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DOWNSIDE RISK MINIMIZATION VIA A LARGE
DEVIATIONS APPROACH1

BY HIDEO NAGAI

Osaka University

We consider minimizing the probability of falling below a target growth
rate of the wealth process up to a time horizon T in an incomplete market
model, and then study the asymptotic behavior of minimizing probability as
T → ∞. This problem can be closely related to an ergodic risk-sensitive
stochastic control problem in the risk-averse case. Indeed, in our main theo-
rem, we relate the former problem concerning the asymptotics for risk mini-
mization to the latter as its dual. As a result, we obtain an expression of the
limit value of the probability as the Legendre transform of the value of the
control problem, which is characterized as the solution to an H-J-B equation
of ergodic type, in the case of a Markovian incomplete market model.

1. Introduction. Risk management is a main topic in the study of finance. In
the present paper, we consider the problem of minimizing the downside risk asso-
ciated with an investor’s total wealth in a certain incomplete market model. More
precisely, let S0

t be the price of a riskless asset with the dynamics dS0
t = rtS

0
t dt ,

(S1
t , . . . , Sm

t ) the prices of the risky assets, and Ni
t , i = 0, . . . ,m, the number of

shares of ith security. Then the total wealth that the investor possesses is defined
as

Vt =
m∑

i=0

Ni
t S

i
t ,

and we assume a self-financing condition,

dVt =
m∑

i=0

Ni
t dSi

t .

When setting the proportion of the portfolio invested in the ith security as hi
t =

Ni
t S

i
t

Vt
, we have

dVt

Vt

=
m∑

i=0

hi
t

dSi
t

Si
t

,
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and the total wealth is denoted by Vt = Vt(h), which is the solution to this stochas-
tic differential equation for a given strategy ht . Let us consider minimizing the
probability

P

(
1

T
log

VT (h)

S0
T

≤ κ

)
(1.1)

for a given target growth rate κ by selecting portfolio choice h. Let us make
clear the meaning of the probability. If we choose strategy (h0

t , h
1
t , . . . , h

m
t ) =

(1,0, . . . ,0), then we have

d logVt = dVt

Vt

= dS0
t

S0
t

= d logS0
t .

Thus, the probability is always 1 for large time T and κ > 0. Accordingly, in
considering the above minimization, we investigate the extent for which we can
improve the probability by selecting a strategy, as compared with the trivial strat-
egy of investing the total wealth in a riskless asset. The latter strategy is considered
the benchmark in terms of finance.

We shall consider the asymptotic behavior of the probability

lim
T →∞

1

T
inf
h·

logP

(
1

T
log

VT (h)

S0
T

≤ κ

)
.(1.2)

According to the theory of large deviation, it is natural to relate (1.2) to

χ̂ (γ ) := lim
T →∞

1

T
inf
h·

logE
[
eγ log(VT (h)/S0

T )](1.3)

for γ < 0. Namely, as T → ∞,

1

T
inf
h·

logP

(
1

T
log

VT (h)

S0
T

∈ (−∞, κ]
)

→ − inf
k∈(−∞,κ] sup

γ<0
{γ k − χ̂ (γ )}

is expected to hold since the Legendre transform I (k) of χ̂ (γ ),

I (k) = sup
γ<0

{γ k − χ̂ (γ )},

is regarded as the rate function of the asymptotics, if χ̂ (γ ) is a convex function;
cf. [10]. Note that we can see from Hölder’s inequality that logE[(VT (h)

S0
T

)γ ] =
logE[eγ log(VT (h)/S0

T )] is a convex function of γ , but this does not always imply the
convexity of its infimum

inf
h·

logE

[(
VT (h)

S0
T

)γ ]
= inf

h·
logE

[
eγ log(VT (h)/S0

T )].(1.4)

Therefore, the convexity of χ̂ (γ ) cannot be determined immediately and the above
idea does not directly apply. In the present paper, we will find the convexity of
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χ̂ (γ ) by identifying the solution of the H-J-B equation of ergodic type with the
limit value (1.3); cf. Proposition 4.2 and Corollary 4.1. Then we shall see that
the duality relation between (1.2) and (1.3) holds under suitable conditions, as
expected; cf. Theorem 2.4.

Minimization (1.4), which is equivalent to power utility maximization, could be
regarded as a risk-sensitive control problem. The infinite time horizon counterpart
of (1.4) without a benchmark,

inf
h·

lim
T →∞

1

T
logE

[
eγ logVT (h)],(1.5)

has been extensively studied as risk-sensitive control (e.g., [4, 5, 13–15, 20, 21,
24, 28, 30]), and a benchmarked case has recently been reported in [9]. From the
viewpoint of stochastic control theory, it may appear more natural, compared with
the above relationship between (1.2) and (1.3), to relate

inf
h·

lim
T →∞

1

T
logE

[
eγ log(VT (h)/S0

T )](1.6)

to

inf
h·

lim
T →∞

1

T
logP

(
1

T
log

VT (h)

S0
T

≤ κ

)
,(1.7)

which is considered in the present paper as well; cf. Theorem 2.5.
We note that the problem relating (1.2) to (1.3) is thought to be equivalent to

considering

lim
T →∞

1

T
inf
h·

logP

(
1

T
logVT (h) ≤ κ

)

and

χ̌(γ ) := lim
T →∞

1

T
inf
h·

logE
[
eγ logVT (h)]

without a benchmark. However, the arguments in this article may be simpler than
in the case without a benchmark (cf. Remark 2.2).

In previous papers [19, 29], we studied similar asymptotic behavior without
benchmarks for linear Gaussian models in relation to the asymptotics of risk-
sensitive portfolio optimization. Indeed, we established a duality relation between
these problems, and as a result, an explicit expression of the limit value of the
probability minimizing downside risk for each case of full and partial information.
To obtain those results, the key analysis involved Poisson equations derived by
taking derivatives with respect to γ of the H-J-B equations of ergodic type corre-
sponding to risk-sensitive control over an infinite time horizon. Since the solutions
of the H-J-B equations can be explicitly expressed as quadratic functions by us-
ing the solutions of the Riccati equations for linear Gaussian models, analysis of
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the differentiability of the solutions of the Riccati equations with respect to γ was
essential in those works.

In the present paper, we shall consider general diffusion market models and
discuss the above-mentioned duality relation between the asymptotics of the min-
imization of downside risk and the risk-sensitive stochastic control for large time.
Since the solutions of H-J-B equations of ergodic type do not always have ex-
plicit expressions, we need to consider, in general, the differentiablity with respect
to γ of H-J-B equations of ergodic type. The analysis is presented in Sections 5
and 6 based on the results concerning H-J-B equations of ergodic type and related
stochastic control problems given in Sections 3 and 4. Here, we mention the ongo-
ing work of Hata and Sheu [22], which is closely related to the present paper and
examines similar problems under the assumptions that α(x) in (2.2) in Section 2 is
bounded and that β(x)∗x ≤ −c|x|2 for |x| ≥ R in place of (2.19). We shall explain
more precisely the relationships between these papers in Remark 2.3.

We note that maximization of an upside chance probability for the long term was
studied by Pham [31, 32] for continuous time models, and then by Stettner [34] for
discrete time models, in relation to risk-sensitive portfolio optimization in the risk-
seeking case. By regarding the maximization problem as large deviation control,
Pham established a duality relation between these two types of problems. Explicit
calculation of the limit value is given in the case of 1-dimensional Gaussian mod-
els. The problem was later extended to a nonlinear case by Hata and Sekine [20,
21] and also to the partial information case by Hata and Iida [18] for 1-dimensional
Gaussian models. See also related works [6, 7, 35]. However, asymptotic estimates
of downside risk probabilities and upside chance probabilities cannot be obtained
in parallel. Indeed, obtaining the estimates of downside risk is rather difficult than
those of upside chance and further analysis of H-J-B equations is required to show
the estimates as was shown in [19]. Further note that large deviations control (1.7)
is an unconventional optimization problem, and thus we need to employ a new
approach to study it.

2. Setting up and main results. Consider a market model with m + 1 secu-
rities and n factors, where the bond price is governed by the ordinary differential
equation

dS0(t) = r(Xt)S
0(t) dt, S0(0) = s0.(2.1)

The other security prices and factors are assumed to satisfy the stochastic differ-
ential equations

dSi(t) = Si(t)

{
αi(Xt) dt +

n+m∑
k=1

σ i
k(Xt) dWk

t

}
,

(2.2)
Si(0) = si, i = 1, . . . ,m,
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and

dXt = β(Xt) dt + λ(Xt) dWt,
(2.3)

X(0) = x,

where Wt = (Wk
t )k=1,...,(n+m) is a standard m + n-dimensional Brownian motion

process on a probability space (	, F ,P ). Let Ni
t be the number of the shares of

the ith security. Then, the total wealth that the investor possesses is defined as

Vt =
m∑

i=0

Ni
t S

i
t

and the proportion of the portfolio invested in the ith security is

hi
t = Ni

t S
i
t

Vt

, i = 0,1,2, . . . ,m.

Nt = (N0
t ,N1

t ,N2
t , . . . ,Nm

t ) [or, ht = (h1
t , . . . , h

m
t )] is called self-financing if

dVt =
m∑

i=0

Ni
t dSi

t =
m∑

i=0

Vth
i
t

Si
t

dSi
t .

Thus, under the self-financing condition, we have

dVt

Vt

= h0
t r(Xt) dt +

m∑
i=1

hi
t

{
αi(Xt) dt +

n+m∑
j=1

σ i
j (Xt) dW

j
t

}

= r(Xt) dt +
m∑

i=1

hi
t

{(
αi(Xt) − r(Xt)

)
dt +

n+m∑
j=1

σ i
j (Xt) dW

j
t

}
.

Here we note that ht is defined as an m-vector consisting of h1
t , . . . , h

m
t since

h0
t = 1 − ∑m

i=1 hi
t holds by definition.

The filtration that must be satisfied by admissible investment strategies

Gt = σ
(
S(u),X(u),u ≤ t

)
is relevant in the present problem, and we introduce the following definition.

DEFINITION 2.1. h(t)0≤t≤T is said to be an investment strategy if h(t) is an
Rm valued Gt -progressively measurable stochastic process such that

P

(∫ T

0
|h(s)|2 ds < ∞

)
= 1.
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The set of all investment strategies is denoted by H(T ). For a given h ∈ H(T ),
the process Vt = Vt(h) representing the total wealth of the investor at time t is
determined by the stochastic differential equation shown above.

dVt

Vt

= r(Xt) dt + h(t)∗
(
α(Xt) − r(Xt)1

)
dt + h(t)∗σ(Xt) dWt,

(2.4)
V0 = v0,

where 1 = (1,1, . . . ,1)∗.
We are interested in the asymptotics of minimization of a downside risk for a

given constant κ in comparison with investing the whole portfolio in a riskless
security as the benchmark

J (κ) := lim
T →∞

1

T
inf

h∈H(T )
logP

(
1

T
log

VT (h)

S0
T

≤ κ

)
.(2.5)

We also examine downside risk minimization with the benchmark S0 over an infi-
nite time horizon,

J∞(κ) := inf
h∈H

lim
T →∞

1

T
logP

(
1

T
log

VT (h)

S0
T

≤ κ

)
,(2.6)

where

H = {h;h ∈ H(T ),∀T }.
J (κ) will be shown to be related to the following risk-sensitive asset allocation
problem with benchmark S0. Namely, for a given constant γ < 0, let us consider
the asymptotics

χ̂ (γ ) = lim
T →∞

1

T
inf

h∈A(T )
J (v, x;h;T ),(2.7)

where

J (v, x;h;T ) = logE

[(
VT (h)

S0
T

)γ ]
= logE

[
eγ log(VT (h)/S0

T )],(2.8)

and h ranges over the set A(T ) of all admissible investment strategies defined by

A(T ) = {
h ∈ H(T );E[

eγ
∫ T

0 h∗
s σ (Xs) dWs−(γ 2/2)

∫ T
0 h∗

s σσ ∗(Xs)hsds] = 1
}
.

Then we shall see that (2.5) could be considered the dual problem to (2.7), while
(2.6) is the dual problem to risk-sensitive asset allocation over an infinite time
horizon,

χ∞(γ ) = inf
h∈A

lim
T →∞

1

T
J (v, x;h;T ),(2.9)
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where

A = {h;h ∈ A(T ); ∀T }.
We shall consider these problems under the assumptions that

α and β are globally Lipschitz, λ ∈ C2
b, σ, r ∈ C1

b, α,β ∈ C1(2.10)

and {
c1|ξ |2 ≤ ξ∗λλ∗(x)ξ ≤ c2|ξ |2, c1, c2 > 0, ξ ∈ Rn,
c1|ζ |2 ≤ ζ ∗σσ ∗(x)ζ ≤ c2|ζ |2, ζ ∈ Rm,

(2.11)

hold. In considering these problems, we first introduce the value function

v(t, x) = inf
h·∈A(T −t)

logE
[
eγ log(VT −t (h)/S0

T −t )
]
.(2.12)

Note that

eγ logVT = v
γ
0 eγ

∫ T
0 {r(Xs)+h∗

s α̂(Xs)−(1/2)h∗
s σσ ∗(Xs)hs}ds+γ

∫ T
0 h∗

s σ (Xs) dWs ,

where α̂(x) = α(x) − r(x)1. Therefore

eγ (logVT −logS0
T ) = v

γ
0 eγ

∫ T
0 η(Xs,hs) ds+γ

∫ T
0 h∗

s σ (Xs) dWs−(γ 2/2)
∫ T

0 h∗
s σσ ∗(Xs)hsds,

where

η(x,h) = h∗α̂(x) − 1 − γ

2
h∗σσ ∗(x)h.

By introducing a probability measure

P h(A) = E
[
eγ

∫ T
0 h∗

s σ (Xs) dWs−(γ 2/2)
∫ T

0 h∗
s σσ ∗(Xs)hsds :A

]
,

the dynamics of the factor process can be written as

dXt = {β(Xt) + γ λσ ∗(Xt)ht }dt + λ(Xt) dWh
t , X0 = x,

with the new Brownian motion process Wh
t defined by

Wh
t := Wt − γ

∫ t

0
σ ∗(Xs)hs ds,

and the value function written as

v(t, x) = γ logv0 + inf
h·∈A(T )

logEh[
eγ

∫ T −t
0 η(Xs,hs) ds].(2.13)

The H-J-B equation for the value function v(t, x) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂v

∂t
+ 1

2
tr[λλ∗D2v] + 1

2
(Dv)∗λλ∗Dv

+ inf
h

{[β + γ λσ ∗h]∗Dv + γ η(x,h)} = 0,

v(T , x) = γ logv0,
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which is also written as⎧⎨
⎩

∂v

∂t
+ 1

2
tr[λλ∗D2v] + β∗

γ Dv + 1

2
(Dv)∗λN−1

γ λ∗Dv − Uγ = 0,

v(T , x) = γ logv0,

(2.14)

where

βγ = β + γ

1 − γ
λσ ∗(σσ ∗)−1α̂,

N−1
γ = I + γ

1 − γ
σ ∗(σσ ∗)−1σ

and

Uγ = − γ

2(1 − γ )
α̂∗(σσ ∗)−1α̂.

REMARK 2.1.

inf
h∈Rm

{[γ λσ ∗h]∗Dv + γ η(x,h)}

= inf
h∈Rm

{
[γ λσ ∗h]∗Dv − γ (1 − γ )

2
h∗σσ ∗h + γ h∗α̂

}

= inf
h∈Rm

{
−γ (1 − γ )

2

[
h − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dv)

]∗

× σσ ∗
[
h − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dv)

]

+ γ

2(1 − γ )
(α̂ + σλ∗Dv)∗(σσ ∗)−1(α̂ + σλ∗Dv)

}
.

Therefore, the function

ĥ(t, x) := 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dv)

defines the generator of the optimal diffusion L̂ for infh∈A(T ) J (v, x;h;T ):

L̂ψ := 1

2
tr[λλ∗D2ψ] +

[
β + γ

1 − γ
λσ ∗(σσ ∗)−1(α̂ + σλ∗Dv)

]∗
Dψ,

which is seen in Proposition 2.1.

Set v̄ = −v. Then,⎧⎨
⎩

∂v̄

∂t
+ 1

2
tr[λλ∗D2v̄] + β∗

γ Dv̄ − 1

2
(Dv̄)∗λN−1

γ λ∗Dv̄ + Uγ = 0,

v̄(T , x) = −γ logv0.

(2.15)
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Since I − σ ∗(σσ ∗)−1σ ≥ 0, which is easily seen by taking ξ = σ ∗ζ + μ, with μ

orthogonal to the range of σ ∗, and seeing that ξ∗(I − σ ∗(σσ ∗)−1σ)ξ = μ∗μ, we
have

1

1 − γ
I ≤ N−1 ≤ I.(2.16)

As for existence of a solution to (2.15) satisfying sufficient regularities, we have
the following results; cf. [3, 28].

THEOREM 2.1 ([3, 28]). Assume (2.10) and (2.11). Then H-J-B equation
(2.15) has a solution such that

v̄(t, x) + γ logv0 ≥ 0,

v̄,
∂v̄

∂t
,

∂v̄

∂xk

,
∂2v̄

∂xk ∂xj

∈ Lp(0, T ;Lp
loc(R

n)), 1 < ∀p < ∞,

∂2v̄

∂t2 ,
∂2v̄

∂xk ∂t
,

∂3v̄

∂xk ∂xj ∂xl

,
∂3v̄

∂xk ∂xj ∂t
∈ Lp(0, T ;Lp

loc(R
n)),

∂v̄

∂t
≤ 0,

and

|∇v̄|2 − k0
∂v̄

∂t
≤ C

(|∇Qγ |22ρ + |Qγ |22ρ + |∇(λλ∗)|22ρ

+ |∇βγ |2ρ + |βγ |22ρ + |Uγ |2ρ + |∇Uγ |2ρ + 1
)

for x ∈ Bρ and t ∈ [0, T ), where Qγ = λN−1
γ λ∗, k0 = 4(1+c)(1−γ )

−γ
, c > 0, |f |2ρ =

sup{x;x∈B2ρ} |f (x)|, C is a universal constant and Bρ = {x ∈ Rn; |x| < ρ}.

For ĥ(t, x), we consider the stochastic differential equation

dXt = {β(Xt) + γ λσ ∗(Xt)ĥ(t,Xt)}dt + λ(Xt) dWĥ
t , X0 = x,

and define ĥt := ĥ(t,Xt ) for the solution Xt of the stochastic differential equation.
Note that the solution of this stochastic differential equation is obtained by the
change of measure from the solution of (2.3). Indeed, we can see that ∇v has at
most linear growth under assumptions (2.10) and (2.11) from the above gradient
estimates, and therefore,

E
[
eγ

∫ T
0 ĥ(s,Xs)

∗σ(Xs) dWs−(γ 2/2)
∫ T

0 ĥ(s,Xs)
∗σσ ∗(Xs)ĥ(s,Xs) ds] = 1

holds. Thus

P ĥ(A) := E
[
eγ

∫ T
0 ĥ(s,Xs)

∗σ(Xs) dWs−(γ 2/2)
∫ T

0 ĥ(s,Xs)
∗σσ ∗(Xs)ĥ(s,Xs) ds;A]
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defines a probability measure. Under this measure, Xt turns out to be a solution of
the above stochastic differential equation.

The following is a verification theorem, the proof of which is almost the same
as the proof of Proposition 2.1, [28], and thus is omitted here.

PROPOSITION 2.1 ([28]). Assume (2.10) and (2.11). Then ĥ
(γ,T )
t ≡ ĥt := ĥ(t,

Xt ) ∈ A(T ) and it is optimal

v(0, x) = inf
h·

logE
[
eγ (logVT (h)−logS0

T )] = logE
[
eγ (logVT (ĥ)−logS0

T )].(2.17)

Let us consider an H-J-B equation of ergodic type that is thought to be the limit
equation of (2.14). Namely,

χ = 1
2 tr[λλ∗D2w] + β∗

γ Dw + 1
2(Dw)∗λN−1

γ λ∗Dw − Uγ .(2.18)

Set

G(x) := β(x) − λσ ∗(σσ ∗)−1α̂(x),

and assume that

G(x)∗x ≤ −cG|x|2 + c′
G, cG, c′

G > 0,(2.19)

and

α̂∗(σσ ∗)−1α̂ → ∞ as |x| → ∞.(2.20)

Under these assumptions, we have a solution to the H-J-B equation of ergodic type,
and the proof is given in Proposition 3.1 in Section 3.

PROPOSITION 2.2. Assume (2.10), (2.11), (2.19) and (2.20). Then (2.18) has
a solution (χ,w(γ )) such that w ∈ C2(Rn),

w(x) → −∞ as |x| → ∞
and the solution satisfying this condition is unique up to additive constants with
respect to w.

We further assume that

α̂∗(σσ ∗)−1α̂ ≥ c0|x|2 − c′
0, c0, c

′
0 > 0.(2.21)

Then we have the following theorem, and the proof is given after Proposition 4.2
in Section 4.

THEOREM 2.2. Under assumptions (2.10), (2.11), (2.19) and (2.21), we have

χ̂(γ ) = lim
T →∞

1

T
v(0, x;T ) = χ(γ ).
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The following results are important to prove our main results, and the proofs are
given in Lemma 6.3, Lemma 7.1 and Corollary 4.1.

THEOREM 2.3. Let (χ,w(γ )) be a solution to (2.18). Then under the assump-
tions of Theorem 2.2, χ(γ ) and w(γ ) are differentiable with respect to γ and χ(γ )

is convex. Their derivatives satisfy

χ ′(γ ) = 1

2
tr[λλ∗D2wγ ] + (

β∗
γ + (

Dw(γ ))∗λN−1
γ λ∗)

Dwγ

(2.22)

+ 1

2(1 − γ )2

{
α̂ + σλ∗Dw(γ )}∗

(σσ ∗)−1{
α̂ + σλ∗Dw(γ )},

where wγ = ∂w(γ )

∂γ
. Furthermore,

lim
γ→−∞χ ′(γ ) = 0.

REMARK 2.2. It is important to know the limit value limγ→−∞ χ ′(γ ) since
it determines the left endpoint of the interval of the target growth rate κ , which
makes J (κ) finite. Here we compare the results above with those to be expected
for the case without a benchmark, considering asymptotics

χ̌ (γ ) := lim
T →∞

1

T
inf
h·

logE
[
eγ logVT (h)].

The H-J-B equation of ergodic type of this problem becomes

χ̌ = 1
2 tr[λλ∗D2w̌] + β∗

γ Dw̌ + 1
2(Dw̌)∗λN−1

γ λ∗Dw̌ − Uγ + γ r(x),

and we can obtain its derivative

χ̌ ′(γ ) = 1

2
tr[λλ∗D2w̌γ ] + (

β∗
γ + (Dw̌)∗λN−1

γ λ∗)
Dw̌γ

+ 1

2(1 − γ )2 {α̂ + σλ∗Dw̌}∗(σσ ∗)−1{α̂ + σλ∗Dw̌} + r

through almost the same arguments as the current ones provided to obtain the
results in the present article. The difference appears in considering the asymptotics
of χ ′(γ ) as γ → −∞. Indeed,

lim
γ→−∞ χ̌ ′(γ ) = lim

γ→−∞

∫
r(x)m̌γ (dx) < ∞

could be seen as in [22], where m̌γ (dx) is the invariant measure of Ľ-diffusion
process and Ľ is defined by

Ľψ = 1
2 tr[λλ∗D2ψ] + (βγ + λN−1

γ λ∗Dw̌)∗Dψ.

Note that Ľ corresponds to L̄ defined by (4.16) in the present paper and can be
shown to be ergodic under suitable conditions in a manner similar to the proof of
Proposition 4.3.
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Now we can state our main theorems. The proofs are given in Sections 7 and 8.

THEOREM 2.4. Under the assumptions of Theorem 2.2, for 0 < κ < χ̂ ′(0−),

J (κ) = − inf
k∈(−∞,κ] sup

γ<0
{γ k − χ̂ (γ )} = − sup

γ<0
{γ κ − χ̂ (γ )}.(2.23)

Moreover, for γ (κ) such that χ̂ ′(γ (κ)) = κ ∈ (0, χ̂ ′(0−)), take a strategy ĥ
(γ (κ),T )
t

defined in Proposition 2.1. Then,

J (κ) = lim
T →∞

1

T
logP

(
1

T
log

VT (ĥ(γ (κ),T ))

S0
T

≤ κ

)
.

For κ < 0,

J (κ) = − sup
γ<0

{γ κ − χ̂(γ )} = −∞.

For the solution w = w(γ ) to H-J-B equation ergodic type (2.18), let us set

h̄(x) = 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dw)(x).

Further consider the stochastic differential equation

dXt = {β(Xt) + γ λσ ∗(Xt)h̄(Xt)}dt + λ(Xt) dWh̄
t , X0 = x,(2.24)

and define h̄
(γ (κ))
t := h̄(Xt ) for the solution Xt of the stochastic differential equa-

tion. Then we have the following theorem.

THEOREM 2.5. Under the assumptions of Theorem 2.2, let 0 < κ < χ̂ ′(0−)

and γ (κ) be the same as above. We also assume that(
Dw(γ ))∗λσ ∗(σσ ∗)−1σλ∗Dw(γ ) < α̂∗(σσ ∗)−1α̂, γ = γ (κ).(2.25)

Then

J∞(κ) = J (κ) = − inf
k∈(−∞,κ] sup

γ<0
{γ k − χ̂ (γ )} = − sup

γ<0
{γ κ − χ̂ (γ )}

and

J (κ) = lim
T →∞

1

T
logP

(
log

VT (h(γ (κ)))

S0
T

≤ κT

)
.

REMARK 2.3. In our previous paper [19], we studied similar problems with-
out benchmarks in the case of linear Gaussian models. Specifically, we discussed
the case where α(x) = Ax + a, β(x) = Bx + b, σ(x) ≡ σ , λ(x) ≡ λ and r(x) ≡ r ,
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in which A, B , σ and λ (resp., a and b) are all constant matrices (resp., vectors),
and r is a constant. Under the main assumption that

G := B − λσ ∗(σσ ∗)−1A is stable,

which corresponds to (2.19) above, we obtained results similar to Theorems 2.4
and 2.5. The present paper is a natural extension to general diffusion incomplete
market models. On the other hand, Hata and Sheu [22] treat the case where α(x)

is bounded, and β(x)∗x ≤ −c|x|2 for |x| ≥ R, in which linear Gaussian models
are excluded. In that case, Uγ becomes bounded and they employ quite different
methods from ours to analyze H-J-B equation (2.18), while assumption (2.21) is
crucial in our settings. For that reason our theorems do not include the case where
α(x) is bounded.

REMARK 2.4. The generator of the optimal diffusion process governed by
(2.24) for risk-sensitive control problem (2.9) is defined by

L∞ψ := 1

2
tr[λλ∗D2ψ] +

[
β∗

γ + γ

1 − γ
(Dw)∗λσ ∗(σσ ∗)−1σλ∗

]
Dψ.

On the other hand, in proving Theorem 2.2 we introduce another type of stochastic
control problem (4.9) with (4.7). The generator of the optimal diffusion process
for this problem is defined by (4.16).

L̄ψ = 1
2 tr[λλ∗D2ψ] + [β∗

γ + (Dw)∗λN−1
γ λ∗]Dψ,

where w is a solution to H-J-B equation (2.18) of ergodic type. Then we note that
L̄ is related to L∞ through the gauge transform,

[e−wL∞ew]ϕ = [
L̄ − (

γ η − χ(γ )
)]

ϕ.

Further, we see that ψ∞ := ew is an eigenfunction of L∞ + γ η

(L∞ + γ η)ψ∞ = χ(γ )ψ∞
for the principal eigenvalue χ(γ ); cf. [11]. Note that L̄ is ergodic as is seen in
Proposition 4.3, while L∞ is not always ergodic.

EXAMPLE. We assume (2.10) and (2.11) and that β(x) = B(x)x + b(x),
α(x) = A(x)x +a(x) with an m×n (resp., n×n) matrix-valued bounded function
A (resp., B), and an m (resp., n)-vector-valued bounded function a (resp., b) such
that:

(i) A∗A(x) ≥ CIn,∃C > 0;
(ii) the real parts of all eigenvalues of (B∗ − A∗A)(x) is less than −CB ,

CB > 0;
(iii) Range(λ∗ − σ ∗A) ⊂ Kernel(σ ).
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In this case

G(x)∗x ≡ β(x)∗x − α̂∗(σσ ∗)−1λ∗(x)x

= (
B(x)x + b(x)

)∗ − (
A(x)x + a(x) − r(x)1

)∗
(σσ ∗)−1σλ∗(x)x

= (
B(x)x + b(x)

)∗
x − x∗A∗(x)

(
(σσ ∗)−1σλ∗ − A

)
(x)x

+ x∗A∗A(x)x − (
a(x) − r(x)1

)∗
(σσ ∗)−1σλ∗(x)x

= x∗(B∗ − A∗A)(x)x + b(x)∗x − (
a(x) − r(x)1

)∗
(σσ ∗)−1σλ∗(x)x,

and we see that (2.19) holds. Furthermore, (2.21) holds because of (i).

3. H-J-B equations of ergodic type. Instead of (2.18), we shall study an H-
J-B equation of ergodic type for w̄ = −w(γ ).

−χ = 1
2 tr[λλ∗D2w̄] + β∗

γ Dw̄ − 1
2(Dw̄)∗λN−1

γ λ∗Dw̄ + Uγ .(3.1)

PROPOSITION 3.1. Assume (2.10), (2.11), (2.19) and (2.20). Then (3.1) has a
solution (χ, w̄) such that w̄ ∈ C2(Rn),

w̄(x) → ∞ as |x| → ∞,

and the solution satisfying this condition is unique up to additive constants with
respect to w̄.

REMARK 3.1. The following notation is useful for the task at hand. Set � :=
(σσ ∗)−1σ . Then

�∗ = σ ∗(σσ ∗)−1, ��∗ = (σσ ∗)−1, �∗(��∗)−1� = σ ∗(σσ ∗)−1σ.

Moreover, we see that

�N−1
γ = 1

1 − γ
�, Nγ = I − γ�∗(��∗)−1� = I − γ σ ∗(σσ ∗)−1σ.

To prove Proposition 3.1, we first consider the H-J-B equation of discounted
type,

εvε = 1
2 tr[λλ∗D2vε] + β∗

γ Dvε − 1
2(Dvε)

∗λN−1
γ λ∗Dvε + Uγ .(3.2)

Note that (3.2) can be written as

εvε = 1
2 tr[λλ∗D2vε] + G∗Dvε − 1

2(λ∗Dvε − �∗α̂)∗N−1
γ (λ∗Dvε − �∗α̂)

(3.3)
+ 1

2 α̂��∗α̂.

Then, we consider the linear equation

εϕε = Lϕε + 1
2 α̂��∗α̂,(3.4)
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where

Lϕ = 1
2 tr[λλ∗D2ϕ] + G∗Dϕ.

Under assumptions (2.10), (2.11) and (2.19), (3.4) has a solution ϕε ∈ C2(Rn).
Indeed, set ψ1(x) = c|x|2, c > 0. Then, by taking c to be sufficiently large, we can
see that there exists R0 such that for R > R0,

Lψ1 + 1
2 α̂��∗α̂ < 0 in Bc

R.

Therefore, when setting

�ε(x) = M

ε
+ ψ1(x), M = sup

x∈BR

∣∣∣∣Lψ1(x) + 1

2
α̂��∗α̂(x)

∣∣∣∣,
�ε(x) turns out to be a supersolution to (3.4), and we can see that there exists a
solution ϕε ∈ C2(Rn) to (3.4) such that 0 ≤ ϕε ≤ �ε(x) since v ≡ 0 is a subsolu-
tion.

We note that ϕε(x) is a supersolution to (3.2) which is the same equation as
(3.3).

LEMMA 3.1. Under the assumptions of Proposition 3.1, (3.2) has a solution
such that vε ∈ C2(Rn) and 0 ≤ vε ≤ ϕε .

PROOF. In proving the existence of the solution, we introduce a Dirichlet
problem on BR , R > 0:

εvε = 1
2 tr[λλ∗D2vε] + β∗

γ Dvε − 1
2(Dvε)

∗λN−1
γ λ∗Dvε + Uγ in BR,

(3.5)
vε(x) = ϕε, x ∈ ∂BR.

Owing to Theorem 8.3 ([25], Chapter 4), Dirichlet problem (3.4) has a solution vε .
We extend vε to the whole Euclidean space as

vε,R =
{

vε(x), x ∈ BR ,
ϕε, x ∈ Bc

R .

Then we can see that vε,R is nonincreasing with respect to R. Indeed, for R < R′,
vε,R is a supersolution to (3.3) in BR′ , and we have

ε(vε,R − vε,R′)

≥ 1
2 tr[λλ∗D2(vε,R − vε,R′)] + β∗

γ D(vε,R − vε,R′)

− 1
2(Dvε,R)∗λN−1

γ λ∗Dvε,R + 1
2(Dvε,R′)∗λN−1

γ λ∗Dvε,R′ in B ′
R

= 1
2 tr[λλ∗D2(vε,R − vε,R′)] + β∗

γ D(vε,R − vε,R′)

− 1
2(Dvε,R + Dvε,R′)∗λN−1

γ λ∗D(vε,R − vε,R′).
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Therefore, from the maximum principle (cf. Theorem 3.1 in [16]) we see that

vε,R − vε,R′ ≥ 0(3.6)

since vε,R(x) = vε,R′(x), x ∈ ∂BR′ . We further note that

vε,R ≥ 0(3.7)

for each R because ψ0(x) ≡ 0 is a subsolution to (3.2), and the maximum principle
again applies.

Similar to the proof of Lemma 2.6 in [23], we have the following gradient esti-
mate: for each R and r < R

2 ,

‖∇vε,R‖L∞(Br ) ≤ Mr,(3.8)

where Mr is a constant independent of R, ε. Thus, when taking a sequence Rn

such that Rn ↑ ∞, vε,Rn forms a family of uniformly bounded and equicontinuous
functions. Thus we can choose a subsequence vε,Rnk

converging to a continuous
function vε . Furthermore, since

‖vε,Rn‖H 1(Br )
≤ M ′

r(3.9)

for a positive constant M ′
r independent of Rn and ε, it converges weakly in

H 1
loc(R

n) to vε by taking a subsequence if necessary. By similar arguments to
Lemma 6.8 in [23], the convergence can be strengthened as ∇vε,Rnk

converges

strongly in L2
loc(R

n) to ∇vε . As a result we can see from the regularity theorems
that we have a solution vε ∈ C2(Rn) to (3.2). Since vε,R ≤ ϕε , for each R > 0 from
the maximum principle as well as (3.7), we see that 0 ≤ vε ≤ ϕε . �

Set

ψδ(x) := eδ|x|2, δ > 0.

Then, by taking δ to be sufficiently small, we can see that there exists R1 such that
for R > R1,

Lψδ(x) < −1 in Bc
R.

Therefore, we see that L and ψδ satisfy assumption (A.3) in the last section. Set
K(x;ψδ) = −Lψδ ,

Fψ :=
{
u(x) ∈ W

2,p
loc (Rn); ess sup

x∈Bc
R

|u(x)|
ψδ(x)

< ∞
}

and

FK :=
{
f (x) ∈ L∞

loc(R
n); ess sup

x∈Bc
R

|f (x)|
K(x;ψδ)

< ∞
}
.
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Then for f ∈ FK there exists a solution ϕ ∈ Fψ to

0 = Lϕ + f

if and only if ∫
f (x)m(dx) = 0,

where m(dx) is an invariant measure for L; cf. Proposition A.4 in in the Appendix.
Therefore, setting

χ0 =
∫ 1

2
α̂��∗α̂(x)m(dx),(3.10)

there exists a solution ϕ0 ∈ Fψ to

χ0 = Lϕ0 + 1
2 α̂��∗α̂(x),

and it is known that εϕε converges to χ0 as ε → 0 uniformly on each compact set.
Now we can prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. We first note that

0 ≤ vε ≤ ϕε

because of Lemma 3.1. Therefore, we have

‖εvε‖L∞(Br ) ≤ Kr,

where Kr is a constant independent of ε. Moreover,

‖∇vε‖L∞(Br ) ≤ K ′
r

for a positive constant K ′
r independent of ε in view of (3.8). Thus, similarly to the

proof of Theorem 3.1 in [23], we can prove the existence of the solution (−χ, w̄)

to (3.1) such that w̄ ∈ W
2,p
loc . From regularity theorems we see that w̄ ∈ C2(Rn).

The proof of uniqueness is similar to the proof of Lemma 3.2 in [26]. �

Now we have the following proposition.

PROPOSITION 3.2. Under the assumptions of Proposition 3.1, the solution w̄

to (3.1) satisfies

|∇w̄(x)|2 ≤ c(|x|2 + 1),(3.11)

where c is a positive constant. If we further assume (2.21), then, for each γ0 < 0,
there exists a positive constant c(γ0) such that the nonnegative solution w̄(x) =
w̄(x;γ ), γ ≤ γ0, satisfies

w̄(x) ≥ c(γ0)|x|2, |x| ≥ ∃R′.(3.12)
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PROOF. Set Qγ := λN−1
γ λ∗. Then we shall prove for each x0 ∈ Rn that

|∇w̄|2(x0) ≤ K

(
|∇Qγ |2r + 1

r2 |Qγ |2r + |βγ |2r
(3.13)

+ |Uγ |r + |∇Uγ |r + |βγ |r
r

+ |∇βγ |r + c

)

for positive constants K and c, where |f |r = |f |L∞(Br (x0)). Note that (3.13) im-
plies (3.11) because of our assumptions on the coefficients σ,λ,β,α and r .

We have χ(γ ) ≤ 0 since εvε ≥ 0 and εvε → −χ(γ ) ≤ χ0 as ε → 0. In the
following βγ , Qγ and Uγ are abbreviated to β , Q and U , respectively. | · |r is
abbreviated to | · |.

By differentiating (3.1) with respect to xk , we have

0 = 1
2(λλ∗)ijDijkw + 1

2(λλ∗)ijk Dijw + βiDikw + βi
kDiw

(3.14)
− DiwQijDjkw − 1

2DiwQ
ij
k Djw + Uk.

Set

F = |∇w|2 =
n∑

k=1

|Dkw|2.

Then we have

−1

2
(λλ∗)ijDijF − βiDiF + QijDiwDjF

= −(λλ∗)ijDjkwDikw

− Dkw{(λλ∗)ijDijkw + 2βiDikw − 2QijDjwDikw}
= −(λλ∗)ijDjkwDikw

+ Dkw{(λλ∗)ijk Dijw + 2βi
kDiw − DiwQ

ij
k Djw + 2Uk}

≤ − 1

2nc2
{(λλ∗)ijDijw}2 − 1

2
(λλ∗)ijDjkwDikw + c

2δ
|∇w|2 + cδ

2
|D2w|2

+ 2|∇β||∇w|2 + |∇Q|2|∇w|3 + 2|∇U ||∇w|
≤ − 1

2nc2
(−2χ − 2βiDiw + DiwQijDjw − 2U)2 + 2c2

δ
|∇w|2

+ 2|∇β||∇w|2 + |∇Q|2|∇w|3 + 2|∇U ||∇w|.
Here we have used (3.14) and the matrix inequality

(tr[AB])2 ≤ nC tr[AB2]
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for symmetric matrix B and nonnegative definite symmetric matrix A, where C is
the maximum eigenvalue of A. Set

τ(x) :=
⎧⎨
⎩

( |x − x0|2
r2 − 1

)2

, |x − x0| ≤ r ,

0, |x − x0| > r .

Then tr[λλ∗D2τ ] ≥ −4n
r2 c2, (Dτ)∗λλ∗Dτ ≤ 16c2

r2 τ and |Dτ |2 ≤ 16c2
c1r

2 τ . Let x

be the maximum point of τF in Br(x0). Then D(τF)(x) = 0 and tr[λλ∗ ×
D2(τF )](x) ≤ 0. Therefore, from the maximum principle we have

0 ≤ −1

2
(λλ∗)ijDij (τF ) − βiDi(τF ) + QijDjwDi(τF )

= τ

{
−1

2
(λλ∗)ijDijF − βiDiF + QijDjwDiF

}

− 1

2
(λλ∗)ijDij τF − (λλ∗)ijDiτDjF − (βiDiτ )F + (QijDjwDiτ)F

≤ τ

[
− 1

2nc2
(−2χ − 2βiDiw + DiwQijDjw − 2U)2 + 2c2

δ
|∇w|2

+ 2|∇β||∇w|2 + |∇Q|2|∇w|3 + 2|∇U ||∇w|
]

− F

{
1

2
(λλ∗)ijDij τ − (λλ∗)ijDiτDjτ

τ
− βiDiτ + QijDjwDiτ

}
.

Since 1
1−γ

λλ∗ ≤ Q ≤ λλ∗, by taking δ to be sufficiently small,

c(γ )|Dw|2 ≤ −2β∗Dw + (Dw)∗QDw + 1

δ
|β|2 ≤ (c2 + 1)|Dw|2 +

(
1 + 1

δ

)
|β|2

for a positive constant

c(γ ) = c1

1 − γ
− δ > 0.(3.15)

Therefore, it follows that

0 ≤ −τ

(
−2β∗Dw + (Dw)∗QDw + 1

δ
|β|2

)2

+ 2τ

(
−2β∗Dw + (Dw)∗QDw + 1

δ
|β|2

)(
1

δ
|β|2 + 2U + 2χ

)

− τ

(
1

δ
|β|2 + 2U + 2χ

)2

+ τ(2|∇β||∇w|2 + |∇Q||∇w|3 + 2|∇U ||∇w|)

+ 2nc2

r2 F + 16c2

r2 F + |β|4
√

c2√
c1r

τ 1/2F + 4
√

c2√
c1r

τ |Q|F 3/2
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≤ −τc(γ )2|∇w|4 + 2τ

{
(c2 + 1)∇w|2 +

(
1 + 1

δ

)
|β|2

}(
1

δ
|β|2 + 2U

)

+
(

2nc2

r2 + 16c2

r2

)
F + |β|4

√
c2√

c1r
τ 1/2F + 4

√
c2√

c1r
τ |Q|F 3/2

+ τ(2|∇β|F + |∇Q|F 3/2 + 2|∇U |F 1/2).

We can assume F ≥ |β|2 and F ≥ |∇U |; thus,

0 ≤ −c(γ )2τF 2 + 2
(
c2 + 2 + 1

δ

)
τF

(
1

δ
|β|2 + 2U

)

+
(

2nc2

r2 + 16c2

r2

)
F + |β|4

√
c2√

c1r
τ 1/2F + 4

√
c2√

c1r
τ |Q|F 3/2

+ τ(2|∇β|F + |∇Q|F 3/2 + 2F 3/2).

Accordingly, we have

0 ≤ −c(γ )2τF +
(
|∇Q| + 4

√
c2√

c1r
|Q| + 2

)
(τF )1/2

+ 2
(
c2 + 2 + 1

δ

)(
1

δ
|β|2 + 2U

)
+ 2nc2

r2 + 16c2

r2 + 4|β|√c2√
c1r

+ 2|∇β|.

Therefore, we obtain

1

2
c(γ )2τF ≤ 1

2c(γ )2

(
|∇Q| + 4

√
c2√

c1r
|Q| + 2

)2

+ cδ

(
1

δ
|β|2 + 2U

)
+ c

r2 + c|β|
r

+ 2|∇β|,

with cδ = 2(c2 + 2 + 1
δ
) and universal constant c > 0. Including the case where

|β|2 ≥ F , |∇U | ≥ F , we obtain

F(x0) = τ(x0)F (x0) ≤ (τF )(x)

≤ c

c(γ )4

(
|∇Q|2 + 1

r2 |Q|2 + c

)

+ c′
δ

c(γ )2

(
|β|2 + U + |β|

r
+ |∇β| + 1

r

)
+ |∇U |,

and (3.13) has been proved.
Now let us prove (3.12). For each ρ > 0 take a point xρ ∈ Rn such that |xρ | = ρ.

Set

R(x) = cρ

(
1 − 4|x − xρ |2

ρ2

)
in Dρ =

{
x; |x − xρ | ≤ ρ

2

}
,
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where cρ is a positive constant determined later. Then, R(x) ≥ 0 in Dρ and R(x) =
0 on ∂Dρ . Set

z(x) = w̄(x) − R(x).

Then,

z(x) = w̄(x) ≥ 0, x ∈ ∂Dρ.

Note that

ξ∗λN−1
γ λ∗ξ ≤ c2|ξ |2, ξ ∈ Rn.

Then we have

−χ − 1

2
tr[λλ∗D2z] − β∗Dz

= −1

2
(Dw̄)∗λN−1

γ λ∗Dw̄ + Uγ + 1

2
tr[λλ∗D2R] + β∗DR

= −1

2
D(w̄ + R)∗λN−1

γ λ∗D(w̄ − R) − 1

2
(DR)∗λN−1

γ λ∗DR + Uγ

+ 1

2
tr[λλ∗D2R] + β∗DR

≥ −1

2
D(w̄ + R)∗λN−1

γ λ∗Dz − c2

2
|DR|2 + Uγ + 1

2
tr[λλ∗D2R] + β∗DR.

Noting that |βγ (x)| ≤ cρ, x ∈ Dρ , for a positive constant independent of γ ,

−χ − 1

2
tr[λλ∗D2z] − β∗Dz + 1

2
D(w̄ + R)∗λN−1

γ λ∗Dz

≥ −c2

2
|DR|2 + U(x) − 4cρ

ρ2 tr[λλ∗] − 4ccρ

≥ −8c2c
2
ρ

ρ2 + −γ

2(1 − γ )
c0

( |ρ|2
4

+ 1
)

− 4c2ncρ

ρ2 − 4ccρ

≥ −
(

8c2
c2
ρ

ρ2 + 4c2n
cρ

ρ2 + 4ccρ

)
+ −γ0c0ρ

2

8(1 − γ0)
+ −γ0c0

2(1 − γ0)
.

By setting cρ = c(γ0)ρ
2 with c(γ0) such that 8c2c(γ0)

2 + 4cc(γ0) <
−γ0c0

8(1−γ0)
and

4c2nc(γ0) <
−γ0c0

2(1−γ0)
, we see that

−1
2 tr[λλ∗D2z] − β∗Dz + 1

2D(w̄ + R)∗λN−1
γ λ∗Dz ≥ M > 0 in Dρ

for some positive constant and sufficiently large ρ. Then z is superharmonic in Dρ

and z(x) ≥ 0, x ∈ ∂Dρ . Therefore z(x) ≥ 0, x ∈ Dρ , from which we have

z(xρ) = w̄(xρ) − cρ ≥ 0.

Hence, w̄(xρ) ≥ c(γ0)ρ
2. �
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4. H-J-B equations and related stochastic control problems. Let us come
back to H-J-B equation (2.15). According to assumption (2.10), we have a positive
constant cβ such that

|βγ (x)|2 ≤ cβ(|x|2 + 1).

We strengthen condition (2.20) to (2.21). Then we have the following lemma.

LEMMA 4.1. Assume (2.10), (2.11), (2.21) and v0 ≥ 1. Then for each t < T

there exist positive constants k = k(T − t) and k′ = k′(T − t) such that

v̄(t, x;T ) ≥ k|x|2 − k′.(4.1)

PROOF. Choose a positive constant c such that

cγ − c

2
cβ > 0,

and set b = cγ − c
2cβ , where cγ = − γ c0

2(1−γ )
, and set

R(t, x) := 1
2x∗P(t)x + q(t),

where P(t) is a solution to the Riccati equation

Ṗ (t) −
(

c2

1 − γ
+ 1

c

)
P(t)InP (t) + bIn = 0, P (T ) = 0,(4.2)

and q(t) is a solution to the ordinary equation

q̇(t) + c1

2
tr[P(t)] − ccβ

2
− c′

γ = 0, q(T ) = −γ logv0,(4.3)

where c′
γ = − c′

0γ

2(1−γ )
. Set

z(t, x) := v̄(t, x) − R(t, x).

Then

−∂z

∂t
− 1

2
tr[λλ∗D2z] − β∗

γ Dz

= 1

2
(Dv̄)∗λN−1

γ λ∗Dv̄ + Uγ + ∂R

∂t
+ 1

2
tr[λλ∗D2R] + β∗DR

= −1

2
D(v̄ + R)∗λN−1

γ λ∗D(v̄ − R) − 1

2
DR∗λN−1

γ λ∗DR + Uγ

+ ∂R

∂t
+ 1

2
tr[λλ∗D2R] + β∗DR

≥ −1

2
D(v̄ + R)∗λN−1

γ λ∗D(v̄ − R) − c2

2(1 − γ )
(DR)∗InDR + cγ |x|2 − c′

γ

+ 1

2
x∗Ṗ (t)x + q̇(t) + c1

2
tr[P(t)] − c

2
β∗

γ βγ − 1

2c
(DR)∗DR.



630 H. NAGAI

Therefore,

−∂z

∂t
− 1

2
tr[λλ∗D2z] − β∗Dz + 1

2
D(v̄ + R)∗λN−1

γ λ∗Dz

≥ 1

2
x∗Ṗ (t)x − 1

2

(
c2

1 − γ
+ 1

c

)
x∗P(t)InP (t)x +

(
cγ − ccβ

2

)
|x|2

+ q̇(t) + c1

2
tr[P(t)] − ccβ

2
− c′

γ

≥ 1

2

(
cγ − ccβ

2

)
|x|2 ≥ 0.

Thus we see that z(t, x) is super harmonic in [0, T )×Rn, and z(T , x) = 0. There-
fore we have z(t, x) = v̄(t, x) − R(t, x) ≥ 0, that is,

v̄(t, x) ≥ R(t, x) = 1
2x∗P(t)x + q(t).

Since P(t) is positive definite,

v̄(t, x) ≥ k|x|2 − k′, k = k(T − t), k′ = k′(T − t) > 0. �

Let us rewrite (2.15) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = ∂v̄

∂t
+ 1

2
tr[λλ∗D2v̄] + G∗Dv̄

− 1

2
(λ∗Dv̄ − �∗α̂)∗N−1

γ (λ∗Dv̄ − �∗α̂) + 1

2
α̂∗��∗α̂,

v̄(T , x) = −γ logv0.

(4.4)

Noting that

−1

2
(λ∗Dv̄ − �∗α̂)∗N−1

γ (λ∗Dv̄ − �∗α̂)

= inf
z∈Rn+m

{
1

2
z∗Nγ z − z∗�∗α̂ + (λz)∗Dv̄

}

= inf
z∈Rn+m

[
1

2
{z + N−1

γ (λ∗Dv̄ − �∗α̂)}∗Nγ {z + N−1
γ (λ∗Dv̄ − �∗α̂)}

− 1

2
(λ∗Dv̄ − �∗α̂)∗N−1

γ (λ∗Dv̄ − �∗α̂)

]
,

we can rewrite it again as⎧⎨
⎩ 0 = ∂v̄

∂t
+ 1

2
tr[λλ∗D2v̄] + G∗Dv̄ + inf

z∈Rn+m
{(λz)∗Dv̄ + ϕ(x, z)},

v̄(T , x) = −γ logv0,

(4.5)

where

ϕ(x, z) = 1
2z∗Nγ z − z∗�∗α̂ + 1

2 α̂∗��∗α̂, Nγ = I − γ�∗(��∗)−1�.
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This H-J-B equation corresponds to the following stochastic control problem, the
value of which is defined as

inf
Z·∈Ã(T )

E

[∫ T

0
ϕ(Ys,Zs) ds − γ logv0

]
,(4.6)

where Yt is a controlled process governed by the stochastic differential equation

dYt = λ(Yt ) dWt + {G(Yt) + λ(Yt )Zt }dt, Y0 = x,(4.7)

with control Zt ∈ Ã(T ). Here, Ã(T ) is the set of all Rn+m valued progressively
measurable processes such that

E

[∫ T

0
|Zs |2 ds

]
< ∞.

To study this problem, we introduce a value function for 0 ≤ t ≤ T ,

v∗(t, x) = inf
Z·∈Ã(T −t)

E

[∫ T −t

0
ϕ(Ys,Zs) ds − γ logv0

]
.

By the verification theorem, the solution v̄ to (4.5) can be identified with the value
function v∗. Indeed, set

ẑ(s, x) = −N−1
γ (λ∗Dv̄ − �∗α̂)(s, x),

which attains the infimum in (4.5), and consider the stochastic differential equation

dŶt = λ(Ŷt ) dWt + {G(Ŷt ) + λ(Ŷt )Ẑ(t, Ŷt )}dt, Y0 = x.(4.8)

From the estimates obtained in Theorem 2.1, we see that (4.8) has a unique solu-
tion. It is also seen by using Itô’s theorem that

v̄(0, x) = E

[∫ T

0
ϕ(Ŷs, Ẑs) ds − γ logv0

]

holds, where Ẑs = Ẑ(s, Ŷs). In a similar way, we can see that

v̄(0, x) ≤ E

[∫ T

0
ϕ(Ys,Zs) ds − γ logv0

]

for each Z· ∈ Ã(T ), hence, v̄(0, x) = v∗(0, x).
Let us consider the following stochastic control problem with the averaging cost

criterion:

ρ(γ ) = inf
Z·∈Ã

lim sup
T →∞

1

T
E

[∫ T

0
ϕ(Ys,Zs) ds

]
,(4.9)
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where Yt is a controlled process governed by controlled stochastic differential
equation (4.7) with control Zt . The solution Yt of (4.7) is sometimes written as
Y

(Z)
t to make clear the dependence on control Zt , and the set Ã of all admissible

controls is defined as follows:

Ã =
{
Z·;Zt is an Rn+m valued progressively measurable process such that

lim sup
T →∞

1

T
E

[∣∣Y (Z)
T

∣∣2] = 0,E

[∫ T

0
|Zs |2 ds

]
< ∞,∀T

}
.

Corresponding to this stochastic control problem, H-J-B equation of ergodic type
(3.1) can be written as

−χ(γ ) = 1

2
tr[λλ∗D2w̄] + G∗Dw̄ + inf

z∈Rn+m
{(λz)∗Dw̄ + ϕ(x, z)}.(4.10)

We then set

ẑ(x) = −N−1
γ (λ∗Dw̄ − �∗α̂)(x),(4.11)

and consider stochastic differential equation

dȲt = λ(Ȳt ) dWt + {G(Ȳt ) + λ(Ȳt )ẑ(Ȳt )}dt

= λ(Ȳt ) dWt + {βγ − λN−1
γ λ∗Dw̄}(Ȳt ) dt,(4.12)

Ȳ0 = x.

We shall prove the following proposition.

PROPOSITION 4.1. −χ(γ ) = ρ(γ ) and

ρ(γ ) = lim
T →∞

1

T
E

[∫ T

0
ϕ(Ȳs, Z̄s) ds

]
,(4.13)

where Z̄s = ẑ(Ȳs).

For the proof of this proposition, we prepare the following lemma.

LEMMA 4.2. Under assumptions (2.10), (2.11), (2.19) and (2.21) the follow-
ing estimates hold. For each γ1 < γ0 < 0 there exist positive constants δ > 0 and
C > 0 independent of T and γ with γ1 ≤ γ ≤ γ0 such that

E
[
eδw̄(ȲT )] ≤ C(4.14)
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and also

E
[
eδ|ȲT |2] ≤ C.(4.15)

PROOF. Let us set

L̄ψ = 1
2 tr[λλ∗D2ψ] + (G + λẑ)∗Dψ

(4.16)
= 1

2 tr[λλ∗D2ψ] + (βγ − λN−1
γ λ∗Dw̄)∗Dψ.

Then we have

−χ(γ ) = L̄w̄ + ϕ(x, ẑ(x))

= L̄w̄ + 1

2
(λ∗Dw̄ − �∗α̂)∗N−1

γ (λ∗Dw̄ − �∗α̂)

+ (λ∗Dw̄ − �∗α̂)∗N−1�∗α̂ + 1

2
α̂��∗α̂

= L̄w̄ + 1

2
(λ∗Dw̄)∗N−1

γ λ∗Dw̄ − γ

2(1 − γ )
α̂��∗α̂.

Therefore, by applying Itô’s formula, we have

eδw̄(Ȳt ) − eδw̄(Ȳ0) = δ

∫ t

0

{
L̄w̄(Ȳs) + δ

2
(Dw̄)∗λλ∗Dw̄

}
eδw̄(Ȳs) ds

+ δ

∫ t

0
eδw̄(Dw̄)∗λ(Ȳs) dWs

= δ

∫ t

0

{
−χ − 1

2
(Dw̄)∗λN−1

γ λ∗Dw̄

+ γ

2(1 − γ )
α̂��∗α̂ + δ

2
(Dw̄)∗λλ∗Dw̄

}
eδw̄(Ȳs) ds

+ δ

∫ t

0
eδw̄(Dw̄)∗λ(Ȳs) dWs.

Thus, for p > 0,

d
(
eδw̄(Ȳt )epδt ) = epδt deδw̄(Ȳt ) + pδepδt eδw̄(Ȳt ) dt

= epδt δ

{
−χ − 1

2
(Dw̄)∗λN−1

γ λ∗Dw̄

+ γ

2(1 − γ )
α̂��∗α̂ + δ

2
(Dw̄)∗λλ∗Dw̄ + p

}
eδw̄(Ȳt ) dt

+ δepδt eδw̄(Ȳt )(Dw̄)∗λ(Ȳt ) dWt .
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Taking into account (2.21) and (2.16), for δ > 0 such that δ < c1
1−γ

, we have

−χ − 1

2
(Dw̄)∗λN−1

γ λ∗Dw̄ + γ

2(1 − γ )
α̂��∗α̂ + δ

2
(Dw̄)∗λλ∗Dw̄ + p

≤ −k1|x|2 + k2

for k1, k2 > 0. Thus, we obtain

eδw̄(Ȳt )+pδt ≤ eδw̄(x) + δ

∫ t

0
epδs+δw̄(Ȳs ){−k1|Ȳs |2 + k2}ds

+ δ

∫ t

0
epδs+δw̄(Ȳs )(Dw̄)∗λ(Ȳs) dWs.

Therefore, taking

τ = τR := inf{t; |Ȳt | ≥ R},
and setting

k3 = sup
|y|≤√

k2/k1

w̄(y),

we see that

E
[
eδw̄(Ȳt∧τ )+pδ(t∧τ)] ≤ eδw̄(x) + δE

[∫ t∧τ

0
epδs+δw̄(Ȳs ){−k1|Ȳs |2 + k2}ds

]

≤ eδw̄(x) + δk2E

[∫ t∧τ

0
epδs+δw̄(Ȳs )1{|Ȳs |2≤k2/k1} ds

]

≤ eδw̄(x) + δk2e
δk3E

[∫ t∧τ

0
epδs ds

]

= eδw̄(x) + k2e
δk3E

[
1

p

(
epδ(t∧τ) − 1

)]
.

By letting R tend to ∞, we have

E
[
eδw̄(Ȳt )+pδt ] ≤ eδw̄(x) + k2e

δk3
1

p
(epδt − 1).

Hence,

E
[
eδw̄(Ȳt )

] ≤ e−pδt+δw̄(x) + k2e
δk3

1

p
(1 − e−pδt )

≤ eδw̄(x) + k2e
δk3

1

p
.

Finally, we see that (4.15) follows from (4.14) because of (3.12). �
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PROOF OF PROPOSITION 4.1. From (4.10) it follows that

−χ(γ ) ≤ 1
2 tr[λλ∗D2w̄] + G∗Dw̄ + (λz)∗Dw̄ + ϕ(x, z)

for each z ∈ Rn+m. Therefore, for each control Zt we have

w̄(Yt ) − w̄(x) =
∫ T

0
(Dw̄(Ys))

∗λ(Ys) dWs +
∫ T

0
{G(Ys) + λ(Ys)Zs}∗Dw̄(Ys) ds

+ 1

2

∫ T

0
tr[λλ∗D2w̄](Ys) ds

≥
∫ T

0
(Dw̄(Ys))

∗λ(Ys) dWs − χT −
∫ T

0
ϕ(Ys,Zs) ds.

Thus,

w̄(x) − χT ≤ E

[∫ T

0
ϕ(Ys,Zs) ds + w̄(YT )

]
,

from which we obtain

−χ ≤ lim sup
T →∞

1

T
E

[∫ T

0
ϕ(Ys,Zs) ds + w̄(YT )

]

= lim sup
T →∞

1

T
E

[∫ T

0
ϕ(Ys,Zs) ds

]

since |w̄(y)|2 ≤ c|y|2 + c′. Namely, we have −χ(γ ) ≤ ρ(γ ). On the other hand,
by taking Zt = Z̄t , we have

w̄(Ȳt ) − w̄(x) =
∫ T

0
(Dw̄(Ȳs))

∗λ(Ȳs) dWs − χT −
∫ T

0
ϕ(Ȳs, Z̄s) ds,

and thus

w̄(x) − χT = E

[∫ T

0
ϕ(Ȳs, Z̄s) ds + w̄(ȲT )

]
.

Lemma 4.2 implies

−χ = lim sup
T →∞

1

T
E

[∫ T

0
ϕ(Ȳs, Z̄s) ds

]
≥ ρ,

and we see that −χ(γ ) = ρ(γ ). �

Let us define

χ̄ (γ ) = lim sup
T →∞

1

T
inf

Z∈Ã
E

[∫ T

0
ϕ(Ys,Zs) ds

]
= lim sup

T →∞
1

T
v̄(0, x;T ).(4.17)

Then we can see that

χ̄ ≤ ρ(γ ) = −χ(γ ).



636 H. NAGAI

PROPOSITION 4.2. Assume (2.10), (2.11), (2.19) and (2.21). Then

χ̄ (γ ) = ρ(γ ) = −χ(γ ).

The proof of Theorem 2.2 follows directly from this proposition since χ̄ (γ ) =
−χ̂(γ ) because of Proposition 2.1.

For the proof of the present proposition, we prepare some lemmas.
For each T > 0, we take the controlled process Ŷt = Ŷ

(T )
t defined by (4.8) and

control ẑ(t, Ŷ
(T )
t ). Taking a sequence {Tn} such that

χ̄ = lim
Tn→∞

1

Tn

v̄(0, x;Tn) = lim
Tn→∞

1

Tn

E

[∫ Tn

0
ϕ

(
Ŷ

(Tn)
t , ẑ

(
t, Ŷ

(Tn)
t

))
dt

]
,

we have the following lemma.

LEMMA 4.3. Under the assumptions of Proposition 4.2, for each t > 0 we
have

lim inf
Tn→∞

1

Tn

E
[∣∣Ŷ (Tn)

Tn−t

∣∣2] = 0.(4.18)

PROOF. Set

L̂ψ := 1
2 tr[λλ∗D2ψ] + (

G + λẑ(t, x)
)∗

Dψ.

Then

v̄(T − t, ŶT −t ;T ) − v̄(0, x;T )

=
∫ T −t

0

(
∂v̄

∂t
+ L̂(s, Ŷs)

)
ds +

∫ T −t

0
(Dv̄)(s, Ŷs) dWs

= −
∫ T −t

0
ϕ(Ŷs, ẑ(s, Ŷs)) ds +

∫ T −t

0
(Dv̄(s, Ŷs))

∗λ(Ŷs) dWs.

Therefore,

v̄(0, x;Tn) = E

[∫ Tn−t

0
ϕ

(
Ŷ (Tn)

s , ẑ
(
s, Ŷ (Tn)

s

))
ds + v̄

(
Tn − t, Ŷ

(Tn)
Tn−t ;Tn

)]
.

Since

lim sup
Tn→∞

1

Tn

E

[∫ Tn−t

0
ϕ

(
Ŷ (Tn)

s , ẑ
(
s, Ŷ (Tn)

s

)
ds

]
≥ χ̄ ,

we have

lim inf
Tn→∞

1

Tn

E
[
v̄
(
Tn − t, Ŷ

(Tn)
Tn−t ;Tn

)] = 0.(4.19)
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Noting that v̄(Tn − t, x;Tn) ≥ k|x|2 − k′, k = k(t) and k′ = k′(t), because of
Lemma 4.1, we obtain

0 ≤ lim inf
Tn→∞

1

Tn

kE
[∣∣Ŷ (Tn)

Tn−t

∣∣2] ≤ 0,

and our lemma has been proved. �

LEMMA 4.4. Under the assumptions of Proposition 4.2, there exists a subse-
quence {T ′

n} ⊂ {Tn} such that

lim
T ′

n→∞
1

T ′
n

E
[∣∣Ŷ (T ′

n)

T ′
n

∣∣2] = 0.

PROOF.

∣∣Ŷ (T )
T

∣∣2 − ∣∣Ŷ (T )
T −t

∣∣2 = 2
∫ T

T −t

(
Ŷ (T )

s

)∗
λ
(
Ŷ (T )

s

)
dWs

+ 2
∫ T

T −t
Ŷ (T )

s

{
G

(
Ŷ (T )) + λ

(
Ŷ (T )

s

)
ẑ
(
s, Ŷ (T )

s

)}
ds

+
∫ T

T −t
tr

[
λλ

(
Ŷ (T )

s

)]
ds.

Therefore,

E
[∣∣Ŷ (T )

T

∣∣2] = E
[∣∣Ŷ (T )

T −t

∣∣2] + 2E

[∫ T

T −t
Ŷ (T )

s

{
G

(
Ŷ (T )) + λ

(
Ŷ (T )

s

)
ẑ
(
s, Ŷ (T )

s

)}
ds

+
∫ T

T −t
tr

[
λλ

(
Ŷ (T )

s

)]
ds

]
.

By using the gradient estimates in Theorem 2.1 and (2.19) we obtain

y∗G(y) + y∗λ(y)ẑ(s, y) ≤ c(|y|2 + 1)

for some positive constant c and

E
[∣∣Ŷ (T )

T

∣∣2] ≤ E
[∣∣Ŷ (T )

T −t

∣∣2] + cE

[∫ T

T −t

∣∣Ŷ (T )
s

∣∣2 ds

]

≤ E
[∣∣Ŷ (T )

T −t

∣∣2] + c′E
[∫ T

T −t
ϕ

(
Ŷ (T )

s , ẑ
(
s, Ŷ (T )

s

))
ds

]

since (2.21) is assumed and

ϕ(x, ẑ(t, x)) = 1

2
ẑ(t, x)∗Nγ ẑ(t, x) − ẑ(t, x)∗�∗α̂ + 1

2
α̂��∗α̂

= 1

2
(λ∗Dv̄ − �∗α̂)∗Nγ (λ∗Dv̄ − �∗α̂)
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+ (λ∗Dv̄ − �∗α̂)∗N−1
γ �∗α̂ + 1

2
α̂��∗α̂

= 1

2
(Dv̄)∗λN−1

γ λ∗Dv̄ − γ

2(1 − γ )
α̂��∗α̂.

By Itô’s formula,

v̄(T , ŶT ;T ) − v̄(T − t, ŶT −t ;T )

= −
∫ T

T −t
ϕ(Ŷs, ẑ(s, Ŷs)) ds +

∫ T

T −t
(Dv̄(s, Ŷs))

∗λ(Ŷs) dWs,

and we have

E

[∫ T

T −t
ϕ(Ŷs, ẑ(s, Ŷs)) ds

]
= E[v̄(T − t, ŶT −t ;T )].

Take a subsequence {T ′
n} ⊂ {Tn} such that

lim
T ′

n→∞
1

T ′
n

E[v̄(T ′
n − t, ŶT ′

n−t ;T ′
n)] = 0

and

lim
T ′

n→∞
1

T ′
n

E
[∣∣Ŷ (T ′

n)

T ′
n−t

∣∣2] = 0.

Then we have

0 ≤ lim sup
T ′

n→∞
1

T ′
n

E
[∣∣Ŷ (T ′

n)

T ′
n

∣∣2] ≤ lim
T ′

n→∞
1

T ′
n

E
[∣∣Ŷ (T ′

n)

T ′
n−t

∣∣2]

+ c′ lim
T ′

n→∞
1

T ′
n

E

[∫ T ′
n

T ′
n−t

ϕ
(
Ŷ

(T ′
n)

s , ẑ
(
s, Ŷ

(T ′
n)

s

))
ds

]
= 0,

and thus the lemma has been proved. �

PROOF OF PROPOSITION 4.2. For each ε there exists Tε such that

E
[∣∣Ŷ (Tε)

Tε

∣∣2]
< εTε, w̄(x) < εTε,∣∣∣∣χ̄ − 1

Tε

E

[∫ Tε

0
ϕ

(
Ŷ (Tε)

s , Ẑ(Tε)
s

)
ds

]∣∣∣∣ < ε.

Set

Z(ε)
s =

{
Ẑ(Tε)

s , s < Tε,
0, Tε ≤ s,

and consider Y
(ε)
t defined by

dY
(ε)
t = λ

(
Y

(ε)
t

)
dWt + {

G
(
Y

(ε)
t

) + λ
(
Y

(ε)
t

)
Z

(ε)
t

}
dt, Y

(ε)
0 = x.
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Then, for t ≥ Tε ,

Y
(ε)
t = Y

(ε)
Tε

+
∫ t

Tε

λ
(
Y (ε)

s

)
dWs +

∫ t

Tε

G
(
Y (ε)

s

)
ds

and

d
∣∣Y (ε)

t

∣∣2 = 2
(
Y

(ε)
t

)∗
λ
(
Y

(ε)
t

)
dWt + 2

(
Y

(ε)
t

)∗
G

(
Y

(ε)
t

) +
∫ t

Tε

G
(
Y

(ε)
t

)
dt

+ tr
[
λλ∗(

Y
(ε)
t

)]
dt.

Therefore,

ept
∣∣Y (ε)

t

∣∣2
= epTε

∣∣Y (ε)
Tε

∣∣2 + 2
∫ t

Tε

eps(Y (ε)
s

)∗
λ
(
Y (ε)

s

)
dWs

+
∫ t

Tε

eps{2
(
Y (ε)

s

)∗
G

(
Y (ε)

s

) + p
∣∣Y (ε)

s

∣∣2 + tr
[
λλ∗(

Y (ε)
s

)]}
ds

≤ epTε
∣∣Y (ε)

Tε

∣∣2 + 2
∫ t

Tε

eps(Y (ε)
s

)∗
λ
(
Y (ε)

s

)
dWs +

∫ t

Tε

eps{−k1
∣∣Y (ε)

s

∣∣2 + k2
}
ds

for some positive constants k1, k2 > 0. By using stopping time arguments, for t ≥
Tε , we have

E
[
ept

∣∣Y (ε)
t

∣∣2] ≤ E[epTε |YTε |2] + E

[∫ t

Tε

epsk2 ds

]

= E
[
epTε

∣∣Y (ε)
t

∣∣2] + k2

p
(ept − epTε ).

Thus, we see that

E
[∣∣Y (ε)

t

∣∣2] ≤ E
[∣∣Y (ε)

Tε

∣∣2] + k2

p
,

from which we obtain lim supt→∞ 1
t
E[|Y (ε)

t |2] = 0. Hence, Z(ε) ∈ Ã∞. Now, by
applying Itô’s formula, we have

w̄
(
Y

(ε)
Tε

) − w̄(x) =
∫ Tε

0

(
Dw̄

(
Y (ε)

s

))∗
λ
(
Y (ε)

s

)
dWs

+
∫ Tε

0

{
G

(
Y (ε)

s

) + λ
(
Y (ε)

s

)
Z(ε)

s

}∗
Dw̄

(
Y (ε)

s

)
ds

+ 1

2

∫ Tε

0
tr[λλ∗D2w̄](Y (ε)

s

)
ds

≥
∫ Tε

0

(
Dw̄

(
Y (ε)

s

))∗
λ
(
Y (ε)

s

)
dWs − χTε −

∫ Tε

0
ϕ

(
Y (ε)

s ,Z(ε)
s

)
ds.
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Therefore,

w̄(x) − χTε ≤ E

[∫ Tε

0
ϕ

(
Y (ε)

s ,Z(ε)
s

)
ds + w̄

(
Y

(ε)
Tε

)]
,

from which we have

−χ ≤ 1

Tε

E

[∫ Tε

0
ϕ

(
Y (ε)

s ,Z(ε)
s

)
ds

]
+ 1

Tε

E
[
w̄

(
Y

(ε)
Tε

)]
≤ ε + χ̄ + cε

for some positive constant c > 0. Therefore, −χ ≤ χ̄ + cε for any ε, and we have
−χ ≤ χ̄ . This completes the proof of the proposition. �

The following is a direct consequence of Proposition 4.1.

COROLLARY 4.1. Under the assumptions of Proposition 4.2, ρ(γ ) is a con-
cave function on (−∞,0), and χ̂(γ ) is a convex function.

Indeed,

ϕ = 1

2
z∗z − γ

2
z∗σ ∗(σσ ∗)−1σz − z∗�∗α̂ + 1

2
α̂��∗α̂

is a concave function of γ , and the infimum of a family of concave functions ρ(γ )

is concave.

PROPOSITION 4.3. Under the assumptions of Proposition 3.1, L̄ is ergodic.

PROOF.

L̄w̄ = −1

2
(Dw̄)∗λN−1

γ λ∗Dw̄ + γ

2(1 − γ )
α̂∗��∗α̂ − χ → −∞

as |x| → ∞, and L̄w̄ ≤ −c, |x| � 1 and c > 0. Moreover, w̄(x) → ∞, |x| → ∞,
and the Hasminskii conditions (cf. [17]) hold. �

5. Derived Poisson equation. We are going to consider a Poisson equation
formally obtained by differentiating H-J-B equation (3.1) of ergodic type with re-
spect to γ . Namely, we consider

−θ(γ ) = 1

2
tr[λλ∗D2u] + G∗Du − (λ∗Dw̄ − �∗α̂)∗N−1

γ λ∗Du

− 1

2(1 − γ )2 (λ∗Dw̄ − �∗α̂)∗�∗(��∗)−1�(λ∗Dw̄ − �∗α̂).
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Since

− 1

2(1 − γ )2 (λ∗Dw̄ − �∗α̂)∗�∗(��∗)−1�(λ∗Dw̄ − �∗α̂)

= − 1

2(1 − γ )2 (σλ∗Dw̄ − α̂)∗(σσ ∗)−1(σλ∗Dw̄ − α̂),

we can write

−θ(γ ) = L̄u − 1

2(1 − γ )2 (σλ∗Dw̄ − α̂)∗(σσ ∗)−1(σλ∗Dw̄ − α̂).(5.1)

Note that L̄ is ergodic in light of Proposition 4.3, and the pair (u, θ(γ )) of a func-
tion u and a constant θ(γ ) is the solution to (5.1). Let us set

D = BR0 = {x ∈ Rn; |x| < R0},
and let R0 be sufficiently large so that

K(x; w̄) := 1

2
(Dw̄)∗λN−1

γ λ∗Dw̄ − γ

2(1 − γ )
α̂∗��∗α̂ + χ > 0,

(5.2)
x ∈ Dc,

for γ ≤ γ0 < 0, which is possible because of assumption (2.21). Therefore, we see
that L̄ and w̄ satisfy assumption (A.3) in the Appendix and also

sup
x∈Dc

|f (γ )(x)|
K(x : w̄)

< ∞,

for

f (γ ) = − 1

2(1 − γ )2 (σλ∗Dw̄ − α̂)∗(σσ ∗)−1(σλ∗Dw̄ − α̂).

In the following we always take a solution w̄ to (3.1) such that w̄(x) > 0. Thus,
according to Proposition A.4 we can show the existence of the solution (u, θ(γ ))

to (5.1).

COROLLARY 5.1. Equation (5.1) has a solution (u, θ(γ )) such that

sup
x∈Dc

|u|
w̄

< ∞, u ∈ W
2,p
loc ,

and

θ(γ ) =
∫ 1

2(1 − γ )2 (σλ∗Dw̄ − α̂)∗(σσ ∗)−1(σλ∗Dw̄ − α̂)mγ (y) dy.

Moreover, this solution u is unique up to additive constants.
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PROOF. It can be clearly seen that

1

2(1 − γ )2 (σλ∗Dw̄ − α̂)∗(σσ ∗)−1(σλ∗Dw̄ − α̂) ∈ FK

and Proposition A.4 applies. �

6. Differentiability of H-J-B equation.

LEMMA 6.1. Under the assumptions of Proposition 4.2,∫
eδ|x|2mγ (dx) ≤ c,(6.1)

where c and δ are positive constants independent of γ1 ≤ γ ≤ γ0 < 0.

PROOF. Inequality (6.1) is a direct consequence of (4.15) in Lemma 4.2 since
Ȳt is an ergodic diffusion process with the invariant measure mγ (dx). �

In the following, we always work under the assumptions of Theorem 2.2 (Propo-
sition 4.2).

LEMMA 6.2. Let (w̄(γ ), χ(γ )) and (w̄(γ+�),χ(γ + �)) be solutions to (3.1)
with γ and γ + �, respectively, such that w̄(γ )(0) = w̄(γ+�)(0) = cw > 0. Then
w̄(γ+�) converges to w̄(γ ) in H 1

loc strongly and uniformly on each compact set.

PROOF. We have∥∥w̄(γ+�)
∥∥
L∞(B2r )

≤ 2r
∥∥∇w̄(γ+�)

∥∥
L∞(B2r )

≤ c1(γ, r)

and ∣∣w̄(γ+�)(x) − w̄(γ+�)(y)
∣∣ ≤ |x − y|∥∥∇w̄(γ+�)

∥∥
L∞(B2r )

≤ c2(γ, r),

x, y ∈ B2r ,

for each r in light of (3.11) and (3.15), where ci(γ, r) is a positive constant inde-
pendent of �, i = 1,2. Therefore it follows that {w̄(γ+�)}� is bounded in H 1(B2r )

and converges to some w̃ in H 1(B2r ) weakly for each r and also uniformly on each
compact set by taking a subsequence if necessary. Note that χ(γ + �) converges
to χ(γ ) because χ(γ ) is convex on (−∞,0) and thus continuous. Take a function
τ ∈ C∞

0 (B2r ) such that τ(x) ≡ 1, x ∈ Br , and 0 ≤ τ ≤ 1. With (w̄(γ+�) − w̃)τ , we
test

−χ(γ + �) = 1
2 tr

[
λλ∗D2w̄(γ+�)] + β∗

γ+�Dw̄(γ+�)

− 1
2

(
Dw̄(γ+�))∗λN−1

γ+�λ∗Dw̄(γ+�) + Uγ+�
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and obtain

−
∫
B2r

χ(γ + �)
(
w̄(γ+�) − w̃

)
τ dx

= −
∫
B2r

1

2
(λλ∗)ijDiw̄

(γ+�)Dj

((
w̄(γ+�) − w̃

)
τ
)
dx

+
∫
B2r

β̃∗
γ+�Dw̄(γ+�)(w̄(γ+�) − w̃

)
τ dx

− 1

2

∫
B2r

(
Dw̄(γ+�))∗λN−1

γ+�λ∗Dw̄(γ+�)(w̄(γ+�) − w̃
)
τ dx

+
∫
B2r

Uγ+�

(
w̄(γ+�) − w̃

)
τ dx,

where β̃i
γ = βi

γ − 1
2

∑
j

∂(λλ∗)ij
∂xj . Therefore,∫

B2r

1

2
(λλ∗)ijDi

(
w̄(γ+�) − w̃

)
Dj

(
w̄(γ+�) − w̃

)
τ dx

= −
∫
B2r

1

2
(λλ∗)ijDiw̃Dj

(
w̄(γ+�) − w̃

)
τ dx

−
∫
B2r

1

2
(λλ∗)ijDiw̄

(γ+�)Djτ
(
w̄(γ+�) − w̃

)
dx

+
∫
B2r

β̃∗
γ+�Dw̄(γ+�)(w̄(γ+�) − w̃

)
τ dx

− 1

2

∫
B2r

(
Dw̄(γ+�))∗λN−1

γ+�λ∗Dw̄(γ+�)(w̄(γ+�) − w̃
)
τ dx

+
∫
B2r

Uγ+�

(
w̄(γ+�) − w̃

)
τ dx +

∫
B2r

χ(γ + �)
(
w̄(γ+�) − w̃

)
τ dx.

Since all terms of the right-hand side converge to 0, we see that D(w̄(γ+�) − w̃)

converges strongly to 0 in L2(Br) and w̄(γ+�) to w̃ strongly in H 1(Br). Thus,
we obtain our present lemma because (w̄,χ(γ )) satisfies (3.1), and the solution is
unique up to additive constants with respect to w̄. �

LEMMA 6.3. Let (u(γ+�), θ(γ + �)) be a solution to

−θ(γ + �) = L̄(γ + �)u(γ+�) + f (γ+�),(6.2)

where

f (γ+�) = − 1

2(1 − γ − �)2

(
λ∗Dw̄(γ+�) − �∗α̂

)∗
× �∗(��∗)−1�

(
λ∗Dw̄(γ+�) − �∗α̂

)
.
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Then, as |�| → 0, θ(γ + �) converges to θ(γ ) and u(γ+�) converges to u(γ ) in
H 1

loc strongly and uniformly on each compact set, where (u(γ ), θ(γ )) is a solution
to (5.1).

PROOF. Note that |f (γ+�)(x)| ≤ c(1 + |x|2),∃c > 0, and that f (γ+�)(x) →
f (γ ) almost everywhere by taking a subsequence, if necessary, since w(γ+�)

converges strongly in H 1
loc to w(γ ) by Lemma 6.2. Moreover, we note that

{mγ+�(dx)} = {mγ+�(x)dx} is tight because of Lemma 6.1. Therefore, it con-
verges weakly to some probability measure m̃(dx) by taking a subsequence if
necessary. The limit can be identified with mγ (dx) = mγ (x) dx, and mγ (x) is the
only function satisfying (A.24) for L̄(γ ) and

∫
mγ (x) dx = 1. Thus mγ+�(x)dx

converges to mγ (x) dx weakly. Therefore,

θ(γ + �) = −
∫

f (γ+�)(x)mγ+�(x)dx

converges to θ(γ ).
On the other hand, since u(γ+�) is a solution to (6.2) it satisfies

sup
x∈Dc

|u(γ+�)|
w̄(γ+�)

< ∞,

and we have |w̄(γ+�)| ≤ c(1 + |x|2). Therefore, we see that u(γ+�) is locally
bounded by a constant independent of �. Then, by testing (6.2) with u(γ+�)τ , we
can see that ‖u(γ+�)‖H 1(Br )

is bounded for each r . Therefore, by taking a sub-
sequence if necessary, u(γ+�) converges in H 1

loc weakly to a function ũ, which
turns out to be the solution u(γ ) to (5.1). By similar arguments as in the proof
of Lemma 6.2, we can see it converges in H 1

loc strongly. Furthermore, by Theo-
rem 9.11 in [16], we see that∥∥u(γ+�)

∥∥
W 2,p(Br )

≤ C
(∥∥u(γ+�)

∥∥
Lp(B2r )

+ ∥∥f (γ+�) + θ(γ + �)
∥∥
Lp(B2r )

)
≤ C

(∥∥u(γ+�)
∥∥
L∞(B2r )

+ ∥∥f (γ+�) + θ(γ + �)
∥∥
Lp(B2r )

)
for each r > 0, where C is a constant depending on c1, c2 and the L∞(B2r )

norms of the coefficients of L̄(γ + �). Thus, by the Sobolev imbedding theo-
rem, {u(γ+�)} is equicontinuous, and thus u(γ+�) converges uniformly to u(γ ) on
each compact set. �

LEMMA 6.4. Let (w̄(γ ), χ(γ )) and (w̄(γ+�),χ(γ + �)) be solutions to (3.1)
with γ and γ + �, respectively. Set χ(�) = χ(γ+�)−χ(γ )

�
and ζ (�) = w̄(γ+�)−w̄(γ )

�
.

Then

lim|�|→0
χ(�) = θ(γ )
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and

lim|�|→0
ζ (�)(x) = u(γ )(x), x ∈ Rn.

Here, (u(γ ), θ(γ )) is the solution to (5.1).

PROOF. Here we abbreviate u(γ ) to u. From (3.1) it follows that

−χ(γ + �) + χ(γ )

= 1
2 tr

[
λλ∗D2(

w̄(γ+�) − w̄(γ ))] + β∗
γ+�Dw̄(γ+�)

− β∗
γ Dw̄(γ ) − 1

2

(
Dw̄(γ+�))∗λN−1

γ+�λ∗Dw̄(γ+�)

+ 1
2

(
Dw̄(γ ))∗λN−1

γ λ∗Dw̄(γ ) + Uγ+� − Uγ

= 1
2 tr

[
λλ∗D2(

w̄(γ+�) − w̄(γ ))] + β∗
γ D

(
w̄(γ+�) − w̄(γ ))

− (
Dw̄(γ ))∗λN−1

γ λ∗D
(
w̄(γ+�) − w̄(γ )) − 1

2

(
Dw̄(γ ))∗λN−1

γ λ∗Dw̄(γ )

+ (
Dw̄(γ ))∗λN−1

γ λ∗Dw̄(γ+�) − 1
2

(
Dw̄(γ+�))∗λN−1

γ+�λ∗Dw̄(γ+�)

+ (βγ+� − βγ )∗Dw̄(γ+�) + Uγ+� − Uγ

= L̄(γ )
(
w̄(γ+�) − w̄(γ ))

− 1
2D

(
w̄(γ+�) − w̄(γ ))∗λN−1

γ+�λ∗D
(
w̄(γ+�) − w̄(γ ))

+ (βγ+� − βγ )∗Dw̄(γ+�) + 1
2

(
Dw̄(γ ))∗λ(N−1

γ+� − N−1
γ )λ∗Dw̄(γ )

− (
Dw̄(γ ))∗λ(N−1

γ+� − N−1
γ )λ∗Dw̄(γ+�) + Uγ+� − Uγ .

Therefore we have

−χ(�) = L̄(γ )ζ (�) + f
(�)
1 (x) − g(�)(x),(6.3)

where

f
(�)
1 (x) = (βγ+� − βγ )∗

�
Dw̄(γ+�) + 1

2

(
Dw̄(γ ))∗λ(N−1

γ+� − N−1
γ )

�
λ∗Dw̄(γ )

− (
Dw̄(γ ))∗λ(N−1

γ+� − N−1
γ )

�
λ∗Dw̄(γ+�) + Uγ+� − Uγ

�

and

g(�)(x) = 1

2�
D

(
w̄(γ+�) − w̄(γ ))∗λN−1

γ+�λ∗D
(
w̄(γ+�) − w̄(γ )).

Note that f
(�)
1 is dominated by c(1 + |x|2) with a certain positive constant c and

that it converges almost everywhere to f (γ ) by taking a subsequence, if necessary,
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because

∂βγ

∂γ
= 1

(1 − γ )2 λ�∗α̂,

∂N−1
γ

∂γ
= 1

(1 − γ )2 �∗(��∗)−1�,

∂Uγ

∂γ
= − 1

2(1 − γ )2 �∗(��∗)−1�.

Therefore,

−χ
(�)
1 :=

∫
f

(�)
1 (x)mγ (dx) →

∫
f (x)mγ (dx) = −θ(γ ), |�| → 0.(6.4)

Moreover, for � > 0,

−χ
(�)
1 ≥ −χ(�).(6.5)

Let us consider the equation

−χ
(�)
1 = L̄(γ )u

(�)
1 + f

(�)
1 .(6.6)

We shall see that u
(�)
1 − u → 0 as � → 0 by specifying suitable ambiguity

constants. For that, set

z(�) := u
(�)
1 − u, F (�) := f

(�)
1 − f + χ

(�)
1 − θ(γ ).

Then we have

L̄(γ )z(�) + F (�) = 0, z(�) ∈ W
2,p
loc , sup

Dc

|z(�)|
w̄(γ )

< ∞.

By considering constructing the solution to this equation according to the proof of
Proposition A.4 in the Appendix, we see that z(�) → 0 as � → 0. To begin, let
�(�) be the solution to (A.19) for L0 = L̄(γ ), f = F (�) and ξ (�) the solution to
(A.20) for L0 = L̄(γ ), f = F (�) and � = �(�). The operator T is defined as

T F (�)(x) = ξ (�)(x), x ∈ �1,

and the operator P is defined in the same way as in (A.10) by replacing L0 with
L̄(γ ) in (A.4) and (A.9). Then starting with ζ

(�)
0 = �(�), η

(�)
0 = ξ (�), we define

the sequence ζ
(�)
k , η

(�)
k , k = 1,2, . . . , successively as the solution to (A.9) with

φ = η
(�)
k−1 and L0 = L̄(γ ), and as the solution to (A.4) with h = ζ

(�)
k and L0 =

L̄(γ ), respectively. Then we obtain

η̄(�)(x) =
∞∑

k=0

η
(�)
k

∣∣
�1

=
∞∑

k=0

P k(T F (�))(x)
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and the estimate for η̄(�),

∥∥η̄(�)
∥∥
L∞(�1)

≤ K
∥∥T F (�)

∥∥
L∞(�1)

1

1 − e−ρ
.

To estimate ‖T F (�)‖L∞(�1), we set ξ
(�)
1 to be the solution to{

L̄(γ )ξ
(�)
1 + F (�) = 0, Dc

,

ξ
(�)
1

∣∣
� = 0,

and ξ
(�)
2 = ξ (�) − ξ

(�)
1 . Then ξ

(�)
2 satisfies{

L̄(γ )ξ
(�)
2 = 0, Dc

,

ξ
(�)
2

∣∣
� = �(�)|�,

and we have∥∥ξ (�)
2

∥∥
L∞(�1)

≤ ∥∥ξ (�)
2

∥∥
L∞(Dc) ≤ ∥∥�(�)

∥∥
L∞(�) ≤ K1

∥∥F (�)
∥∥
L∞(D1)

for some constant K1 > 0. On the other hand, to estimate ‖ξ (�)
1 ‖L∞(�1), we set

ξ
(�)
1 := v(�)(w̄(γ ))α, α > 1.

We can assume that D is sufficiently large so that

−Uγ − 1

2

(
Dw̄(γ ))∗λN−1

γ λ∗Dw̄(γ ) − χ(γ ) + α − 1

w̄(γ )

(
Dw̄(γ ))∗λλ∗Dw̄(γ ) < −M,

x ∈ Dc,

for some M > 0. Since

L̄(γ )ξ
(�)
1 = (

w̄(γ ))αL̄(γ )v(�) + αv(�)(w̄(γ ))α−1
L̄(γ )w̄(γ )

+ α
(
Dv(�))∗λλ∗ Dw̄(γ )

w̄(γ )

(
w̄(γ ))α

+ α(α − 1)v(�)

(
Dw̄(γ )

w̄(γ )

)∗
λλ∗ Dw̄(γ )

w̄(γ )

(
w̄(γ ))α,

v(�) satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L̄(γ )v(�) + α

(
Dw̄(γ )

w̄(γ )

)∗
λλ∗Dv(�)

+ α

w̄(γ )

{
L̄(γ )w̄(γ ) + α − 1

w̄(γ )

(
Dw̄(γ ))∗λλ∗Dw̄(γ )

}
v(�) = − F (�)

(w̄(γ ))α
,

v(�)
∣∣
∂D = 0.
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Noting that

L̄(γ )w̄(γ ) + α − 1

w̄(γ )

(
Dw̄(γ ))∗λλ∗Dw̄(γ )

= −Uγ − 1

2

(
Dw̄(γ ))∗λN−1

γ λ∗Dw̄(γ ) − χ(γ ) + α − 1

w̄(γ )

(
Dw̄(γ ))∗λλ∗Dw̄(γ )

< −M, x ∈ Dc,

we have ∣∣v(�)(x)
∣∣ ≤ K2 sup

Dc

|F (�)|
(w̄(γ ))α

,

and thus ∥∥ξ (�)
1

∥∥
L∞(�1)

≤ K2 sup
Dc

|F (�)|
(w̄(γ ))α

∥∥(
w̄(γ ))α∥∥

L∞(�1)
.

Moreover, ξ
(�)
1 = v(�)(w̄(γ ))α → 0 uniformly on each compact set as � → 0.

Therefore, ξ (�) → 0 uniformly on each compact set and we also obtain the esti-
mates ∥∥ξ (�)

∥∥
L∞(�1)

≤ K1
∥∥F (�)

∥∥
L∞(D1)

+ K2 sup
Dc

|F (�)|
(w̄(γ ))α

∥∥(
w̄(γ ))α∥∥

L∞(�1)

and ∥∥η̄(�)
∥∥
L∞(�1)

≤ K ′
1
∥∥F (�)

∥∥
L∞(D1)

+ K ′
2 sup

Dc

|F (�)|
(w̄(γ ))α

∥∥(
w̄(γ ))α∥∥

L∞(�1)
.

Let ζ̃ (�) be the solution to (A.26) for L0 = L̄(γ ), f = F (�) and η̄ = η̄(�). Then
ζ̃ (�) → 0 uniformly as � → 0 since ‖η̄(�)‖ is estimated as shown above. Let η̃(�)

be the solution to (A.20) for L0 = L̄(γ ), f = F (�) and � = ζ̃ (�). Then, as above,
η̃(�) → 0 uniformly on each compact set as � → 0. Since z(�) = ζ̃ (�) in D1 and
z(�) = η̃(�) in Dc, we conclude that z(�) → 0 uniformly on each compact set.

In a similar manner, we have

−χ(�) = L̄(γ + �)ζ (�) + (βγ+� − βγ )∗

�
Dw(γ )

+ 1

2

(
Dw̄(γ ))∗λN−1

γ − N−1
γ+�

�
λ∗Dw̄(γ ) + Uγ+� − Uγ

�

+ 1

2�
D

(
w̄(γ+�) − w̄(γ ))∗λN−1

γ+�λ∗D
(
w̄(γ+�) − w̄(γ )).

By setting

f
(�)
2 (x) := (βγ+� − βγ )∗

�
Dw(γ ) + 1

2

(
Dw̄(γ ))∗λN−1

γ − N−1
γ+�

�
λ∗Dw̄(γ )

+ Uγ+� − Uγ

�
,
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we have

−χ(�) = L̄(γ + �)ζ (�) + f
(�)
2 (x) + g(�)(x).(6.7)

Since mγ+�(x)dx converges to mγ (x) dx weakly, and f
(�)
2 converges almost

everywhere to f (x) by taking a subsequence if necessary, as above, we have

−χ
(�)
2 :=

∫
f

(�)
2 (x)mγ+�(x)dx →

∫
f (x)mγ (x) dx = −θ(γ )

(6.8)
as |�| → 0.

Moreover, for � > 0,

−χ
(�)
2 ≤ −χ(�).(6.9)

We consider

−χ
(�)
2 = L̄(γ + �)u

(�)
2 + f

(�)
2 .(6.10)

Then, in the same manner as above, we see that u
(�)
2 − u(γ+�) → 0, as |�| → 0,

by specifying ambiguity constants. Since u(γ+�) converges to u, u
(�)
2 does the

same.
From (6.4), (6.5), (6.8) and (6.9), it follows that

lim
�↓0

−χ(�) = −θ(γ ).(6.11)

The converse inequalities of (6.5) and (6.9) hold for � < 0, and we have

lim
�↑0

−χ(�) = −θ(γ ).(6.11)

Hence, we see that −χ(�) → −θ(γ ) as |�| → 0. From (6.3) and (6.6), we have

−χ
(�)
1 + χ(�) = L̄(γ )

(
u

(�)
1 − ζ (�)) + g(�),

and through arguments similar to those above, we see that

lim inf
�↓0

(
u

(�)
1 (x) − ζ (�)(x)

) ≥ 0,(6.11′)

since g(�)(x) ≥ 0 for � > 0 and χ(�) − χ
(�)
1 → 0 as |�| → 0. Similarly, from

(6.7) and (6.10), we have

−χ
(�)
2 + χ(�) = L̄(γ + �)

(
u

(�)
2 − ζ (�)) − g(�)

and see that

lim sup
�↓0

(
u

(�)
2 (x) − ζ (�)(x)

) ≤ 0.(6.11′)

Therefore,

lim
�↓0

ζ (�)(x) = u(x).
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We likewise have

lim sup
�↑0

(
u

(�)
1 (x) − ζ (�)(x)

) ≤ 0

and

lim inf
�↑0

(
u

(�)
2 (x) − ζ (�)(x)

) ≥ 0

since g(�)(x) ≤ 0 for � < 0. Therefore, we obtain

lim
�↑0

ζ (�)(x) = u(x)

and Lemma 6.4 follows. �

REMARK 6.1. Since u = u(γ ) = ∂w̄
∂γ

is a solution to (5.1), it has a polynomial
growth order. More precisely, we have

|u(x)| ≤ C(1 + |x|2), ∃C > 0;
cf. Corollary 5.1 and (3.11). Furthermore, we can see that ∂u

∂xl
also has a polynomial

growth order for each l. Indeed, ul := ∂u
∂xl

satisfies

0 = 1
2Di(a

ijDjul) + BiDiul − Dlf + 1
2Di(a

ij
l Dju) + Bi

l Diu,

where

aij (x) = (λλ∗)ij (x),

Bj (x) = βj
γ (x) − 1

2Di((λλ)ij ) − (λN−1
γ λ∗Dw̄)j ,

f = 1

2(1 − γ )2 (λ∗Dw̄ − �∗α̂)∗�∗(��∗)−1�(λ∗Dw̄ − �∗α̂),

a
ij
l = ∂aij

∂xl

, Bi
l = ∂Bi

∂xl

.

Therefore, if we set fi = −1
2a

ij
l Dju, i �= l, and fl = −1

2a
lj
l Dju − f , then ul sat-

isfies ∫ (
1

2
aijDjul − fi

)
ξxi

dx +
∫

(BiDiul + Bi
l Diu)ξ dx = 0(6.14)

for each ξ ∈ W
1,2
0 (Bρ(x0)), ρ > 0, x0 ∈ Rn. We note that

‖fi‖Lp/2(Bρ(x0))
,‖Bi‖Lp/2(Bρ(x0))

,‖Bi
l Diu‖Lp/2(Bρ(x0))

≤ μ(x0) ≤ C(1 + |x0|m0),

∃C > 0,m0 > 0,
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which can be seen in light of our assumptions since u is a solution to (5.1), and
w̄ is a solution to (3.1). Equation (6.14) corresponds to (13.4) in [25], Chapter 3,
Section 13. Therefore, by the same arguments as in that work,∫

Ak,ρ
|∇ul|2ζ 2 dx ≤ γ (x0)

[∫
Ak,ρ

(ul − k)2|∇ζ |2 dx + (k2 + 1)|Ak,ρ |1−2/p

]

is seen to hold, where ζ is a cut-off function supported by Bρ(x0), Ak,ρ = {x ∈
Bρ(x0);ul(x) > k}, and γ (x0) is a constant dominated by C(1 + |x0|m1),C >

0,m1 > 0. From this inequality we obtain inequality (5.12) for u = ul in [25],
Chapter 2, Section 5. Hence, similarly to the proof of Lemma 5.4 in [25], Chap-
ter 2, we see that ul has a polynomial growth order.

7. Proof of Theorem 2.4. We first state the following lemma.

LEMMA 7.1. Under the assumptions of Theorem 2.3,

χ ′(−∞) := lim
γ→−∞χ ′(γ ) = 0.(7.1)

PROOF. Note that

0 ≤ lim
γ→−∞χ ′(γ ) ≤ χ ′(γ0)

for γ0 < 0 and that χ ′(γ ) is nondecreasing. Therefore, χ ′(−∞) exists. Further-
more,

χ(γ )

γ
= − 1

γ

∫ γ0

γ
χ ′(t) dt + χ(γ0)

γ

and limγ→−∞ χ(γ )
γ

= 0 since −χ0 ≤ χ(γ ) ≤ 0. Here, χ0 is a constant defined by
(3.10). Hence, we obtain (7.1). �

We next give the proof of Theorem 2.4. For γ < 0, we have

logP

(
logVT (h) − logS0

T

T
≤ κ

)
= logP

((
VT (h)

S0
T

)γ

≥ eγ κT

)

≤ log
{
E

[(
VT (h)

S0
T

)γ ]
e−γ κT

}

= logE

[(
VT (h)

S0
T

)γ ]
− γ κT .

Therefore,

inf
h

logP

(
logVT (h) − logS0

T

T
≤ κ

)
≤ inf

h
logE

[(
VT (h)

S0
T

)γ ]
− γ κT

≤ v(0, x;T ) − γ κT ,
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from which we obtain

lim inf
T →∞

1

T
inf
h

logP

(
logVT (h) − logS0

t

T
≤ κ

)
≤ χ(γ ) − γ κ

for all γ < 0. Hence, we have

lim inf
T →∞

1

T
inf
h

logP

(
logVT (h) − logS0

T

T
≤ κ

)
≤ inf

γ<0
{χ(γ ) − γ κ}.

The converse inequality is more difficult to prove. Take a constant κ and ε > 0
such that κ − ε > 0. Then there exists γε such that

inf
γ<0

{χ(γ ) − γ (κ − ε)} = χ(γε) − γεχ
′(γε).(7.2)

We write γε as γ for simplicity in the following. Let us introduce a probability
measure P̃ defined by

dP̃

dP

∣∣∣∣
GT

= eM
γ
T −(1/2)〈Mγ 〉T ,

where

M
γ
t =

∫ t

0

{
γ

1 − γ
α̂∗� + (Dw)∗λN−1

γ

}
(Xs) dWs.

Then W̃t = Wt −∫ t
0 { γ

1−γ
�∗α̂+N−1

γ λ∗Dw}(Xs) ds is a martingale under the prob-

ability measure P̃ and

dXt = β(Xt) dt + λ(Xt) dWt

(7.3)

=
{
β + γ

1 − γ
λ�∗α̂ + λN−1

γ λ∗Dw

}
(Xt) dt + λ(Xt) dW̃t .

Note that (Xt , P̃ ) has the same law as the diffusion process (Ȳt , P ) governed by
stochastic differential equation (4.12). We further note H-J-B equation of ergodic
type (2.18) can be written as

χ(γ ) = L̄w − 1
2(Dw)∗λN−1

γ λ∗Dw − Uγ(7.4)

by using L̄ defined by (4.16). On the other hand, (5.1) is written as

χ ′(γ ) = L̄wγ + 1

2(1 − γ )2 (σλ∗Dw + α̂)∗(σσ ∗)−1(σλ∗Dw + α̂)

= L̄wγ + 1

2(1 − γ )2 (λ∗Dw + �∗α̂)∗�∗(��∗)−1�(λ∗Dw + �∗α̂)(7.5)

=: L̄wγ + V1(x),
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owing to Lemma 6.3, where wγ = ∂w
∂γ

. Now we have

logVT (h) − logS0
T

= logv +
∫ T

0

{
h∗

s α̂(Xs) − 1

2
h∗

s σσ ∗(Xs)hs

}
ds +

∫ T

0
h∗

s σ (Xs) dWs

= logv +
∫ T

0
h∗

s σ (Xs) dW̃s

+
∫ T

0

{
h∗

s α̂(Xs) − 1

2
h∗

s σσ ∗(Xs)hs + γ

1 − γ
h∗

s σ�∗α̂(Xs)

+ h∗
s σN−1

γ λ∗Dw(Xs)

}
ds

= logv +
∫ T

0
h∗

s σ (Xs) dW̃s

+
∫ T

0

{
1

1 − γ

(
h∗

s α̂(Xs) + h∗
s σλ∗Dw(Xs)

) − 1

2
h∗

s σσ ∗(Xs)hs

}
ds

= logv +
∫ T

0

{
hs − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dw)

}∗
σ(Xs) dW̃s

+
∫ T

0

1

1 − γ

{
(σσ ∗)−1(α̂ + σλ∗Dw)

}∗
σ(Xs) dW̃s

− 1

2

∫ T

0

{
hs − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dw)

}∗

× σσ ∗
{
hs − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dw)

}
ds

+ 1

2(1 − γ )2

∫ T

0
(α̂ + σλ∗Dw)∗(σσ ∗)−1(α̂ + σλ∗Dw)(Xs) ds

= logv + Mh
T − 1

2
〈Mh〉T

+
∫ T

0

1

1 − γ
{(σσ ∗)−1(α̂ + σλ∗Dw)}∗σ(Xs) dW̃s

+
∫ T

0
V1(Xs) ds,

and we set

Mh
t :=

∫ t

0

{
hs − 1

1 − γ
(σσ ∗)−1(α̂ + σλ∗Dw)

}∗
σ(Xs) dW̃s.
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Note that κ − ε = χ ′(γ ). Then it follows that

P̃

(
1

T

(
logVT (h) − logS0

T

)
> κ

)

≤ P̃

(
1

T
logv + 1

T

∫ T

0
V1(Xs) ds > χ ′(γ ) + ε

3

)

+ P̃

(
1

T

(
Mh

T − 1

2
〈Mh〉T

)
>

ε

3

)

+ P̃

(
1

T

∫ T

0

1

1 − γ
{(σσ ∗)−1(α̂ + σλ∗Dw)}∗σ(Xs) dW̃s >

ε

3

)
.

Taking Lemma 4.2 into account, we have

P̃

(
1

T

∫ T

0

1

1 − γ
{(σσ ∗)−1(α̂ + σλ∗Dw)}∗σ(Xs) dW̃s >

ε

3

)

≤ 9

ε2T 2 Ẽ

[∫ T

0
V1(Xs) ds

]

≤ C

ε2T

for some positive constant C and

P̃

(
1

T

(
Mh

T − 1

2
〈Mh〉T

)
>

ε

3

)
≤ e−εT /3Ẽ

[
eMh

T −(1/2)〈Mh〉T ] ≤ e−εT /3.

Thus, by using the following lemma, we can see that

P̃

(
1

T

(
logVT (h) − logS0

T

)
> κ

)
< ε(7.6)

for sufficiently large T .

LEMMA 7.2. For sufficiently large T we have

P̃

(
logv

T
+ 1

T

∫ T

0
V1(Xs) ds > χ ′(γ ) + ε

3

)
≤ ε

2
.

PROOF. By Itô’s formula,

wγ (XT ) − wγ (X0)

=
∫ T

0
{L̄(γ )wγ (Xs)}ds +

∫ T

0
(∇wγ (Xs))

∗λ(Xs) dW̃s

= −
∫ T

0
V1(Xs) ds + χ ′(γ )T +

∫ T

0
(∇wγ (Xs))

∗λ(Xs) dW̃s.
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Therefore,

1

T

∫ T

0
V1(Xs) ds = χ ′(γ ) + 1

T
{wγ (x) − wγ (XT )}

+ 1

T

∫ T

0
(∇wγ (Xs))

∗λ(Xs) dW̃s.

Thus,

P̃

(
1

T
logv + 1

T

∫ T

0
V1(Xs) ds > χ ′(γ ) + ε

3

)

= P̃

(
1

T
logv + 1

T
{wγ (x) − wγ (XT )} + 1

T

∫ T

0
(∇wγ (Xs))

∗ dW̃s >
ε

3

)

≤ P̃

(
1

T
logv >

ε

9

)
+ P̃

(
1

T
{wγ (x) − wγ (XT )} >

ε

9

)

+ P̃

(
1

T

∫ T

0
(∇wγ (Xs))

∗ dW̃s >
ε

9

)

≤ 81

ε2T 2 E[|wγ (x) − wγ (XT )|2] + 81

ε2T 2 E

[∫ T

0
(Dwγ )∗λλ∗Dwγ (Xs) ds

]
.

Hence, by taking T and R to be sufficiently large, we obtain our present lemma
because of Lemma 4.2; cf. Remark 6.1. �

Let us complete the proof of Theorem 2.4 for 0 < κ < χ ′(0−). Set

M̃
γ
t =

∫ t

0

{
γ

1 − γ
α̂∗� + (Dw)∗λN−1

γ

}
(Xs) dW̃s

and

A1 = {−M̃
γ
T ≥ −εT },

A2 = {−1
2〈Mγ 〉T ≥ (

χ(γ ) − γχ ′(γ ) − ε
)
T

}
,

A3 =
{

1

T

(
logVT (h) − logS0

T

) ≤ κ

}
.

Then

P

(
1

T

(
logVT (h) − S0

T

) ≤ κ

)

= Ẽ

[
e−M̃

γ
T −(1/2)〈Mγ 〉T ; 1

T

(
logVT (h) − S0

T

) ≤ κ

]

≥ Ẽ
[
e−M̃

γ
T −(1/2)〈Mγ 〉T ;A1 ∩ A2 ∩ A3

]
≥ e(χ(γ )−γχ ′(γ )−2ε)T P̃ (A1 ∩ A2 ∩ A3)

≥ e(χ(γ )−γχ ′(γ )−2ε)T {1 − P̃ (Ac
1) − P̃ (Ac

2) − P̃ (Ac
3)}.
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We have seen that P̃ (Ac
3) < ε holds for sufficiently large T in (7.6), and it is

straightforward to see that likewise P̃ (Ac
1) < ε for sufficiently large T . Therefore,

taking the following lemma into account as well, we have

P

(
1

T

(
logVT (h) − logS0

T

) ≤ κ

)
≥ e(χ(γ )−γχ ′(γ )−2ε)T (1 − 3ε) ∀h ∈ H(T ),

for sufficiently large T , and

lim
T →∞

1

T
inf

h∈H(T )
logP

(
logVT (h) − logS0

T

T
≤ κ

)
≥ χ(γ ) − γχ ′(γ ) − 2ε

= χ(γ ) − γ (κ − ε) − 2ε

≥ inf
γ<0

{χ(γ ) − γ (κ − ε)} − 2ε

for each ε. Since χ(γ ) is smooth and convex, J (κ) = infγ<0{χ(γ ) − γ κ}, κ > 0,
is strictly concave, and thus continuous. Hence,

lim
T →∞

1

T
inf

h∈H(T )
logP

(
logVT (h) − logS0

T

T
≤ κ

)
≥ inf

γ<0
{χ(γ ) − γ κ}. �

LEMMA 7.3. Under the assumptions of Theorem 2.4,

P̃
(1

2〈Mγ 〉T ≥ −(
χ(γ ) − γχ ′(γ ) − ε

)
T

)
< ε

holds for sufficiently large T .

PROOF. First note that
1

2
N−1

γ − 1

2
(N−1

γ )2 = − γ

2(1 − γ )2 �∗(��∗)−1�

and

γ

2(1 − γ )
− γ

2(1 − γ )2 = − γ 2

2(1 − γ )2 .

Then, from (7.4) and (7.5), we have

χ(γ ) − γχ ′(γ ) = L̄(w − γwγ ) − 1

2
(Dw)∗λN−1

γ λ∗Dw − Uγ − γV1(x)

= L̄(w − γwγ ) − 1

2
(Dw)∗λN−1

γ λ∗Dw − γ

(1 − γ )2 (λ�∗α̂)∗Dw

+ 1

2
(Dw)∗λ

(
N−1

γ − (N−1
γ )2)

λ∗Dw − γ 22(1 − γ )2α̂��∗α̂

= L̄(w − γwγ )

− 1

2

(
γ

1 − γ
�∗α̂ + N−1

γ λ∗Dw

)∗(
γ

1 − γ
�∗α̂ + N−1

γ λ∗Dw

)
.
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Set

V2(x) = 1

2

(
γ

1 − γ
�∗α̂ + N−1

γ λ∗Dw

)∗(
γ

1 − γ
�∗α̂ + N−1

γ λ∗Dw

)
.

Then
1

2
〈Mγ 〉t =

∫ t

0
V2(Xs) ds.

By Itô’s formula, we have

(w − γwγ )(Xt) − (w − γwγ )(X0)

=
∫ t

0
L̄(γ )(w − γwγ )(Xs) ds +

∫ t

0
D(w − γwγ )(Xs)

∗λ(Xs) dW̃s

= {χ(γ ) − γχ ′(γ )}t +
∫ t

0
V2(Xs) ds +

∫ t

0
D(w − γwγ )(Xs)

∗λ(Xs) dW̃s.

Thus,

P̃

(
1

2
〈Mγ 〉T + {χ(γ ) − γχ ′(γ )}T > εT

)

= P̃

(
(w − γwγ )(XT ) − (w − γwγ )(x)

−
∫ t

0
D(w − γwγ )(Xs)

∗λ(Xs) dW̃s > εT

)

≤ P̃

(
(w − γwγ )(XT ) >

εT

3

)
+ P̃

(
−(w − γwγ )(x) >

εT

3

)

+ P̃

(
−

∫ t

0
D(w − γwγ )(Xs)

∗λ(Xs) dW̃s >
εT

3

)
.

Hence, we obtain the present lemma in the same way as Lemma 7.2. �

For κ < 0, we shall prove Theorem 2.4. By convexity, we have

χ(−1) ≥ χ(γ ) + χ ′(γ )(−1 − γ ), γ < −1.

That is,

χ(γ ) − γ κ ≤ χ(−1) + χ ′(γ ) + γ
(
χ ′(γ ) − κ

)
.

χ ′(γ ) is monotonically nondecreasing, and χ ′(γ ) → 0 as γ → −∞. Therefore,
we see that

χ(γ ) − γ κ → −∞ as γ → −∞.

Hence,

inf
γ<0

{χ(γ ) − γ κ} = −∞.
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On the other hand, by taking h = 0, we have VT (h) = v exp(rT ) and

P

(
logVT (h) − logS0

T

T
≤ κ

)
= 0

for sufficiently large T . Thus, J (κ) = −∞.

8. Proof of Theorem 2.5. For a given constant 0 < κ < χ ′(0−), take γ (κ)

such that χ ′(γ (κ)) = κ , namely,

inf
γ<0

{χ(γ ) − γ κ} = χ(γ (κ)) − γ (κ)κ.

Then, since

inf
h·

logP

(
logVT (h) − logS0

T

T
≤ κ

)
≤ inf

h·
logE

[(
VT (h)

S0
T

)γ (κ)]
− γ (κ)κT ,

we have

J (κ) ≤ lim
T →∞

1

T
inf
h·

logE

[(
VT (h)

S0
T

)γ (κ)]
− γ (κ)κ.

Therefore, if we prove that

lim
T →∞

1

T
inf
h·

logE

[(
VT (h)

S0
T

)γ (κ)]
= lim

T →∞
1

T
logE

[(
VT (h(γ (κ)))

S0
T

)γ (κ)]
(8.1)

= χ(γ (κ)),

then we complete the proof of the present theorem because

J (κ) ≤ J∞(κ) ≤ lim
T →∞

1

T
logE

[(
VT (h(γ (κ)))

S0
T

)γ (κ)]
− γ (κ)κ

and J (κ) = infγ<0{χ(γ ) − γ κ} by Theorem 2.4. (8.1) is proved in the following
proposition.

PROPOSITION 8.1. Under the assumptions of Theorem 2.5, (8.1) holds.

PROOF. Let w = w(γ (κ)) be a solution to (2.18) for γ = γ (κ) and h̄
(γ )
t =

h̄(Xt ), where Xt is the solution to (2.24). Noting that

η(x, h̄) = h̄∗α̂ − 1 − γ

2
h̄∗σσ ∗h̄

(8.2)

= 1

2(1 − γ )
α̂∗σσ ∗α̂ − 1

2(1 − γ )
(Dw)∗λσ ∗(σσ ∗)−1σλ∗Dw,
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we have

w(Xt) − w(X0)

=
∫ t

0

{
1

2
tr[λλ∗D2w] + (β + γ λσ ∗h̄)∗Dw

}
(Xs) ds

+
∫ t

0
(Dw)∗λ(Xs) dWh̄

s

=
∫ t

0

{
1

2
tr[λλ∗D2w] + β∗

γ Dw

+ γ

1 − γ
(Dw)∗λσ ∗(σσ ∗)−1σλ∗Dw

}
(Xs) ds

+
∫ t

0
(Dw)∗λ(Xs) dWh̄

s

=
∫ t

0

{
χ + Uγ + γ

2(1 − γ )
(Dw)∗λσ ∗(σσ ∗)−1σλ∗Dw

− 1

2
(Dw)∗λλ∗Dw

}
(Xs) ds

+
∫ t

0
(Dw)∗λ(Xs) dWh̄

s

=
∫ t

0

{
χ − γ η

(
Xs, h̄

(γ )
s

) − 1

2
(Dw)∗λλ∗Dw(Xs)

}
ds

+
∫ t

0
(Dw)∗λ(Xs) dWh̄

s .

Thus,

Eh̄[
e

∫ T
0 γ η(Xs,h̄

(γ )
s ) ds]

= Eh̄[
eχT +w(x)−w(XT )+∫ T

0 (Dw)∗λ(Xs) dWh̄
s −(1/2)

∫ T
0 (Dw)∗λλ∗Dw(Xs)ds].

Let us introduce a new measure P̌ defined by

dP̌

dP h̄
= e

∫ T
0 (Dw)∗λ(Xs) dWh̄

s −(1/2)
∫ T

0 (Dw)∗λλ∗Dw(Xs)ds .

Then

W̌t = Wh̄
t −

∫ t

0
λ∗Dw(Xs) ds

is a Brownian motion process under P̌ and

dXt = {β(Xt) + γ λσ ∗h̄(Xt ) + λλ∗Dw(Xt)}dt + λ(Xt) dW̌t .
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Therefore,

e−w(XT ) − e−w(x)

= −
∫ T

0
e−w(Xs)(Dw)∗λ(Xs) dW̌s

+
∫ T

0
e−w(Xs)

{
−1

2
tr[λλ∗D2w] − (β + γ λσ ∗h̄)∗Dw

− 1

2
(Dw)∗λλ∗Dw

}
(Xs) ds

= −
∫ T

0
e−w(Xs)(Dw)∗λ(Xs) dW̌s

−
∫ T

0
e−w(Xs)

{
1

2
tr[λλ∗D2w] + β∗

γ Dw

+ γ

1 − γ
(Dw)∗λσ ∗(σσ ∗)−1σλ∗Dw

+ 1

2
(Dw)∗λλ∗Dw

}
(xs) ds

= −
∫ T

0
e−w(Xs)(Dw)∗λ(Xs) dW̌s −

∫ T

0
e−w(Xs)

{
χ − γ η

(
Xs, h̄

(γ )
s

)}
ds.

Then, by the arguments using the stopping time, we have

Eh̄[
e

∫ T
0 γ η(Xs,h̄

(γ )
s ) ds]

= eχT +w(x)Ě
[
e−w(XT )]

= eχT +w(x)Ě

[
e−w(x) +

∫ T

0
e−w(Xs)

{
γ η

(
Xs, h̄

(γ )
s

) − χ
}
ds

]
.

Hence, we obtain

lim
T →∞

1

T
logEh̄[

e
∫ T

0 γ η(Xs,h̄
(γ )
s ) ds] ≤ χ(γ )

by taking into account (2.25) and (8.2). The converse inequality holds since h̄
(γ )
s ∈

A(T ). �

APPENDIX

Let L0 be an elliptic operator defined by

L0u := 1

2

∑
i,j

aij (x)Diju + ∑
i

bi(x)Diu

(A.1)

= 1

2

∑
i,j

Di(a
ij (x)Dju) + ∑

i

b̃i(x)Diu,
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where aij (x) and bi(x) are Lipschitz continuous functions such that

k0|y|2 ≤ y∗a(x)y ≤ k1|y|2 ∀y ∈ RN,k0, k1 > 0(A.2)

and b̃i = bi − 1
2

∑
j Dja

ji . We assume that there exists a positive function ψ ∈
C2(RN) such that⎧⎪⎪⎨

⎪⎪⎩
ψ(x) → ∞, as |x| → ∞,

−L0ψ − ca

ψ
(Dψ)∗aDψ > 0, x ∈ Bc

R0
,∃R0 > 0, ca > 0,

L0ψ < −1, x ∈ Bc
R0

.

(A.3)

Set K(x;ψ) = −L0ψ ,

Fψ =
{
u ∈ W

2,p
loc ; ess sup

x∈Bc
R0

|u(x)|
ψ(x)

< ∞
}
,

FK =
{
f ∈ L∞

loc; ess sup
x∈Bc

R0

|f (x)|
K(x;ψ)

< ∞
}

and

D = BR0 = {x ∈ RN ; |x| < R0}.
Then we consider the following exterior Dirichlet problem for a given bounded
continuous function h on � = ∂D:{−L0ξ = 0, x ∈ Dc

,
ξ |� = h.

(A.4)

PROPOSITION A.1. Exterior Dirichlet problem (A.4) has a unique bounded
solution ξ ∈ W

2,p
loc ∩ L∞, 1 < p < ∞.

PROOF. We first show uniqueness. Note that

−L0ψ = K(x;ψ) > 0, x ∈ Dc,

and set ξ = μψ . Then

0 = L0ξ = (−L0μ)ψ − (L0ψ)μ − (Dμ)∗aDψ.

Therefore, μ satisfies⎧⎪⎪⎨
⎪⎪⎩

−L0μ −
(

Dψ

ψ

)∗
aDμ − L0ψ

ψ
μ = 0,

μ|� = h

ψ
and μ(x) → 0 as |x| → ∞.

(A.5)
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Let μ1 and μ2 be solutions to (A.5). Then g := μ1 − μ2 satisfies⎧⎨
⎩−L0g −

(
Dψ

ψ

)∗
aDg − L0ψ

ψ
g = 0,

g|� = 0 and g(x) → 0 as |x| → ∞.

(A.6)

To prove uniqueness, it is sufficient to show that the solution g to (A.6) is trivial.
For each ε > 0, there exists Rε such that |g| ≤ ε,Bc

Rε
. Take R ≥ Rε ∨R0. Then we

see that

|g| ≤ ε, BR ∩ Dc,

since ψ > 0 and K(x;ψ) > 0 in Dc. Thus, we see that g = 0 because ε is arbitrary.
Let us show the existence of the solution to (A.4). We can assume h ≥ 0. Con-

sider the following Dirichlet problem for R > R0:{−L0ξR = 0, BR ∩ Dc
,

ξR|� = h, ξR|∂BR
= 0.

(A.7)

Then we have

‖ξR‖L∞(BR∩Dc) ≤ ‖h‖L∞(�).(A.8)

It is clear that ξR ≤ ξR′ and R < R′ by the maximum principle. Therefore, there
exists ξ ∈ L∞(Rn ∩ Dc) and

ξR → ξ, ‖ξ‖L∞(Dc) ≤ ‖h‖L∞(�).

When taking

D∗ ⊂⊂ D̃ ⊂ BR ∩ Dc,

we see that

‖ξR‖W 2,p(D∗) ≤ c‖ξR‖Lp(D̃) ≤ c′‖ξR‖L∞(D̃) ≤ c′‖h‖L∞(�).

Thus, ξR converges to ξ weakly in W
1,q
loc . Regularity theorems show that ξ ∈ W

2,q
loc .

�

Let us take a bounded domain D1 such that D ⊂ D1 and a bounded Borel func-
tion φ on �1 = ∂D1. We consider a Dirichlet problem{−L0ζ = 0, D1,

ζ |�1 = φ,
(A.9)

which admits a solution ζ ∈ W 2,p(D1) ∩ L∞. For this solution, we consider
exterior Dirichlet problem (A.4) with h = ζ . Then we introduce an operator
P : B(�1) �→ B(�1) defined by

Pφ(x) = ξ(x), x ∈ �1,(A.10)
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where ξ(x) is the solution to (A.4) with h = ζ . In a similar manner to Lemma 5.1
in [1], Chapter II, we have

sup
B∈B(�1),x,y∈�1

λx,y(B) < 1,

where

λx,y(B) = PχB(x) − PχB(y), B ∈ B(�1).

Moreover, we have the following proposition; cf. Theorem 4.1, Chapter II in [1].

PROPOSITION A.2. Operator P defined above satisfies the following proper-
ties.

‖Pφ‖L∞(�1) ≤ ‖φ‖L∞(�1), P 1(x) = 1,(A.11)

and for some δ > 0,

PχB(x) − PχB(y) ≤ 1 − δ, x, y ∈ �1,B ∈ B(�1).(A.12)

Furthermore, there exists a probability measure π(dx) on (�1, B(�1)) such that∣∣∣∣P nφ(x) −
∫

φ(x)π(dx)

∣∣∣∣ ≤ K‖φ‖L∞e−ρn,

(A.13)

ρ = log
1

1 − δ
,K = 2

1 − δ
,

and ∫
φ(x)π(dx) =

∫
Pφ(x)π(dx)(A.14)

for any bounded Borel function φ.

Consider an exterior Dirichlet problem for a given function f ∈ FK :{−L0u = f, x ∈ Dc
,

u|� = 0.
(A.15)

Then we have the following proposition.

PROPOSITION A.3. For a given function f ∈ FK , there exists a unique solu-
tion u ∈ W

2,p
loc , 1 < p < ∞, to (A.15) such that

sup
x∈Dc

|u(x)|
ψ(x)

< ∞.
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PROOF. Assume that f ≥ 0, f ∈ FK . For R > R0 we consider a Dirichlet
problem on BR ∩ Dc: {−L0uR = f, x ∈ BR ∩ Dc

,

uR|� = 0, uR|∂BR
= 0.

(A.16)

There exists a unique solution uR ∈ W
2,p
0 (BR ∩ Dc

). Set

cf = ess sup
x∈Dc

|f (x)|
K(x;ψ)

.

Then we have

0 ≤ uR ≤ cf ψ.(A.17)

To see that, set ũR := uR − cf ψ . Then

−L0ũR = −L0uR + cf L0ψ

= f − cf K(x;ψ) ≤ 0, Dc ∩ BR.

Therefore,

ũR ≤ 0, Dc ∩ BR,

since ũR is subharmonic in Dc ∩ BR and ũR ≤ 0 on � ∪ ∂BR . Hence, we have
uR ≤ cf ψ .

On the other hand,

−L0uR = f ≥ 0, BR ∩ Dc
.

Hence, uR is superharmonic and uR = 0 on � ∩ ∂BR . Thus,

uR ≥ 0, BR ∩ Dc
,

and (A.17) holds.
If f ≤ 0, f ∈ FK and cf = ess supx∈Dc

|f (x)|
K(x;ψ)

, then, through the same argu-
ments for −f , we obtain

−cf ψ ≤ u−
R ≤ 0,

where −u−
R is the corresponding solution to (A.16). Therefore, for general f =

f + − f −, we have

−cf ψ ≤ uR ≤ cf ψ.

Let u+
R be a solution to (A.16) for f +. Then, u+

R is nondecreasing with respect
to R because of the maximum principle. Indeed, for R < R′, we have

−L0(u
+
R′ − u+

R) = 0, BR ∩ Dc
,

u+
R′ − u+

R ≥ 0, � ∪ ∂BR.
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Since u+
R is dominated by cf ψ , there exists u+ such that

u+(x) = lim
R→∞u+

R(x), u+(x)|� = 0.

Let us show that u+(x) satisfies

−L0u
+ = f +, Dc

.

Set

D∗ := BR ∩ Dc
, D′ ⊂⊂ D∗ ∪ ∂D∗.

Then we have

‖u+‖2,p;D′ ≤ c(‖u+‖p;D∗ + ‖f +‖p;D∗)

≤ c′(‖u+‖∞;D∗ + ‖f +‖p;D∗ .

For D′′ ⊂ D′ injection W 2,p(D′) ↪→ W 1,q(D′′),1 ≤ q ≤ np
n−p

, is compact. There-

fore, u+
R → u+ weakly in W

1,q
loc for each 1 ≤ q < ∞ and u+ is a weak solution

to {−L0u
+ = f +, Rn ∩ Dc

,
u+|� = 0.

By the regularity theorem u+ ∈ W
2,p
loc , ∀p > 1.

Similarly, we have u− ∈ W
2,p
loc , which is a solution to{−L0u

− = f −, Rn ∩ Dc
,

u−|� = 0.

Now let us prove uniqueness. For i = 1,2, we assume that ui is a solution to
(A.15) such that

−cf ψ ≤ ui ≤ cf ψ, ui ∈ W
2,p
loc .

Then u = u1 − u2 satisfies{
−L0u = 0, Dc

,
u|� = 0, −2cf ψ ≤ u ≤ 2cf ψ,u ∈ W

2,p
loc .

(A.18)

We shall prove that u satisfying (A.18) is trivial, u ≡ 0. For this purpose, we set

u = vψα, α = 1 + ca > 1,

where ca > 0 is the constant that appears in (A.3). Since −L0u = 0 we have

L0v + 2a

(
Dψ

ψ

)∗
aDv + αv

ψ

{
L0ψ + α − 1

ψ
(Dψ)∗aDψ

}
= 0.

Note that

−L0ψ − α − 1

ψ
(Dψ)∗aDψ = K(x;ψ) − α − 1

ψ
(Dψ)∗aDψ ≥ 0
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for |x| � 1 under assumption (A.3). Moreover,

v = u

ψα
→ 0 as |x| → ∞.

Hence, from the maximum principle, we see that v ≡ 0 as in the proof of Proposi-
tion A.1. �

Let f be a function on Rn such that f is bounded in D and f ∈ FK(Dc), and
D1 a bounded domain such that D ⊂ D1. We consider{−L0� = f, D1,

�|�1 = 0,
(A.19)

and {−L0ξ = f, Rn ∩ Dc
,

ξ |� = �|�.
(A.20)

Then we set

Tf (x) = ξ(x), x ∈ �1,

and

ν(f ) =
∫
�1

Tf (σ)π(dσ)∫
�1

T 1(σ )π(dσ)
.(A.21)

We further consider ⎧⎨
⎩

−L0z = f,

z ∈ W
2,p
loc , sup

x∈Dc

|z|
ψ

< ∞.(A.22)

Then, as in the proof of Theorem 5.3, in [1], Chapter II, we obtain the following
proposition. Here, we only give the proof of the existence of the solution for use
in Section 6.

PROPOSITION A.4. Equation (A.22) has a solution unique up to additive con-
stants if and only if ν(f ) = 0. Moreover,

ν(f ) =
∫

m(y)f (y) dy(A.23)

for m ∈ L1(Rn), m ≥ 0 and −L∗
0m = 0 in distribution sense∫

m(y)(−L0z) dy = 0, z ∈ W
2,p
loc ,(A.24)

such that z ∈ Fψ and −L0z ∈ FK . Furthermore, m(x) is the only function in L1

satisfying (A.24) and ∫
m(x)dx = 1.
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PROOF OF EXISTENCE. Let ζ0 = � and η0 = ξ , where � (resp., ξ ) is the
solution to (A.19) [resp., (A.20)]. For each k = 1,2, . . . define ζk and ηk as follows.
Let ζk be the solution to (A.9) for φ = ηk−1, and ηk the solution to (A.4) for h = ζk .
Then

η0(x)|�1 = Tf (x), ηn(x)|�1 = P n(Tf )(x), n = 1,2, . . . .

Since
∫
�1

Tf (x)π(dx) = 0, we have

|P n(Tf )(x)| ≤ K‖Tf ‖L∞(�1)e
−ρn

by (A.13). Set η̃n(x) = ∑n
k=0 ηk(x), ζ̃n(x) = ∑n

k=0 ζk(x). Then

η̃n|�1 = Tf + P(Tf ) + · · · + P n(Tf ).

Therefore, we see that there exists η̄ ∈ C(�1) such that ‖η̃n − η̄‖L∞(�1) → 0,
n → 0. Moreover, we have

‖η̃n‖L∞(�1) ≤ K‖Tf ‖L∞(�1)

1

1 − e−ρ
.

Note that ζ̃n is the solution to{
−L0ζ̃n = f, D1,

ζ̃n|�1 = η̃n−1|�1,
(A.25)

and η̃n the solution to (A.20) with �(x) = ζ̃n. Noting that

‖ζ̃n − ζ̃m‖L∞(D1) ≤ ‖ζ̃n − ζ̃m‖L∞(�1) ≤ ‖η̃n−1 − η̃m−1‖L∞(�1),

we see that ζ̃n converges in C(D1) and weakly in W
1,q
loc since its W

2,p
loc norm

is bounded; cf. Theorem 9.11 in [16]. By the regularity theorems, the limit
ζ̄ ∈ W

2,p
loc ∩ C(D1) and satisfies{

−L0ζ̃ = f, D1,
ζ̃ |�1 = η̄.

(A.26)

On the other hand, η̃n − ξ is the solution to (A.4) with h = ζ̃n − �|� = ∑n
i=1 ζi |�

and

‖η̃n − ξ‖L∞(�) ≤
∥∥∥∥∥

n∑
j=1

ζj

∥∥∥∥∥
L∞(�)

≤
∥∥∥∥∥
n−1∑
j=0

ηj

∥∥∥∥∥
L∞(�1)

≤ ‖η̃n−1‖L∞(�1).

Thus, we see that

‖η̃n − ξ‖L∞(Dc) ≤ ‖η̃n−1‖L∞(�1),

and η̃n converges in C(Dc) and weakly in W
1,q
loc (Dc). The limit η̃ ∈ W

2,p
loc (Dc) ∩

C(Dc) and satisfies (A.20) with � = ζ̃ . Setting z = ζ̃ in D1 and z = η̃ in Dc, we
have a solution to (A.22). �
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