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STOCHASTIC SHEAR THICKENING FLUIDS: STRONG
CONVERGENCE OF THE GALERKIN APPROXIMATION AND

THE ENERGY EQUALITY

BY NOBUO YOSHIDA1

Division of Mathematics Graduate School of Science Kyoto University

We consider a stochastic partial differential equation (SPDE) which de-
scribes the velocity field of a viscous, incompressible non-Newtonian fluid
subject to a random force. Here, the extra stress tensor of the fluid is given by
a polynomial of degree p − 1 of the rate of strain tensor, while the colored
noise is considered as a random force. We focus on the shear thickening case,
more precisely, on the case p ∈ [1 + d

2 , 2d
d−2 ), where d is the dimension of

the space. We prove that the Galerkin scheme approximates the velocity field
in a strong sense. As a consequence, we establish the energy equality for the
velocity field.

1. Introduction. We consider a viscous, incompressible fluid whose motion
is subject to a random force. The container of the fluid is supposed to be the torus
T

d = (R/Z)d ∼= [0,1]d as a part of idealization. For a differentiable vector field
v : Td → R

d , which is interpreted as the velocity field of the fluid, we denote the
rate of strain tensor by

e(v) =
(

∂ivj + ∂jvi

2

)
: Td → R

d ⊗ R
d .(1.1)

We assume that the extra stress tensor

τ(v) : Td → R
d ⊗ R

d

depends on e(v) polynomially. More precisely, for ν > 0 (the kinematic viscosity)
and p > 1,

τ(v) = 2ν
(
1 + |e(v)|2)(p−2)/2

e(v).(1.2)

The linearly dependent case p = 2 is the Newtonian fluid, which is described by the
Navier–Stokes equation, the special case of (1.13) and (1.14) below. On the other
hand, both the shear thinning (p < 2) and the shear thickening (p > 2) cases are
considered in many fields in science and engineering. For example, shear thinning
fluids are used for automobile engine oil and pipeline for crude oil transportation,
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while applications of shear thickening fluids can be found in modeling of body
armor and automobile four wheel driving systems.

We now explain the outline of the present paper before going through precise
definitions; cf. Sections 1.1–1.4 below. The velocity field of the fluid Xt : Td → R

d

at time t > 0, given X0 is described by the following SPDE:

divXt = 0,(1.3)

∂tXt + (Xt · ∇)Xt = −∇�t + div τ(Xt) + ∂tWt .(1.4)

Here, and in what follows,

u · ∇ =
d∑

j=1

uj∂j and div τ(u) =
(

d∑
j=1

∂j τij (u)

)d

i=1

(1.5)

for u : Td → R
d . Both the velocity field Xt : Td → R

d and the pressure field
�t : Td → R are the unknown process in the SPDE. The Brownian motion Wt

with values in L2(T
d → R

d) (the set of vector fields on T
d with L2 components)

is added as the random force. Note also that the SPDE (1.3) and (1.4) for the case
p = 2 is the stochastic Navier–Stokes equation [2, 3].

In [9], the following results are obtained for the SPDE (1.3) and (1.4) in consis-
tency with the PDE case with nonrandom force [7].

• There exist weak solutions for p ∈ Id , where Id is defined as follows: by

introducing p1(d) = 3d
d+2 ∨ 3d−4

d
, p2(d) = 2d

d−2 and p3(d) = 3d−8+
√

9d2+64
2d

,
Id = (p1(d),∞) for 2 ≤ d ≤ 8, Id = (p1(d),p2(d)) ∪ (p3(d),∞) for d = 9
and Id = (p3(d),∞) for d ≥ 10.

• The pathwise uniqueness of the solution holds for p ≥ 1 + d
2 .

We refer the readers to [9], Theorems 2.1.3 and 2.2.1, for more details of the above
results.

In the case of stochastic Navier–Stokes equation, that is, the SPDE (1.3) and
(1.4) with p = 2, the 2D (two-dimensional) case is much better understood than
the higher-dimensional case. In particular, the weak solution is unique, which turns
out to be a strong solution [6]. It is also known that the unique solution satisfies
the energy equality, rather than merely an inequality as in the other dimensions
[2, 6]. We note that these nice properties of the solution are obtained via the fact
that, for the 2D stochastic Navier–Stokes equation, the Galerkin approximation
(cf. Section 1.4 below) converges strongly enough.

Two progresses are made in this paper.
First is the generality. The above-mentioned nice properties possessed by the

2D stochastic Navier–Stokes equation are carried over to the SPDE (1.3) and (1.4)
with p ∈ [1 + d

2 , 2d
d−2). We will do so by showing that the associated Galerkin

approximation converges strongly enough.
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The second progress made in this paper is that the method to prove the strong
convergence of the Galerkin approximation is more direct than the ones previ-
ously used for 2D stochastic Navier–Stokes equation, for example, [6]. Our proof
is based essentially only on the Gronwall’s lemma. In particular, we do not need
any compact embedding theorem for Sobolev-type spaces (e.g., [6], page 9, Lem-
ma 2.5).

In the rest of this section, we introduce a series of definitions which we need to
state our results precisely.

1.1. Function spaces. Let V be the set of R
d -valued divergence free, mean-

zero trigonometric polynomials, that is, the set of v : Td → R
d of the following

form:

v(x) = ∑
z∈Zd\{0}

v̂zψz(x), x ∈ T
d,(1.6)

where ψz(x) = exp(2π iz · x) and the coefficients v̂z ∈ C
d , z ∈ Z

d satisfy

v̂z = 0 except for finitely many z,(1.7)

v̂z = v̂−z for all z,(1.8)

z · v̂z = 0 for all z.(1.9)

Note that (1.9) implies that

divv = 0 for all v ∈ V .

For α ∈ R and v ∈ V we define

(1 − 	)α/2v = ∑
z∈Zd

(1 + 4π2|z|2)α/2v̂zψz.

We equip the torus T
d with the Lebesgue measure. For p ∈ [1,∞) and α ∈ R, we

introduce

Vp,α = the completion of V with respect to the norm ‖ · ‖p,α,(1.10)

where

‖v‖p
p,α =

∫
Td

|(1 − 	)α/2v|p.(1.11)

Then,

Vp,α+β ⊂ Vp,α for 1 ≤ p < ∞, α ∈ R and β > 0,(1.12)

and the inclusion Vp,α+β → Vp,α is compact if 1 < p < ∞ ([8], page 23, (6.9)).
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1.2. The noise. We need the following definition.

DEFINITION 1.1. Let � :V2,0 → V2,0 be a self-adjoint, nonnegative definite
operator of trace class. A random variable (Wt)t≥0 with values in C([0,∞) →
V2,0) is called a V2,0-valued Brownian motion with the covariance operator � [ab-
breviated by BM(V2,0,�) below] if, for each ϕ ∈ V2,0 and 0 ≤ s < t ,

E[exp(i〈ϕ,Wt − Ws〉)|(Wu)u≤s] = exp
(
− t − s

2
〈ϕ,�ϕ〉

)
a.s.

1.3. The SPDE. Given an initial velocity X0 = ξ ∈ V2,0, the (random) time
evolution of the velocity field X = (Xt)t≥0 and the pressure field � = (�t)t≥0 is
described by the following SPDE: for t > 0,

Xt ∈ Vp,1 ∩ V2,0,(1.13)

∂tXt + (Xt · ∇)Xt = −∇�t + div τ(Xt) + ∂tWt .(1.14)

The formal “time derivative” of Wt , a BM(V2,0,�), is added as the random force.
Note that (1.13) implies that divXt = 0 in the distributional sense. As in the case of
(stochastic) Navier–Stokes equation, we will reformulate the problem (1.13) and
(1.14) into the one which does not contain the pressure. Let

b(v) = −(v · ∇)v + div τ(v), v ∈ V.(1.15)

Then, by integration by parts,

〈ϕ,b(v)〉 = 〈v, (v · ∇)ϕ〉 − 〈e(ϕ), τ (v)〉, ϕ ∈ V.(1.16)

We generalize the definition of b(v) for v ∈ Vp,1 ∩ V2,0 by regarding b(v) as the
linear functional on V defined by the right-hand side of (1.16). Let P :L2(T

d →
R

d) → V2,0 be the orthogonal projection. Then, formally,

(1.14) ⇐⇒ ∂tXt = −∇�t + b(Xt) + ∂tWt

�⇒ ∂tXt = Pb(Xt) + ∂tWt
(1.17)

(since Xt,Wt ∈ V2,0, P ◦ ∇ ≡ 0)

⇐⇒ Xt = X0 +
∫ t

0
Pb(Xs) ds + Wt.

We will refer to (1.13) and (1.17) as (SPLF)p (stochastic power law fluid). To
give a more precise definition (Definition 1.2), we introduce a notation. For a Ba-
nach space S, we will denote by Lp,loc(R+ → S) the set of measurable functions
u : R+ → S such that ‖u‖S belongs to Lp([0, T ]) for all T ∈ (0,∞), with the usual
identification of any two elements which coincide a.e.

DEFINITION 1.2. Let (X,W) be a pair of processes such that W is a
BM(V2,0,�). We say that (X,W) is a weak solution to (SPLF)p if the following
two conditions are satisfied:
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(a) Equation (1.13) holds in the sense that t �→ Xt belongs to

Lp,loc(R+ → Vp,1) ∩ L∞,loc(R+ → V2,0) ∩ C(R+ → Vp′∧2,−β)(1.18)

for ∃β > 0, where p′ = p
p−1 .

(b) Equation (1.17) holds in the sense that

〈ϕ,Xt 〉 = 〈ϕ,X0〉 +
∫ t

0
〈ϕ,b(Xs)〉ds + 〈ϕ,Wt 〉(1.19)

for all ϕ ∈ V and t ≥ 0; cf. (1.16).

1.4. The Galerkin approximation. We now discuss a finite-dimensional ap-
proximation to (SPLF)p .

For each z ∈ Z
d \ {0}, let {ez,j }d−1

j=1 be an orthonormal basis of the hyperplane

{x ∈ R
d; z · x = 0} and let

ψz,j (x) =
{√

2ez,j cos(2πz · x), j = 1, . . . , d − 1,√
2ez,j−d+1 sin(2πz · x), j = d, . . . ,2d − 2,

(1.20)
x ∈ T

d .

Then, {
ψz,j ; (z, j) ∈ (Zd \ {0}) × {1, . . . ,2d − 2}}

is an orthonormal basis of V2,0. We also introduce

Vn = the linear span of {ψz,j ; (z, j) with z ∈ [−n,n]d},
(1.21)

Pn = the orthogonal projection: V2,0 → Vn.

Using the orthonormal basis (1.20), we identify Vn with R
N , N = dim Vn. We

suppose that:
� � :V2,0 → V2,0 is a self-adjoint, nonnegative definite operator of trace class

such that 	� = �	;
� W = (Wt)t≥0 be a BM(V2,0,�) defined on a probability space (�, F ,P ); cf.

Definition 1.2;
� ξ is a V2,0-valued random variable defined on (�, F ,P ) such that

m0 = E[‖ξ‖2
2,0] < ∞.(1.22)

We note that the operator � has the following eigenfunction expansion [cf.
(1.20)]:

� = ∑
z,j

γ z,j 〈·,ψz,j 〉ψz,j with γ z,j = 〈�ψz,j ,ψz,j 〉.(1.23)
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We also note that PnWt is identified with an N -dimensional Brownian motion with
covariance matrix �Pn. We consider the following approximation of (1.17):

Xn
t = Xn

0 +
∫ t

0
Pnb(Xn

s ) ds + PnWt , t ≥ 0,(1.24)

where Xn
0 = Pnξ . Let

X
n,z,j
t = 〈Xn

t ,ψz,j 〉(1.25)

be the (z, j)-coordinate of Xn
t . Then, (1.24) reads

X
n,z,j
t = X

n,z,j
0 +

∫ t

0
bz,j (Xn

s ) ds + W
z,j
t ,(1.26)

where

bz,j (Xn
s ) = 〈Xn

s , (Xn
s · ∇)ψz,j 〉 − 〈τ(Xn

s ), e(ψz,j )〉,
(1.27)

W
z,j
t = 〈Wt,ψz,j 〉.

Note also that

X
n,z,j
t ≡ 0 if z /∈ [−n,n]d .(1.28)

Let W· and ξ be as above. We then define

Gξ,W
t = σ(ξ,Ws, s ≤ t), 0 ≤ t < ∞, Gξ,W∞ = σ

(⋃
t≥0

Gξ,W
t

)
,

N ξ,W = {N ⊂ �,∃Ñ ∈ Gξ,W∞ ,N ⊂ Ñ,P (Ñ) = 0}
and

F ξ,W
t = σ(Gξ,W

t ∪ N ξ,W ), 0 ≤ t < ∞.(1.29)

The following existence and uniqueness result for the SDE (1.24) was obtained
in [9].

THEOREM 1.3. Let W·, ξ and F ξ,W
t be as above. Then, for each n ≥ 1, there

exists a unique process X· such that:

(a) Xn
t is F ξ,W

t -measurable for all t ≥ 0;
(b) (1.24) is satisfied;
(c) for any T > 0,

E

[
‖Xn

T ‖2
2 + 2

∫ T

0
〈e(Xn

t ), τ (Xn
t )〉dt

]
= E[‖Xn

0‖2
2] + tr(�Pn)T ,(1.30)

E

[
‖Xn

T ‖2
2 + 1

C

∫ T

0
‖Xn

t ‖p
p,1 dt

]
≤ m0 + (

C + tr(�)
)
T < ∞,(1.31)

where C = C(d,p) ∈ (0,∞).
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Suppose, in addition, that p ≥ 2d
d+2 . Then, for any T > 0,

E

[
sup
t≤T

‖Xn
t ‖2

2 +
∫ T

0
‖Xn

t ‖p
p,1 dt

]
≤ (1 + T )C′ < ∞,(1.32)

where C′ = C′(d,p,�,m0) ∈ (0,∞).

2. The strong convergence of the Galerkin approximation and the energy
equality.

2.1. Strong convergence of the Galerkin approximation. We introduce

λ =
⎧⎨⎩

0, if d = 2,
2(3 − p)+

dp − 3d + 4
, if d ≥ 3.

(2.1)

All the considerations in this article will be limited to the case p > 3d−4
d

if d ≥ 3
so that λ makes sense.

For p ∈ [1 + d
2 , 2d

d−2), the solution to (SPLF)p is well behaved and is well ap-
proximated by the Galerkin approximation.

THEOREM 2.1. Let �, W and ξ be as in Section 1.4, and let Xn
t be the unique

solution to (1.24); cf. Theorem 1.3. Suppose additionally that

d = 2,3,4 and 1 + d

2
≤ p <

2d

d − 2
;(2.2)

the operator �	 is of trace class;(2.3)

the random variable ξ takes values in V2,1 and
(2.4)

m1
def= E[‖ξ‖2

2,1] < ∞.

Then, there exists a process X = (Xt)t≥0 on (�, F ,P ) with the following proper-
ties for any T ∈ (0,∞):

(a) For any α ∈ [0,1), X ∈ C([0,∞) → V2,α) and

sup
0≤t≤T

‖Xt − Xn
t ‖2,α

n→∞−→ 0 in probability.(2.5)

(b) Let α ∈ [0,1) if λ = 0 [cf. (2.1)], and let α = 1− 2λ
p

∈ (0,1) if λ > 0. Then,
X ∈ L2,loc([0,∞) → V2,1+α) and∫ T

0
‖Xt − Xn

t ‖2
2,1+α dt

n→∞−→ 0 in probability.(2.6)
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(c) For any p̃ ∈ [1,p), X ∈ Lp̃,loc([0,∞) → Vp̃,1) and

lim
n→∞E

[∫ T

0
‖Xt − Xn

t ‖p̃
p̃,1 dt

]
= 0.(2.7)

We now explain the strategy for the proof of Theorem 2.1. Let Z
m,n
t = Xm

t −Xn
t .

Then, the core of the proof is that

sup
0≤t≤T

‖Zm,n
t ‖2

m,n→∞−→ 0 in probability.(2.8)

We will prove this by a series of elementary bounds (mainly, Gronwall’s inequal-
ity) instead of functional analytic method based on compact embedding as in [6].
We have by Itô’s formula (cf. Lemma 3.2 below for the detail), that

‖Zm,n
t ‖2

2 = ‖(Pm − Pn)ξ‖2
2 + tr(Pm� − Pn�)t

+ 2M
m,n
t + 2

∫ t

0
〈Zm,n

s , (Pm − Pn)b(Xn
s )〉ds(2.9)

+ 2
∫ t

0
〈Zm,n

s , b(Xm
s ) − b(Xn

s )〉ds,

where

M
m,n
t =

∫ t

0
〈(Pm − Pn)Z

m,n
s , dWs〉.

On the other hand, the following bound is known (cf. proofs of Theorem 4.29
of [7], pages 254 and 255, and Theorem 2.2.1 of [9]) for p > d

2 there exists C ∈
(0,∞) such that

〈v − w,b(v) − b(w)〉 ≤ C‖∇v‖2p/(2p−d)
p ‖v − w‖2

2 for all v,w ∈ V .(2.10)

By (2.9) and (2.10), we observe that for ∀t ∈ [0, T ]
‖Zm,n

t ‖2
2 ≤ S

m,n
T + C

∫ t

0
‖∇Xm

s ‖2p/(2p−d)
p ‖Zm,n

s ‖2
2 ds,(2.11)

where

S
m,n
T = ‖(Pm − Pn)ξ‖2

2 + tr(Pm� − Pn�)T + 2 sup
0≤s≤T

|Mm,n
s |

+ 2
∫ T

0
|〈Zs, (Pm − Pn)b(Xn

s )〉|ds.

Thus, by Gronwall’s lemma,

sup
0≤t≤T

‖Zm,n
t ‖2

2 ≤ S
m,n
T exp(CRm

T )

(2.12)

where Rm
T =

∫ t

0
‖∇Xm

s ‖2p/(2p−d)
p ds.
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Since 2p
2p−d

≤ p(⇔ p ≥ 1 + d
2 ), we see from (1.32) that {Rm

T }m≥1 are tight and so
are {exp(CRm

T )}m≥1. Therefore, the convergence (2.8) follows if

S
m,n
T

m,n→∞−→ 0 in probability.(2.13)

This is shown to be true for 1 + 2d
d+2 ≤ p < 2d

d−2 ; cf. Lemma 3.4 below. It is the
most technical part of this article and requires a series of statements and bounds.
The good news here is that each of them is elementary.

REMARKS. (1) In principle, the Galerkin approximation converges in stronger
topology for larger p. It is thus natural that some lower bound of p [like 1+ d

2 ≤ p

in (2.2)] is required to show a result as above. To be precise, the bound 1 + d
2 ≤ p

is used to get (3.32) below. On the other hand, the upper bound on p in (2.2),
p < 2d

d−2 is assumed for a technical reason, which unfortunately does not seem
easy to get rid of. This technical condition guarantees the continuous embedding
of V2,2 into Vp,α with α > 1 and assumed rather commonly in the literature to
control the Vp,α-norm of the Galerkin approximation, for example, [7], page 222,
(3.5) and [9], proof of Lemma 3.2.2. We will need p < 2d

d−2 to be able to use (3.6)
below, which is shown in [9].

(2) As mentioned in the Introduction, Theorem 2.1 and the following Corol-
lary 2.2 can be thought of as an extension of the well-known case of 2D stochastic
Navier–Stokes equation (d = p = 2) (see, e.g., [6], Theorem 2.6 and its proof).
The results in the direction of Theorem 2.1 and the following Corollary 2.2 is also
obtained in [1] for the 2D Navier–Stokes equation forced by the space–time white
noise. In spite of the conceptual similarity of their result to ours, their technique,
based on the Besov spaces, is much more involved. This is for the reason that,
in contrast to the colored noise, the white noise is so rough that the solution is
not expected to be accommodated in Sobolev spaces with positive differentiability
indices.

The existence of the weak solution to the SPDE (1.13) and (1.14) in [9] includes
the shear thinning case (p < 2). However, the weak solution discussed there is not,
in general, a function of the initial data and the Brownian motion. On the other
hand, with Theorem 2.1, it is almost straightforward to construct the weak solution
to (SPLF)p as a function of the initial data and the Brownian motion.

COROLLARY 2.2. Let �, W and ξ be as in Section 1.4 and suppose addi-
tionally that (2.2)–(2.4) hold true. Then, the process X in Theorem 2.1, coupled
with W , is a weak solution to (SPLF)p such that

X0 = ξ ;(2.14)

Xt is F ξ,W
t -measurable for all t ≥ 0.(2.15)
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Moreover, for any T > 0,

E

[
sup
t≤T

‖Xt‖2
2 +

∫ T

0
‖Xt‖p

p,1 dt

]
≤ (1 + T )C < ∞,(2.16)

where C = C(d,p,�,m0) < ∞.

We will derive Corollary 2.2 from (2.5) and (2.7); cf. Section 3.4.

2.2. The energy equality. The strong convergence of the Galerkin approxima-
tion proved in Theorem 2.1 has the following application.

THEOREM 2.3. Let �, W and ξ be as in Section 1.4 and suppose additionally
that (2.2)–(2.4) hold true. Then, the pathwise energy equality holds in the sense
that there exists a martingale M with respect to the filtration F ξ,W

t such that

1

2
‖Xt‖2

2 = 1

2
‖X0‖2

2 −
∫ t

0
〈e(Xs), τ (Xs)〉ds

(2.17)

+ 1

2
tr(�)t + Mt, t ≥ 0.

In particular, the mean energy equality holds

1

2
E[‖Xt‖2

2] = 1

2
E[‖X0‖2

2] − E

[∫ t

0
〈e(Xs), τ (Xs)〉ds

]
(2.18)

+ 1

2
tr(�)t, t ≥ 0.

We prove Theorem 2.3 by (2.5), (2.7) and (3.31) below; cf. Section 4.

REMARK. For the 2D stochastic Navier–Stokes equation (d = p = 2), (2.17)
and (2.18) become, respectively,

1

2
‖Xt‖2

2 = 1

2
‖X0‖2

2 − ν

∫ t

0
‖∇Xs‖2

2 ds

(2.19)

+ 1

2
tr(�)t + Mt, t ≥ 0,

1

2
E[‖Xt‖2

2] = 1

2
E[‖X0‖2

2] − νE

[∫ t

0
‖∇Xs‖2

2 ds

]
(2.20)

+ 1

2
tr(�)t, t ≥ 0.
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2.3. Remarks on the 2D stochastic Navier–Stokes equation. In this subsection,
we turn to the 2D stochastic Navier–Stokes equation, that is, the SPDE (1.13) and
(1.14) for d = p = 2. We remark that some important results from the literature
(e.g., [6], Sections 2.4 and 11.1) follow easily from the method of the present
paper.

We suppose that:

� d = p = 2;
� �, W and ξ are as in Section 1.4;
� Xn = (Xn

t )t≥0 is the unique solution to (1.24); cf. Theorem 1.3.

We also suppose that there is an α = 1,2, . . . such that

the operator �(−	)α is of trace class;(2.21)

the random variable ξ takes values in V2,α and E[‖ξ‖2
2,α] < ∞.(2.22)

Let X = (Xt)t≥0 be the limit as n ↗ ∞ of the process Xn as described in Theo-
rem 2.1. Then, by Corollary 2.2, the pair (X,W) is identified with the unique weak
solution to the SPDE (1.13) and (1.14). Moreover, by Theorem 2.3, the process X

satisfies the energy equalities (2.19) and (2.20).

PROPOSITION 2.4. Under the above assumptions, it holds for any T ∈ (0,∞)

and α1 < α that

sup
0≤t≤T

‖Xn
t ‖2

2,α +
∫ T

0
‖Xn

t ‖2
2,α+1 dt, n = 1,2, . . . are tight;(2.23)

sup
0≤t≤T

‖Xn
t − Xt‖2

2,α1
+

∫ T

0
‖Xn

t − Xt‖2
2,α1+1 dt

n↗∞−→ 0

(2.24)
in probability.

Suppose, in particular, that (2.21) and (2.22) are true for α = 2. Then, the pathwise
balance relation for the enstrophy holds in the sense that there exists a martingale
M with respect to the filtration F ξ,W

t such that

1

2
‖∇Xt‖2

2 = 1

2
‖∇X0‖2

2 − ν

∫ t

0
‖	Xs‖2

2 ds

(2.25)

+ 1

2
tr(−�	)t + Mt, t ≥ 0.

As a consequence,

1

2
E[‖∇Xt‖2

2] = 1

2
E[‖∇X0‖2

2] − νE

[∫ t

0
‖	Xs‖2

2 ds

]
(2.26)

+ 1

2
tr(−�	)t, t ≥ 0.
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We will prove Proposition 2.4 by (2.5) and (3.26) below; cf. Section 5.

REMARK. The mean balance relation for the enstrophy (2.26) can be used
together with (2.20) to disprove Kolmogorov-type scaling law for 2D turbulent
fluids ([4], page 11, Theorem 2.9).

3. Proof of Theorem 2.1. Let n,m ∈ N, n < m and

Zt = Z
m,n
t

def= Xm
t − Xn

t .(3.1)

To prove Theorem 2.1, it is enough to prove the following properties:

(a) For any α ∈ [0,1),

sup
0≤t≤T

‖Zm,n
t ‖2,α

m,n−→∞−→ 0 in probability.(3.2)

(b) Let α ∈ [0,1) if λ = 0 [cf. (2.1)] and let α = 1− 2λ
p

∈ (0,1) if λ > 0. Then,∫ T

0
‖Zm,n

t ‖2
2,1+α dt

m,n−→∞−→ 0 in probability.(3.3)

(c) For any p̃ ∈ [1,p),

E

[∫ T

0
‖Zm,n

t ‖p̃
p̃,1 dt

]
m,n−→∞−→ 0.(3.4)

3.1. Equation (3.2) implies equations (3.3) and (3.4). We first prove (3.3) and
(3.4) assuming (3.2). We will also need the following fact, which can be seen
from [9], proof of Lemma 3.2.2.

LEMMA 3.1. (a) Suppose that p ≥ 2 if d = 2 and that p > p3(d)
def=

3d−8+
√

9d2+64
2d

if d ≥ 3 [note that p3(d) ≤ 1 + 2d
d+2 ≤ 1 + d

2 ]. Then, 2p
p+2λ

> 1
[cf. (2.1)] and

E

[∫ T

0
‖Xn

s ‖2p/(p+2λ)
2,2 dt

]
≤ CT < ∞.(3.5)

(b) For 2 ≤ p < 2d
d−2 and p̃ ∈ (1,p), there exists α > 1 such that

E

[∫ T

0
‖Xn

s ‖p̃
p,α dt

]
≤ CT < ∞.(3.6)

PROOF OF (3.3). Let θ = 1
2−α

∈ (0,1). Then, we have by interpolation that

‖Zm,n
t ‖2

2,1+α ≤ ‖Zm,n
t ‖2−2θ

2,α ‖Zm,n
t ‖2θ

2,2
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and hence, that ∫ T

0
‖Zm,n

t ‖2
2,1+α dt ≤ S2−2θ

m,n Im,n,

where

Sm,n = sup
t≤T

‖Zm,n
t ‖2,α and Im,n =

∫ T

0
‖Zm,n

t ‖2θ
2,2 dt.

We note that 2θ≤2p
p+2λ

. Since Sm,n
m,n−→∞−→ 0 in probability by (3.2) and {Im,n}m,n≥1

are tight by (3.5), we get (3.3). �

PROOF OF (3.4). By (3.3),∫ T

0
‖Zm,n

t ‖1,1 dt
m,n→∞−→ 0 in probability (P ).

Moreover, the above random variables are uniformly integrable, since

E

[(∫ T

0
‖Zm,n

t ‖1,1 dt

)p]
(1.32)≤ CT < ∞.

Therefore:

(1)

lim
m,n→∞E

[∫ T

0
‖Zm,n

t ‖1,1 dt

]
= 0.

Let m(�), n(�) ↗ ∞ be such that

(2)
��,t

def= ∣∣Zm(�),n(�)
t

∣∣ + ∣∣∇Z
m(�),n(�)
t

∣∣
�→∞−→ 0, dt |[0,T ] × dx × P -a.e.,

where dt |[0,T ] ×dx denotes the Lebesgue measure on [0, T ]×T
d . Such sequences

m(�), n(�) exist by (1). The sequence {��,·}�≥1 are uniformly integrable with re-
spect to dt |[0,T ] × dx × P . In fact,

E

[∫ T

0

∫
Td

�
p
�,t dt

]
(1.32)≤ CT < ∞.

Therefore, (2) together with this uniform integrability implies (3.4) along the sub-
sequence m(�), n(�). Finally, we get rid of the subsequence, since the subsequence
as m(�), n(�) above can be chosen from any subsequence of m,n given in advance.

�
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3.2. The bound by Gronwall’s lemma. We will prove (3.2) in Sections 3.2
and 3.3. We start with an easy Itô calculus. We write |z|∞ = max1≤i≤d |zi | for
z = (z1, . . . , zd) ∈ R

d .

LEMMA 3.2.

‖Zt‖2
2 = ‖(Pm − Pn)ξ‖2

2 + tr(Pm� − Pn�)t

+ 2M
m,n
t + 2

∫ t

0
〈Zs, (Pm − Pn)b(Xn

s )〉ds(3.7)

+ 2
∫ t

0
〈Zs, b(Xm

s ) − b(Xn
s )〉ds,

where

M
m,n
t = ∑

z,j

n<|z|∞≤m

∫ t

0
Zz,j

s dWz,j
s .(3.8)

PROOF. We write

Zt = (Pm − Pn)ξ +
∫ t

0

(
Pmb(Xm

s ) − Pnb(Xn
s )

)
ds + (Pm − Pn)Wt .

Since

‖Zt‖2
2 = ∑

z,j

|Zz,j
t |2,

we compute each summand. Recall that n < m. If |z|∞ ≤ n, then

Z
z,j
t =

∫ t

0

(
bz,j (Xm

s ) − bz,j (Xn
s )

)
ds,

and thus,

|Zz,j
t |2 = 2

∫ t

0
Zz,j

s

(
bz,j (Xm

s ) − bz,j (Xn
s )

)
ds.

On the other hand, if n < |z|∞ ≤ m, then

Z
z,j
t = ξz,j +

∫ t

0
bz,j (Xm

s ) ds + W
z,j
t .

With the martingale

M
z,j
t =

∫ t

0
Zz,j

s dWz,j
s



STOCHASTIC SHEAR THICKENING FLUIDS 1229

we have

|Zz,j
t |2 = |ξz,j

t |2 + 2
∫ t

0
Zz,j

s bz,j (Xm
s ) ds + 2M

z,j
t + γ z,j t

= |ξz,j
t |2 + 2

∫ t

0
Zz,j

s

(
bz,j (Xm

s ) − bz,j (Xn
s )

)
ds

+ 2
∫ t

0
Zz,j

s bz,j (Xn
s ) ds + 2M

z,j
t + γ z,j t,

where γ z,j = 〈�ψz,j ,ψz,j 〉. Putting these together, we get

‖Zt‖2
2 = ‖(Pm − Pn)ξ‖2

2 + tr(Pm� − Pn�)t + 2M
m,n
t

+ 2
∑
z,j

n<|z|∞≤m

∫ t

0
Zz,j

s bz,j (Xn
s ) ds

+ 2
∑
z,j

|z|∞≤m

∫ t

0
Zz,j

s

(
bz,j (Xm

s ) − bz,j (Xn
s )

)
ds,

which is (3.7). �

LEMMA 3.3. Referring to Lemma 3.2, let

S
m,n
T = ‖(Pm − Pn)ξ‖2

2 + tr(Pm� − Pn�)T + 2 sup
0≤s≤T

|Mm,n
s |

(3.9)

+ 2
∫ T

0
|〈Zs, (Pm − Pn)b(Xn

s )〉|ds.

Then, for p > d
2 ,

sup
0≤t≤T

‖Zt‖2
2 ≤ S

m,n
T exp

(
C

∫ T

0
‖∇Xm

s ‖2p/(2p−d)
p ds

)
.(3.10)

PROOF. The lemma follows from Lemma 3.2, the known bound (2.10) and
Gronwall’s lemma, exactly as explained earlier; cf. (2.12). �

3.3. Proof of (3.2). The essential part of the proof of (3.2) is the following.

LEMMA 3.4. For 1 + 2d
d+2 ≤ p < 2d

d−2 ,

S
m,n
T

m,n→∞−→ 0 in probability,

where S
m,n
T is defined by (3.9).
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Most of this subsection is devoted to the proof of Lemma 3.4. Using Lemma 3.4,
we will prove (3.2) at the end of this subsection.

Referring to (3.9), it is obvious that

‖(Pm − Pn)ξ‖2
2 + tr(Pm� − Pn�)T −→ 0, m,n −→ 0.(3.11)

On the other hand, it is easy to prove that

E
[

sup
0≤t≤T

|Mm,n
t |2

]
−→ 0, m,n −→ ∞.(3.12)

To see this, we compute the quadratic variation of Mm,n,

〈Mm,n〉t =
∫ t

0
〈(Pm� − Pn�)Xm

s ,Xm
s 〉ds

≤ ‖Pm� − Pn�‖2→2

∫ t

0
‖Xm

s ‖2
2 ds.

Here, and in what follows, we denote the norm of the bounded operators on Vp,0
by

‖ · ‖p→p.(3.13)

We have that

‖Pm� − Pn�‖2
2→2 ≤ ∑

z,j

n<|z|∞≤m

|γ z,j |2 −→ 0

and that

sup
m

E

[∫ t

0
‖Xm

s ‖2
2 ds

]
≤ Ct < ∞

by (1.32). Thus, by Doob’s L2-maximal inequality,

E
[

sup
0≤t≤T

|Mm,n
t |2

]
≤ 4E[〈Mm,n〉T ] −→ 0.

Therefore, to prove Lemma 3.4, it is enough to show that∫ T

0
|〈Zs, (Pm − Pn)b(Xn

s )〉|ds
m,n−→∞−→ 0 in probability,(3.14)

if 1 + 2d
d+2 ≤ p < 2d

d−2 .
The rest of this section will be devoted to the proof of (3.14). We start by cutting

the task into pieces. Since (Pm − Pn)Zs = (1 − Pn)X
m
s , we have

|〈Zs, (Pm − Pn)b(Xn
s )〉| = |〈(1 − Pn)X

m
s , b(Xn

s )〉|
(3.15)

≤ ‖(1 − Pn)X
m
s ‖p,1‖b(Xn

s )‖p′,−1.
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With α > 1 to be specified later on, we bound the first factor of (3.15) as follows:

‖(1 − Pn)X
m
s ‖p,1 = ‖(1 − 	)1/2(1 − Pn)X

m
s ‖p

= ∥∥(1 − Pn)(1 − 	)(1−α)/2(1 − 	)α/2Xm
s

∥∥
p

(3.16)
≤ εn‖Xm

s ‖p,α

where εn = ∥∥(1 − Pn)(1 − 	)(1−α)/2
∥∥
p→p.

As for the second factor of (3.15), we use [9], (1.31) and (1.32), to get

‖b(Xn
s )‖p′,−1 = ‖−(Xn

s · ∇)Xn
s + div τ(Xn

s )‖p′,−1
(3.17)

≤ C‖Xn
s ‖p,1‖Xn

s ‖2 + C(1 + ‖∇Xn
s ‖p)p−1.

Putting (3.15)–(3.17) together, we have∫ T

0
|〈Zs, (Pm − Pn)b(Xn

s )〉|ds ≤ Cεn(I
m,n
T + J

m,n
T ),

where

I
m,n
T =

∫ T

0
‖Xm

s ‖p,α‖Xn
s ‖p,1‖Xn

s ‖2 ds,

(3.18)

J
m,n
T =

∫ T

0
‖Xm

s ‖p,α(1 + ‖∇Xn
s ‖p)p−1 ds.

We will prove (3.14) by showing that

εn → 0 for any α > 1;(3.19)

{Im,n
T }m,n, {Jm,n

T }m,n are tight for some α > 1.(3.20)

Since (1 − 	)(1−α)/2 :Vp,0 → Vp,0 is compact for any α > 1, (3.19) follows from
Lemma 3.3.2.

LEMMA 3.5. Let G :Vp,0 → Vp,0 be a compact operator. Then

lim
n→∞‖(1 − Pn)G‖p→p = 0.

PROOF. Since the projection Pn corresponds to the rectangular partial sum-
mation of the Fourier series, ‖Pn‖p→p is bounded in n (see, e.g., [5], page 213,
Theorem 3.5.7). Assuming this, the proof of the lemma is standard (compact uni-
form convergence of a series of equi-continuous functions, which converge on a
dense set). �

We now turn to (3.20). We will use some facts from [9]. For v ∈ V , we introduce

Ip(v) =
∫

Td

(
1 + |e(v)|2)(p−2)/2|∇e(v)|2,(3.21)

K(v) = 〈−	v, (v · ∇v)v〉 − 〈τ(v), e(−	v)〉 + 1
2 tr(−	�Pn).(3.22)
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Since |	v| ≤ |∇e(v)|, we have

‖	v‖2
2 ≤ Ip(v) for p ≥ 2.(3.23)

Then, we have from the proof of Lemma 3.2.3 in [9] that

K(v) + c1Ip(v) ≤ C1(1 + ‖∇v‖2
2)

λ(1 + ‖∇v‖p)p,(3.24)

E

[∫ T

0

Ip(Xn
t )

(1 + ‖Xn
s ‖2

2)
λ

dt

]
≤ CT < ∞.(3.25)

Having prepared all the ingredients from [9], our starting point to prove (3.20) is
the following tightness lemma (Lemma 3.6). In fact, this tightness, together with
Lemma 3.1, is enough for the proof of (3.20) for p = 2; cf. case 1 in the proof of
Lemma 3.4 below.

LEMMA 3.6. Let p ≥ 1 + 2d
d+2 ≥ 2. Then

sup
0≤t≤T

‖Xn
t ‖2,1, n = 1,2, . . . , are tight.(3.26)

PROOF. Note that p ≥ 1 + 2d
d+2 > 3d−4

d
. For x ≥ 0, let

f (x) =
⎧⎨⎩

1

1 − λ
(1 + x)1−λ, if λ �= 1,

ln(1 + x), if λ = 1.

The condition p ≥ 1 + 2d
d+2 guarantees that λ ∈ [0,1] and hence, that

0 ≤ f (x) → ∞ as x → ∞.

Thus, taking (1.32) into account, it is enough to prove that

(1)
E

[
sup

0≤t≤T

f (‖∇Xn
t ‖2

2)
]
≤ CT < ∞.

We have by Itô’s formula that

(2)
f (‖∇Xn

t ‖2
2) ≤ f (‖∇Xn

0‖2
2) + Nn

t + 2
∫ t

0

K(Xn
s ) ds

(1 + ‖∇Xn
s ‖2

2)
λ
,

where

Nn
t = ∑

z,j

∫ t

0

	X
n,z,j
s

(1 + ‖∇Xn
s ‖2

2)
λ

dWz,j
s ;

cf. [9], proof of Lemma 3.2.3. We see from (3.24) that

sup
0≤t≤T

∫ t

0

K(Xn
s ) ds

(1 + ‖∇Xn
s ‖2

2)
λ

≤ C1

∫ T

0
(1 + ‖∇Xn

s ‖p)p ds

and hence, that
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(3)
E

[
sup

0≤t≤T

∫ t

0

K(Xn
s ) ds

(1 + ‖∇Xn
s ‖2

2)
λ

]
≤ CT < ∞

by (1.32). On the other hand, we compute

〈Nn〉t = ∑
z,j

∫ t

0

(	X
n,z,j
s )2

(1 + ‖∇Xn
s ‖2

2)
2λ

γ z,j ds ≤ ‖�‖
∫ t

0

‖	Xn
s ‖2

2

(1 + ‖∇Xn
s ‖2

2)
2λ

ds.

Thus, by Doob’s inequality, (3.23) and (3.25),

(4)
E

[
sup

0≤t≤T

|Nn
t |2

]
≤ 4E〈Nn〉T ≤ CT < ∞.

We conclude (1) from (2)–(4). �

The following estimate plays a key role in the proof of (3.20) for p > 2.

LEMMA 3.7. Let

p > 1, 2 < p1 < ∞ if d = 2,
(3.27)

p >
3d − 4

d
, 2 < p1 < p

d

d − 2
if d ≥ 3

and let

p2 < p/θ1 where θ1 = 1/2 − 1/p1

1/2 − (d − 2)/(dp)
∈ (0,1).(3.28)

Then, for any δ > 0, there are b,C ∈ (0,∞) such that for v ∈ V

‖∇v‖p2
p1

≤ C
Ip(v)

(1 + ‖∇v‖2
2)

λ
+ C(1 + ‖∇v‖2

2)
b(1 + ‖∇v‖p)δ,(3.29)

where λ is defined by (2.1). For d ≥ 3, it is possible to take δ = 0.

PROOF. Let q = 2 for d ≥ 3, q ∈ (1,2) for d = 2, p3 = p d
d−q

> p. The choice
of p3 is made so that

(1)
‖∇v‖p3 ≤ CIp(v)q/(2p)(1 + ‖∇v‖p)(2−q)/2

cf. [7], page 227, (3.27).

Note also that the choice of θ1 in (3.28) implies that

(2)
1

p1
= 1 − θ1

2
+ θ1

p3
.
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With β = 1−θ1
2 + λq

2p
θ1 and an arbitrary θ2 ∈ (0,1), we have that

‖∇v‖p1

(2)≤ ‖∇v‖1−θ1
2 ‖∇v‖θ1

p3

(1)≤ C‖∇v‖1−θ1
2 Ip(v)θ1q/(2p)(1 + ‖∇v‖p)((2−q)/2)θ1

choice of β= C

( Ip(v)

(1 + ‖∇v‖2
2)

λ

)θ1q/(2p)

(1 + ‖∇v‖2
2)

β

× (1 + ‖∇v‖p)((2−q)/2)θ1

θ2+(1−θ2)=1≤ C

( Ip(v)

(1 + ‖∇v‖2
2)

λ

)(θ1/θ2)(q/(2p))

+ C(1 + ‖∇v‖2
2)

β/(1−θ2)(1 + ‖∇v‖p)((2−q)/2)(θ1/(1−θ2))

and hence, that

‖∇v‖p2
p1

≤ C
Ip(v)

(1 + ‖∇v‖2
2)

λ
+ C(1 + ‖∇v‖2

2)
b(1 + ‖∇v‖p)δ,

where

p2 = θ2

θ1

2p

q
, b = β

1 − θ2
p2, δ = 2 − q

2

θ1

1 − θ2
p2.

In particular, for d ≥ 3,

p2 = θ2

θ1
p, b = β

1 − θ2
p2, δ = 0.

Choosing θ2 close to 1 (and then q close 2 if d = 2), we get the lemma. �

Lemma 3.7 is used to obtain the following tightness lemma, which takes care of
the case of p > 2.

LEMMA 3.8. Suppose that

p ≥ 2, 2 < p1 < ∞ if d = 2,
(3.30)

p ≥ 1 + 2d

d + 2
, 2 < p1 < p

d

d − 2
if d ≥ 3

and that (3.28) holds. Then∫ T

0
‖∇Xn

t ‖p2
p1

dt, n = 1,2, . . . , are tight.(3.31)
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PROOF. By (3.29),∫ T

0
‖∇Xn

t ‖p2
p1

dt ≤ C

∫ T

0

Ip(Xn
t )

(1 + ‖∇Xn
t ‖2

2)
λ

dt

+ C sup
0≤t≤T

(1 + ‖∇Xn
t ‖2

2)
b
∫ T

0
(1 + ‖∇Xn

t ‖p)δ dt.

The random variables on the right-hand side (n = 1,2, . . .) are tight, because of
(1.32), (3.25) and (3.26). �

PROOF OF LEMMA 3.4. As explained earlier [(3.11), Lemma 3.5], it is enough
to show (3.20). We recall from (3.18) that

I
m,n
T =

∫ T

0
‖Xm

s ‖p,α‖Xn
s ‖p,1‖Xn

s ‖2 ds,

J
m,n
T =

∫ T

0
‖Xm

s ‖p,α(1 + ‖∇Xn
s ‖p)p−1 ds.

Case 1 (p = 2).

I
m,n
T ≤ sup

0≤t≤T

‖Xn
t ‖2

2,1

∫ T

0
‖Xm

t ‖2,α dt,

J
m,n
T ≤ sup

0≤t≤T

(1 + ‖∇Xn
t ‖2)

∫ T

0
‖Xm

t ‖2,α dt.

By (3.6) and (3.26), the random variables on the right-hand side (m,n = 1,2, . . .)
are tight for some α > 1.

Case 2 (2 < p < 2d
d−2 ). As for Im,n,

I
m,n
T ≤ sup

0≤t≤T

‖Xn
t ‖2

(∫ T

0
‖Xm

t ‖p′
p,α dt

)1/p′(∫ T

0
‖∇Xn

t ‖p
p,1 dt

)1/p

.

Note that p′ < 2 < p, since p > 2. Thus, by (1.32) and (3.6), the random variables
on the right-hand side (m,n = 1,2, . . .) are tight for some α > 1. As for J

m,n
T , we

take p̃ ∈ (1,p) so close to p that

p2
def= (p − 1)

p̃

p̃ − 1
< p/θ1, where θ1 = 1/2 − 1/p

1/2 − (d − 2)/(dp)
∈ (0,1).

Then

J
m,n
T ≤

(∫ T

0
‖Xm

t ‖p̃
p,α dt

)1/p̃(∫ T

0
(1 + ‖∇Xn

t ‖p)p2 dt

)(p̃−1)/p̃

.

By (3.6) and (3.31), the random variables on the right-hand side (m,n = 1,2, . . .)
are tight for some α > 1. �
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PROOF OF (3.2). Since p ≥ 1 + d
2 , or equivalently, 2p

2p−d
≤ p,

Rm
T

def=
∫ T

0
‖∇Xm

s ‖2p/(2p−d)
p ds, m = 1,2, . . . , are tight(3.32)

by (1.32), and so are exp(CRm
T ), m = 1,2, . . . . Thus, by Lemma 3.4,

sup
0≤t≤T

‖Zm,n
t ‖2

2 ≤ S
m,n
T exp(CRm

T )
m,n−→∞−→ 0 in probability.

Therefore, we get (3.2) for α = 0. We get (3.2) for α ∈ (0,1) by interpolation and
(3.26). �

3.4. Proof of Corollary 2.2. We only have to prove (1.19) and (2.16). By
(1.24) and integration by parts, we have for all ϕ ∈ V and t ≥ 0

〈ϕ,Xn
t 〉 = 〈Pnϕ, ξ〉 +

∫ t

0

(〈Xn
s , (Xn

s · ∇)ϕ〉 − 〈e(ϕ), τ (Xn
s )〉)ds

(3.33)
+ 〈Pnϕ,Wt 〉.

Now, we have by (2.5) that

sup
0≤t≤T

|〈ϕ,Xn
t − Xt 〉| n↗∞−→ 0 in probability.

On the other hand, we have by (2.7) and the argument of [9], Lemma 4.1.1, that∫ T

0
|〈Xn

t , (Xn
t · ∇)ϕ〉 − 〈Xt, (Xt · ∇)ϕ〉|dt

n↗∞−→ 0 in probability,∫ T

0
|〈e(ϕ), τ (Xn

t ) − τ(Xt)〉|dt
n↗∞−→ 0 in L1(P ).

Therefore, we get (1.19) via (3.33). The bound (2.16) follows from (1.32) by Fa-
tou’s lemma.

4. Proof of Theorem 2.3.

4.1. The strategy. Note that

‖Xn
t ‖2

2 = ∑
z,j

|Xn,z,j |2.

Applying Itô’s formula to |Xn,z,j |2 and using (1.26), we see that

|Xn,z,j
t |2 = |Xn,z,j

0 |2 + 2
∫ t

0
Xn,z,j

s dWz,j
s + 2

∫ t

0
Xn,z,j

s bz,j
s (Xn

s ) ds

(4.1)
+ 〈ψz,j ,�ψz,j 〉t.
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Thus,

‖Xn
t ‖2

2 − ‖Xn
0‖2

2 = 2Mn
t + 2

∫ t

0
〈Xn

s , b(Xn
s )〉ds + tr(�Pn)t,

where

Mn
t = ∑

z,j

∫ t

0
Xn,z,j

s dWz,j
s .(4.2)

We now recall that

〈w, (v · ∇)w〉 = 0,(4.3)

v ∈ V and w ∈ C1(Td → R
d). Since

〈v, b(v)〉 (1.16), (4.3)= −〈τ(v), e(v)〉,
we have

‖Xn
t ‖2

2 − ‖Xn
0‖2

2 = 2Mn
t − 2

∫ t

0
〈τ(Xn

s ), e(Xn
s )〉ds + tr(�Pn)t.(4.4)

Thus, Theorem 2.3 follows from the following two lemmas.

LEMMA 4.1. Referring to (4.2), there exists a martingale M such that

lim
n→∞E

[
sup

0≤t≤T

|Mn
t − Mt |

]
= 0 for any T ∈ (0,∞).(4.5)

LEMMA 4.2. For any T ∈ (0,∞),∫ T

0
|〈e(Xn

s ), τ (Xn
s )〉 − 〈e(Xs), τ (Xs)〉|ds

n↗∞−→ 0 in probability (P ).(4.6)

4.2. Proof of Lemma 4.1. It is enough to show that

(1)
lim

m,n→∞E
[

sup
0≤t≤T

|Mn
t − Mm

t |
]
= 0.

By the Burkholder–Davis–Gundy inequality,

E
[

sup
0≤t≤T

|Mn
t − Mm

t |
]
≤ CE[〈Mn − Mm〉1/2

T ].

We may assume m > n. Then, for any t > 0,

Mm
t − Mn

t = ∑
z,j

n<|z|∞≤m

∫ t

0
Xm,z,j

s dWz,j
s + ∑

z,j

|z|∞≤n

∫ t

0
(Xm,z,j

s − Xn,z,j
s ) dWz,j

s
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and thus,

〈Mm − Mn〉t = ∑
z,j

n<|z|∞≤m

∫ t

0
(Xm,z,j

s )2γ z,j ds

+ ∑
z,j

|z|∞≤n

∫ t

0
(Xm,z,j

s − Xn,z,j
s )2γ z,j ds

≤ Qt + Rt,

where

Qt =
∫ t

0

∥∥(1 − Pn)
√

�Xm
s

∥∥2
2 ds, Rt =

∫ t

0

∥∥√�(Xm
s − Xn

s )
∥∥2

2 ds.

By (1.32), we have

E[QT ] ≤ ∥∥(1 − Pn)
√

�
∥∥2

2→2

∫ T

0
E[‖Xm

s ‖2
2]ds ≤ ∥∥(1 − Pn)

√
�

∥∥2
2→2CT

n↗∞−→ 0.

On the other hand, we see from (2.5) that

E[R1/2
T ] ≤ ∥∥√�

∥∥
2→2E

[(∫ T

0
‖Xm

s − Xn
s ‖2

2 ds

)1/2]
m,n↗∞−→ 0.

Putting things together, we get (1).

4.3. Proof of Lemma 4.2. We write

〈τ(Xs), e(Xs)〉 − 〈τ(Xn
s ), e(Xn

s )〉
= 〈τ(Xs) − τ(Xn

s ), e(Xs)〉 + 〈τ(Xn
s ), e(Xs) − e(Xn

s )〉.
In view of this, we will prove (4.6) by showing that

(1) ∫ T

0
|〈τ(Xs) − τ(Xn

s ), e(Xs)〉|ds
n↗∞−→ 0 in probability (P ),

(2) ∫ T

0
|〈τ(Xn

s ), e(Xs) − e(Xn
s )〉|ds

n↗∞−→ 0 in probability (P ).

To show (1), we note that∣∣(1 + |x|2)(p−2)/2x − (1 + |y|2)(p−2)/2y
∣∣ ≤ C|x − y|(1 + |x| + |y|)p−2,

x, y ∈ R
d ⊗ R

d .
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Therefore, with p1 ∈ (1,p) and p′
1 = p1

p1−1 ,∫ T

0
|〈τ(Xs) − τ(Xn

s ), e(Xs)〉|ds

≤ C

∫ T

0
ds

∫
Td

|e(Xs) − e(Xn
s )|(1 + |e(Xn

s )| + |e(Xs)|)p−1

≤ CI 1/p1
n (I ′

n)
1/p′

1,

where

In =
∫ T

0
ds

∫
Td

|e(Xs) − e(Xn
s )|p1,

I ′
n =

∫ T

0
ds

∫
Td

(
1 + |e(Xn

s )| + |e(Xs)|)(p−1)p′
1 .

Note that (p − 1)p′
1 ↘ p as p1 ↗ p. Thus, for p1 sufficiently close to p, {I ′

n}n≥1
are tight by (3.31). On the other hand, In → 0 in probability (P ) for any p1 < p

by (2.7). Thus, we get (1).
As for (2), with p1 ∈ (1,p) and p′

1 = p1
p1−1 again,∫ T

0
ds

∫
Td

|〈τ(Xn
s ), e(Xs) − e(Xn

s )〉|ds ≤ J 1/p1
n (J ′

n)
1/p′

1,

where

Jn =
∫ T

0
ds

∫
Td

|e(Xs) − e(Xn
s )|p1,

J ′
n =

∫ T

0
ds

∫
Td

|τ(Xn
s )|p′

1 ≤ ν

∫ T

0
ds

∫
Td

(
1 + |e(Xn

s )|)(p−1)p′
1 .

As in the proof of (1), for p1 sufficiently close to p, {J ′
n}n≥1 are tight by (3.31),

and Jn → 0 in probability (P ) for any p1 < p by (2.7). Thus, we get (2).

5. Proof of Proposition 2.4.

5.1. Proofs of (2.23) and (2.24). Note that for α = 0,1,2, . . .

‖∇αv‖2
2 = 〈v, (−	)αv〉 = ∑

z,j

(−4π2|z|2)α〈v,ψz,j 〉2, v ∈ V.

By plugging v = Xn
t into the above identity, and using (4.1), we obtain that

‖∇αXn
t ‖2

2 = ‖∇αXn
0‖2

2 + 2Mn
t + 2

∫ t

0
〈(−	)αXn

s , b(Xn
s )〉ds

(5.1)
+ tr(�(−	)α Pn)t,
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where

Mn
t = ∑

z,j

∫ t

0
(−	)αXn,z,j

s dWz,j
s .(5.2)

Since we assume (2.21), we may repeat the proof of Lemma 4.1, with � replaced
by �(−	)α to obtain the following lemma.

LEMMA 5.1. Referring to (5.2), there exists a martingale M such that

lim
n→∞E

[
sup

0≤t≤T

|Mn
t − Mt |

]
= 0 for any T ∈ (0,∞).(5.3)

We now continue on (5.1). For p = 2, we have for v ∈ V that

〈(−	)αv, b(v)〉 = 〈(−	)αv, (v · ∇)v〉 + ν〈(−	)αv,	v〉(5.4)

= 〈(−	)αv, (v · ∇)v〉 − ν‖∇α+1v‖2
2.

Moreover, we have for d = 2 that

|〈(−	)αv, (v · ∇)v〉| ≤ C1‖∇α+1v‖(2α−1)/α
2 ‖∇v‖(α+1)/α

2 .(5.5)

This follows from the argument in the proof of (2.27), [6], page 17. By (5.5) and
Young inequality, we obtain that

|〈(−	)αv, (v · ∇)v〉| (2α−1)/(2α)+1/(2α)=1≤ ν

2
‖∇α+1v‖2

2 + C2‖∇v‖2α+2
2 .(5.6)

By (5.1) and (5.4),

‖∇αXn
t ‖2

2 + 2ν

∫ t

0
‖∇α+1Xn

s ‖2
2 ds

= ‖∇αXn
0‖2

2 + 2Mn
t + 2

∫ t

0
〈(−	)αXn

s , (Xn
s · ∇)Xn

s 〉ds(5.7)

+ tr(�(−	)α Pn)t.

Therefore, by (5.6),

‖∇αXn
t ‖2

2 + ν

∫ t

0
‖∇α+1Xn

s ‖2
2 ds

≤ ‖∇αXn
0‖2

2 + 2Mn
t + C2

∫ t

0
‖∇Xn

s ‖2α+2
2(5.8)

+ tr(�(−	)α Pn)t.

We conclude the tightness (2.23) from (5.8), using (2.21), (2.22), Lemmas 3.6
and 5.1. The convergence (2.24) follows from (2.5) and (2.23) via interpolation.
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5.2. The pathwise balance relation for the enstrophy. Here, we prove that the
process defined by (2.25) is a martingale. Since

〈	v, (v · ∇)v〉 = 0 for v ∈ V cf. [7], page 225, (3.20),

we set α = 1 in (5.7) to get

‖∇Xn
t ‖2

2 + 2ν

∫ t

0
‖	Xn

s ‖2
2 ds = ‖∇Xn

0‖2
2 + 2Mn

t + tr(�(−	)Pn)t,(5.9)

where

Mn
t = ∑

z,j

∫ t

0
(−	)Xn,z,j

s dWz,j
s ,

for which Lemma 5.1 (with α = 1) is valid. Since we assume (2.21) and (2.22)
with α = 2, we have by (2.24) that

sup
0≤t≤T

‖Xn
t − Xt‖2

2,1 +
∫ T

0
‖Xn

t − Xt‖2
2,2 dt

n↗∞−→ 0 in probability.(5.10)

Therefore, we let n ↗ ∞ in (5.9) to see that

‖∇Xt‖2
2 + 2ν

∫ t

0
‖	Xs‖2

2 ds = ‖∇X0‖2
2 + 2Mt + tr(�(−	))t, t ≥ 0.

This means that the process M· defined by (2.25) is exactly the martingale obtained
in Lemma 5.1 (with α = 1).
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Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation
13. Chapman and Hall, London. MR1409366

[8] TAYLOR, M. E. (1996). Partial Differential Equations. III. Springer, New York.

http://www.ams.org/mathscinet-getitem?mr=1941997
http://www.ams.org/mathscinet-getitem?mr=2459085
http://www.ams.org/mathscinet-getitem?mr=1339739
http://www.ams.org/mathscinet-getitem?mr=2367196
http://www.ams.org/mathscinet-getitem?mr=2449250
http://www.ams.org/mathscinet-getitem?mr=2225710
http://www.ams.org/mathscinet-getitem?mr=1409366


1242 N. YOSHIDA

[9] TERASAWA, Y. and YOSHIDA, N. (2011). Stochastic power law fluids: Existence and unique-
ness of weak solutions. Ann. Appl. Probab. 21 1827–1859. MR2884052

DIVISION OF MATHEMATICS GRADUATE SCHOOL

OF SCIENCE

KYOTO UNIVERSITY

KYOTO 606-8502
JAPAN

E-MAIL: nobuo@math.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=2884052
mailto:nobuo@math.kyoto-u.ac.jp

	Introduction
	Function spaces
	The noise
	The SPDE
	The Galerkin approximation

	The strong convergence of the Galerkin approximation and the energy equality
	Strong convergence of the Galerkin approximation
	The energy equality
	Remarks on the 2D stochastic Navier-Stokes equation

	Proof of Theorem 2.1
	Equation (3.2) implies equations (3.3) and (3.4)
	The bound by Gronwall's lemma
	Proof of (3.2)
	Proof of Corollary 2.2

	Proof of Theorem 2.3
	The strategy
	Proof of Lemma 4.1
	Proof of Lemma 4.2

	Proof of Proposition 2.4
	Proofs of (2.23) and (2.24)
	The pathwise balance relation for the enstrophy

	Acknowledgments
	References
	Author's Addresses

