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WEAK DISORDER ASYMPTOTICS IN THE STOCHASTIC
MEAN-FIELD MODEL OF DISTANCE
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In the recent past, there has been a concerted effort to develop mathemat-
ical models for real-world networks and to analyze various dynamics on these
models. One particular problem of significant importance is to understand the
effect of random edge lengths or costs on the geometry and flow transport-
ing properties of the network. Two different regimes are of great interest, the
weak disorder regime where optimality of a path is determined by the sum of
edge weights on the path and the strong disorder regime where optimality of a
path is determined by the maximal edge weight on the path. In the context of
the stochastic mean-field model of distance, we provide the first mathemat-
ically tractable model of weak disorder and show that no transition occurs
at finite temperature. Indeed, we show that for every finite temperature, the
number of edges on the minimal weight path (i.e., the hopcount) is �(logn)

and satisfies a central limit theorem with asymptotic means and variances of
order �(logn), with limiting constants expressible in terms of the Malthusian
rate of growth and the mean of the stable-age distribution of an associated
continuous-time branching process. More precisely, we take independent and
identically distributed edge weights with distribution Es for some parame-
ter s > 0, where E is an exponential random variable with mean 1. Then the
asymptotic mean and variance of the central limit theorem for the hopcount
are s logn and s2 logn, respectively. We also find limiting distributional as-
ymptotics for the value of the minimal weight path in terms of extreme value
distributions and martingale limits of branching processes.

1. Introduction. The last few years have witnessed an explosion in empirical
data collected on various real-world networks, including transportation networks
like road and rail networks and data transmission networks such as the Internet.
This has stimulated an intense inter-disciplinary effort to formulate mathemati-
cal network models to understand their structure as well as the evolution of such
real-world networks. Rigorously analyzing properties of these models and deriv-
ing asymptotics as the size of the network becomes large is currently an active area
of modern probability theory.
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In many contexts, these models are used to describe transportation networks,
and understanding their flow carrying properties is of paramount importance. Real-
world networks are described not only by their graph structure, which give us in-
formation about the links between vertices in the network, but also by their associ-
ated edge weights that represent cost or time required to traverse the edge. Similar
questions form the core of one of the fundamental problems in the modern theory
of discrete probability, namely first passage percolation. In brief, one starts with
a finite network model Kn (e.g., the [−n,n]2 box in the integer lattice Z

2). Each
edge e is given some random edge weight le, usually assumed to be nonnegative,
independent and identically distributed (i.i.d.) across edges. We shall sometimes
refer to le as the length or cost of the edge e. For any two vertices u, v ∈ Kn, and
a path P between the two vertices, the cost f (P ) of the path is some function of
the edge weights on the path (see the next section where we describe two natural
regimes). The optimal path Popt(u, v) between the two vertices is the path that
minimizes this cost function amongst all possible such paths. Now fix two vertices
in Kn, for example, in the case of the two-dimensional integer lattice, the origin
and the point (n,0). One is then interested in deriving properties of the optimal
path between these two vertices, at least as the size of the network tends to infinity.

In the modern applied context, two particular statistics of this optimal path are
of importance:

(a) f (Popt(u, v)): the cost of the optimal path. In many situations, this gives
the cost of transporting a unit of flow between the two vertices.

(b) H(Popt(u, v)): the number of edges in the optimal path. This represents
the amount of time that a message takes in getting between the two vertices. The
mental picture one should have is that the network is transporting flow between
various vertices via optimal paths, and delay, that is, the amount of time that a
message takes in getting between vertices is the number of edges or hops on the
optimal path. Thus, this quantity is often referred to as the hopcount.

1.1. Weak and strong disorder. When modeling random disordered systems,
two cost regimes for the cost f (P ) of a path P are of interest, the strong disorder
and weak disorder regime. Throughout the discussion below, we start with a con-
nected network Kn on n vertices, with each edge assigned edge weight le. Fix two
vertices denoted by 1 and 2 (say chosen uniformly at random amongst all vertices).
We are interested in properties of the optimal path between these two vertices. Let
P12 denote the set of all paths between vertices 1 and 2.

Weak disorder regime: This is the conventional setup where, for any path P ∈
P12, the cost of the path is

fwk-dis(P ) = ∑
e∈P

le.(1.1)

The optimal path, denoted by Pwk-dis, is defined by

Pwk-dis = arg min
P∈P12

fwk-dis(P ).(1.2)
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In our setup, the optimal path will always be unique. We are then interested in the
cost and hopcount of this optimal path.

Strong disorder regime: Here, for any path P ∈ P12, the cost of the path is given
by

fst-dis(P ) = max
e∈P

le.(1.3)

As before, the optimal path, denoted by Pst-dis, is defined by

Pst-dis = arg min
P∈P12

fst-dis(P ).(1.4)

From a statistical physics viewpoint, one is interested in parametrizing the above
problem via a real-valued parameter say β , often called the “inverse temperature”
of the system, such that as β → ∞, we get the strong disorder regime, while for
finite values of β , we have the weak disorder regime. One interesting way of pa-
rameterizing the above problem is to consider the original graph Kn with some
edge random variables we and consider the model Gn(β) where each edge is given
weight le(β) = exp(βwe). The β → ∞ regime then corresponds to the strong dis-
order regime with edge weights we, the β = 0 regime corresponds to the graph
distance regime (where each edge has fixed weight 1), while finite positive values
of β are supposed to model the weak disorder regime and are meant to interpo-
late between the graph distance regime and the strong disorder regime. What is of
paramount interest is to understand if and when a transition occurs, namely given
some model Kn of network on n vertices and edge distribution we ∼ F , for ex-
ample, the uniform or exponential distribution, is there some finite value of β for
which a transition occurs from the weak disorder regime to the strong disorder
regime, where the graph begins to behave as in the strong disorder regime? What
are the properties of the optimal paths in various regimes, and how does the hop-
count scale as a function of β , at least in the n → ∞ large network limit? Although
a number of studies have been carried out at the simulation level (see, e.g., [9] and
the references therein) to understand such models of disorder in the context of var-
ious random graph models resulting in fascinating conjectures, there has been no
rigorous effort carried out to derive results in this context.

Our goal is to formulate a solvable model in this context and to exhibit how
such questions have deep connections to the stable-age distribution theory of
continuous-time branching processes as formulated by Jagers and Nerman; see, for
example, [14]. Without further ado, let us dive into the formulation of the model
in our context.

1.2. Model formulation. Let Kn be the complete graph with vertex set [n] ≡
{1, . . . , n} and edge set En = {ij : i, j ∈ [n], i �= j}. Each edge e is given weight
le = (Ee)

s for some fixed s > 0, where (Ee)e∈En are i.i.d. exponential random
variables with mean 1. The optimal path between two vertices is the path that
minimizes the sum of weights on that path, as in the weak disorder regime. In the
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context of the above discussion of strong and weak disorder, s = 0 corresponds to
the graph distance, while s = ∞ corresponds to the strong disorder regime with
edge weights Ee, the parameter β > 0 above is equal to s and the random variable
(we)e∈En equals we = log (Ee), which has a Gumbel distribution. The advantage
of this formulation is that it gives a model that can be rigorously analyzed. The
s = 1 regime is one of the most well-studied models in probabilistic combinatorial
optimization (see, e.g., [2, 3, 8, 11, 16, 21]) and often goes under the name of
“stochastic mean-field model of distance.” For a fixed s ∈ R

+, we are interested
in various statistics of the optimal path, in particular, in the asymptotics for the
weight and hopcount of the optimal path as n → ∞.

To state the results, we shall need some definition. Let (Yj )j≥1 be i.i.d. ex-
ponential random variables with mean 1. Define the random variables Li by the
equation

Li =
(

i∑
j=1

Yj

)s

.(1.5)

Let P be the above point process, that is,

P = (L1,L2, . . .).(1.6)

While the parameter s plays an important role in our analysis, for the sake of
simplicity, we shall omit it from the notation. The reader should keep in mind
that all the important constructions that arise in the analysis and in the description
of our results, such as the point process above, depend on this parameter. Now
consider the continuous-time branching process (CTBP) where at time t = 0 we
start with one vertex (called the root or the original ancestor), each vertex v lives
forever, and has an offspring distribution Pv ∼ P as in (1.6) independently of every
other vertex. Let (BPt )t≥0 denote the CTBP with the above offspring distribution.
The general theory of branching processes (see, e.g., [14]) implies that there exists
a constant λ = λ(s), called the Malthusian rate of growth, that determines the rate
of explosive growth of this model. In particular, if zt = |BPt | denotes the number of
individuals born by time t , then there exists a strictly positive random variable W

such that

e−λtzt
a.s.−→ W,(1.7)

where
a.s.−→ denotes convergence almost surely. The constant λ satisfies the equa-

tion
∞∑
i=1

E(e−λLi ) = 1.(1.8)

In this case, an explicit computation (see Lemma 3.1 below) implies that

λ = λ(s) = �(1 + 1/s)s.(1.9)
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Now let W(1),W(2) be i.i.d. with distribution W where W is as defined above
in (1.7). Define the Cox process Pcox which, given W(1) and W(2), is a Poisson
process on R with rate function given by

γ (x) = 2λ

s
W(1)W(2)e2λx, x ∈ R.(1.10)

Let �(1) denote the first point of the point process Pcox.

1.3. Results. We are now in a position to state our results. Recall that we
started with the complete graph where each edge has distribution le = Es

e , where
(Ee)e∈En are i.i.d. exponential random variables having mean one. The first re-
sult identifies the limiting distribution of the weight of the minimal weight path
while the second result below identifies the asymptotics for the number of edges
on the minimal weight path. In the statement below,

d−→ denotes convergence in
distribution.

THEOREM 1.1 (The weight of the shortest-weight path). Let C = C(s) denote
the cost of the optimal path between vertices 1 and 2. Then, as n → ∞,

ns C − 1

λ
logn

d−→ 2�(1),(1.11)

and

2�(1) d= 1

λ

(
G − logW(1) − logW(2) − log (1/s)

)
,(1.12)

where G is a standard Gumbel random variable independent of W(1) and W(2),
and W(1) and W(2) are two independent copies of the random variable W appear-
ing in (1.7).

THEOREM 1.2 (CLT for the hopcount). Let Hn = Hn(s) denote the hopcount,
that is, the number of edges on the optimal path between vertices 1 and 2. Then,
as n → ∞,

Hn − s logn√
s2 logn

d−→ Z,(1.13)

where Z has a standard normal distribution.

REMARKS. (a) Our proof shows that the convergence in Theorems 1.1 and 1.2
in fact occurs jointly, namely(

ns C − 1

λ
logn,

Hn − s logn√
s2 logn

)
d−→ (

2�(1),Z
)
,(1.14)
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where the limiting random variables �(1),Z are independent.
(b) Not much is known about the random variable W in (1.7). Indeed, the

branching property can be used in order to show that it satisfies the distributional
relation

W
d=

∞∑
i=1

e−λLiWi,(1.15)

where (Wi)i≥1 is an i.i.d. sequence of random variables with the same distribu-
tion as W independent of (Li)i≥1, and where Li is defined in (1.5). Using (1.15)
and properties of functionals of Poisson processes, one can show that the func-
tion φ(u) = E(e−uW ), defined for u ∈ R

+, is the unique function satisfying the
functional relationship

φ(u) = exp
(∫ ∞

0
[φ(ue−λxs

) − 1]dx

)
, φ(0) = 1.(1.16)

When s = 1, then one can see this way that W is an exponential random variable
with rate 1, but for other values of s, we have no explicit form of W .

(c) The distributional equivalence given by (1.12) is proved in Lemma 2.6 be-
low.

1.4. Discussion. In this section, we discuss the relevance of our results and
how they relate to existing literature as well as various conjectures from statisti-
cal physics. The standing assumption in this discussion is that optimal paths are
uniquely defined.

First vs. second order results. First order results (in our context showing, for
example, that Hn/s logn

P−→ 1, where
P−→ denotes convergence in probability)

are much easier to prove than the detailed convergence in distribution proved in
Theorems 1.1 and 1.2. One of the reasons for the length of this paper is that proving
second order distributional convergence results in these sorts of problems proves
to be much more difficult. Further, while in previous studies (e.g., [6] for various
random network models) the hopcount satisfied a central limit theorem (CLT) with
matching means and variances, Theorem 1.2 is novel in the sense that it says that,
for large n, the hopcount has an approximate normal distribution with mean s logn

and variance s2 logn. Theorems such as Theorem 1.1 for the actual cost of the
minimal weight path have been proven in a number of contexts (see, e.g., [6, 16,
21]), but often prove quite tricky to handle due to the fact that we only recenter
the random variables and do not divide by a normalizing factor going to ∞. Thus,
one needs to be extremely careful in analyzing the contribution of various factors
as n → ∞. See, for example, [6] to see the various factors that could contribute to
the limiting distribution in the context of exponential weights on a random graph.



WEAK DISORDER ASYMPTOTICS 35

Strong disorder regime and minimal spanning trees. Under strong disorder,
it is easy to check using any of the standard greedy algorithms for constructing
minimal spanning trees that the number of edges in the optimal path between any
two vertices in the network has the same distribution as the number of edges be-
tween the two vertices in the minimal spanning tree (with edge weights le). More
precisely, the optimal path between two vertices in the strong disorder regime is
identical to the path between the two vertices in the minimal spanning tree.

In the context of our model, under strong disorder (“the s = ∞ regime”)
what is known is that for the complete graph, the hopcount of the optimal path
H(Pst-dis) ∼ �P(n1/3). Here, for two sequences of random variables (Xn)n≥1
and (Yn)n≥1, we write Xn = �P(Yn) if Xn/Yn and Yn/Xn are tight sequences of
random variables. This was first conjectured in [9] and recently proven in [1]. The
above result in particular shows that no transition occurs for finite values of s. It
might be interesting to analyze the above model when s = sn is a function of n and
see when the strong disorder regime emerges (sn → ∞ regime) or the graph dis-
tance type behavior is preserved (sn → 0). In our proofs, we have kept formulas as
explicit as possible in order to be able to use them later on to study the strong dis-
order case or the graph distance limit. Let us now heuristically discuss the strong
disorder regime.

Heuristics for strong disorder. We see that the hopcount obeys a CLT with
asymptotic mean and variance equal to s logn and s2 logn, respectively. It is rea-
sonable to expect that the CLT with asymptotic mean and variance equal to sn logn

and s2
n logn remains valid when sn is not too large. However, when sn is quite large,

then we should be in a phase that is close to the minimal spanning tree, for which
the hopcount scales like n1/3 and has variance of order n2/3 (since it is not con-
centrated). It would be of great interest to see until what value of sn the CLT with
parameters sn logn and s2

n logn remains valid. By the above, we see that for this,
sn cannot grow faster than n1/3 for this to be true. In analogy to the scaling for the
diameter of the Erdős–Rényi random graph with edge probability p = (1 + εn)/n,
which has size ε−1

n log (ε3
nn) as long as εn 	 n−1/3 [17], one may wonder whether

the hopcount scales in leading order as sn log (n/s3
n), as long as sn 
 n1/3, and

where sn plays a similar role as 1/εn.

Our choice of edge weights. If we rescale our weights by ns , the (expected)
number of link weights that are at most x, from a given vertex is, in our model,
equal to

(n − 1)[1 − e−x1/s/n] ≈ x1/s .(1.17)

Thus, our weights are chosen such that the weights obey a power law close to 0. In
Internet, the link weights are prescribed by the Internet Service Providers (ISPs).
Around 2000, CISCO, one of the main manufacturers of Internet routers, has rec-
ommended to use the link weights in OSPF, the Internet’s intradomain routing
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protocol, that are proportional to the inverse of the capacity or bandwidth of the
link. This recommendation has been followed by a many ISPs in order to optimally
provision and manage their networks.

Assuming that the link weights equals the inverse bandwidth or capacity, our
scaling relation in (1.17) is equivalent to the statement that the (expected) number
of links from a given vertex with capacity at least B is close to B−1/s for B large.
Thus, there is a power-law relation for the link capacities in our model, and 1/s

is the power-law exponent in this relationship. By varying s, we can obtain any
power-law exponent. Unfortunately, in Internet, measuring the link capacities is a
notoriously hard problem, and, as a result, precise measurements of their empirical
properties are not available. Thus, while our model may appear reasonable, we
have no way of empirically verifying it.

Other edge weights. Note that in our context the distribution of edge weights
is F(x) = 1−exp(−x1/s) ∼ x1/s for x close to zero. One would expect that the re-
sults in the paper carry over rather easily to edge weights with distribution function
F for which F(x) = x1/s(1 + o(1)) when x ↓ 0. When F(x) has entirely different
behavior at x = 0, other properties might arise. Indeed, in our current setting, we
see that with high probability the shortest-weight path traverses only through edges
of weights of order n−s , which is the size of the minimum of n i.i.d. random vari-
ables with distribution Es , where E is exponential with mean 1. Thus, the benefit
of using edges of such small weight vastly outweigh the fact that the path thus be-
come longer [i.e., has �P(logn) edges]. Now, when F(x) = e−x−a

for some a > 0,
then the minimum of n such random variables is (logn)−1/a(1+oP(1)), so that the
minimal weight edge in the complete graph equals 2−1/a(logn)−1/a(1 + oP(1)).
Here, we write that oP(bn) to denote a random variable Xn which satisfies that

Xn/bn
P−→ 0. In particular, when a > 1, we cannot expect the optimal path to

have length �P(logn), as already the immediate path between vertices 1 and 2 has
smaller weight than any path of length logn.

Moreover, it is not hard to see that the minimal two-step path between vertices
1 and 2 has weight 21+1/a(logn)−1/a(1+oP(1)), so that the hopcount is with high
probability at most 21+2/a . Thus, this simple argument proves that the hopcount is
tight for all a > 0 (as is the case for the CM with infinite mean degrees [5]). In [7],
this setting is investigated in more detail, and it is shown that, for most value of a,
the hopcount converges in probability to a constant. Thus, it is clear that weights
with distribution function F(x) = e−x−a

belong to a different universality class
as compared to edge weights Es , where E is an exponential random variable and
s > 0. This leads us to the following general program:

Identify the universality classes for the weights in first passage percolation on the com-
plete graph.
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Extensions of our results to random graphs. A significant amount of work,
both at the nonrigorous ([9, 10, 13, 19] and the references therein) as well as at
the rigorous level [4–6, 20, 23], has been devoted to first passage percolation on
random network models. What is now generally expected is that in a wide vari-
ety of network models and general edge costs, under weak disorder the hopcount
scales as �(logn) and satisfies central limit theorems as in Theorem 1.2. We hope
that the ideas in this paper can also be applied to first passage percolation prob-
lems on various random graphs, such as the configuration model (CM) with any
given prescribed degree distribution (pk)k≥0. In [6], first passage percolation with
exponential weights was studied on the CM with finite mean degrees, and it is
proved that similar results as on the complete graph hold in this case. Indeed, the
hopcount satisfies a CLT with asymptotically equal mean and variance equal to
λ logn, where λ is some parameter expressible in terms of the degree distribu-
tion. We expect that when putting exponential weights raised to the power s on the
edges changes this behavior, and the means and variances will become different
constants times logn. While the behavior in [6] is remarkably universal, we expect
that for weights equal to powers of exponentials, when the variance of the degrees
is infinite, the asymptotic ratio of mean and variance will be s as on the complete
graph, while for finite variances degrees, the ratio may be different.

We see that the behavior of first passage percolation on the complete graph
with weights Es (as studied in this paper) gives rise to CLTs for the hopcount
with means and variances of order logn, while weights with distribution function
F(x) = e−x−a

give rise to bounded hopcounts, as is the case for the graph distance
when all weights are equal to 1. It would be of great interest to extend such results
to random graphs. In particular, it would be of interest to determine when the
hopcount satisfies a CLT with asymptotic mean and variance proportional to logn,
and when the hopcount behaves in a similar way as the graph distance as studied
for the CM in [20, 22, 23]. This leads us to the following question:

How do the universality classes of first passage percolation on the configuration model
relate to those on the complete graph?

1.5. Proof idea and overview of the paper. For the sake of notational conve-
nience, we shall rescale each edge length by a factor (n − 1)s , so that each edge
has distribution (Ye)

s , where Ye are exponential random variables with mean n−1.
This does not change the optimal path while the cost of this path is scaled up by
(n − 1)s . For the remainder of the paper, we shall think of the edge weights as
lengths which thus induce a random metric on the complete graph, and shall of-
ten refer to the optimal path between two vertices as the shortest path between
them. We are interested in the optimal path between vertices 1 and 2. Consider
water percolating through the network started simultaneously from two sources,
vertices 1 and 2, at rate one. Then the first time of collision between the two flow
processes, namely the first time the flow percolating from vertex 1 sees a vertex
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already visited by the the flow percolating from vertex 2 (or vice versa) gives the
shortest path between the two vertices. Let z

n,(1)
t and z

n,(2)
t denote the number of

vertices seen by the flow cluster by time t for the flow emanating from vertices 1
and 2, respectively. For large n, the flow clusters look like independent versions of
the CTBPs as formulated in Section 1.2, at least until they collide. A coupling is
rigorously formulated in Sections 2.1.1 and 2.1.2. Further, they collide only when
both clusters reach size �P(

√
n). At a heuristic level, at any time t , the rate of

collision γn(t) in a small interval [t, t + dt) should be

γn(t) ∝
(

z
n,(1)
t z

n,(2)
t

n

)
dt.(1.18)

Now we use the fact that for large t , z
n,(i)
t ∼ W(i)eλt , where W(i) is the limiting

random variable for the associated CTBP defined in (1.7), to see that

γn(x) ∝ W(1)W(2)e2λx

n
.(1.19)

Thus, collisions happen at time (2λ)−1 logn ± OP(1), where OP(bn) denotes a
sequence of random variables (Xn)n≥1 for which |Xn|/bn is a tight sequence. If
we let T12 denote the collision time, then the length of the optimal path equals
Wn = 2T12. The above argument gives asymptotics for the collision time and hence
the length of the optimal path.

For the hopcount, we shall use general branching processes arguments to show
that at large time t , if one is interested in the distribution of the generations (in our
context this gives the number of individuals at various graph distances away from
the root, namely the originating vertices 1 and 2), the contribution to the popu-
lation comes from generations t/β(s) and the deviations are normally distributed
around this value. Here the constant β(s) > 0 denotes the mean of the stable-age
distribution of the associated branching process. Intuitively, the optimal path be-
tween vertices 1 and 2 as constructed via the above simultaneous flow picture looks
like the following: Suppose the connecting edge between the two clusters (v1, v2)

arises due to the birth of a child to vertex v1 in the flow cluster of vertex 1 and
this child, v2 has already been visited by the flow from 2. This happens at around
time (2λ)−1 logn ± OP(1). The hopcount Hn of the optimal path is given by the
equation

Hn = G1 + G2 + 1,(1.20)

where G1 and G2 are the generations of vertex v1 and v2 in flow cluster 1 and 2,
respectively. Thus, understanding the distribution amongst generations in the cou-
pled branching processes paves the way to understanding the hopcount. The re-
mainder of this paper involves the conversion of the above heuristic into a rigorous
argument. The organization of rest of the paper is as follows:
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• In Section 2.1, we shall couple the simultaneous flows from two vertices on Kn

with CTBPs and show that the difference is negligible;
• Section 2.2 shows that the above coupling incorporated with technical results

from CTBP theory give us asymptotics for the recentered length of the optimal
path, namely Theorem 1.1.

• Section 2.3 shows how the distribution of individuals among different genera-
tions in the associated branching process proves Theorem 1.2.

• Finally, Section 3 proves all the CTBP results we need to carry out our analysis.
This section is the most technical part of the paper and the point of organizing
the paper in this fashion is to motivate the various results that are proved in
Section 3.

2. Proofs. In this section, we prove our main results. Proofs of the necessary
CTBP results are deferred to Section 3.

2.1. Dominating graph flow by continuous-time branching processes. In this
section, we describe a coupling between the flows started from vertices 1 and 2
and their corresponding independent CTBPs with offspring distribution given by
the point process in (1.6). We shall first start with the flow started from one vertex
and then extend this to the simultaneous flow from two vertices.

2.1.1. Expansion of the flow from a single vertex. We start with some notation.
Recall that Kn denoted the random disordered media represented by the complete
graph where each undirected edge (i, j) has edge length Es

ij where Eij are i.i.d. ex-
ponentially distributed with mean n − 1 [alternatively, with rate 1/(n − 1)]. These
edge lengths make Kn a metric space (with random geodesics). Let the index set of
Kn be [n] := {1,2, . . . , n} and fix vertex 1. Think of this vertex as an originator of
flow of some fluid which percolates through the whole network via the geodesics
at rate 1. Let i1 = 1, i2, . . . ∈ [n] be the vertices in sequential order seen by the
flow. For t ≥ 0, let SWG(1)

t be the shortest-weight graph between vertex 1 and all
the vertices that can be reached from 1 by shortest-weight paths of length at most t .
More precisely, SWG(1)

t consists of these shortest-weight paths and the weights of
all of the edges used for them. Let (Ei

j )i≥1,j≥1 be a doubly infinite array of mean
1 exponential random variables. Then, by the properties of the extremes of n − 1
i.i.d. exponential random variables, each with mean n − 1, it is easy to see that the
neighbors of 1 have distances from 1 distributed as

Pn,1 = (E1
1)s,

(
E1

1 + n − 1

n − 2
E1

2

)s

, . . . .(2.1)

Similarly, the distribution of distances from vertex ik (the kth vertex reached by
the flow from 1) to vertices other than those already seen by the flow, is distributed
as

Pn,k =
(

n − 1

n − k
Ek

1

)s

,

(
n − 1

n − k
Ek

1 + n − 1

n − k − 1
Ek

2

)s

, . . . .(2.2)
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Call the above the immediate neighborhood process of vertex k. Note that for
each k, by the memoryless property of the exponential distribution, the identity
of the end point of each edge in the above point process is uniformly distributed
among all [n]\{i1, i2, . . . ik} vertices which have not been seen at the time when the
flow hits vertex ik . Our aim is to couple this process with a CTBP with offspring
distribution given by the point process P defined by

P = {(E1)
s, (E1 + E2)

s, (E1 + E2 + E3)
s, . . .},(2.3)

where (Ei)i≥1 are i.i.d. exponential rate 1 random variables. Comparing (2.3) with
(2.1) and (2.2), we see that, intuitively, the SWG(1)

t should be stochastically smaller
than the corresponding CTBP driven by offspring distribution P . The reason is that
when the flow starts, then the number of edges it has to explore from vertex 1 is
n−1, but as the SWG(1)

t increases with time, the number of edges originating from
each new vertex is strictly smaller than n − 1 due to vertices already explored by
the flow. Thus, the points are being depleted. We shall show that asymptotically
for large n, the difference is negligible. To do so, as the flow explores Kn, we
shall enlarge the graph Kn with new artificial vertices to compensate for the fact
that SWG(1)

t uses up vertices in Kn and effectively counteracting the depletion of
points effect. For this, we shall need the following randomization ingredients:

(i) The complete graph Kn with random edge weights;
(ii) An infinite array of i.i.d. exponential random variables (Ei,j )i∈[n],j≥n+1

each with mean n − 1;
(iii) An infinite sequence of independent branching process (B̃Pi(·))i≥n+1,

each driven by the offspring distribution in (2.3).

Before diving into the construction, we shall need the following simple lemma
which follows directly from the memoryless property of the exponential distribu-
tion.

LEMMA 2.1 (Powers of exponential distributions). (a) Consider the random
variable Es where E has an exponential distribution with mean n − 1. Then, for
any fixed r > 0, the conditional distribution of Es | Es > r equals that of (Ẽ +
r1/s)s , where Ẽ is an independent random variable with exponential distribution
with mean n − 1.

(b) Consider the surplus random variable (Es − r) | Es > r . This random vari-
able has the same distribution as the first point of a Poisson point process with
rate


r(x) = 1

s(n − 1)
(r + x)1/s−1, x ≥ 0.(2.4)

We shall use part (a) of Lemma 2.1 in the construction of the coupling while we
shall use part (b) in the proof of the distributional result for the optimal weight. We
start by proving Lemma 2.1.
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PROOF. Part (a) is immediate from the memoryless property of the exponen-
tial random variable. For part (b), we note that

P(Es − r ≥ x | Es > r) = P
(
E ≥ (x + r)1/s | E > r1/s)

(2.5)
= e−[(x+r)1/s−r1/s ]/(n−1),

while the probability that a Poisson point process with rate (2.4) has no points
before x equals

e− ∫ x
0 
r(y)dy = e

− ∫ x
0

1
s(n−1)

(r+y)1/s−1dy = e−[(x+r)1/s−r1/s ]/(n−1).(2.6)

Thus, the first point of this Poisson point process has the same distribution as the
conditional law Es − r | Es > r . �

Construction of the coupling. This proceeds via the following constructions:

(a) Artificial inactive vertices: Consider the flow traveling at rate one from ver-
tex 1 on Kn. Let z

n,(1)
t denote the number of vertices in SWG(1)

t . To evoke branch-
ing process terminology, we shall often refer to this as the number of vertices born
in the flow cluster of 1 by time t . For 1 ≤ k ≤ n, we define the stopping times

T n
k = inf{t : zn,(1)

t = k},(2.7)

so that T n
1 = 0. Now consider the flow from vertex 1. For k ≥ 2, when the kth

vertex ik is discovered by the flow at time T n
k , create a new artificial vertex labeled

by n+ k − 1. Let a(ik) denote the vertex in SWG(1)

T n
k

to which vertex ik is attached.

Then note that for all ij �= a(ik) ∈ SWG(1)

T n
k

, by Lemma 2.1(a) and, conditionally on

SWG(1)
t , the edge lengths of edge (ij , ik) have distribution ([T n

k − T n
j ]1/s + E)s

where E has an exponential distribution with mean n − 1.
For the new artificial vertex n + k − 1, we attach edge lengths from each ver-

tex ij ∈ SWG(1)

T n
k

of length ([T n
k − T n

j ]1/s + Ej,n+k−1)
s where the Ej,n+k−1 are

exponential random variables as described in the randomization needed for the
coupling, and where we recall that T n

j denotes the time of discovery of vertex ij .
We shall think of the flow having reached a distance t − T n

j on this edge. At the
time of creation, we shall think of these artificial vertices as inactive as the flow
has not yet reached this vertex. Think of these vertices as part of the network and
the flow trying to get to them as well. Note that eventually the flow will reach these
inactive vertices as well. Whenever the flow reaches an inactive artificial vertex,
we shall think of this vertex becoming active, that is, it is activated. Let At denote
the set of active artificial vertices. For k ≥ 1, let

T
n,∗
k := inf{t : |At | = k}(2.8)

be the time of activation of the kth artificial vertex. Note that in this construc-
tion, edges exist only between vertices in [n] and artificial vertices, no edges exist
between artificial vertices.
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(b) Activation of artificial vertices: Note that activation of inactive vertices hap-
pens at times T

n,∗
k via an edge from a vertex in SWGT

n,∗
k

⊆ [n] to an inactive artifi-
cial vertex dk ≥ n + 1. Suppose at this time the set of artificial vertices (active and
inactive) is {n + 1, n + 2, . . . , n + j (T

n,∗
k )}. When dk is activated, the following

constructions are performed:

(1) Remove all the edges from vertices in [n] to dk (other than the one that the
flow used to get to it);

(2) Create a new inactive artificial vertex n+ j (T
n,∗
k )+1. Just as before, create

edges between each vertex i ∈ [n] and vertex n + j (T
n,∗
k ) + 1 with edge lengths

distributed as ([t − T
n,∗
k ]1/s + Ei,n+j (T

n,∗
k )+1)

s and think of the flow as having

already traveled t − T
n,∗
k on it;

(3) At this time, start a CTBP B̃Pk(·) with dk as the ancestor. The vertices born
in this branching process have no relation to the flow on Kn and associated inactive
vertices. For time t > T

n,∗
k , we shall call all the vertices in B̃Pk(t), other than dk ,

the descendants of vertex dk at time t .

Let D At denote the set of all descendants of the associated CTBPs of active
artificial vertices at time t and let

BP(1)
t = SWG(1)

t

·∪ At

·∪ D At .(2.9)

Let z
(1)
t = |BP(1)

t | denote the number of vertices reached at time t . The following
proposition identifies properties of the above construction that will be crucial in
our analysis. We shall prove this proposition in detail since later we shall use an
almost identical proposition in the context of flow from two vertices which we
shall state without proof in Section 2.1.2 below.

PROPOSITION 2.1 (Properties of the coupling). In the above construction, the
following holds:

(a) The process (BP(1)
t )t≥0 is a CTBP driven by the point process P in (2.3).

The process (SWG(1)
t )t≥0 is the shortest weight graph process of the flow emanat-

ing from vertex 1. As is obvious from (2.9), there is stochastic domination in the
sense that, for all times t ≥ 0, a.s.

SWG(1)
t ⊆ BP(1)

t .(2.10)

In particular, z
n,(1)
t = |SWG(1)

t | ≤ z
(1)
t = |BP(1)

t | for all t .
(b) Let λ = λ(s) be the Malthusian rate of growth of BP(1)

t as defined by (1.9).
Then, given any ε > 0, there exists Cε > 0 such that for times tn = (2λ)−1 logn −
Cε

lim inf
n→∞ P(Atn = ∅) ≥ 1 − ε.(2.11)
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(c) For any fixed B ∈ R, letting tn = (2λ)−1 logn + B , the sequence of ran-
dom variable |Atn | + |D Atn | is a sequence of tight random variables. Since the
processes (|At | + |D At |)t≥0 are monotonically increasing in t , (2.9) implies that
supt≤tn

(z
(1)
t − z

n,(1)
t ) is tight and, in particular, as n → ∞,

sup
t≤tn

∣∣∣∣zn,(1)
t

z
(1)
t

− 1
∣∣∣∣ P−→ 0.(2.12)

Note that if |Atn | = 0, then SWG(1)
t = BP(1)

t for all t ≤ tn, so that part (b)
yields that there is little difference between the SWG and the CTBP up to time
(2λ)−1 logn − Cε .

PROOF. Part (a) is obvious from construction. To prove part (b), note that
by construction, if z

n,(1)
t = k, then the chance that the next vertex is an artificial

inactive vertex is exactly k/n. Thus, if z
n,(1)
tn = kn then

|Atn | d=
kn∑

j=1

Ij ,(2.13)

where Ij are independent Bernoulli(j/n) random variables, that is, P(Ij = 1) =
1 − P(Ij = 0) = j/n. Now to choose Cε , first choose C∗

ε > 0 so small that

exp(−C∗
ε /2) > 1 − ε/2. Since z

n,(1)
tn ≤ z

(1)
tn and for the process (z

(1)
t )t≥0 the as-

ymptotics (1.7) hold, we can choose C∗
ε such that

P
(
z
n,(1)
tn > C∗

ε

√
n
)
< ε/2.(2.14)

Then

P(|Atn | > 0) ≤ P
(|Atn | > 0, z

n,(1)
tn < C∗

ε

√
n
) + P

(
z
n,(1)
tn > C∗

ε

√
n
)

≤ (
1 − exp(−C∗

ε /2)
) + ε/2 < ε,

where the second inequality follows using a Poisson approximation in (2.13) and
(2.14). This proves part (b).

Finally to prove part (c), we note the following:

• Using part (b), we choose Cε so that with high probability no artificial vertices
have been activated by time (2λ)−1 logn − Cε;

• Using (2.13) and ideas similar to the above argument, one can show that the
number of active artificial vertices by time tn = (2λ)−1 logn + B can be sto-
chastically dominated with high probability by a Poisson random variable XB

with mean C(B) for some function B �→ C(B).
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These two observations together imply that with high probability

|Atn | + |D Atn | �st

XB∑
j=1

|BPj (B − Cε)|,(2.15)

where BPj (·) are independent CTBPs driven by P , independent of XB which is
Poisson with mean C(B) and �st denotes stochastic domination. Since the right-
hand side is bounded a.s., this proves part (c). �

2.1.2. Simultaneous expansion and coupling. Let us now show how the above
coupling can be extended to flow originating from two vertices 1,2 simultaneously.
We shall couple the flow to two independent CTBPs (BP(i)

t )i=1,2. All the ingre-
dients of randomness shall be the same as in the previous section, namely, (i) the
complete graph Kn with random edge lengths; (ii) the infinite array of exponential
random variables (Ei,j )i∈[n],j≥n+1; and (iii) the infinite sequence of independent
CTBPs (B̃Pi )i≥1 driven by P . Think of flow now emanating from the two sources
1,2 simultaneously at rate one exploring the shortest weight structure about the
two sources. We shall stop the flow when there is a collision, that is, the flow from
one vertex sees a vertex seen by the flow from the other vertex. As before, we let
SWG(i)

t denote the shortest weight graphs up to time t explored by the flow from
each source i = 1,2 and let

SWGt = SWG(1)
t ∪ SWG(2)

t .(2.16)

Let z
n,(i)
t = |SWG(i)

t | and zn
t = z

n,(1)
t +z

n,(2)
t . Now let T n

k denote the stopping time

T n
k = inf{t : zn

t = k},(2.17)

so that now T n
2 = 0. Let the vertex discovered at time T n

k and attached to one of
the two flow clusters be ik ∈ [n]. We shall call this the time of birth of the vertex
ik . Extra care is needed as subtle issues of double counting of edges may arise.

The construction proceeds as before via two ingredients:
(a) Artificial inactive vertices: By convention, we shall think of the edge be-

tween 1 and 2 to belong to the flow from vertex 1, so that vertex 2 immediately is
one neighbor short. To compensate for this shortage, at time 0, we shall add a new
artificial inactive vertex labeled by n + 1. Compared to the other artificial vertices
this shall be special in the sense that vertex 1 will not have an edge to this vertex
(or the artificial vertices that replace this vertex when the flow reaches this vertex).
At time 0, attach an edge (2, n + 1) of random length Es

2,n+1. Now start the flow
from the two sources on the vertex set [n] ∪ {n + 1}. The flow percolates from
these two sources on the (expanded) network discovering new vertices, both actual
vertices in [n] as well as artificial vertices. Let SWG∗

t denote this flow process with
z
n,∗
t = |SWG∗

t | and let

T̃ n
k = inf{t : zn,∗

t = k}.(2.18)
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Let ik denote the vertex discovered by the flow at time T̃ n
k (this vertex could either

be an actual vertex in [n] or an artificial inactive vertex). Create a new artificial
vertex labeled by n+ k. Now if ik is in SWG(2)

t then remove all the edges between
ik and all the vertices in SWG(2)

T̃ n
k

(namely real vertices in the actual graph [n] which

are part of SWG(2)
t that have already been explored by the flow from 2). (Do the

exact opposite if ik ∈ SWG(1)
t .) The edges (v, ik) for v ∈ SWG(1)

T̃ n
k

are quite special

(see the beginning of Section 2.2). Call these the potential connecting edges as
these are the edges through which collisions of the two flow clusters may happen.
Also perform the following constructions:

• If ik �= n + 1 or any of the replacements of n + 1 (this term is defined below),
then attach edges between the artificial vertex n + k and all ij ∈ SWG

T̃ n
k

with

edge lengths ([T̃ n
k − T n

ij
]1/s + Eij ,n+k)

s . The flow would have already reached

up to distance (T̃ n
k − T n

ij
) on this edge to this new vertex.

• If ik = n + 1, then replace this by a new vertex n + k. This vertex will be called
a replacement of the special artificial vertex n + 1. Also replacements of such
replacements shall be called replacements. Remove all edges from ij ∈ SWG

T̃ n
k

to ik and add back edges from these vertices excluding vertex 1 to vertex n + 1
with edge lengths ([T̃ n

k − T n
ij
]1/s + Eij ,n+k)

s . This can be understood by noting

that the flow would have already reached up to distance (T̃ n
k − T n

ij
) on this edge

to this new vertex.

Every new artificial vertex when it is born is inactive. Whenever the flow reaches
an inactive artificial vertex we shall think of this vertex becoming active and be-
longing to the flow cluster from which this artificial vertex was reached. Let A(i)

t

denote the set of active artificial vertices corresponding to flow cluster i = 1,2 at
time t and let At = A(1)

t ∪ A(2)
t be the set of artificial vertices. For k ≥ 1, we let

T
n,∗
k := inf{t : |At | = k}(2.19)

be the time of activation of the kth artificial vertex. Note that, as before, edges
exist only between vertices in [n] and artificial vertices in this construction, no
edges exist between artificial vertices.

(b) Activation of artificial vertices: The flow will eventually reach inactive ar-
tificial vertices. When this happens say that activation happens. This happens at
times T

n,∗
k via an edge from a vertex in SWGT

n,∗
k

⊆ [n] to an inactive artificial
vertex dk ≥ n + 1 from one of the two flow clusters. When an artificial vertex gets
activated, it belongs to the flow cluster that activates it and so do all its descendants
(the notion of a descendant is defined below). Suppose that at this time, the set of
artificial vertices (active and inactive) is {n + 1, n + 2, . . . , n + j (T

n,∗
k )}. As de-

scribed above, this inactive artificial vertex is replaced by a new inactive artificial
vertex with appropriate edges and edge lengths.
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Further, at this time, start the CTBP B̃Pk(·) with dk as the ancestor. The vertices
born in this branching process have no relation to the flow on Kn and associated
inactive vertices. At time t > T

n,∗
k , we shall call all the vertices in B̃Pk other than

dk the descendants of vertex dk .
Let D A(i)

t denote the set of all descendants of the associated CTBPs of active
artificial vertices at time t in flow cluster i = 1,2 and define the processes

BP(i)
t = SWG(i)

t ∪ A(i)
t ∪ D A(i)

t , i = 1,2.(2.20)

Let z
(i)
t = |BP(i)

t |. Finally, let BPt = BP(1)
t ∪ BP(2)

t denote the full flow process.
This completes the construction of the coupling.

The following proposition collects the properties of our construction that we
shall need. It is analogous to Proposition 2.1 and we shall not give a proof. Recall
that T12 denotes the collision time of the two flow processes.

PROPOSITION 2.2 (Properties of the coupling). In the above construction, the
following holds:

(a) The processes (BP(i)
t )t≥0 are independent CTBPs driven by the point

process P in (2.3). The process (SWG(i)
t )0≤t≤T12 is the shortest weight graph

process of the flow emanating from vertex i till the collision time. As is obvious
from (2.20), there is stochastic domination in the sense that for all times t ≥ 0,

SWG(i)
t ⊆ BP(i)

t .(2.21)

In particular z
n,(i)
t ≤ z

(i)
t for all t ≥ 0.

(b) Let λ = λ(s) be the Malthusian rate of growth of BP(i)
t as defined in (1.9).

Then, given any ε > 0, there exists Cε such that for times tn = (2λ)−1 logn − Cε ,

lim inf
n→∞ P

(
T12 > tn,

∣∣A(1)
tn

∣∣ = 0,
∣∣A(2)

tn

∣∣ = 0
) ≥ 1 − ε.(2.22)

Note that if |A(i)
tn | = 0 then SWG(i)

t = BP(i)
t for all t ≤ tn.

(c) For any fixed B ∈ R, let t∗n = (2λ)−1 logn + B and let tn = T12 ∧ t∗n . Then

the sequence of random variables |A(i)
tn | + |D A(i)

tn | is a tight sequence of random
variables. Since the processes (|At |+|D At |)0≤t≤T12 are monotonically increasing

in t , (2.20) implies that supt≤tn
(z

(i)
t − z

n,(i)
t ) is tight, and, as n → ∞,

sup
t≤tn

∣∣∣∣zn,(i)
t

z
(i)
t

− 1
∣∣∣∣ P−→ 0.(2.23)

2.2. Analysis of the weight of the optimal path. Before proceeding to the main
proposition in this section, we shall derive an important property of the above
construction. When a vertex, say v ∈ [n], is born into one of the flow process (to
fix ideas say into the flow cluster of vertex 1) at some time t , then note that the
edges it has at this time are
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• edges to inactive artificial vertices.
• edges to all vertices in [n] \ SWGt .

For any vertex v ∈ SWG(1)
t and, for any vertex u ∈ [n] born into the flow cluster

originating from vertex 2 at some later time s > t , we say that the edge connecting
v to u is assigned to vertex v and not to u. Similarly, if vertex u is born into the
flow cluster starting from 2 before vertex v which is born into flow cluster from
vertex 1, then say that the edge (u, v) is assigned to vertex u. Now, for any time
t and any vertex v ∈ SWG(1)

t ⊆ [n], let Nt(v) denote the number of edges with
end points in SWG(2)

t which are assigned to it. Similarly, for a vertex i ∈ SWG(2)
t ,

Nt(v) is the number of vertices in SWG(1)
t assigned to it. Recall that our aim in

sending the flow simultaneously is to analyze the collision time, namely, the first
time when an edge, which we shall refer to as the connecting edge, forms between
the two flow clusters. For any given time t and v ∈ SWG(i)

t , i = 1,2, define the
(random) set

Nt (v) = {
u ∈ SWG(3−i)

t : edge (u, v) assigned to v
}

(2.24)
= {

u ∈ SWG(3−i)
t :Tu > Tv

}
,

where, from now on, we shall use Tv to denote the time of birth of vertex v into
the flow process (SWGt )t≥0 and we recall that SWGt = SWG(1)

t ∪ SWG(2)
t .

The importance of these connecting edges is as follows: Fix some time t and
vertices i ∈ SWG(1)

t and j ∈ SWG(2)
t with Tj > Ti so that the edge between them

is assigned to vertex i. Note that up till time Tj , the flow was proceeding on the
edge between them at rate 1 from vertex j . Now at time Tj the flow has reached
the edge from the opposite side (i.e., from vertex j ) and is proceeding through the
edge from both end points. Thus, while the flow through all other non-potential
connecting edges proceeds at rate 1, the flow through this edge proceeds at rate 2.
For any time x + Tj , and using Lemma 2.1(b) with r = Tj − Ti and the fact that
the flow now proceeds at rate 2 and not 1, the intensity function for the formation
of this edge at this time is

λ(i,j)(x + Tj ) = 2

s(n − 1)

(
(Tj − Ti) + 2x

)1/s−1
, x ≥ 0.(2.25)

In particular, for t ≥ Tj ,

λ(i,j)(t) = 2

s(n − 1)

(
(Tj − Ti) + 2(t − Tj )

)1/s−1

(2.26)

= 2

s(n − 1)

(
(t − Ti) + (t − Tj )

)1/s−1
.

This fact leads to the following proposition.
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PROPOSITION 2.3 (Collision time distribution). If T12 denotes the collision
time, then with respect to the filtration generated by the flow process, T12 has the
same distribution as the first point of a Poisson point process with rate function
given by

λn(t) = 2

s(n − 1)

∑
i∈SWG(1)

t

∑
j∈SWG(2)

t

([t − Tj ] + [t − Ti])1/s−1.(2.27)

REMARK 2.4 (Extension to other graphs). Note that a similar formula as the
above remains valid for any finite graph with i.i.d. Es

e edge weights where Ee

are exponential random variables, where the sum over e = (i, j) is restricted to
(i, j) ∈ En, that is, the sum is only taken over the edges of the graph. This can be
used to analyze more general random graph models.

PROOF OF PROPOSITION 2.3. Using (2.25), Lemma 2.1 and the fact that for
a finite number of independent Poisson point processes, the first point to occur in
any of these processes has the same distribution as the first point in Poisson point
process with rate given by the sum of rates of the corresponding point processes,
we have that

λn(t) = 2
∑

i∈SWG(1)
t

∑
j∈Nt (i)

([t − Ti] + [t − Tj ])1/s−1

s(n − 1)

(2.28)

+ 2
∑

i∈SWG(2)
t

∑
j∈Nt (i)

([t − Ti] + [t − Tj ])1/s−1

s(n − 1)
,

where we recall that Nt (i) denotes the set of vertices in the other flow cluster as-
signed to i. Now note that for every pair of vertices (i, j), i ∈ SWG(1)

t , j ∈ SWG(2)
t

either i ∈ Nt (j ) or vice versa and only one of these facts can happen. Rearranging
the above equation gives the result. �

We call the sum appearing in (2.27) a two-vertex characteristic. In Section 3.3
below, we shall prove the following result concerning the convergence of the two-
vertex characteristic:

THEOREM 2.5 (Convergence of CTBP two-vertex characteristic). Consider
two independent CTBPs (BP(i)

t )t≥0, i = 1,2, as before. Let W(i), i = 1,2, be the
almost sure limits of e−λtz

(i)
t . Then,

e−2λt
∑

i∈BP(1)
t

∑
j∈BP(2)

t

([t − Tj ] + [t − Ti])1/s−1 a.s.−→ λW(1)W(2),(2.29)

where W(i) are the a.s. limits of e−λt |BP(i)
t | and are i.i.d. with the same distribution

as W in (1.7).
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Now we are ready to prove Theorem 1.1.

COMPLETION OF THE PROOF OF THEOREM 1.1. First, consider the rate func-
tion λn(t) of the collision time given in Proposition 2.3. By Proposition 2.2, in the
summation arising in this rate function, we can replace the terms SWG(i)

t by BP(i)
t

as the effect on the rate function is asymptotically negligible, where BP(i)
t are the

independent CTBPs that have been coupled with SWG(i)
t to understand the opti-

mal path on Kn. Note that while the law of these CTBPs is independent of n, their
realizations intrinsically depend on n, since we have used the randomization in Kn

to construct the CTBPs. We will indicate this dependence by adding a subscript n.
By (1.7),

e−λt
∣∣BP(i)

t

∣∣ a.s.−→ W(i)
n ,(2.30)

where W
(i)
n are independent and identically distributed as the limit variable in

(1.7).
Now, Theorem 2.5 implies that for any fixed B > 0

sup
x∈[−B,B]

∣∣∣∣λn

(
(2λ)−1 logn + x

) − 2λ

s
W(1)

n W(2)
n e2λx

∣∣∣∣ P−→ 0.(2.31)

Comparing the above with the definition of the Cox process in (1.10) completes
the proof subject to Theorem 2.5. Theorem 2.5 is proved in Section 3.3. �

For future reference, we define the two-vertex characteristics χ(i,j)(t) by

χ(i,j)(t) = ([t − Tj ] + [t − Ti])1/s−1.(2.32)

We shall now quickly prove the distributional equivalence (1.12).

LEMMA 2.6 (The limit of the shortest weight). The first point �(1) of the Cox
point process with rate γ (·) as in (1.10) satisfies the distributional equivalence in
(1.12).

PROOF. Since �(1) is the first point of the Cox process with rate function γ in
(1.10), we have for any fixed y ∈ R, conditional on W(1),W(2),

P
(
�(1) > y | W(1),W(2)) = exp

(
−

∫ y

−∞
γ (x) dx

)
(2.33)

= exp
(
−1

s
W(1)W(2)e2λy

)
,

so that

P

(
�(1) > x − 1

2λ
log

W(1)W(2)

s

∣∣∣ W(1),W(2)

)
= exp(−e2λx)

(2.34)
= P

(
G/(2λ) > y

)
,

where G has the standard Gumbel distribution. This proves the result. �
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2.3. Hopcount analysis. As before, we let T12 be the collision time between
the two flow clusters and suppose the collision happens via the formation of an
edge (v1, v2) where v1 ∈ SWG(1)

T12
and v2 ∈ SWG(2)

T12
. For i = 1,2, let Gi denote

the number of edges on the path from vertex i to Gi so that the hopcount is given
by

Hn = G1 + G2 + 1.(2.35)

To prove Theorem 1.2 it suffices to show that, for every fixed r, x, y ∈ R and writ-
ing tn = (2λ)−1 logn,

P
(
T12 ≤ tn + r,G1 ≤ λstn + xs

√
λtn,G2 ≤ λstn + ys

√
λtn

)
(2.36)

→ F12(r)�(x)�(y),

where F12(·) is the distribution of the random variable �(1) appearing in Theo-
rem 1.1 and �(·) denotes the standard normal distribution function.

For fixed time t and v ∈ SWG(i)
t , i = 1,2, let G(v) denote the number of edges

in the optimal path between v and vertex i which started the flow. For any fixed
x ∈ R, let

SWG(i)
t (x) = {

v ∈ SWG(i)
t :G(v) ≤ λst + xs

√
λt

}
.(2.37)

By Proposition 2.3 and properties of a finite number of Poisson processes, we have,
for any fixed t ,

P
(
T12 ∈ [t, t + dt),G1 ≤ λst + xs

√
λt,G2 ≤ λst + ys

√
λt | SWGt

)
(2.38)

= exp
(
−

∫ t

0
λn(w)dw

)
λn(t)

∑
i∈SWG(1)

t (x)

∑
j∈SWG(2)

t (y)
χij (t)∑

i∈SWG(1)
t

∑
j∈SWG(2)

t
χij (t)

dt,

where χij (t) is the two-vertex characteristic defined in (2.32) and λn(t) is the rate
defined in (2.27). Thus, to complete the proof of (2.36), it is enough to show the
following theorem.

THEOREM 2.7 (CLT from two-vertex characteristic). The two-vertex charac-
teristic satisfies the asymptotics, for t → ∞,∑

i∈SWG(1)
t (x)

∑
j∈SWG(2)

t (y)
χij (t)∑

i∈SWG(1)
t

∑
j∈SWG(2)

t
χij (t)

P−→ �(x)�(y).(2.39)

Theorem 2.7 is proved in Section 3 and completes the proof subject to Theo-
rem 2.7. In fact, together with Theorem 2.5, (2.38) proves the joint convergence
of the length of the optimal path and the hopcount as remarked upon below Theo-
rem 1.2, where the limits are independent.
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3. Continuous-time branching process theory. In Sections 2.2–2.3, we
have reduced the proof of our main results to the proof of Theorems 2.5 and 2.7.
In this section, we prove Theorems 2.5 and 2.7. This section is organized as fol-
lows. In Section 3.1, we investigate properties of our CTBP. In Section 3.2, we
investigate one-vertex characteristics. In Section 3.3, we analyze the two-vertex
characteristic and prove Theorem 2.5. In Section 3.4, we compute the mean and
variance of generation-weighted two-vertex characteristics, and in Section 3.5, we
derive a CLT for the two-vertex characteristic and complete our proof of Theo-
rem 2.7.

3.1. Intensities and limiting parameters for a single CTBP. We shall first
state and prove various results that we shall require regarding a single branching
process. Let BP be a continuous-time branching process driven by the offspring
point process P [i.e., the points given by (L1,L2, . . .) as in (1.5)] and let μ denote
the mean intensity measure of this point process, that is,

μ[0, t] = E(#{i :Li ≤ t}).(3.1)

Now,

μ[0, t] =
∞∑
i=1

P(Li ≤ t) =
∞∑
i=1

∫ t1/s

0
e−u ui−1

(i − 1)! du =
∫ t1/s

0
1du = t1/s .(3.2)

Define the Malthusian rate of growth λ = λ(s) as the unique positive constant such
that the measure

ν(dt) = e−λtμ(dt)(3.3)

is a probability measure. A simple computation shows that this is equivalent to
(1.8). The following lemma collects some properties of this probability measure
and the constant λ.

LEMMA 3.1 (Identification of limiting parameters CTBP).

(a) The constant λ = λ(s) is given by (1.9).
(b) The probability measure ν(dt) is a Gamma distribution with density

f (t) = λ1/s

�(1/s)
e−λt t1/s−1.(3.4)

(c) Let β1 and β2 denote the mean and the standard deviation of ν. Then

β1 = (sλ)−1, β2 = (√
sλ

)−1
.(3.5)

(d) Let μ∗j denote the j -fold convolution of the measure μ. Then

μ∗j (du) = uj/s−1λj/s du

�(j/s)
.(3.6)
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PROOF. To prove part (a), note that since the sum of i independent exponential
random variables follows the gamma distribution, a simple computation gives that

1 =
∞∑
i=1

E(e−λLi ) =
∞∑
i=1

∫ ∞
0

e−λts e−t t i−1

(i − 1)! dt

=
∫ ∞

0
e−λts e−t

∞∑
i=1

t i−1

(i − 1)! dt =
∫ ∞

0
e−λts dt

(3.7)
= λ−1/s

∫ ∞
0

e−t s dt = λ−1/ss−1
∫ ∞

0
e−vv1/s−1 dv

= λ−1/s�(1/s)/s = λ−1/s�(1 + 1/s)

as required. Parts (b) and (c) are trivial. To prove part (d) note that, by (3.2) and
[12], equation 4.634, we have

μ∗j (du) = du s−j
∫
u1+···+uj=u

u
1/s−1
1 · · ·u1/s−1

j du1 · · ·duj

= uj/s−1s−j�(1/s)j du

�(j/s)
= uj/s−1�(1 + 1/s)jdu

�(j/s)
(3.8)

= uj/s−1λj/sdu

�(j/s)
. �

3.2. Analysis of single-vertex characteristic. We first state a general theorem
for single vertex characteristics of the CTBP. Consider a function χ : R+ → R

+
which is continuous almost everywhere and which (a) increases at most polyno-
mially quickly at ∞; and (b) is integrable with respect to the Lebesgue measure
near zero. Let us call such functions regular single-vertex characteristics. For the
branching process BPt , call

z
χ
t = ∑

j∈BPt

χ(t − Tj )(3.9)

the branching process counted according to characteristic χ . Branching processes
counted by characteristics are some of the fundamental objects studied by Jagers
and Nerman, see, for example, [15]. For example, taking χ(x) = 1, we obtain
z
χ
t = |BPt |, the size of the branching process at time t . In order to investigate the

hopcount, we will need to analyze not just branching processes counted according
to characteristics as above but also generation-weighted characteristics. Given a
regular single vertex characteristic χ and any fixed a ∈ R, define

z
χ
t (a) = ∑

j∈BPt

aG(j)χ(t − Tj ),(3.10)

where, as before, Tj denotes the time of birth of vertex j , while G(j) denotes
the height or generation of vertex j . Given any characteristic χ , when we write
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z
χ
t without the argument a, we imply the branching process counted in the usual

way as in (3.9), while when we have an argument a, namely z
χ
t (a), we refer to the

branching process counted by a generation-weighted characteristic as in (3.10).
The following proposition is adapted from the general theory of CTBPs, see,

for example, [14], Theorem 5.2.2, for part (a) (or see the nice treatment in [15],
Theorem 3.4). We shall give a complete proof since branching processes counted
by generation-weighted characteristics have not been previously analyzed. These
constructions shall be crucial for us in order to prove the CLT for the hopcount.

PROPOSITION 3.2 (Mean and co-variances of one-vertex characteristics). For
regular deterministic single-vertex characteristics χ ,

(a) the expectation m
χ
t (a) = E[zχ

t (a)] satisfies

m
χ
t (a) = E[zχ

t (a)] =
∫ t

0
χ(t − u)

∞∑
j=0

ajμ∗j (du),(3.11)

(b) the covariances between z
χ1
t (a1) and z

χ2
t (a2) satisfy

Cov
(
z
χ1
t (a1), z

χ2
t (a2)

) =
∫ t

0
ha1,a2(t − u)μ̃a1a2(du),(3.12)

where v �→ ha1,a2(v) is the function

ha1,a2(v) = a1a2

s

∫ v

0
u1/s−1m

χ1
v−u(a1)m

χ2
v−u(a2) du,(3.13)

and we define the generation-weighted intensity measure μ̃a by

μ̃a(du) =
∞∑

j=0

ajμ∗j (du).(3.14)

PROOF. The proof of part (a) follows the same strategy as in [15], page 228,
where the case a = 1 was proved. Indeed, there it is shown that the intensity mea-
sure for individuals in the kth generation equals μ∗k . Thus, with Nk denoting the
set of individuals in generation k,

m
χ
t (a) = E[zχ

t (a)] =
∞∑

k=0

ak
E

[ ∑
i∈Nk

χ(t − Ti)

]
(3.15)

=
∫ t

0
χ(t − u)

∞∑
k=0

akμ∗k(du).

For part (b), we follow the identification of Var(zχ
t ) in [15], Theorem 3.2 and

Corollary 3.3. We use the covariance partition

Cov(z
χ1
t (a1), z

χ2
t (a2)) = Cov(E[zχ1

t (a1) | A0],E[zχ2
t (a2) | A0])

(3.16)
+ E[Cov(z

χ1
t (a1), z

χ2
t (a2)) | A0],
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where A0 is the σ -algebra generated by the lives of the individuals in the first
generation (the root is considered to be in generation zero). Then, the branching
property of a CTBP gives that

z
χ
t (a) = χ(t) + a

∑
j :G(j)=1

z
χ
t−Tj

(j ;a),(3.17)

where ((z
χ1
t (j ;a1), z

χ2
t (j ;a2)))j,t≥0 is, conditionally on A0, a sequence of i.i.d.

random processes with law ((z
χ1
t (a1), z

χ2
t (a2)))t≥0. Therefore,

Cov(z
χ1
t (a1), z

χ2
t (a2) | A0) = a1a2

∑
j : G(j)=1

Cχ1,χ2
t−Tj

(a1, a2),(3.18)

where we abbreviate

Cχ1,χ2
t (a1, a2) = Cov(z

χ1
t (a1), z

χ2
t (a2)).(3.19)

Thus,

E[Cov(z
χ1
t (a1), z

χ2
t (a2) | A0)] = a1a2

∫ t

0
Cχ1,χ2

t−v (a1, a2)μ(du).(3.20)

Further,

E[zχ
t (a) | A0] = χ(t) + a

∫ t

0
m

χ
t−u(a)P(du),(3.21)

where (P(t))t≥0 is the intensity process of the first individual. Therefore, we arrive
at

Cχ1,χ2
t (a1, a2) = ha1,a2(t) + (a1a2)

∫ t

0
Cχ1,χ2

t−u (a1, a2)μ(du),(3.22)

where

ha1,a2(t) = a1a2 Cov
(∫ t

0
m

χ1
t−u(a1)P(du),

∫ t

0
m

χ2
t−u(a2)P(du)

)
.(3.23)

Iterating this equation yields (3.12).
As before, for P denoting the offspring distribution point process [given by

(1.6)] and for every function F : R → R, note that∫ ∞
0

F(x)P(dx)
d= f (�),(3.24)

where � is a rate 1 Poisson point process, f (x) ≡ F(xs) and where the function
f applied to a point process � is defined as f (�) ≡ ∑

X∈� f (X). By properties
of functionals of the Poisson point process, we have that

Cov
(∫ t

0
F1(u)P(du),

∫ t

0
F2(u)P(du)

)
=

∫ t1/s

0
F1(u

s)F2(u
s) du

(3.25)

= s−1
∫ t

0
u1/s−1F1(u)F2(u) du.
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Therefore, we obtain

ha1,a2(t) = a1a2

s

∫ t

0
u1/s−1m

χ1
t−u(a1)m

χ2
t−u(a2) du.(3.26) �

The following proposition (adapted mainly from [15], Theorem 3.5) captures
all we require to know about the asymptotics of the mean and variance of a single-
vertex characteristic χ .

PROPOSITION 3.3 (Asymptotics of mean and variance for one-vertex charac-
teristics). For regular single vertex characteristics χ , and all a ≥ 0,

(a) As t → ∞,

e−λas t
E(z

χ
t (a)) → assλ

∫ ∞
0

e−λasyχ(y) dy.(3.27)

When a = at → 1, then the convergence holds where in the right-hand side the
value a = 1 is substituted.

(b) As t → ∞, when a1, a2 ≥ 0 with as
1 + as

2 − as
1a

s
2 > 0,

e−λ(as
1+as

2)t Cov(z
χ1
t (a1), z

χ2
t (a2))

→ (a1a2)
2+sλ2s2

(as
1 + as

2)
1/s(as

1 + as
2 − as

1a
s
2)

(3.28)

×
∫ ∞

0
χ1(x)e−λas

1x dx

∫ ∞
0

χ2(x)e−λas
2x dx.

When �a = �at → (1,1), then the convergence holds where in the right-hand sides
the value �a = (1,1) is substituted.

(c) With zt = |BPt |, there exists a random variable W with W > 0 a.s. such that
e−λtzt converges almost surely and in L2 to W and further, for any single-vertex
regular characteristic,

e−λt z
χ
t

a.s.−→ Wλ

∫ ∞
0

χ(x)e−λx dx,(3.29)

and the convergence also holds in L2.

PROOF. Part (a) for a = 1 is [14], Theorem 5.2.8. For a �= 1, we start from

m
χ
t (a) =

∫ t

0
χ(t − u)

∞∑
k=0

akμ∗k(du) =
∫ t

0
χ(t − u)μ̃a(du).(3.30)

Define the measure with density pa(u)du via the equation e−λasuμ̃a(du) =
pa(u)du + e−λasuδ0(du), then we obtain

e−λas tm
χ
t (a) = e−λas tχ(t) +

∫ t

0
χ(t − u)e−λas(t−u)pa(u) du

(3.31)

= e−λas tχ(t) +
∫ t

0
χ(v)e−λasvpa(t − v) dv.
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By Lemma A.1(a–b), we have that pa(u) is uniformly bounded on [1,∞) and
bounded by cu1/s−1 on [0,1], while and pa(u) → asλs when u → ∞. Thus, by
dominated convergence,

e−λas tm
χ
t (a) → asλs

∫ ∞
0

χ(v)e−λasv dv.(3.32)

The proof when at → 1 is identical.
See [15], Theorem 3.5, for parts (b) for a1 = a2 = 1 and for part (c). For the

proof of part (b) for (a1, a2) �= (1,1), we start with (3.12) and (3.13). By part (a),
we have that

e−λ(as
1+as

2)tha1,a2(t)

= a1a2

s

∫ t

0
u1/s−1e−λ(as

1+as
2)u

(
e−λas

1(t−u)m
χ1
t−u(a1)

)
(3.33)

× (
e−λas

2(t−u)m
χ2
t−u(a2)

)
du

∼ a1a2

s
Mχ1(a1)M

χ2(a2)

∫ ∞
0

u1/s−1e−λ(as
1+as

2)u du,

where we define

Mχ(a) = assλ

∫ ∞
0

e−λyas

χ(y) dy.(3.34)

Further, note that, by (1.9),∫ ∞
0

u1/s−1e−λ(as
1+as

2)u du = (as
1 + as

2)
−1/sλ−1/s�(1/s)

(3.35)
= s(as

1 + as
2)

−1/s .

Then we rewrite

e−λ(as
1+as

2)t Cov(z
χ1
t (a1), z

χ2
t (a2))

(3.36)

=
∫ t

0
e−λ(as

1+as
2)(t−u)ha1,a2(t − u)e−λ(as

1+as
2)uμ̃a1a2(du).

Now, by (A.2), for u large,

e−λ(as
1+as

2)uμ̃a1a2(du) ∼ (a1a2)
sλse−λ(as

1+as
2−as

1a
s
2)u du,(3.37)

which is integrable, so that substitution of this asymptotics in (3.12) and using
dominated convergence, proves that

e−λ(as
1+as

2)t Cov
(
z
χ1
t (a1), z

χ2
t (a2)

)
∼ (a1a2)M

χ1(a1)M
χ2(a2)(a

s
1 + as

2)
−1/s

∫ ∞
0

e−λ(as
1+as

2)uμ̃a1a2(du)

(3.38)
∼ (a1a2)

2Mχ1(a1)M
χ2(a2)(a

s
1 + as

2)
−1/s(as

1 + as
2 − as

1a
s
2)

−1/s

= (a1a2)
1+ss

(as
1 + as

2)
1/s(as

1 + as
2 − as

1a
s
2)

Mχ1(a1)M
χ2(a2).
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since, by Lemma A.1,∫ ∞
0

e−λb1uμ̃b2(du) = 1 +
∫ ∞

0
e−λ(b1−bs

2)upb2(u) du

= 1 +
∫ ∞

0
bs

2e
−λ(b1−bs

2)up1(ubs
2) du

= 1 +
∫ ∞

0
e−λb−s

2 (b1−bs
2)up1(u) du

(3.39)
=

∫ ∞
0

e−λb−s
2 (b1−bs

2)uμ(du)

= (
b−s

2 (b1 − bs
2)λ

)−1/s
�(1 + 1/s)

= b2(b1 − bs
2)

−1/s

by (3.7). This proves the claim when as
1 + as

2 − as
1a

s
2 > 0. When �a = �at → (1,1),

then the above asymptotics holds with �a = (1,1) substituted on the right-hand side
since (3.33) holds with �a = (1,1) substituted on its right-hand side. �

3.3. Almost sure convergence of two-vertex factor: Proof of Theorem 2.5. In
this section, we prove Theorem 2.5. Throughout the proof, we shall abbreviate
p = 1/s − 1. Note that, for any fixed 0 < ε < B < ∞, we can write z

(1,2)
t as

z
(1,2)
t = I

(1)
t (ε,B) + I

(2)
t (B) + I

(3)
t (ε),(3.40)

where

I
(1)
t (ε,B) = ∑

j∈BP(2)
t :ε<t−Tj<B

∑
i∈BP(1)

t

([t − Ti] + [t − Tj ])p,

I
(2)
t (B) = ∑

j∈BP(2)
t :t−Tj>B

∑
i∈BP(1)

t

([t − Ti] + [t − Tj ])p,

I
(3)
t (ε) = ∑

j∈BP(2)
t :t−Tj<ε

∑
i∈BP(1)

t

([t − Ti] + [t − Tj ])p.

Thus to prove the result it is enough to show that for each fixed ε,B we have

e−2λt I
(1)
t (ε,B)

(3.41)
a.s.−→ W(1)W(2)λ2

∫ B

ε

∫ ∞
0

(x1 + x2)
1/s−1e−λx1e−λx2 dx1 dx2,

lim sup
B→∞

lim sup
t→∞

e−2λt I
(2)
t (B) = 0 and

(3.42)
lim sup

ε→0
lim sup
t→∞

e−2λt I
(3)
t (ε) = 0.

We shall start by proving (3.41). The following lemma shall be crucial in our proof.
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LEMMA 3.4 (Sup convergence of characteristics). As t → ∞,

sup
x∈[ε,B]

∣∣∣∣e−λt
∑

i∈BP(1)
t

(x + [t − Ti])p − W(1)λ

∫ ∞
0

(x + y)pe−λy dy

∣∣∣∣ a.s.−→ 0,(3.43)

where W(1) is the almost sure limit of e−λtz
(1)
t .

PROOF. Consider the (random) functions

ft (x) = e−λt
∑

i∈BP(1)
t

(x + [t − Ti])p, x ∈ [ε,B].(3.44)

Note that for p < 0 these functions are monotonically decreasing, while for p >

0 they are increasing functions and they are all continuous when defined on the
compact interval [ε,B]. Further, for each fixed x ∈ [ε,B], by Proposition 3.3(c),
pointwise we have on a set of measure one,

ft (x)
a.s.−→ W(1)λ

∫ ∞
0

(x + y)pe−λy dy.(3.45)

Thus, to show the a.s. sup convergence, by the Arzela–Ascoli theorem (see, e.g.,
[18]), it is enough to show that the above family of functions are a.s. equicontinu-
ous, that is, for any x ∈ [ε,B] and any given δ > 0 there exists η(x) > 0 indepen-
dent of t such that for all t :

|ft (x) − ft (y)| < δ for all y ∈ [x − η(x), x + η(x)] ∩ [ε,B].(3.46)

We separate between the cases p < 1 and p ≥ 1.
Case 1: p < 1. In this case note that for any l1, l2 > 0 and a > 0, we have

|(l1 + a)p − (l2 + a)p| = |p − 1|
∫ l2

l1

(x + a)p−1 dx

(3.47)

≤ |p − 1|
∫ l2

l1

xp−1 dx since p − 1 < 0.

By the continuity of the function g(x) = xp , for any x ∈ [ε,B] and δ′ > 0, we can
choose η′(x) small such that for y ∈ [ε,B], |y − x| < η′(x) we have

|xp − yp| < δ′.(3.48)

This implies from (3.47) applied individually to the functions gi(x) = (x + [t −
Ti])1/s−1 for i ∈ BP(1)

t that

|ft (x) − ft (y)| < δ′e−λtz
(1)
t ,

where we recall that z
(1)
t = |BP(1)

t |. Since e−λtz
(1)
t converges a.s. and (e−λt z

(1)
t )t≥0

is bounded a.s., we obtain that, on a set A of measure one, for each ω ∈ A, we can
find a κ(ω) depending on the sample point ω but independent of t , such that

sup
t

e−λt z
(1)
t (ω) < κ(ω).
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Now choosing δ′ = δ/κ(ω) gives us a η(x) = η(x,ω) such that (3.46) is satisfied.
This proves the result for p < 1.

Case 2: p ≥ 1. Here note that for any a > 0 and x, y ∈ [ε,B], we have, by the
mean value theorem

|(x + a)p − (y + a)p|
{

= p(z + a)p−1|y − x|, a ∈ [x, y],
≤ p(B + a)p−1|y − x|, since p − 1 ≥ 0.

This implies that, for x, y ∈ [ε,B],
|ft (x) − ft (y)| < Ht |x − y|,(3.49)

where, by Proposition 3.3(c),

Ht = e−λtp
∑

i∈BP(1)
t

(B + [t − Ti])p−1

(3.50)
a.s.−→ pW(1)

∫ ∞
0

(B + y)p−1λe−λy dy.

This proves that (3.46) holds also when p ≥ 1, and completes the proof of
Lemma 3.4. �

COMPLETION OF THE PROOF OF (3.41). Write

BP(2)
t (ε,B) = {

v ∈ BP(2)
t : ε < t − Tj < B

}
.(3.51)

Then we have∣∣∣∣I (1)
t (ε,B) − e−λt

∑
j∈BP(2)

t (ε,B)

W(1)
∫ ∞

0
([t − Tj ] + y)1/s−1λe−λy dy

∣∣∣∣
(3.52)

≤ Q1(t)e
−λt z

(2)
t ,

where

Q1(t) = sup
x∈[ε,B]

∣∣∣∣e−λt
∑

i∈BP(1)
t

(x + [t − Ti])1/s−1

(3.53)

− W(1)
∫ ∞

0
(x + y)1/s−1λe−λy dy

∣∣∣∣.
Lemma 3.4 now implies that the term on the right-hand side of (3.52) converges to
0 a.s. Thus, to complete the proof, it is enough to show that

e−λt
∑

j∈BP(2)
t (ε,B)

W(1)
∫ ∞

0
([t − Tj ] + y)pλe−λy dy

a.s.−→ W(1)W(2)λ2
∫ B

ε

∫ ∞
0

(x1 + x2)
pe−λ(x1+x2) dx1 dx2.
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This follows by taking the characteristic

χ2(a) =
⎧⎨⎩

∫ ∞
0

(a + x2)
pe−λx2 dx2, if ε ≤ a ≤ B,

0, if a /∈ [ε,B]
(3.54)

and using Proposition 3.3(c) for the branching process BP(2)
t . �

COMPLETION OF THE PROOF OF (3.42). First, consider the term I
(3)
t (ε).

Note that

I
(3)
t (ε) ≤ [

z
(2)
t − z

(2)
t−ε

] ∑
j∈BP(1)

t

(ε + t − Tj )
p.(3.55)

By Proposition 3.3(c)

e−2λt [z(2)
t − z

(2)
t−ε

] ∑
j∈BP(1)

t

(ε + t − Tj )
p

(3.56)
a.s.−→ [

W(2)[1 − e−λε]] ·
[
W(1)

∫ ∞
0

(ε + y)pe−λy dy

]
a.s.−→ 0,

when ε ↓ 0. This proves the last convergence result in (3.42).
To prove the first convergence result in (3.42), note that arguing as in the proof

of (3.41), we have for all p and x1, x2 > 0,

(x1 + x2)
p ≤ (2p ∨ 1)(x

p
1 + x

p
2 ),(3.57)

where a ∨ b = max{a, b}. Thus,

I
(2)
t (B) ≤ (2p ∨ 1)

[
z
(1)
t z

χB,(2)
t−B + z

χ,(1)
t z

(2)
t−B

]
,(3.58)

where χB(x) = (B + x)p,χ(x) = xp . Now again, by Proposition 3.3(c),

e−λt [z(1)
t z

χB,(2)
t−B + z

χ,(1)
t z

(2)
t−B

]
a.s.−→ W(1)W(2)e−λB

[∫ ∞
0

∫ ∞
0

e−λx(B + x)pe−λx dx dy(3.59)

+
∫ ∞

0

∫ ∞
0

e−λxxpe−λx dx dy

]
,

which converges a.s. to 0 when B → ∞. This completes the proof of (3.42). �

3.4. Mean and variance of two-vertex characteristic. In this section, we shall
analyze two-vertex characteristics. This sets the stage for the proof of the asymp-
totics for the hopcount in Theorem 2.7. Define, for �a = (a1, a2),

z
(1,2)
t (�a) = ∑

i∈BP(1)
t

∑
j∈BP(2)

t

a
G(1)(i)
1 a

G(2)(j)
2 ([t − Ti] + [t − Tj ])p,(3.60)

where we recall that G(i)(v) is the generation of vertex v ∈ BP(i)
t .
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LEMMA 3.5 (Expectation and variance of two-vertex characteristics). Con-
sider two independent CTBPs BP(1)

t and BP(2)
t driven by the offspring distribution

P . Then

(a)

E
[
z
(1,2)
t (�a)

] =
∫ t

0

∫ t

0
([t − v] + [t − u])pμ̃a1(dv)μ̃a2(du).(3.61)

(b)

Cov
(
z
(1,2)
t (�a), z

(1,2)
t (�b)

)
(3.62)

=
∫ t

0
h

(1)

�a,�b(t − u, t)μ̃a2b2(du) +
∫ t

0
h

(2)

�a,�b(t − u, t)μ̃a1b1(du),

where

h
(1)

�a,�b(v, t) = a2b2

s

∫ v

0

∫ v−u

0

∫ v−u

0

∫ t

0

∫ t

0
up([t − u2] + [v − u − u1])p

× ([t − v2] + [v − u − v1])p
(3.63)

× μ̃a1(du1)μ̃b1(dv1)μ̃a2(du2)

× μ̃b2(dv2) du,

h
(2)

�a,�b(v, t) = a1b1

s

∫ v

0
up

E
[
z
χ̃

(2)
t,v−u,a1

v−u (a2)z
χ̃

(2)
t,v−u,b1

v−u (b2)
]
du(3.64)

with p = 1/s − 1 and

χ̃
(2)
t,r,a2

(x) =
∫ r

0
(t − u2 + x)pμ̃a2(du2).(3.65)

PROOF. We shall prove part (a) by conditioning on BP(1)
t . Note we can write

z
(1,2)
t (�a) = z

χ
(1)
t,a1

,(2)

t (a2), where

χ
(1)
t,a1

(x) = ∑
j∈BP(1)

t

a
G(1)(j)
1 (x + [t − Tj ])p.(3.66)

Conditionally on BP(1)
t , the characteristic χ

(1)
t,a1

is deterministic. Therefore, Propo-
sition 3.2(a) implies that

E
(
z
(1,2)
t (�a) | BP(1)

t

) = ∑
j∈BP(1)

t

a
G(1)(j)
1

∫ t

0
([t − u] + [t − Tj ])pμ̃a2(du)

(3.67)

= z
χ

(2)
t,a2

,(1)

t (a1),
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where χ
(2)
t,a2

is the characteristic

χ
(2)
t,a2

(v) =
∫ t

0
([t − u] + v)pμ̃a2(du).(3.68)

We complete the proof by noting that, for all r ,

m
χ

(2)
t,a2

r (a1) = E
(
z
χ

(2)
t,a2

,(2)

r (a1)
)

(3.69)

=
∫ r

0

∫ t

0
([r − v] + [t − u])pμ̃a1(dv)μ̃a2(du).

Taking r = t proves the claim in part (a).
For part (b), we again condition on BP(1)

t , for which we use the covariance
partition

Cov
(
z
(1,2)
t (�a), z

(1,2)
t (�b)

)
= Cov

(
E

(
z
(1,2)
t (�a) | BP(1)

t

)
,E

(
z
(1,2)
t (�b) | BP(1)

t

))
(3.70)

+ E
(
Cov

(
z
(1,2)
t (�a), z

(1,2)
t (�b) | BP(1)

t

))
= (I )t + (II)t .

Let us now tackle each of these two terms separately.
Term (I )t : For (I )t , we use the explicit formula for E(z

(1,2)
t (�a) | BP(1)

t ) in (3.67)
and χ

(2)
t,a2

in (3.68) to obtain that

(I )t = Cov
(
z
χ

(2)
t,a2

,(1)

t (a1), z
χ

(2)
t,b2

,(1)

t (b1)
)
.(3.71)

Now using Proposition 3.2(b), we get

(I )t =
∫ t

0

∫ t

0
h

(1)

�a,�b(t − u, t)μ̃a2b2(du),(3.72)

where v �→ h
(1)

�a,�b(v, t) is the function

h
(1)

�a,�b(v, t) = a2b2

s

∫ v

0
upm

χ
(2)
t,a2

v−u (a1)m
χ

(2)
t,b2

v−u (b1) du

= a2b2

s

∫ v

0
up

∫ v−u

0

∫ v−u

0
χ

(2)
t,a2

(v − u − u1)χ
(2)
t,b2

(v − u − v1)

× μ̃a1(du1)μ̃b1(dv1) du
(3.73)

= a2b2

s

∫ v

0

∫ v−u

0

∫ v−u

0

∫ t

0

∫ t

0
up([t − u2] + [v − u − u1])p

× ([t − v2] + [v − u − v1])pμ̃a1(du1)

× μ̃b1(dv1)μ̃a2(du2)μ̃b2(dv2) du.



WEAK DISORDER ASYMPTOTICS 63

Term (II)t : We again use that, conditionally on BP(1)
t , z

(1,2)
t (�a) = z

χ
(1)
t,a1

,(2)

t (a2),

where χ
(1)
t,a1

was defined in (3.66). Therefore, we can again use Proposition 3.2(b)
to write

Cov
(
z
(1,2)
t (�a), z

(1,2)
t (�b) | BP(1)

t

) =
∫ t

0
g�a,�b(t − u, t)μ̃a2b2(du),(3.74)

where

g�a,�b(v, t) = a2b2

s

∫ v

0
upm

χ
(1)
t,a1

v−u (a2)m
χ

(1)
t,a1

v−u (b1)(b2) du.(3.75)

Therefore,

(II)t =
∫ t

0
h

(2)

�a,�b(t − u, t)μ̃a2b2(du),(3.76)

where

h
(2)

�a,�b(v, t) = a2b2

s

∫ v

0
up

E
[
m

χ
(1)
t,a1

v−u (a2)m
χ

(1)
t,b1

v−u (b2)
]
du.(3.77)

We can now rewrite

m
χ

(1)
t,a1

r (a2) =
∫ r

0

∑
j∈BP(1)

t

a
G(1)(j)
1 (t − u2 + t − Tj )

pμ̃a2(du2)

= ∑
j∈BP(1)

t

a
G(1)(j)
1

∫ r

0
(t − u2 + t − Tj )

pμ̃a2(du2)(3.78)

= z
χ̃

(2)
t,r,a2

,(1)

t (a1),

where

χ̃
(2)
t,r,a2

(x) =
∫ r

0
(t − u2 + x)pμ̃a2(du2).(3.79)

This completes the proof. �

LEMMA 3.6 (Asymptotics of mean and variance of two-vertex characteristics).
Consider two independent CTBPs BP(1)

t and BP2
t driven by the offspring distribu-

tion P . Then

(a)

e−λ(as
1+as

2)tE
(
z
(1,2)
t (�a)

)
(3.80)

→ (λs)2
∫ ∞

0

∫ ∞
0

(x1 + x2)
pe−λ(as

1x1+as
2x2) dx1 dx2.

When �a = �at → (1,1), then the convergence holds where in the right-hand sides
the value �a = (1,1) is substituted.
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(b) When as
1 + as

2 − as
1a

s
2 > 0 and bs

1 + bs
2 − bs

1b
s
2 > 0, there exists a constant

ACov(�a, �b) such that

e−λ[(as
1+as

2)+(bs
1+bs

2)]t Cov
(
z
(1,2)
t (�a), z

(1,2)
t (�b)

) → ACov(�a, �b).(3.81)

When �a = �at → (1,1), �b = �bt → (1,1), then the convergence holds where the
right-hand side is replaced with ACov(�1, �1).

PROOF. By Lemma 3.5(a),

e−λ(as
1+as

2)tE
(
z
(1,2)
t (�a)

)
= e−λ(as

1+as
2)t

∫ t

0

∫ t

0
([t − u] + [t − v])1/s−1μ̃a1(du)μ̃a2(dv)

=
∫ t

0

∫ t

0
e−λ[as

1(t−u)+as
2(t−v)]([t − u] + [t − v])1/s−1pa1(u)pa2(v) dudv(3.82)

+ o(1)

=
∫ t

0

∫ t

0
e−λ[as

1u+as
2v](u + v)1/s−1pa1(t − u)pa2(t − v) dudv + o(1),

where the o(1) originates from part δu,0(du) in the decomposition e−λasuμ̃a(du) =
pa(u)du + e−λasuδ0(du), and δu,0 is the Dirac measure at u = 0. Now we again
use Lemma A.1(a) and (b) together with dominated convergence to obtain the
claim in part (a). The proof of part (b) is similar, and we omit the details. �

3.5. CLT for two-vertex characteristic: Proof of Theorem 2.7. In this section,
we use and extend the theory developed in the previous section to prove Theo-
rem 2.7. The plan is as follows: We shall start by proving the result for the CTBP
in the summation instead of SWG(i)

t and then argue that the difference is negligi-
ble. The result is formulated as follows.

THEOREM 3.7 (CLT for two-vertex characteristic for CTBP). The two-vertex
characteristic satisfies that, as t → ∞,∑

i∈BP(1)
t (x)

∑
j∈BP(2)

t (y)
χij (t)∑

i∈BP(1)
t

∑
j∈BP(2)

t
χij (t)

P−→ �(x)�(y).(3.83)

PROOF. Theorem 3.7 follows when we show that, writing �at = (eα1/
√

s2λt ,

eα2/
√

s2λt ), for some vector �α = (α1, α2),

z
(1,2)
t (�at )e

−(α1+α2)
√

λt

z
(1,2)
t

P−→ eα2
1/2+α2

2/2.(3.84)
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Indeed, define the (random) measure P on pairs (X,Y ) by

P(X ≤ x,Y ≤ y) =
∑

i∈BP(1)
t (x)

∑
j∈BP(2)

t (y)
χij (t)∑

i∈BP(1)
t

∑
j∈BP(2)

t
χij (t)

.(3.85)

Then, (3.83) states that the pair (X,Y ) converges in distribution to a pair of in-
dependent standard normal distributions, which, in turn, follows when, for each
(α1, α2) ∈ R, we have that

E[eα1X+α2Y ] = z
(1,2)
t (�at )e

−(α1+α2)
√

λt

z
(1,2)
t

P−→ eα2
1/2+α2

2/2,(3.86)

where E denotes the expectation w.r.t. P .
In order to show (3.84), we show that

e−2λt (z(1,2)
t (�at )e

−(α1+α2)
√

λt − eα2
1/2+α2

2/2z
(1,2)
t

) P−→ 0.(3.87)

Together with Theorem 2.5, this then implies the result, as e−2λt z
(1,2)
t converges

a.s. to a strictly positive random variable. Thus, we are left to prove (3.87). We shall
show that the convergence in (3.87) in fact holds in L2. For this, it is immediate
that it suffices to study

Mt(�α) ≡ E
[
z
(1,2)
t (�at )e

−(α1+α2)
√

λt − eα2
1/2+α2

2/2z
(1,2)
t

]
,(3.88)

Qt(�α) ≡ Var
(
z
(1,2)
t (�at )

2)
, Ct (�α) ≡ Cov

(
z
(1,2)
t , z

(1,2)
t (�at )

)
.(3.89)

In terms of these quantities, we can rewrite

E
[(

z
(1,2)
t (�at )e

−(α1+α2)
√

λt − eα2
1/2+α2

2/2z
(1,2)
t

)2]
= Mt(�α)2 + Qt(�α)e−2(α1+α2)

√
λt + eα2

1+α2
2Qt(�0)(3.90)

− 2Ct(�α)e−(α1+α2)
√

λt eα2
1/2+α2

2/2.

Therefore, we shall prove that

e−2λtMt(�α) = o(1)(3.91)

and

e−4λt (Qt(�α)e−2(α1+α2)
√

λt + eα2
1+α2

2Qt(�0)
(3.92)

− 2Ct(�α)e−(α1+α2)
√

λt eα2
1/2+α2

2/2) = o(1).

For these proofs, the explicit computations of mean and covariances of z
(1,2)
t (�at )

and z
(1,2)
t = z

(1,2)
t (1,1) are crucial.
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To prove (3.91), we rewrite

e−2λtMt(�α) = e(as
1+as

2)λt−2λt−(α1+α2)
√

λt e−λ(as
1+as

2)tE
(
z
(1,2)
t (�a)

)
(3.93)

− eα2
1/2+α2

2/2e−2λt
E

(
z
(1,2)
t (�1)

)
.

Since �at = (eα1/
√

s2λt , eα2/
√

s2λt ) → (1,1),

e−2λt
E

(
z
(1,2)
t (�1)

) → A, e−λ(as
1+as

2)tE
(
z
(1,2)
t (�a)

) → A,(3.94)

where A is the limit in (3.80) in Lemma 3.6(a). By a second order Taylor expan-
sion, (

as
1λt − λt − α1

√
λt

) = λt

(
eα1/

√
λt − 1 − α1√

λt

)
= α2

1/2 + o(1).(3.95)

Together, these two asymptotics show that (3.91) holds. The proof of (3.92) is iden-
tical, now using Lemma 3.6(b) instead, and the fact that the limit equals ACov(�1, �1)

for all contributions, since �at → (1,1). �

COMPLETION OF THE PROOF OF THEOREM 2.7. We can bound∣∣∣∣
∑

i∈SWG(1)
t (x)

∑
j∈SWG(2)

t (y)
χij (t)∑

i∈SWG(1)
t

∑
j∈SWG(2)

t
χij (t)

−
∑

i∈BP(1)
t (x)

∑
j∈BP(2)

t (y)
χij (t)∑

i∈BP(1)
t

∑
j∈BP(2)

t
χij (t)

∣∣∣∣
(3.96)

≤ 2
e−2λt ∑

i∈BP(1)
t

∑
j∈BP(2)

t
χij (t) − e−2λt ∑

i∈SWG(1)
t

∑
j∈SWG(2)

t
χij (t)

e−2λt
∑

i∈BP(1)
t

∑
j∈BP(2)

t
χij (t)

.

The random variable in the denominator converges in probability to κW(1)W(2) >

0 by Theorem 2.5, so that it suffices to prove that the numerator converges to 0 in
probability.

Denote

z
n,(1,2)
t = ∑

i∈SWG(1)
t

∑
j∈SWG(2)

t

χij (t).(3.97)

Then, similarly to Proposition 2.2(c), and recalling that tn = T12 ∧ t∗n where
t∗n = (2λ)−1 logn + B for some B > 0, we obtain that supt≤tn

(z
n,(1,2)
t − z

(1,2)
t )

is tight. From Theorem 1.1 (whose proof has been completed since it relies only
on Theorem 2.5, which was proved in the previous section), we know that the col-
lision time T12 is bounded by t∗n with probability 1 − o(1) as B ↑ ∞. Therefore,

e−2λt
∑

i∈BP(1)
t

∑
j∈BP(2)

t

χij (t) − e−2λt
∑

i∈SWG(1)
t

∑
j∈SWG(2)

t

χij (t)

(3.98)
= e−2λt (zn,(1,2)

t − z
(1,2)
t

) P−→ 0.

This completes the proof. �
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APPENDIX: AUXILIARY RESULTS

In this section, we prove an auxiliary result on the asymptotics of the measure
μ̃a(du) = ∑∞

j=0 ajμ∗j (du).

LEMMA A.1 (Asymptotics of density of μ̃a).

(a) Let

e−λasu
∞∑

j=1

ajμ∗j (du) ≡ pa(u)du.(A.1)

Then, for u ∈ [0,1], there exists a constant c such that pa(u) ≤ cu1/s−1, while, for
u ≥ 1, pa(u) is bounded and as u → ∞,

p1(u) → λs.(A.2)

(b) The following scaling identity holds:

pa(u) = asp1(uas).(A.3)

In particular, when au → 1,

pau(u) → λs.(A.4)

PROOF. By (3.6), we have

pa(u) = e−λasu
∞∑

j=1

aj uj/s−1λj/s

�(j/s)
.(A.5)

This form immediately proves the identity in (A.3), and therefore also (A.4) fol-
lows from (A.2). Also, this form immediately shows that pa(u) ≤ cu1/s−1 for
u ∈ [0,1]. Thus, we are left to prove (A.2).

By [12], equation 8.327, we have that, as z → ∞,

zz−1/2e−z
√

2π ≤ �(z) ≤ zz−1/2e−z
√

2π

(
1 + 1

12z

)
.(A.6)

Therefore,

p1(u) = (
1 + o(1)

)
e−λu

∞∑
j=1

1√
2πs/j

uj/s−1λj/sej/s(j/s)−j/s

(A.7)

= (
1 + o(1)

)
λe−λu(λu)−1

∞∑
j=1

√
j√

2πs
(λusej−1)j/s,

where the error term converges to 0 as u → ∞. Note that the right-hand side is a
function of λu, so that it suffices to prove that

q(v) = e−vv−1√s

∞∑
j=1

1√
2πj

ej/s log (vse/j) → s.(A.8)
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For this, we note that j �→ ej/s log (vse/j) is maximal when j = sv, where it takes
the value ev . A second order Taylor expansion shows that when j − sv = x, we
have

ej/s log (vse/j) = eve−x2/(2s2v)(1 + o(1)
)
.(A.9)

Performing the approximate Gaussian sum leads to the claim in (A.8). �
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