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CONTINUOUS-TIME VERTEX REINFORCED JUMP PROCESSES
ON GALTON–WATSON TREES

BY ANNE-LAURE BASDEVANT AND ARVIND SINGH

Université Paris Ouest and Université Paris Sud

We consider a continuous-time vertex reinforced jump process on a su-
percritical Galton–Watson tree. This process takes values in the set of ver-
tices of the tree and jumps to a neighboring vertex with rate proportional
to the local time at that vertex plus a constant c. The walk is either tran-
sient or recurrent depending on this parameter c. In this paper, we complete
results previously obtained by Davis and Volkov [Probab. Theory Related
Fields 123 (2002) 281–300, Probab. Theory Related Fields 128 (2004) 42–
62] and Collevecchio [Ann. Probab. 34 (2006) 870–878, Electron. J. Probab.
14 (2009) 1936–1962] by proving that there is a unique (explicit) positive
ccrit such that the walk is recurrent for c ≤ ccrit and transient for c > ccrit.

1. Introduction. The model of the continuous-time vertex reinforced jump
process (VRJP) introduced by Davis and Volkov [8] may be described in the
following way: let G be a locally finite graph and pick c > 0. Call VRJP(c) a
continuous-time process (X(t), t ≥ 0) on the vertices of G, starting at time 0 at
some vertex v0 ∈ G and such that, if X is at a vertex v ∈ G at time t , then, condi-
tionally on (X(s), s ≤ t), the process X jumps to a neighbor u of v with rate

Lc(t, u)
def= c +

∫ t

0
1{X(s)=u} ds.(1)

Equivalently, the walk stays at site v an exponential time of parameter
∑

u∼v Lc(t,

u) and then jumps to a neighbor u with a probability proportional to Lc(t, u).
The case G = Z was investigated by Davis and Volkov [8] who proved that, for

any c > 0, the VRJP(c) is recurrent and the proportion of time spent at each site
converges jointly to some nondegenerate distribution. In a subsequent article [9],
the same authors studied the VRJP on more general graphs. They showed that
when G is a tree, the walk can either be recurrent or transient. For a regular b-
ary tree (more generally, a tree satisfying a so-called L-property), they proved the
existence of two constants

0 < cr(b) ≤ ct (b)(2)
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such that:

• For c < cr , the VRJP(c) visits every vertex infinitely often a.s.
• For c > ct , the VRJP(c) visits every vertex only a finite number of time a.s.

Although they did not prove that cr = ct , the computation of the bound ct obtained
in [9] already implies that the VRJP(1) is transient on a 4-ary tree. More recently,
Collevecchio [5, 6] showed that the VRJP(1) on a 3-ary tree is also transient with
positive speed (and a C.L.T. holds) and asked whether this result also holds for a
VRJP(1) on a binary tree.

The main result of this paper states that, for almost every realization of an in-
finite supercritical Galton–Watson tree with mean offspring distribution b, one
has ct (b) = cr(b) and recurrence occurs at the critical value. In fact, recalling
Lyons–Pemantle’s criterion for recurrence/transience of a random walk in random
environment (RWRE) on a Galton–Watson tree (see Theorem 3 of [11]), Theo-
rem 1.1 states that the phase transition of a VRJP(c) is exactly the same as that of
a discrete-time random walk in an i.i.d. random environment where the law of the
environment is given by the random variable mc(∞) defined below.

Concerning the discrete-time model of the linearly edge reinforced random walk
(LERRW), de Finetti’s theorem implies that any LERRW on an acyclic graph may
be seen as a RWRE in a Dirichlet environment. However, the non-exchangeability
of the increments of a VRJP forbids a direct interpretation of the process in terms
of a time change of a RWRE and we do not have a convincing argument why the
VRJP should have the same phase transition as a RWRE (see Davis and Dean [7]
for a study of the relations between these models in the one-dimensional case).
For example, using Theorem 1.5 of [2], one can check that, on a regular tree, the
random walk in the random environment defined by mc(∞) always has a positive
speed when it is transient. Does this result somehow imply that a transient VRJP
always has positive speed?

THEOREM 1.1. For c > 0, let mc(∞) denote a random variable on (0,∞)

with density

P{mc(∞) ∈ dx} def= c exp(−(c(x − 1))2/2x)√
2πx3

dx.(3)

Define

μ(c)
def= inf

a∈R
E[mc(∞)a] = c√

2π

∫ ∞
0

x−1 exp
(
−(c(x − 1))2

2x

)
dx.(4)

Let T denote a Galton–Watson tree with mean 1 < b < ∞. On the event that T is
infinite, we have, for almost every realization of T:

• If bμ(c) ≤ 1, the VRJP(c) on T visits every vertex infinitely often a.s.
• If bμ(c) > 1, the VRJP(c) on T visits every vertex only finitely many times a.s.
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FIG. 1. Graph of the function μ.

For c = 1, we have 1/μ(1) � 1.095. Therefore the VRJP(1) is transient on any
regular b-ary tree with b ≥ 2. Making a change of variable (see Appendix of [9]),
the function μ may be rewritten in the form

μ(c) = 1√
2π

∫ ∞
−∞

e−y2/2√
1 + y2/(4c2)

dy.

Thus, μ is continuous, strictly increasing on [0,∞) with lim0 μ = 0 and
lim∞ μ = 1 (see Figure 1). Denoting by μ−1 its inverse, we get the following.

COROLLARY 1.2. For any supercritical Galton–Watson tree with mean 1 <

b < ∞, with the notation (2), we have, for almost every realization where the tree
is infinite,

ct (b) = cr(b) = μ−1(1/b).

In particular, the recurrence/transience phase transition for VRJP on the class of
Galton–Watson tree is monotonic w.r.t. the reinforcement parameter c; that is, if
the VRJP(c) is transient for some c > 0, then the VRJP(c̃) is transient for any
c̃ ≥ c.

Let us note that, although this monotonicity result w.r.t. the parameter c seems
quite natural, we do not know how to prove it without using the explicit computa-
tion of μ to assert that this function is monotonic. More generally, we do not know
how to prove a similar result for an infinite graph which contains loops.

2. Preliminary results. In this section, we recall some important results con-
cerning VRJP obtained by Davis and Volkov in [8, 9] which will play a key role
in the proof of Theorem 1.1. We start with the so-called restriction principle for
VRJP which follows from the lack of memory of the exponential law.
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PROPOSITION 2.1 (Restriction principle; Davis, Volkov [9]). Let G be a con-
nected graph and let G1 be a connected subgraph with the property that for any
path starting in any v ∈ G \ G1 and ending in G1, the first “port of entry” into
G1 is uniquely determined. Assume moreover that on each connected component
of G \ G1, the VRJP(c) is recurrent. Then the VRJP(c) on G starting at v ∈ G1
restricted to G1 has the same law as the VRJP(c) on the subgraph G1 starting
from the same point.

We shall make intensive use of this result in the case where G is a rooted tree
and G1 is a subtree of G (e.g., the ball of radius N centered at the root).

2.1. VRJP on the graph {0,1}. In view of the restriction principle stated
above, many properties of the VRJP on an acyclic graph can be derived from the

study of the VRJP on the simpler graph G0
def= {0,1}. A detailed analysis of the

VRJP on G0 is undertaken in [8]. Consider a VRJP(c) on G0, starting at 0. For
t ≥ c, define the stopping time

ξ(t)
def= inf{s > 0,Lc(s,0) = t}

and

Ac(t)
def= Lc(ξ(t),1).(5)

The quantity Ac(t)− c corresponds to the time spent at site 1 before spending time
t −c at site 0. The variable Ac(t) takes values in [c,∞) and has an atom at c. More
precisely, denoting by E (c) an exponential random variable with parameter c, we
have

P{Ac(t) = c} = P{the VRJP(c) does not jump before time t − c}
= P{E (c) > t − c}(6)

= e−c(t−c).

For t > c, the law of Ac(t) conditioned on {Ac(t) > c} is absolutely continuous
w.r.t. the Lebesgue measure, with strictly positive density on (c,∞). Considering
only the time spent at site 1 before the first return to site 0, we get the lower bound:

P{Ac(t) ≥ α|Ac(t) > c} ≥ P{E (t) > α − c} = e−(α−c)t .(7)

For t ≥ c, define

mc(t)
def= Ac(t)

t
.

It is proved in [8] that the process (mc(t), t ≥ c) is a positive martingale which
converges a.s. toward the random variable mc(∞) defined in Theorem 1.1. The
moments of mc(∞) can be computed explicitly using (3). For θ ∈ R, we get

E[mc(∞)θ ] =
√

2

π
cec2

Kθ−1/2(c
2) < ∞,
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where Kα(x) denotes the modified Bessel function of the second kind of order α

(cf. [1] for details on this class of special functions). Using Kα = K−α and Kα ≤
Kα′ for 0 ≤ α ≤ α′, it follows that

min
θ∈R

E[mc(∞)θ ] = E
[√

mc(∞)
]
,(8)

which entails the second equality of (4).

2.2. VRJP on trees. Let T be a deterministic locally bounded tree rooted at
some vertex o. According to Theorem 3 of [9], any VRJP on T is either recurrent
(every vertex is visited infinitely often a.s.) or transient (every vertex is visited
only finitely many times a.s.). Moreover, we have the following characterization
of recurrence and transience in terms of the local time of the walk at the root:

The VRJP(c) on T is recurrent ⇐⇒ lim
t→∞Lc(t, o) = ∞.(9)

Define, for t > c,

ξ(t)
def= inf{s > 0,Lc(s, o) = t},

and let (v0 = o, v1, . . . , vn) be a nearest-neighbor self-avoiding path starting from
the root of T and ending at vn. For 0 ≤ k ≤ n, set

Zk
def= Lc(ξ(t), vk).(10)

If T is a finite tree, then the VRJP(c) on T is recurrent. Applying the restric-
tion principle to the subgraph (v0 = o, v1, . . . , vn), it follows that the process
(Zk)0≤k≤n is a Markov chain starting from Z0 = t with transition probabilities

P{Zk+1 ∈ E|Z0, . . . ,Zk = x} = P{Ac(x) ∈ E},(11)

where Ac is the random variable defined in (5). Let us note that Z takes values in
[c,∞) and that c is an absorbing point. Moreover, since (Ac(t)/t)t≥c is a martin-
gale starting from 1, the process Z is also a (positive) martingale. Therefore, Zn

converges a.s. as n tend to infinity and the limit is necessarily equal to c a.s.

3. Proof of Theorem 1.1. We first set some notation. Let T be the set of all
locally finite rooted trees. Given a tree T ∈ T , we denote its root by o. For v ∈ T ,

we use the notation
←
v for the father of v and

→
v

1
,
→
v

2
, . . . for the sons of v. We also

denote by |v| the height of the vertex v in the tree (i.e., its graph distance from the
root). For n ≥ 0, Tn will stand for the subtree of T of vertices of height smaller
than or equal to n.

In the following, ν will always denote a probability measure on the nonnegative
integers with finite mean b > 1 and Qν will denote the probability measure on T
under which the canonical r.v. T is a Galton–Watson tree with offspring distribu-
tion ν.
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For c > 0, we consider on the same (possibly enlarged) probability space a
process X = (X(t), t ≥ 0) and a collection of probability measures (PT,c, T ∈ T )

called quenched laws such that X under PT,c is a VRJP(c) on T with X(0) = o.
The annealed probability is defined by

Pν,c
def= PT,c ⊗ Qν.

We say that X under Pν,c is a VRJP(c) on a Galton–Watson tree with reproduction
law ν. In the following, we shall omit the subscripts c, ν when it does not lead to
confusion.

3.1. Restriction to trees without leaves. The Harris decomposition of a super-
critical Galton–Watson tree states that conditionally on non-extinction, T under
Qν can be generated in the following way:

• Generate a Galton–Watson tree Tg with no leaf called the backbone.
• Attach at each vertex v of Tg a random number Nv of i.i.d. subcritical trees

T1
l , . . . ,T

Nv

l .

See, for instance, [3] for a precise description of the laws of Nv , Tg and Tl . Let
us simply note that the expected number of children per vertex of Tg is also equal
to b. Consider now a VRJP(c) on T on the event that T is infinite. The restric-
tion principle applied with G = T and G1 = Tg implies that the VRJP(c) on T is
transient if and only if the VRJP(c) on Tg is transient. Since the criterion for the
transience/recurrence of the walk of Theorem 1.1 only depends on b, it suffices to
prove the result for trees without leaves. In the sequel, we will always assume that
this is the case, that is,

ν(0) = 0.

3.2. Proof of recurrence when bμ(c) < 1. In [9], Davis and Volkov proved
that a VRJP(1) is recurrent when b ≤ 1.04. In fact, their argument shows recur-
rence whenever bμ(c) < 1 by simply fine-tuning some parameters. We provide
below a sketch of the proof and we refer the reader to [9] for further details.

Consider a VRJP(1) on the nonnegative integers {0,1, . . .} and denote by σn the
first time the walk reaches level n. It is proved in the Appendix of [9] that, for any
a > 1,

P{L1(σn,0) < an} ≤ (
E

[√
m1(∞)

]
a1/2)n

.(12)

Adapting the proof for any c > 0, it is immediate to check that, for any VRJP(c)

on the nonnegative integers,

P{Lc(σn,0) < an} ≤ (
E

[√
mc(∞)

]
a1/2)n = (μ(c)a1/2)n.(13)
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We now copy the argument of the proof of Theorem 5 of [9] using the bound (13)
in place of (12). Let T ∈ T be an infinite tree and let X denote a VRJP(c) on T .
Let Vn denote the number of vertices of T of height n and set

Gn = Lc

(
inf{t > 0, |X(t)| = n}, o)

so that Gn − c is the total time spent by X at the root before reaching a vertex of
height n. Conditioning on the position of X when it reaches level n and applying
the restriction principle to the path connecting this vertex to the root, we find,
using (13),

PT {Gn < an} ≤ (μ(c)a1/2)nVn.(14)

Assume now that the tree T satisfies

lim inf
n→∞ V 1/n

n < μ(c)−1;
then (14) yields, taking a sufficiently close to 1,

PT {Gnk
< ank } ≤ (1 − ε)nk

for some subsequence (nk) and some ε > 0. Letting k go to infinity, we get that

lim
t→∞Lc(t, o) = ∞ PT -a.s.

Thus, the VRJP(c) on T is recurrent according to (9). We conclude the proof for
the VRJP(c) on the Galton–Watson tree T noticing that, when bμ(c) < 1, we have
for Qν-almost any tree T ∈ T ,

lim
n→∞V 1/n

n = b < μ(c)−1.

3.3. The branching Markov chain F . Recall that we assume ν(0) = 0 so the
tree T is infinite Qν-a.s. We introduce a branching Markov chain F indexed by the
vertices of T and taking values in [c,∞),

F
def= (

f (v), v ∈ T
) ∈ ⋃

T ∈T
[c,∞]T .

More precisely, the population at time n is indexed by {v ∈ T, |v| = n} and the set
of positions of the particles of F at time n is

Fn
def= (

f (v), |v| = n
)
.

Thus, the genealogy of this branching Markov chain is chosen to be exactly the
Galton–Watson tree T. In particular, under the annealed probability P, each parti-

cle v splits, after a unit of time, into a random number B of particles
→
v

1
, . . . ,

→
v

B

where B is distributed as ν. In order to characterize F , it remains to specify the law
of the position f (v) of the particles. We choose the dynamics of F , conditionally
on its genealogy T in the following way:
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(a) For any n > 0, conditionally on (f (u), |u| < n), the random variables
(f (v), |v| = n) are independent.

(b) For any v �= o, conditionally on (f (u), |u| < |v|), the random variable f (v)

is distributed as Ac(f (
←
v )) where Ac is defined by (5).

We use the notation Px0 for the annealed law where F starts with the initial parti-
cle o being located at f (o) = x0. Note that, since the tree is infinite, the Markov
chain F never becomes extinct. However, recalling that c is an absorbing point
for Ac, it follows that if a particle v is located at f (v) = c, then all its descendants
are also located at c. Thus, we will say that the process F dies out if there exists a
time n such that all the particles at time n are at position c. Otherwise, we say that
the process survives.

PROPOSITION 3.1. For any x ≤ y, the process F under Px is stochastically
dominated by F under Py .

PROOF. Recalling (5), it is clear that Ac(x) ≤ Ac(y) for any c ≤ x ≤ y and
the result follows by induction. �

PROPOSITION 3.2. Let x0 > 0 and N > 0 and let (XN(t), t ≥ 0) denote a
VRJP(c) on the finite subtree TN = {v ∈ T, |v| ≤ N}, with XN(0) = o. Set

ξN(x0)
def= inf{s > 0,LN

c (s, o) = x0},
where LN is defined as in (1) for XN . Then, the collections of random variables
(LN

c (ξN(x0), v), v ∈ TN) under P and (f (v), v ∈ TN) under Px0 have the same
law.

PROOF. Simply notice that since the TN is finite, XN is recurrent and ξN is
finite a.s. and apply the restriction principle for VRJP. �

The VRJPs X on T and XN on TN coincide up to the first time they reach a site
of height N ; therefore,

P{X reaches level N before spending time x0 − c at the origin}
= P{XN reaches level N before spending time x0 − c at the origin}
= Px0{the process F does not die out before time N}.

Letting N and then x0 tend to infinity, and using (9), we get

P{X visits every vertex of T finitely many times}
(15)

= lim ↑
x0→∞

Px0{F survives}.
The next proposition extends the 0 − 1 law proved in [9] for deterministic trees to
Galton–Watson trees.
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PROPOSITION 3.3 (0 − 1 law for VRJP on Galton–Watson trees). Let T be a
Galton–Watson tree T without leaves and with mean b > 1. Then, for any c > 0,
the VRJP(c) X on T is either recurrent or transient under the annealed law:

P{X visits every vertex of T finitely many times}
= 1 − P{X visits every vertex of T infinitely often} ∈ {0,1}.

PROOF. Since the 0 − 1 law holds for any deterministic tree, we just need to
show that the r.h.s. limit of (15) is either 0 or 1. Suppose that this limit is nonzero.
We can find x0 > c and α > 0 such that

Px0{F survives} ≥ α.

Given an interval I, let NI
k denote the number of particles in F located inside I at

time k, that is,

NI
k

def= #{v ∈ T, |v| = k and f (v) ∈ I }.(16)

Since the particles in F evolve independently, conditionally on (f (v), |v| ≤ k), the
process (f (v), |v| ≥ k) has the same law as the union of #{v ∈ T, |v| = k} indepen-
dent branching Markov chains F starting from the positions Fk = (f (v), |v| = k).
Making use of the stochastic monotonicity of F w.r.t. the position of the initial par-
ticle (Proposition 3.1), we deduce that, for any ε > 0, we can find m large enough
such that, for any k and any x,

Px{F survives} ≥ Px

{
N

[x0,∞)
k ≥ m and F survives

}
≥ Px

{
N

[x0,∞)
k ≥ m

}
(1 − Px0{F dies out}m)

(17)
≥ Px

{
N

[x0,∞)
k ≥ m

}(
1 − (1 − α)m

)
≥ Px

{
N

[x0,∞)
k ≥ m

}
(1 − ε).

On the one hand, we have, for any y > c,

Px{f (v) > y for every v of height 1} =
∞∑

b=1

ν(b)P{Ac(x)/x > y/x}b.

Since the sequence Ac(x)/x converges as x → ∞ toward a random variable which
has no atom at 0 (cf. Section 2.1), the previous equality implies

lim
x→∞Px{f (v) > y for every v of height 1} = 1.

Using again the stochastic monotonicity of F w.r.t. its starting point, it follows by
induction that, for any fixed k,

lim
x→∞Px{f (v) > x0 for every v ∈ T s.t. |v| = k} = 1.(18)
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On the other hand, the tree T grows exponentially so that, for any m,

lim
k→∞P

{
#{v ∈ T, |v| = k} ≥ m

} = 1.(19)

Combining (18) and (19), we deduce that, for any m, we can find k and x large
enough such that

Px

{
N

[x0,∞)
k ≥ m

} ≥ 1 − ε,(20)

which yields, using (17),

Px{F survives} ≥ (1 − ε)2. �

3.4. Proof of transience when bμ(c) > 1. Let (Zn)n≥0 be a Markov chain on
[c,∞) with transition probabilities given by (11) and denote by Px the probability
under which Z starts from Z0 = x. Let T ∈ T and fix v ∈ T . It follows from the
definition of the branching Markov chain F that

Px{f (v) ∈ E|T = T } = Px

{
Z|v| ∈ E

}
.

Let us for the time being admit that, for some x0 > c, we have

lim inf
n→∞ Px0{Zn ≥ x0}1/n ≥ μ(c).(21)

Recalling that N
[x0,∞)
k denotes the number of particles of F located above level x0

at time k, we find, when μ(c)b > 1, that for k0 large enough,

Ex0

[
N

[x0,∞)
k0

] = Ex0

[ ∑
|v|=k0

1{f (v)≥x0}
]

= E[#{v ∈ T, |v| = k0}]Px0{Zk0 ≥ x0}
= (bPx0{Zk0 ≥ x0}1/k0)k0

≥ 2.

Just as in the proof of Proposition 3.3, making use of the branching property
of F and keeping only the particles located above x0 at times k0n, n ≥ 0, it fol-
lows by induction that, under Px0 , the process (N

[x0,∞)
k0n

)n≥0 stochastically dom-

inates a classical Galton–Watson process with reproduction law N
[x0,∞)
k0

. Since

Ex0[N [x0,∞)
k0

] ≥ 2, this Galton–Watson process has probability α > 0 of non-
extinction, which implies

Px0{F survives} ≥ α.

We conclude using (15) and Proposition 3.3 that

P{X visits each vertex of T finitely many times} = 1.

It remains to prove (21) which is a consequence of
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LEMMA 3.4. Let (S(x), x ∈ R) be a collection of real-valued random vari-
ables. Assume that the following hold:

(a) For any x < y, the random variable x + S(x) is stochastically dominated
by y + S(y).

(b) S(x) converges in law, as x tends to +∞, toward a random variable S(∞)

whose law is absolutely continuous w.r.t. the Lebesgue measure and P{S(∞) >

0} > 0.

(c) The Laplace transform φ(λ)
def= E[eλS(∞)] reaches its minimum at some

point ρ > 0 which belongs to the nonempty interior of its definition domain D def=
{λ ∈ R, φ(λ) < ∞}.
Let Y = (Yn, n ≥ 0) denote a real-valued Markov chain with transition kernel
P{Yn+1 ∈ E|Yn = y} = P{S(y) + y ∈ E} and let τx be the first time Y enters the
interval (−∞, x). Denoting by Px the law of Y starting from x, we have, for all x

large enough,

lim
n→∞ Px{τx > n}1/n ≥ φ(ρ).(22)

We apply the lemma to the Markov chain Y defined by

Yn
def= logZn.

According to (11), we have

P{Yn+1 ∈ E|Yn = y} = P{S(y) + y ∈ E}
with S(y)

def= logmc(exp(y)) and S(∞)
def= logmc(∞) where mc is the martingale

of Section 2.1. On the one hand, assumption (a) holds since Ac(x) ≤ Ac(y) for
all x ≤ y. On the other hand, the results of Davis and Volkov [8, 9] recalled in
Section 2.1 imply that assumptions (b),(c) also hold and

inf
λ∈R

E
[
eλS(∞)] = μ(c).

Thus, we conclude that, for x0 large enough,

lim inf
n→∞ Px0{Zn ≥ x0}1/n ≥ lim

n→∞ Plogx0

{
min

1≤i≤n
Yi ≥ logx0

}1/n ≥ μ(c).

PROOF OF LEMMA 3.4. Assumption (a) implies that for x < y, the Markov
chain Y under Px is stochastically dominated by Y under Py . Thus, using the
Markov property, we get that, for any n,m,

Px{τx > n + m} ≥ Px{τx > n}Px{τx > m}.
The superadditivity of the sequence log Px{τx > n} now implies that the limit
in (22) exists. It remains to prove the lower bound for x large enough.
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Set gx(t)
def= P{S(x) > t} and g(t)

def= P{S(∞) > t}. In view of assumption (b),
as x goes to +∞, gx converges uniformly toward g. Define

ĝx(t)
def= inf

y≥x
gy(t).

For each x, the function ĝx is càdlàg, non-increasing, with limt→−∞ ĝx(t) = 1 and
limt→+∞ ĝx(t) = 0. Thus, for each x, we can consider a random variable Ŝ(x)

such that P{Ŝ(x) > t} = ĝx(t). By construction, the sequence of random variables
Ŝ(x) is stochastically monotonic and converges in law toward the random variable

S(∞). Let Ŷ x denote a random walk with step Ŝ(x), that is, Ŷ x
n+1 − Ŷ x

n
law= Ŝ(x).

By construction, the random variable Ŝ(x) is stochastically dominated by S(y)

for any y ≥ x. Combining this fact and the stochastic monotonicity of the Markov
chain Y w.r.t. its starting point, it follows by induction that the random walk Ŷ x

started from x and killed when it enters the interval (−∞, x) is stochastically
dominated by Y under Px . In particular, denoting by τ̂ x

0 the first time Ŷ x enters the
interval (−∞,0), it follows that τ̂ x

0 under P0 (i.e., the walk Ŷ x started from 0) is
stochastically dominated by τx under Px . Hence,

lim
n→∞ Px{τx > n}1/n ≥ lim inf

n→∞ P0{τ̂ x
0 > n}1/n.(23)

Let φ̂x(λ)
def= E[eλŜ(x)] with definition domain D̂x

def= {λ ∈ R, φ̂x(λ) < ∞}. Since
Ŝ(x) is stochastically dominated by S(∞), we have D ∩ [0,∞) ⊂ D̂x ∩ [0,∞).

According to assumption (c), we can choose a > 0 such that Ia
def= [ρ − a,ρ +

a] ⊂ D ∩ [0,∞). On Ia , as x goes to +∞, the functions φ̂x converge uniformly
toward φ. Making use of the strict convexity of a Laplace transform, it follows that,
for all x large enough, the function φ̂x verifies assumption (c), that is, φ̂x reaches
its minimum on D̂x at some point ρx ∈ Ia . Moveover, we have

lim
x→∞ φ̂x(ρx) = φ(ρ).(24)

Applying now Theorem 1 of [4] to the random walk Ŷ x with step distribution Ŝ(x)

gives

lim inf
n→∞ P0{τ̂ x

0 > n}1/n = φ̂x(ρx).(25)

Combining (23) and (25), we get that

lim
n→∞ Px{τx > n}1/n ≥ φ̂x(ρx).(26)

Assumption (b) also implies that, for some ε, η > 0 small enough, there exists x0
such that, for all x ≥ x0, we have P{S(x) > ε} > η, thus P{Yn+1 > ε + Yn|Yn =
x} > η. In particular, for x > y > x0, the event E (x, y) = {Y enters [x,∞) before
entering (−∞, y)} has a strictly positive probability under Py . Therefore, using
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again the Markov property and the stochastic monotonicity of Y w.r.t. its starting
point, we get

Py{τy > n} ≥ Py{E (x, y)}Px{τx > n}
which yields

lim
n→∞ Py{τy > n}1/n ≥ lim

n→∞ Px{τx > n}1/n.(27)

Combining (24), (26) and (27), we conclude that, for y ≥ x0,

lim
n→∞ Py{τy > n}1/n ≥ lim

x→+∞ φ̂x(ρx) = φ(ρ).(28) �

REMARK 3.5. Suppose that the VRJP(c) is recurrent on T. Recall that ξ(t)

denotes the time where the local time of the walk at the origin reaches t − c. We
can express ξ(t) in terms of the branching Markov chain F and we get, using that
Et [Zn] = t for all n,

E[ξ(t)] = Et

[∑
v∈T

(
f (v) − c

)] =
∞∑

n=0

bnEt [Zn − c] =
∞∑

n=0

bn(t − c) = ∞(29)

for any t > c. In particular, denoting by ζo the first time the walk returns to the root
of the tree, it easily follows from (29), by conditioning on the time the walk makes
its first jump and applying the restriction principle, that any recurrent VRJP on T

is “null” recurrent in the sense that E[ζo] = ∞.

3.5. The critical case bμ(c) = 1. The following proposition directly im-
plies that the VRJP(c) on a Galton–Watson tree is recurrent in the critical case
bμ(c) = 1 since we already know that recurrence occurs when bμ(c) < 1.

PROPOSITION 3.6. Assume that the VRJP(c) is transient on some Galton–
Watson tree T without leaves and with mean b > 1. Then, there exists a Galton–
Watson tree T̃ (with leaves) with mean 1 < b̃ < b such that the VRJP(c) on T̃ is
also transient on the event that T̃ is infinite.

The proof of Proposition 3.6 uses again the characterization of transience in
terms of the positive probability of survival of the associated branching Markov
chain F . Roughly speaking, we show that, conditionally on survival, the number
of particles of F not located at c grows exponentially with time. This implies that
the branching Markov chain on a small percolation of the original tree still survives
with positive probability. Hence the VRJP on this percolated tree is also transient.

In the following, we assume as before that the Galton–Watson tree T with re-
production law ν has no leaves and has mean b > 1 so that it is infinite and grows
exponentially. Recall the definition of the branching Markov chain F = (f (v), v ∈
T) constructed in Section 3.3. We denote by (Fn) the natural filtration of F :

Fn
def= σ

(
Tn, (f (v), v ∈ Tn)

)
.
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LEMMA 3.7. Recall the definition of NI
n given in (16). Let E (x, k) be the event

E (x, k)
def= {

There exist infinitely many n such that N
[x,∞)
n ≥ k

}
.

For any starting point x0 > c, we have

E (x0,2) = {F survives} Px0 -a.s.

PROOF. The inclusion E (x0,2) ⊂ {F survives} is trivial. Let ε > 0 and set, for
k ≤ n,

Bk,n
def= Ex0

[
N(c,∞)

n 1{N [c+ε,∞)
k =0,N

[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n−1 =0}

]
.

Recall that each particle v of F evolves independently and gives birth to a random
number B (with mean b) of children. Moreover, conditionally on Fn, the positions

f (
→
v

1
), . . . , f (

→
v

B
) of the children of a particle v at time n (i.e., |v| = n) are i.i.d.

and distributed as Ac(f (v)). Thus, in view of (6), it follows that

E
[
N

(c,∞)
n+1 |Fn

] ≤ b(1 − e−cε)N(c,∞)
n on the event

{
N

(c+ε,∞)
n = 0

}
.

Choosing ε small enough such that b(1 − e−cε) < 1/2, we get

Bk,n+1 = Ex0

[
E

[
N

(c,∞)
n+1 |Fn

]
1{N [c+ε,∞)

k =0,N
[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n =0}

]
≤ 1

2Ex0

[
N(c,∞)

n 1{N [c+ε,∞)
k =0,N

[c+ε,∞)
k+1 =0,...,N

[c+ε,∞)
n−1 =0}

]
≤ 1

2Bk,n,

which yields

Ex0

[( ∞∑
n=k

N(c,∞)
n

)
1{N [c+ε,∞)

i =0 for all i≥k}

]
≤

∞∑
n=k

Bk,n < ∞.

Therefore, F dies out Px0 -a.s. on the event {N [c+ε,∞)
i = 0 for all i ≥ k}. Taking

the limit as k goes to infinity, we obtain

E (c + ε,1) ⊃ {F survives} Px0 -a.s.(30)

Let now Un
def= 1{N [x0,∞)

n ≥2}. Using the stochastic monotonicity of Proposition 3.1

and the fact that ν[2,∞) > 0 (since b > 1) and (7), we find that

E[Un+1|Fn] ≥ E
[
Un+11{N [c+ε,∞)

n ≥1}|Fn

]
≥ 1{N [c+ε,∞)

n ≥1}Ec+ε[U1]

≥ 1{N [c+ε,∞)
n ≥1}Pc+ε

{
the initial particle o has at least two children

with f (
→
o

1
) ≥ x0 and f (

→
o

2
) ≥ x0

}
(31)

= 1{N [c+ε,∞)
n ≥1}ν[2,∞)P{Ac(c + ε) > x0}2

= C1{N [c+ε,∞)
n ≥1}
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for some constant C > 0. Combining (30) and (31), we get

∞∑
n=1

E[Un+1|Fn] = ∞ on the event {F survives}.

A direct application of the conditional Borel–Cantelli Lemma (cf. [10]) yields

∞∑
n=1

Un = ∞ on the event {F survives}

which exactly means that E (x0,2) ⊃ {F survives}. �

PROOF OF PROPOSITION 3.6. Assume that the VRJP(c) on the Galton–
Watson tree T with reproduction law ν is transient. According to Proposition 3.3
and (15), we have

lim
x→∞Px{F survives} = 1.

Define the (possibly infinite) Fn-stopping time

σx
def= inf

{
k ≥ 1,N

[x,∞)
k ≥ 2

}
.

Using the result of the previous lemma, we get

lim
x→∞ lim

γ→∞ Px{σx ≤ γ } = lim
x→∞Px{F survives} = 1.(32)

Let now T̃ be the tree obtained from T by removing independently each vertex
(and its descendants) with probability η > 0. The tree T̃ is again a Galton–Watson
tree with mean b̃ = b(1 − η) < b. We denote by F̃ the restriction of F to T̃,

F̃
def= (

f (v), v ∈ T̃
)
.

The restriction principle states that F̃ is the branching Markov chain associated
with the VRJP(c) on T̃. Let M̃ be the number of particles in F̃ located above x at
time σx ,

M̃
def= #{v ∈ T̃, |v| = σx, f (v) > x}

(with the convention M̃ = 0 when σx = ∞). We have

Ex[M̃] ≥ Ex

[
M̃1{σx≤γ }1{Tγ =T̃γ }

]
≥ 2Px{σx ≤ γ and Tγ = T̃γ }

(33)
≥ 2(Px{σx ≤ γ } + Qν{Tγ = T̃γ } − 1)

≥ 2
(
Px{σx ≤ γ } + Qν{#Tγ ≤ b2γ }(1 − η)b

2γ − 1
)
.
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Recalling that the distribution of offsprings ν has mean b, we get

lim
γ→∞ Qν{#Tγ ≤ b2γ } = 1.(34)

Combining (32), (33) and (34), we can choose x, γ large enough and η > 0 small
enough such that

Ex[M̃] > 1.

Finally, using again the branching structure of F̃ and the stochastic monotonic-
ity of the process w.r.t. the position of the initial particle, it follows by induction
that the random variable #{v ∈ T̃, f (v) > x} under Px is stochastically larger than
the total progeny of a Galton–Watson process with reproduction law M̃ . Since
E[M̃] > 1, this process is supercritical, hence

Px{F̃ survives} ≥ Px

{
#{v ∈ T̃, f (v) > x} = ∞}

> 0

which in turn implies that the VRJP(c) on the percolated tree T̃ is transient on the
event that T̃ is infinite. �
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