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STOCHASTIC APPROXIMATION, COOPERATIVE DYNAMICS AND
SUPERMODULAR GAMES1

BY MICHEL BENAÏM AND MATHIEU FAURE

Université de Neuchâtel

This paper considers a stochastic approximation algorithm, with decreas-
ing step size and martingale difference noise. Under very mild assumptions,
we prove the nonconvergence of this process toward a certain class of repul-
sive sets for the associated ordinary differential equation (ODE). We then use
this result to derive the convergence of the process when the ODE is coop-
erative in the sense of Hirsch [SIAM J. Math. Anal. 16 (1985) 423–439]. In
particular, this allows us to extend significantly the main result of Hofbauer
and Sandholm [Econometrica 70 (2002) 2265–2294] on the convergence of
stochastic fictitious play in supermodular games.

1. Introduction. Let (xn)n∈N be an Rd -valued stochastic approximation pro-
cess [Robbins and Monro (1951), Kiefer and Wolfowitz (1952)] whose general
form can be written as

xn+1 − xn = 1

n + 1

(
F(xn) + Un+1

)
,(1)

where F : Rd → Rd is a vector field and (Un) an Rd -valued martingale differences
sequence. Originally, Robbins–Monro algorithms were designed for finding the
zeroes of a given deterministic function. They are now widely used in several fields
(including signal processing, learning and game theory, optimization, etc.) either
as stochastic algorithms or models of learning and evolution.

To obtain information on the behavior of the sample paths (xn) it is natural to
compare them to the trajectories of the ordinary differential equation

ẋ = F(x).(2)

This method—usually referred to as the ODE method—was first introduced in
Ljung (1977) and has been developed by many authors [including Kushner and
Clark (1978), Benveniste, Metivier and Priouret (1990), Duflo (1996), Kushner
and Yin (2003)] for very simple dynamics (e.g., linear or gradient-like).

In a series of papers initiated in the late 1990s, the first author and collabora-
tors have formulated an approach to stochastic approximation based on notions
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of dynamical system theory, showing that the asymptotic behavior of (xn) can be
described with a great deal of generality through (2), beyond gradients and simple
dynamics. We refer the reader to the survey paper [Pemantle (2007)] for a recent
introduction to this approach including several examples, references and discus-
sion of the literature; and to Benaïm (1999) for a comprehensive presentation.

One of the key results is that limit sets of (xn) are almost surely internally
chain transitive (ICT) in the sense of Conley (1978). Examples of ICT sets in-
clude equilibria, periodic orbits and omega limit sets of (2) but also possibly more
complicated sets.

On the other hand, due to the stochastic nature of (1), not every ICT set is likely
to be the limit set of (xn) because the noise may push the process away from cer-
tain “unstable” sets. A first result in this direction has been obtained by Pemantle
(1990) [see also Brandière and Duflo (1996) and Tarrès (2001)] who proved that,
under natural assumptions on (Un), (xn) has zero probability to converge toward
a linearly unstable equilibrium of (2), provided F is C2. This later result has been
extended to linearly unstable periodic orbits by Benaïm and Hirsch (1995) and to
C2 normally hyperbolic repulsive sets in Benaïm (1999).

The characterization of the limit sets of (1) in terms of ICT sets and the non-
convergence results toward unstable equilibria and periodic orbit have been suc-
cessfully used by a number of authors for analyzing stochastic approximation pro-
cesses in ecology, game theory, engineering and elsewhere [see, e.g., Section 4 of
Pemantle (2007)].

The present paper continues this line of research. Our main motivation is to
investigate the behavior of (xn) when F is cooperative; meaning that F is Ck ,
k ≥ 1, and

∂Fi

∂xj

≥ 0 for i �= j.

Stochastic approximation processes associated to a cooperative vector field arise
as models of learning and evolution in neural networks [Sadeghi (1998)], co-
ordination games [Benaïm and Hirsch (1999a)], supermodular games [Hofbauer
and Sandholm (2002)], proportional fair sharing algorithms [Kushner and Whiting
(2004)] and Bayesian games [Beggs (2009)].

We will prove (Theorem 4.4 and Corollary 4.6 in Section 4) that, under certain
conditions on (Un):

THEOREM A. If F is cooperative and irreducible, then (xn) converges almost
surely to the zeroes of F .

This answers (partially) a conjecture raised in Benaïm (2000). In the context
of learning in games, this implies the (almost sure) convergence of the method
of stochastic fictitious play for supermodular games in full generality, a property
conjectured by Hofbauer and Sandholm (2002).
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The program leading to the proof of Theorem A began several years ago. The
first step has been to identify ICT sets of cooperative vector fields. This has
been achieved through the papers Hirsch (1999), Benaïm and Hirsch (1999b) and
Benaïm (2000), relying heavily on the seminal work of Hirsch on cooperative dy-
namics. In brief, an ICT set for a cooperative vector field is either an arc of equi-
libria (generically an isolated equilibrium) or is contained in a normally repulsive
C1 hypersurface (trajectories are exponentially repelled, in a normal direction).

The second step consists in ruling out such repelling sets as possible limit sets
of (1). The main difficulty is that the techniques used in the proof of the noncon-
vergence results mentioned above require smoother manifold (typically C2) than
can be proved for cooperative vector fields. In Section 3 of this paper we will prove
(Theorem 3.12) that, under certain technical assumptions:

THEOREM B. Let � be a compact invariant subset of a C1 normally repulsive
manifold, for a Ck, k ≥ 1 vector field F . Then, with probability 1, the limit set of
(xn) cannot be contained in �.

Note that there is no assumption here that F is cooperative. In particular (see
Section 3), this later result can be applied to extend the nonconvergence results of
Pemantle (1990) and Benaïm and Hirsch (1995) to linearly unstable equilibria (or
periodic orbits) when F is merely C1.

The price to pay is that we require a stronger condition on the noise sequence.
The proof is completely different and relies on diffusion approximation techniques
rather than on martingale estimates.

The paper is organized as follows. Section 2 sets up the notation and the neces-
sary background on stochastic approximations. Section 3 is devoted to the precise
statement and proof of Theorem B. Section 4 proves the main results on coopera-
tive stochastic approximations (Theorem A) and Section 5 applies this to prove the
convergence of stochastic fictitious play for supermodular game in full generality.
Certain technical results are postponed to the Appendix.

2. Background, notation and hypotheses. Let F denote a locally Lipschitz
vector field on Rd . By standard results, the Cauchy problem dy

dt
= F(y) with initial

condition y(0) = x admits a unique solution t → �t(x) defined on an open interval
Jx ⊂ R containing the origin. For simplicity in the statement of our results we
furthermore assume that F is globally integrable, meaning that Jx = R for all
x ∈ Rd . This holds in particular if F is sublinear; that is,

lim sup
‖x‖→∞

‖F(x)‖
‖x‖ < ∞.(3)

We let � = {�t }t∈R denote the flow induced by F .
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A continuous map χ : R+ → Rd is called an asymptotic pseudo-trajectory
(APT) for � [Benaïm and Hirsch (1996)] if, for any T > 0,

lim
t→+∞dχ(t, T ) = 0,

where

dχ(t, T ) = sup
h∈[0,T ]

‖χ(t + h) − �h(χ(t))‖.(4)

In other terms, for any T > 0, the curve joining χ(t) to χ(t + T ) shadows the
trajectory of the semiflow starting from χ(t) with arbitrary accuracy, provided t is
large enough.

REMARK 2.1. Assume that �1 restricted to χ(R+) is uniformly continuous.
This holds in particular if χ or F are bounded maps. Then

lim
t→∞dχ(t,1) = 0 ⇐⇒ ∀T > 0 lim

t→∞dχ(t, T ) = 0.

Let (�, F ,P) be a probability space equipped with some nondecreasing se-
quence of σ -algebras (Ft )t≥0. Throughout this paper we will consider an (Ft )t -
adapted continuous-time stochastic process X = (X(t))t≥0 living in Rd verifying
the following condition:

HYPOTHESIS 2.2. There exists a map ω : R3+ → R+ such that:

(i) For any δ > 0, T > 0,

P
(
sup
s≥t

dX(s, T ) ≥ δ
∣∣ Ft

)
≤ ω(t, δ, T ),

(ii) limt→∞ ω(t, δ, T ) = 0.

A sufficient condition ensuring that Hypothesis 2.2 holds is that

P
(
dX(t, T ) ≥ δ | Ft

) ≤
∫ t+T

t
r(s, δ, T ) ds(5)

for some r : R3 → R+ such that∫ ∞
0

r(s, δ, T ) ds < ∞.

In this case

ω(t, δ, T ) =
∫ ∞
t

r(s, δ, T ) ds.

The proof of the following proposition is obvious.
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PROPOSITION 2.3. Under Hypothesis 2.2, X is almost surely an asymptotic
trajectory for �.

EXAMPLE 2.4 (Diffusion processes). Let X be solution to the stochastic dif-
ferential equation

dX(t) = F(X(t)) dt +
√

γ (t) dBt ,

where F is a globally Lipschitz vector field, (Bt ) a standard Brownian motion
on Rd and γ : R+ → R+ a decreasing continuous function [or more generally a
(Bt )t -adapted decreasing process]. Assume that (almost surely)∫ +∞

0
exp

( −c

γ (t)

)
dt < +∞

for all c > 0. Then (5) is satisfied with

r(t, δ, T ) = C exp
(
−δ2C(T )

γ (t)

)
,

where C and C(T ) are positive constants. This is proved in Benaïm (1999), Propo-
sition 7.4.

EXAMPLE 2.5 (Robbins–Monro algorithms). Let (�, F ,P) be a probability
space equipped with an increasing sequence of σ -algebra (Fn). Let (Un) be an
(Fn)-adapted sequence of Rd -valued random variables such that

E(Un+1 | Fn) = 0 and sup
n

E(‖Un‖2) < ∞.

Let F be a globally Lipschitz vector field and (xn)n be solution to (1) with x0
measurable with respect to F0.

Set γn = 1
n
, τn = ∑n

i=1 γi ,

X(τi + s) := xi + s
xi+1 − xi

γi+1
for i ∈ N, s ∈ [0, γi+1]

and

γ (τi + s) := γi+1 for s ∈ [0, γi+1[.
The continuous-time process X is almost surely an asymptotic pseudo-trajectory
of the flow induced by F [see Benaïm (1999), Proposition 4.2 for a proof]. Ad-
ditionally, we have the following result [see Benaïm (1999) and more specifically
Benaïm (2000)]:

PROPOSITION 2.6. There exists some constant B such that condition (5) holds
with

r(s, δ, T ) = Bγ (s)

δ2

for any s ≥ τk0 , and k0 = [ 2
Bδ2 ] + 1.



2138 M. BENAÏM AND M. FAURE

2.1. The limit set theorem. A set L ⊂ Rd is said to be invariant (resp., posi-
tively invariant) for � provided �t(L) ⊂ L for all t ∈ R (resp., t ∈ R+).

Let L be an invariant set for �. We let �L denote the restriction of � to L.
That is, �L

t (x) = �t(x) for all x ∈ L and t ∈ R. Note that with such a notation,

� = �Rd
.

An attractor for �L is a nonempty compact invariant set A ⊂ L having a neigh-
borhood U in L such that

lim
t→∞ dist(�L

t (x),A) = 0

uniformly in x ∈ U . Note that if L is compact, L is always an attractor for �L. An
attractor for �L distinct from L is called a proper attractor.

The basin of attraction of A for �L is the open set (in L) consisting of every
x ∈ L for which limt→∞ dist(�t (x),A) = 0.

A global attractor for � is an attractor whose basin is Rd . If such an attractor
exists, � (resp., F ) is called a dissipative flow (resp., vector field).

A compact invariant set L is said to be internally chain-transitive or attractor-
free if �L has no proper attractor [see, e.g., Conley (1978)]. Note that such a set is
necessarily connected.

A fundamental property of asymptotic pseudo-trajectories is given by the fol-
lowing result due to Benaïm (1996) for stochastic approximation processes and
Benaïm and Hirsch (1996) for APT. We refer to Benaïm (1999) for a proof and
more details; and also to Pemantle (2007) for a recent overview and some applica-
tions.

THEOREM 2.7. Let χ be a bounded APT; then its limit set

L(χ) = ⋂
t≥0

χ([t,∞[)

is internally chain-transitive.

COROLLARY 2.8. Under Hypothesis 2.2, the limit set of X is almost surely
internally chain-transitive on the event {supt≥0 ‖X(t)‖ < ∞}.

REMARK 2.9. If X is as in Example 2.4 or 2.5, with F locally Lipschitz
(instead of globally Lipschitz), then the conclusion of Corollary 2.8 holds true.

3. Nonconvergence toward normally hyperbolic repulsive sets. Through-
out this section we assume that F is a C1 vector field and call � the flow induced
by F .

A submanifold S ⊂ Rd is locally invariant if there exists a neighborhood U of
� in Rd and a positive time t0 such that

�t(U ∩ S) ⊂ S
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for all |t | ≤ t0. We let G(k, d) denote the Grassman manifold of k-dimensional
planes in Rd . For p ∈ S, the tangent space of S in p is denoted TpS.

DEFINITION 3.1. A compact invariant set � ⊂ Rd is called a normally hyper-
bolic repulsive set if � ⊂ S, where S is a locally invariant C1, (d − k)-dimensional
(k ∈ {1, . . . , d}) submanifold of Rd and there exists a continuous map

p ∈ � → Eu
p ∈ G(k, d),

such that:

(i) for any p ∈ �, we have Rd = TpS ⊕ Eu
p ,

(ii) for any t ∈ R and any p ∈ �, D�t(p)Eu
p = Eu

�t (p),
(iii) there exist positive constants λ and C such that, for any p ∈ �, w ∈ Eu

p

and t ≥ 0, we have

‖D�t(p)w‖ ≥ Ceλt‖w‖.

The two basic examples of normally hyperbolic sets are the following. For more
details, see Benaïm (1999), Section 9.

EXAMPLE 3.2 (Linearly unstable equilibria). Let p be an equilibrium of (2).
That is, F(p) = 0. Then Rd can be written as the direct sum of Es

p , Ec
p and Eu

p ,
the generalized eigenspaces corresponding to the eigenvalues of the jacobian ma-
trix DF(p) having, respectively, negative real parts, null real parts and positive
real parts. Equilibrium p is said to be linearly unstable if Eu

p �= {0}. In addition,
by classical results in stable manifolds theory, there exists a C1 (Ck if F is Ck)
locally invariant manifold S, tangent to Es

p ⊕Ec
p at p. Clearly Rd = TpS ⊕Eu

p and
point (iii) is easily verified, since Eu

p is the direct sum of eigenspaces associated to
eigenvalues with positive real parts; see Figure 1.

REMARK 3.3. If Eu
p = Rd , then S = {p} is a zero-dimensional manifold.

EXAMPLE 3.4 (Hyperbolic linearly unstable periodic orbit). Let � ⊂ Rd be
a periodic orbit of period T . The Floquet multipliers of � are the eigenvalues
of D�T (p) for any p ∈ �. The unity is always a Floquet multiplier and � is
called hyperbolic if the other multipliers all have moduli different from 1. It is
called linearly unstable if at least one has modulus strictly greater than 1. If both
assumptions are checked, then, for each p ∈ �, Rd can be written as the direct sum
of three vector spaces Es

p , Ec
p and Eu

p , invariant under D�t(p) and such that:

(i) the dimension of Eu
p is at least one and the map p → Eu

p is C1 (since F

is C1),
(ii) for any t ≥ 0,w ∈ Eu

p , we have ‖D�t(p)w‖ ≥ Ceλt‖w‖,
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FIG. 1. Hyperbolic linearly unstable equilibrium, with � = {p}, d = 2, k = 1.

(iii) Ec
p = Span(F (p)),

(iv) the stable manifold S defined as the union over p ∈ � of the local stable
manifolds in p is C1, locally invariant and TpS = Es

p ⊕ Ec
p; see Figure 2.

As a consequence, � is a normally hyperbolic repulsive set.

REMARK 3.5. If Es
p = {0}, then S = �.

3.1. Nonconvergence: Sufficient conditions. We now give a general result,
which states that, for a certain class of stochastic processes, convergence to nor-
mally hyperbolic repulsive sets occurs with null probability. Namely, let X be a
continuous-time (Ft )-adapted process verifying Hypothesis 2.2.

HYPOTHESIS 3.6. There exists a map γ : R+ → R+ with limt→∞ γ (t) = 0
such that:

(i) For every ball O ⊂ Rd , there exists c > 0 such that

lim inf
t→∞ P

(
X(t + 1) − �1(X(t))√

γ (t)
∈ O

∣∣∣ Ft

)
> c

almost surely.
(ii) There exists a > 0 such that

lim sup
t→∞

ω
(
t, a

√
γ (t), T

)
< 1.



STOCHASTIC APPROXIMATION AND SUPERMODULAR GAMES 2141

FIG. 2. Hyperbolic linearly unstable periodic orbit, with d = 3, k = 1.

REMARK 3.7. In Hypothesis 3.6 it suffices to assume that condition (i) holds
on the event {X(R+) ⊂ U} where U is a given neighborhood of �.

In order to understand this later hypothesis, let us describe a simple example.

EXAMPLE 3.8 (Linear diffusion processes). Let A be a positive parameter and
X be solution to the stochastic differential equation

dX(t) = AX(t) dt + e−t/2 dBt .

Notice that this is a particular case of Example 2.4, with F(x) = Ax and γ (t) =
e−t . Hence X(t) satisfies Hypothesis 2.2 with

ω(t, δ, T ) =
∫ +∞
t

C exp
(
−δ2C(T )

e−s

)
.

Thus

ω
(
t, a

√
γ (t), T

) =
∫ ∞
t

C exp(−a2e−t/2C(T )es) ds

and condition (ii) in Hypothesis 3.6 is clearly satisfied. Let now

Y(t + 1) := X(t + 1) − �1(X(t))√
γ (t)

= et/2(
X(t + 1) − eAX(t)

)
.
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A straightforward computation gives

X(t) = eAt
∫ t

0
e−(A+1/2)s dBs + X(0).

Consequently we have

Y(t + 1) = eA(t+1)+t/2
∫ t+1

t
e−(A+1/2)s dBs.

Hence Y(t + 1) is a Gaussian random variable with variance

σ 2
A = e2A

2A + 1

(
1 − e−(2A+1)),

which is independent of t and positive. Therefore condition (i) of Hypothesis 3.6
holds.

THEOREM 3.9. Let X be a continuous (Ft )-adapted process verifying Hy-
potheses 2.2 and 3.6. Then

P
(
X(t) → �

) = 0.

The proof of Theorem 3.9 is given in the next subsection. We now state two
applications of this result, including Example 3.8. The proofs of Theorems 3.10
and 3.12 are technical and are postponed to the Appendix.

THEOREM 3.10. Let X be as in Example 2.4. Set l(t) = log(γ (t)). Assume
that:

(i) Function l is subadditive: l(t + s) ≤ l(t) + l(s). This holds in particular if
l is concave and l(0) = 0.

(ii) There exist constants a ≥ b > 0 such that −a ≤ l̇(t) ≤ −b.

Then Hypothesis 3.6 holds. In particular, the conclusion of Theorem 3.9 holds.

For the specific case of the Robbins–Monro algorithm, an additional assumption
on the noise is needed. Let S +(Rd) denote the set of symmetric definite positive
matrices on Rd .

HYPOTHESIS 3.11. There exist a neighborhood U of � and a continuous map

Q :U → S +(Rd)

such that E(Un+1U
T
n+1 | Fn) = Q(xn) on the event {xn ∈ U}.

THEOREM 3.12. Let (xn)n be solution to (1). Assume that E(‖Un‖2p | Fn−1)

is almost surely bounded for some p > 1, and that Hypothesis 3.11 holds. Then the
associated interpolated process X(t)t≥0 satisfies Hypothesis 3.6 and therefore, the
conclusion of Theorem 3.9 holds.
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3.2. Proof of Theorem 3.9. For further analysis, it is convenient to extend the
map p → Eu

p to a neighborhood of � and to approximate it by a smooth map.
More precisely, it is shown in Benaïm [(1999), Section 9.1] that there exists a
neighborhood N0 ⊂ U of � and a C1 bundle

Ẽu = {(p, v) ∈ S ∩ N0 × Rd :v ∈ Ẽu
p},

where Ẽu
p ∈ G(k, d) such that:

(i) for all p ∈ S ∩ N0, Rd = TpS ⊕ Ẽu
p;

(ii) the map H : Ẽu → Rd defined by H(p,v) = p + v induces a C1 diffeor-
morphism from a neighborhood of the zero section {(p,0) ∈ Ẽu} onto N0.

Let now V : N0 → R+ be the map defined by V (x) = ‖v‖ for H−1(x) = (p, v).
The form of V implies that there exists L > 0 such that

d(x,S) ≤ V (x) ≤ Ld(x,S)(6)

for all x ∈ N0. Then according to Lemma 9.3 in Benaïm (1999) there exist a
bounded neighborhood N1 ⊂ N0 of �, and numbers T > 0, ρ > 1 such that

∀x ∈ N1 V (�T (x)) ≥ ρV (x).(7)

Given a neighborhood N ⊂ U of �, we let

Outε = Outε(N , S) := {x ∈ N | d(x,S ∩ N ) ≥ ε}
and

Inε = Inε(N , S) := N \ Outε.

LEMMA 3.13. (i) There exist a bounded neighborhood N ⊂ U of �,T > 0
and ρ > 1 such that, for all ε > 0,

�T (Outε(N , S)) ∩ N ⊂ Outρε(N , S).

In particular, every compact invariant subset contained in N lies in S.
(ii) For all R > 0, there exist a finite set {v1, . . . , vn} ⊂ Rd and a Borel map

I :� → {1, . . . , n} such that for all p ∈ � and v ∈ B(vI (p),1),

p + εv ∈ OutRε.

PROOF. Choose k ∈ N such that ρk > L and N ⊂ N1 be small enough so that
�kT (N ) ⊂ N1. Then, using (6) and (7) for all x ∈ N ,

d(�kT (x), S) ≥ 1

L
V (�kT (x)) ≥ ρk

L
V (x) ≥ ρk

L
d(x,S).

Replacing T by kT and ρ by ρk

L
gives the result.
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We now prove the second assertion. Given R > 0, let f :� → Rd be a measur-
able function such that for all p ∈ �,f (p) ∈ Ẽu

p and ‖f (p)‖ = L(R + 2) where

L is the constant appearing in (6). The bundle Ẽu being locally trivial, it is not
hard to construct such a function. By compactness of f (�), there exists a finite set
{v1, . . . , vn} ⊂ f (�) such that f (�) ⊂ ⋃n

i=1 B(vi,1). For p ∈ �, set

I (p) = min{i = 1, . . . , n :‖f (p) − vi‖ ≤ 1}.
Then, for I (p) = i and v ∈ B(vi,1),

d
(
p + εf (p), S

) ≤ d(p + εv, S) + ε‖f (p) − v)‖ ≤ d(p + εv, S) + 2ε.

On the other hand, by (6),

d
(
p + εf (p), S

) ≥ 1

L
V

(
p + εf (p)

) = ε‖f (p)‖
L

= ε(R + 2).

Hence

d(p + εv, S) ≥ Rε. �

COROLLARY 3.14. Let N , T and ρ be as in Lemma 3.13, and set δ = (ρ −
1) > 0. Let χ be an asymptotic pseudo-trajectory verifying:

(i) χ(0) ∈ Outε ,
(ii) for all t ≥ 0, dχ (t, T ) ≤ δε.

Then χ eventually leaves N .

PROOF. Suppose that χ remains in N . We claim that χ(kT ) ∈ Outε for all
k ∈ N. If χ(kT ) ∈ Outε , then �T (χ(kT )) ∈ Outρε by Lemma 3.13. Hence χ(kT +
T ) ∈ Outε since dχ(kT ,T ) ≤ δε. This proves the claim by induction on k. Now,
by the limit set Theorem 2.7 and Lemma 3.13, the limit set of χ lies in S and we
have reached a contradiction. �

Throughout the remainder of the section we let N , T and ρ be as in Lemma 3.13
and δ = (ρ − 1) > 0. Recall that X is a continuous-time (Ft )-adapted process
verifying Hypothesis 2.2. We call Et the event

Et = {∀s ≥ t :X(s) ∈ N }.

LEMMA 3.15. (i) On the event {X(t) ∈ Outε},
P(Et | Ft ) ≤ ω(t, δε, T ).

(ii)

P(Et | Ft ) ≤ 1 − [1 − ω(t + 1, δε, T )]P(
X(t + 1) ∈ Outε | Ft

)
.
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PROOF. Since X is an asymptotic pseudo-trajectory which satisfies

P
(∃s ≥ t :dX(s, T ) ≥ δε | Ft

) ≤ ω(t, δε, T ),

the first inequality follows from Corollary 3.14. Now

P(Et | Ft ) ≤ P(Et+1 | Ft )

= P
(
Et+1;X(t + 1) ∈ Outε | Ft

) + P
(
Et+1;X(t + 1) ∈ Inε | Ft

)
= E

(
P(Et+1 | Ft+1)1X(t+1)∈Outε | Ft

) + E
(
P(Et+1 | Ft+1)1X(t+1)∈Inε | Ft

)
≤ ω(t + 1, δε, T )P

(
X(t + 1) ∈ Outε | Ft

) + P
(
X(t + 1) ∈ Inε | Ft

)
. �

LEMMA 3.16. Assume that there exist a map ε : R+ → R+ with

lim
t→∞ ε(t) = 0

and constants c > 0 and c′ < 1 such that for t large enough,

(i) P(X(t + 1) ∈ Outε(t) | Ft ) ≥ c on the event {X(t) ∈ Inε(t)}.
(ii)

ω
(
t, δε(t), T

)
< c′.

Then

P
(
X(t) → �

) = 0.

PROOF. One has

{X(t) → �} ⊂ ⋃
n∈N

En

and it suffices to prove that P(En) = 0 for all n ∈ N.
For all t ≥ n, En ⊂ Et . Thus

P(En | Ft ) ≤ P(Et | Ft ) ≤ max
(
c′,1 − (1 − c′)c

)
,

where the last inequality follows from the assumptions and Lemma 3.15. Now, by
a classical Martingale result,

1 > max
(
c′,1 − (1 − c′)c

) ≥ lim
t→∞P(En | Ft ) → 1En

almost surely. Hence the result. �

We are now ready to prove Theorem 3.9. We shall prove that the assumptions

of Lemma 3.16 are fulfilled with ε(t) =
√

γ (t)
α

, where α = δ
a

and a is given by
Hypothesis 3.6(ii). Condition (ii) of the lemma is clearly verified.



2146 M. BENAÏM AND M. FAURE

To check condition (i) we assume that X(t) ∈ Inε(t). Hence (for t large enough),
�1(X(t)) lies in N0 ⊂ N and we can write

�1(X(t)) = p(t) + v(t)

with (p(t), v(t)) ∈ Ẽu
p(t) (see the beginning of the section). Then, by the triangle

inequality,

d
(
X(t + 1), S

) ≥ d(p(t) + αε(t)Y (t + 1), S) − ‖v(t)‖
with

Y(t + 1) = X(t + 1) − �1(X(t))

αε(t)
.

Now

‖v(t)‖ = V (�1(X(t))) ≤ Ld(�1(X(t), S)) ≤ Mε(t),

where the first inequality follows from the Lipschitz continuity of the map V

[see (6)], and the second from the Lipschitz continuity of �1 and invariance of S.
Thus

d(X(t + 1), S)

ε(t)
≥ Ut − M,

where

Ut = d(p(t) + αε(t)Y (t + 1), S)

ε(t)
.

Let R = 1+M
α

and call (vi)i=1,...,n the finite set of vectors given by Lem-
ma 3.13(ii). Then, by Hypothesis 3.6(ii), there exists c > 0 such that

P
(
Y(t + 1) ∈ B(vi,1) | Ft

) ≥ c ∀i

almost surely. Consequently,

P
(
Ut ≥ (1 + M) | Ft

) = P
(
p(t) + αε(t)Y (t + 1) ∈ OutRαε(t) | Ft

)
≥ P

(
Y(t + 1) ∈ B

(
vI (p(t)),1

) | Ft

) ≥ c.

This proves that condition (i) of the lemma is verified.

4. Application to cooperative dynamics. Throughout this section we as-
sume that F is C1 and that for all x ∈ Rd the Jacobian matrix DF(x) = ( ∂Fi

∂xj
(x))

has nonnegative off-diagonal entries and is irreducible. Such a vector field F is
said to be cooperative and irreducible; see Hirsch (1985). We refer the reader to
Hirsch and Smith (2006) for a recent survey on the subject. We furthermore assume
that F is dissipative, meaning that it admits a global attractor.

For x, y ∈ Rd , x ≥ y means that xj ≥ yj for all j . If, additionally, x �= y, we
write x > y. If xj > yj for all j , it is denoted x � y. Given two sets A,B ⊂ Rd ,
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we write A ≤ B provided x ≤ y for all x ∈ A and y ∈ B . Set A is called unordered
if for all x, y ∈ A,x ≤ y ⇒ x = y.

The vector field F being cooperative and irreducible, its flow has positive
derivatives; see Hirsch (1985), Hirsch and Smith (2006). That is, D�t(x) � 0
for x ∈ Rd and t > 0. This implies that it is strongly monotonic in the sense that
φt(x) � φt(y) for all x > y and t > 0.

We let E denote the equilibria set of F . A point p ∈ E is called linearly unstable
if the Jacobian matrix DF(p) has at least one eigenvalue with positive real part.
We let E + denote the set of such equilibria and E − = E \ E +.

An equilibrium point p ∈ E is said to be asymptotically stable from below if
there exists x < p such that φt(x) → p. The subset of equilibria which satisfy
this property is denoted Easb. Note that if p ∈ Easb, then there exists a nonempty
open set of initial conditions from which the solution trajectories converge to p. In
particular, Easb is countable. Given p ∈ Easb, we introduce the set of points whose
limit set dominates p:

V (p) := {x | ω(x) ≥ p},
and we let Sp denote its boundary: Sp := ∂V (p). The following proposition is
basically due to Hirsch [(1988), Theorem 2.1], but the C1 regularity was proved
by Terescak (1996). Our statement follows from Proposition 3.2 in Benaïm (2000),
where more details can be found.

PROPOSITION 4.1. There exists a unique equilibrium p∗ ∈ Easb such that
V (p∗) = Rd . For any other p ∈ Easb \ {p∗}, Sp is a C1 unordered invariant hy-
persurface, diffeomorphic to Rd−1.

For p ∈ Easb \{p∗}, we let R(�Sp) denote the chain-recurrent set of � restricted
to Sp; or equivalently, the union of all internally chain-transitive sets contained
in Sp . We also set

R′
p = R(�Sp) \ {E − ∩ Sp}.

The first part of the next theorem is proved in Benaïm (2000) (see the proof
of Proposition 3.2) and the second part restates Theorem 3.3 in the same paper
[relying heavily on Hirsch (1999)].

THEOREM 4.2. For any p ∈ Easb \ {p∗}, the set R′
p is a repulsive normally

hyperbolic set (in the sense of Section 3). Any internally chain-transitive set is
either an ordered arc included in E − or is contained in R′

p for some p ∈ Easb \
{p∗}.

REMARK 4.3. By a result of Jiang (1991), if F is real analytic, it cannot have
a nondegenerate ordered arc of equilibria.
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As a consequence of these results we get the following:

THEOREM 4.4. Let X be a continuous (Ft )-adapted stochastic process veri-
fying Hypotheses 2.2 and 3.6. Then, on the event {supt ‖X(t)‖ < ∞}, the limit set
of X is almost surely an ordered arc contained in E −. In case F is real analytic,
X(t) converges almost surely to an equilibrium p ∈ E −.

PROOF. Follows from Theorems 2.7, 4.2 and 3.9. �

COROLLARY 4.5. Let X be the process given in Example 2.4 with −a ≤
γ̇ (t)
γ (t)

≤ −b and a ≥ b > 0. Then the conclusions of Theorem 4.4 hold.

Let � denote the global attractor of F .

COROLLARY 4.6. Let (xn) be the Robbins–Monro algorithm given in Exam-
ple 2.5. Assume that Hypothesis 3.11 holds where U is a neighborhood of �. Then
the conclusions of Theorem 4.4 hold.

5. Stochastic fictitious play in supermodular games.

5.1. General settings. Let us consider an N -persons game in normal form.
Player i’s action set is finite and denoted Ai ; �i is the mixed strategies set:

�i :=
{
xi = (xi(α))α∈Ai

∣∣∣ xi(α) ≥ 0,
∑
α∈Ai

xi(α) = 1
}

and ui :Ai → R his utility function. The set of action profiles (resp., mixed strat-

egy profiles) is denoted A :=×N

i=1 Ai (resp., � :=×N

i=1 �i ). The utility functions
(ui)i=1,...,N are defined on A but linearly extended to �:

x = (x1, . . . , xN) ∈ � → ui(x) := ∑
a=(a1,...,aN )∈A

ui(a)x1(a1) · · ·xN(aN).

We call G(N,A,u) the game induced by these parameters.

Standing notation. As usual in game theory, we let a−i = (aj )j �=i , x−i =
(xj )j �=i ,A

−i =×j �=i A
j , etc. We may write (ai, a−i ) for a = (a1, . . . , aN) and

so on.

5.2. Perturbed best response dynamic. To shorten notation let us take the point
of view of player 1. A choice function for player 1 is a continuously differentiable
map C : RA1 → �1.
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We say that C is a stochastic choice function if there exists a positive probability
density f : RA1 → R+ such that for all � ∈ RA1

, C(�) is the law of the random
variable

arg max
β∈A1

(
�(β) + ε(β)

)
,

where ε ∈ RA1
is a random variable having distribution f (x) dx. A classical ex-

ample of stochastic choice function is the Logit map:

L(�)(α) = exp (η−1�(α))∑
β∈A1 exp (η−1�(β))

.

It is induced by an extreme value density [see Fudenberg and Levine (1998) and
Hofbauer and Sandholm (2002)].

Given a choice function C, the smooth (or perturbed) best response associated
to C is the map br1 :�−1 → �1 defined by

br1(y) = C(u1(·, y)).

In the remainder of the section, an N -tuple of perturbed best response maps is
given and we let br :� → � denote the map defined by

br(x) := (br1(x−1), . . . ,brN(x−N)).

Let T � be the tangent space to �. The perturbed best response vector field is the
smooth vector field F :� → T �, defined as

F(x) = −x + br(x).(8)

REMARK 5.1. By construction, F can be defined as a vector field on RA

which satisfies condition (3) and is dissipative with a global attractor contained
in �.

The set of perturbed Nash equilibria is the set of x ∈ � such that F(x) = 0. It
will be referred to as PNE.

5.3. Stochastic fictitious play. Let an = (a1
n, . . . , a

N
n ) ∈ A denote the action

profile realized at stage n and xn ∈ � be the empirical distribution of moves up to
time n:

xn :=
(

1

n

n∑
m=1

δa1
m
, . . . ,

1

n

n∑
m=1

δaN
m

)
.

From now on, we assume that agents play repeatedly and independently. That is,

P
(
an+1 = (a1, . . . , aN) | Fn

) =
N∏

i=1

P(ai
n+1 = ai | Fn),
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where (Fn)n = σ(a1, . . . , an) (or any other σ -field representing the history up to
time n). We furthermore assume that

P(ai
n+1 = · | Fn) = bri (x−i

n ),(9)

where x−i
n are the empirical moves of player i opponents up to time n.

This type of adaptive behavior is called Stochastic Fictitious Play (SFP) and
was originally introduced in Fudenberg and Kreps (1993). The concept behind
is that players use fictitious play strategies in a game where payoff functions are
perturbed by some random variables in the spirit of Harsanyi (1973). We refer the
reader to Fudenberg and Levine (1998) for more details.

A simple computation gives

xn+1 = xn + 1

n + 1

(
F(xn) + Un+1

)
,(10)

where F is the perturbed best response vector field (8) and Un+1 is a bounded
martingale difference given by

Un+1 := (δa1
n+1

, . . . , δaN
n+1

) − br(xn).

Equation (10) in connection with stochastic approximation theory has been used
by many authors for analyzing the behavior of SFP for different classes of games,
including 2 × 2 games [Fudenberg and Kreps (1993), Benaïm and Hirsch (1999a)]
and Potential and zero-sum games [Hofbauer and Sandholm (2002)]. One of the
main questions is to prove whether or not xn converges to the set of PNE. We will
address this question below for the so-called class of supermodular games.

By an obvious abuse of language, we will say that an m×m matrix A is positive
definite if, for any ζ ∈ T �, we have

ζ �= 0 �⇒ ζ T Aζ > 0.

In the following, the set of matrices which are positive definite in this sense is
denoted S +(T �).

LEMMA 5.2. Assume that for each i, the choice function of player i takes val-
ues into the interior of �i (notice that this property is always satisfied for stochas-
tic choice functions). Then there exists a continuous function Q :� → S +(T �)

such that

E(Un+1U
T
n+1 | Fn) = Q(xn).

PROOF. Let, for x ∈ � and i ∈ {1, . . . ,N}, Qi(x) denote the quadratic form
on T �i defined by

Qi(x)(ζ i) = ∑
α∈Ai

〈δα − bri (x−i ), ζ i〉2bri (x−i )α.
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Equivalently, Qi(x)(ζ i) is the variance of α → 〈δα, ζ i〉 under the law bri (x−i).
Let Q(x) denote the quadratic form on T � defined by

Q(x)(ζ ) =
N∑

i=1

Qi(x)(ζ i).

Since bri(x−i )α > 0 and {δα − bri (x−i) :α ∈ Ai} spans T �i,Qi(x) is nondegen-
erate for all i. Hence Q(x) is nondegenerate. �

5.4. Supermodular games. We assume here that for each i = 1, . . . ,N the ac-
tion set Ai is equipped with a total ordering denoted ≤; and we focus our attention
on games such that, for a given player, the reward he obtains by switching to a
higher action increases when his opponents choose higher strategies. Such games
are called supermodular and arise in many economic applications; see, for exam-
ple, Topkis (1979) or Milgrom and Roberts (1990).

DEFINITION 5.3. We say that the game G(N,A,u) is (strictly) supermodular
if, for any pair of distinct players (i, j) and any action profiles a = (a1, . . . , aN)

and b = (b1, . . . , bN) such that ai > bi and a−i = b−i , the quantity ui(a) − ui(b)

is (strictly) increasing in aj = bj , for j �= i.

REMARK 5.4. In the particular case where each action set Ai is equal to the
couple {0,1}, the state space is the hypercube [0,1]N and these games have been
defined as coordination games in Benaïm and Hirsch (1999a).

In the remainder of this section we set Ai = {1, . . . ,mi}. Let Bi : Rmi → Rmi−1

be the operator defined by

Bi
j (u) =

mi∑
k=j+1

uk, j = 1, . . . ,mi − 1.

Similarly let B :×N

i=1 Rmi →×N

i=1 Rmi−1 be defined by B(x1, . . . , xN) =
(B1(x1), . . . ,BN(xN)). Note that B induces a one-to-one map from � onto B(�).
By abuse of notation we write B−1 its inverse. The following result is proved in
Hofbauer and Sandholm (2002).

THEOREM 5.5 [Hofbauer and Sandholm (2002)]. Assume that G(N,A,u) is
strictly supermodular and that for each i, bri is associated to a stochastic choice
function. Then, the vector field G :B(�) → B(T �), defined by

G(y) = BF(B−1(y)) = −y + Bbr(B−1(y))

is cooperative and irreducible.
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Hofbauer and Sandholm then used this theorem combined with results from
Benaïm (2000) to describe the limit set of stochastic fictitious play for supermod-
ular game. In view of the new results obtained in this paper and specifically in
Section 4, we are now able to improve notably their results and to prove the con-
vergence of stochastic fictitious play for supermodular games in full generality.

THEOREM 5.6. Assume that the assumptions of Theorem 5.5 are satisfied.
Then the limit set of (xn)n is almost surely an ordered arc of PNE that is not lin-
early unstable. If we furthermore assume that the choice functions are real analytic
(e.g., in the logit case), then (xn)n almost surely converges toward a PNE that is
not linearly unstable.

PROOF. Set yn = Bxn. Then

yn+1 − yn = 1

n + 1

(
G(yn) + Vn+1

)
with Vn = BUn. Then

E(V t
n+1Vn+1 | Fn) = BQ(B−1(yn))

tB.

By Lemma 5.2 and Theorem 5.5, the conditions to apply Corollary 4.6 are met.
�

APPENDIX

A.1. Proof of Theorem 3.10. The assumptions on γ easily imply that

γ (t)

γ (s + t)
≥ 1

γ (s)
≥ ebs.

Thus

ω
(
t, a

√
γ (t), T

) ≤ C

∫ ∞
0

exp (−a2ebsC(T ))

and condition (iii) of Hypothesis 3.6 holds. Let

At
s =

[
DF(�s(Xt)) − 1

2

γ̇ (t + s)

γ (t + s)

]

and let {Y t
s , s ≥ 0} be solution to

dY t
s = At

sY
t
s + dBt+s

with initial condition Y t
0 = 0. Condition (i) of Hypothesis 3.6 follows from the

following lemma.
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LEMMA A.1.

lim
t→∞P

(
sup

0≤s≤1

∥∥∥∥Y t
s − Xt+s − �s(Xt)√

γ (t + s)

∥∥∥∥ ≥ ε
∣∣∣ Ft

)
= 0.

In particular, Hypothesis 3.6(i) holds with Y(t) = Y t−1
1 for all t ≥ 1.

PROOF. Set α(s) = 1/
√

γ (s),Zt
s = Xt+s − �s(Xt) and Ŷ t

s = α(t + s)Zt
s .

Then

dZt
s = (

F(Xt+s) − F(�s(Xt))
)
ds +

√
γ (t + s) dBt+s

= [DF(�s(Xt))Z
t
s + o(‖Zt

s‖)]ds +
√

γ (t + s) dBt+s .

Hence

dŶ t
s =

[
DF(�s(Xt)) + α̇(t + s)

α(t + s)

]
Ŷ t

s + dBt+s + α(t + s)o(‖Zt
s‖),

where o(z) = zη(z) and limz→0 η(z) = η(0) = 0. Then

Y t
s − Ŷ t

s =
∫ s

0
At

u(Y
t
u − Ŷ t

u) du +
∫ s

0
α(t + u)o(‖Zt

u‖) du.

Thus, by Gronwall’s inequality,

sup
0≤s≤1

‖Y t
s − Ŷ t

s ‖ ≤ eKRt

with

Rt = sup
0≤s≤1

α(t + s)o(‖Zt
s‖)

and

K = sup
s,t

‖At
s‖ ≤ ‖DF‖ + a

2
.(11)

To conclude the proof it remains to show that

P(Rt ≥ δ | Ft ) → 0

as t → ∞.
It follows from the estimate given in Example 2.4 that

P
(

sup
0≤s≤1

‖Zt
s‖ ≥ δ

∣∣ Ft

)
≤

∫ t+1

t
C exp

(−δ2C(1)

γ (s)

)
ds ≤ C exp

(
− δ2C(1)

γ (t + 1)

)
.

Thus

P
(

sup
0≤s≤1

α(t + s)‖Zt
s‖ ≥ R

∣∣ Ft

)
≤ P

(
‖Zt

s‖ ≥ R

α(t + 1)

∣∣∣ Ft

)

≤ C exp(−R2C(1)).



2154 M. BENAÏM AND M. FAURE

Now,

P
(

sup
0≤s≤1

α(t + s)‖Zt
s‖η(‖Zt

s‖) ≥ δ
∣∣ Ft

)

≤ P
(

sup
0≤s≤1

α(t + s)‖Zt
s‖ ≥ R

∣∣ Ft

)
+ P

(
sup

0≤s≤1
η(‖Zt

s‖) ≥ δ

R

∣∣∣ Ft

)

≤ C exp(−R2C(1)) + P

(
sup

0≤s≤1
η(‖Zt

s‖) ≥ δ

R

∣∣∣ Ft

)
.

Since limz→0 η(z) = 0,

lim sup
t→∞

P
(

sup
0≤s≤1

α(t + s)‖Zt
s‖η(‖Zt

s‖) ≥ δ
∣∣ Ft

)
≤ C exp(−R2C(1))

and since R is arbitrary, this proves the result. �

It remains to prove that condition (ii) of Hypothesis 3.6 holds.

LEMMA A.2. Let � be an n × n self-adjoint positive definite matrix and

f�(x) = exp (−(1/2)〈�−1x, x〉)√
det(�)(2π)n

the density of a centered Gaussian vector with covariance �. Let 0 < α ≤ β , re-
spectively, denote the smallest and largest eigenvalues of �. Then

f�(x) ≥
(

α

β

)n/2

fαId(x).

PROOF. Follows from the estimates det(�) ≤ βn and 〈�−1x, x〉 ≤ ‖x‖2

α
. �

Since Y t
s is a linear function of {Bt+u,0 ≤ u ≤ s}, it is a Gaussian vector under

the conditional probability P(· |Ft ). By Itô’s formulas, its covariance matrix is
solution to

d�t
s

ds
= At

s�
t
s + �t

sA
t∗
s + Id

with initial condition �t
0 = 0, where At∗

s stands for the transpose of At
s . It is then

easy to check that

�t
s =

∫ s

0
Ut(u)Ut∗(u) du,

where Ut(s) is the solution to

dU

ds
= At

sU, U(0) = Id.(12)
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Using (12) we see that Ut(s) is invertible and that its inverse (Ut (s))−1 solves

dV

ds
= −V At

s, V (0) = Id.

Using again (12) combined with the estimate (11) and Gronwall’s lemma, we get

‖Ut(s)‖ ≤ eKs.

Similarly,

‖(Ut (s))−1‖ ≤ eKs.

It follows that for all vector h,

e−Ks‖h‖ ≤ ‖Ut(s)h‖ ≤ eKs‖h‖.
Hence

a‖h‖2 ≤ 〈�t
1h,h〉 ≤ b‖h‖2,

where a = ∫ 1
0 e−2Ku du and b = ∫ 1

0 e2Ku du. The result then follows from Lem-
ma A.2.

A.2. Proof of Theorem 3.12. Recall that (Fn)n is a given filtration to which
the stochastic process (xn)n is adapted. Let mn := sup{k ∈ N | τk ≤ n} and call
(Gn)n the sigma algebra (Fmn)n. Let n ≥ 1 and kn := mn+1 −mn. We denote by tnj
the quantity τmn+j − τmn (j = 0, . . . , kn) and tn := tnkn

. Notice that |tn − 1| ≤ γmn .
For the continuous-time interpolated process induced by a discrete process

(xn)n, Hypothesis 3.6 is satisfied if there exists a vanishing positive sequence
(γ (n))n and a Gn-adapted random sequence (Yn)n such that:

(i) for any α > 0,

lim
n→+∞P

(∥∥∥∥xmn+1 − �tn(xmn)√
γ (n)

− Yn+1

∥∥∥∥ > α
∣∣∣ Gn

)
= 0,

(ii) for any open ball O ⊂ Rd , there exists a positive number δ such that

lim inf
n→+∞ P(Yn+1 ∈ O | Gn) > δ almost surely,

(iii) there exists a > 0 such that

lim sup
n→+∞

ω
(
n,a

√
γ (n), T

)
< 1.

Let γ (n) := ∑kn

k=1 γ 2
mn+k . First, by Proposition 2.6, the map ω corresponding to

the process (xn)n is given by

ω(n, δ, T ) = B
∫ +∞
n γ (u) du

δ2 .
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Hence,

ω
(
n,a

√
γ (n), T

) ≤ B

a2

∑+∞
mn

γ 2
i∑mn+1

mn+1 γ 2
i

.

Since

lim sup
n

∑+∞
mn

γ 2
i∑mn+1

mn+1 γ 2
i

< +∞,

the quantity ω(n, a
√

γ (n), T ) is smaller than 1, for a large enough. The next
lemma corresponds to Lemma A.1.

LEMMA A.3. Point (i) is satisfied for this choice of (γ (n))n and the random
sequence (Yn)n given by

1√
γ (n − 1)

kn−1∑
j=1

γmn−1+j

( kn−1∏
k=j+1

(
Id + γmn−1+kDF(φ

tn−1
k−1

(xmn−1))
))

Umn−1+j .

PROOF. Set Ŷn+1 := xmn+1−φtn (xmn)√
γ (n)

. We have, for j = 0, . . . , kn − 1,

φtnj+1
(xmn) − φtnj

(xmn) = γmn+j+1F(φtnj
(xmn)) + O(γ 2

mn+j ).

Then, denoting

Ŷ n
j := 1√

γ (n)

(
xmn+j − φtnj

(xmn)
)

(j = 0, . . . , kn),

we have

Ŷ n
j+1 − Ŷ n

j = γmn+j+1√
γ (n)

[F(xmn+j ) − F(φtnj
(xmn)) + Umn+j+1]

+ O
(γ 2

mn+j+1√
γ (n)

)
.

Consequently,

Ŷ n
j+1 − Ŷ n

j = γmn+j+1

(
DF(φtnj

(xmn))Ŷ
n
j + Rn(j)√

γ (n)
+ Umn+j+1√

γ (n)

)

+ O
(γ 2

mn+j+1√
γ (n)

)
(j = 0, . . . , kn − 1),

where

Rn(j) := F(xmn+j ) − F(φtnj
(xmn)) − DF(φtnj

(xmn)) · (
xmn+j − φtnj

(xmn)
)
.
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By a recursive argument,

Ŷn+1 − Yn+1 = Ŷ n
kn

− Yn+1

= 1√
γ (n)

kn∑
j=1

γmn+j

(
kn∏

k=j+1

(
Id + γmn+kDF(φtnk−1

(xmn))
))

Rn(j)

+ O(e−n/2),

since Ŷ n
0 = 0 and

∑kn−1
j=0

γmn+j+1√
γ (n)

= √
γ (n) = O(e−n/2).

Recall that
∑kn

j=1 γmn+j ≤ 1 + γmn+1 and DF is bounded. Consequently, there
exists a real number K such that for n large enough,

1√
γ (n)

∥∥∥∥∥
kn∑

j=1

γmn+j

(
kn∏

k=j+1

(
Id + γmn+kDF(φtnk−1

(xmn))
))

Rn(j)

∥∥∥∥∥
≤ eK 1√

γ (n)
sup

j=1,...,kn

Rn(j) = eKRn,

where Rn := 1√
γ (n)

supj=1,...,kn
Rn(j). By an application of results due to Benaim

[see Benaïm (1999), Proposition 4.1, formula (11) and identity (13) with q = 2],
we have

E
(

sup
j=0,...,kn−1

‖xmn+j − φtnj
(xmn)‖2 ∣∣ Gn

)
≤ Cγ (n),

where C is some positive constant. Additionally, by definition of DF ,

Rn(j)2 ≤ h
(‖xmn+j − φtnj

(xmn)‖2)
for some function h : R∗+ → R∗+, strictly increasing and such that h(x)/x →x→0+
0+. An immediate consequence is that

P(Rn ≥ α | Gn)

≤ P
(

sup
j=0,...,kn−1

h
(‖xmn+j − φtnj

(xmn)‖2) ≥ α2γ (n)
∣∣ Gn

)

≤ P
(

sup
j=0,...,kn−1

‖xmn+j − φtnj
(xmn)‖2 ≥ h−1(α2γ (n))

∣∣ Gn

)

≤ Cγ (n)

h−1(α2γ (n))
→n→+∞ 0,

which proves the result. �

To simplify notation, we call E the Euclidean space Rd . Given n ∈ N, the
random variable xn can be written hn(U1, . . . ,Un), where hn : (En, (BE)n) →



2158 M. BENAÏM AND M. FAURE

(E, BE) is a measurable function. We denote by PU the probability distribution
induced by the measurable process U = (Un)n : (�, F ) → (EN, (BE)N). We keep
the notation Fn for the sigma field (BE)n × EN when it does not imply any ambi-
guity.

PROPOSITION A.4. There exists a function Pn : (BE)N × EN → [0,1] called
a regular conditional distribution of U given Fn in the sense that, for any u ∈ EN,
Pn(·, u) is a probability measure on (EN, (BE)N) and that, for any B ∈ (BE)N, the
random variable Pn(B, ·) is Fn-measurable with

Pn(B, ·) = PU(B | Fn)(·) PU -almost surely.

For convenience, given u ∈ EN, we denote by Pu
n the probability measure

Pn(·, u) and Eu
n the corresponding expectation. Given a measurable function

y : (EN, (BE)N) → (E, BE), we have

E·
n(y) = EU(y | Fn) = E(y(U) | Fn)(·) PU -a.s.

LEMMA A.5. Let k < i be two natural numbers and y : (EN, (BE)N) →
(E, BE) be a measurable function. There exists a subset �0(y) ⊂ EN such that
PU(�0(y)) = 1 and, for any u0 ∈ �0(y), E

u0
k (y | Fi) and EU(y | Fi ) are PU -

almost surely equal.

PROOF. The random variable z := EU(y | Fi) is Fi -measurable. Pick a count-
able π -class D such that σ(D) = Fk . Given A ∈ D, we claim that there exists a set
�0(y,A) such that PU(�0(y,A)) = 1 and, for any u0 ∈ �0(y,A), we have:

(1) E
u0
k (E(IAy | Fi)) = EU(E(IAy | Fi) | Fk)(u0),

(2) E
u0
k (IAy) = EU(IAy | Fk)(u0),

(3) IAEU(y | Fi) = EU(IAy | Fi ) P
u0
k -a.s.

Let us construct �0(y,A). First, there exist two sets �1
0(y,A) and �2

0(y,A) on

which, respectively, points (1) and (2) are satisfied and such that PU(�
j
0(y,A)) =

1, j = 1,2. Now for the last point, one must first consider a set �3(y,A) such that
PU(�3(y,A)) = 1 and, for any u ∈ �3(y,A),

IA(u)EU(y | Fi )(u) = EU(IAy | Fi )(u).

Then, by definition of P
u0
k , there exists a set �3

0(y,A) [which depends on
�3(y,A)] such that PU(�3

0(y,A)) = 1 and, for any u0 ∈ �3
0(y,A),

P
u0
k (�3(y,A)) = PU(�3(y,A) | Fk)(u0) = 1.

Finally, pick �0(y,A) := �1
0(y,A) ∩ �2

0(y,A) ∩ �3
0(y,A).
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Now take

�0(y) := ⋂
A∈D

�(y,A).

By countability of D, we have PU(�0(y)) = 1. There remains to prove that, for
any u0 ∈ �0(y), ∫

A
zdP

u0
k =

∫
A

y dP
u0
k for any A ∈ D,

E
u0
k (IAz) = E

u0
k (IAEU(y | Fi ))

= E
u0
k (EU(IAy | Fi ))

= EU(EU(IAy | Fi ) | Fk)(u0)

= EU(IAy | Fk)(u0)

= E
u0
k (IAy).

The second equality follows from point (3), the third from point (1) and the fifth
from point (2). The lemma is proved. �

The following result is due to Hall and Heyde (1980) [see Theorems 3.4 or 2,
page 351, in Chow and Teicher (1998) for a version adapted to our situation]. It is
a central limit result for double arrays. We apply it to prove point (ii).

THEOREM A.6 (Hall and Heyde). For any n ≥ 1, let kn be a positive integer
and (�n, F n,Pn) a probability space. Consider F n

1 ⊂ F n
2 ⊂ · · · ⊂ F n

kn
⊂ F n an

increasing family of sigma fields and (yn
j )j=1,...,kn a (F n

j )j=1,...,kn -adapted family
of random variables. Assume that:

∗ for j = 1, . . . , kn,

En(y
n
j | F n

j−1) = 0,

∗ we have
kn∑

j=1

En

(‖Yn
j ‖2I‖Yn

j ‖>ε | F n
j−1

) dist.−−−→
n→+∞ 0,

∗ there exists a positive, F n
1 -adapted random sequence (wn)n such that

kn∑
i=1

En(y
n
j (yn

j )T | F n
j−1) − wn

dist.−−−→
n→+∞ 0,

∗ there exists a positive random matrix η, defined on some probability space
(�, F ,P), which satisfies

kn∑
j=1

En(y
n
j (yn

j )T | F n
j−1)

dist.−−−→
n→+∞η.
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Then, denoting yn+1 := ∑kn

j=1 yn
j , the sequence (yn)n converges in distribution to

some random variable y defined on (�, F ,P) and whose characteristic function
is given by E(e−(1/2)tT ηt ). In particular,

lim
n→+∞En

(
ei〈t,yn+1〉) = E

(
e−(1/2)tT ηt ).

Let us get back to our settings. Let n ∈ N and j ∈ {1, . . . , kn}. Consider the
measurable functions yn

j : (EN, (BE)N) → (E, BE), given by

yn
j (u) := γmn+j√

γ (n)

(
kn∏

k=j+1

(
Id + γmn+kDF(φtnk−1

(xmn))
))

umn+j ,

where xn = hn(u1, . . . , un). Finally, call yn := ∑kn

j=1 yn
j .

COROLLARY A.7. Given an open ball O in E, there exist δ > 0 and a set �0

such that PU(�0) = 1 and, for any u0 ∈ �0,

lim inf
n

PU(yn+1 ∈ O | Gn)(u0) > δ.

PROOF. Let �0 be the set⋂
n∈N,j=1,...,kn,r∈Q

�0
(
yn
j ,‖yn

j ‖2I‖yn
j ‖>r, y

n
j (yn

j )T , I‖xmn+j−�tn
j
(xmn)‖>r, Iyn∈O

)
.

By countability, P(�0) = 1. Pick u0 ∈ �0. We apply Theorem A.6 to (�n, F n,

Pn) := (EN, (BE)N,P
u0
mn), F n

j = Fmn+j and the double array of random variables
(yn

j )n,j .
We now verify that the assumptions required to apply Theorem A.6 hold. First

of all,

Eu0
mn

(yn
j | F n

j−1) = EU(yn
j | F n

j−1) = 0 a.s.

Second, let

�n,j :=
kn∏

k=j+1

(
Id + γmn+kDF(φtnk−1

(xmn))
)
.

A simple computation gives

e−2‖DF‖∞ ≤ ‖�n,j‖ ≤ e‖DF‖∞ .

Recall that there exists p > 1 such that the sequence of random variables
(EU(‖un‖2p | Fn−1))n is almost surely bounded. Hence, taking q such that
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1/p + 1/q = 1 and choosing r ∈ Q,

EU

(‖yn
j ‖2I‖yn

j ‖>r | F n
j−1

) ≤ EU(‖yn
j ‖2p | F n

j−1)
1/pPU(‖yn

j ‖2p > r2p | F n
j−1)

1/q

≤ 1

r2p/q
EU(‖yn

j ‖2p | F n
j−1)

≤ 1

r2p/q

γ
2p
mn+j

γ (n)
e‖DF‖∞EU(‖umn+j‖2p | F n

j−1)

≤ C(r)
γ

2p
mn+j

γ (n)
EU(‖umn+j‖2p | F n

j−1).

Consequently,
kn∑

j=1

EU

(‖yn
j ‖2I‖yn

j ‖>r | F n
j−1

) ≤ C(r) sup
j

γ
2(p−1)
mn+j sup

j

EU(‖umn+j‖2p | F n
j−1),

which converges to 0 almost surely. Since u0 belongs to the set �0(‖yn
j ‖2I‖yn

j ‖>r),
for any j = 1, . . . , kn,

kn∑
j=1

Eu0
mn

(‖yn
j ‖2I‖yn

j ‖>r | F n
j−1

) =
kn∑

j=1

EU

(‖yn
j ‖2I‖yn

j ‖>r | F n
j−1

)
PU -a.s.

and the second point holds.
From now on, we call

Wn :=
kn∑

j=1

EU((yn
j )(yn

j )T | F n
j−1).

We have

EU((yn
j )(yn

j )T | F n
j−1)

= 1

γ (n)
γ 2
mn+j�n,jEU(umn+ju

T
mn+j | F n

j−1)�
T
n,j

= 1

γ (n)
γ 2
mn+j�n,jQ(xmn+j−1)�

T
n,j .

Consequently,

Wn = 1

γ (n)

kn∑
j=1

γ 2
mn+j�n,jQ(xmn+j−1)�

T
n,j .

Let wn be the Fn,1-measurable random variable defined by

wn := 1

γ (n)

kn∑
j=1

γ 2
mn+j�n,jQ(φtnj−1

(xmn))�
T
n,j .
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Pick r ∈ Q. By definition of �0 and Assumption 2.2(i),

Pu0
mn

(
sup

j=1,...,kn

‖φtnj−1
(xmn) − xmn+j−1‖ > r

)

= P
(

sup
j=1,...,kn

‖φtnj−1
(xmn) − xmn+j−1‖ > r

∣∣ Gn

)

≤ ω(n, r,1) → 0,

which implies that

Wn − wn
dist.−−−→

n→+∞ 0.

Since the application Q takes values in [�−Id,�+Id ] and ‖�n,j‖ is bounded
above and away from zero, we have

0 < a− ≤ �n,jQ(xmn+j−1)�
T
n,j ≤ a+ < +∞.

Wn is a convex combination of such quantities, therefore is bounded. Pick some
increasing sequence of integers (np)p . Without loss of generality, we may assume
that (Wnp)p converges in distribution to some random variable ηu0 , defined on the
probability space induced by U and which takes values in S +(E) ∩ [a−Id, a+Id ].

Now by Theorem A.6,

ynp

L−−−→
p→+∞yu0

with EU(ei〈t,yu0 〉) = E(e−(1/2)tT ηu0 t ). In particular, by definition of �0,

lim
p

PU(ynp+1 ∈ O | Gnp)(u0) = lim
p

Pu0
np

(ynp+1 ∈ O) = P(yu0 ∈ O) > δ,

where δ depends on the parameters a− and a+ but not on u0 ∈ �0 and (np)p . The
proof is complete. �
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