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TOTAL VARIATION BOUND FOR KAC’S RANDOM WALK

BY YUNJIANG JIANG1

Stanford University

We show that the classical Kac’s random walk on (n − 1)-sphere Sn−1

starting from the point mass at e1 mixes in O(n5(logn)3) steps in total vari-
ation distance. The main argument uses a truncation of the running density
after a burn-in period, followed by L2 convergence using the spectral gap in-
formation derived by other authors. This improves upon a previous bound by
Diaconis and Saloff-Coste of order O(n2n).

1. Introduction. Consider n particles on R making random pairwise colli-
sions, in such a way that the total kinetic energy is conserved. Since there is ran-
domness involved, the situation is typically modeled by a Markov chain. Two natu-
ral questions are how would the particles be distributed in equilibrium and whether
such equilibrium distribution is unique. And once these are answered, one would
also like to know how long it takes for the particles to reach this equilibrium dis-
tribution. Of course these questions would depend on the mathematical models we
choose to describe the system.

Mark Kac proposed the following toy model of one-dimensional Boltzmann gas
dynamics that captures the above description (for historical development, see [3,
5]): For the n particles on R, we can represent their velocities (v1, . . . , vn) as a
point on the unit sphere Sn−1 after normalization so that

n∑
i=1

v2
i = 1.

Conservation of kinetic energy (assuming 0 potential energy) in the gas dynamics
is equivalent to (v1(t), . . . , vn(t)) staying on Sn−1 for all t ≥ 0. We will not intro-
duce momentum conservation in our model, because that will force the collision
to be inelastic (see second paragraph below), and reduces the model to a discrete
Markov chain such as the random transposition walk on Sn. But when the parti-
cles live in R

3, momentum conservation becomes quite interesting (see [4]). The
technique in this paper might be applicable to that model as well.

Each time there is a collision, it occurs with probability 1 between no more than
two particles, which corresponds to choosing two distinct coordinate directions
xi, xj and rotating Sn−1 along the 2-plane xi ∧ xj by some angle θ . Notice that
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∑
k v2

k = 1 both before and after the collision, since the sum v2
i + v2

j is not affected
by the rotation along the i, j plane and all the other velocities stay the same.

By disregarding the position information of the particles (which have to be con-
fined in some compact domain, for example S1, else they will eventually run off to
infinity), each collision occurs between any pair of the particles with equal proba-
bility 1

(n
2)

. The rotation angle θ can be chosen from some distribution on [0,2π),

which physically is a measure of the elasticity of the collision; for example, in-
elastic collision in R will correspond to a distribution of θ , that is, a delta measure
concentrated at π . In this paper, we will assume that θ is uniformly distributed on
[0,2π).

Thus we obtain a discrete-time Markov chain on Sn−1 with transition kernel
given by, for f :Sn−1 → R continuous, and x ∈ Sn−1,

(Kf )(x) = 1(n
2

) n∑
i �=j

∫ 2π

0
f (R(i, j ; θ)x)

1

2π
dθ,(1)

where R(i, j ; θ) denotes the rotation along the oriented i ∧ j plane by the angle θ ,
and R(i, j ; θ)x signifies the usual action of SO(n) on Sn−1. By transposing, K de-
fines a map from the set of probability measures on Sn−1 to itself, since K(1) = 1.

Since the Lie group SO(n) acts on itself, one can also define Kac’s walk K̃ on
SO(n), given on test functions by

(K̃f )(A) = 1(n
2

) n∑
i �=j

∫ 2π

0
f (R(i, j ; θ)A)

1

2π
dθ,(2)

where A is any element of SO(n).
It is easy to check that Un−1, the uniform distribution on Sn−1, is a stationary

distribution for K : for each summand Ki,j (without 1
(n

2)
in (1)), we have

Un−1(Ki,j f ) =
∫
Sn−1

(Ki,j f )(x)Un−1(dx)

=
∫
Sn−1

(∫ 2π

0
f (R(i, j ; θ)x)

1

2π
dθ

)
Un−1(dx)

=
∫
Sn−1

1

2π

(∫ 2π

0
f (x) dθ

)
Un−1(R(i, j ;−θ) dx)

=
∫
Sn−1

f (x)Un−1(dx)

using a change of variable formula and the fact that Un−1 is invariant under ro-
tations. This establishes that Un−1Ki,j = Un−1 for all i �= j . Thus their average
Un−1K = Un−1 as well.

By a similar argument, or more generally from the theory of random walks on
compact groups, we also deduce that the Haar measure is the stationary distribution
of K̃ .
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We further claim that the Markov chain defined by K is aperiodic because once
a point is reached, it can be reached in the next step with positive probability
density for any rotation. It is also irreducible since along a sequence of rotations
(i1 ∧ i2, . . . , ik ∧ ik+1) that form a connected spanning graph in Kn, the com-
plete graph on n vertices, one can transport any point on Sn−1 to any other point
with positive probability density; such sequence of rotations certainly occur with
positive probability. In fact, by a slightly more involved argument using Hurwitz
factorization of SO(n) in terms of Givens’ rotations [5], one can show that Kac’s
random walk on SO(n) is also irreducible, which certainly implies irreducibility
on Sn−1 since the latter is a projection of the former. Furthermore, both chains are
recurrent because the state space is compact. Thus by convergence theory of Harris
chains, we know that with any initial distribution μ on Sn−1,

lim
l→∞μKl(A) − Un−1(A) = 0

uniformly in A ⊂ S. This implies convergence in total variation distance by defi-
nition.

Using the L2 theory of discrete-time Markov chains, it can be shown that if
the starting distribution μ is in L2(Sn−1,Un−1), then we get the following conver-
gence bound:

‖μKl − Un−1‖TV < ‖μ − 1‖L2

(
1 − 1

2n

)l

by the result in [3] and [8], which show that the spectral gap of K is given by
n+2

2n(n−1)
for n ≥ 2. See also [6] for an earlier Martingale argument to get �(1/n)

spectral gap bound, and [1, 4] for generalizations.
If the initial distribution μ does not have an L2 density with respect to Un−1,

then direct application of the L2 theory above provides no information. The best
result for the rate of convergence when the initial distribution is, say, concentrated
at one point is given in [5], where it was shown that at most O(n2n log(ε−1)) steps
are required to get within ε close to Un−1 in total variation distance. The L2 theory
gives a mixing time of O(2n log(ε−1))‖μ‖L2 .

If we measure convergence of K or K̃ in terms of other probability metrics,
most notably L1 or L2 transportation cost, then the available convergence rate
results are much better. Using comparison techniques, it was shown in [5] that
O(n4 logn) steps suffice for Kac’s walk on SO(n) to get arbitrarily close to sta-
tionarity in L1 transportation distance, which metrizes weak convergence. This
was improved in [10] to an upper bound of O(n2.5 logn), using a coupling ar-
gument. Since the standard projection map π :SO(n) → Sn−1 can only decrease
Riemannian distance, all the transportation mixing time results for SO(n) are also
valid for Sn−1. This is of course true for total variation mixing as well, but unfor-
tunately we cannot obtain polynomial total variation mixing time for the walk on
SO(n).
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These suggest that polynomial time mixing should also be true for total variation
distance, since there is nothing pathological about the walk. The main difficulty in
the analysis lies in that the distribution of the walk at any finite time step will
never have a finite L2 density with respect to the Lebesgue measure on Sn−1 if
we start with the point mass. In the following section, however, we will show that
by some removing the singular set of the density after some burn-in period, and
using the fact that total variation distance between two measures decreases under
the evolution of a Markov chain, one can still essentially use the spectral gap to
obtain a polynomial bound on the total variation mixing time. More explicitly, we
have the following theorem.

THEOREM 1.1. Let K denote the Markov kernel for Kac’s random walk
on the (n − 1)-sphere, Sn−1 ⊂ R

n, let U denote the uniform distribution on
Sn−1, and let δe1 denote the probability measure concentrated at the point e1 =
(1,0, . . . ,0) ∈ R

n. Then

‖δe1K
t − U‖TV ≤ ε

for t > cn5(logn)3 log ε−1, where c is a constant that does not depend on n.

REMARK. 1. For a fixed ε, the proof we give below produces a bound with an
additional factor of log ε−2 for the mixing time. Now for general Markov chains
on any state space, we have the following sub-multiplicative property ([7], Sec-
tion 4.4):

d̄(s + t) ≤ d̄(s)d̄(s)

for d̄(s) := supμ,ν ‖μKs − νKs‖TV and d(t) := supμ ‖μKt − π‖TV ≤ d̄(t) ≤
2d(s). We deduce that d(tk) ≤ (2d(t))k , hence τmix(ε) ≤ log2(1/ε)τmix(1/4), that
is, the additional factor can be removed.

2. Very recently, I learned that Aaron Smith [11] came up with a coupling ar-
gument based on Wasserstein contraction that gets the correct order O(n logn) of
total variation mixing time for the Gibbs sampler on the n-simplex. Since Kac’s
walk on the sphere is in fact a Gibbs sampler on the n-simplex if one squares the
coordinates, at least if one starts with a measure symmetric under the transform
�x → −�x, his argument presumably gives the same result here as well. But I believe
the argument presented here is of independent interest, especially in comparison
analysis, for which transportation mixing time bound might not be available.

3. As mentioned above, we are unable to get any polynomial mixing time result
for Kac’s walk on SO(n). But in fact, even for the induced walk on the Grassma-
nian space, SO(n)/SO(n − k) where k ≥ 2, polynomial mixing is beyond reach
at the moment. The difficulty of applying the present technique is that the support
of the running distribution cannot be confined into nice submanifolds of the state
space for k ≥ 2, thus an induction based on the dimension of the support does not
work.
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4. Another line of research is concerned with entropy mixing time of Kac’s
random walk (see [2] and references therein). In order for entropy distance to go
down to zero, the starting measure has to have a density with finite relative entropy
with respect to the uniform measure on Sn−1. It is not clear whether starting at a
point mass the chain will have finite entropy in finite time.

2. Bounding the total variation distance. This section gives bounds on the
convergence rate of Kac’s random walk on Sn−1 starting at a standard basis vec-
tor ei , in total variation distance.

Recall the total variation distance between two probability measures μ and ν on
the same probability space (S, S) is defined by the following variational quantity:

‖μ − ν‖TV = 2 sup
A∈S

|μ(A) − ν(A)|,
where S is the σ -algebra on S.

Alternatively, total variation has the variational characterization in terms of
bounded functions:

‖μ − ν‖TV = sup
f : ‖f ‖∞≤1

|μ(f ) − ν(f )|.

This will be used to show the weakly contracting property of Markov chains under
total variation distance below.

Let Ak be the event that at the kth step of the walk, every pair of coordinates
has been used. Then we have

P(Ac
k) := ηk <

(
n

2

)(
1 − 1(n

2

))k

.

Conditioning on this event, we have the following two claims:

CLAIM 1. The density g := dμ′
k

dUn−1
of the resulting distribution μ′

k of the con-

ditioned random walk with respect to the uniform distribution on Sn−1 satisfies the
following bound:

g(x) ≤
∣∣∣ min
1≤i≤n

xi

∣∣∣−n
(

n∑
i=1

(− log |xi |)k
)
Ck

k∏
m=1

m!(3)

≤ Ckkk2
∣∣∣ min
1≤i≤n

xi

∣∣∣−n(
− log

∣∣∣ min
1≤i≤n

xi

∣∣∣)k =: C(n, k)(4)

for some fixed absolute constant C.

CLAIM 2. For k > −n2 logn log ε, and ε < n−3, the set Hε := {x ∈ Sn−1 :
|xi | < ε for some i} satisfies the following bound on its probability under the Ak-
conditional distribution:

μ′
k(Hε) ≤ ε1/8.(5)
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Let us first show how claims 1 and 2 lead to a polynomial time convergence
rate for Kac’s walk under total variation norm. Let μk be the distribution on Sn−1

after k steps of the random walk, and let μ′
k be μk conditional on Ak , that is, for

B ⊂ Sn−1,

μ′
k(B) = P(δe1R

k ∈ B|Ak),

where R is the one-step transition kernel of Kac’s random walk.
Then we have

‖μ′
k − μk‖TV < ηk <

(
n

2

)(
1 − 1(n

2

))k

.(6)

To check this, let B ⊂ Sn−1 be Lebesgue measurable. Then we have

μk(B) = P(δe1R
k ∈ B|Ak)P (Ak) + P(δe1R

k ∈ B|Ac
k)P (Ac

k)

≤ μ′
k(B) + ηk.

This implies

μk(B) − μ′
k(B) ≤ ηk.

On the other hand, since

μ′
k(B) = P({δe1R

k ∈ B} ∩ Ak)

P (Ak)
,

we also get

μk(B)

1 − ηk

> μ′
k(B)

which gives

μk(B) > μ′
k(B) − ηkμ

′
k(B)

hence

μ′
k(B) − μk(B) < ηk

which establishes (6).
Next recall that a Markov kernel is weakly contracting in total variation norm

because if f is a bounded continuous function on the state space with

‖f ‖∞ ≤ 1,

then Rf (x) = ∫
R(x, dy)f (y) satisfies the same L∞ bound, hence

(μR − νR)(f ) = (μ − ν)(Rf ) ≤ ‖μ − ν‖TV.

Thus by the triangle inequality we just need to bound ‖μ′
kR

l − Un−1‖TV from
now on, where Un−1 denotes the uniform distribution on Sn−1, and at the end
add ηk to the resulting bound.
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Next we modify μ′
k to a different distribution νk as follows. We define νk in

terms of its density with respect to Un−1.
On the set Hc

ε ,

dνk

dUn−1
:= dμ′

k

dUn−1
.

On the set Hε , we let its density be a constant equal to the mass of Hε under μ′
k

divided by its mass under Un−1, which is what’s needed for νk to be a probability
distribution on Sn−1; we invoke Claim 1 above to get an upper bound on this
constant:

dνk

dUn−1
≡ μ′

k(Hε)

Un−1(Hε)

<
ε1/4

ε(�(n/2))/(�((n − 1)/2)�(1/2))

<
ε1/4

ε
√

(n − 2)/2π

< ε−3/4

√
2π

n − 2
.

In the computation above we used two ingredients. First we used that

�(n/2)

�((n − 1)/2)
>

√
n − 2

2
(7)

which follows from log convexity of the � function. Since 1
2(log�(n)+ log�(n−

1)) > log�(n − 1/2), we get

�(n)

�(n − 1/2)
>

�(n − 1/2)

�(n − 1)
,

which implies (7) above. By incrementing n by 1/2, we also get a reverse inequal-
ity of the form

�(n/2)

�((n − 1)/2)
<

√
n − 1

2
.(8)

This will be useful later when we bound U(Hε) in the proof of Claim 2.
The second ingredient is the formula for the coordinate marginal density for

the uniform distribution on the sphere (see [5] but with a small typo, namely by
n-sphere they meant (n − 1)-sphere):

d

da
PU(x1 ∈ [−1, a]) = �((n + 1)/2)

�(1/2)�(n/2)
(1 − a2)(n−2)/2,(9)
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where PU denotes uniform distribution on Sn−1.
The total variation distance between μ′

k and νk is given simply by their total
variation distance over the region Hε , hence we have

‖μ′
k − νk‖TV ≤ μ′

k(Hε) + n�(n/2)

�(1/2)�((n − 1)/2)
ε(10)

≤ n3/2ε + ε1/8.(11)

Thus by choosing ε sufficiently small, whose exact value we will determine in
the end, we can make sure that μ′

k and νk are very close in total variation distance.
And again by weak contractivity of Markov kernel, we now simply need to focus
on bounding ‖νkR

l − Un−1‖TV. Since νk has an L2 density with respect to Un−1,
we can use the spectral gap to bound the rate of convergence. First we bound the
L2(dUn−1) distance between νk and Un−1:

‖νk − Un−1‖L2(dUn−1)
(12)

=
(∫

Hε

∣∣∣∣ dνk

dUn−1
− 1

∣∣∣∣
2

dUn−1 +
∫
Hc

ε

∣∣∣∣ dνk

dUn−1
− 1

∣∣∣∣
2

dUn−1

)1/2

.

Let us bound the two integrals separately.
For the first integral on the right-hand side of (12), we have

∫
Hε

∣∣∣∣ dνk

dUn−1
− 1

∣∣∣∣
2

dUn−1 ≤
∫
Hε

(
dνk

dUn−1

)2

dUn−1 + Un−1(Hε)

< ε−3/2 8π

n − 2
ε

�(n/2)

�((n − 1)/2)�(1/2)
(13)

< 4ε−1/2

√
2π

n − 2
.

For the second integral, notice first that Hc
ε is the set of points on Sn−1 for

which all the coordinates are greater than ε. So Claim 2 tells us that the density
dνk

dUn−1
over this region is bounded above by ε−n, from which we immediately get

the following bound:

∫
Hc

ε

∣∣∣∣ dνk

dUn−1
− 1

∣∣∣∣
2

dUn−1 < ε−2n + 1.(14)

Combining (13) and (14), we get, for ε < 1
2 and n > 2, say, that

‖νk − Un−1‖L2(dUn−1)
≤ 2ε−n.
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By the results in [3], we know that the spectral gap of the Kac kernel is 1
2n

, so
we get

‖νkR
l − Un−1‖TV ≤

∥∥∥∥ dνk

dUn−1
− 1

∥∥∥∥
L2(dUn−1)

(
1 − 1

2n

)m

(15)

≤ 2ε−n

(
1 − 1

2n

)m

.

Finally, combining (6) (10) and (15), we get

‖δe1R
k+l − Un−1‖TV ≤

(
n

2

)(
1 − 1(n

2

))k

+ n3/2ε + ε1/8

(16)

+ Ckkk2 |ε|−n(− log ε)k
(

1 − 1

2n

)l

.

So it remains to minimize the right-hand side of (16) with respect to k and l.
Suppose our target total variation distance is 3δ. Then we can simply divide 3δ

into three equal parts and bound each summand in (16) by δ. We look at each
summand below:

Bounding the first summand yields(
n

2

)(
1 − 1(n

2

))k

< δ ⇒ k > (− log δ + 2 logn)

(
n

2

)
.

So it suffices to take

k > n2 logn log
1

δ
.(17)

Bounding the second summand ε1/8 + n3/2ε < δ, it suffices to have ε1/8 < δ/2
and n3/2ε < δ/2, which gives

ε < 1
2δ8n−3/2.

But taking ε = n−3δ8 certainly fulfills that, which will affect the bound on l in the
third summand:

Ckkk2 |ε|−n(− log ε)k
(

1 − 1

n

)l

< δ

implies we need l greater than

2n
(− log δ + k logC + k2 log k − n log ε + k log log(ε−1)

)
< n

(− log δ + k logC

+ n4(logn)2(log δ)2(
2 logn + log logn + log log(δ−1)

)
+ n(−8 log δ + 3 logn) + k log log ε−1)

< C′n5(logn)3(log δ)3
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for some constant C′.
Clearly l dominates k, so it requires a total of C′n5(logn)3(log δ)3 steps to

bring the running distribution of Kac’s random walk to be 3δ close to its stationary
distribution on the unit sphere Sn−1.

Finally we prove the two claims introduced in the beginning.

3. Proof of Claim 1. Starting at the delta mass at e1, an admissible sequence
of rotations in Ak will distribute it over the entire Sn−1 with positive probability
everywhere provided that P(Ak) > 0, that is, for sufficiently large k. This will
certainly be the case if k ≥ −n2 logn log δ for − log δ > 2. So we will look at the
conditional probability density given that the walk has taken a sequence of steps
in Ak , and we will estimate the density growth from step j − 1 to j , up to step k.

Observe that at step j − 1, j ≤ k, the support of the running distribution is a
subsphere of Sn−1. Without loss of generality, we call this subsphere Sm. Denote
by uj , vj the axes that span the plane along which the rotation γj takes place.

The way γj affects the previous running distribution can be classified into three
cases:

1. uj , vj /∈ Sm, in which case the running distribution remains unchanged.
2. uj , vj ∈ Sm, in which case the support after the rotation is still on Sm, but the

density might change.
3. uj ∈ Sm, vj /∈ Sm, in which case the support of the running distribution grows

to be a sphere with one dimension higher than Sm, denoted without loss of gener-
ality Sm+1.

Case 1 clearly does not increase the density of the running distribution, because
the rotation does not take Sm outside itself and for θ ∈ [0,2π ], the density at
(x1, . . . , xm+1, . . . , (u

2
j + v2

j )
1/2 cos θ, . . . , (u2

j + v2
j )

1/2 sin θ, . . . , xn) with respect
to Um only depends on the first m + 1 coordinates, which means that averaging
over θ uniformly in [0,2π ] remains the same.

To understand Case 3, first observe that there can be at most n such steps in
the history of the Kac walk. So if we can show each type 3 rotation increases
the density by at most |min1≤i≤n xi |−1, then the factor |min1≤i≤n xi |−n would be
taken care of. This is the content of the following lemma.

LEMMA 3.1. Assuming the running density hm(x1, . . . , xm+1) with respect
to Um after step j − 1 is bounded by gm(x1, . . . xm+1), and that without loss of
generality uj = xm+1, vj = xm+2, then the new density hm+1(x1, . . . , xm+2) with
respect to Um+1 after step j is bounded by

1

2π
gm

(
x1, . . . , (xm+1 + xm+2)

1/2)
(x2

m+1 + x2
m+2)

−1/2.

Observe that (x2
m+1 + x2

m+2)
−1/2 ≤ |min1≤i≤n xi |−1.
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PROOF. Denote the new density with respect to Um+1 by hm+1(x1, . . . , xm+2)

with a slight abuse of notation. Then we have

hm+1
(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2 cos θ, (x2

m+1 + x2
m+2)

1/2 sin θ
)

is independent of θ and in particular equals

hm+1
(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2,0

)
.

Furthermore, the total contribution of density from (x1, . . . , (x
2
m+1 + x2

m+2)
1/2 ×

cos θ, (x2
m+1 +x2

m+2)
1/2 sin θ) for all θ should add up to the previous density at the

point (x1, . . . , (x
2
m+1 + x2

m+2)
1/2). In other words,

(x2
m+1 + x2

m+2)
1/2

×
∫ 2π

θ=0
hm+1

(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2 cos θ, (x2

m+1 + x2
m+2)

1/2 sin θ
)
dθ

= hm

(
x1, . . . , . . . , (x

2
m+1 + x2

m+2)
1/2)

.

Notice that the factor (x2
m+1 + x2

m+2)
1/2 accounts for the measure of the circle

{(y1, . . . , ym+2,0, . . . ,0): with y1 = x1, . . . , ym = xm and y2
m+1 + y2

m+2 = x2
m+1 +

x2
m+2}, over which we aggregate.

Thus we get

hm+1
(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2 cos θ, (x2

m+1 + x2
m+2)

1/2 sin θ
)

= 1

2π
(x2

m+1 + x2
m+2)

−1/2hm

(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2)

≤ 1

2π
(x2

m+1 + x2
m+2)

−1/2gm

(
x1, . . . , (x

2
m+1 + x2

m+2)
1/2)

. �

The Case 2 rotations will contribute the remaining factors in the bound of g(x)

in Claim 1. More precisely, we have the following lemma.

LEMMA 3.2. Assume at step j − 1, the running distribution is supported
on some Sm ⊂ Sn−1, which is viewed as the standard sphere in R

m+1 =
{x1, . . . , xm+1}, and that the density gj with respect to Um satisfies

gj−1(x1, . . . , xm+1)

≤ C(j,m)(a2
1 + b2

1)
−1/2 · · · (a2

m−1 + b2
m−1)

−1/2(18)

× [(− log |x1|)j−1 + · · · + (− log |xm+1|)j−1],
where C(j,m) is a constant that varies with j and m. Here ai �= bi for each i and
(a1, b1), . . . , (am−1, bm−1) are pairs in {x1, . . . , xm+1}2 with the property that no
two pairs are the same and each coordinate appears at most twice.
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If furthermore the j th rotation is as in Case 2, then the new density bound takes
the form

gj (x1, . . . , xm+1)

≤ 512C(j,m)(j + 1)!(a2
1 + b2

1)
−1/2 · · · (a2

m−1 + b2
m−1)

−1/2

× [(− log |x1|)j + · · · + (− log |xm+1|)j ]
with possibly a different sequence of (ai, bi) satisfying the same property as above.

Notice that starting with a density satisfying the bound (18), a type 1 or type 3
rotation would preserve its form, with j replaced by j + 1. Type 1 rotation does
that trivially, due to the fact that the polylogarithmic factor always increases with j .
Type 2 rotation introduces an additional factor of (a2

m +b2
m)−1/2, but decreases the

other existing factors, hence also preserves the bound with j → j + 1.

PROOF. Without loss of generality assume (uj , vj ) = (1,2).
The new density h′ is obtained from the old density h by averaging over θ ∈

[0,2π ] of h(R(1,2, θ)x), where R(1,2, θ)x denotes the rotation of the vector x ∈
Sm by angle θ along x1 ∧ x2. In formula, we have

h′(x) = 1

2π

∫ 2π

0
h(R(1,2, θ)x) dθ.(19)

We write the bound (18) as a sum of m + 1 terms and consider one of the terms

gi(x) = C(a2
1 + b2

1)
−1/2 · · · (a2

m−1 + b2
m−1)

−1/2(− log |xi |)j−1.

By assumption, at most two elements in a1, b1, . . . , am−1, bm−1 equal x1 and at
most two other elements equal x2.

By the circle averaging formula (19), we have

g′
i(x) = 1

2π

∫ 2π

0
g
(
(x2

1 + x2
2)1/2 cos θ, (x2

1 + x2
2)1/2 sin θ, x3, . . . , xm+1

)
dθ.

We shall break the integral into two parts, where the range of integration is over
Icos = [0, π/4] ∪ [3π/4,5π/4] ∪ [7π/4,2π ] and its complement Isin in [0,2π ],
respectively; that is, the ranges are where cos θ is close to 1 and sin θ is close to 1,
respectively. By symmetry, we just have to deal with the integral over the range
θ ∈ Isin, and multiply the final bound by 1 in the end.

First we look at the case when i /∈ {1,2}, which means the rotation (1,2) does
not affect the logarithmic factor (− log |xi |)j at the end. In this case, all the factors
in gi(x) of the form (x2

2 + x2
s )−1/2 that involve x2 but not x1 upon the rotation

R(1,2, θ) become ((x2
1 + x2

2) sin2 θ + x2
s )−1/2, which can be bounded above by√

2(x2
1 + x2

2 + x2
s )−1/2.
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As of the factors that involve both x1 and x2, that is, (x2
1 + x2

2)−1/2, there can
be at most one of such. And it remains the same under the rotation R(1,2, θ) since
(x2

1 + x2
2) cos2 θ + (x2

1 + x2
2) sin2 θ = x2

1 + x2
2 .

The factors that involve xs and xs , s �= 2, become ((x2
1 + x2

2) cos2 θ + x2
s )−1/2,

which we can bound as follows:
Using the fact that 1√

2
(|a| + |b|) ≤ (a2 + b2)1/2 ≤ |a| + |b|, we get

(
(x2

1 + x2
2) cos2 θ + x2

s

)−1/2 ∼ [(|x1| + |x2|)| cos θ | + |xs |]−1,

where a ∼ b means b/C ≤ a ≤ bC for some constant C. Here we can take C to
be 2.

More difficult is the case when i ∈ {1,2}, when we also have to deal with a
(− log[(x2

1 + x2
2)−1/2 cos θ ])j−1 factor that goes to infinity for θ ∈ Isin.

In fact when i = 1, the only factors that have singularities for θ ∈ Isin and for
the coordinates bounded away from 0 take the following form:(

(|x1| + |x2|)| cos θ | + |xs |)−1(
(|x1| + |x2|)| cos θ | + |xt |)−1

× (− log[(x2
1 + x2

2)−1/2 cos θ ])j ,
where s �= t , or without the xt factor. In the former case we will show in Lemma 3.3
below that the following integral:

1

2π

∫
θ∈Isin

(
(|x1| + |x2|)| cos θ | + |xs |)−1(

(|x1| + |x2|)| cos θ | + |xt |)−1

× (− log[(x2
1 + x2

2)1/2 cos θ ])j−1
dθ

is bounded by

j !(x2
1 + x2

2)−1/2(x2
s + x2

t )−1/2

(20)
× [(− log |x1|)j + (− log |x2|)j + (− log |xs |)j + (− log |xt |)j ]

whereas in the case where the xt factor is not present, the same bound (20) multi-
plied by

√
2 applies the expression

1

2π

∫
θ∈Isin

(
(|x1| + |x2|)| cos θ | + |xs |)−1(− log[(x2

1 + x2
2)1/2 cos θ ])j−1

dθ(21)

using the fact that for θ ∈ Isin,(
(|x1| + |x2|) cos θ + |xt |)−1 ≥ 1/

√
2.

When i �= 1, the logarithmic singularity will not arise when integrating over
θ ∈ Isin, so it will trail off as a remaining factor of the form (− log |xi |)j−1 ≤
1 + (− log |xi |)j .

Recall also that we have factors of the form

2(x2
1 + x2

2 + x2
s )−1/2(x2

1 + x2
2 + x2

t )−1/2(22)
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coming from the uniform bound on the factors involving x2 but not x1; here s, t

are possibly different indices than those appearing in the singular factors. Equa-
tion (22) can be trivially bounded above by 2(x2

1 + x2
s )−1/2(x2

2 + x2
t )−1/2. The

remaining inverse factors in g(R(1,2, θ)x) do not contain x1 or x2, so one can
easily check that the inductive hypothesis is satisfied.

The best way to visualize this branching inductive argument is to consider a
simple, possibly disconnected graph on m+1 vertices with degrees bounded above
by 2. The edges between i and j represent a factor of the form (x2

i +x2
j )−1/2 in the

bound on the density. A rotation in the x1 ∧ x2 plane has the effect of producing
two new graphs on m+1 vertices, and the density bound we get will be a sum over
all the resulting graphs. Without loss of generality let us describe one of those two
descendant graphs, the one associated with x1.

There will be edges (1,2), (3,4), (1,3) and (2,4) if x3 and x4 were incident
to x1 in the previous graph, or simply (1,2) when x1 only has degree 1. If x1 had
degree 0, then it remains isolated in the x1 component of the descendant graph.
In the process of this rewiring, some logarithmic factors (log |xs |)j and factorial
factors j ! are also introduced, namely, if (− log |x3|)j−1 or (− log |x4|)j−1 was a
factor in the bound for the previous step running disribution, then the new bound
will have j !(− log |x4|)j . If there is originally a log factor of other coordinates,
then the exponent on that factor remains the same.

It remains to prove the bound (20), and notice that we only need to prove it for
θ ∈ [π/4, π/2] and then multiply the resulting bound by 4. This is given by the
following technical lemma. �

LEMMA 3.3. For 0 ≤ xt , xs , 0 ≤ x1, x2,

∫ π/4

0

(
(x1 + x2) sin θ + xs

)−1(
(x1 + x2) sin θ + xt

)−1

× (− log[(x1 + x2) sin θ ])j−1
dθ

≤ 4(j + 1)!(xs + xt )
−1(x1 + x2)

−1

× [(− logx1)
j + (− logx2)

j + (− logxs)
j + (− logxt )

j ].

REMARK. Note this is equivalent to the bound (20), by replacing sin with cos
and changing the range of integration to [π/4, π/2].

PROOF. Without loss of generality, we can assume xt ≤ xs . Furthermore, we
can replace sin θ by its linearization at 0, and multiply the resulting bound by 2 in
the end, since for θ ∈ [0, π/4], we have θ/2 ≤ sin θ ≤ 2θ . So instead we just need
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to prove∫ 1

0

(
(x1 + x2)θ + xs

)−1(
(x1 + x2)θ + xt

)−1(− log[(x1 + x2)θ ])j−1
dθ

≤ 4π(j + 1)!(xs + xt )
−1(x1 + x2)

−1

× [(− logx1)
j + (− logx2)

j + (− logxs)
j + (− logxt )

j ].
First of all, the factor ((x1 +x2)θ +xs)

−1 can be bounded above by 2(xs +xt )
−1

for θ ∈ [0,1]. So it remains to bound the integral of the remaining factors:∫ 1

0

(
(x1 + x2)θ + xt

)−1(− log[(x1 + x2)θ ])j−1
dθ

≤ x−1
t

∫ ε

0

(− log[(x1 + x2)θ ])j−1
dθ

+ (− log[(x1 + x2)ε])j−1
∫ 1

ε

(
(x1 + x2)θ + xt

)−1
dθ

≤ x−1
t j !ε(− log[(x1 + x2)ε])j

+ (− log[(x1 + x2)ε])j−1
(x1 + x2)

−1 log
[

x1 + x2 + xt

(x1 + x2)ε + xt

]

≤ x−1
t j !ε(− log[(x1 + x2)ε])j

+ (− log[(x1 + x2)ε])j−1
(x1 + x2)

−1 log[(x1 + x2)ε]
= x−1

t j !ε(− log[(x1 + x2)ε])j + (− log[(x1 + x2)ε])j (x1 + x2)
−1.

In the second equality we used the fact that∫ ε

0
(− log θ)j dθ =

∫ ∞
− log ε

yj e−y dy ≤ j !

and in the third inequality we used ε(x1+x2)+xt

x1+x2+xt
> ε(x1 + x2) for ε < 1.

Taking ε = xt , we obtain the result. �

4. Proof of Claim 2. We prove the claim by a contradiction argument. Here
we use the result from [9] that after k = n2 logn log ε steps the L2 transportation
distance between the running distribution of the Kac random walk on Sn−1 and the
uniform distribution Un−1 is less than ε. So by Holder’s inequality, the L1 trans-
portation distance is also less than ε. We know that the uniform measure Un−1(Hε)

varies linearly with ε; in fact using the marginal density formula (9) for a sin-
gle coordinate on the unit sphere, together with the fact that H = ⋃

Hi
ε where

Hi
ε := {x ∈ Sn−1 : |xi | ≤ ε}, one sees that it is bounded above by n3/2ε, and simi-

larly Un−1(Hεα+ε) ≤ 2n3/2(εα + ε). Next let α,β be two real numbers between 0
and 1 satisfying

α + β < 1
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and

α − β > 1/2.

Then with ε ≤ n−3, one verifies easily that(
εβ − (εα + ε)n3/2)

εα > ε.(23)

So if μk(Hε) > εβ , with ε ≤ n−3, then in order to transport the mass of Hε un-
der μk in excess of Hε+εα under Un−1, the left-hand side of (23) gives a lower
bound on the transportation cost for that alone, because each particle of mass orig-
inally in Hε must traverse at least a distance of εα to go outside of Hε+εα . Since the
total transport cost cannot exceed ε after k steps, this is a contradiction. Hence we
must have μk(Hε) < εβ . One set of choices for α and β is α = 3/4 and β = 1/8,
which is the content of Claim 2.
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