler is ergodic and (7) holds.

Before we proceed with the proof of Theorem 4.2, we need some preliminary
lemmas, which may be of independent interest.
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LEMMA 4.4. Let β ∈ Y with Y as in (5). If RSG(β) is uniformly ergodic, then
also RSG(α) is uniformly ergodic for every α ∈ Y . Moreover, there exist M < ∞
and ρ < 1 s.t. supx0∈X ,α∈Y T (x0, α,n) ≤ Mρn → 0.

PROOF. Let Pβ be the transition kernel of RSG(β). It is well known that for
uniformly ergodic Markov chains the whole state space X is small (cf. Theorems
5.2.1 and 5.2.4 in [30] with their ψ = π ). Thus there exists s > 0, a probability
measure μ on (X , B(X )) and a positive integer m, s.t. for every x ∈ X ,

P m
β (x, ·) ≥ sμ(·).(8)

Fix α ∈ Y and let

r := min
i

αi

βi

.

Since β ∈ Y , we have 1 ≥ r ≥ ε
1−(d−1)ε

> 0 and Pα can be written as a mixture of
transition kernels of two random scan Gibbs samplers, namely,

Pα = rPβ + (1 − r)Pq where q = α − rβ

1 − r
.

This, combined with (8), implies

P m
α (x, ·) ≥ rmP m

β (x, ·) ≥ rmsμ(·)
(9)

≥
(

ε

1 − (d − 1)ε

)m

sμ(·) for every x ∈ X .

By Theorem 8 of [40], condition (9) implies

‖P n
α (x, ·) − π(·)‖TV ≤

(
1 −

(
ε

1 − (d − 1)ε

)m

s

)�n/m�
for all x ∈ X .(10)

Since the right-hand side of (10) does not depend on α, the claim follows. �

LEMMA 4.5. Let Pα and Pα′ be random scan Gibbs samplers using selection
probabilities α,α′ ∈ Y := [ε,1 − (d − 1)ε]d for some ε > 0. Then

‖Pα(x, ·) − Pα′(x, ·)‖TV ≤ |α − α′|
ε + |α − α′| ≤ |α − α′|

ε
.(11)

PROOF. Let δ := |α − α′|. Then r := mini
α′

i

αi
≥ ε

ε+maxi |αi−α′
i | ≥ ε

ε+δ
and, rea-

soning as in the proof of Lemma 4.4, we can write Pα′ = rPα + (1− r)Pq for some
q and compute

‖Pα(x, ·) − Pα′(x, ·)‖TV = ∥∥(
rPα + (1 − r)Pα

) − (
rPα + (1 − r)Pq

)∥∥
TV

= (1 − r)‖Pα − Pq‖TV ≤ δ

ε + δ

as claimed. �
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COROLLARY 4.6. Pα(x,B) as a function of α on Y is Lipschitz with Lipschitz
constant 1/ε for every fixed set B ∈ B(X ).

COROLLARY 4.7. If |αn − αn−1| → 0 in probability, then also

sup
x∈X

‖Pαn(x, ·) − Pαn−1(x, ·)‖TV → 0

in probability.

PROOF OF THEOREM 4.2. We conclude the result from Theorem 1 of [41] that
requires simultaneous uniform ergodicity and diminishing adaptation. Simultane-
ous uniform ergodicity results from combining assumption (b) and Lemma 4.4.
Diminishing adaptation results from assumption (a) with Corollary 4.7. Moreover,
note that Lemma 4.4 is uniform in x0 and α0 and (a′) yields uniformly diminish-
ing adaptation again by Corollary 4.7. A look into the proof of Theorem 1 of [41]
reveals that this suffices for the uniform part of Theorem 4.2. �

Finally, we note that verifying uniform ergodicity of a random scan Gibbs sam-
pler, as required by assumption (b) of Theorem 4.2, may not be straightforward.
Such issues have been investigated in, for example, [35], and more recently in rela-
tion to the parametrization of hierarchical models (see [32] and references therein).
In the following proposition, we show that to verify uniform ergodicity of any ran-
dom scan Gibbs sampler, it suffices to verify uniform ergodicity of the correspond-
ing systematic scan Gibbs sampler (which updates the coordinates 1,2, . . . , d in
sequence rather than select coordinates randomly). See also Theorem 2 of [31] for
a related result.

PROPOSITION 4.8. Let α ∈ Y with Y as in (5). If the systematic scan Gibbs
sampler is uniformly ergodic, then so is RSG(α).

PROOF. Let

P = P1P2 · · ·Pd

be the transition kernel of the uniformly ergodic systematic scan Gibbs sampler,
where Pi stands for the step that updates coordinate i. By the minorization condi-
tion characterization, there exist s > 0, a probability measure μ on (X , B(X )) and
a positive integer m, s.t. for every x ∈ X ,

P m(x, ·) ≥ sμ(·).
However, the probability that the random scan Gibbs sampler P1/d in its md sub-
sequent steps will update the coordinates in exactly the same order is (1/d)md > 0.
Therefore, the following minorization condition holds for the random scan Gibbs
sampler.

P md
1/d(x, ·) ≥ (1/d)mdsμ(·).
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We conclude that RSG(1/d) is uniformly ergodic and then, by Lemma 4.4, it fol-
lows that RSG(α) is uniformly ergodic for any α ∈ Y . �

4.2. Adaptive random scan Metropolis-within-Gibbs. In this section we con-
sider random scan Metropolis-within-Gibbs sampler algorithms (see also Section 5
for the nonuniform case). Thus, given Xn−1,−i , the ith coordinate Xn−1,i is up-
dated by a draw Y from the proposal distribution QXn−1,−i

(Xn−1,i , ·) with the
usual Metropolis acceptance probability for the marginal stationary distribution
π(·|Xn−1,−i ). Here, we consider algorithm AdapRSMwG, where the proposal dis-
tributions QXn−1,−i

(Xn−1,i , ·) remain fixed, but the selection probabilities αi are
adapted on the fly. We shall prove ergodicity of such algorithms under some cir-
cumstances. (The more general algorithm AdapRSadapMwG is then considered
in the following section.)

To continue, let Px−i
denote the resulting Metropolis transition kernel for ob-

taining Xn,i |Xn−1,i given Xn−1,−i = x−i . We shall require the following assump-
tion.

ASSUMPTION 4.9. For every i ∈ {1, . . . , d} the transition kernel Px−i
is uni-

formly ergodic for every x−i ∈ X−i . Moreover, there exist si > 0 and an integer
mi s.t. for every x−i ∈ X−i there exists a probability measure νx−i

on (Xi , B(Xi )),
s.t.

P mi
x−i

(xi, ·) ≥ siνx−i
(·) for every xi ∈ Xi .

We have the following counterpart of Theorem 4.2.

THEOREM 4.10. Let αn ∈ Y for all n, with Y as in (5). Assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y .
(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.
(c) Assumption 4.9 holds.

Then AdapRSMwG is ergodic, that is,

T (x0, α0, n) → 0 as n → ∞.(12)

Moreover, if:

(a′) supx0,α0
|αn − αn−1| → 0 in probability,

then convergence of AdapRSMwG is also uniform over all x0, α0, that is,

sup
x0,α0

T (x0, α0, n) → 0 as n → ∞.(13)

REMARK 4.11. Remarks 4.3(1)–(3) still apply. Also, Assumption 4.9 can eas-
ily be verified in some cases of interest, for example:
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(1) Independence samplers are essentially uniformly ergodic if and only if the
candidate density is bounded below by a multiple of the stationary density, that is,
q(dx) ≥ sπ(dx) for some s > 0; cf. [28].

(2) The Metropolis–Hastings algorithm with continuous and positive proposal
density q(·, ·) and bounded target density π is uniformly ergodic if the state space
is compact; cf. [30, 40].

To prove Theorem 4.10 we build on the approach of [37]. In particular, recall
the following notions of reversibility and of strong uniform ergodicity.

DEFINITION 4.12. We say that a transition kernel P on X is reversible with
respect to its stationary distribution π , if for any A,B ∈ B(X )∫

A
P (x,B)π(dx) =

∫
B

P (y,A)π(dy).

DEFINITION 4.13. We say that a transition kernel P on X with stationary
distribution π is (m, s)-strongly uniformly ergodic, if for some s > 0 and positive
integer m

P m(x, ·) ≥ sπ(·) for every x ∈ X .

Moreover, we will say that a family of Markov chains {Pγ }γ∈� on X with station-
ary distribution π is (m, s)-simultaneously strongly uniformly ergodic, if for some
s > 0 and positive integer m

P m
γ (x, ·) ≥ sπ(·) for every x ∈ X and γ ∈ �.

By Proposition 1 in [37], if a Markov chain is both uniformly ergodic and re-
versible, then it is strongly uniformly ergodic. The following lemma improves over
this result by controlling both involved parameters.

LEMMA 4.14. Let μ be a probability measure on X , let m be a positive inte-
ger and let s > 0. If a reversible transition kernel P satisfies the condition

P m(x, ·) ≥ sμ(·) for every x ∈ X ,

then it is ((� log(s/4)
log(1−s)

� + 2)m, s2

8 )-strongly uniformly ergodic.

PROOF. By Theorem 8 of [40], for every A ∈ B(X ) we have

‖P n(x,A) − π(A)‖TV ≤ (1 − s)�n/m�

and, in particular,

‖P km(x,A) − π(A)‖TV ≤ s/4 for k ≥ log(s/4)

log(1 − s)
.(14)
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Since π is stationary for P , we have π(·) ≥ sμ(·) and thus an upper bound for the
Radon–Nikodym derivative

dμ/dπ ≤ 1/s.(15)

Moreover, by reversibility,

π(dx)P m(x,dy) = π(dy)P m(y,dx) ≥ π(dy)sμ(dx)

and consequently

P m(x,dy) ≥ s
(
μ(dx)/π(dx)

)
π(dy).(16)

Now define

A := {x ∈ X :μ(dx)/π(dx) ≥ 1/2}.
Clearly μ(Ac) ≤ 1/2. Therefore by (15) we have

1/2 ≤ μ(A) ≤ (1/s)π(A)

and hence, π(A) ≥ s/2. Moreover (14) yields

P km(x,A) ≥ s/4 for k :=
⌊

log(s/4)

log(1 − s)

⌋
+ 1

and with k defined above by (16), we have

P km+m(x, ·) =
∫

X
P km(x,dz)P m(z, ·) ≥

∫
A

P km(x,dz)P m(z, ·)

≥
∫
A

P km(x,dz)(s/2)π(·) ≥ (s2/8)π(·).
The proof is complete. �

We will need the following generalization of Lemma 4.4.

LEMMA 4.15. Let β ∈ Y with Y as in (5). If RSG(β) is uniformly ergodic
then there exist s ′ > 0 and a positive integer m′ s.t. the family {RSG(α)}α∈Y is
(m′, s′)-simultaneously strongly uniformly ergodic.

PROOF. Pβ(x, ·) is uniformly ergodic and reversible, therefore, by Propo-
sition 1 in [37], it is (m, s1)-strongly uniformly ergodic for some m and s1.
Therefore, and arguing as in the proof of Lemma 4.4 [cf. (9)] there exist s2 ≥
( ε

1−(d−1)ε
)m, s.t. for every α ∈ Y and every x ∈ X

P m
α (x, ·) ≥ s2P

m
β (x, ·) ≥ s1s2π(·).(17)

Set m′ = m and s′ = s1s2. �
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PROOF OF THEOREM 4.10. We proceed as in the proof of Theorem 4.2,
that is, establish diminishing adaptation and simultaneous uniform ergodicity and
conclude (12) and (13) from Theorem 1 of [41]. Observe that Lemma 4.5 ap-
plies for random scan Metropolis-within-Gibbs algorithms exactly the same way
as for random scan Gibbs samplers thus diminishing adaptation results from as-
sumption (a) and Corollary 4.7. To establish simultaneous uniform ergodicity, ob-
serve that, by Assumption 4.9 and Lemma 4.14, the Metropolis transition ker-
nel for ith coordinate, that is, Px−i

, has stationary distribution π(·|x−i ) and is

((� log(si/4)
log(1−si )

� + 2)mi,
s2
i

8 )-strongly uniformly ergodic. Moreover, by Lemma 4.15,

the family RSG(α), α ∈ Y is (m′, s′)-strongly uniformly ergodic, therefore, by The-
orem 2 of [37], the family of random scan Metropolis-within-Gibbs samplers with
selection probabilities α ∈ Y , RSMwG(α), is (m∗, s∗)-simultaneously strongly uni-
formly ergodic with m∗ and s∗ given as in [37]. �

We close this section with the following alternative version of Theorem 4.10.

THEOREM 4.16. Let αn ∈ Y for all n, with Y as in (5). Assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y .
(b) there exists β ∈ Y s.t. RSMwG(β) is uniformly ergodic.

Then AdapRSMwG is ergodic, that is,

T (x0, α0, n) → 0 as n → ∞.(18)

Moreover, if:

(a′) supx0,α0
|αn − αn−1| → 0 in probability,

then convergence of AdapRSMwG is also uniform over all x0, α0, that is,

sup
x0,α0

T (x0, α0, n) → 0 as n → ∞.(19)

PROOF. Diminishing adaptation results from assumption (a) and Corol-
lary 4.7. Simultaneous uniform ergodicity can be established as in the proof of
Lemma 4.4. The claim follows from Theorem 1 of [41]. �

REMARK 4.17. Whereas the statement of Theorem 4.16 may be useful in spe-
cific examples, typically condition (b), the uniform ergodicity of a random scan
Metropolis-within-Gibbs sampler, will be not available and establishing it will in-
volve conditions required by Theorem 4.10.
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4.3. Adaptive random scan adaptive Metropolis-within-Gibbs. In this sec-
tion, and also later in Section 5, we consider the adaptive random scan adaptive
Metropolis-within-Gibbs algorithm AdapRSadapMwG, that updates both selec-
tion probabilities of the Gibbs kernel and proposal distributions of the Metropolis
step. Thus, given Xn−1,−i , the ith coordinate Xn−1,i is updated by a draw Y from a
proposal distribution QXn−1,−i ,γn,i

(Xn−1,i , ·) with the usual acceptance probability.
This doubly-adaptive algorithm has been used by, for example, [12], for an appli-
cation in statistical genetics. As with adaptive Metropolis algorithms, the adaption
of the proposal distributions in this setting is motivated by optimal scaling results
for random walk Metropolis algorithms [4, 10, 11, 34, 38–40, 42, 43].

Let Px−i ,γn,i
denote the resulting Metropolis transition kernel for obtaining

Xn,i |Xn−1,i given Xn−1,−i = x−i . We will prove ergodicity of this generalized
algorithm using tools from the previous section. Assumption 4.9 must be reformu-
lated accordingly, as follows.

ASSUMPTION 4.18. For every i ∈ {1, . . . , d}, x−i ∈ X−i and γi ∈ �i , the tran-
sition kernel Px−i ,γi

is uniformly ergodic. Moreover, there exist si > 0 and an in-
teger mi s.t. for every x−i ∈ X−i and γi ∈ �i there exists a probability measure
νx−i ,γi

on (Xi , B(Xi )), s.t.

P mi
x−i ,γi

(xi, ·) ≥ siνx−i ,γi
(·) for every xi ∈ Xi .

We have the following counterpart of Theorems 4.2 and 4.10.

THEOREM 4.19. Let αn ∈ Y for all n, with Y as in (5). Assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X , α0 ∈ Y and
γ0 ∈ �.

(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.
(c) Assumption 4.18 holds.
(d) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, that

is, for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X

‖Px−i ,γn+1,i
(xi, ·) − Px−i ,γn,i

(xi, ·)‖TV → 0 in probability, as n → ∞

for fixed starting values x0 ∈ X , α0 ∈ Y and γ0.

Then AdapRSadapMwG is ergodic, that is,

T (x0, α0, n) → 0 as n → ∞.(20)

Moreover, if:

(a′) supx0,α0
|αn − αn−1| → 0 in probability,

(d′) supx0,α0
supx∈X ‖Px−i ,γn+1,i

(xi, ·) − Px−i ,γn,i
(xi, ·)‖TV → 0 in probability,
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then convergence of AdapRSadapMwG is also uniform over all x0, α0, that is,

sup
x0,α0

T (x0, α0, n) → 0 as n → ∞.(21)

REMARK 4.20. Remarks 4.3(1)–(3) still apply and Remark 4.11 applies for
verifying Assumption 4.18. Verifying condition (d) is discussed after the proof.

PROOF OF THEOREM 4.19. We again proceed by establishing diminishing
adaptation and simultaneous uniform ergodicity and concluding the result from
Theorem 1 of [41]. To establish simultaneous uniform ergodicity we proceed as
in the proof of Theorem 4.10. Observe that by Assumption 4.18 and Lemma 4.14
every adaptive Metropolis transition kernel for ith coordinate, that is, Px−i ,γi

, has

stationary distribution π(·|x−i ) and is ((� log(si/4)
log(1−si )

�+2)mi,
s2
i

8 )-strongly uniformly

ergodic. Moreover, by Lemma 4.15 the family RSG(α), α ∈ Y , is (m′, s′)-strongly
uniformly ergodic, therefore, by Theorem 2 of [37], the family of random scan
Metropolis-within-Gibbs samplers with selection probabilities α ∈ Y and propos-
als indexed by γ ∈ �, is (m∗, s∗)-simultaneously strongly uniformly ergodic with
m∗ and s∗ given as in [37].

For diminishing adaptation we write

sup
x∈X

‖Pαn,γn(x, ·) − Pαn−1,γn−1(x, ·)‖TV

≤ sup
x∈X

‖Pαn,γn(x, ·) − Pαn−1,γn(x, ·)‖TV

+ sup
x∈X

‖Pαn−1,γn(x, ·) − Pαn−1,γn−1(x, ·)‖TV.

The first term above converges to 0 in probability by Corollary 4.7 and assump-
tion (a). The second term

sup
x∈X

‖Pαn−1,γn(x, ·) − Pαn−1,γn−1(x, ·)‖TV

≤
d∑

i=1

αn−1,i sup
x∈X

‖Px−i ,γn+1,i
(xi, ·) − Px−i ,γn,i

(xi, ·)‖TV

converges to 0 in probability as a mixture of terms that converge to 0 in probability.
�

The following lemma can be used to verify assumption (d) of Theorem 4.19
(see also Example 4.22 below).

LEMMA 4.21. Assume that the adaptive proposals exhibit diminishing adap-
tation, that is, for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X

‖Qx−i ,γn+1,i
(xi, ·) − Qx−i ,γn,i

(xi, ·)‖TV → 0 in probability, as n → ∞
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for fixed starting values x0 ∈ X and α0 ∈ Y .
Then any of the following conditions:

(i) The Metropolis proposals have symmetric densities, that is,

qx−i ,γn,i
(xi, yi) = qx−i ,γn,i

(yi, xi),

(ii) Xi is compact for every i, π is continuous, everywhere positive and
bounded,

implies condition (d) of Theorem 4.19.

PROOF. The first statement can be concluded from Proposition 12.3 of [1],
however, to be self-contained, we provide the argument. Let P1, P2 denote transi-
tion kernels and Q1, Q2 proposal kernels of two generic Metropolis algorithms for
sampling from π on arbitrary state space X . To see that (i) implies (d) we check
that

‖P1(x, ·) − P2(x, ·)‖TV ≤ 2‖Q1(x, ·) − Q2(x, ·)‖TV.

Indeed, the acceptance probability

α(x, y) = min
{

1,
π(y)

π(x)

}
∈ [0,1]

does not depend on the proposal, and for any x ∈ X and A ∈ B(X ), we compute

|P1(x,A) − P2(x,A)| ≤
∣∣∣∣
∫
A

α(x, y)
(
q1(y) − q2(y)

)
dy

∣∣∣∣
+ I{x∈A}

∣∣∣∣
∫

X

(
1 − α(x, y)

)(
q1(y) − q2(y)

)
dy

∣∣∣∣
≤ 2‖Q1(x, ·) − Q2(x, ·)‖TV.

For the second statement note that condition (ii) implies there exists K < ∞, s.t.
π(y)/π(x) ≤ K for every x, y ∈ X . To conclude that (d) results from (ii) note that

|min{a, b} − min{c, d}| < |a − c| + |b − d|(22)

and recall acceptance probabilities αi(x, y) = min{1,
π(y)qi(y,x)
π(x)qi(x,y)

}. Indeed, for any
x ∈ X and A ∈ B(X ), using (22), we have

|P1(x,A) − P2(x,A)|
≤

∣∣∣∣
∫
A

(
min

{
q1(x, y),

π(y)

π(x)
q1(y, x)

}
− min

{
q2(x, y),

π(y)

π(x)
q2(y, x)

})
dy

∣∣∣∣
+ I{x∈A}

∣∣∣∣
∫

X

((
1 − α1(x, y)

)
q1(x, y) − (

1 − α2(x, y)
)
q2(x, y)

)
dy

∣∣∣∣
≤ 4(K + 1)‖Q1(x, ·) − Q2(x, ·)‖TV
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and the claim follows since a random scan Metropolis-within-Gibbs sampler is a
mixture of Metropolis samplers. �

We now provide an example to show that diminishing adaptation of proposals
as in Lemma 4.21 does not necessarily imply condition (d) of Theorem 4.19 so
some additional assumption is required, for example, (i) or (ii) of Lemma 4.21.

EXAMPLE 4.22. Consider a sequence of Metropolis algorithms with transi-
tion kernels P1,P2, . . . designed for sampling from π(k) = pk(1 − p) on X =
{0,1, . . .}. The transition kernel Pn results from using proposal kernel Qn and the
standard acceptance rule, where

Qn(j, k) = qn(k) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk

(
1

1 − p
− pn + p2n

)−1

, for k �= n,

p2n

(
1

1 − p
− pn + p2n

)−1

, for k = n.

Clearly,

sup
j∈X

‖Qn+1(j, ·) − Qn(j, ·)‖TV = qn+1(n) − qn(n) → 0.

However,

sup
j∈X

‖Pn+1(j, ·) − Pn(j, ·)‖TV ≥ Pn+1(n,0) − Pn(n,0)

= min
{
qn+1(0),

π(0)

π(n)
qn+1(n)

}

− min
{
qn(0),

π(0)

π(n)
qn(n)

}

= qn+1(0) − qn(0)pn

→ 1 − p �= 0.

5. Ergodicity—nonuniform case. In this section we consider the case where
nonadaptive kernels are not necessary uniformly ergodic. We study adaptive ran-
dom scan Gibbs adaptive Metropolis-within-Gibbs (AdapRSadapMwG) algo-
rithms in the nonuniform setting, with parameters α ∈ Y and γi ∈ �i, i = 1, . . . , d ,
subject to adaptation. The conclusions we draw apply immediately to adaptive ran-
dom scan Gibbs Metropolis-within-Gibbs (AdapRSMwG) algorithms by keeping
the parameters γi fixed for the Metropolis-within-Gibbs steps.

We keep the assumption that selection probabilities are in Y defined in (5),
whereas the uniform ergodicity assumption will be replaced by some natural reg-
ularity conditions on the target density.
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Our strategy is to use the generic approach of [41] and to verify the diminishing
adaptation and the containment conditions. The containment condition has been
extensively studied in [9] and it is essentially necessary for ergodicity of adaptive
chains (see Theorem 2 therein for the precise result). In particular, containment
is implied by simultaneous geometrical ergodicity for the adaptive kernels. More
precisely, we shall use the following result of [9].

THEOREM 5.1 (Corollary 2 of [9]). Consider the family {Pγ :γ ∈ �} of
Markov chains on X ⊆ R

d , satisfying the following conditions:

(i) for any compact set C ∈ B(X ), there exist some integer m > 0, and real
ρ > 0, and a probability measure νγ on C s.t.

P m
γ (x, ·) ≥ ρνγ (·) for all x ∈ C,

(ii) there exists a function V : X → (1,∞), s.t. for any compact set C ∈ B(X ),
we have supx∈C V (x) < ∞, π(V ) < ∞, and

lim sup
|x|→∞

sup
γ∈�

Pγ V (x)

V (x)
< 1,

then for any adaptive strategy using {Pγ :γ ∈ �}, containment holds.

Throughout this section we assume Xi = R for i = 1, . . . , d , and X = R
d and

let μk denote the Lebsque measure on R
k . By {e1, . . . , ed} denote the coordinate

unit vectors and let | · | be the Euclidean norm.
Our focus is on random walk Metropolis proposals with symmetric densities

for updating Xi |X−i denoted as qi,γi
(·), γi ∈ �i . We shall work in the following

setting, extensively studied for nonadaptive Metropolis-within-Gibbs algorithms
in [16] (see also [36, 37] for related work and [21] for analysis of the random walk
Metropolis algorithm).

ASSUMPTION 5.2. The target distribution π is absolutely continuous with
respect to μd with strictly positive and continuous density π(·) on X .

ASSUMPTION 5.3. The family {qi,γi
}1≤i≤d;γi∈�i

of symmetric proposal den-
sities with respect to μ1 (one-dimensional Lebesgue measure) is such that there
exist constants ηi > 0, δi > 0, for i = 1, . . . , d , s.t.

inf|x|≤δi

qi,γi
(x) ≥ ηi for every 1 ≤ i ≤ d and γi ∈ �i.(23)

ASSUMPTION 5.4. There exist 0 < δ < 
 ≤ ∞, such that

ξ := inf
1≤i≤d,γi∈�i

∫ 


δ
qi,γi

(y)μ1(dy) > 0(24)
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and, for any sequence x = {xj } with limj→∞ |xj | = +∞, there exists a subse-
quence x̃ = {x̃j } s.t. for some i ∈ {1, . . . , d} and all y ∈ [δ,
],

lim
j→∞

π(x̃j )

π(x̃j − sign(x̃
j
i )yei)

= 0 and lim
j→∞

π(x̃j + sign(x̃
j
i )yei)

π(x̃j )
= 0.(25)

Discussion of the seemingly involved 5.4 and simple criterions for checking
it are given in [16]. It was shown in [16] that under these assumptions non-
adaptive random scan Metropolis-within-Gibbs algorithms are geometrically er-
godic for subexponential densities. We establish ergodicity of the doubly adaptive
AdapRSadapMwG algorithm in the same setting.

THEOREM 5.5. Let π be a subexponential density and let the selection prob-
abilities αn ∈ Y for all n, with Y as in (5). Moreover assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y ,
γi ∈ �i , i = 1, . . . , d;

(b) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, that
is, for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X

‖Px−i ,γn+1,i
(xi, ·) − Px−i ,γn,i

(xi, ·)‖TV → 0 in probability, as n → ∞

for fixed starting values x0 ∈ X and α0 ∈ Y , γi ∈ �i , i = 1, . . . , d;
(c) Assumptions 5.2, 5.3, 5.4 hold.

Then AdapRSadapMwG is ergodic, that is,

T (x0, α0, γ0, n) → 0 as n → ∞.(26)

Before proving this result we state its counterpart for densities that are log-
concave in the tails. This is another typical setting carefully studied in the context
of geometric ergodicity of nonadaptive chains [16, 28, 37] where Assumption 5.4
is replaced by the following two conditions.

ASSUMPTION 5.6. There exists an φ > 0 and δ s.t. 1/φ ≤ δ < 
 ≤ ∞ and,
for any sequence x := {xj } with limj→∞ |xj | = +∞, there exists a subsequence
x̃ := {x̃j } s.t. for some i ∈ {1, . . . , d} and for all y ∈ [δ,
],

lim
j→∞

π(x̃j )

π(x̃j − sign(x̃
j
i )yei)

≤ exp{−φy} and

(27)

lim
j→∞

π(x̃j + sign(x̃
j
i )yei)

π(x̃j )
≤ exp{−φy}.
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ASSUMPTION 5.7.

inf
1≤i≤d,γi∈�i

∫ 


δ
yqi,γi

(y)μ1(dy) ≥ 8

εφ(e − 1)
.

REMARK 5.8. As remarked in [16], Assumption 5.6 generalizes the one-
dimensional definition of log-concavity in the tails and Assumption 5.7 is easy
to ensure, at least if 
 = ∞, by taking the proposal distribution to be a mixture of
an adaptive component and a uniform on [−U,U ] for U large enough or a mean
zero Gaussian with large enough variance.

THEOREM 5.9. Let the selection probabilities αn ∈ Y for all n, with Y as
in (5). Moreover, assume that:

(a) |αn −αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y ,
γi ∈ �i , i = 1, . . . , d;

(b) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, that
is, for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X

‖Px−i ,γn+1,i
(xi, ·) − Px−i ,γn,i

(xi, ·)‖TV → 0 in probability, as n → ∞

for fixed starting values x0 ∈ X and α0 ∈ Y , γi ∈ �i , i = 1, . . . , d;
(c) Assumptions 5.2, 5.3, 5.6, 5.7 hold.

Then AdapRSadapMwG is ergodic, that is,

T (x0, α0, γ0, n) → 0 as n → ∞.(28)

We now proceed to proofs.

PROOF OF THEOREM 5.5. Ergodicity will follow from Theorem 2 of [41]
by establishing diminishing adaptation and containment condition. Diminishing
adaptation can be verified as in the proof of Theorem 4.19. Containment will result
from Theorem 5.1.

Recall that Pα,γ is the random scan Metropolis-within-Gibbs kernel with selec-
tion probabilities α and proposals indexed by {γi}1≤i≤d . To verify the small set
condition (i), observe that Assumptions 5.2 and 5.3 imply that for every compact
set C and every vector γi ∈ �i , i ∈ 1, . . . , d , we can find m∗ and ρ∗ independent
of {γi}, and such that P m∗

1/d,γ (x, ·) ≥ ρ∗ν(·) for all x ∈ C. Hence, arguing as in the
proof of Lemma 4.4, there exist m and ρ, independent of α ∈ Y and {γi}, such that
P m

α,γ (x, ·) ≥ ρν(·) for all x ∈ C.
To establish the drift condition (ii), let Vs := π(x)−s for some s ∈ (0,1) to be

specified later. Then by Proposition 3 of [37], for all 1 ≤ i ≤ d , γi ∈ �i , and x ∈ R
d

we have

Pi,γi
Vs(x) ≤ r(s)Vs(x) where r(s) := 1 + s(1 − s)1/s−1.(29)
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Since r(s) → 1 as s → 0, we can choose s small enough, so that

r(s) < 1 + εξ

1 − 2εξ
.(30)

The rest of the argument follows the proof of Theorem 2 in [16]. We repeat most
of it since we need to ensure it is independent of α and γ . Assume by contradiction
that there exists an R

d -valued sequence {xj } s.t.

lim sup
j→∞

sup
α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x
j )/Vs(x

j ) ≥ 1.

Then there exists a subsequence {x̂j } such that

lim
j→∞ sup

α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x̂
j )/Vs(x̂

j ) ≥ 1.

Moreover, as shown in [16], proof of Theorem 2, page 129, there exists an integer
k ∈ {1, . . . , d} and a further subsequence {x̃j }, such that

lim
j→∞ sup

γk∈�k

Pk,γk
Vs(x̃

j )/Vs(x̃
j ) ≤ r(s) − (

2r(s) − 1
)
ξ.(31)

The contradiction follows from (29), (30) and (31), since

lim
j→∞ sup

α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x̃
j )

Vs(x̃j )

= lim
j→∞ sup

α∈Y

d∑
i=1

αi sup
γi∈�i

Pi,γi
Vs(x̃

j )

Vs(x̃j )

= lim
j→∞ sup

α∈Y

(
αk sup

γk∈�k

Pk,γk
Vs(x̃

j )/Vs(x̃
j ) + ∑

i �=k

αi sup
γi∈�i

Pi,γi
Vs(x̃

j )

Vs(x̃j )

)

≤ ε
(
r(s) − (

2r(s) − 1
)
ξ
) + (1 − ε)r(s) < 1. �

PROOF OF THEOREM 5.9. The proof is identical to the proof of Theorem 5.5
with the only difference that now the drift condition (ii) of Theorem 5.1 will be
established under Assumptions 5.6 and 5.7.

Establishing (ii) of Theorem 5.1 will follow closely the proof of Theorem 3
in [16]. Let again Vs := π(x)−s for some s ∈ (0,1) to be specified later and recall
that (29) holds for all 1 ≤ i ≤ d , γi ∈ �i , and x ∈ R

d . Assume by contradiction
that there exists an R

d -valued sequence {xj } s.t.

lim sup
j→∞

sup
α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x
j )/Vs(x

j ) ≥ 1.

Then there exists a subsequence {x̂j } such that

lim
j→∞ sup

α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x̂
j )/Vs(x̂

j ) ≥ 1.
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Moreover, as shown in [16], proof of Theorem 3, page 137, equation (15), there
exists an integer k ∈ {1, . . . , d} and a further subsequence {x̃j }, such that

lim
j→∞Pk,γk

Vs(x̃
j )/Vs(x̃

j ) ≤ r(s) − (
2r(s) − 1

)
Jγk

(0) + Jγk
(φs)

(32)
+ Jγk

(
φ(1 − s)

) − Jγk
(φ),

where for b > 0,

Jγk
(b) =

∫ 


δ
e−byqk,γk

(y)μ1(dy).

Now from (29) and (32) compute

lim
j→∞ sup

α∈Y,γi∈�i,1≤i≤d

Pα,γ Vs(x̃
j )

Vs(x̃j )

= lim
j→∞ sup

α∈Y

d∑
i=1

αi sup
γi∈�i

Pi,γi
Vs(x̃

j )

Vs(x̃j )

= lim
j→∞ sup

α∈Y

(
αk sup

γk∈�k

Pk,γk
Vs(x̃

j )/Vs(x̃
j ) + ∑

i �=k

αi sup
γi∈�i

Pi,γi
Vs(x̃

j )

Vs(x̃j )

)

≤ r(s) − ε inf
γk∈�k

((
2r(s) − 1

)
Jγk

(0) + Jγk
(φs) + Jγk

(
φ(1 − s)

) − Jγk
(φ)

)
= sup

γk∈�k

(
r(s) − ε

((
2r(s) − 1

)
Jγk

(0) + Jγk
(φs) + Jγk

(
φ(1 − s)

) − Jγk
(φ)

))
=: sup

γk∈�k

H(γk,φ, s).

The result will follow if we can find such an s that supγk∈�k
H(γk,φ, s) < 1. Note

that H(γk,φ,0) = 1 for every γk ∈ �k and the function is differentiable. Therefore,
it is enough to show that there exist κ1 > 0 and κ2 > 0 such that

∂

∂s
H(γk,φ, s) < −κ1 for all γk ∈ �k and s ∈ (0, κ2)

and conclude (ii) with Vs(x) = π−s(x) and s := κ2. To this end compute

1

ε

∂

∂s
H(γk,φ, s) =

(
1

ε
− 2Jγk

(0)

)
∂

∂s
r(s) − φ

∫ 


δ
ye−φsyqγk

(y)μ1(dy)

+ φ

∫ 


δ
ye−φ(1−s)yqγk

(y)μ1(dy)

= 1

ε

(1 − s)1/s log(1 − s)

s(s − 1)
− φI1 + φI2 =: ♣,
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and notice that by 1/φ ≤ δ and Assumption 5.7, for s small enough we have

I1 − I2 ≥ e − 1

2e

∫ 


δ
yqγk

(y)μ1(dy)

≥ e − 1

2e

8

εφ(e − 1)
= 4

εφe

and

(1 − s)1/s log(1 − s)

s(s − 1)
≤ 2

e
.

Consequently there exists κ2 > 0 s.t. for all s ∈ (0, κ2)

♣ ≤ 2

εe
− 4φ

εφe
= − 2

εe
=: κ1 < 0. �

EXAMPLE 5.10. We now give an example involving a simple generalized lin-
ear mixed model. Consider the model and prior given by

Yi ∼ Pois(eθ+Xi ),(33)

Xi ∼ N(0,1),(34)

θ ∼ N(0,1).(35)

The model is chosen to be extremely simple so as to not detract from the argu-
ment used to demonstrate ergodicity of adapRSadapMwG, although this argu-
ment readily generalizes to different exponential families, link functions and ran-
dom effect distributions.

We consider simulating from the posterior distribution of θ,X given observa-
tions y1, . . . , yn using adapRSadapMwG. More specifically we set

qx−i ,γ (xi, yi) = exp{−(yi − xi)
2/2γ }√

2πγ
,(36)

where the range of permissible scales γ is restricted to be in some range � = [a, b]
with 0 < a ≤ b < ∞. We are in the subexponential tail case and specifically we
have the following.

PROPOSITION 5.11. Consider adapRSadapMwG applied to model (33) us-
ing any adaptive scheme satisfying the conditions (a) and (b) of Theorem 5.5. Then
the scheme is ergodic.

For the proof, we require the following definition from [16]. We let

� = {functions φ : R+ → R
+;φ(x) → ∞ as x → ∞}.
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PROOF OF PROPOSITION 5.11. According to Theorem 5.5, it remains to
check conditions 5.2, 5.3, 5.4 hold. Conditions 5.2 and 5.3 hold by construction,
while condition 5.4 consists of two separate conditions. One of these, given in
(24), holds by construction from (36). Moreover, [16] shows that (25) can be re-
placed by the following condition: there exist functions {φi ∈ �,1 ≤ i ≤ d} such
that i ∈ {1, . . . , d} and all y ∈ [δ,
],

lim|xi |→∞ sup
{x−i ;φj (|xj |)≤φi(|xi |),j �=i}

π(x̃j )

π(x̃j − sign(x̃
j
i )yei)

= 0(37)

and

lim|xi |→∞ sup
{x−i ;φj (|xj |)≤φi(|xi |),j �=i}

π(x̃j + sign(x̃
j
i )yei)

π(x̃j )
= 0.(38)

Now take φi(x) = x for all 1 ≤ i ≤ d so that (37) can be rewritten as the two
conditions

lim|xi |→∞ sup
{x−i ;|xj |≤|xi |,j �=i}

exp
{∫ 0

−y
∇i logπ

(
x + sign(xi)zei

)
dz

}
= 0,(39)

lim|xi |→∞ sup
{x−i ;|xj |≤|xi |,j �=i}

exp
{∫ y

0
∇i logπ

(
x + sign(xi)zei

)
dz

}
= 0(40)

for all y ∈ [δ,
], where ∇i denotes the derivative in the ith direction. We shall
show that uniformly on the set Si(xi), which is defined to be {x−i; |xj | ≤ |xi |, j �=
i}, the function ∇i logπ(x) converges to −∞ as xi → +∞ and to +∞ as xi

approaches −∞.
Now we have d = n + 1 and let i correspond to the component xi for 1 ≤ i ≤ n

with n + 1 denoting the component θ . Therefore, for 1 ≤ i ≤ n,

∇i logπ(x) = −eθ+xi + yi − xi

and

∇n+1 logπ(x) = −
n∑

i=1

eθ+xi −
n∑

i=1

yi − θ.

Now for xi > 0, 1 ≤ i ≤ n

∇i logπ(x) ≥ yi − xi,

which is diverging to −∞ independently of x−i . Similarly,

∇n+1 logπ(x) ≥
n∑

i=1

yi − θ

diverging to −∞ independently of {xi;1 ≤ i ≤ n}.
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For xi < 0, 1 ≤ i ≤ n and (x−i , θ) ∈ Si(xi),

∇i logπ(x) ≤ yi − xi + 1

again diverging to +∞ uniformly. Finally, for θ < 0 and x ∈ Sn+1(θ),

∇n+1 logπ(x) ≥ −n +
n∑

i=1

yi − θ,

again demonstrating the required uniform convergence. Thus ergodicity holds. �

REMARK 5.12. The random effect distribution in Example 5.10 can be altered
to give different results. For instance, if the distribution is doubly exponential,
Theorem 4.2 can be applied using very similar arguments to those used above.
Extensions to more complex hierarchical models are clearly possible though we
do not pursue this here.

REMARK 5.13. An important problem that we have not focused on involves
the construction of explicit adaptive strategies. Since little is known about the op-
timization of the random scan random walk Metropolis, even in the nonadaptive
case, this is not a straightforward question. We are engaged in further work explor-
ing adaptation to attempt to maximize a given optimality criterion for the chosen
class of samplers. Two possible strategies are:

• to scale the proposal variance to approach 2.4 times the empirically observed
conditional variance;

• to scale the proposal variance to achieve an algorithm with acceptance propor-
tion approximately 0.44.

Both these methods are founded in theoretical arguments (see, e.g., [39]).

6. Proof of Proposition 3.2. The analysis of Example 3.1 is somewhat del-
icate since the process is both time and space inhomogeneous (as are most non-
trivial adaptive MCMC algorithms). To establish Proposition 3.2, we will define a
couple of auxiliary stochastic processes. Consider the following one-dimensional
process (X̃n)n≥0 obtained from (Xn)n≥0 by

X̃n := Xn,1 + Xn,2 − 2.

Clearly X̃n − X̃n−1 ∈ {−1,0,1}; moreover, Xn,1 → ∞ and Xn,2 → ∞ if and only
if X̃n → ∞. Note that the dynamics of (X̃n)n≥0 are also both time and space
inhomogeneous.

We will also use an auxiliary random walk-like space homogeneous process

S0 = 0 and Sn :=
n∑

i=1

Yi for n ≥ 1,
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where Y1, Y2, . . . are independent random variables taking values in {−1,0,1}. Let
the distribution of Yn on {−1,0,1} be

νn :=
{

1

4
− 1

an

,
1

2
,

1

4
+ 1

an

}
.(41)

We shall couple (X̃n)n≥0 with (Sn)n≥0, that is, define them on the same proba-
bility space {�, F ,P}, by specifying the joint distribution of (X̃n, Sn)n≥0 so that
the marginal distributions remain unchanged. We describe the details of the con-
struction later. Now define

�
X̃≥S

:= {ω ∈ � : X̃n(ω) ≥ Sn(ω) for every n}(42)

and

�∞ := {ω ∈ � :Sn(ω) → ∞}.(43)

Clearly, if ω ∈ �
X̃≥S

∩ �∞, then X̃n(ω) → ∞. In the sequel we show that for our
coupling construction

P(�
X̃≥S

∩ �∞) > 0.(44)

We shall use Hoeffding’s inequality for Sk+n
k := Sk+n − Sk . Since Yn ∈ [−1,1],

it yields for every t > 0,

P(Sk+n
k − ESk+n

k ≤ −nt) ≤ exp
{−1

2nt2}
.(45)

Note that EYn = 2/an and thus ESk+n
k = 2

∑k+n
i=k+1 1/ai . The following choice for

the sequence an will facilitate further calculations. Let

b0 = 0,

b1 = 1000,

bn = bn−1

(
1 + 1

10 + log(n)

)
for n ≥ 2,

cn =
n∑

i=0

bi,

an = 10 + log(k) for ck−1 < n ≤ ck.

REMARK 6.1. To keep notation reasonable we ignore the fact that bn will not
be an integer. It should be clear that this does not affect proofs, as the constants we
have defined, that is, b1 and a1, are bigger than required.

LEMMA 6.2. Let Yn and Sn be as defined above and let

�1 := {ω ∈ � :Sk = k for every 0 < k ≤ c1},(46)

�n :=
{
ω ∈ � :Sk ≥ bn−1

2
for every cn−1 < k ≤ cn

}
for n ≥ 2.(47)
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Then

P

( ∞⋂
n=1

�n

)
> 0.(48)

REMARK 6.3. Note that bn ↗ ∞ and therefore
⋂∞

n=1 �n ⊂ �∞.

PROOF OF LEMMA 6.2. With positive probability, say p1,S , we have Y1 =
· · · = Y1000 = 1 which gives Sc1 = 1000 = b1. Hence, P(�1) = p1,S > 0. More-
over, recall that S

cn
cn−1 is a sum of bn i.i.d. random variables with ES

cn
cn−1 =

2bn

10+log(n)
. Therefore, for every n ≥ 1 by Hoeffding’s inequality with t = 1/(10 +

log(n)), we can also write

P

(
Scn

cn−1
≤ bn

10 + log(n)

)
≤ exp

{
−1

2

bn

(10 + log(n))2

}
=: pn.

Therefore, using the above bound iteratively, we obtain

P(Sc1 = b1, Scn ≥ bn for every n ≥ 2) ≥ p1,S

∞∏
n=2

(1 − pn).(49)

Note that {Scn ≥ bn} ⊆ �n by the choice of bn, and hence, equation (49) implies
also

P

( ∞⋂
n=1

�n

)
≥ p1,S

∞∏
n=2

(1 − pn).(50)

Clearly in this case

p1,S

∞∏
n=2

(1 − pn) > 0 ⇔
∞∑

n=1

log(1 − pn) > −∞ ⇔
∞∑

n=1

pn < ∞.(51)

We conclude (51) by comparing pn with 1/n2. We show that there exists n0 such
that for n ≥ n0 the series pn decreases quicker than the series 1/n2 and therefore
pn is summable. We check that

log
pn−1

pn

> log
n2

(n − 1)2 for n ≥ n0.(52)

Indeed

log
pn−1

pn

= −1

2

(
bn−1

(10 + log(n − 1))2 − bn

(10 + log(n))2

)

= bn−1

2

(
11 + log(n)

(10 + log(n))3 − 1

(10 + log(n − 1))2

)

= bn−1

2

(
(11 + log(n))(10 + log(n − 1))2 − (10 + log(n))3

(10 + log(n))3(10 + log(n − 1))2

)
.
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Now recall that bn−1 is an increasing sequence. Moreover, the numerator can be
rewritten as(

10 + log(n)
)((

10 + log(n − 1)
)2 − (

10 + log(n)
)2) + (

10 + log(n − 1)
)2;

now use a2 − b2 = (a + b)(a − b) to identify the leading term (10 + log(n − 1))2.
Consequently there exists a constant C and n0 ∈ N s.t. for n ≥ n0

log
pn−1

pn

≥ C

(10 + log(n))3 >
2

n − 1
> log

n2

(n − 1)2 .

Hence,
∑∞

n=1 pn < ∞ follows. �

Now we will describe the coupling construction of (X̃n)n≥0 and (Sn)n≥0. We
already remarked that

⋂∞
n=1 �n ⊂ �∞. We will define a coupling that implies also

P

(( ∞⋂
n=1

�n

)
∩ �

X̃≥S

)
≥ CP

( ∞⋂
n=1

�n

)
for some universal C > 0(53)

and therefore

P(�
X̃≥S

∩ �∞) > 0.(54)

Thus nonergodicity of (Xn)n≥0 will follow from Lemma 6.2. We start with the
following observation.

LEMMA 6.4. There exists a coupling of X̃n − X̃n−1 and Yn, such that:

(a) For every n ≥ 1 and every value of X̃n−1

P(X̃n − X̃n−1 = 1, Yn = 1) ≥ P(X̃n − X̃n−1 = 1)P(Yn = 1).(55)

(b) Write even or odd X̃n−1 as X̃n−1 = 2i − 2 or X̃n−1 = 2i − 3, respectively.
If 2i − 8 ≥ an, then the following implications hold a.s.

Yn = 1 ⇒ X̃n − X̃n−1 = 1,(56)

X̃n − X̃n−1 = −1 ⇒ Yn = −1.(57)

PROOF. Property (a) is a simple fact for any two {−1,0,1} valued random
variables Z and Z′ with distributions say, {d1, d2, d3} and {d ′

1, d
′
2, d

′
3}. Assign

P(Z = Z′ = 1) := min{d3, d
′
3} and (a) follows. To establish (b) we analyze the

dynamics of (Xn)n≥0 and consequently, of (X̃n)n≥0. Recall Algorithm 2.2 and the
update rule for αn in (4). Given Xn−1 = (i, j), the algorithm will obtain the value
of αn in step (1); next draw a coordinate according to (αn,1, αn,2) in step (2). In
steps (3) and (4) it will move according to conditional distributions for updating
the first or the second coordinate. These distributions are

(1/2,1/2) and
(

i2

i2 + (i − 1)2 ,
(i − 1)2

i2 + (i − 1)2

)
,
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respectively. Hence, given Xn−1 = (i, i), the distribution of Xn ∈ {(i, i − 1), (i, i),

(i + 1, i)} is((
1

2
− 4

an

)
i2

i2 + (i − 1)2 ,

(58)

1 −
(

1

2
− 4

an

)
i2

i2 + (i − 1)2 −
(

1

4
+ 2

an

)
,

1

4
+ 2

an

)
,

whereas if Xn−1 = (i, i − 1), then Xn ∈ {(i − 1, i − 1), (i, i − 1), (i, i)} with prob-
abilities (

1

4
− 2

an

,1 −
(

1

4
− 2

an

)
−

(
1

2
+ 4

an

)
(i − 1)2

i2 + (i − 1)2 ,

(59) (
1

2
+ 4

an

)
(i − 1)2

i2 + (i − 1)2

)
,

respectively. We can conclude the evolution of (X̃n)n≥0. Namely, if X̃n−1 = 2i −2,
then the distribution of X̃n − X̃n−1 ∈ {−1,0,1} is given by (58) and if X̃n−1 =
2i − 3, then the distribution of X̃n − X̃n−1 ∈ {−1,0,1} is given by (59). Let ≤st
denote stochastic ordering. By simple algebra both measures defined in (58) and
(59) are stochastically bigger than

μi
n = (μi

n,1,μ
i
n,2,μ

i
n,3),(60)

where

μi
n,1 =

(
1

4
− 2

an

)(
1 + 2

i

)
= 1

4
− 1

an

− 2i + 8 − an

2ian

,(61)

μi
n,2 = 1 −

(
1

4
− 2

an

)(
1 + 2

i

)
−

(
1

4
+ 2

an

)(
1 − 2

max{4, i}
)
,

μi
n,3 =

(
1

4
+ 2

an

)(
1 − 2

max{4, i}
)

= 1

4
+ 1

an

+ 2 max{4, i} − 8 − an

2an max{4, i} .(62)

Recall νn, the distribution of Yn defined in (41). Examine (61) and (62) to see
that if 2i − 8 ≥ an, then μi

n ≥st νn. Hence, in this case also, the distribution of
X̃n −X̃n−1 is stochastically bigger than the distribution of Yn. The joint probability
distribution of (X̃n − X̃n−1, Yn) satisfying (56) and (57) follows. �

PROOF OF PROPOSITION 3.2. Define

�1,X̃
:= {ω ∈ � : X̃n − X̃n−1 = 1 for every 0 < n ≤ c1}.(63)

Since the distribution of X̃n − X̃n−1 is stochastically bigger than μi
n defined in

(60) and μi
n(1) > c > 0 for every i and n,

P(�1,X̃
) =: p1,X̃

> 0.



96 K. ŁATUSZYŃSKI, G. O. ROBERTS AND J. S. ROSENTHAL

By Lemma 6.4 (a) we have

P(�1,X̃
∩ �1) ≥ p1,Sp1,X̃

> 0.(64)

Since Sc1 = X̃c1 = c1 = b1, on �1,X̃
∩�1, the requirements for Lemma 6.4(b) hold

for n−1 = c1. We shall use Lemma 6.4(b) iteratively to keep X̃n ≥ Sn for every n.
Recall that we write X̃n−1 as X̃n−1 = 2i − 2 or X̃n−1 = 2i − 3. If 2i − 8 ≥ an

and X̃n−1 ≥ Sn−1, then by Lemma 6.4(b) also X̃n ≥ Sn. Clearly if X̃k ≥ Sk and
Sk ≥ bn−1

2 for cn−1 < k ≤ cn then X̃k ≥ bn−1
2 for cn−1 < k ≤ cn, hence,

2i − 2 ≥ bn−1

2
for cn−1 < k ≤ cn.

This in turn gives 2i − 8 ≥ bn−1
2 − 6 for cn−1 < k ≤ cn and since ak = 10 + log(n),

for the iterative construction to hold, we need bn ≥ 32 + 2 log(n + 1). By the
definition of bn and standard algebra we have

bn ≥ 1000

(
1 +

n∑
i=2

1

10 + log(n)

)
≥ 32 + 2 log(n + 1) for every n ≥ 1.

Summarizing the above argument provides

P(Xn,1 → ∞) ≥ P(�∞ ∩ �
X̃≥S

) ≥ P

(( ∞⋂
n=1

�n

)
∩ �

X̃≥S

)

≥ P

(
�1,X̃

∩
( ∞⋂

n=1

�n

)
∩ �

X̃≥S

)

≥ p1,X̃
p1,S

∞∏
n=2

(1 − pn) > 0.

Hence, (Xn)n≥0 is not ergodic, and in particular, ‖πn − π‖TV � 0. �
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