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ASYMPTOTIC APPROXIMATIONS FOR STATIONARY
DISTRIBUTIONS OF MANY-SERVER QUEUES WITH

ABANDONMENT
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University of Maryland, Baltimore County and Brown University

A many-server queueing system is considered in which customers ar-
rive according to a renewal process and have service and patience times that
are drawn from two independent sequences of independent, identically dis-
tributed random variables. Customers enter service in the order of arrival and
are assumed to abandon the queue if the waiting time in queue exceeds the
patience time. The state of the system with N servers is represented by a
four-component process that consists of the forward recurrence time of the
arrival process, a pair of measure-valued processes, one that keeps track of
the waiting times of customers in queue and the other that keeps track of the
amounts of time customers present in the system have been in service and a
real-valued process that represents the total number of customers in the sys-
tem. Under general assumptions, it is shown that the state process is a Feller
process, admits a stationary distribution and is ergodic. It is also shown that
the associated sequence of scaled stationary distributions is tight, and that any
subsequence converges to an invariant state for the fluid limit. In particular,
this implies that when the associated fluid limit has a unique invariant state,
then the sequence of stationary distributions converges, as N → ∞, to the
invariant state. In addition, a simple example is given to illustrate that, both
in the presence and absence of abandonments, the N → ∞ and t → ∞ limits
cannot always be interchanged.

1. Introduction.

1.1. Description. An N -server queueing system is considered in which cus-
tomers arrive according to a renewal process, have independent and identically
distributed (i.i.d.) service requirements that are drawn from a general distribution
with finite mean and also carry i.i.d. patience times that are drawn from another
general distribution. Customers enter service in the order of arrival as soon as
an idle server is available, service is nonpreemptive, and customers abandon the
queue if the time spent waiting in queue reaches the patience time. This system
is also sometimes referred to as the GI/GI/N + G model. In this work, it is as-
sumed that the sequences of service requirements and patience times are mutually
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independent, and that the interarrival, service and patience time distributions have
densities.

The state of the N -server system is represented by a four component process
Y (N), consisting of the forward recurrence time process associated with the re-
newal arrival process, a measure-valued process that keeps track of the amounts of
time customers currently in service have been in service, another measure-valued
process that encodes the times elapsed since customers have entered the system
(for all customers for which this time has not yet exceeded their patience times)
and a real-valued process that keeps track of the total number of customers in the
system. This infinite-dimensional state representation was shown in Lemma B.1
of Kang and Ramanan [15] to lead to a Markovian description of the dynamics
(with respect to a suitable filtration). In addition, a fluid limit for this model was
also established in [15], that is, under suitable assumptions, it was shown that al-
most surely, Y (N) = Y (N)/N converges, as N → ∞, to a limit process Y which
is characterized as the unique solution to a set of coupled integral equations (see
Definition 5.1). The process Y will be referred to as the fluid limit.

The present work focuses on obtaining first-order approximations to the sta-
tionary distribution of Y (N) which is of fundamental interest for the performance
analysis of many-server queues. It is first shown that for each N , Y (N) is a Feller,
strong Markov process and has a stationary distribution. Under an additional as-
sumption (Assumption 7.1), uniqueness of the stationary distribution and ergod-
icity of each Y (N) is also established. The main result, Theorem 3.3, shows that
under fairly general assumptions the sequence of stationary distributions is tight
and that any subsequential limit is an invariant state for the fluid limit. In particu-
lar, if the fluid limit has a unique invariant state, this implies that the sequence of
scaled stationary distributions (indexed by the number of servers N ) converges, as
N → ∞, to this unique invariant state. More generally, this work seeks to illustrate
how an infinite-dimensional Markovian representation of a stochastic network can
facilitate the (first-order) characterization of the associated stationary distributions.
Furthermore, examples are presented to illustrate several subtleties in the dynam-
ics. Specifically, it is shown that the presence of a unique invariant state is not a
necessary condition for the sequence of scaled stationary distributions to have a
limit and that even when such a limit exists, the t → ∞ and N → ∞ limits cannot
in general be interchanged.

1.2. Motivation and context. The study of many-server queueing systems with
abandonment is motivated by applications to telephone call centers and (more gen-
erally) customer contact centers. The incorporation of customer abandonment cap-
tures the effect of customers’ impatience, which has a substantial impact on the
performance of the system. For example, customer abandonment can stabilize a
system even when it is overloaded. A considerable body of work has been de-
voted to the study of various steady-state or stationary performance measures of
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many-server queues, both with and without abandonment. In the absence of aban-
donment, when the interarrival times and service times are exponential, an explicit
expression for the steady state queue length can be found in Bocharov et al. [4].
In the discrete-time setting, when the i.i.d. interarrival and service times are gener-
ally distributed, the classical work of Kiefer and Wolfowitz [18] (see also Foss [7])
establishes the convergence in distribution, as time goes to infinity, of the waiting
time vectors to a stationary limit. The generalization to continuous time is dealt
with in Asmussen and Foss [2]. For a many-server queue with stationary renewal
arrivals, deterministic service times and no abandonments, Jelenkovic, Mandel-
baum and Momčilović [13] showed that on the diffusive scale, the scaled station-
ary waiting times converge in distribution to the supremum of a Gaussian random
walk with negative drift. For a many-server queue with stationary renewal arrivals,
a finitely supported, lattice-valued service time distribution and no abandonments,
in the so-called Halfin–Whitt asymptotic regime where the number of servers N

goes to infinity and the corresponding arrival rate grows as N − β
√

N for some
β > 0, Gamarnik and Momčilović [8] characterized the limit of the scaled station-
ary queue length distribution in terms of the stationary distribution of an explicitly
constructed Markov chain and obtained an explicit expression for the exponential
decay rate of the moment generating function of this limiting stationary distribu-
tion.

For many-server queues with abandonment whose interarrival, service and
abandonment distributions are exponential, Garnett, Mandelbaum and Reiman
[10] provide exact calculations of various steady state performance measures and
their approximations in the Halfin–Whitt asymptotic regime, both in the case of fi-
nite waiting rooms (M/M/N/B +M) and infinite waiting rooms (M/M/N +M).
In the case of Poisson arrivals, exponential service distribution and general aban-
donment distribution (M/M/N + G), explicit formulae for the steady state distri-
butions of the queue length and virtual waiting time were obtained by Baccelli and
Hebuterne [3] (see Sections IV and V.2 therein), whereas several other steady state
performance measures and their approximations in the Halfin–Whitt asymptotic
regime were derived by Mandelbaum and Zeltyn [23].

In the previously mentioned works on characterization of stationary distribu-
tions of many-server queues, either the interarrival times and service times are
assumed to be exponential or it is assumed that the service time distribution is
discrete and has a finite support, and that there is no abandonment. However, sta-
tistical analysis of real call centers has shown that both service times and patience
times are typically not exponentially distributed (see Brown et al. [5] and Mandel-
baum and Zeltyn [23]). In general, it is difficult to derive explicit expressions for
the stationary distributions of many-server queues, especially in the more realistic
case when service times are not exponential and there is abandonment. This is also
the case for many other classes of stochastic networks. To circumvent this problem,
a common approach that is taken is to identify the long-time limits of the fluid or
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diffusion approximations, which are often more tractable, and then use these lim-
its as approximations of the stationary distribution of the original system. Such an
approach relies on the premise that the long-time behavior of the fluid limit can be
characterized and also requires an argument that justifies the interchange of (the
N → ∞ and t → ∞) limits (see, e.g., Gamarnik and Zeevi [9] for an interchange
of limits result in the context of generalized Jackson networks). However, we show
that this approach may not always be appropriate for stochastic network models.
Indeed, for the case of many-server queues whose service distributions are not ex-
ponential, the long-time behavior of the fluid is subtle and difficult to characterize
in large part due to the complexity in the dynamics introduced by the coupling
of the measure-valued component of the fluid limit with the positive real-valued
component by the nonidling condition. Furthermore, as the example we construct
in Section 7 demonstrates, in general, the order of the N → ∞ and t → ∞ limits
cannot be interchanged.

Instead we take a different approach to showing convergence that is more appro-
priate for mean-field limits, which involves establishing tightness of the stationary
distributions and showing that any subsequence converges to an invariant state.
A more detailed description of the approach is provided in Section 3.2 and addi-
tional discussion is provided in Section 7. The present work is also related to the
work of Whitt [22] who analyzed a discrete time version of the model, proposed
a fluid limit model and made several conjectures on the associated steady-state
quantities. A comparison of our results with those of Whitt [22] is also given in
Section 3.2 after the statement of our main results.

1.3. Outline. The outline of the paper is as follows. A precise mathematical
description of the model is provided in Section 2. Section 3 introduces the basic
assumptions and states the main result. The Feller property and the existence of
stationary distributions of the state descriptor are proved in Section 4. The fluid
equations and the invariant manifold are described in Section 5 and the asymp-
totics of the stationary distributions is established in Section 6. Finally, Section 7
contains a discussion of the positive Harris recurrence and ergodicity of the state
descriptor, the long time behavior of the fluid limit and an example that shows that
the “interchange of limits” property does not always hold. In the remainder of this
section, we introduce some common notation used in the paper.

1.4. Notation and terminology. The following notation will be used through-
out the paper. Z is the set of integers, N is the set of positive integers, R is the set
of real numbers, Z+ is the set of nonnegative integers and R+ the set of nonneg-
ative real numbers. For a, b ∈ R, a ∨ b denotes the maximum of a and b, a ∧ b

the minimum of a and b and the short-hand a+ is used for a ∨ 0. 1B denotes the
indicator function of the set B [i.e., 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise].
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1.4.1. Function and measure spaces. Given any metric space E, Cb(E) and
Cc(E) are, respectively, the space of bounded, continuous functions and the space
of continuous real-valued functions with compact support defined on E. The
support of a function ϕ is denoted by supp(ϕ). We denote by DE[0, T ] (resp.,
DE[0,∞)) the space of E-valued, càdlàg functions on [0, T ] (resp., [0,∞)) and
we endow this space with the usual Skorokhod J1-topology [21]. When E is Pol-
ish then DE[0, T ] and DE[0,∞) are also Polish spaces (see [21]). Let IR+[0,∞)

be the subset of nondecreasing functions f ∈ DR+[0,∞) with f (0) = 0. Given
f ∈ IR+[0,∞), f −1 denotes the inverse function of f defined by

f −1(y) = inf{x ≥ 0 :f (x) ≥ y}.(1.1)

The space of Radon measures on a complete separable metric space E, endowed
with the Borel σ -algebra, is denoted by M(E), while MF (E) is the subspace
of finite measures in M(E). Recall that a Radon measure on E is one that as-
signs finite measure to every relatively compact subset of E. The space MF (E) is
equipped with the weak topology, that is, a sequence of measures {μn} in MF (E)

is said to converge to μ in the weak topology (denoted μn
w→ μ) if and only if for

every ϕ ∈ Cb(E),∫
E

ϕ(x)μn(dx) →
∫
E

ϕ(x)μ(dx) as n → ∞.(1.2)

As is well known, MF (E), endowed with the weak topology is a Polish space.
The symbol δx will be used to denote the measure with unit mass at the point
x and, by some abuse of notation, we will use 0 to denote the identically zero
Radon measure on E. When E is an interval, say [0,H) for some H ∈ (0,∞], we
will often write M[0,H) and MF [0,H) instead of M([0,H)) and MF ([0,H)),
respectively. For any μ ∈ MF [0,H), we define

Fμ(x)
.= μ[0, x], x ∈ [0,H).(1.3)

For any Borel measurable function f : [0,H) → R that is integrable with respect
to ξ ∈ M[0,H), we often use the short-hand notation

〈f, ξ〉 .=
∫
[0,H)

f (x)ξ(dx).

Also, for ease of notation, given ξ ∈ M[0,H) and an interval (a, b) ⊂ [0,M), we
will use ξ(a, b) to denote ξ((a, b)).

1.4.2. Measure-valued stochastic processes. In this work, we will be in-
terested in càdlàg H-valued stochastic processes where H = MF [0,H) for
some H ≤ ∞. These are random elements that are defined on a probability
space (�, F ,P) and take values in D H[0,∞), equipped with the Borel σ -
algebra (generated by open sets under the Skorokhod J1-topology). A sequence
{Xn}n∈N of càdlàg, H-valued processes, with Xn defined on the probability space
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(�n, Fn,Pn), is said to converge in distribution to a càdlàg H-valued process X de-
fined on (�, F ,P) if, for every bounded, continuous functional � : D H[0,∞) →
R, we have

lim
n→∞En[�(Xn)] = E[�(X)],

where En and E are the expectation operators with respect to the probability mea-
sures Pn and P, respectively. Convergence in distribution of Xn to X will be de-
noted by Xn ⇒ X.

2. Description of model and state dynamics. In Section 2.1 we describe
the basic model, which is sometimes referred to as the GI/GI/N + G model. In
Section 2.2 we introduce the state descriptor and some auxiliary processes and also
describe the state dynamics. In Section 2.3 we obtain a convenient representation
formula for expectations of linear functionals of the measure-valued components
of the state process. In Section 2.4 we introduce a filtration with respect to which
the state descriptor is an adapted, strong Markov process. This model was also
considered in [15], where a functional strong law of large numbers limit for the
state descriptor was established as the number of servers and the mean arrival rate
both tend to infinity.

2.1. Model description and primitive data. Consider a queueing system with
N identical servers in which arriving customers are served in a nonidling, first-
come-first-serve (FCFS) manner, that is, a newly arriving customer immediately
enters service if there are any idle servers or, if all servers are busy, then the cus-
tomer joins the back of the queue, and the customer at the head of the queue (if
one is present) enters service as soon as a server becomes free.

It is assumed that customers are impatient and that a customer reneges from
the queue as soon as the amount of time he or she has waited in the queue
reaches his or her patience time. Service is nonpreemptive and customers do not
renege once they have entered service. The patience times of customers are given
by an i.i.d. sequence, {ri, i ∈ Z}, with common cumulative distribution function
Gr on [0,∞], while the service requirements of customers are given by another
i.i.d. sequence, {vi, i ∈ Z}, with common cumulative distribution function Gs on
[0,∞). For i ∈ N, ri and vi , respectively, represent the patience time and the ser-
vice requirement of the ith customer to enter the system after time zero, whereas
{ri, i ∈ −N∪{0}} and {vi, i ∈ −N∪{0}}, respectively, represent the patience times
and the service requirements of customers that arrived prior to time zero (if such
customers exist), ordered according to their arrival times (prior to time zero).
We assume that Gs has density gs and Gr , restricted to [0,∞), has density gr ,
with Gr possibly having some mass at infinity. This implies, in particular, that
Gr(0+) = Gs(0+) = 0. We define hr = gr/(1 − Gr) and hs = gs/(1 − Gs) to be
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the corresponding hazard rate functions associated with Gr and Gs . Let

Hr .= sup{x ∈ [0,∞) :Gr(x) < 1},
H s .= sup{x ∈ [0,∞) :Gs(x) < 1}.

The superscript (N) will be used to refer to quantities associated with the system
with N servers.

Let E(N) denote the cumulative arrival process associated with the system that
has N servers, with E(N)(t) representing the total number of customers that arrive
into the system in the time interval [0, t]. We assume that E(N) is a renewal process
with a common interarrival distribution function F (N), which has finite mean and
satisfies F (N)(0) = 0. Let λ(N) be the inverse of the mean of F (N), that is,

λ(N)
∫ ∞

0
xF (N)(dx) = 1.

The number λ(N) represents the long-run average arrival rate of customers to the
system with N servers. We assume E(N), the sequence of service requirements
{vj , j ∈ Z} and the sequence of patience times {rj , j ∈ Z} are mutually indepen-

dent. Let α
(N)
E be a càdlàg, real-valued process defined by α

(N)
E (s)

.= α
(N)
E (0) + s

if E(N)(s) = 0 and, if E(N)(s) > 0, then

α
(N)
E (s)

.= s − sup
{
u < s :E(N)(u) < E(N)(s)

}
.

Observe that the quantity α
(N)
E (s) denotes the time to s since the last arrival, and

coincides with the backward recurrence time process. Moreover, the process α
(N)
E

determines the process E(N). Let E (N)
0 be an a.s. finite Z+-valued random variable

that represents the number of customers that entered the system prior to time zero.
This random variable does not play an important role in the analysis. It is used
merely for bookkeeping purposes, to keep track of the indices of customers.

2.2. State descriptor. A Markovian description of the state of the system with
N servers would require one to keep track of the residual or elapsed patience times
and the residual or elapsed service times of each customer present in the queue or
in service. In order to do this in a succinct manner, with a common state space
for all N -server systems, we use the representation introduced in [15]. In this rep-
resentation, the state of the N -server system consists of the backward recurrence
time α

(N)
E of the renewal arrival process, a nonnegative real-valued process X(N),

which represents the total number of customers in system with N servers (includ-
ing those in service and those in queue) and a pair of measure-valued processes, the
“age measure” process, ν(N), which encodes the amounts of time that customers
currently receiving service have been in service and the “potential queue measure”
process, η(N), which keeps track not only of the waiting times of customers in
queue but also of the potential waiting times (defined to be the times since entry
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into system) of every customer (irrespective of whether the customer has already
entered service and possibly departed the system) for whom the potential waiting
time has not yet exceeded the patience time. Thus, the state of the system, denoted
by Y (N), takes the form

Y (N) = (
α

(N)
E ,X(N), ν(N), η(N)).(2.1)

Note that X(N) and η(N), together, yield the number and waiting times of cus-
tomers currently in queue. Indeed, for t ∈ [0,∞), let Q(N)(t) be the number of
customers waiting in queue at time t . Because the head-of-the-line customer is the
customer in queue with the longest waiting time, the quantity

χ(N)(t)
.= inf

{
x > 0 :η(N)

t [0, x] ≥ Q(N)(t)
}= (

Fη
(N)
t
)−1(

Q(N)(t)
)

(2.2)

represents the waiting time of the head-of-the-line customer in the queue at time t .

Here, the function Fη
(N)
t and its inverse are as defined in (1.3) and (1.1), respec-

tively. Since this is an FCFS system, any mass in η
(N)
t that lies to the right of

χ(N)(t) represents a customer that has already entered service by time t , and all
masses in [0, χ(N)(t)] are still in queue. Therefore, the queue length process Q(N)

can be expressed in terms of χ(N) and η(N):

Q(N)(t) = η
(N)
t

[
0, χ(N)(t)

]
, t ∈ [0,∞),(2.3)

and the restriction of η
(N)
t to [0, χ(N)(t)] encapsulates the waiting times of all

customers in queue at time t . As explained in Section 2.2 of [15], we include in the
state the measure-valued process η(N) rather than a measure-valued process that
only keeps track of the waiting times of customers in queue because the dynamics
of the former is easier to analyze.

We note that, due to the nonidling condition, the queue length process also ad-
mits the following alternative representation in terms of X(N):

Q(N)(t) = [
X(N)(t) − N

]+
.

Moreover, because

X(N) = 〈
1, ν(N)〉+ Q(N),(2.4)

the nonidling condition is equivalent to

N − 〈1, ν(N)〉= [
N − X(N)]+.(2.5)

The following auxiliary processes are useful for the evolution of the system and
can be recovered from the state of the system Y (N) by using equations (2.9)–(2.11)
and (2.14) in [15]:

• the cumulative reneging process R(N), where R(N)(t) is the cumulative number
of customers that have reneged from the system in the time interval [0, t];
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• the cumulative potential reneging process S(N), where S(N)(t) represents the
cumulative number of customers whose potential waiting times reached their
patience times in the interval [0, t];

• the cumulative departure process D(N), where D(N)(t) is the cumulative number
of customers that departed the system after completion of service in the interval
[0, t];

• the process K(N), where K(N)(t) represents the cumulative number of cus-
tomers that entered service in the interval [0, t].
It is easy to see from (2.16) in [15] that the following mass balance for the

number of customers in queue holds:

Q(N)(0) + E(N) = Q(N) + R(N) + K(N).(2.6)

2.3. A useful representation formula. We now establish representation formu-
lae (in Proposition 2.2) for expectations of linear functionals of the age and poten-
tial queue measure-valued processes. These are used to establish tightness of the
sequence of stationary distributions in Section 4.2. This representation formula is
similar to that obtained for the fluid in Theorem 4.1 of [17]. The representation can
be deduced from a result given in Proposition 4.1 of [15] which, for convenience,
we first reproduce below as Proposition 2.1.

PROPOSITION 2.1. Let G be the cumulative distribution function of a prob-
ability distribution with density g and hazard rate function h = g/(1 − G), let
H

.= sup{x ∈ [0,∞) :G(x) < 1}. Suppose π ∈ D MF [0,H)[0,∞) has the property
that for every L ∈ [0,H) and T ∈ [0,∞), there exists C(L,T ) < ∞ such that∫ ∞

0
< ϕ(·, s)h(·), πs > ds < C(L,T )‖ϕ‖∞,(2.7)

for every ϕ ∈ Cc((−∞,H) × R) with supp(ϕ) ⊂ [0,L] × [0, T ]. Then, given any
π0 ∈ MF [0,H) and Z ∈ IR+[0,∞), π satisfies the integral equation

〈ϕ(·, t), πt 〉 = 〈ϕ(·,0),π0〉 +
∫ t

0
〈ϕs(·, s),πs〉ds +

∫ t

0
〈ϕx(·, s),πs〉ds

(2.8)

−
∫ t

0
〈ϕ(·, s)h(·),πs〉ds +

∫
[0,t]

ϕ(0, s) dZ(s)

for every ϕ ∈ Cc((−∞,H) × R) and t ∈ [0,∞), if and only if π satisfies∫
[0,M)

f (x)πt (dx) =
∫
[0,M)

f (x + t)
1 − G(x + t)

1 − G(x)
π0(dx)

(2.9)
+
∫
[0,t]

f (t − s)
(
1 − G(t − s)

)
dZ(s)

for every f ∈ Cb(R+) and t ∈ (0,∞).
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We now use this general result to obtain a useful representation formula, which
can also alternatively be deduced by taking expectations in the representation for-
mula provided in Proposition 6.4 of [16].

PROPOSITION 2.2. Suppose that E[〈1, η
(N)
0 〉] < ∞ and E[〈1, ν

(N)
0 〉] < ∞.

Then for each bounded measurable function f on R+ and t ≥ 0,

E
[〈
f,η

(N)
t

〉]= E

[∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η

(N)
0 (dx)

]
(2.10)

+ E

[∫
[0,t]

f (t − s)
(
1 − Gr(t − s)

)
dE(N)(s)

]

and

E
[〈
f, ν

(N)
t

〉]= E

[∫
[0,H s)

f (x + t)
1 − Gs(x + t)

1 − Gs(x)
ν

(N)
0 (dx)

]
(2.11)

+ E

[∫
[0,t]

f (t − s)
(
1 − Gs(t − s)

)
dK(N)(s)

]
.

PROOF. We provide the details of the proof of (2.10) only, because the proof of
(2.11) is exactly analogous. Fix N ∈ N and define π

.= E[η(N)] and Z
.= E[E(N)],

G
.= Gr and h

.= hr . By Proposition 2.1, in order to establish (2.10) it suffices to
show that (2.7) and (2.8) are satisfied with π and Z defined as above. However,
these are easily deduced from properties established in [15]. Indeed, by the analog
of (5.4) of Proposition 5.1(2) in [15], we know that

E

[∫ T

0

〈
ϕ(·, s)hr(·), η(N)

s

〉
ds

]
≤ C(L,T )‖ϕ‖∞,(2.12)

where C(L,T )
.= (
∫ L

0 hr(x) dx)E[X(N)(0)+E(N)(T )] is finite because of the sup-

position of the proposition, the relation X(0) ≤ 〈1, η
(N)
0 〉 + 〈1, ν

(N)
0 〉 and the fact

that E(N) is a renewal process with finite mean. Thus, (2.12) implies (2.7). On the
other hand, for every ϕ ∈ C 1

c ([0,H r)×R+), (2.28) of Theorem 2.1 of [15] implies
that for every t ∈ (0,∞),

〈
ϕ(·, t), η(N)

t

〉= 〈
ϕ(·,0), η

(N)
0

〉+ ∫ t

0

〈
ϕs(·, s) + ϕx(·, s), η(N)

s

〉
ds

(2.13)
− S(N)

ϕ (t) +
∫
[0,t]

ϕ(0, s) dE(N)(s),

and Proposition 5.1(2) of [15] shows that

M(N)
ϕ,η

.= SN
ϕ −

∫ t

0

〈
ϕ(·, s)hr(·), η(N)

s

〉
ds
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is a local {F (N)
t } martingale. In fact, M

(N)
ϕ,η is an {F (N)

t }-martingale because

E

[
sup

s∈[0,t]
∣∣M(N)

ϕ,η (s)
∣∣]≤ E[SN

ϕ (t)] + E

[∫ T

0

〈|ϕ(·, s)|hr(·), η(N)
s

〉
ds

]

≤ ‖ϕ‖∞E
[
E(N)(t)

]+ C(L,T )‖ϕ‖∞ < ∞,

where the finiteness follows from the assumption that E(N) is a renewal process
with finite mean. The relation (2.8) then follows on taking expectations of both
sides of (2.13) and interchanging the expectation with integration. Hence, the rep-
resentation (2.10) follows. �

2.4. State space and filtration. The total number of customers in service at
time t is given by 〈

1, ν
(N)
t

〉= ν
(N)
t [0,H s)

and is bounded above by the number of servers N . On the other hand, it is clear
(see, e.g., (2.13) of [15]) that a.s., for every t ∈ [0,∞),〈

1, η
(N)
t

〉= η
(N)
t [0,H r) ≤ E(N)(t) + 〈1, η

(N)
0

〉≤ E(N)(t) + E (N)
0 < ∞.

Therefore, a.s., for every t ∈ [0,∞), ν
(N)
t ∈ MF [0,H s) and η

(N)
t ∈ MF [0,H r).

Let MD[0,H s) be the subset of measures in MF [0,H s) that can be repre-
sented as the sum of a finite number of unit Dirac measures in [0,H s), that is, mea-
sures that take the form

∑k
i=1 δxi

for some k ∈ Z+ and xi ∈ [0,H s), i = 1, . . . , k.
Analogously, let MD[0,H r) be the subset of MF [0,H r) that can be expressed
as the sum of a finite number of unit Dirac measures in [0,H r). Also, define

Y (N) .= {(α, x,μ,π) ∈ R+ × Z+ × MD[0,H s) × MD[0,H r) :
(2.14)

x ≤ 〈1,μ〉 + 〈1, π〉, 〈1,μ〉 ≤ N},
where R+ is endowed with the Euclidean topology d , Z+ is endowed with the
discrete topology ρ and MD[0,H s) and MD[0,H r) are both endowed with the
topology of weak convergence. The space Y (N) is a closed subset of R+ × Z+ ×
MF [0,H s) × MF [0,H r) and is endowed with the usual product topology. Since
R+ × Z+ × MF [0,H s) × MF [0,H r) is a Polish space, the closed subset Y (N)

is also a Polish space. It follows from the representations for ν
(N)
t and η

(N)
t given

in (2.3) and (2.8) of [15] that a.s., the state descriptor Y (N)(t) takes values in Y (N)

for every t ∈ [0,∞).
For t ∈ [0,∞), let F̃ (N)

t be the σ -algebra generated by{
E (N)

0 ,X(N)(0), α
(N)
E (s),w

(N)
j (s), a

(N)
j (s), s

(N)
j ,

j ∈ {−E (N)
0 + 1, . . . ,0

}∪ N, s ∈ [0, t]},
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where s(N) .= (s
(N)
j , j ∈ Z) is the “station process,” defined on the same prob-

ability space (�, F ,P). For each t ∈ [0,∞), if customer j has already entered
service by time t , then s

(N)
j (t) is equal to the index i ∈ {1, . . . ,N} of the station at

which customer j receives service and s
(N)
j (t)

.= 0 otherwise. Let {F (N)
t } denote

the associated right-continuous filtration, completed with respect to P. It is proved
in Appendix A of [15] that the state descriptor Y (N) and the auxiliary processes
E(N), Q(N), S(N), R(N), D(N) and K(N) are càdlàg and adapted to the filtration
{F (N)

t }. Moreover, from Lemma B.1 of [15] it follows that Y (N) is a strong Markov
process with respect to the filtration {F (N)

t }.

3. Assumptions and main results. The main focus of this paper is to obtain
a “first-order” approximation for the stationary distribution of the N -server queue,
which is accurate in the limit as the number of servers goes to infinity.

3.1. Basic assumptions. We impose the following mild first moment assump-
tion on the patience and service time distribution functions Gr and Gs . Without
loss of generality, we can normalize the service time distribution so that its mean
equals 1.

ASSUMPTION 3.1. The mean patience and service times are finite:

θr .=
∫
[0,∞)

xgr(x) dx =
∫
[0,∞)

(
1 − Gr(x)

)
dx < ∞(3.1)

and ∫
[0,∞)

xgs(x) dx =
∫
[0,∞)

(
1 − Gs(x)

)
dx = 1.(3.2)

Let ν∗ and η∗ be the probability measures defined as follows:

ν∗[0, x)
.=
∫ x

0

(
1 − Gs(y)

)
dy, x ∈ [0,H s),(3.3)

η∗[0, x)
.=
∫ x

0

(
1 − Gr(y)

)
dy, x ∈ [0,H r).(3.4)

Note that ν∗ and η∗ are well defined due to Assumption 3.1. For λ ≥ 1, define the
set Bλ as follows:

Bλ
.=
{
x ∈ [1,∞) : Gr((F λη∗)−1((x − 1)+

))= λ − 1

λ

}
.(3.5)

Let

bλ
l

.= inf{x ∈ [1,∞) :x ∈ Bλ} and bλ
r

.= sup{x ∈ [1,∞) :x ∈ Bλ}.
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Since the functions Gr and Fλη∗ are continuous and nondecreasing, we have Bλ =
[bλ

l , bλ
r ]. Let Iλ be the set of states defined by

Iλ
.=
{ {(λ,λν∗, λη∗)}, if λ < 1,

{(x∗, ν∗, λη∗) :x∗ ∈ Bλ}, if λ ≥ 1.
(3.6)

We show in Theorem 5.5 that Iλ describes the so-called invariant manifold for the
fluid limit. Suppose that Iλ satisfies the following assumption.

ASSUMPTION 3.2. The set Iλ has a single element.

Note that this is a nontrivial restriction only when λ ≥ 1. A deterministic fluid
limit of the GI/GI/N + G queue was conjectured to exist in Conjecture 2.2
of [22], and Theorem 3.1 of [22] states that this fluid limit has a unique steady
state. However, as shown in the example in Section 7.2, in general there need not
be a unique invariant state (or, equivalently, a unique steady state in the sense of
[22]) due to the possibility of the existence of multiple solutions to the equation
(3.7) below. Thus, we explicitly assume uniqueness of the steady state to obtain
the full convergence result. We now provide a general sufficient condition for As-
sumption 3.2 to hold.

LEMMA 3.1. If either λ < 1 or λ ∈ [1,∞) and the equation

Gr(x) = λ − 1

λ
(3.7)

has a unique solution, then Assumption 3.2 holds. In particular, this is true if Gr

is strictly increasing.

PROOF. Fix λ ∈ [1,∞). It suffices to show that the set Bλ in (3.5) consists of
a single point. Since the equation in (3.7) has a unique solution and the function
(F λη∗)−1(·) is strictly increasing on [0, λθr), the equation

Gr((F λη∗)−1((x − 1)+
))= λ − 1

λ

has a unique solution. Thus, Bλ has a single element and the lemma follows. �

For each N ∈ N, let Y (N) = (α
(N)
E ,X(N), ν(N), η(N)) be the fluid scaled state

descriptor defined as follows: for t ∈ [0,∞) and any Borel subset B of R+,

α
(N)
E (t)

.= α
(N)
E (t), X(N)(t)

.= X(N)(t)

N
,

(3.8)

ν
(N)
t (B)

.= ν
(N)
t (B)

N
, η

(N)
t (B)

.= η
(N)
t (B)

N
.
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Analogously, for I = E,D,K,Q,R,S, define

I (N) .= I (N)

N
.(3.9)

The following standard assumption is imposed on the sequences of fluid scaled
external arrival processes {E(N)} and initial conditions (η

(N)
0 , ν

(N)
0 ), N ∈ N.

ASSUMPTION 3.3. The following conditions are satisfied:

(1) There exists λ ∈ [0,∞) such that λ(N) = λ(N)/N → λ as N → ∞;
(2) As N → ∞, E(N) → E in DR+[0,∞) P-a.s., where E(t) = λt ;

(3) E[〈1, η
(N)
0 〉] < ∞ and E[〈1, ν

(N)
0 〉] < ∞ for each N ∈ N.

The following technical assumption was imposed on the hazard rate functions
in [15] to establish the fluid limit theorem.

ASSUMPTION 3.4. There exists Ls < Hs such that hs is either bounded or
lower-semicontinuous on (Ls,Hs), and likewise, there exists Lr < Hr such that
hr is either bounded or lower-semicontinuous on (Lr,Hr).

We conclude with a mild assumption on the interarrival distribution function
F (N).

ASSUMPTION 3.5. The interarrival distribution F (N) has a density.

3.2. Main results. The first result focuses on the existence of a stationary dis-
tribution for the state process.

THEOREM 3.2. For each N , under Assumption 3.5, {Y (N)
t , F (N)

t } is a Feller
process that has a stationary distribution.

The Feller property is proved in Proposition 4.2 and the existence of a stationary
distribution is established in Theorem 4.9. In Theorem 7.1, the state process is
also shown to be ergodic under an additional condition (Assumption 7.1) which
holds, for example, when the interarrival, reneging and service densities are strictly
positive and the latter two have support on (0,∞).

We now state the main result, which provides a first-order approximation for
stationary distributions of N -server queues.

THEOREM 3.3. Suppose Assumptions 3.1, 3.3 and 3.5 hold and for N ∈ N,
let Y

(N)∗ = (α
(N)
E,∗,X

(N)∗ , ν
(N)∗ , η

(N)∗ ) be a scaled stationary distribution for the N -
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server queue with abandonment. Then the sequence Y
(N)∗ ,N ∈ N, is tight. If, in

addition, Assumption 3.4 holds, then the limit of any convergent subsequence of
the sequence (X

(N)∗ , ν
(N)∗ , η

(N)∗ ),N ∈ N, almost surely takes values on the invari-
ant manifold Iλ. Furthermore, if Assumption 3.2 also holds, then the sequence
(X

(N)∗ , ν
(N)∗ , η

(N)∗ ), N ∈ N, converges to the unique element of Iλ.

A related discrete-time result was conjectured in Theorem 7.2 of Whitt [22].
In particular, Theorem 7.2 of [22] states that if the discrete model introduced in
[22] satisfies the assumptions that (i) each N -server queueing system converges
(for large times) to a unique stationary distribution; (ii) the sequence of fluid-
scaled stationary distributions is tight; and (iii) the sequence of fluid-scaled sta-
tionary distributions has a weak limit as N → ∞, this limit must be equal to the
unique steady-state associated with the fluid model described in [22]. The validity
of properties (ii) and (iii) was not established in [23]. In contrast, we consider the
continuous model, and for this model establish tightness and (under the additional
assumption that there is a unique invariant state) existence of a weak limit. The
proof of Theorem 3.3 is given in Section 6 and consists of the following main
steps. In Theorem 3.2, the Markovian nature of the state representation is used to
establish the existence of a stationary distribution for each N -server system. In
Theorem 6.2 a convenient representation for the state dynamics in the N -server
system (see Proposition 2.2) is used to establish tightness of any sequence of fluid-
scaled stationary distributions. It is shown in Section 7.2 that, in general, the steady
state (equivalently an element of the invariant manifold) need not in fact be unique.
Nevertheless, it is shown that any subsequential limit must be an invariant state,
and that when there is a unique invariant state, the desired convergence follows.
Sufficient conditions for uniqueness of the invariant state are given in Lemma 3.1.

The characterization of the stationary distribution and a better understanding of
the possible metastable behavior of the N -server queue in the presence of multiple
invariant states for the fluid remains a subject for future investigation.

4. Stationary distribution of the N -server queue. We now establish the ex-
istence of a stationary distribution for the Markovian state descriptor {Y (N)

t , F (N)
t }

for the system with N servers, under Assumption 3.5. First, in Section 4.1,
{Y (N)

t , F (N)
t }t≥0 is shown to be a Feller process (see Proposition 4.2). Then, in Sec-

tion 4.2, the Krylov–Bogoliubov existence theorem (cf. Corollary 3.1.2 of [6]) is
used to show that {Y (N)

t , F (N)
t }t≥0 has a stationary distribution. Finally, in the Ap-

pendix, ergodicity and positive Harris recurrence of the process {Y (N)
t , F (N)

t }t≥0

is established under an additional condition (Assumption 7.1). For conciseness, in
the rest of this section, N is fixed and the dependence on N is omitted from the
notation.
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4.1. Feller property. It follows from the definition of Y in (2.1) and Lem-
ma B.1 of [15] that Y is a so-called piecewise deterministic Markov process with
jump times {τ1, τ2, . . .} (see [12] for a precise definition of piecewise determinis-
tic Markov processes), where each jump time is either the arrival time of a new
customer, the time of a service completion or the end of a patience time. Note that
the set of jump times also includes the time of entry into service of each customer
because, due to the nonidling condition, each such entry time coincides with ei-
ther the arrival time of that customer or the time of service completion of another
customer. Let τ0 = 0. For each i ∈ Z+, Y evolves in a deterministic fashion on
[τi, τi+1),

Y(τi + t) = φY(τi)(t), t ∈ [0, τi+1 − τi),

where, for each y ∈ Y of the form y = (α, x,
∑k

i=1 δui
,
∑l

j=1 δzj
), k, l ∈ N, k ≤ N ,

we define

φy(t)
.=
(
α + t, x,

k∑
i=1

δui+t ,

l∑
j=1

δzj+t

)
, t ≥ 0.(4.1)

The Markovian semigroup of Y is defined in the usual way: for each t ≥ 0, y ∈ Y
and A ∈ B(Y), the set of Borel subsets of Y , let

Pt(y,A)
.= P
(
Y(t) ∈ A|Y(0) = y

)
.(4.2)

Moreover, for any measurable function ψ defined on Y and t ≥ 0, let Ptψ be the
function on Y given by

Ptψ(y)
.= E[ψ(Y (t))|Y(0) = y], y ∈ Y.(4.3)

We now show that the semigroup {Pt , t ≥ 0} is Feller in the sense of [6] (see the
beginning of Section 3.1 therein), that is, we show that for any ψ ∈ Cb(Y) and
t ≥ 0, Ptψ ∈ Cb(Y).

For each m ∈ Z+, let Ym be the state descriptor of an N -server queue with initial
state

Ym(0) = ym =
(
αm,xm,

km∑
i=1

δum
i
,

lm∑
j=1

δzm
j

)
∈ Y

for some km ∈ {0, . . . ,N} and lm ∈ N. Suppose that {Ym,m ∈ Z+} are defined on
the same probability space and ym converges to y0 as m → ∞. Due to the nature
of the topology on Y , the convergence of ym to y0 implies that xm = x0, km =
k0, lm = l0 for all sufficiently large m and, as m → ∞, αm → α0, um

i → u0
i and

zm
j → z0

j for each 1 ≤ i ≤ k0,1 ≤ j ≤ l0. Without loss of generality, we may as-

sume that xm = x0, km = k0, lm = l0 for every m ∈ Z+. For the mth N -server
system, m ∈ Z+, the time since the arrival of the last customer before time 0 is αm
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and hence, the random time to the arrival of the first customer after time 0 has dis-
tribution function F(αm+·)/(1−F(αm)), which has a density by Assumption 3.5.
Likewise, the distribution of the residual patience time of the initial customer as-
sociated with the point mass δzm

j
has density gr(zm

j + ·)/(1 − Gr(zm
j )) and the

distribution of the residual service time of the initial customer associated with the
point mass δum

i
has density gs(um

i + ·)/(1 − Gs(um
i )). For simplicity, henceforth

we will denote k0, l0, x0 simply by k, l, x. We assume that the elements of the
sequence {Ym,m ∈ Z+} are coupled so that:

• the interarrival times after the first arrival and the sequences of service times
and patience times of customers that arrive after time 0 are identical for each
N -server queue Ym,m ∈ Z+;

• the first arrival time of a new customer in the mth N -server queue converges to
the first arrival time in the 0th N -server queue (note that this is equivalent to the
convergence of the residual interarrival times at time zero in the corresponding
systems);

• for each j = 1, . . . , l, the residual patience time of the customer associated with
the point mass δzm

j
converges, as m → ∞, to the residual patience time of the

customer associated with the point mass δz0
j
;

• for each i = 1, . . . , k, the residual service time of the customer associated with
the point mass δum

i
converges, as m → ∞, to the residual service time of the

customer associated with the point mass δu0
i
.

LEMMA 4.1. Suppose Assumption 3.5 holds. For each m ∈ Z+ and n ∈ N,
let τm

n be the nth jump time of Ym. Then for each n ∈ N, τm
n converges to τ 0

n and
Ym(τm

n ) converges in Y to Y 0(τ 0
n ) a.s., as m → ∞.

PROOF. We prove the lemma by an induction argument. First, consider n = 1.
For each m ∈ Z+, the first jump time τm

1 is the minimum of the first arrival time
of a new customer, the residual patience times of initial customers with potential
waiting times in the set {zm

j ,1 ≤ j ≤ l} and the residual service times of initial
customers associated with ages in the set {um

i ,1 ≤ i ≤ k}. It follows directly from
the assumptions on {Ym,m ∈ Z+} that for every realization,

τm
1 → τ 0

1 , as m → ∞.(4.4)

Since the interarrival distribution F , the service time distribution function Gs and
the patience time distribution function Gr are independent and have densities, with
probability 1, τ 0

1 coincides with exactly one of the following in the 0th system:
the first arrival time of a new customer, the residual patience time of an initial
customer with initial waiting time z0

j ,1 ≤ j ≤ l, or the residual service time of

an initial customer with age u0
i ,1 ≤ i ≤ k. Let us fix a realization such that τ 0

1 is
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equal to the first arrival time of a new customer in the 0th system. The remaining
two cases can be handled similarly. In this case, by the convergence of τm

1 to τ 0
1 ,

the convergence of the other quantities stated above and the coupling construction,
for all sufficiently large m, τm

1 is equal to the first arrival time of a new customer
in the mth system. Hence, for all sufficiently large m, the first jump of Ym is due
to the first arrival of a new customer in the mth system. For such m, since Ym

evolves in a deterministic fashion on [0, τm
1 ) described by the continuous function

φ introduced in (4.1), we have

Ym(τm
1 −) =

(
αm + τm

1 , x,

k∑
i=1

δum
i +τm

1
,

l∑
j=1

δzm
j +τm

1

)
.

If k = N and x ≥ k = N , then all the servers are busy and the customer that arrives
at τm

1 will have to wait in queue. Thus, by the coupling construction,

Ym(τm
1 ) =

(
0, x + 1,

k∑
i=1

δum
i +τm

1
,

l∑
j=1

δzm
j +τm

1
+ δ0

)
.

On the other hand, if k < N , then x = k and there is at least one idle server present.
Hence, the customer will join service immediately upon arrival at time τm

1 . Thus,
in this case,

Ym(τm
1 ) =

(
0, x + 1,

k∑
i=1

δum
i +τm

1
+ δ0,

l∑
j=1

δzm
j +τm

1
+ δ0

)
.

In both cases, for the chosen realization, we have Ym(τm
1 ) → Y 0(τ 0

1 ) as m → ∞.
Now, suppose that τm

i converges to τ 0
i and Ym(τm

i ) converges to Y 0(τ 0
i ) a.s.,

as m → ∞, for 1 ≤ i ≤ n, and consider i = n + 1. Fix a realization such that
τm
n converges to τ 0

n and Ym(τm
n ) converges to Y 0(τ 0

n ) as m → ∞. By the same
argument as in the case n = 1, we may assume, without loss of generality, that for
the chosen realization and m ∈ Z+, the jump at τm

n for Ym is due to the arrival of a
new customer. Then, for each m ∈ Z+, Ym(τm

n ) has the following representation:

Ym(τm
n ) =

(
0, xm

n ,

km
n∑

i=1

δum
i,n

,

lmn∑
j=1

δzm
j,n

)

for some km
n , lmn , xm

n ∈ Z+, um
i,n, z

m
j,n ∈ R+ with xm

n ≤ km
n + lmn , km

n ≤ N . Due to the

induction hypothesis and the topology of Y , for all sufficiently large m, xm
n = x0

n ,
km
n = k0

n, lmn = l0
n, um

i,n → u0
i,n and zm

j,n → z0
j,n as m → ∞ for each 1 ≤ i ≤ k0

n and

1 ≤ j ≤ l0
n. The argument that was used for the case n = 1 can be used again to

show that τm
n+1 converges to τ 0

n+1 and Ym(τm
n+1) converges to Y 0(τ 0

n+1) a.s., as
m → ∞. This completes the induction argument and hence, proves the lemma.

�



STATIONARY DISTRIBUTIONS OF MANY-SERVER QUEUES 495

PROPOSITION 4.2. Suppose that the interarrival distribution F has a density.
Then the semigroup {Pt , t ≥ 0} is Feller.

PROOF. It is easy to see from the definition of the function Ptψ in (4.3) that
when ψ is bounded, Ptψ is also bounded. To prove the proposition, it suffices to
show that Ptψ is a continuous function with respect to the topology on Y . Fix t ≥
0. Let y0 = (α0, x0,μ0, π0) ∈ Y and ym = (αm, xm,μm,πm),m ∈ Z+, be points
in Y such that, as m → ∞, ym converges in Y to y0. Since Z+ is a discrete space
and xm → x0 as m → ∞, it must be that for all sufficiently large m, xm = x0.
Without loss of generality, we assume that xm = x0 for each m ∈ N. Consider
a sequence of coupled N -server queues {Ym,m ∈ Z+} carried out earlier such
that Ym(0) = ym for each m ∈ Z+. Then Ptψ(ym) = E[ψ(Ym(t))]. To prove the
continuity of Ptψ , it suffices to show that Ym(t) → Y 0(t) a.s., as m → ∞. Indeed,
since ψ ∈ Cb(Y), the latter convergence would imply that ψ(Ym(t)) → ψ(Y 0(t))

and hence, by the bounded convergence theorem, that Ptψ(ym) → Ptψ(y0) as
m → ∞, which would show that {Pt , t ≥ 0} is Feller.

It only remains to prove that almost surely, Ym(t) → Y 0(t) as m → ∞. Since
the interarrival distribution F , service distribution Gs and patience distribution Gr

all have densities, with probability one t does not belong to the set {τ 0
n , n ∈ N} of

jump times of Y 0. Fix a realization such that t does not belong to the set {τ 0
n , n ∈ N}

and such that for each n ∈ N, τm
n converges to τ 0

n and Ym(τm
n ) converges in Y to

Y 0(τ 0
n ), as m → ∞. By Lemma 4.1, this can be done on a set of probability one.

Let r
.= sup{n : τ 0

n < t}. Then τ 0
r < t < τ 0

r+1 and hence, for all sufficiently large
m, τm

r < t < τm
r+1. By the convergence of τm

r to τ 0
r and Ym(τm

r ) to Y 0(τ 0
r ), as

m → ∞, as well as the definition of φ in (4.1), we conclude that Ym(t) → Y 0(t),
as m → ∞. Thus, we have shown that Ym(t) → Y 0(t) a.s., as m → ∞. �

4.2. Existence of stationary distributions. In this section, it is shown that the
Feller process {Yt , Ft}t≥0 admits a stationary distribution. To achieve this, we ap-
ply the Krylov–Bogoliubov theorem (cf. Corollary 3.1.2 of [6]) which requires
showing that the following family {Lt, t ≥ 0} of probability measures associated
with {Yt , Ft}t≥0 is tight. For each measurable set B ⊂ Y and t > 0, define

Lt(B)
.= 1

t

∫ t

0
P
(
Y(s) ∈ B

)
ds.

Obviously, for each t ≥ 0, Lt is a probability measure on (Y, B(Y)). We now recall
some useful criteria for tightness of a family of random measures, which can be
derived from A7.5 of [14] (see also Exercise 4.11 of [14]).

PROPOSITION 4.3. A family {πt }t≥0 of MF [0,H)-valued random variables
is tight if the following two conditions hold:

(1) supt≥0 E[〈1, πt 〉] < ∞;
(2) limc→H supt≥0 E[πt [c,H)] → 0.
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LEMMA 4.4. Suppose Assumption 3.1 holds and E[〈1, η0〉] < ∞. Then
supt≥0 E[〈1, ηt 〉] < ∞ and supt≥0 E[〈1, νt 〉] < ∞.

PROOF. Let f = 1 in (2.10) and (recalling that the superscript N is being sup-
pressed from the notation) let e(t)

.= E[E(t)], t ≥ 0. Using integration-by-parts, it
follows that

E[〈1, ηt 〉] ≤ E[〈1, η0〉] +
∫ t

0

(
1 − Gr(t − s)

)
de(s)

= E[〈1, η0〉] + e(t) −
∫ t

0
e(s)gr(t − s) ds

= E[〈1, η0〉] + e(t)
(
1 − Gr(t)

)− ∫ t

0

(
e(t) − e(t − s)

)
gr(s) ds.

Since E is a renewal process with rate λ, e(t)/t → λ as t → ∞ by the key renewal
theorem. Moreover, the finite mean condition (3.1) implies t (1 − Gr(t)) → 0
as t → ∞. Therefore, we have supt≥0 e(t)(1 − Gr(t)) < ∞. The Blackwell re-
newal theorem (cf. Theorem 4.3 of [1]) implies that e(t) − e(t − s) → sλ as
t → ∞ and hence, that supt≥0

∫ t
0 (e(t) − e(t − s))gr(s) ds < ∞. Combining

these relations with (3) of Assumption 3.3 and the last display, we conclude that
supt≥0 E[〈1, ηt 〉] < ∞.

On the other hand, since each νt is the sum of at most N unit Dirac masses, it
trivially follows that supt≥0 E[〈1, νt 〉] ≤ N < ∞. �

To show that {ηt }t≥0 and {νt }t≥0 satisfy the second property in Proposition 4.3,
note that by choosing f = 1[c,Hr ), c > 0, in (2.10), we obtain for t ≥ 0,

E[ηt [c,Hr)] ≤ E

[∫
[0,H r )

1[c,Hr )(x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

]
(4.5)

+
∫ t

0
1[c,Hr )(t − s)

(
1 − Gr(t − s)

)
de(s)

and, likewise, by choosing f = 1[c,Hs) in (2.11) it follows that for t ≥ 0,

E[νt [c,Hs)] = E

[∫
[0,H s)

1[c,Hs)(x + t)
1 − Gs(x + t)

1 − Gs(x)
ν0(dx)

]
(4.6)

+ E

[∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
dK(s)

]
.

We now establish two supporting lemmas.

LEMMA 4.5. Suppose Assumption 3.1 holds and E[〈1, η0〉] < ∞. We have

lim
c→Hr

sup
t≥0

E

[∫
[0,H r )

1[c,Hr )(x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

]
= 0(4.7)
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and

lim
c→Hs

sup
t≥0

E

[∫
[0,H s)

1[c,Hs)(x + t)
1 − Gs(x + t)

1 − Gs(x)
ν0(dx)

]
= 0.(4.8)

PROOF. When Hr < ∞, we have

sup
t≥0

E

[∫
[0,H r )

1[c,Hr )(x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

]

≤ sup
t≥0

E

[∫
[0,H r )

1[c,Hr )(x + t)η0(dx)

]

= sup
t∈[0,c)

E

[∫
[0,H r )

1[c,Hr )(x + t)η0(dx)

]

∨ sup
t∈[c,Hr )

E

[∫
[0,H r )

1[c,Hr )(x + t)η0(dx)

]
.

Using E[〈1, η0〉] < ∞ to justify the application of the dominated convergence the-
orem, we obtain

lim
c→Hr

sup
t∈[c,Hr )

E

[∫
[0,H r )

1[c,Hr )(x + t)η0(dx)

]
≤ lim

c→Hr
E
[
η0[0,H r − c)

]= 0.

On the other hand, we know that

sup
t∈[0,c)

E

[∫
[0,H r )

1[c,Hr )(x + t)η0(dx)

]

≤ sup
t∈[0,c)

E[η0(c − t,H r − t)].

We show by contradiction that supt∈[0,c) E[η0(c − t,H r − t)] → 0 as c → Hr .
Suppose this is not true. Then there exist δ > 0 and sequences {cn}n∈N and {tn}n∈N

such that cn → Hr as n → ∞, tn ∈ [0, cn) for each n ∈ N and E[η0(cn − tn,H
r −

tn)] > δ for each n ∈ N. Because we are considering the case Hr < ∞, {tn}n∈N is
bounded and so we can take a subsequence, which we call again {tn}n∈N, such that
limn→∞ tn = t∗ ∈ [0,H r ]. In turn, this implies

lim
n→∞E[η0(cn − tn,H

r − tn)] = 0,

which contradicts the initial hypothesis. Thus, supt∈[0,c) E[η0(c− t,H r − t)] → 0.
Together with the last three displays, this implies that (4.7) holds when Hr < ∞.
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On the other hand, when Hr = ∞ we have

sup
t≥0

E

[∫
[0,H r )

1[c,Hr )(x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

]

≤ max
(

sup
t∈[0,c/2)

E

[∫
[0,∞)

1[c,∞)(x + t)η0(dx)

]
,

sup
t∈[c/2,∞)

E

[∫
[0,∞)

1 − Gr(x + t)

1 − Gr(x)
η0(dx)

])

≤ E[η0(c/2,∞)] ∨ E

[∫
[0,∞)

1 − Gr(x + c/2)

1 − Gr(x)
η0(dx)

]
.

Sending c → ∞ on both sides, and using the fact that E[〈1, η0〉] < ∞, an applica-
tion of the dominated convergence theorem shows that the right-hand side vanishes
and thus (4.7) holds in this case too. The proof of (4.8) is exactly analogous and is
thus omitted. �

LEMMA 4.6. Suppose Assumption 3.1 holds and let e(t)
.= E[E(t)], t ≥ 0.

For (H,G) = (H r,Gr) and (H,G) = (Hs,Gs), we have

lim
c→H

sup
t≥0

∫ t

0
1[c,H)(t − s)

(
1 − G(t − s)

)
de(s) = 0.(4.9)

PROOF. E is a (delayed) renewal process with rate λ and due to Assump-
tion 3.1 and Proposition 4.1 in Chapter V of [1], the function x �→ 1[c,H)(x)(1 −
G(x)) is directly Riemann integrable. Thus, by the key renewal theorem (cf. The-
orem 4.7 of [1]) we obtain

lim
t→∞

∫ t

0
1[c,H)(t − s)

(
1 − G(t − s)

)
de(s) = 1

λ

∫
[0,∞)

1[c,H)(x)
(
1 − G(x)

)
dx.

Since the integrability condition imposed in Assumption 3.1 implies that∫
[0,∞) 1[c,H)(x)(1 − G(x)) dx → 0 as c → H , we have the desired result. �

LEMMA 4.7. Suppose Assumption 3.1 holds and the initial condition satisfies
E[〈1, η0] < ∞. Then the family {ηt }t≥0 of MF [0,H r)-valued random variables
and the family {νt }t≥0 of MF [0,H s)-valued random variables are tight.

PROOF. Both families satisfy the first condition of Proposition 4.3 due to
Lemma 4.4. Combining (4.5) with (4.7) and Lemma 4.6 for the case (H,G) =
(Hr,Gr), it follows that {ηt }t≥0 also satisfies the second condition of Proposi-
tion 4.3 and is thus tight.

It only remains to show that {νt }t≥0 also satisfies the second condition of Propo-
sition 4.3. For this, it suffices to show that as c → Hs , the supremum (over t) of the
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right-hand side of (4.6) goes to zero. Now, let k(t)
.= E[K(t)] for t ≥ 0. Applying

the integration-by-parts and change of variable formulae to the second term on the
right-hand side of (4.6), we see that

sup
t≥0

E

[∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
dK(s)

]

= sup
t>c

∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
dk(s)

= sup
t>c

(
k(t − c)

(
1 − Gs(c)

)− k
(
(t − Hs)+

)(
1 − Gs(t ∧ Hs)

)
(4.10)

−
∫ t∧Hs

c
k(t − s)gs(s) ds

)

≤ sup
t>c

(
k(t − c)

(
1 − Gs(t)

)+ ∫ t∧Hs

c

(
k(t − c) − k(t − s)

)
gs(s) ds

)
.

Taking expectations of both sides of (2.6), we obtain for each t ≥ 0,

E[Q(0)] + e(t) = E[Q(t)] + E[R(t)] + k(t).

Since Q and R are nonnegative and R is increasing, it follows that

k(t − c) ≤ e(t − c) + E[Q(0)]
and

k(t − c) − k(t − s) ≤ e(t − c) − e(t − s) + (
E[Q(t − s)] − E[Q(t − c)]).

Substituting these inequalities into (4.10) and carrying out another integration-by-
parts, we obtain

sup
t>c

∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
dk(s)

≤ sup
t>0

∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
de(s)

(4.11)
+ sup

t>c
E[Q(0)](1 − Gs(t)

)

+ sup
t>c

∫ t∧Hs

c

(
E[Q(t − s)] − E[Q(t − c)])gs(s) ds.

Applying Lemma 4.6, with (H,G) = (Hs,Gs), we have

lim
c→Hs

sup
t≥0

∫ t

0
1[c,Hs)(t − s)

(
1 − Gs(t − s)

)
de(s) = 0.
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Moreover,

lim
c→Hs

sup
t>c

E[Q(0)](1 − Gs(t)
)= E[Q(0)] lim

c→Hs

(
1 − Gs(c)

)= 0.

Also, since Q(t) ≤ 〈1, ηt 〉 by (2.3), we have

sup
t>c

∫ t∧Hs

c

(
E[Q(t − s)] − E[Q(t − c)])gs(s) ds ≤ 2 sup

t≥0
E[〈1, ηt 〉](1 − Gs(c)

)
.

Since Lemma 4.4 implies supt≥0 E[〈1, ηt 〉] < ∞, the right-hand side of the above
inequality tends to zero as c → Hs . Combining the last five assertions with (4.10)
and (4.11), it follows that as c → Hs , the supremum over t ≥ 0 of the second term
on the right-hand side of (4.6) vanishes to zero. On the other hand, as c → Hs , the
supremum over t ≥ 0 of the first term on the right-hand side of (4.6) also vanishes
to zero by (4.8). Thus, we have shown that supt≥0 E[νt [c,Hs)] → 0 as c → Hs ,
and the proof of the lemma is complete. �

LEMMA 4.8. Suppose Assumption 3.1 holds and E[〈1, η0〉] < ∞. The family
of probability measures {Lt }t≥0 is tight.

PROOF. By Lemma 4.7, we know that for each δ > 0, there exist two compact
subsets C̃δ ⊂ MF [0,H s) and D̃δ ⊂ MF [0,H r) such that

inf
t≥0

P(νt ∈ C̃δ) ≥ 1 − δ/2,

(4.12)
inf
t≥0

P(ηt ∈ D̃δ) ≥ 1 − δ/2.

It follows from (2.3) and (2.4) that X(t) ≤ 〈1, νt 〉+〈1, ηt 〉 for each t ≥ 0. Together
with (4.12) and the fact that the map μ → 〈1,μ〉 is continuous, this implies that
there exists b > 0 such that

inf
t≥0

P
(
X(t) ≤ b

)≥ 1 − δ.(4.13)

On the other hand, by Theorem 4.5 in Chapter V of [1], it follows that as t → ∞,
αE(t) converges weakly to the distribution

F0(t)
.= λ

∫ t

0

(
1 − F(y)

)
dy.(4.14)

Thus, there exist T0 > 0 and c > 0 such that for all t ≥ T0,

P
(
αE(t) ≤ a

)≥ F0(a) − δ/2 ≥ 1 − δ.

By choosing a large enough, we may assume without loss of generality, that

inf
t∈[0,T0]

P
(
αE(t) ≤ a

)≥ 1 − δ.
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Define Cδ
.= [0, a] × [0, b] × C̃δ × D̃δ . Then the set Cδ is compact and Lt(Cδ) ≥

1 − δ for each t ≥ 0, which proves the lemma. �

Since {Yt , Ft }t≥0 is a Feller process by Proposition 4.2, and Lemma 4.8 is appli-
cable when the initial condition satisfies E[〈1, η0〉] < ∞, the Krylov–Bogoliubov
theorem immediately yields the following result.

THEOREM 4.9. Suppose that Assumptions 3.1 and 3.5 hold. Then the state de-
scriptor (αE,X, ν, η) has a stationary distribution (αE,∗,X∗, ν∗, η∗) that satisfies
E[〈1, η∗〉] < ∞.

5. Fluid limit. In Section 5.1, we describe a deterministic dynamical system
that was shown in Theorems 3.5 and 3.6 of [15] to arise as the so-called fluid
limit of a many-server queue with abandonment that has service time and patience
time distribution functions Gs and Gr , respectively. In Section 5.2, we identify the
invariant manifold associated with the fluid limit, which is then used in Section 6
to obtain a first-order asymptotic approximation to the stationary distribution of
the fluid scaled state descriptor Y (N).

5.1. Fluid equations. The state of the fluid system at time t is represented by
the triplet

(X(t), νt , ηt ) ∈ R+ × MF [0,H s) × MF [0,H r).

Here, X(t) represents the mass (or, equivalently, limiting scaled number of cus-
tomers) in the system at time t , νt [0, x) represents the mass of customers in service
at time t who have been in service for less than x units of time, whereas ηt [0, x)

represents the mass of customers in the system who, at time t , have been in the
system no more than x units of time and whose patience time exceeds their time
in system (which implies, in particular, that they have not yet abandoned the sys-
tem). The inputs to the system are the (limiting) cumulative arrival process E and
the initial conditions X(0), ν0 and η0. Thus, 〈1, ν0〉 represents the total mass of
customers in service at time 0 and the fluid analog of the nonidling condition (2.5)
is

1 − 〈1, ν0〉 = [1 − X(0)]+.(5.1)

The quantity 〈1, η0〉 represents the total mass of customers at time 0 whose residual
patience times are positive. Hence, we have

[X(0) − 1]+ ≤ 〈1, η0〉.
Thus, the space of possible input data for the fluid equations is given by

S0
.= {(e, x, ν, η) ∈ IR+[0,∞) × R+ × MF [0,H s) × MF [0,H r) :

(5.2)
1 − 〈1, ν〉 = [1 − x]+, [x − 1]+ ≤ 〈1, η〉},
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where recall that IR+[0,∞) is the subset of nondecreasing functions f ∈
DR+[0,∞) with f (0) = 0. Let Fηt (x) denote ηt [0, x] for each x ∈ [0,H r).

DEFINITION 5.1 (Fluid equations). Given any (E,X(0), ν0, η0) ∈ S0, we say
that the càdlàg function (X, ν, η) taking values in R+ × MF [0,H s)× MF [0,H r)

satisfies the associated fluid equations if for every t ∈ [0,∞),∫ t

0
〈hr, ηs〉ds < ∞,

∫ t

0
〈hs, νs〉ds < ∞(5.3)

for every bounded Borel measurable function f defined on R+,∫
[0,H s)

f (x)νt (dx) =
∫
[0,H s)

f (x + t)
1 − Gs(x + t)

1 − Gs(x)
ν0(dx)

(5.4)

+
∫ t

0
f (t − s)

(
1 − Gs(t − s)

)
dK(s)

and ∫
[0,H r )

f (x)ηt (dx) =
∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)

(5.5)

+
∫ t

0
f (t − s)

(
1 − Gr(t − s)

)
dE(s),

where

K(t) = [X(0) − 1]+ − [X(t) − 1]+ + E(t) − R(t);(5.6)

X(t) = X(0) + E(t) −
∫ t

0
〈hs, νs〉ds − R(t);(5.7)

R(t) =
∫ t

0

(∫ [X(s)−1]+

0
hr((F ηs )−1(y)) dy

)
ds;(5.8)

1 − 〈1, νt 〉 = [1 − X(t)]+;(5.9)

[X(t) − 1]+ ≤ 〈1, ηt 〉.(5.10)

Note that these fluid equations are not of the same form as those given in Def-
inition 3.3 of [15] because the analogs of (5.4) and (5.5) are presented in dynam-
ical form in [15] and are only required to be satisfied for continuous functions
with compact support (in particular, see equations (3.9) and (3.11) of [15]). How-
ever, these two pairs of equations are equivalent due to Theorem 4.1 of [17] or,
equivalently, Proposition 4.1 of [15], and can be shown to hold for the larger class
bounded measurable functions using standard monotone convergence arguments.
Theorems 3.5 and 3.6 of [15] show that under some mild assumptions on the in-
put data E, ν0 and η0 and the hazard rate functions hr and hs (which are stated as
Assumptions 3.3 and 3.4 here), there exists a unique solution to the fluid equations.
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For future purposes, note that if (X, ν, η) satisfy the fluid equations for some
(E,X(0), ν0, η0) ∈ S0, then K also satisfies

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫ t

0
〈hs, νs〉ds.(5.11)

Indeed, this is simply the mass balance equation for the fluid in service and can
be derived from (5.6), (5.7) and (5.9). Moreover, combining (5.11) and (5.4), with
f = 1, and using an integration-by-parts argument (see Corollary 4.2 of [15]), it is
easy to see that K satisfies the renewal equation

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫
[0,H s)

Gs(x + t) − Gs(x)

1 − Gs(x)
ν0(dx)

(5.12)

+
∫ t

0
gs(t − s)K(s) ds.

Since the first two terms on the right-hand side are bounded, by the key renewal
theorem (see, e.g., Theorem 4.3 in Chapter V of [1]), K admits the representation

K(t) = 〈1, νt 〉 − 〈1, ν0〉 +
∫
[0,H s)

Gs(x + t) − Gs(x)

1 − Gs(x)
ν0(dx)

+
∫ t

0

(
〈1, νt−s〉 − 〈1, ν0〉(5.13)

+
∫
[0,H s)

Gs(x + t − s) − Gs(x)

1 − Gs(x)
ν0(dx)

)
us(s) ds,

where us is the density of the renewal function Us associated with Gs (us ex-
ists because Gs is assumed to have a density). Also, it will prove convenient to
introduce the fluid queue length process Q defined by

Q(t)
.= [X(t) − 1]+, t ∈ [0,∞).(5.14)

For every t ∈ [0,∞), the inequality in (5.10) implies

Q(t) ≤ 〈1, ηt 〉,(5.15)

and (5.6) and (5.14), when combined, show that

Q(0) + E(t) = Q(t) + K(t) + R(t).(5.16)

The fluid equations without abandonment can be defined in a similar fashion.
Let

S̃0
.= {(e, x, ν) ∈ IR+[0,∞) × R+ × MF [0,H s) :

(5.17)
1 − 〈1, ν〉 = [1 − x]+}.
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DEFINITION 5.2. Given any (E,X(0), ν0) ∈ S̃0, we say (X, ν) ∈ R+ ×
MF [0,H s) is a solution to the associated fluid equations in the absence of aban-
donment if for every t ∈ [0,∞), the second inequality in (5.3) holds, and equations
(5.4), (5.6), (5.7) and (5.9) hold with R ≡ 0.

REMARK 5.3. The case when customers do not renege corresponds to the
case when the patience time distribution Gr has unit mass at ∞. Formally setting
dGr = δ∞ in Definition 5.1, we obtain the fluid limit equations in the absence of
abandonment specified in Definition 5.2 (also refer to Definition 3.3 in [17]). In
fact, in this case Gr(x) = 0 and hence, hr(x) = 0 for all x ∈ [0,∞). From this
and (5.8) we see that R(t) = 0 for all t ≥ 0. Also, note that (5.3), (5.4), (5.7), (5.9)
and (5.11) are equivalent to (3.4)–(3.8) of Definition 3.3 in [17]. At last, by letting
f = 1 in (5.5), since Gr is zero on [0,∞), we have 〈1, ηt 〉 = 〈1, η0〉 + E(t). On
the other hand, by (5.7) and (5.2), we have

[X(t) − 1]+ ≤ [[X(0) − 1]+ + E(t)
]+ ≤ [〈1, η0〉 + E(t)]+ = 〈1, ηt 〉.

This shows that (5.10) holds automatically when there is no abandonment.

5.2. Invariant manifold. We now introduce a set of states associated with the
fluid equations described in Definition 5.1, which we call the invariant mani-
fold. As shown in Section 6, when the invariant manifold consists of a single
point, it is the limit of the scaled sequence of convergent stationary distributions
(X

(N)∗ , ν
(N)∗ , η

(N)∗ ) = 1
N

(X
(N)∗ , ν

(N)∗ , η
(N)∗ ).

DEFINITION 5.4 (Invariant manifold). Given λ ∈ (0,∞), a state (x0, ν0, η0) ∈
R+ × MF [0,H s)× MF [0,H r) such that (λ1, x0, ν0, η0) ∈ S0 is said to be invari-
ant for the fluid equations described in Definition 5.1 with arrival rate λ if the solu-
tion (X, ν, η) to the fluid equations associated with the input data (λ1, x0, ν0, η0)

satisfies (X(t), νt , ηt ) = (x0, ν0, η0) for all t ≥ 0. The set of all invariant states for
the fluid equation with rate λ will be referred to as the invariant manifold (associ-
ated with the fluid equations with rate λ).

THEOREM 5.5 (Characterization of the invariant manifold). Given λ ∈
(0,∞), the set Iλ defined in (3.6) is the invariant manifold associated with the
fluid equations with arrival rate λ.

Theorem 5.5 is a consequence of the next two lemmas. Let λ ∈ (0,∞) and
(x0, ν0, η0) be an invariant state according to Definition 5.4. Then the unique solu-
tion (X, ν, η) to the fluid equations associated with the input data (λ1, x0, ν0, η0) ∈
S0 satisfies (X(t), νt , ηt ) = (x0, ν0, η0) for all t ≥ 0. Let Q,R,K be the associ-
ated auxiliary processes satisfying (5.14), (5.8), (5.6), and recall the definition of
the measures ν∗ and η∗ given in (3.3) and (3.4), respectively.
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LEMMA 5.6. If (x0, ν0, η0) is an invariant state, then η0(dx) = λ(1 −
Gr(x)) dx = λη∗(dx).

PROOF. On substituting the relation ηt = η0, t ≥ 0, into (5.5), we see that for
every f ∈ Cb(R+) and t ∈ [0,∞),∫

[0,H r )
f (x)η0(dx)

=
∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η0(dx)(5.18)

+ λ

∫ t

0
f (s)

(
1 − Gr(s)

)
ds.

Sending t → ∞ and applying the dominated convergence theorem, the first term
vanishes and we obtain∫

[0,H r )
f (x)η0(dx) = λ

∫ ∞
0

f (s)
(
1 − Gr(s)

)
ds =

∫
[0,H r )

f (s)λ
(
1 − Gr(s)

)
ds.

It then follows that η0(dx) = λη∗(dx). �

LEMMA 5.7. If (x0, ν0, η0) is an invariant state, then ν0(dx) = (λ∧1)ν∗(dx),
x0 = λ if λ < 1 and x0 ∈ Bλ if λ ≥ 1. Moreover, if either x0 = λ < 1, or λ > 1 and
x0 ∈ Bλ, then (x0, (λ ∧ 1)ν∗, λη∗) is an invariant state.

PROOF. Suppose (x0, ν0, η0) is an invariant state. Since X(t) = x0, we have
Q(t) = Q(0) by (5.14). Since, in addition, ηt = η0 = λη∗ by Lemma 5.6, we have∫ [X(t)−1]+

0
hr((F ηt )−1(y)) dy =

∫ [x0−1]+

0
hr((F λη∗)−1(y)) dy.

Let p denote the term on the right-hand side of the above display. Then for each
t ≥ 0, by (5.8) we have R(t) = pt and by (5.16) we have K(t) = (λ −p)t . Substi-
tuting νt = ν0 in (5.4), we obtain for every f ∈ Cb(R+) and t ∈ [0,∞),∫

[0,H s)
f (x)ν0(dx)

=
∫
[0,H s)

f (x + t)
1 − Gs(x + t)

1 − Gs(x)
ν0(dx)(5.19)

+
∫ t

0
f (s)

(
1 − Gs(s)

)
(λ − p)ds.

Sending t → ∞ and applying the dominated convergence theorem, we obtain∫
[0,H s)

f (x)ν0(dx) = (λ − p)

∫ ∞
0

f (s)
(
1 − Gs(s)

)
ds

= (λ − p)

∫
[0,H r )

f (s)
(
1 − Gs(s)

)
ds.
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Thus, ν0(dx) = (λ − p)ν∗(dx) and hence, 〈1, ν0〉 = λ − p.
To show that ν0(dx) = (λ∧ 1)ν∗(dx), it suffices to show that λ−p = 〈1, ν0〉 =

λ ∧ 1. If x0 ≤ 1, then p = 0 by its definition. Hence, ν0(dx) = λν∗(dx) and λ =
〈1, ν0〉 ≤ 1. Thus, in this case, λ − p = λ ∧ 1. On the other hand, if x0 > 1, it
follows from (5.9) that 〈1, ν0〉 = 1. Since we also have 〈1, ν0〉 = λ − p, it follows
that λ = p + 1 ≥ 1. Thus, in this case too, we have λ − p = λ ∧ 1. This proves the
first assertion of the lemma.

For the second assertion of the lemma, we observe that when λ < 1, the equal-
ity λ − p = λ ∧ 1 implies p = 0 and 〈1, ν0〉 = λ < 1. Hence, (5.1) implies
x0 = 〈1, ν0〉 = λ. If λ ≥ 1, we have ν0(dx) = ν∗(dx) and the equality λ−p = λ∧1
implies p = λ − 1. Then x0 ≥ 〈1, ν0〉 = 1 and

λGr((F λη∗)−1((x0 − 1)+
))= ∫ (x0−1)+

0
hr((F λη∗)−1(y)) dy = p = λ − 1.

Hence, x0 belongs to the set Bλ defined in (3.5). The last assertion can be verified
directly by substituting the initial condition into the fluid equations. This completes
the proof of the lemma. �

6. The limit of scaled stationary distributions. This section is devoted to
the proof of Theorem 3.3. Suppose Assumptions 3.1 and 3.5 hold and let Y

(N)∗ =
(α

(N)
E,∗,X

(N)∗ , ν
(N)∗ , η

(N)∗ ), N ∈ N, be a sequence of scaled stationary distributions
for the N -server queue, which exists by Theorem 4.9. When Assumption 3.2 also
holds, let (x∗, (λ ∧ 1)ν∗, λη∗) be the unique element of the invariant manifold Iλ.
The main result of this section is to show that, as N → ∞,

(
X(N)∗ , ν(N)∗ , η(N)∗

)⇒ (
x∗, (λ ∧ 1)ν∗, λη∗

)
.(6.1)

We first show in Section 6.1 that the sequence {(X(N)∗ , ν
(N)∗ , η

(N)∗ ),N ∈ N} is
tight. Then, in Section 6.2, we show that (without imposing Assumption 3.2) the
weak limit of every convergent subsequence must almost surely be an invariant
state. When there is a unique invariant state, this proves (6.1). Note that the method
of proof does not explicitly require that the stationary distribution for each N -
server queue be unique. For each N ∈ N, recall the definition given in (3.8) of the
fluid-scaled state process

Y (N) = (
α

(N)
E ,X(N), ν(N), η(N))(6.2)

for the N -server queue with abandonment associated with the initial condition
Y (N)(0) = (α

(N)
E,∗,X

(N)∗ , ν
(N)∗ , η

(N)∗ ). Let Q(N),R(N),K(N) be the fluid-scaled aux-
iliary processes associated with Y (N) that were introduced in Section 2.2.
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6.1. Tightness. To establish tightness of the sequence {Y (N)∗ }N∈N, we will
make use of the criteria for tightness of measure-valued random variables given
in Proposition 4.3.

LEMMA 6.1. Let c ∈ [0,H r). Then, for each integer n ≥ 2, η
(N)∗ and ν

(N)∗
satisfy the following relations:

E
[
η(N)∗ [c,Hr)

]
= E

[∫
[0,H r )

1 − Gr(x + nc)

1 − Gr(x)
η(N)∗ (dx)

]
(6.3)

+ E

[∫
[0,c]

n∑
j=2

(
1 − Gr(jc − s)

)
dE(N)(s)

]
,

E
[
ν(N)∗ [c,Hs)

]
= E

[∫
[0,H s)

1 − Gs(x + nc)

1 − Gs(x)
ν(N)∗ (dx)

]
(6.4)

+ E

[∫
[0,c]

n∑
j=2

(
1 − Gs(jc − s)

)
dK(N)(s)

]
.

PROOF. We only prove (6.3) because (6.4) can be proved in the same way. Fix
c ∈ [0,H r). Dividing both sides of (2.10) by N and setting η

(N)
0 = η

(N)∗ , we obtain
for each bounded measurable function f on R+ and t > 0,

E
[〈
f,η

(N)
t

〉]= E

[∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η(N)∗ (dx)

]
(6.5)

+ E

[∫
[0,t]

f (t − s)
(
1 − Gr(t − s)

)
dE(N)(s)

]
.

Since the initial conditions are stationary, η(N)
t has the same distribution as η

(N)∗ for
every t ≥ 0. Therefore, by substituting f = 1[c,Hr ) and t = c in (6.5), and noting
that F (N)(0) = 0, 1[c,Hr )(x + c) = 1 for every x ≥ 0 and 1[c,Hr )(c − s) = 0 for
every s ∈ (0, c], we obtain

E
[
η(N)∗ [c,Hr)

]= E
[
η(N)

c [c,Hr)
]

= E

[∫
[0,H r )

1 − Gr(x + c)

1 − Gr(x)
η(N)∗ (dx)

]

= E

[∫
[0,H r )

1 − Gr(x + c)

1 − Gr(x)
η(N)

c (dx)

]
.
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Next, choosing f = (1 − Gr(· + c))/(1 − Gr(·)) and t = c in (6.5), we obtain

E

[∫
[0,H r )

1 − Gr(x + c)

1 − Gr(x)
η(N)

c (dx)

]
= E

[∫
[0,H r )

1 − Gr(x + 2c)

1 − Gr(x)
η(N)∗ (dx)

]

+ E

[∫
[0,c]

(
1 − Gr(2c − s)

)
dE(N)(s)

]
.

Combining the last two displays, we see that

E
[
η(N)∗ [c,Hr)

]= E

[∫
[0,H r )

1 − Gr(x + 2c)

1 − Gr(x)
η(N)∗ (dx)

]

+ E

[∫
[0,c]

(
1 − Gr(2c − s)

)
dE(N)(s)

]
.

Thus, we have shown that (6.3) holds for n = 2. Suppose that for some integer
m ≥ 2, (6.3) holds for n = m, that is,

E
[
η(N)∗ [c,Hr)

]= E

[∫
[0,H r )

1 − Gr(x + mc)

1 − Gr(x)
η(N)∗ (dx)

]
(6.6)

+ E

[∫
[0,c]

m∑
j=2

(
1 − Gr(jc − s)

)
dE(N)(s)

]
.

Substituting f = (1 − Gr(· + mc))/(1 − Gr(·)) and t = c in (6.5) and using the
fact that η

(N)
c has the same distribution as η

(N)∗ , we obtain

E

[∫
[0,H r )

1 − Gr(x + mc)

1 − Gr(x)
η(N)∗ (dx)

]

= E

[∫
[0,H r )

1 − Gr(x + mc)

1 − Gr(x)
η(N)

c (dx)

]
(6.7)

= E

[∫
[0,H r )

1 − Gr(x + (m + 1)c)

1 − Gr(x)
η(N)∗ (dx)

]

+ E

[∫
[0,c]

(
1 − Gr((m + 1)c − s

))
dE(N)(s)

]
.

This, together with (6.6), yields (6.3) with n = m+1. This completes the induction
argument and we have the desired result. �

THEOREM 6.2. If Assumptions 3.1 and 3.5 are satisfied and λ(N) → λ ∈
(0,∞), then the sequence {(X(N)∗ , ν

(N)∗ , η
(N)∗ )}N∈N is tight. Moreover,

sup
N∈N

E
[〈

1, η(N)∗
〉]

< ∞.(6.8)
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PROOF. We first show that {η(N)∗ }N∈N is tight. Note that 〈1, η
(N)∗ 〉 can be

viewed as the fluid scaled queue length process associated with an infinite-server
queue with arrival process E(N) and service distribution function Gr . By Little’s
law (cf. Theorem 2 of [19]), we know that E[〈1, η

(N)∗ 〉] = λ(N)θr , where θr , the
mean of Gr , is finite by Assumption 3.1. Due to the assumed convergence of λ(N)

to λ, this implies (6.8).
Next, note that for each n, the function (1−Gr(·+nc))/(1−Gr(·)) is bounded

by 1 and converges to 0 as n → ∞. Therefore, it follows from the dominated
convergence theorem that

lim
n→∞ E

[∫
[0,H r )

1 − Gr(x + nc)

1 − Gr(x)
η(N)∗ (dx)

]
= 0.(6.9)

Sending n → ∞ on the right-hand side of (6.3), and using (6.9) and the monotone
convergence theorem, we have

E
[
η(N)∗ [c,Hr)

]= E

[∫
[0,c]

∞∑
j=2

(
1 − Gr(jc − s)

)
dE(N)(s)

]
.(6.10)

On the other hand, we also have the simple estimate

E

[∫
[0,c]

(
1 − Gr(2c − s)

)
dE(N)(s)

]
≤ (

1 − Gr(c)
)
E
[
E(N)(c)

]
(6.11)

= c
(
1 − Gr(c)

)E[E(N)(c)]
c

.

Carrying out integration-by-parts on
∫∞

0 (1 − Gr(x)) dx, it follows that∫
[0,H r )

(
1 − Gr(x)

)
dx = lim

x→Hr
x
(
1 − Gr(x)

)+ ∫
[0,H r )

xgr(x) dx.

However, since the mean θr is finite by (3.1), it follows that c(1 − Gr(c)) →
0 as c → Hr . In addition, because the elementary renewal theorem implies that
E[E(N)(c)]/c → λ(N) as c → ∞ and λ(N) → λ as N → ∞, it follows that

lim sup
c→Hr

sup
N

E[E(N)(c)]
c

< ∞.(6.12)

Thus, taking first the supremum over N and then the limit as c → Hr in (6.11),
we obtain

lim
c→Hr

sup
N

E

[∫
[0,c]

(
1 − Gr(2c − s)

)
dE(N)(s)

]
= 0.(6.13)

Since 1 − Gr(·) is a decreasing function, for s ∈ [0, c],
∞∑

j=3

c
(
1 − Gr(jc − s)

)≤ ∫
[2c−s,Hr )

(
1 − Gr(x)

)
dx ≤

∫
[c,Hr )

(
1 − Gr(x)

)
dx.
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Therefore, we have

sup
N

E

[∫
[0,c]

∞∑
j=3

(
1 − Gr(jc − s)

)
dE(N)(s)

]

≤ sup
N

E[E(N)(c)]
c

∫
[c,Hr )

(
1 − Gr(x)

)
dx,

which tends to zero as c → Hr because of (6.12) and Assumption 3.1. Combining
the last assertion with (6.10) and (6.13), we see that

lim
c→Hr

sup
N

E
[
η(N)∗ [c,Hr)

]= 0,(6.14)

which establishes the second criterion for tightness. Thus, the sequence {η(N)∗ }N∈N

is tight.
We next show that {ν(N)∗ }N∈N is tight. The analog of (6.8) holds for {ν(N)∗ }N∈N

automatically because 〈1, ν
(N)∗ 〉 ≤ 1 for each N . On the other hand, the analog of

(6.14) can be shown to hold for {ν(N)∗ }N∈N by using (6.4 ) and an argument similar
to that used above to establish (6.14), along with the additional observation that
E[K(N)(c)] ≤ E[E(N)(c)] + E[〈1, η

(N)∗ 〉] implies lim supc→Hs supN E[K(N)(c)]/
c < ∞. Thus, the sequence {ν(N)∗ }N∈N is also tight.

Finally, we show that the sequence of R+-valued random variables {X(N)∗ }N∈N

is tight. Since X
(N)∗ ≤ 1 + 〈1, η

(N)∗ 〉 for each N , supN E[X(N)∗ ] ≤ 1 + supN E[〈1,
η

(N)∗ 〉], which is finite due to (6.8). The tightness of {X(N)∗ }N∈N is a direct conse-
quence of Markov’s inequality. �

6.2. The limit of the stationary distributions. We now present the proof of our
main result.

PROOF OF THEOREM 3.3. For each N ∈ N, let Y
(N)∗ = (α

(N)
E,∗,X

(N)∗ , ν
(N)∗ ,

η
(N)∗ ) be a fluid scaled stationary distribution for the N -server system. We will

invoke the fluid limit theorem established in Theorem 3.6 of [15] to establish the
result. For each N ∈ N, let Z(N) = (X(N), ν(N), η(N)) be the (fluid scaled) state
process for the N -server queue with initial data (E

(N)∗ ,X
(N)∗ , ν

(N)∗ , η
(N)∗ ). Since

the hazard rate functions hs and hr satisfy Assumption 3.4 (which corresponds
to Assumption 3.3 of [15]), it follows from Remark 3.2 and Theorem 3.6 of [15]
that if (a) the sequence (or subsequence) of initial data (E

(N)∗ ,X
(N)∗ , ν

(N)∗ , η
(N)∗ )

converges in distribution to some random element (E∗, X̃∗, ν̃∗, η̃∗) in the sense of
Assumption 3.1 of [15], (b) E∗ is continuous and (c) η̃∗ is a continuous distribu-
tion, then the sequence (subsequence) Z(N) converges to a process Z = (X, ν, η)

that is the unique solution to the fluid equations with initial data (E∗, X̃∗, ν̃∗, η̃∗).
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However, by stationarity for each N ∈ N and t > 0, Z(N)(t) has the same distri-
bution as Z(N)(0). This implies that Z is the constant process that is identically
equal to the initial data (X̃∗, ν̃∗, η̃∗), which in turn implies that (X̃∗, ν̃∗, η̃∗) is an
invariant state for the fluid limit.

Thus, to establish the theorem, it only remains to verify properties (a)–(c) above.
Since Assumptions 3.1, 3.3(1) and 3.5 hold, by the tightness result established
in Theorem 6.2, it follows that the sequence of stationary “initial conditions”
{Y (N)∗ }N∈N is tight. On the other hand, by basic properties of renewal processes and

the assumption that λ
(N) → λ, the sequence of scaled stationary arrival processes

{E(N)∗ }N∈N satisfies E
(N)∗ ⇒ E∗ as N → ∞, where E∗(t) = λt for t ∈ [0,∞).

Therefore, there exists a convergent subsequence, which by some abuse of nota-
tion we denote again by {Y (N)∗ }N∈N, that converges weakly to some limit Y ∗ of
the form Y ∗ = (λ1, X̃∗, ν̃∗, η̃∗). This immediately shows that properties (a) and (b)
above are satisfied. It only remains to show that η̃∗ has a continuous distribution.
Now, by the proof of Theorem 7.1 of [15] (note that Assumption 3.2 of [15] is not
used for this part of the proof) it follows that the inequality (3.39) of [15] holds and
that η satisfies the dynamical equation (3.42) of [15], with η0 = η̃∗ and E replaced
by E∗. By Theorem 4.1 of [17] (equivalently, Proposition 4.1 of [15]), it follows
that η satisfies the fluid equation (5.5) with η0 = η̃∗. In particular, also using the
fact that E∗(t) = λt and ηt has the same distribution as η̃∗, this implies that for
every bounded measurable f on [0,Hr) and any t > 0,

〈f, η̃∗〉 (d)=
∫
[0,H r )

f (x + t)
1 − Gr(x + t)

1 − Gr(x)
η̃∗(dx)

(6.15)

+
∫ t

0
f (t − s)

(
1 − Gr(t − s)

)
λds.

Now, sending t → ∞ on the right-hand side, using the dominated convergence the-
orem (which is justified by the bound 〈1, η̃∗〉 < ∞ a.s. established in Theorem 6.2),
we see that the right-hand side equals λ〈f,η∗〉. This shows that η̃∗ has the same
distribution as λη∗, which in particular proves that η̃∗ is a continuous distribution.
This completes the proof of property (c). Thus, we have shown that any conver-
gence subsequence of the stationary distribution converges to an invariant state of
the fluid limit. When the manifold consists of a single element, the usual argument
by contradiction then shows that the original sequence of stationary distributions
converges to this point. �

7. Concluding remarks. We can establish ergodicity of the state processes
under an additional condition. Let

�r .= sup{u ∈ [0,H r) :gr = 0 a.e. on [a, a + u] for some a ∈ [0,∞)}
and

�s .= sup{u ∈ [0,H s) :gs = 0 a.e. on [a, a + u] for some a ∈ [0,∞)}.
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(X(N)(t), ν
(N)
t , η

(N)
t ) −−−→ (X

(N)∗ , ν
(N)∗ , η

(N)∗ )⏐⏐� ⏐⏐�
(X(t), νt , ηt )

?−−−→ (X∗, ν∗, η∗)
FIG. 1. Interchange of limits diagram.

ASSUMPTION 7.1. The following three conditions hold:

(1) Hr = Hs = ∞;
(2) �

.= �r ∨ �s < ∞;
(3) For every interval [a, b] ⊂ [0,∞) with b − a > 0, F (N)(b) − F (N)(a) > 0.

THEOREM 7.1. Suppose Assumptions 3.1–3.5 and 7.1 hold. Then the Markov
process {Yt , Ft , t ≥ 0} is ergodic in the sense that it has a unique stationary distri-
bution and the distribution of Y(t) converges in total variation, as t → ∞, to this
unique stationary distribution.

Theorem 7.1, whose proof is deferred to the Appendix, validates the rightward
arrow at the top of the “interchange of limits” diagram presented in Figure 1. On
the other hand, the fluid limit theorem (Theorem 3.6 of [15]) justifies the down-
ward arrow on the left-hand side of Figure 1. The focus of this work has been on
understanding the convergence represented by the downward arrow on the right-
hand side of Figure 1. When there is a unique invariant state, this convergence is
established in Theorem 3.3. Although this question is not directly relevant to the
characterization of the stationary distributions, it is natural in this setting to ask
whether the diagram in Figure 1 commutes, namely, whether the fluid limit from
any initial condition converges as t → ∞ to the unique invariant state. In Sec-
tion 7.1 we briefly discuss why the study of the long-time behavior of the fluid
limit is a nontrivial task. Furthermore, in Section 7.2 we provide a very simple
counterexample that shows that the diagram in Figure 1 need not commute and
thus, the limits N → ∞ and t → ∞ cannot always be interchanged.

7.1. Long-time behavior of the fluid limit. The long-time behavior of the fluid
limit is nontrivial even in the absence of abandonment. For example, in the ab-
sence of abandonment, it was proved in Theorem 3.9 of [17] that νt → λν∗ as
t → ∞ when λ ∈ [0,1], the service time distribution Gs has a second moment
and its hazard rate function hs is either bounded or lower-semicontinuous on
(m0,H

s) for some m0 < Hs . The question of whether the second moment con-
dition on the distribution is necessary for this convergence is still unresolved.
Even under the second moment assumption, the long-time behavior of the com-
ponent X of the fluid limit is not easy to describe except in the cases when
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(i) the system is subcritical (λ < 1) or (ii) when the system is critical or super-
critical (λ ≥ 1) and the service distribution is exponential. In case (i), it follows
from Theorem 3.9 of [17] that X(t) → λ〈1, ν∗〉 as t → ∞, whereas in case (ii),
if the initial condition satisfies X(0) ≥ 1 and ν0 ∈ MF [0,∞), then it is easy
to see that the fluid limit is given explicitly by X(t) = X(0) + (λ − 1)t and
νt (dx) = 1[0,t]e−x dx+1(t,∞)(x)e−t ν0(d(x− t)). Therefore, at criticality (λ = 1),
if X(0) = 1 then X(t) = X(0) for every t > 0. In particular, X(t) → 1 as t → ∞.
However, as the following example demonstrates, the critical fluid limit need not
converge to 1 [even if critically loaded and with initial condition X(0) = 1] when
the service distribution is not exponential.

EXAMPLE 7.2. Let the fluid arrival rate be E(t) = t , t > 0, and let the service
time distribution Gs be the Erlang distribution with density

gs(x) = 4xe−2x, x ≥ 0.

A simple calculation shows that
∫∞

0 (1 −Gs(x)) dx = 1. Let (X, ν) be the solution
to the fluid equations without abandonment (see Definition 5.2) associated with the
initial condition (1,1, δ0). We show below that in this case, limt→∞ X(t) = 5/4,
which is bigger than 1 = X(0). In fact, since ν0 = δ0, a straightforward calculation
shows that

〈hs, ν0〉 =
∫ ∞

0

gs(x)

1 − Gs(x)
ν0(dx) = gs(0)

1 − Gs(0)
= gs(0) = 0.

Define

κ
.= inf{t ≥ 0 : 〈hs, νt 〉 ≥ 1}.

The hazard rate function hs is bounded and continuous and 〈hs, ν0〉 < λ = 1.
Therefore, substituting hs in (5.4), it is clear that κ > 0 and 〈hs, νt 〉 < λ = 1
for t ∈ [0, κ). In turn, by the nonidling condition, this implies 〈1, νt 〉 = 1 and
dK/dt = 〈hs, νt 〉 and, by (5.4), for t ∈ [0, κ),

〈hs, νt 〉 = gs(t) +
∫ t

0
gs(t − s)

dK

dt
(s) ds = gs(t) +

∫ t

0
gs(t − s)〈hs, νs〉ds.

Applying the key renewal theorem to the above equation, it follows that

〈hs, νt 〉 = us(t) = 1 − e−4t .

Since us(t) < 1 for all t ≥ 0, we must have that κ = ∞, 〈1, νt 〉 = 1 for all t ≥ 0,
and

lim
t→∞Q(t) =

∫ ∞
0

(
1 − us(t)

)
dt =

∫ ∞
0

e−4t dt = 1/4,

which yields the convergence of X(t) to 5/4 as t → ∞.
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To emphasize that this phenomenon is not the consequence of the fact that the
initial condition was chosen to be singular with respect to Lebesgue measure, we
show that we can modify the above example by choosing ν0 to be absolutely con-
tinuous with respect to the Lebesgue measure. For example, for some α ∈ (0,∞),
define

q(x)
.=
⎧⎨
⎩

1 + 2x

α + α2 , if x ∈ [0, α],
0, otherwise,

and let ν0(dx) = q(x) dx. Then 〈1, ν0〉 = ∫ α
0 q(x) dx = 1, 〈hs, νt 〉 = 1 − ((1 −

α)/(α + 1))e−4t for each t ≥ 0. Hence, when α < 1 we have 〈hs, νt 〉 < 1 and
〈1, νt 〉 = 1 for all t ≥ 0. This implies that, when α < 1,

lim
t→∞Q(t) =

∫ ∞
0

1 − α

α + 1
e−4t dt = 1 − α

4(α + 1)
> 0,

showing that limt→∞ X(t) > 1.

7.2. A counterexample (invalidity of the interchange of limits). In this section
we show that even for an M/M/N queue (both with and without abandonments),
the “interchange of limits” need not hold, that is, the diagram presented in Figure 1
may not commute.

Consider the sequence of state processes (X(N), ν(N)), N ∈ N, of N -server
queues without abandonment, where the service time distribution Gs is exponen-
tial with rate 1. For the N th queue, let the arrival process E(N) be a Poisson process
with parameter λ(N) = N − 1 and suppose that there exists ν0 ∈ MF [0,∞) with
〈1, ν0〉 ≤ 1 such that a.s., as N → ∞,(

X(N)(0), ν
(N)
0

)→ (2, ν0).(7.1)

Given the exponentiality of the service time distribution, it immediately fol-
lows that Assumption 2 of [17] is satisfied. Moreover, because (7.1) holds and

λ
(N) = (N − 1)/N → 1 as N → ∞, it follows that Assumption 1 of [17] also

holds with λ = 1. On the other hand, since Gr(x) = 0 for all x ∈ [0,∞), Assump-
tion 2 fails to hold because in this case B1 = [1,∞) and so the invariant manifold
has uncountably many points.

Now, because Assumptions 1 and 2 of [17] are satisfied, we can apply the fluid
limit result in Theorem 3.7 of [17] to conclude that, almost surely, as N → ∞,
(X(N), ν(N)) converges weakly to the unique solution (X, ν) of the fluid equa-
tions associated with initial data (1,2, ν0), and using the exponentiality of the
service time distribution, it is easily verified that the fluid limit is given explicitly
by X(t) = X(0) = 2 and νt (dx) = 1[0,t]e−x dx + 1(t,∞)(x)e−t ν0(d(x − t)).

For each N ∈ N, because the arrival rate, which equals N − 1, is less than the
total service rate N , by (3.2.4) and (3.2.5) of [4] it follows that X(N) is ergodic and



STATIONARY DISTRIBUTIONS OF MANY-SERVER QUEUES 515

has the following stationary distribution:

P
(
X(N)∗ = k

)=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(N − 1)k

k! p0, if k = 0,1, . . . ,N − 1,

(N − 1)k

N !Nk−N
p0, if k = N,N + 1, . . . ,

where

p0
.=
{

N−1∑
i=0

(N − 1)i

i! + (N − 1)N

(N − 1)!
}−1

.

It follows from Stirling’s formula that

lim
N→∞

∑N−1
i=0 (N − 1)i/i!

(N − 1)N/(N − 1)! = lim
N→∞

∑N−1
i=0 (N − 1)i/i!

(1/
√

2π)
√

N − 1eN−1

≤ lim
N→∞

∑∞
i=0 (N − 1)i/i!

(1/
√

2π)
√

N − 1eN−1
= 0.

For each ε > 0, elementary calculations show that

P
(
X(N)∗ ≥ N + εN

)= ∞∑
k=N+εN

(N − 1)k

N !Nk−N
p0

= NN

N ! p0

∞∑
k=N+εN

(
N − 1

N

)k

= NN

N ! p0

(
N − 1

N

)N+εN

N

= (N − 1)N

(N − 1)! p0

(
N − 1

N

)εN

and

P
(
X(N)∗ ≤ N − εN

)= N−εN∑
k=0

(N − 1)k

k! p0.

Combining the above three displays, we then have for each ε > 0

lim
N→∞ P

(
X(N)∗ ≥ 1 + ε

)= lim
N→∞ P

(
X(N)∗ ≤ 1 − ε

)= 0.(7.2)

Using the distribution of X
(N)∗ it can also be shown that

sup
N∈N

E
[
X(N)∗

]= sup
N∈N

E[X(N)∗ ]
N

≤ 3.
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An application of Markov’s inequality then shows that the sequence {X(N)∗ }N∈N is
tight. Let x∗ denote a subsequential weak limit of {X(N)∗ }N∈N. Then (7.2) clearly

shows that almost surely, x∗ = 1. Thus, as N → ∞ X
(N)∗ converges weakly to 1

(see Theorem 1 of [11] for a more refined calculation that also identifies the limit of
the sequence of stationary distributions centered around N and divided by

√
N ).

We have shown that the sequence of stationary distributions does not converge
(even along a subsequence) to the value 2, thus demonstrating that the interchange
of limits does not hold even in this simple setting.

In addition, this example also demonstrates that even in the presence of multiple
invariant states, the sequence of scaled stationary distributions (X

(N)∗ , η
(N)∗ , ν

(N)∗ ),
N ∈ N, could still converge to a limit. In the above example, the explicit formula
of the stationary distribution of the M/M/N queue was used to compute this limit,
which defeats the whole purpose of the approximation. It is unclear whether, in the
presence of multiple invariant states, there is a general methodology that does not
rely on a priori knowledge of the stationary distributions of the N -server queues,
but that would nevertheless allow one to identify when a limit exists and, in that
case, identify which invariant state corresponds to the limit.

A minor modification of the above example shows that the interchange of lim-
its can also fail to hold in the presence of abandonment. For the same sequence
of queues described above, suppose that customers abandon the queue accord-
ing to a nontrivial patience time distribution Gr satisfying Assumption 3.4 and
having support in (3,∞). For each N ∈ N, consider the marginal state process
(X(N), ν(N), η(N)). Suppose that there exists (2, ν0, η0) ∈ S0 such that almost
surely, as N → ∞, (

X(N)(0), ν
(N)
0 , η

(N)
0

)→ (2, ν0, η0).(7.3)

Given the assumption imposed on the patience time distribution, Assumption 2
fails to hold because in this case B1 = [1,3]. By the previous argument, Assump-
tions 3.1, 3.3 and 3.4 are satisfied. Therefore, by the fluid limit result stated as
Theorem 3.6 of [15] (see also the proof of Theorem 3.3 of the current paper) it
follows that almost surely, as N → ∞, (X(N), ν(N), η(N)) converges weakly to the
unique solution (X, ν, η) of the fluid equations associated with (1,2, ν0, η0). By
the exponentiality of the service time distribution, we have X(t) = X(0) = 2 and
R(t) = 0 for each t ≥ 0. On the other hand, let Y

(N)∗ = (α
(N)
E,∗,X

(N)∗ , ν
(N)∗ , η

(N)∗ )

be the stationary distribution associated with the fluid-scaled state process, which
exists by Theorem 4.9. By a simple coupling argument, it can be shown that X(N)

is stochastically dominated by the corresponding state X̃(N) of an M/M/N queue
without abandonment that has the same arrival process E(N) and the same initial
condition [i.e., P(X̃(N) ≥ c) ≥ P(X(N) ≥ c) for every c > 0]. Together with the
previous discussion of the case without abandonment, this can be used to show
that {X(N)∗ }N∈N is tight and, for any ε > 0, lim supN→∞ P(X

(N)∗ ≥ (1 + ε)) = 0,



STATIONARY DISTRIBUTIONS OF MANY-SERVER QUEUES 517

from which one can conclude that X
(N)∗ → 1. Thus, in this case too,

lim
N→∞ lim

t→∞X(N)(t) = lim
N→∞X(N)∗ = 1 �= 2 = lim

t→∞X(t) = lim
t→∞ lim

N→∞X(N)(t),

where the limits are all in the sense of weak convergence.

APPENDIX: PROOF OF THEOREM 7.1

By Theorem 6.1 of [20], to show that the Feller process {Yt , Ft , t ≥ 0} is er-
godic, it suffices to show that the skeleton chain {Yn}n∈N is ψ-irreducible and that
{Yt , Ft , t ≥ 0} is positive Harris recurrent. This is done in Lemma A.3 and Theo-
rem A.5 below. Let � be the quantity defined in condition (2) of Assumption 7.1,
and define

Z .= {(α,0,0,0) ∈ Y :α ∈ [� + 1,∞)}.
For each Borel subset A of Z , let �A ⊂ [1 + �,∞) be the Borel subset obtained
by projecting Z to its first coordinate:

�A
.= {α ∈ R : (α,0,0,0) ∈ A}.(A.1)

LEMMA A.1. There exists a strictly positive continuous function C on Y such
that for every y = (α, x,

∑k
i=1 δui

,
∑l

j=1 δzj
) ∈ Y , every Borel subset A ⊂ Z and

every t > 2� + 1,

Py

(
Y(t) ∈ A

)
(A.2)

≥ C(y)

∫ α+t

α+2�+1
1�A

(α + t − s)
(
1 − F(α + t − s)

)
dF(s).

PROOF. At time t , if the state Y(t) is in the set A ⊂ Z , this means that, by
time t , all customers in service at time 0 with residual service times {ui,1 ≤ i ≤ k},
all customers in queue at time 0 with residual patience times {zj ,1 ≤ j ≤ l} and
those new customers that arrived in the interval [0, t) have completed service
(if they entered service before time t) and have run out of their patience (irre-
spective of whether or not they entered service). Now, we consider a subset of
{ω :Y(t,ω) ∈ A}, in which (a) by time 2� + 1 < t , all the initial customers with
residual patience times {zj ,1 ≤ j ≤ l} and residual service times {ui,1 ≤ i ≤ k}
have finished service (if they entered service) and run out of their patience (irre-
spective of whether or nor they entered service), (b) the first new customer arrived
after 2� + 1, finished service before t and ran out of his/her patience time before t ,
(c) the difference between t and the arrival time of that customer lies in �A, and (d)
the second new customer arrived after time t . Let Qa , Qad and Qbd , respectively,
be the events that property (a) holds, properties (a)–(d) hold and properties (b)–(d)
hold. Then, for y ∈ Y ,

Py

(
Y(t) ∈ A

)≥ Py(Qad) = Py(Qa)Py(Qbd |Qa),
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and, due to the independence assumptions on the service, patience and interarrival
distributions, Py(Qbd |Qa) is greater than or equal to∫ α+t

α+2�+1
Gr(α + t − s)Gs(α + t − s)

× 1�A
(α + t − s)

(
1 − F(α + t − s)

) dF(s)

1 − F(α)

≥ Gr(� + 1)Gs(� + 1)

1 − F(α)

∫ α+t

α+2�+1
1�A

(α + t − s)
(
1 − F(α + t − s)

)
dF(s),

where the last inequality holds because α + t − s ≥ � + 1 when α + t − s ∈ �A.
Let C(y)

.= (Py(Qa)G
r(� + 1)Gs(� + 1))/(1 − F(α)). Since, due to Assump-

tion 7.1(2), Gr(A) > 0 and Gs(A) > 0 for any interval A with length bigger than �,
Py(Qa), as a function of y ∈ Y , is strictly positive and continuous. Thus C is a
strictly positive and continuous function on Y , and the lemma is proved. �

DEFINITION A.2. Any Markov process {Xt } with topological state space X
is said to be ψ-irreducible if and only if there exists a σ -finite measure ψ on B(X ),
the Borel σ -algebra on X such that for every x ∈ X and B ∈ B(X ),∫ ∞

0
Px

(
X(t) ∈ B

)
dt > 0 if ψ(B) > 0.

Let ψ = m × δ0 × δ0 × δ0, where m(A) = m(A ∩ [� + 1,∞)), where m is
Lebesgue measure. Clearly, ψ is a σ -finite measure on (Y, B(Y)).

LEMMA A.3. The Markov process {Yt , Ft} is ψ-irreducible and the discrete-
time Markov chain {Y(n)}n∈N is ψ-irreducible.

PROOF. Let B ∈ B(Y) be such that ψ(B) > 0. Then ψ(B ∩ Z) > 0 by the
definition of ψ . Let �B∩Z be the set defined in (A.1) with A = B ∩ Z and suppose
m(�B∩Z ) > 0. Fix y ∈ Y . It follows from Lemma A.1 that there exists a strictly
positive function C on Y such that∫ ∞

0
Py

(
Y(t) ∈ B ∩ Z

)
dt

≥
∫ ∞

2�+1
Py

(
Y(t) ∈ B ∩ Z

)
dt

≥
∫ ∞

2�+1
C(y)

(∫ α+t

α+2�+1
1�B∩Z (α + t − s)

(
1 − F(α + t − s)

)
dF(s)

)
dt

= C(y)
(
1 − F(α + 2� + 1)

) ∫
�B∩Z

(
1 − F(t)

)
dt

> 0,
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where the equality follows from Fubini’s theorem and the last inequality holds be-
cause C(y) > 0, m(�B∩Z ) > 0 and 1−F(x) > 0 for every x ∈ [0,∞) by Assump-
tion 7.1(3). This establishes the first assertion. On the other hand, for n > 2� + 1,

Py

(
Y(n) ∈ B

)≥ C(y)

∫ α+n

α+2�+1
1�B∩Z (α + n − s)

(
1 − F(α + n − s)

)
dF(s).

By Assumption 7.1(3) and the fact that m(�B∩Z ) > 0, it follows that Py(Y (n) ∈
B) > 0 for all n sufficiently large. Hence, {Y(n)}n∈N is ψ-irreducible. �

For each y ∈ Y , B ∈ B(Y) and each probability measure � on [0,∞), let

K�(y,B) =
∫ ∞

0
Py

(
Y(t) ∈ B

)
�(dt).

LEMMA A.4. There exists a probability measure � on [0,∞) and a function
T : Y × B(Y) → R+ such that:

(1) K�(y,B) ≥ T (y,B) for all y ∈ Y and every Borel measurable set B ∈
B(Y);

(2) T (y, Y) > 0 for all y ∈ Y ;
(3) T (·,B) is lower-semicontinuous for every B ∈ B(Y).

PROOF. Let C be the strictly positive, continuous function C of Lemma A.1.
Let � be a probability measure with density function e−(t−2�−1) on [2� + 1,∞).
For each y ∈ Y and B ⊂ Z , define

T (y,B)
.= C(y)eα+2�+1

∫ ∞
α+2�+1

e−s dF (s)

∫ ∞
0

(
1 − F(t)

)
1�B

(t)e−t dt,

and T (y, Y \ Z) = 0. It is easy to see that for any Borel measurable set B ∈
B(Y), T (y,B) = T (y,B ∩ Z) and T (·,B) is continuous. Moreover, T (y, Y) =
T (y, Z) > 0. Now, fix y ∈ Y and B ∈ B(Y). By Lemma A.1, we have

K�(y,B)

=
∫ ∞

0
Py

(
Y(t) ∈ B

)
e−(t−2�−1) dt

≥
∫ ∞

2�+1
Py

(
Y(t) ∈ B ∩ Z

)
e−(t−2�−1) dt

≥
∫ ∞

2�+1
C(y)

(∫ α+t

α+2�+1
1�B∩Z (α + t − s)

(
1 − F(α + t − s)

)
dF(s)

)

× e−(t−2�−1) dt

= C(y)eα+2�+1
∫ ∞
α+2�+1

e−s dF (s)

∫ ∞
0

(
1 − F(t)

)
1�B∩Z (t)e−t dt

= T (y,B ∩ Z) = T (y,B).
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Thus we have proved the lemma. �

THEOREM A.5. The Markov process Y is positive Harris recurrent.

PROOF. Lemma A.4 shows that Y is a so-called T process (cf. Section 3.2
of [20]) and Lemma A.3 shows that Y is ψ-irreducible. Now, Theorem 3.2 of
[20] states that any ψ-irreducible T process Y is positive Harris recurrent if Y is
bounded in probability on average, that is, for each y ∈ Y and ε > 0, there exists a
compact set B ∈ B(Y) such that

lim inf
t→∞

1

t

∫ t

0
Py

(
Y(s) ∈ B

)
ds ≥ 1 − ε.

However, this is satisfied by the state process Y due to Lemma 4.8. So we have the
desired result. �
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