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A SEQUENTIAL MONTE CARLO APPROACH TO COMPUTING
TAIL PROBABILITIES IN STOCHASTIC MODELS

BY HOCK PENG CHAN1 AND TZE LEUNG LAI2

National University of Singapore and Stanford University

Sequential Monte Carlo methods which involve sequential importance
sampling and resampling are shown to provide a versatile approach to com-
puting probabilities of rare events. By making use of martingale represen-
tations of the sequential Monte Carlo estimators, we show how resampling
weights can be chosen to yield logarithmically efficient Monte Carlo esti-
mates of large deviation probabilities for multidimensional Markov random
walks.

1. Introduction. In complex stochastic models, it is often difficult to evaluate
probabilities of events of interest analytically and Monte Carlo methods provide a
practical alternative. When an event A occurs with a small probability (e.g., 10−4),
generating 100 events would require a very large number of events (e.g., 1 million)
for direct Monte Carlo computation of P(A). To circumvent this difficulty one can
use importance sampling instead of direct Monte Carlo changing the measure P

to Q under which A is no longer a rare event and evaluating P(A) = EQ(L1A)

by m−1∑m
i=1 Li1Ai

, where (L1,1A1), . . . , (Lm,1Am) are m independent samples
drawn from the distribution Q, with Li being a realization of the likelihood ra-
tio statistic L := dP/dQ, which is the importance weight. While large deviations
theory has provided important clues for the choice of Q for Monte Carlo evalu-
ation of exceedance probabilities, it has also been demonstrated that importance
sampling measures that are consistent with large deviations can perform much
worse than direct Monte Carlo (see Glasserman and Wang [18]). Chan and Lai
[8] have recently resolved this problem by showing that certain mixtures of ex-
ponentially twisted measures are asymptotically optimal for importance sampling.
For complex stochastic models, however, there are implementation difficulties in
using these asymptotically optimal importance sampling measures. Herein we in-
troduce a sequential importance sampling and resampling (SISR) procedure to
attain a weaker form of asymptotic optimality, namely, logarithmic efficiency; the
definitions of asymptotic optimality and logarithmic efficiency are given in Sec-
tion 3.
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Instead of applying directly the asymptotically optimal importance sampling
measure Q that is difficult to sample from, SISR generates m sequential sam-
ples from a more tractable importance sampling measure Q̃ and resamples at
every stage t the m sequential sample paths, yielding a modified sample path
after resampling. The objective is to approximate the target measure Q by the
weighted empirical measure defined by the resampling weights. Details are given
in Section 2 for general resampling weights (not necessarily those associated with
the asymptotically optimal resampling measure). Section 4 illustrates the SISR
method for Monte Carlo computation of exceedance probabilities in a variety of
applications which include boundary crossing probabilities of generalized likeli-
hood ratio statistics and tail probabilities of Markov random walks. These appli-
cations demonstrate the versatility of the SISR method and the relative ease of its
implementation.

Our SISR procedure to compute probabilities of rare events is closely related to
(a) the interacting particle systems (IPS) approach introduced by Del Moral and
Garnier [14] to compute tail probabilities of the form P {V (Xt) ≥ a} for a pos-
sibly nonhomogeneous Markov chain {Xt } and (b) the dynamic importance sam-
pling method introduced by Dupuis and Wang [16, 17] to compute P {Sn/n ∈ A},
where Sn = ∑n

t=1 g(Xt) and {Xn} is a uniformly recurrent Markov chain with
stationary distribution π such that

∫
g(x) dπ(x) /∈ A. Both IPS and dynamic im-

portance sampling generate the Xi sequentially. Dynamic importance sampling
uses an adaptive change of measures based on the simulated paths up to each time
t ≤ n. A recent method closely related to dynamic importance sampling is sequen-
tial state-dependent change of measures introduced by Blanchet and Glynn [3] for
Monte Carlo evaluation of tail probabilities of the maximum of heavy-tailed ran-
dom walks. The IPS approach uses “mutation” to sample X̃

(i)
t+1 (conditional on

the X
(i)
1 , . . . ,X

(i)
t already generated) from the original measure P and then uses

“selection” to draw m i.i.d. samples from {(X(i)
1 , . . . ,X

(i)
t , X̃

(i)
t+1) : 1 ≤ i ≤ m} ac-

cording to a Boltzmann–Gibbs particle measure. The theory of IPS in [14] focuses
on tail probabilities of V (Xt) for fixed t as described in Section 2 rather than
large deviation probabilities of g(Sn/n) for large n as considered in Section 3. Our
SISR procedure is motivated by rare events of the general form {Xn ∈ �} that in-
volves the entire sample path Xn = (X1, . . . ,Xn) and includes {V (Xn) ≥ a} and
{Sn/n ∈ A} considered by Del Moral and Garnier, Dupuis and Wang as special
cases. The sequential importance sampling component of SISR uses an easily im-
plementable approximation Q̃ of Q; in many cases it simply uses Q̃ = P . Thus,
it is quite different from dynamic importance sampling even though both yield
logarithmically efficient Monte Carlo estimates of P {Sn/n ∈ A}.

2. Sequential importance sampling and resampling (SISR) and martingale
representations. The events in this section are assumed to belong to the σ -field
generated by n random variables Y1, . . . , Yn on a probability space (�, F ,P ).
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Let Yt = (Y1, . . . , Yt ) for 1 ≤ t ≤ n. For direct Monte Carlo computation of α :=
P {Yn ∈ �}, i.i.d. random vectors Y(1)

n , . . . ,Y(m)
n are generated from P and α is

estimated by

α̂D = m−1
m∑

i=1

1{Y(i)
n ∈�}.(2.1)

The estimate α̂D is unbiased and its variance is α(1 − α)/m which can be consis-
tently estimated by

σ̂ 2
D := α̂D(1 − α̂D)/m.(2.2)

In most stochastic models of practical interest, the Yt are either independent
or are specified by the conditional densities pt(·|Yt−1) of Yt given Yt−1, with
respect to some measure ν. Direct Monte Carlo computation of P {Yn ∈ �},
therefore, involves Y

(i)
1 , . . . , Y

(i)
n that are generated sequentially from these con-

ditional densities for 1 ≤ i ≤ m. In contrast, SISR first generates m indepen-
dent random variables Ỹ

(1)
t , . . . , Ỹ

(m)
t at stage t , with Ỹ

(i)
t having density func-

tion q̃t (·|Y(i)
t−1) to form Ỹ(i)

t = (Y(i)
t−1, Ỹ

(i)
t ) and then uses resampling weights

of the form wt(Ỹ
(i)
t )/

∑m
j=1 wt(Ỹ

(j)
t ) to draw m independent sample paths Y(j)

t ,

1 ≤ j ≤ m, from {Ỹ(i)
t ,1 ≤ i ≤ m}. Here q̃t are conditional density functions with

respect to ν such that q̃t > 0 whenever pt > 0; one particular choice is q̃t = pt . In
Section 3, we show how the weights wt can be chosen to obtain logarithmically
efficient SISR estimates of rare event probabilities.

The preceding SISR procedure uses bootstrap resampling that chooses i.i.d.
sample paths from a weighted empirical measure of {Ỹ(i)

t ,1 ≤ i ≤ m}. It is, there-
fore, similar to the selection step of the IPS approach that chooses i.i.d. “path-
particles” from some weighted empirical particle measure (see [14]). The Monte
Carlo estimate of α using SISR with bootstrap resampling is

α̂B = m−1
m∑

i=1

L
(
Ỹ(i)

n

)
hn−1

(
Y(i)

n−1

)
1{Ỹ(i)

n ∈�},(2.3)

where h0 ≡ 1 and

L(yn) =
n∏

t=1

pt(yt |yt−1)

q̃t (yt |yt−1)
, hk(yk) =

k∏
t=1

w̄t

wt (yt )
,

(2.4)

w̄t = 1

m

m∑
i=1

wt

(
Ỹ(i)

t

)
.

Chan and Lai [9] have recently developed a general theory of sequential Monte
Carlo filters in hidden Markov models by using a representation similar to the
right-hand side of (2.3) for these filters. The method of their analysis can be applied
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to analyze m(α̂B − α), decomposing it into a sum of (2n − 1)m terms so that
the summands form a martingale difference sequence. Let E∗ denote expectation
under the probability measure Q̃ from which the Ỹ(i)

t and Y(i)
t are drawn and define

for 1 ≤ t < n,

ft (yt ) = E∗[L(Yn)1{Yn∈�}|Yt = yt

]= L(yt )P (Yn ∈ �|Yt = yt ),(2.5)

setting f0 ≡ α and fn(Ỹn) = L(Ỹn)1{Ỹn∈�}. An important ingredient in the anal-

ysis is the “ancestral origin” a
(i)
t of Y(i)

t . Specifically, recall that the “first gen-
eration” of the m particles consists of Ỹ

(1)
1 , . . . , Ỹ

(m)
1 (before resampling) and set

a
(i)
t = j if the first component of Y(i)

t is Ỹ
(j)
1 . Let #(i)

k denote the number of copies

of Ỹ(i)
k generated from {Ỹ(1)

k , . . . , Ỹ(m)
k } to form the m particles in the kth gen-

eration and let w
(i)
k = wk(Ỹ

(i)
k )/

∑m
j=1 wk(Ỹ

(j)
k ). Then it follows from (2.4) and

simple algebra that for 1 ≤ i ≤ m,

mw
(i)
t = ht−1

(
Y(i)

t−1

)
/ht

(
Ỹ(i)

t

)
,∑

i : a
(i)
t =j

ft

(
Y(i)

t

)
ht

(
Y(i)

t

)= ∑
i : a

(i)
t−1=j

#(i)
t ft

(
Ỹ(i)

t

)
ht

(
Ỹ(i)

t

)
,

n∑
t=1

∑
i : a

(i)
t−1=j

[
ft

(
Ỹ(i)

t

)− ft−1
(
Y(i)

t−1

)]
ht−1

(
Y(i)

t−1

)

+
n∑

t=2

∑
i : a

(i)
t−2=j

(
#(i)
t−1 − mw

(i)
t−1

)
ft−1

(
Ỹ(i)

t−1

)
ht−1

(
Ỹ(i)

t−1

)

= ∑
i : a

(i)
n−1=j

fn

(
Ỹ(i)

n

)
hn−1

(
Y(i)

n−1

)− α,

recalling that f0 ≡ α, h0 ≡ 1 and defining a
(i)
0 = i. Let

ε
(j)
2t−1 = ∑

i : a
(i)
t−1=j

[
ft

(
Ỹ(i)

t

)− ft−1
(
Y(i)

t−1

)]
ht−1

(
Y(i)

t−1

)
for 1 ≤ t ≤ n,

(2.6)
ε
(j)
2t = ∑

i : a
(i)
t−1=j

(
#(i)
t − mw

(i)
t

)[
ft

(
Ỹ(i)

t

)
ht (Ỹ

(i)
t ) − α

]
for 1 ≤ t ≤ n − 1.

Then for each fixed j , {ε(j)
t ,1 ≤ t ≤ 2n − 1} is a martingale difference sequence

with respect to the filtration {Ft ,1 ≤ t ≤ 2n − 1} defined below and

m(α̂B − α) =
m∑

j=1

(
ε
(j)
1 + · · · + ε

(j)
2n−1

)
.(2.7)
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The martingale representation (2.7) that involves the ancestral origins of the ge-
nealogical particles is useful for estimating the standard error of α̂B, as shown by
Chan and Lai [9] who have also introduced the σ -fields

F2t−1 = σ
({

Ỹ
(i)
1 : 1 ≤ i ≤ m

}
∪ {(Y(i)

s , Ỹ(i)
s+1, a

(i)
s

)
: 1 ≤ s < t,1 ≤ i ≤ m

})
,(2.8)

F2t = σ
(

F2t−1 ∪ {(Y(i)
t , a

(i)
t

)
: 1 ≤ i ≤ m

})
with respect to which (2.6) forms a martingale difference sequence.

Since fn(Ỹ
(i)
n ) = L(Ỹ(i)

n )1{Ỹ(i)
n ∈�} and

∑m
i=1(#

(i)
t − mw

(i)
t ) = 0 for 1 ≤ t ≤ n −

1, summing (2.6) over t and j yields (2.7). Without tracing their ancestral origins,
we can also use the successive generations of the m particles to form martingale
differences directly. Specifically, in analogy with (2.6), define for i = 1, . . . ,m,

Z
(i)
2t−1 = [

ft

(
Ỹ(i)

t

)− ft−1
(
Y(i)

t−1

)]
ht−1

(
Y(i)

t−1

)
for 1 ≤ t ≤ n,

(2.9)

Z
(i)
2t = ft

(
Y(i)

t

)
ht

(
Y(i)

t

)− m∑
j=1

w
(j)
t ft

(
Ỹ(j)

t

)
ht

(
Ỹ(j)

t

)
for 1 ≤ t ≤ n − 1.

As noted by Chan and Lai [9], {(Z(1)
t , . . . ,Z

(m)
t ),1 ≤ t ≤ 2n − 1} is a martin-

gale difference sequence with respect to the filtration {Ft ,1 ≤ t ≤ 2n − 1} and
Z

(1)
t , . . . ,Z

(m)
t are conditionally independent given Ft−1; moreover,

m(α̂B − α) =
2n−1∑
t=1

(
Z

(1)
t + · · · + Z

(m)
t

)
.(2.10)

From the martingale representation (2.10) it follows that E∗(α̂B) = α. More-
over, under the assumption that

σ 2
B :=

n∑
t=1

E∗
[
f 2

t (Yt )
/ t−1∏

k=1

wk(Yk)

]
E∗
[

t−1∏
k=1

wk(Yk)

]
− nα2 < ∞,(2.11)

application of the central limit theorem yields
√

m(α̂B − α) ⇒ N(0, σ 2
B) as m → ∞.(2.12)

A consistent estimate of σ 2
B is given by

σ̂ 2
B := m−1

m∑
j=1

{[ ∑
i : a

(i)
n−1=j

fn

(
Ỹ(i)

n

)
hn−1

(
Y(i)

n−1

)]
(2.13)

−
[

1 +
n−1∑
t=1

∑
i : a

(i)
t−1=j

(
#(i)
t − mw

(i)
t

)]
α̂B

}2

,
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which can be shown to converge to σ 2
B in probability as m → ∞ by making use of

the martingale representation (2.7) (see [9] for details). Del Moral and Jacod [15]
have derived by a different method a martingale representation similar to (2.10)

(see [15], (3.3.7) and (3.3.8)), in which the term Z
(i)
2t−1 in (2.9) corresponds to the

t th mutation on the ith particle and Z
(i)
2t the t th selection by the ith particle. In [15],

these two terms are combined into a sum and a central limit theorem similar to
(2.12) is proved under the assumption of bounded fn.

Note that in (2.12) on the asymptotic normality of α̂B and in the consistency

result σ̂ 2
B

p→ σ 2
B, the sample size n in the probability α = P {Yn ∈ �} is assumed

to be fixed whereas the number m of Monte Carlo samples approaches ∞. The
consistent estimate σ̂ 2

B of σ 2
B in (2.13) provides an estimate σ̂B/

√
m of the stan-

dard error (s.e.)(α̂B) of the Monte Carlo estimate α̂B. Note that the usual estimate√
α̂B(1 − α̂B) is inconsistent for

√
m s.e.(α̂B) because of the dependence among

the m sample paths due to resampling in the SISR procedure as in [13, 14]. The
case of n approaching ∞ will be considered in the next section in which the rep-
resentation (2.6) will still play a pivotal role, but which requires new methods and
large deviation principles rather than central limit theorems.

Instead of bootstrap resampling, we can use the residual resampling scheme in-
troduced by Baker [1, 2] which often leads to smaller asymptotic variance than
that of bootstrap resampling. We consider here a variant of this scheme introduced
by Crisan, Del Moral and Lyons [11] that can result in further reduction of the
asymptotic variance. Let �· denote the greatest integer function and let mt be the
sample size at stage t with m1 = m. We modify the bootstrap resampling step of
the SISR procedure as follows: let U

(1)
t , . . . ,U

(mt )
t be independent Bernoulli ran-

dom variables satisfying P {U(i)
t = 1} = mtw

(i)
t − �mtw

(i)
t . For each 1 ≤ i ≤ mt

and t < n, make #(i)
t := �mtw

(i)
t  + U

(i)
t copies of (Ỹ(i)

t , a
(i)
t−1, h

(i)
t−1,w

(i)
t ). These

copies constitute an augmented sample {(Y(j)
t , a

(j)
t , h

(j)
t ,w

(j)
t ) : 1 ≤ j ≤ mt+1},

where mt+1 =∑mt

i=1 #(i)
t and h

(i)
t = h

(i)
t−1/(mtw

(i)
t ). Estimate α by

α̂R := m−1
n

mn∑
i=1

L
(
Ỹ(i)

n

)
h

(i)
n−1

(
Y(i)

n−1

)
1{Ỹ(i)

n ∈�}.

Define ε
(j)
k by (2.6) in which m is replaced by mt and define F2t−1 (or F2t ) by

(2.8) in which m is replaced by ms+1 (or by mt+1). Moreover, define

Z̃
(i)
2t−1 = [

ft

(
Ỹ(i)

t

)− ft−1
(
Y(i)

t−1

)]
ht−1

(
Y(i)

t−1

)
for 1 ≤ t ≤ n,

Z̃
(i)
2t = (

#(i)
t − mtw

(i)
t

)[
ft

(
Ỹ(i)

t

)
ht

(
Ỹ(i)

t

)− α
]

for 1 ≤ t ≤ n − 1,

for i = 1, . . . ,mt . Recall that the first generation of particles consists of Ỹ
(1)
1 , . . . ,

Ỹ
(m)
1 and that a

(i)
t = j if the first component of Y(i)

t is Ỹ
(j)
1 for j = 1, . . . ,m and
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i = 1, . . . ,mt+1. Analogous to (2.7) and (2.10), we have the martingale represen-
tations

mn(α̂R − α) =
m∑

j=1

(
ε
(j)
1 + · · · + ε

(j)
2n−1

)
(2.14)

=
2n−1∑
k=1

(
Z̃

(1)
k + · · · + Z̃

(m�(k+1)/2)
k

)
.

Analogous to (2.13), define

σ̂ 2
R = m−1

m∑
j=1

{[ ∑
i : a

(i)
n−1=j

fn

(
Ỹ(i)

n

)
hn−1

(
Y(i)

n−1

)]

−
[

1 +
n−1∑
t=1

∑
i : a

(i)
t−1=j

(
#(i)
t − mtw

(i)
t

)]
α̂R

}2

.

From (2.14) it follows that E∗[mn(α̂R − α)] = 0. Let

ηt = E∗
[

t∏
k=1

wk(Yk)

]
, h∗

t (yt ) = ηt

/ t∏
k=1

wk(yk),

and let γ (x) = (x −�x)(1−x +�x)/x for x > 0. If (2.11) holds, then analogous
to corresponding results for α̂B and σ̂ 2

B in the bootstrap resampling case, we now
have as m → ∞,

σ̂ 2
R

p→ σ 2
R, mt/m

p→ 1 for every t ≥ 1,
√

m(α̂R − α) ⇒ N(0, σ 2
R),

where σ 2
R < σ 2

B and

σ 2
R :=

n∑
t=1

E∗{[f 2
t (Yt ) − f 2

t−1(Yt−1)]h∗
t−1(Yt−1)}

+
n−1∑
t=1

E∗
{
γ

(
h∗

t−1(Yt−1)

h∗
t (Yt )

) [ft (Yt )h
∗
t (Yt ) − α]2

h∗
t (Yt )

}
.

Details are given in [9]. Note the additional variance reduction if residual resam-
pling is used instead of bootstrap resampling.

3. Logarithmically efficient SISR for Monte Carlo computation of small
tail probabilities. Let ξ, ξ1, ξ2, . . . be i.i.d. d-dimensional random vectors with a
common distribution function F such that ψ(θ) := log(Eeθ ′ξ ) < ∞ for ‖θ‖ < θ0.
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Let Sn = ξ1 + · · · + ξn, μ0 = Eξ , � = {θ :ψ(θ) < ∞} and let � be the closure of
∇ψ(�) and �o be its interior. Assume that for any θ0 ∈ �o and θ ∈ � \ �o,

lim
ρ↑1

(θ − θ0)
′∇ψ

(
θ0 + ρ(θ − θ0)

)= ∞.

Then by convex analysis (see, e.g., [4], Chapter 3), � contains the convex hull of
the support of {Sn/n,n ≥ 1}. The gradient vector ∇ψ is a diffeomorphism from
�o onto �o. For given μ ∈ �o let θμ = (∇ψ)−1(μ) and define the rate function

φ(μ) = sup
θ∈�

{θ ′μ − ψ(θ)} = θ ′
μμ − ψ(θμ).(3.1)

We can embed F in an exponential family {Fθ , θ ∈ �} with

dFθ(x) = eθ ′x−ψ(θ) dF (x).

Under certain regularity conditions on g :� → R, Chan and Lai [6] have devel-
oped asymptotic approximations, which involve both g and φ, to the exceedance
probabilities

pn = P {g(Sn/n) ≥ b} with b > g(μ0),(3.2)

pc = P
{

max
n0≤n≤n1

ng(Sn/n) ≥ c
}
,(3.3)

where n0 ∼ ρ0c and n1 ∼ ρ1c such that g(μ0) < ρ−1
1 . Making use of these ap-

proximations, Chan and Lai [8] have shown that certain mixtures of exponentially
twisted measures are asymptotically optimal for Monte Carlo evaluation of (3.2)
or (3.3) by importance sampling. Specifically, for A = {g(Sn/n) ≥ b} in the case
of (3.2) or A = {maxn0≤n≤n1 ng(Sn/n) ≥ c} in the case of (3.3), an importance
sampling measure Q (which may depend on n or c) is said to be asymptotically
optimal if

mVar

(
m−1

m∑
i=1

Li1Ai

)
= O

(√
np2

n

)
as n → ∞(3.4)

in the case of (3.2) and if

mVar

(
m−1

m∑
i=1

Li1Ai

)
= O(p2

c ) as c → ∞(3.5)

in the case of (3.3), where (L1,1A1), . . . , (Lm,1Am) are m independent realiza-
tions of (L := dP/dQ, 1A). For the case of (3.3), since EQ(L1A) = P(A) = pc,
EQ(L21A) ≥ p2

c by the Cauchy–Schwarz inequality and, therefore, Q is an asymp-
totically optimal importance sampling measure if EQ(L21A) = O(p2

c ), which
leads to the definition (3.5) of asymptotic optimality for the Monte Carlo esti-
mates. Chan and Lai [8] have also shown that

√
np2

n is an asymptotically minimal
order of magnitude for EQ(L21A) in the case of (3.2). They have also extended
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this theory to Markov random walks Sn whose increments ξi have distributions
F(·|Xi,Xi−1) depending on a Markov chain {Xt }.

The asymptotically optimal mixtures of exponentially twisted measures∫
Pθμω(μ)dμ in [8] involve normalizing constants βn (or βc) that may be dif-

ficult to compute. Moreover, it may even be difficult to sample from the twisted
measure Pθμ , especially in multidimensional and Markovian settings. In this sec-
tion we show that by choosing the resampling weights suitably, the SISR estimates
α̂B can still attain

mVar(α̂B) = p2
ne

o(n) as m → ∞ and n → ∞(3.6)

for Monte Carlo estimation of pn and

mVar(α̂B) = p2
c e

o(c) as m → ∞ and c → ∞(3.7)

for Monte Carlo estimation of (3.3). Moreover, (3.6) and (3.7) still hold with α̂B
replaced by α̂R. The properties (3.6) and (3.7) are called logarithmic efficiency; the
variance of the Monte Carlo estimate differs from the asymptotically optimal value
by a factor of eo(n) (or eo(c)) noting that −n−1 logpn and −c−1 logpc converge to
positive limits. To begin with, suppose the asymptotically optimal importance sam-
pling measure Q has conditional densities qt (·|Yt−1) with respect to ν. To achieve
log efficiency, the resampling functions wt can be chosen to satisfy approximately

wt(yt ) ∝ qt (yt |yt−1)/q̃t (yt |yt−1)(3.8)

as illustrated by the following example, after which a heuristic explanation for
(3.8) will be given.

EXAMPLE 1. Suppose ξ1, ξ2, . . . are i.i.d. random variables (d = 1) and
g(x) = x in (3.2), so that α = pn = P {Sn/n ≥ b}, where b > Eξ1 and 2θb ∈ �.
Consider the SISR procedure with Q̃ = P (and, therefore, E∗ = E) and resam-
pling weights

wt(Yt ) = eθbξt−ψ(θb).(3.9)

Then L = 1 and hence, by (2.5),

ft (Yt ) = P {Sn/n ≥ b|Yt } = P {Sn − St ≥ nb − St |St }.(3.10)

Therefore, standard Markov’s inequality involving moment generating functions
yields

ft (Yt ) ≤ e−θb(nb−St )+(n−t)ψ(θb) = eθbSt−tψ(θb)−nφ(b).(3.11)

By (2.6) and the martingale decomposition (2.7),

E(α̂B − α)2 ≤ m−1
n∑

t=1

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}
(3.12)

+ m−1
n−1∑
t=1

E
[(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]
,
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in which the superscript (1) can be replaced by (i) since the expectations are the
same for all i. The derivation of (3.12) uses the independence of [ft (Ỹ

(i)
t ) −

ft−1(Y
(i)
t−1)]ht (Y

(i)
t−1) for 1 ≤ i ≤ m when conditioned on F2t−2 and the pairwise

negative correlations of (#(i)
t −mw

(i)
t )ft (Ỹ

(i)
t )ht (Ỹ

(i)
t ) for i = 1, . . . ,m when con-

ditioned on F2t−1. By (2.4), (3.9) and (3.11),

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}
= E

{
w̄2

1 · · · w̄2
t−1
[
ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
/e2θbS

(1)
t−1−2(t−1)ψ(θb)

}
(3.13)

≤
(

1 + E(eθbξ1−ψ(θb) − 1)2

m

)t−1

e−2nφ(b)E
(
e2θbξt−2ψ(θb)

)
.

To see the inequality in (3.13), condition on F2t−1. Since E[ft (Ỹ
(1)
t )|F2t−1] =

ft−1(Y
(1)
t−1), it follows from (3.11) that

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
/e2θbS

(1)
t−1−2(t−1)ψ(θb)|F2t−1

}
≤ E

[
f 2

t

(
Ỹ(1)

t

)
/e2θbS

(1)
t−1−2(t−1)ψ(θb)|F2t−1

]≤ e−2nφ(b)E
(
e2θbξt−2ψ(θb)

)
.

Moreover, w̄2
1, . . . , w̄

2
t−1 are i.i.d. random variables with mean

E

[
m−1

m∑
i=1

(
eθbξ

(i)
1 −ψ(θb) − 1

)+ 1

]2

= 1 + m−1E
(
eθbξ1−ψ(θb) − 1

)2(3.14)

and their product w̄2
1 · · · w̄2

t−1 in the second term of (3.13) is F2t−1-measurable.
This yields the inequality in (3.13).

Since the conditional distribution of #(i)
t given F2t−1 is Binomial(m,w

(i)
t ),

E[(#(i)
t − mw

(i)
t )2|F2t−1] ≤ mw

(i)
t . By (2.4), (3.9) and (3.11), ft (Ỹ

(i)
t )ht (Ỹ

(i)
t )

≤ w̄1 · · · w̄t e
−nφ(b). Since

∑m
i=1 w

(i)
t = 1, it then follows by conditioning on F2t−1

that

E
{(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)}
= m−1

m∑
i=1

E
{(

#(i)
t − mw

(i)
t

)2
f 2

t

(
Ỹ(i)

t

)
h2

t

(
Ỹ(i)

t

)}

≤ E

{(
m∑

i=1

w
(i)
t

)(
w̄1 · · · w̄t e

−nφ(b))2}= e−2nφ(b)E(w̄2
1 · · · w̄2

t ),

which can be combined with (3.14) to yield

E
[(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]= O

((
1 + K

m

)t

e−2nφ(b)

)
,(3.15)
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where K = E(eθbξ1−ψ(θb) − 1)2. By (3.12), (3.13) and (3.15),

lim inf
n→∞ −1

n
log[mVar(α̂B)] ≥ 2φ(b) − K

m

for any fixed m. Since pn/[n−1/2e−nφ(b)] is bounded away from 0 and ∞ (see [8],
page 451), (3.6) holds.

3.1. A heuristic principle for efficient SISR procedures. The asymptotically
optimal importance sampling measure for pn = P {Sn/n ≥ b} is Q under which
ξ1, ξ2, . . . are i.i.d. with density function eθbξ−ψ(θb) with respect to P (see [8]).
Since we have used Q̃ = P in Example 1, (3.9) actually follows the prescription
(3.8) to choose resampling weights that can achieve an effect similar to asymptot-
ically optimal importance sampling. We now give a heuristic principle underlying
this prescription. The SISR procedure uses the importance weights p

(i)
t /q̃

(i)
t (for

the change of measures from P to Q̃) and resampling weights w
(i)
t , 1 ≤ i ≤ m,

for the m simulated trajectories at stage t . The resampling step at stage t basically

converts (Ỹ(i)
t , p

(i)
t /q̃

(i)
t ,w

(i)
t ) to (Y(i)

t , p
(i)
t /(q̃

(i)
t w

(i)
t ),1), and, therefore, the pre-

scription (3.8) for choosing resampling weights (satisfying q̃
(i)
t w

(i)
t = q

(i)
t ) is in-

tended to yield the desired importance weights p
(i)
t /q

(i)
t . To transform this heuris-

tic principle into a rigorous proof of logarithmic efficiency, one needs to be able
to bound the second moments of the importance weights and resampling weights.
This explains the requirement 2θb ∈ � in Example 1.

Example 1 indicates the key role played by the martingale decomposition (2.7)
and large deviation bounds for P(�n|Yk), 1 ≤ k < n, in the derivation of asymp-
totically efficient resampling weights. To generalize the basic ideas to the more
general tail probability (3.2) with nonlinear g, we provide large deviation bounds
in Lemma 1, whose proof is given in the Appendix, for

P
{
g
(
(x + Sn,k)/n

)≥ b
}
,(3.16)

where Sn,k = Sn − Sk ; note that (3.16) is equal to P {g(Sn/n) ≥ b|Sk = x}. The
special case k = 0 and x = 0 has been analyzed by Chan and Lai (see Theo-
rem 2 of [6]) under certain regularity conditions that yield precise saddlepoint
approximations. The probability (3.16) is more complicated than this special case
because it involves additional parameters x and k, but we only need large devia-
tion bounds rather than saddlepoint approximations for logarithmic efficiency. Let
μθ = ∇ψ(θ) and define

I = inf{φ(μ) :g(μ) ≥ b},(3.17)

M = {θ :φ(μθ) ≤ I }.(3.18)

LEMMA 1. Let b > g(μ0). Then as n → ∞,

P
{
g
(
(x + Sn,k)/n

)≥ b
}≤ e−nI+o(n)

∫
M

eθ ′x−kψ(θ) dθ,(3.19)

where the o(n) term is uniform in x and k.
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The proof of (3.19) in the Appendix uses a change-of-measure argument that
involves the measure Q for which

(dQ/dP )(Yn) =
∫
M

eθ ′Sn−nψ(θ) dθ/vol(M).

The bound (3.19) is used in conjunction with the inequality
∫
M eθ ′x−kψ(θ) dθ ≤

vol(M) exp{k maxθ∈M [θ ′x/k − ψ(θ)]} to prove the following theorem.

THEOREM 1. Letting b > g(μ0), assume:

(C1) g is twice continuously differentiable and ∇g �= 0 on N := {μ ∈ �o :
g(μ) = b}.

(C2) Ee2κ‖ξ1‖ < ∞, where κ = supθ∈M‖θ‖ and M is defined in (3.18).

Let θ̂0 = 0 and define for 1 ≤ t ≤ n,

θ̂t = arg max
θ∈M

{θ ′St/t − ψ(θ)},
(3.20)

wt(Yt ) = exp{θ̂ ′
t St − tψ(θ̂t ) − [θ̂ ′

t−1St−1 − (t − 1)ψ(θ̂t−1)]}.
With Q̃ = P and the resampling weights thus defined, the SISR estimates α̂B and
α̂R are logarithmically efficient, that is, (3.6) holds for α̂B and also with α̂R in
place of α̂B if m → ∞ and n → ∞.

Besides (3.19), the proof of Theorem 1 also uses the bounds in the following
lemma. These bounds enable us to bound E(w̄2

t−1|F2(t−1)−2) in the proof of The-
orem 1.

LEMMA 2. With the same notation and assumptions in Theorem 1, there exist
nonrandom constants εt and K > 0 such that

lim
t→∞ εt = 0, E[wt(Yt )|St−1] ≤ eεt and

(3.21)
E[w2

t (Yt )|St−1] ≤ K for all t ≥ 1.

PROOF. Let η = supθ∈M |ψ(θ)|. Then

θ̂ ′
t St − tψ(θ̂t ) = [θ̂ ′

t St−1 − (t − 1)ψ(θ̂t )] + [θ̂ ′
t ξt − ψ(θ̂t )]

(3.22)
≤ [θ̂ ′

t−1St−1 − (t − 1)ψ(θ̂t−1)] + [θ̂ ′
t ξt − ψ(θ̂t )]

and, therefore, it follows from (3.20) that wt(Yt ) ≤ eκ‖ξt‖+η. Hence, by (C2),

E
[
wt(Yt )1{‖ξt‖>ζ }|St−1

]≤ E
[
eκ‖ξ1‖+η1{‖ξ1‖>ζ }

]→ 0 as ζ → ∞.(3.23)

It will be shown that for any fixed ζ > 0,

γt,ζ := ess sup‖θ̂t − θ̂t−1‖1{‖ξt‖≤ζ } → 0 as t → ∞.(3.24)
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Let η̃ = supθ∈M‖∇ψ(θ)‖. Combining (3.24) with (3.20) and (3.22) yields

E
[
wt(Yt )1{‖ξt‖≤ζ }|St−1

] ≤ E
[
eθ̂ ′

t ξt−ψ(θ̂t )1{‖ξt‖≤ζ }|St−1
]

≤ eγt,ζ (ζ+η̃)E
[
eθ̂ ′

t−1ξt−ψ(θ̂t−1)|St−1
]

(3.25)

= 1 + o(1)

as t → ∞. Moreover, by (C2) and (3.24), as ζ → ∞,

E
[
w2

t (Yt )1{‖ξt‖>ζ }|St−1
]≤ E

[
e2κ‖ξ1‖+2η1{‖ξ1‖>ζ }

]→ 0

E
[
w2

t (Yt )1{‖ξt‖≤ζ }|St−1
]≤ e2γt,ζ (ζ+η̃)E

[
e2θ̂ ′

t−1ξt−2ψ(θ̂t−1)|St−1
]

(3.26)

≤ sup
θ∈M

eψ(2θ)−2ψ(θ) + o(1),

and (3.21) follows from (3.23), (3.25) and (3.26).
To prove (3.24), let fx,t (θ) = θ ′x − tψ(θ) and let θx,t be the unique maxi-

mizer of fx,t (θ) over M . Let λmin(·) denote the smallest eigenvalue of a sym-
metric matrix. Since ∇2ψ(θ) is continuous and positive definite for all θ ∈ M ,
and since M is compact and λmin is a continuous function of the entries of
∇2ψ(θ), infθ∈M λmin(∇2ψ(θ)) ≥ 2β for some β > 0. Therefore, by Taylor’s the-
orem, fx,t−1(θ) ≤ fx,t−1(θx,t−1) − βt‖θx,t−1 − θ‖2 for all θ ∈ M . It then follows
that for ‖y − x‖ ≤ ζ ,

fy,t (θx,t−1) ≤ fy,t (θy,t ) = fx,t−1(θy,t ) + θ ′
y,t (y − x) − ψ(θy,t )

≤ fx,t−1(θx,t−1) − βt‖θx,t−1 − θy,t‖2 + θ ′
y,t (y − x) − ψ(θy,t )

≤ fy,t (θx,t−1) − βt‖θx,t−1 − θy,t‖2 + (ζ + η̃)‖θx,t−1 − θy,t‖
and, therefore, ‖θx,t−1 − θy,t‖ ≤ (ζ + η̃)/(βt). Hence, (3.24) holds by setting x =
St−1 and y = St . �

PROOF OF THEOREM 1. To simplify the notation, we will suppress the super-
script (1) in θ̂

(1)
t−1 below. By (2.4) and (3.20),

ht−1
(
Ỹ(1)

t−1

)= (
t−1∏
k=1

w̄k

)
exp

[−θ̂ ′
t−1S̃

(1)
t−1 + (t − 1)ψ(θ̂t−1)

]
.(3.27)

Making use of E[f (Ỹ(1)
t )|F2t−2] = ft−1(Y

(1)
t−1), E(supθ∈M e2θ ′ξt−2ψ(θ)) < ∞ and

the independence of w̄2
1 · · · w̄2

t−1 and ξt , we obtain from Lemma 1 and (3.27) that

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}
≤ E

{
w̄2

1 · · · w̄2
t−1f

2
t

(
Ỹ(1)

t

)
/ exp

[
2θ̂ ′

t−1S
(1)
t−1 − 2(t − 1)ψ(θ̂t−1)

]}
(3.28)

≤ e−2nI+o(n)E(w̄2
1 · · · w̄2

t−1).
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By (2.4) and Lemma 2,

E
(
w̄2

t−1|F2(t−1)−2
)= (

m−1
m∑

i=1

E
[
wt−1

(
Ỹ(i)

t−1

)|S(i)
t−2

])2

+ m−2
m∑

i=1

Var
[
wt−1

(
Ỹ(i)

t−1

)|S(i)
t−2

]
≤ (1 + Km−1)e2εt−1

and proceeding inductively yields

E(w̄2
1 · · · w̄2

t−1) ≤ (1 + Km−1)t−1 exp

(
t−1∑
k=1

2εk

)
≤ eK(t−1)/m+o(n).(3.29)

Similarly, under bootstrap or residual resampling,

E
[(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]
= m−1

m∑
i=1

E
[(

#(i)
t − mw

(i)
t

)2
f 2

t

(
Ỹ(i)

t

)
h2

t

(
Ỹ(i)

t

)]
(3.30)

≤ e−2nI+o(n)E(w̄2
1 · · · w̄2

t ).

By (C1), pn = e−nI+o(n) (see [6], Theorem 2) and hence, it follows from (3.12)
and (3.28)–(3.30) that both α̂R and α̂B are logarithmically efficient. �

The heuristic principle described in the paragraph following Example 1 can also
be used to construct logarithmically efficient SISR procedures for Monte Carlo
evaluation of (3.3) as illustrated in the following example.

EXAMPLE 2. Let Tc = inf{n :Sn ≥ c}. Consider the estimation of pc =
P {Tc ≤ n1} [i.e., with d = 1 and g(x) = x] when μ0 < 0 and n1 ∼ ac for some
a > 1/ψ ′(θ∗), where θ∗ is the unique positive root of ψ(θ∗) = 0. We shall assume
2θ∗ ∈ � and use the importance measure Q̃ = P and resampling weights

wt(Yt ) =
{

eθ∗ξt , if t ≤ Tc,
1, if n1 > t > Tc.

Let η(YTc∧n1) = eθ∗(STc∧n1−c). Since η(YTc∧n1) ≥ 1{maxn≤n1 Sn≥c}, it follows that

ft (Yt ) = P
{

max
n≤n1

Sn ≥ c
∣∣Yt

}
≤ E[η(YTc∧n1)|Yt ] = eθ∗(STc∧t−c).(3.31)

Making use of (3.31) in place of (3.11), we obtain that, analogous to (3.13),

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}
(3.32)

≤
(

1 + K∗
m

)t−1

e−2θ∗cE(e2θ∗ξt ),
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where K∗ = E(eθ∗ξ1 − 1)2 and that, analogous to (3.15),

E
[(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]= O

((
1 + K∗

m

)t−1

e−2θ∗c
)
.(3.33)

Hence, by (3.12) (with n1 in place of n), (3.32) and (3.33),

mVar(α̂B) = O
(
n1 exp[(n1K∗/m) − 2θ∗c]).

Since n1 = O(c) and pc/e
−θ∗c is bounded away from 0 and ∞, as shown in [22],

(3.7) also holds.

In Theorem 2, we provide the resampling weights for logarithmically efficient
simulation of (3.3), for which the counterparts of (3.17) and (3.18) are also pro-
vided. The basic idea is to use the resampling weights (3.20) up to the stopping
time

Tc = inf{n ≥ n0 :ng(Sn/n) ≥ c} ∧ n1.(3.34)

THEOREM 2. Let g(μ0) < a−1, n0 = δc + O(1) and n1 = ac + O(1) as c →
∞ for some a > δ > 0. Let I = inf{φ(μ) :g(μ) ≥ δ−1} and M = {θ :φ(μθ) ≤ I }.
Let Q̃ = P and assume that (C1)–(C2) hold for all a−1 ≤ b ≤ δ−1 and that

(C3) r := supμ : g(μ)≥a−1 min{g(μ), δ−1}/φ(μ) < ∞.

Let θ̂0 = 0 and define for 1 ≤ t ≤ n1 − 1, θ̂t = arg maxθ∈M [θ ′St/t − ψ(θ)] and

wt(Yt ) =
{

eθ̂ ′
t St−tψ(θ̂t )−[θ̂ ′

t−1St−1−(t−1)ψ(θ̂t−1)], if t ≤ Tc,
1, if n1 > t > Tc.

(3.35)

Then (3.7) holds for α̂B and with α̂B replaced by α̂R if m → ∞ and c → ∞.

PROOF. Let u = (t − 1) ∧ T
(1)
c . By (2.4) and (3.35),

ht−1
(
Ỹ(1)

t−1

)= (
t−1∏
k=1

w̄k

)
exp

[−(θ̂ (1)
u

)′
S̃(1)

u + uψ
(
θ̂ (1)
u

)]
.(3.36)

Let Ib = inf{φ(μ) :g(μ) ≥ b}. By Lemma 1,

ft

(
Ỹ(1)

t

)= P
{
T (1)

c ≤ n1|Ỹ(1)
t

}
(3.37)

≤

⎧⎪⎪⎨⎪⎪⎩
n1∑

n=t+1

e−nIc/n+o(n)
∫
M

eθ ′S̃(1)
t −tψ(θ) dθ, if t < T

(1)
c ,

1, if t ≥ T
(1)
c .

Note that

inf
a−1≤b≤δ−1

b−1Ib = min
{

inf
μ : a−1≤g(μ)≤δ−1

φ(μ)

g(μ)
, inf
μ : g(μ)>δ−1

φ(μ)

δ−1

}
= r−1
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by (C3). Hence, by (3.36) and (3.37),

E
{[

ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}≤ e−2c/r+o(c)E(w̄2
1 · · · w̄2

t−1).(3.38)

Similarly, it can be shown that under either bootstrap or residual resampling,

E
[(

#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]≤ e−2c/r+o(c)E(w̄2
1 · · · w̄2

t−1).(3.39)

By (C1) and Theorem 2 of [6], pc = e−c/r+o(c) and hence, it follows from (3.29),
(3.38) and (3.39) that both α̂R and α̂B are logarithmically efficient. �

3.2. Markovian extensions. Let {(Xt , St ) : t = 0,1, . . . , } be a Markov additive
process on X × Rd with transition kernel

P(x,A × B) := P {(X1, S1) ∈ A × (B + s)|(X0, S0) = (x, s)}
= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)}.

Let {Xn} be aperiodic and irreducible with respect to some maximal irreducibility
measure ϕ and assume that the transition kernel satisfies the minorization condition

P(x,A × B) ≥ h(x,B)ν(A)(3.40)

for any measurable set A ⊂ X , Borel set B ⊂ Rd and s ∈ Rd for some probability
measure ν and measure h(x, ·) that is positive for all x belonging to a ϕ-positive
set. Ney and Nummelin [19] developed a theory to analyze large deviations proper-
ties of Sn under (3.40) or when its variant P(x,A×B) ≥ h(x)ν(A×B) holds. Let
τ be the first regeneration time and assume that � := {(θ, ζ ) :Eνe

θ ′Sτ −τζ < ∞} is
an open neighborhood of 0. Then for all θ ∈ � := {θ : (θ, ζ ) ∈ � for some ζ }, the
kernel

P̂θ (x,A) :=
∫

eθ ′sP (x,A × ds)(3.41)

has a unique maximum eigenvalue eψ(θ), for which ζ = ψ(θ) is the unique so-
lution of the equation Eνe

θ ′Sτ −τζ = 1, with corresponding right eigenfunctions
r(·; θ) and left eigenmeasures �ν(θ, ·) defined by

r(x; θ) = Exe
θ ′Sτ −τψ(θ),

�x(θ;A) = Ex

(
τ−1∑
n=0

eθ ′Sn−nψ(θ)1{Xn∈A}
)
,(3.42)

�ν(θ;A) =
∫

�x(θ;A)dν(x).

Let π denote the stationary distribution of {Xn} and let

θμ = (∇ψ)−1(μ).(3.43)
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To begin with, consider the special case d = 1 and g(x) = x for which the
importance sampling measure with transition kernel

Pθ(x, dy × ds) := eθ ′s−ψ(θ){r(y; θ)/r(x; θ)}P(x, dy × ds)(3.44)

has been shown to be logarithmically efficient by Dupuis and Wang [16] and
asymptotically optimal by Chan and Lai [8] for simulating the tail probability
Px0{Sn/n ≥ b} when θ is chosen to be θb in (3.44). We shall show that by us-
ing SISR with Q̃ = P and resampling weights wt(Yt ) = eθbξt−ψ(θb), we can avoid
computation of the eigenfunctions. To bring out the essence of the method, we
first assume instead of the minorization condition (3.40) the stronger uniform re-
currence condition

a0ν(A × B) ≤ P(x,A × B) ≤ a1ν(A × B)(3.45)

for some 0 < a0 < a1 and probability measure ν and for all x ∈ X , measurable
sets A ⊂ X and Borel sets B ⊂ R. At the end of this section, we show how this
assumption can be removed. Note that Yt consists of (Xi, ξi), i ≤ t , in the Markov
case.

EXAMPLE 3. Let b > Eπξ1 and assume that θb ∈ � and Eν(e
2θbξ1−2ψ(θb))

< ∞. We now extend Example 1 to Markov additive processes by showing that
the choice Q̃ = P and

wt(Yt ) = eθbξt−ψ(θb)(3.46)

results in logarithmically efficient simulation of Px0{Sn/n ≥ b}. The dependence

of the weights w
(i)
t and w

(j)
t for i �= j , created from a combination of the Marko-

vian structure of the underlying process and bootstrap resampling, requires a more
delicate peeling and induction argument than that in Example 1. By consider-
ing ξt − ψ(θb)/θb instead of ξt , we may assume without loss of generality that
ψ(θb) = 0.

Let κ = supx∈X r(x; θb)/ infx∈X r(x; θb) and let Eθ be expectation with respect
to Pθ . Then by (2.5) and (3.44),

ft (Yt ) = Px0{Sn/n ≥ b|Yt } = P {Sn − St ≥ nb − St |Xt,St }
= r(Xt ; θb)Eθb

[
e−θb(Sn−St )1{Sn−St≥nb−St }/r(Xn; θb)|Xt,St

]
≤ κe−θb(nb−St ).

We shall show that

E(w̄2
1 · · · w̄2

t ) = eo(t) as m → ∞ uniformly over 1 ≤ t ≤ n − 1.(3.47)

Then logarithmic efficiency of bootstrap resampling follows from (3.12)–(3.15).
We first show that for any k < t and i �= j ,

E
{
w̄2

k

(
E

X
(i)
k

eθbSt−k
)(

E
X

(j)
k

eθbSt−k
)|F2k−2

}
(3.48)

≤ m−2
∑
u�=v

(
E

X
(u)
k−1

eθbSt−k+1
)(

E
X

(v)
k−1

eθbSt−k+1
)+ m−1β,
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where β = suph≥0,x∈X Ex{e2θbξ1(EX1e
θbSh)2}, which is finite by (3.45). Note that

w̄k is measurable with respect to F2k−1 and that under bootstrap resampling, X
(i)
k

and X
(j)
k are independent conditioned on F2k−1. Moreover, since X

(1)
k = X̃

(�)
k with

probability w
(�)
k = wk(Ỹ

(�)
k )/

∑m
j=1 wk(Ỹ

(j)
k ),

E
{
w̄k

(
E

X
(1)
k

eθbSt−k
)|F2k−1

}= w̄k

m∑
u=1

w
(u)
k E

X̃
(u)
k

eθbSt−k ,

which is equal to m−1∑m
u=1 eθbξ̃

(u)
k E

X̃
(u)
k

eθbSt−k in view of (3.46) and that ψ(θb) =
0. Hence,

E
{
w̄2

k

(
E

X
(i)
k

eθbSt−k
)(

E
X

(j)
k

eθbSt−k
)|F2k−1

}
=
(
m−1

m∑
u=1

eθbξ̃
(u)
k E

X̃
(u)
k

eθbSt−k

)2

(3.49)
= m−2

∑
u�=v

(
eθbξ̃

(u)
k E

X̃
(u)
k

eθbSt−k
)(

eθbξ̃
(v)
k E

X̃
(v)
k

eθbSt−k
)

+ m−2
m∑

u=1

e2θbξ̃
(u)
k
(
E

X̃
(u)
k

eθbSt−k
)2

.

Since (̃ξ
(u)
k , X̃

(u)
k ) and (̃ξ

(v)
k , X̃

(v)
k ) are independent conditioned on F2k−2 for u �= v

and E[eθbξ̃
(i)
k (E

X̃
(i)
k

eθbSt−k )|F2k−2] = E
X

(i)
k−1

eθbSt−k+1 , (3.48) follows from (3.49).

We shall show using (3.48) and induction, that

E(w̄2
1 · · · w̄2

k) ≤ γ 2(1 + m−1β)k where γ = sup
x∈X ,h≥0

Exe
θbSh(≥1).(3.50)

For k = 1,

Ew̄2
1 = m−2

∑
i �=j

Ex0e
θbξ

(i)
1 Ex0e

θbξ
(j)
1 + m−2

m∑
i=1

Ex0e
2θbξ

(i)
1 ≤ γ 2 + m−1β

and indeed (3.50) holds. If (3.50) holds for all k < t , then by repeated application
of (3.48), starting from k = t , we obtain

E(w̄2
1 · · · w̄2

t ) ≤ (Ex0e
θbSt )2 + m−1β

t−1∑
k=0

E(w̄2
1 · · · w̄2

k)

≤ γ 2

{
1 + m−1β

t−1∑
k=0

(1 + m−1β)k

}
= γ 2(1 + m−1β)t

and (3.50) indeed holds for k = t . Hence, (3.47) is true and logarithmic efficiency
is attained.
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The peeling argument used to derive (3.48) and (3.50) can also be used to extend
Theorems 1 and 2, which hold for general g, to the following.

THEOREM 3. (a) Let M , θ̂t and wt(Yt ) be the same as in Theorem 1. Then
Theorem 1 still holds when the i.i.d. assumption on ξt is replaced by the uniform
recurrence condition (3.45) on the Markov additive process (Xt , St = ξ1 +· · ·+ξt )

and assumption (C2) is generalized to∫
Rd

e2κ‖ξ‖ν(X , dξ) < ∞ where κ = sup
θ∈M

‖θ‖.(3.51)

(b) Let M , θ̂t and wt(Yt ) be the same as in Theorem 2. Then Theorem 2 still
holds when the i.i.d. assumption on ξt is replaced by the uniform recurrence con-
dition (3.45) and assumption (C2) is generalized to (3.51).

Note that Q̃ = P in Theorem 3. We next show how the uniform recurrence
assumption (3.45) can be removed, extending the preceding results on the loga-
rithmic efficiency of suitably chosen SISR procedures to more general Markov
additive processes such that for some θ ∈ �, 0 < β < 1, function u : X → [1,∞)

and measurable set C:

(U1) supx∈C u(x) < ∞,
∫

X u(x)dν(x) < ∞, supx∈C �x(θ;C) < ∞,
∫

X �x(θ ;
C)dν(x) < ∞,

(U2) Ex{eθ ′ξ1−ψ(θ)u(X1)} ≤ (1 − β)u(x) for x /∈ C,
(U3) a := supx∈C Ex{eθ ′ξ1−ψ(θ)u(X1)} < ∞,
(U4) K1 := supx∈X Ex{e2θ ′ξ1−2ψ(θ)u2(X1)/u

2(x)} < ∞.

We illustrate in Section 4, Example 5, how (U1)–(U4) can be checked in a con-
crete example. Condition (U1) [in which �x is defined in (3.42)] holds when C

is bounded and ν has support on a compact set. Conditions (U2)–(U4) are often
called “drift conditions” (see [8]). Although the arguments are essentially modi-
fications of the peeling idea in Example 3 by making use of (U1)–(U4), they are
considerably more complicated than those in the uniformly recurrent case. We,
therefore, only consider the univariate linear case [d = 1, g(y) = y] in the fol-
lowing theorem to indicate the basic ideas without getting into the details of these
modifications, such as replacing for general g the θb in (3.52) by sequential esti-
mates θ̂t , as in (3.20) and (3.35).

THEOREM 4. Let b > Eπξ1 and assume that (U1)–(U4) hold for θ = θb. Let
Q̃ = P and

wt(Yt ) = eθbξt−ψ(θb)u(Xt)/u(Xt−1).(3.52)

Then (3.6) holds with pn = Px0{Sn/n ≥ b}, for α̂B or α̂R, as n → ∞ and m → ∞.
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PROOF. By considering ξt − ψ(θb)/θb instead of ξt , we assume without loss
of generality that ψ(θb) = 0. By (2.4) and (3.52),

ht−1
(
Ỹ(1)

t−1

)= (
t−1∏
k=1

w̄k

)
e−θbS̃

(1)
t−1u(x0)/u

(
X̃

(1)
t−1

)
.(3.53)

It will be shown in the Appendix that

K2 := sup
x∈X ,h≥0

Ex{eθbShu(Xh)/u(x)} < ∞.(3.54)

Note that

ft (Yt ) = Ex0

(
1{Sn/n≥b}|Yt

)≤ e−θbnbEx0(e
θbSn |Yt )

(3.55)
= eθb(St−nb)EXt (e

θbSn−t ) ≤ K2e
θb(St−nb)u(Xt).

Since Ex0[ft (Ỹ
(1)
t )|F2t−2] = ft−1(Y

(1)
t−1), it follows from (3.53), (3.55) and (U3)

that

Ex0

{[
ft

(
Ỹ(1)

t

)− ft−1
(
Y(1)

t−1

)]2
h2

t−1
(
Y(1)

t−1

)}
≤ K2

2e−2nθbbEx0

{
(w̄1 · · · w̄t−1)

2e2θbξ̃
(1)
t u2(x0)u

2(X̃(1)
t

)
/u2(X(1)

t−1

)}
(3.56)

≤ βe−2nθbbEx0(w̄
2
1 · · · w̄2

t−1),

where β = K1K
2
2u2(x0).

By (3.53) and (3.55), under either bootstrap or residual resampling,

Ex0

[(
#(1)
t − mw

(1)
t

)2
f 2

t

(
Ỹ(1)

t

)
h2

t

(
Ỹ(1)

t

)]
= m−1

m∑
i=1

Ex0

[(
#(i)
t − mw

(i)
t

)2
f 2

t

(
Ỹ(i)

t

)
h2

t

(
Ỹ(i)

t

)]
(3.57)

≤ K2
2Ex0(w̄

2
1 · · · w̄2

t )e
−2nθbbu2(x0).

In view of (3.12), it now remains to show (3.47). It follows from the proof of (3.48)
that for any k < t and i �= j ,

Ex0

{
w̄2

k

(E
X

(i)
k

[eθbSt−ku(Xt−k)]
u(X

(i)
k )

)(E
X

(j)
k

[eθbSt−ku(Xt−k)]
u(X

(j)
k )

)∣∣∣F2k−2

}

≤ m−2
∑
v �=w

(E
X

(v)
k−1

[eθbSt−k+1u(Xt−k+1)]
u(X

(v)
k−1)

)(E
X

(w)
k−1

[eθbSt−k+1u(Xt−k+1)]
u(X

(w)
k−1)

)

+ m−1β.

An argument similar to that in (3.48) and (3.50) can be used to show that

Ex0(w̄
2
1 · · · w̄2

k) ≤ K2
2 (1 + m−1β)k.

Hence, (3.47) again holds and (3.6) follows from (3.56) and (3.57). �
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3.3. Implementation, estimation of standard errors and discussion. As ex-
plained in the first paragraph of Section 3.1, at every stage t , the SISR procedure
carries out importance sampling sequentially within each simulated trajectory but
performs resampling across the m trajectories. Since the computation time for re-
sampling increases with m, it is more efficient to divide the m trajectories into r

subgroups of size k so that m = kr and resampling is performed within each sub-
group of k trajectories, independently of the other subgroups. This method also
has the advantage of providing a direct estimate of the standard error of the Monte
Carlo estimate ᾱ := r−1∑r

i=1 α̂i , where α̂i denotes the SISR estimate of α (using
either bootstrap or residual resampling) based on the ith subgroup of simulated
trajectories. Specifically, we can estimate the standard error of ᾱ by σ̂ /

√
r , where

σ̂ 2 = (r − 1)−1
r∑

i=1

(α̂i − ᾱ)2.(3.58)

In Section 2 we considered the case of fixed n as m → ∞ and provided estimates
of the standard errors of the asymptotically normal α̂B and α̂R. The validity of
these estimates is unclear for the case n → ∞ and m → ∞ as considered in this
section that involves large deviations theory instead of central limit theorems. By
choosing m = kr with k → ∞ and r → ∞ in (3.58), we still have a consistent
estimate σ̂ /

√
r of the standard error in the large deviations setting with n → ∞.

The resampling weights in Theorems 1 and 2 have closed-form expressions
in terms of the cumulant generating function ψ(θ) in the i.i.d. case or the loga-
rithm ψ(θ) of the largest eigenvalue of the kernel (3.41) in the Markov case. When
ψ(θ) does not have an explicit formula, we can use numerical approximations and
thereby approximate the logarithmically efficient resampling weights, as will be il-
lustrated in Example 5. This is, therefore, much more flexible than logarithmically
efficient importance sampling which involves sampling from the efficient impor-
tance measure that involves both the eigenvalue and corresponding eigenfunction
in the Markov case (see [5, 8, 10, 16, 21]). Note that approximating the eigenvalue
and eigenfunction usually does not result in an importance (probability) measure
and, therefore, requires an additional task of computing the normalizing constants.

The basic ideas in Examples 1 and 2 and Sections 3.1 and 3.2 can be extended
to more general rare events of the form {XT ∈ �} and more general stochastic
sequences Xt and stopping times T . To evaluate P {XT ∈ �} by Monte Carlo, it
would be ideal to sample from the importance measure Q for which

dQ

dP
(Xt ) = P {XT ∈ �|Xt }/P {XT ∈ �} for t ≤ T ,(3.59)

because the corresponding Monte Carlo estimate of P {XT ∈ �} would have vari-
ance 0 (see [16], page 2). This is clearly not feasible because the right-hand side
of (3.59) involves the conditional probabilities P {XT ∈ �|Xt } and its expectation
P {XT ∈ �} which is an unknown quantity to be determined. On the other hand,
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SISR enables one to ignore the normalizing factor P {XT ∈ �} and to use tractable
approximations to P {XT ∈ �|Xt }, as in Example 1, in coming up with a logarith-
mically efficient Monte Carlo estimate of P {XT ∈ �}.

4. Illustrative examples. We use the following two examples to illustrate
Theorems 1 and 4.

EXAMPLE 4. Let X1,X2, . . . be i.i.d. random variables with EX1 = 0. Let
ξi = (Xi,X

2
i ) and Sn = ξ1 + · · · + ξn. Define g(y, v) = y/

√
v for y ∈ R and v > 0

and note that g(Sn/n) is the self-normalized sum of the Xi’s. There is extensive
literature on the large deviation probability pn = P {g(Sn/n) ≥ b} (see [12]). Con-
sider the case b = 1/

√
2 and Xi having the density function

f (x) = 1

2
√

2π

(
e−(x−1)2/2 + e−(x+1)2/2), x ∈ R,

with respect to the Lebesgue measure. Thus, Xi is a mixture of N(1,1) and
N(−1,1). In this case, � = {(θ1, θ2) : θ2 < 1/2}, � = {(y, v) :v ≥ y2} and

log(Eeθ1X1+θ2X
2
1 ) = log

(
1

2

)
+ 1

2
− θ2

1 + 1

2 − 4θ2
+ log

(
eθ1/(1−2θ2) + e−θ1/(1−2θ2)√

1 − 2θ2

)
for θ ∈ �. The infimum of the rate function over the one-dimensional manifold
N = {(y, v) : y = √

v/2} is I = 0.324 and is attained at (y, v) = (1,2). Then M =
{θ = (θ1, θ2) :φ(yθ , vθ ) ≤ I } [see (3.18) and Theorem 1]. We implement SISR
with bootstrap resampling as described in Section 3.3, with m = 10,000 particles,
divided into 100 groups each having 100 particles. The results, in the form of
mean±standard error and for n = 15,20 and 25, are summarized in Table 1, which
also compares them to corresponding results obtained by direct Monte Carlo with
m = 10,000 in (2.1) and (2.2). Table 1 shows 18-fold variance reduction by using
SISR when n = 15, 25-fold variance reduction when n = 20 and that direct Monte
Carlo fails when n = 25.

EXAMPLE 5. Let ζ1, ζ2, . . . , γ1, γ2, . . . be i.i.d. standard normal random vari-
ables and let

Xn+1 = λ(Xn) + ζn+1, ξn = Xn + γn,(4.1)

TABLE 1
Monte Carlo estimates of P {g(Sn/n) ≥ 1/

√
2}

n

15 20 25

SISR (1.10 ± 0.07) × 10−3 (1.9 ± 0.2) × 10−4 (4.0 ± 0.7) × 10−5

Direct (0.9 ± 0.3) × 10−3 (1 ± 1) × 10−4 0
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where λ(x) is a monotone increasing, piecewise linear function given by

λ(x) = x1{|x|≤1} +
(

x + 1

2

)
1{x>1} +

(
x − 1

2

)
1{x<−1}.

Let θ > 0. We now show that (U1)–(U4) hold for u(x) = e2.1θx+
and C =

(−∞, ρ], where ρ ≥ 1 is chosen large enough so that (U2) holds, as shown below.
Since (a + b)+ ≤ a + b+ for a > 0 and since e2.05θx ≤ e−0.05θxu(x), it follows
that for x > ρ,

Ex

{
eθξ1−ψ(θ)u(X1)

}= E
{
eθx+θγ1−ψ(θ)+2.1θ((x+1)/2+ζ1)

+}
≤ u(x)e−0.05θxE

{
eθγ1−ψ(θ)+1.05θ+2.1θζ+

1
}

and, therefore, (U2) holds if ρ is large enough. It is easy to check that (U3) holds.
Note that supx∈(−∞,1] Ex[e2θξ1−2ψ(θ)u2(X1)] < ∞ and that for x > 1,

Ex

[
e2θξ1−2ψ(θ)u2(X1)

]
/u2(x)

= E
[
e2θx+2θγ1−2ψ(θ)+4.2θ((x+1)/2+ζ1)

+]
/e4.2θx+

≤ (e−0.1θx ∧ e2θx)E
[
e2θγ1−2ψ(θ)+2.1θ+4.2θζ+

1
]→ 0 as x → ∞

and, therefore, (U4) holds. Since limx→−∞ Ex(e
θξ1−ψ(θ)) = 0, it follows that

limx→−∞ �x(θ;C) = 0; moreover, u(x) = 1 for all x ≤ 0 and hence, (U1) also
holds.

We compute P0{Sn/n ≥ 2.5} for SISR using resampling, with m = 10,000 par-
ticles divided into 100 groups, each having 100 particles, and with resampling
weights (3.52) for which the following procedure is used to provide a numerical
approximation for θ2.5. First note that by (4.1),

Exe
θξ1 = eθ2/2Exe

θX1 .(4.2)

The procedure involves a finite-state Markov chain approximation to (4.1) with
states xi and transition probabilities pij (1 ≤ i, j ≤ 1,000) given by

xi = i

100
− 2.505, pij = e−(xj−λ(xi))

2/2
/ 1,000∑

k=1

e−(xk−λ(xi))
2/2.

For given θ , it approximates ψ(θ) by θ2/2 + ψ̃(θ), where eψ̃(θ) is the largest
eigenvalue of the matrix (eθxj pij )1≤i,j≤1,000, in view of (3.41) and (4.2). Since
ψ ′(θ2.5) = 2.5 by (3.43), it uses Brent’s method [20] that involves bracket-
ing followed by efficient search to find the positive root θ̃2.5 of the equation
ψ̃(θ) + θ2/2 = 2.5θ , noting that ψ̃(0) = 0. The root θ̃2.5 = 0.273 is then used
as an approximation to θ2.5 in (3.52). Table 2 gives the results, in the form of
mean ± standard error, for the SISR [with several choices of θ in (3.52), including
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TABLE 2
Monte Carlo estimates of P0{Sn/n ≥ 2.5}

n

θ 15 20 25

SISR 0.1 (9.68 ± 1.37) × 10−4 (2.81 ± 0.57) × 10−4 (4.70 ± 1.22) × 10−5

0.2 (9.65 ± 0.75) × 10−4 (2.45 ± 0.24) × 10−4 (6.70 ± 0.64) × 10−5

0.273 (8.31 ± 0.48) × 10−4 (2.42 ± 0.19) × 10−4 (6.33 ± 0.44) × 10−5

0.3 (9.11 ± 0.51) × 10−4 (2.54 ± 0.20) × 10−4 (5.27 ± 0.38) × 10−5

0.4 (9.78 ± 0.80) × 10−4 (2.60 ± 0.20) × 10−4 (6.58 ± 0.67) × 10−5

Direct (8 ± 3) × 10−4 (3 ± 2) × 10−4 0

θ = θ̃2.5] and direct Monte Carlo estimates of P0{Sn/n ≥ 2.5}. It shows a variance
reduction of 35 times for n = 15 and 80 times for n = 20 over direct Monte Carlo
when θ̃2.5 is used as an approximation to θ2.5 in the resampling weights (3.52) for
SISR. When n = 25, direct Monte Carlo fails while the SISR estimate still has a
reasonably small standard error.

APPENDIX: PROOF OF (3.19) AND (3.54)

PROOF OF (3.19). For 0 < ε < I , let

Mε = {θ :φ(μθ) = I − ε}, H(θ) = {μ ∈ �o : θ ′(μ − μθ) ≥ 0}.
If μ ∈ H(θ), then θ ′μ ≥ θ ′μθ and, therefore,

φ(μ) = sup
θ̃

{θ̃ ′μ − ψ(θ̃)} ≥ θ ′μ − ψ(θ) ≥ θ ′μθ − ψ(θ) = I − ε.(A.1)

Moreover, for θ ∈ Mε , H(θ) is a closed half-space whose boundary is the tangent
space of {μ :φ(μ) = I − ε} at μθ . Hence,

φ(μ) �= I − ε for μ ∈ �o ∖ ⋃
θ∈Mε

H(θ).(A.2)

Making use of this and (A.1), we next show that⋃
θ∈Mε

H(θ) = {μ :φ(μ) ≥ I − ε}(A.3)

and, therefore, by (3.17),

� := {μ :g(μ) ≥ b} ⊂ {μ :φ(μ) ≥ I − ε} = ⋃
θ∈Mε

H(θ).(A.4)

By (A.1),
⋃

θ∈Mε
H(θ) ⊂ {μ :φ(μ) ≥ I − ε}. Therefore, it suffices for the proof

of (A.3) to show that {μ :φ(μ) < I − ε} ⊃ �o \ ⋃θ∈Mε
H(θ). Suppose this is
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not the case. Then there exists μ1 ∈ �o \⋃θ∈Mε
H(θ) such that φ(μ1) ≥ I − ε.

Since �o \⋃θ∈Mε
H(θ) ⊃ {μ :φ(μ) < I − ε}, there exists μ2 ∈ �o \⋃θ∈Mε

H(θ)

such that φ(μ2) < I − ε. By continuity of φ, there exists ρ ∈ (0,1) such that
φ(ρμ1 + (1−ρ)μ2) = I −ε. Since �o \H(θ) is a half-space, �o \⋃θ∈Mε

H(θ) =⋂
θ∈Mε

(�o \H(θ)) is convex and, therefore, ρμ1 +(1−ρ)μ2 ∈ �o \⋃θ∈Mε
H(θ),

but this contradicts (A.2), thereby proving (A.3).
Define the measure Q by

dQ

dP
(Yn) =

∫
M

eθ ′Sn−nψ(θ) dθ/vol(M),

where vol(M) is the volume of M . Let μn = Sn/n and hn(θ) = θ ′μn−ψ(θ). From
(A.4), it follows that if μn ∈ �, then there exists θ∗ ∈ Mε such that θ ′∗(μn −μθ∗) ≥
0 and, therefore,

hn(θ∗) = θ ′∗μn − ψ(θ∗) ≥ θ ′∗μθ∗ − ψ(θ∗) = φ(μθ∗) = I − ε,(A.5)

since θ∗ ∈ Mε . Let Bn = {θ : (θ − θ∗)′∇hn(θ∗) ≥ 0,‖θ − θ∗‖ ≤ n−1/2}. Then for
all θ ∈ Bn, hn(θ) = hn(θ

∗) + (θ − θ∗)′∇hn(θ∗) − (θ − θ∗)′∇2ψ(θ∗)(θ − θ∗)/2 +
o(‖θ − θ∗‖2) and, therefore, by (A.5) and the definition of Bn,

hn(θ) ≥ I − ε − (K + 1)/(2n) for all large n,

where K = supθ∈M ‖∇2ψ(θ)‖. Hence, for all large n,

dQ

dP
(Yn) ≥ 1{μn∈�}

∫
Bn

exp{nhn(θ)}dθ/vol(M)

(A.6)
≥ 1{μn∈�}(cd/2)enI−nε−(K+1)/2n−d/2/vol(M),

in which cd denotes the volume of the d-dimensional unit ball. Letting ε → 0
in (A.6) yields (dQ/dP )(Yn) ≥ enI+o(n)1{μn∈�} in which o(n) is uniform in Yn.
Hence,

P {g(Sn/n) ≥ b|Yk} = EQ

[
dP

dQ
(Yn)1{Sn/n∈�}

dQ

dP
(Yk)

∣∣∣Yk

]

≤ e−nI+o(n) dQ

dP
(Yk),

proving (3.19). �

To prove (3.54), we use ideas similar to those in the proof of Lemma 1 of [7]
and the following result of [19], page 568.

LEMMA 3. Let τ(0) = 0. Under (3.40), there exist regeneration times τ(i),
i ≥ 1, such that:

(i) τ(i + 1) − τ(i), i ≥ 0, are i.i.d. random variables,
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(ii) {Xτ(i), . . . ,Xτ(i+1)−1, ξτ(i)+1, . . . , ξτ(i+1)}, i = 0,1, . . . , are independent
blocks,

(iii) Xτ(i) has distribution ν for all i ≥ 1.

PROOF OF (3.54). Let �̃x = Ex{∑τ
n=1 eθbSnu(Xn)}, �̃ν = ∫

�̃x dν(x) and A =
{τ(i) : i ≥ 1}. Since u ≥ 1,

Ex{eθbSku(Xk)} = Ex

{
eθbSku(Xk)1{τ≥k}

}
+

k−1∑
j=1

Ex

(
eθbSj 1{j∈A}

)
Eν

(
eθbSk−j u(Xk−j )1{τ≥k−j}

)
(A.7)

≤ �̃x + �̃ν

[
sup
j≥1

Ex

(
eθbSj 1{j∈A}

)]
.

Let 0 < σ = σ(1) < σ(2) < · · · be the hitting times of C. Then

�̃x ≤ Ex

{
σ∑

n=1

eθbSnu(Xn)

}
(A.8)

+ Ex

{ ∑
k : σ(k)<τ

eθbSσ(k)

σ (k+1)∑
n=σ(k)+1

eθb(Sn−Sσ(k))u(Xn)

}
.

Let y ∈ X . By (U2), for all n ≥ 2,

Ey

{
eθbSnu(Xn)1{n≤σ }

}≤ (1 − β)Ey

(
eθbSn−1u(Xn−1)1{n−1≤σ }

)
,

from which it follows by proceeding inductively and applying (U3) that

Ey

{
σ∑

n=1

eθbSnu(Xn)

}
≤ β−1 max{a, (1 − β)u(y)} ≤ αu(y),(A.9)

where α = β−1 max{a, (1 − β)}. Substitution of (A.9) into (A.8) then yields

�̃x ≤ α

{
u(x) + Ex

(
τ−1∑
n=0

eθbSnu(Xn)1{Xn∈C}
)}

≤ αu(x) + η�x(θb;C),(A.10)

where η = supy∈C u(y). Since
∫

X u(x)dν(x) < ∞ and
∫

X �x(θb;C)dν(x) < ∞,
it follows from (A.10) that �̃ν < ∞. Combining

�x(θb;C) ≤ Ex(e
θbSσ )

[
sup
y∈C

�y(θb;C)
]

with (A.9) yields

sup
x∈X

{�x(θb;C)/u(x)} < ∞.(A.11)
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Let Q∗ be a probability measure under which

dQ∗

dPν

({(Xt , St ) : t ≤ τ(i)})= eθbSτ(i) .

Then

sup
k≥1

Eν

(
eθbSk 1{k∈A}

)= sup
k≥1

Q∗{τ(i) = k for some i} ≤ 1.(A.12)

From (A.7), (A.10), (A.11) and

Ex

(
eθbSj 1{j∈A}

)= Ex

(
eθbSτ 1{τ=j}

)
+

j−1∑
h=1

Ex

(
eθbSτ 1{τ=h}

)
Eν

(
eθbSj−h1{j−h∈A}

)
≤ Ex(e

θbSτ )
{
1 + sup

k≥1
Eν

(
eθbSk 1{k∈A}

)}
,

(3.54) follows from (A.12). �
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