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Let Sn = 1
nXnX∗

n where Xn = {Xij } is a p × n matrix with i.i.d. com-
plex standardized entries having finite fourth moments. Let Yn(t1, t2, σ ) =√

p(xn(t1)∗(Sn + σI)−1xn(t2) − xn(t1)∗xn(t2)mn(σ )) in which σ > 0 and

mn(σ) = ∫ dFyn (x)
x+σ where Fyn(x) is the Marčenko–Pastur law with parame-

ter yn = p/n; which converges to a positive constant as n → ∞, and xn(t1)

and xn(t2) are unit vectors in C
p , having indices t1 and t2, ranging in a com-

pact subset of a finite-dimensional Euclidean space. In this paper, we prove
that the sequence Yn(t1, t2, σ ) converges weakly to a (2m + 1)-dimensional
Gaussian process. This result provides further evidence in support of the con-
jecture that the distribution of the eigenmatrix of Sn is asymptotically close
to that of a Haar-distributed unitary matrix.

1. Introduction. Suppose that {xjk, j, k = 1,2, . . .} is a double array of com-
plex random variables that are independent and identically distributed (i.i.d.) with
mean zero and variance 1. Let xj = (x1j , . . . , xpj )

′ and X = (x1, . . . ,xn), we de-
fine

Sn = 1

n

n∑
k=1

xkx∗
k = 1

n
XX∗,(1.1)

where x∗
k and X∗ are the transposes of the complex conjugates of xk and X, re-

spectively. The matrix Sn defined in (1.1) can be viewed as the sample covariance
matrix of a p-dimensional random sample with size n. When the dimension p is
fixed and the sample size n is large, the spectral behavior of Sn has been exten-
sively investigated in the literature due to its importance in multivariate statistical
inference [see, e.g., Anderson (1951, 1989)]. However, when the dimension p is
proportional to the sample size n in the limit; that is, p

n
→ y > 0 as n → ∞, the

classical asymptotic theory will induce serious inaccuracy. This phenomenon can
be easily explained from the viewpoint of random matrix theory (RMT).
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Before introducing our advancement of the theory, we will first give a brief
review of some well-known properties of Sn in RMT. We define the empirical
spectral distribution (ESD) of Sn by

F Sn(x) = 1

p

p∑
j=1

I (λj ≤ x),

where λj ’s are eigenvalues of Sn. First, it has long been known that F Sn(x)

converges almost surely to the standard Marčenko–Pastur law [MPL; see, e.g.,
Marčenko and Pastur (1967), Wachter (1978) and Yin (1986)] Fy(x), which
has a density function (2πxy)−1√(b − x)(x − a), supported on [a, b] = [(1 −√

y)2, (1 + √
y)2]. For the case y > 1, Fy(x) has a point mass 1 − 1/y at 0. If

its fourth moment is finite, as n → ∞, the largest eigenvalue of Sn converges to
b while the smallest eigenvalue (when y ≤ 1) or the (p − n + 1)st smallest eigen-
value (when y > 1) converges to a [see Bai (1999) for a review]. The central limit
theorem (CLT) for linear spectral statistics (LSS) of Sn has been established in Bai
and Silverstein (2004).

While results on the eigenvalues of Sn are abundant in the literature, not much
work has been done on the behavior of the eigenvectors of Sn. It has been conjec-
tured that the eigenmatrix; that is, the matrix of orthonormal eigenvectors of Sn,
is asymptotically Haar-distributed. This conjecture has yet to be formally proven
due to the difficulty of describing the “asymptotically Haar-distributed” proper-
ties when the dimension p increases to infinity. Silverstein (1981) was the first
one to create an approach to characterize the eigenvector properties. We describe
his approach as follows: denoting the spectral decomposition of Sn by U∗

n�Un,
if xij is normally distributed, Un has a Haar measure on the orthogonal matrices
and is independent of the eigenvalues in �. For any unit vector xn ∈ C

p , the vector
yn = (y1, . . . , yp) = Unxn performs like a uniform distribution over the unit sphere
in C

p . As such, for t ∈ [0,1], a stochastic process

Xn(t) =
√

p/2

([pt]∑
i=1

(y2
i − 1/p)

)

is defined. If z = (z1, . . . , zp)′ ∼ N(0, Ip), then yn has the same distribution as
z/‖z‖ and Xn(t) is identically distributed with

X̃n(t) =
√

p/2‖z‖−2

([pt]∑
i=1

(z2
i − ‖z‖2/p)

)
.

Applying Donsker’s theorem [Donsker (1951)], Xn(t) tends to a standard Brown-
ian bridge.

For any general large sample covariance, it is important to examine the behavior
of the Xn(t) process. Silverstein (1981, 1984, 1989) prove that the integral of poly-
nomial functions with respect to Xn(t) will tend to a normal distribution. To over-
come the difficulty of tightness, Silverstein (1990) takes xn = (±1, . . . ,±1)/

√
p
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so that the process Xn(t) will tend to the standard Brownian bridge instead. In
addition, Bai, Miao and Pan (2007) investigate the process Xn(t), defined for
T1/2

n SnT1/2
n with (T1/2

n )2 = Tn, a nonnegative positive definite matrix.
However, so far, the process Xn(t) is assumed to be generated only by one

unit vector xn in C
p . This imposes restrictions on many practical situations. For

example, in the derivation of the limiting properties of the bootstrap corrected
Markowitz portfolio estimates, we need to consider two unparallel vectors simul-
taneously [see Bai, Liu and Wong (2009) and Markowitz (1952, 1959, 1991)].
In this paper, we will go beyond the boundaries of their studies to investigate
the asymptotics of the eigenmatrix for any general large sample covariance ma-
trix Sn when xn runs over a subset of the p-dimensional unit sphere in which
C

p
1 = {xn :‖xn‖ = 1,xn ∈ C

p}.
We describe the approach we introduced in this paper as follows: if Vn is Haar-

distributed, for any pair of p-vectors x and y satisfying x ⊥ y, (Vnx,Vny) pos-
sesses the same joint distribution as

( z1 z2 )

(
z∗

1z1 z∗
1z2

z∗
2z1 z∗

2z2

)−1/2
,(1.2)

where z1 and z2 are two independent p-vectors whose components are i.i.d. stan-
dard normal variables. As n tends to infinity, we have

1

p

(
z∗

1z1 z∗
1z2

z∗
2z1 z∗

2z2

)
−→ I2.(1.3)

Therefore, any group of functionals defined by these two random vectors should
be asymptotically independent of each other. We shall adopt this setup to explore
the conjecture that Un is asymptotically Haar-distributed.

We consider x and y to be two p-vectors with an angle θ . Thereafter, we find
two orthonormal vectors α1 and α2 such that

x = ‖x‖α1 and y = ‖y‖(α1 cos θ + α2 sin θ).

By (1.2) and (1.3), we have

Vnx ∼ p−1/2‖x‖z1 and Vny ∼ p−1/2‖y‖(z1 cos θ + z2 sin θ).(1.4)

Let σ > 0 be a positive constant, we now consider the following three quantities:

x∗(Sn + σI)−1x, x∗(Sn + σI)−1y and y∗(Sn + σI)−1y.(1.5)

We hypothesize that if Un is asymptotically Haar-distributed and is asymptoti-
cally independent of �, then the above three quantities should be asymptotically
equivalent to

p−1‖x‖2z∗
1(� + σI)−1z1,

p−1‖x‖‖y‖z∗
1(� + σI)−1(z1 cos θ + z2 sin θ) and(1.6)

p−1‖y‖2(cos θz1 + sin θz2)
∗(� + σI)−1(z1 cos θ + z2 sin θ),
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respectively. We then proceed to investigate the stochastic processes related to
these functionals. By using the Stieltjes transform of the sample covariance matrix,
we have

p−1z∗
1(� + σI)−1z1 → m(σ) = −1 + σ − y −

√
(1 + y + σ)2 − 4y

2yσ
a.s.,

where m(σ) is a solution to the quadratic equation

m(1 + σ − y + yσm) − 1 = 0.(1.7)

Here, the selection of m(σ) is due to the fact that m(σ) → 0 as σ → ∞. By using
the same argument, we conclude that

p−1(cos θz1 + sin θz2)
∗(� + σI)−1(z1 cos θ + z2 sin θ) −→ m(σ) a.s.

Applying the results in Bai, Miao and Pan (2007), it can be easily shown that, for
the complex case,

p−1/2[z∗
1(� + σI)−1z1 − pmn(σ)] −→ N(0,W),(1.8)

and for the real case, the limiting variance is 2W , where W = W(σ,σ), mn(σ) is
m(σ) with y replaced by yn such that

mn(σ) = −1 + σ − yn −
√

(1 + yn + σ)2 − 4yn

2ynσ
,

yn = p/n

and

W(σ1, σ2) = m(σ1)m(σ2)

1 − y(1 − σ1ym(σ1))(1 − σ2m(σ2))
.

Here, the definitions of “real case” and “complex case” are given in Theorem 1 as
stated in the next section. By the same argument, one could obtain a similar result
such that

p−1/2[(z1 cos θ + z2 sin θ)∗(� + σI)−1(z1 cos θ + z2 sin θ) − pmn(σ)].(1.9)

We normalize the second term in (1.6) and, thereafter, derive the CLT for the
joint distribution of all three terms stated in (1.6) after normalization. More no-
tably, we establish some limiting behaviors of the processes defined by these nor-
malized quantities.
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2. Main results. Let S = Sp be a subset of the unit p-sphere C
p
1 indexed by an

m-dimensional hyper-cube T = [0,2π ]m. For any m arbitrarily chosen orthogonal
unit p-vectors x1, . . . ,xm+1 ∈ C

p
1 , we define

S = {xn(t) = x1 cos t1 + x2 sin t1 cos t2 + · · · + xm sin t1 · · · sin tm−1 cos tm

+ xm+1 sin t1 · · · sin tm−1 sin tm, t ∈ T }.(2.1)

If S is chosen in the form of (2.1), then the inner product xn(t1)
∗xn(t2) is a function

of t1 and t2 only (i.e., independent of n). Also, the norm of the difference (we call it
norm difference in this paper) ‖xn(t1)−xn(t2)‖ satisfies the Lipschitz condition. If
the time index set is chosen arbitrarily, we could assume that the angle, ϑn(t1, t2),
between xn(t1) and xn(t2) tends to a function of t1 and t2 whose norm difference
satisfies the Lipschitz condition.

Thereafter, we define a stochastic process Yn(u, σ ) mapping from the time in-
dex set T × T × I to S with I = [σ10, σ20] (0 < σ10 < σ20) such that

Yn(u, σ ) = √
p

(
xn(t1)

∗(Sn + σI)−1xn(t2) − xn(t1)
∗xn(t2)mn(σ )

)
,

where (u, σ ) = (t1, t2, σ ) ∈ T × T × I .

REMARK 1. If the sample covariance matrix Sn is real, the vectors xn and yn

will be real, and thus, the set S has to be defined as a subset of unit sphere R
p
1 =

{x ∈ R
p,‖x‖ = 1}. The time index can be similarly described for the complex case.

In what follows, we shall implicitly use the convention for the real case.

We have the following theorem.

THEOREM 1. Assume that the entries of X are i.i.d. with mean 0, vari-
ance 1, and finite fourth moments. If the variables are complex, we further as-
sume EX2

11 = 0 and E|X11|4 = 2, and refer to this case as the complex case.
If the variables are real, we assume EX4

11 = 3 and refer to it as the real case.
Then, as n → ∞, the process Yn(t1, t2, σ ) converges weakly to a multivariate
Gaussian process Y(t1, t2, σ ) with mean zero and variance–covariance function
EY(t1, t2, σ1)Y (t3, t4, σ2) satisfying

EY(t1, t2, σ1)Y (t3, t4, σ2) = ϑ(t1, t4)ϑ(t3, t2)W(σ1, σ2)

for the complex case and satisfying

EY(t1, t2, σ1)Y (t3, t4, σ2) = (
ϑ(t1, t4)ϑ(t3, t2) + ϑ(t1, t3)ϑ(t4, t2)

)
W(σ1, σ2)

for the real case where

W(σ1, σ2) = ym(σ1)m(σ2)

1 − y(1 − σ1m(σ1))(1 − σ2m(σ2))

and

ϑ(t, s) = lim x∗
n(t)xn(s).
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We will provide the proof of this theorem in the next section. We note that Bai,
Miao and Pan (2007) have proved that

√
p[xn(t1)

∗(Sn + σI)−1xn(t1) − mn(σ)] −→ N(0,W)

for the complex case and proved that the asymptotic variance is 2W for the real
case.

More generally, if x and y are two orthonormal vectors, applying Theorem 1,
we obtain the limiting distribution of the three quantities stated in (1.5) with nor-
malization such that

√
p

⎛
⎝ x∗(Sn + σI)−1x − mn(σ)

x∗(Sn + σI)−1y
y∗(Sn + σI)−1y − mn(σ)

⎞
⎠ −→ N

⎛
⎝

⎛
⎝ 0

0
0

⎞
⎠ ,

⎛
⎝W 0 0

0 W 0
0 0 W

⎞
⎠

⎞
⎠(2.2)

for the complex case while the asymptotic covariance matrix is⎛
⎝ 2W 0 0

0 W 0
0 0 2W

⎞
⎠

for the real case.

REMARK 2. This theorem shows that the three quantities stated in (1.5) are
asymptotically independent of one another. It provides a stronger support to the
conjecture that Un is asymptotically Haar-distributed than those established in the
previous literature.

In many practical applications, such as wireless communications and electrical
engineering [see, e.g., Evans and Tse (2000)], we are interested in extending the
process Yn(u, σ ) defined on a region T × T × D where D is a compact subset of
the complex plane and is disjoint with the interval [a, b], the support of the MPL.
We can define a complex measure by putting complex mass x∗(t1)U∗

nej e′
j Uny(t2)

at λj , the j th eigenvalue of Sn, where ej is the p-vector with 1 in its j th entry and
0 otherwise. In this situation, the Stieltjes transform of this complex measure is

sn(z) = x∗(Sn − zI)−1y,

where z = μ + iv with v �= 0. When considering the CLT of LSS associated with
the complex measure defined above, we need to examine the limiting properties
of the Stieltjes transforms, which lead to the extension of the process Yn(u, σ ) to
Yn(u,−z), where z is an index number in D.

If x∗y is a constant (or has a limit, we still denote it as x∗y for simplicity), it
follows from Lemma 6 that

x∗(Sn − zI)−1y −→ x∗ys(z),
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where

s(z) =
⎧⎪⎨
⎪⎩

1 − z − y +
√

(1 − z + y)2 − 4y

2yz
, when 
(z) > 0,

s̄(z̄), when 
(z) < 0,

= 1 − z − y + sgn(
(z))
√

(1 − z + y)2 − 4y

2yz
if 
(z) �= 0,

is the Stieltjes transform of MPL, in which, by convention, the square root
√

z

takes the one with the positive imaginary part. When z �= 0 is real, s(z) is defined
as the limit from the upper complex plane. By definition, m(σ) = s(−σ + i0) =
limv↓0 s(−σ + iv). In calculating the limit, we follow the conventional sign of the

square root of a complex number that the real part of
√

(−σ + iv − 1 − y)2 − 4y

should have the opposite sign of v, and thus

m(σ) = −1 + σ − y −
√

(1 + y + σ)2 − 4y

2yσ
.

Now, we are ready to extend the process Yn(u, σ ) to

Yn(u, z) = √
p[x∗

n(t1)(Sn − zI)−1xn(t2) − x∗
n(t1)xn(t2)s(z, yn)],

where s(z, yn) is the Stieltjes transform of the LSD of Sn in which y is replaced
by yn. Here, z = u + iv with v > 0 or v < 0. Thereby, we obtain the following
theorem.

THEOREM 2. Under the conditions of Theorem 1, the process Yn(u, z) tends
to a multivariate Gaussian process Y(u, z) with mean 0 and covariance function
E(Y (u, z1)Y (u, z2)) satisfying

E(Y (u, z1)Y (u, z2)) = ϑ(t1, t4)ϑ(t3, t2)W(z1, z2)(2.3)

for the complex case and satisfying

E(Y (u, z1)Y (u, z2)) = (
ϑ(t1, t4)ϑ(t3, t2) + ϑ(t1, t3)ϑ(t4, t2)

)
W(z1, z2)(2.4)

for the real case where

W(z1, z2) = ys(z1)s(z2)

1 − y(1 + z1s(z1))(1 + z2s(z2))
.

Theorem 2 follows from Theorem 1 and Vitali lemma [see Lemma 2.3 of Bai
and Silverstein (2004)] since both Y(u, z) and Yn(u, z) are analytic functions when
z is away from [a, b], the support of MPL.
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Suppose that f (x) is analytic on an open region containing the interval [a, b].
We construct an LSS with respect to the complex measure as defined earlier; that
is,

p∑
j=1

f (λj )x∗(t1)U∗
nej e′

j Uny(t2).

We then consider the normalized quantity

Xn(f ) = √
p

( p∑
j=1

f (λj )x∗(t1)U∗
nej e′

j Uny(t2)

(2.5)

− x∗(t1)y(t2)

∫
f (x) dFyn(x)

)
,

where Fy is the standardized MPL. By applying the Cauchy formula

f (x) = 1

2πi

∮
C

f (z)

z − x
dz,

where C is a contour enclosing x, we obtain

Xn(f,u) = −
√

p

2πi

(∮
C
[x∗

n(t1)(Sn − zI)−1y(t2)

(2.6)

− x∗
n(t1)y(t2)sn(z)]f (z) dz

)
,

where C is a contour enclosing the interval [a, b], u = (t1, t2), and

sn(z) = 1 − z − yn + sgn(
(z))

√
(1 − z + yn)2 − 4yn

2ynz
.

Thereafter, we obtain the following two corollaries.

COROLLARY 1. Under the conditions of Theorem 1, for any k functions
f1, . . . , fk analytic on an open region containing the interval [a, b], the k-
dimensional process

(Xn(f1,u1), . . . ,Xn(fk,uk))

tends to the k-dimensional stochastic multivariate Gaussian process with mean
zero and covariance function satisfying

E(X(f,u)X(g,v)) = − θ

4π2

∮
c1

∮
c2

W(z1, z2)f (z1)g(z2) dz1 dz2,

where θ = ϑ(t1, t4)ϑ(t3, t2) for the complex case and = ϑ(t1, t4)ϑ(t3, t2) +
ϑ ′(t1, t3)ϑ

′(t4, t2) for the real case. Here, C1 and C2 are two disjoint contours that
enclose the interval [a, b] such that the functions f1, . . . , fk are analytic inside
and on them.
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COROLLARY 2. The covariance function in Corollary 1 can also be written
as

E(X(f,u)X(g,v)) = θ

(∫ b

a
f (x)g(x) dFy(x)

−
∫ b

a
f (x) dFy(x)

∫ b

a
g(x) dFy(x)

)
,

where θ has been defined in Corollary 1.

3. The proof of Theorem 1. To prove Theorem 1, by Lemma 7, it is sufficient
to show that Yn(u, σ ) − EYn(u, σ ) tends to the limit process Y(u, σ ). We will first
prove the property of the finite-dimensional convergence in Section 3.1 before
proving the tightness property in Section 3.3. Throughout the paper, the limit is
taken as n → ∞.

3.1. Finite-dimensional convergence. Under the assumption of a finite fourth
moment, we follow Bai, Miao and Pan (2007) to truncate the random variables Xij

at εn
4
√

n for all i and j in which εn → 0 before renormalizing the random variables
to have mean 0 and variance 1. Therefore, it is reasonable to impose an additional
assumption that |Xij | ≤ εn

4
√

n for all i and j .
Suppose sj denotes the j th column of 1√

n
Xn. Let A(σ ) = Sn +σ I and Aj (σ ) =

A(σ ) − sj s∗
j . Let xn and yn be any two vectors in C

p
1 . We define

ξj (σ ) = s∗
j A−1

j (σ )sj − 1

n
tr A−1

j (σ ),

γj = s∗
j A−1

j ynx∗
nA−1

j (σ )sj − 1

n
x∗
nA−1

j (σ )A−1
j (σ )yn,

βj (σ ) = 1

1 + s∗
j A−1

j (σ )sj

,

bj (σ ) = 1

1 + n−1 tr A−1
j (σ )

and

b̄ = 1

1 + n−1E tr A−1(σ )
.

We also define the σ -field Fj = σ(s1, . . . , sj ). We denote by Ej (·) the conditional
expectation when Fj is given. By convention, E0 denotes the unconditional expec-
tation.
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Using the martingale decomposition, we have

A−1(σ ) − EA−1(σ ) =
n∑

j=1

(Ej − Ej−1)[A−1(σ ) − A−1
k (σ )]

(3.1)

=
n∑

j=1

(Ej − Ej−1)βj A−1
j (σ )sj s∗

j A−1
j (σ ).

Therefore,

Yn(u, σ ) = √
p

n∑
j=1

(Ej − Ej−1)x(t1)
∗[A−1(σ ) − A−1

k (σ )]x(t2)

= √
p

n∑
j=1

(Ej − Ej−1)βj x(t1)
∗A−1

j (σ )sj s∗
j A−1

j (σ )x(t2).

Consider the K-dimensional distribution of {Yn(u1, σ1), . . . , Yn(uK,σK)}
where (ui , σi) = (ti1, ti2, σi) ∈ T × T × I . Invoking Lemma 3, we will have

K∑
i=1

ai

(
Yn(ui , σi) − EYn(ui , σi)

) ⇒ N(0,α′�α)

for any constants ai , i = 1, . . . ,K , where

α = (a1, . . . , aK)′

and

�ij = EY(ti1, ti2, σi)Y (tj1, tj2, σj ) = ϑ(ti1, tj2)ϑ(tj1, ti2)W(σi, σj )

for the complex case and

�ij = (
ϑ(ti1, tj2)ϑ(tj1, ti2) + ϑ(ti1, tj1)ϑ(tj2, ti2)

)
W(σi, σj )

for the real case.
To this end, we will verify the Liapounov condition and calculate the asymptotic

covariance matrix � (see Lemma 3) in the next subsections.

3.1.1. Verification of Liapounov’s condition. By (3.1), we have

K∑
i=1

ai

(
Yn(σi) − EYn(σi)

)
(3.2)

= √
p

n∑
j=1

(Ej − Ej−1)

K∑
i=1

(aiβj (x∗(ti1)A−1
j (σi)sj s∗

j A−1
j (σi)x(ti2))).
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The Liapounov condition with power index 4 follows by verifying that

p2
n∑

j=1

E

∣∣∣∣∣
K∑

i=1

aiβj x∗(ti1)A−1
j (σi)sj s∗

j A−1
j (σi)x(ti2)

∣∣∣∣∣
4

−→ 0.(3.3)

The limit (3.3) holds if one can prove that, for any xn,yn ∈ C
p
1 ,

p2
n∑

j=1

E|βj x∗
nA−1

j (σ )sj s∗
j A−1

j (σ )yn|4 −→ 0.(3.4)

To do this, applying Lemma 2.7 of Bai and Silverstein (1998), for any q ≥ 2, we
get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
j

E|s∗
j A−1

j (σ )ynx∗
nA−1

j (σ )sj |q = O(n−1−q/2),

max
j

E|γj (σ )|q = O(n−1−q/2) and

max
j

E|ξj (σ )|q = O(n−q/2).

(3.5)

When q > 2, the O(·) can be replaced by o(·) in the first two inequalities. The
assertion in (3.4) will then easily follow from the estimations in (3.5) and the
observation that |βj (σ )| < 1.

3.1.2. Simplification of Yn(u) − EYn(u). For any xn,yn ∈ C
p
1 , from (3.1), we

have

x∗
nA−1(σ )yn − Ex∗

nA−1(σ )yn

=
n∑

j=1

(
b̄Ej γj + Ej (bj − b̄)γj(3.6)

+ (Ej − Ej−1)bj (σ )βj (σ )ξj (σ )s∗
j A−1

j (σ )ynx∗
nA−1

j (σ )sj

)
.

For the third term on the right-hand side of (3.6), applying (3.5), we have

E

∣∣∣∣∣√p

n∑
j=1

(Ej − Ej−1)bj (σ )βj (σ )ξj (σ )s∗
j A−1

j (σ )ynx∗
nA−1

j (σ )sj

∣∣∣∣∣
2

= p

n∑
j=1

E|(Ej − Ej−1)bj (σ )βj (σ )ξj (σ )s∗
j A−1

j (σ )ynx∗
nA−1

j (σ )sj |2

≤ p

n∑
j=1

(E|ξj (σ )|4E|s∗
j A−1

j (σ )ynx∗
nA−1

j (σ )sj |4)1/2 = o(n−1/2).
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For the second term on the right-hand side of (3.6), we have

E

∣∣∣∣∣√p

n∑
j=1

Ej

(
bj (σ ) − b̄(σ )

)
γj (σ )

∣∣∣∣∣
2

≤ p

n∑
j=1

(
E|bj (σ ) − b̄(σ )|4E|γj (σ )|4)1/2

= o(n−3/2) ·
(
max

j
E|tr A−1

j (σ ) − E tr A−1(σ )|4
)1/2

= o(n−1/2),

where the last step follows from applying the martingale decomposition and the
Burkholder inequality and using the fact that

|tr A−1
j (σ ) − tr A−1(σ )| ≤ 1/σ

and

E|tr A−1(σ ) − E tr A−1(σ )|4 = O(n2).

Thus, we conclude that

√
p

(
x∗
nA−1(σ )yn − Ex∗

nA−1(σ )yn

) = √
p

n∑
j=1

b̄Ej γj + op(1).(3.7)

3.2. Asymptotic covariances. To compute �, by the limiting property in (3.7),
we only need to compute the limit

νi,j = limp

n∑
k=1

b̄(σi)b̄(σj )Ek−1Ekγk(ti1, ti2, σi)Ekγk(tj1, tj2, σj ),

in which, for any i, k = 1, . . . ,K , we have

γk(ti1, ti2, σi) = s∗
kA−1

k (σi)x(ti2)x∗(ti1)A−1
k (σi)sk

− 1

n
x∗(ti1)A−1

k (σi)A
−1
k (σi)x(ti2).

By Lemma 4, we obtain b̄(σ ) → b(σ ) = 1/(1 + ym(σ)), Thus, we only need to
calculate

νi,j = lim
n

p

n∑
k=1

b(σi)b(σj )Ek−1Ekγk(ti1, ti2, σi)Ekγk(tj1.tj2, σj ).(3.8)

For simplicity, we will use x,y,u,v, σ1 and σ2 to denote x(ti1), x(ti2), x(tj1),
x(tj2), σi and σj . For X = (X1, . . . ,Xp)′ of i.i.d. entries with mean 0 and vari-
ance 1, and A = (Aij ) and B = (Bij ) to be Hermitian matrices, the following
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equality holds:

E(X∗AX − tr A)(X∗BX − tr B)

= tr AB + |EX2
1|2 tr ABT + ∑

AiiBii (E|X1|4 − 2 − |EX2
1|2).

Using this equality, we get

ν = lim
pb(σ1)b(σ2)

n2

n∑
k=1

tr
(
EkA−1

k (σ1)yx∗A−1
k (σ1)

(3.9)
× EkA−1

k (σ2)vu∗A−1
k (σ2)

)
for the complex case and obtain

ν = lim
pb(σ1)b(σ2)

n2

n∑
k=1

tr
(
EkA−1

k (σ1)yx∗A−1
k (σ1)

(3.10)
× EkA−1

k (σ2)(vu∗ + uv∗)A−1
k (σ2)

)
for the real case.

One could easily calculate the limit in (3.9) by applying the method used in Bai,
Miao and Pan (2007) and by using the proof of their equation (4.7). Therefore, we
only need to calculate the limit of

yb(σ1)b(σ2)

n

n∑
k=1

tr Ek(A
−1
k (σ1)yx∗A−1

k (σ1))Ek(A
−1
k (σ2)vu∗A−1

k (σ2))

(3.11)

= yb(σ1)b(σ2)

n

n∑
k=1

Ek(x∗A−1
k (σ1)Ă

−1
k (σ2)v)(u∗Ă−1

k (σ2)A
−1
k (σ1)y),

where Ă−1
k (z2) is similarly defined as A−1

k (σ2) by using (s1, . . . , sk−1, s̆k+1,

. . . , s̆n) and by using the fact that s̆k+1, . . . , s̆n are i.i.d. copies of sk+1, . . . , sn.
Following the arguments in Bai, Miao and Pan (2007), we only have to replace

their vectors xn and x∗
n connected with A−1

k (σ1) by y and x∗ and replace those
connected with A−1

k (σ2) by v and u∗, respectively. Going along with the same
lines from their (4.7) to (4.23), we obtain

Ekx∗A−1
k (σ1)Ă

−1
k (σ2)vu∗Ă−1

k (σ2)A
−1
k (σ1)y

×
[
1 − k − 1

n
b̄(σ1)b̄(σ2)

1

n
trT −1(σ2)T

−1(σ1)

]
(3.12)

= x∗T −1(σ1)T
−1(σ2)vu∗T −1(σ2)T

−1(σ1)y

×
(

1 + k − 1

n
b̄(σ1)b̄(σ2)

1

n
Ek−1 tr(A−1

k (σ1)Ă
−1
k (σ2))

)
+ op(1)



EIGENMATRICES OF A SAMPLE COVARIANCE MATRIX 2007

and

Ek tr(A−1
k (σ1)Ă

−1
k (σ2)) = tr(T −1(σ1)T

−1(σ2)) + op(1)

1 − ((k − 1)/n2)b(σ1)b(σ2) tr(T −1(σ1)T −1(σ2))
,

where

T (σ) =
(
σ + n − 1

n
b(σ )

)
I.

We then obtain

d(σ1, σ2) := lim b̄(σ1)b̄(σ2)
1

n
tr(T −1(σ1)T

−1(σ2))

(3.13)

= yb(σ1)b(σ2)

(σ1 + b(σ1))(σ2 + b(σ2))

and

h(σ1, σ2) := b(σ1)b(σ2)x∗T −1(σ1)T
−1(σ2)vu∗T −1(σ2)T

−1(σ1)y
(3.14)

= x∗vu∗yb(σ1)b(σ2)

(σ1 + b(σ1))2(σ2 + b(σ2))2 .

From (3.13) and (3.14), we get

The right-hand side of (3.11)

a.s.−→ yh(σ1, σ2)

(∫ 1

0

1

(1 − td(σ1, z2))
dt +

∫ 1

0

td(σ1, σ2)

(1 − td(σ1, σ2))2 dt

)

= yh(σ1, σ2)

1 − d(σ1, σ2)

= yx∗vu∗yb(σ1)b(σ2)

(σ1 + b(σ1))(σ2 + b(σ2))[(σ1 + b(σ1))(σ2 + b(σ2)) − yb(σ1)b(σ2)] .

In addition, from (1.7), we establish

1

σ + b(σ )
= m(σ) and

b(σ )

σ + b(σ )
= 1 − σm(σ).(3.15)

Applying these identities, the limit of (3.11) can be simplified to

x∗vu∗yW(σ1, σ2),

where

W(σ1, σ2) = ym(σ1)m(σ2)

1 − y(1 − σ1m(σ1))(1 − σ2m(σ2))
.
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By symmetry, the limit of (3.10) for the real case can also be simplified to

(x∗vu∗y + x∗uv∗y)W(σ1, σ2).

Therefore, for the complex case, the covariance function of the process Y(ti1,
ti2, σ ) is

EY(ti1, ti2, σ1)Y (tj1, tj2, σ2) = ϑ(ti1, tj2)ϑ(ti2, tj1)W(σ1, σ2),

while, for the real case, it is

EY(ti1, ti2, σ1)Y (tj1, tj2, σ2)

= (
ϑ(ti1, tj2)ϑ(tj1, ti2) + ϑ(ti1, tj1)ϑ(tj2, ti2)

)
W(σ1, σ2).

3.3. Tightness.

THEOREM 3. Under the conditions in Theorem 1, the sequence of Yn(u, σ ) −
E(Yn(u, σ ) is tight.

For ease reference on the tightness, we quote a proposition from page 267 of
Loève (1978) as follows.

PROPOSITION 1 (Tightness criterion). The sequence {Pn} of probability mea-
sure is tight if and only if:

(i) sup
n

Pn

(
x : |x(0)| > c

) −→ 0 as c → ∞

and, for every ε > 0, as δ → 0, we have

(ii) Pn

(
ωx(δ) > ε

) −→ 0,

where δ-oscillation is defined by

ωx(δ) = sup
|t−s|<δ

|x(t) − x(s)|.

To complete the proof of the tightness for Theorem 3, we note that condition
(i) in Proposition 1 is a consequence of finite-dimensional convergence which has
been proved in the previous section. To demonstrate condition (ii) in Proposition 1,
we will use the two lemmas given below. Therefore, to complete the proof of The-
orem 3, by Proposition 1 and Lemma 1, it is sufficient to verify that

sup
u1,u2∈T ×T

E
∣∣∣∣ Yn(u1) − Yn(u2)

‖(u1, σ1) − (u2, σ2)‖
∣∣∣∣
4m+2

< ∞.(3.16)

This inequality will be proved in Lemma 2 stated below.
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LEMMA 1. Suppose that Xn(t) is a sequence of stochastic processes, defined
on an m-dimensional time domain T , whose paths are continuous and Lipschitz;
that is, there is a random variable R = Rn such that

|Xn(t) − Xn(s)| ≤ R‖t − s‖.
If there is an α > m such that

E|R|α < ∞,(3.17)

then, for any fixed ε > 0, we have

lim
δ↓0

Pn

(
ωx(δ) > ε

) = 0.(3.18)

PROOF. Without loss of generality, we assume that T = [0,M]m. First, for
any given ε > 0 and δ > 0, we choose an integer K such that MK−1 < δ and
2αKm−α < 1/2. For each � = 1,2, . . . , we define

ti(j, �) = jM

K�
, j = 1, . . . ,K�.

Denoting by t(j, �), j = (j1, . . . , jm), the vector whose ith entry is ti(ji, �). Then,
we have

Pn

(
ωx(δ) ≥ ε

)
≤ 2P

(
sup
j,1

sup
|t−t(j,1)|≤2M

√
m/K

|Xn(t) − Xn(t(j,1))| ≥ ε/2
)

≤
L∑

�=1

∑
(j,�+1)

2P
(∣∣Xn(t(j∗, �)) − Xn

(
t(j, � + 1)

)∣∣ ≥ 2−�−1ε
)

+ 2P
(

sup
t(j,L+1)

sup
‖t−t(j,L+1)‖≤2

√
mM/KL

∣∣Xn(t) − Xn

(
t(j,L + 1)

)∣∣ ≥ 2−L−2ε
)

≤
∞∑

�=1

2(K�/M)m
(

2
√

mM

ε2−�−1K�

)α

E|R|α

= 22+3αε−αmα/2(M/K)α−mE|R|α
= 22+3αε−αmα/2δα−mE|R|α → 0 as δ → 0,

where the summation
∑

(j,�+1) runs over all possibilities of ji ≤ K�+1, and t(j∗, �)
is the t(j, �) vector closest to t(j, �+1). Here, to prove the first inequality, one only
needs to choose t(j,1) as the center of the first layer hypercube in which 1

2(t + s)
lies. The proof of the second inequality could be easily obtained by applying a
simple induction. In the proof of the third inequality, the first term follows by the
Chebyshev inequality and the fact that∣∣Xn(t(j∗, �)) − Xn

(
t(j, � + 1)

)∣∣ ≤ R‖t(j∗, �) − t(j, � + 1)‖ ≤ R
√

mM/K�.



2010 Z. D. BAI, H. X. LIU AND W. K. WONG

At the same time, the second term tends to 0 for all fixed n when L → ∞ because

P
(

sup
t(j,L+1)

sup
‖t−t(j,L+1)‖≤2M

√
mK−L−2

∣∣Xn(t) − Xn

(
t(j,L + 1)

)∣∣ ≥ 2−L−2ε
)

≤ P
(|R| ≥ (K/2)L+2ε/2M

√
m

) → 0.

Thus, the proof of the lemma is complete. �

LEMMA 2. Under the conditions of Theorem 1, the property in (3.16) holds
for any m.

PROOF. For simplicity, we only prove the lemma for a general m instead of
4m + 2. For a constant L, we have

E
∣∣∣∣Yn(u1, σ1) − Yn(u2, σ2) − E(Yn(u1, σ1) − Yn(u2, σ2))

‖u1 − u2‖ + |σ1 − σ2|
∣∣∣∣
m

� pm/2E
∣∣∣∣xn(t1)

∗A−1(σ1)xn(t2) − Exn(t1)
∗A−1(σ1)xn(t2)

‖t1 − t3‖ + ‖t2 − t4‖ + |σ1 − σ2|

− (xn(t3)
∗A−1(σ2)xn(t4) − Exn(t3)

∗A−1(σ2)xn(t4))

‖t1 − t3‖ + ‖t2 − t4‖ + |σ1 − σ2|
∣∣∣∣
m

≤ Lnm/2{
E

∣∣((xn(t1) − xn(t3)
)∗A−1(σ1)xn(t2)

− E
(
xn(t1) − xn(t3)

)∗A−1(σ1)xn(t2)
)
(‖t1 − t3‖)−1∣∣m

+ E
∣∣(x∗

n(t3)A−1(σ1)
(
xn(t2) − xn(t4)

)
− Ex∗

n(t3)A−1(σ1)
(
xn(t2) − xn(t4)

))
(‖t2 − t4‖)−1∣∣m

+ E|x∗
n(t3)A−1(σ1)A−1(σ2)xn(t4)

− Ex∗
n(t2)A−1(σ1)A−1(σ2)xn(t4)|m}

,

where a � b means a and b have the same order, that is, there exists a positive
constant K such that K−1b < a < Kb.

We note that ‖xn(t1) − xn(t3)‖/‖t1 − t3‖ ≤ 1 or bounded for the general case.
By applying the martingale decomposition in (3.1), the Burkholder inequality and
the estimates in (3.5), we have

nm/2E
∣∣∣∣(xn(t1) − xn(t3))

∗A−1(σ1)xn(t2) − E(xn(t1) − xn(t3))
∗A−1(σ1)xn(t2)

‖t1 − t3‖
∣∣∣∣
m

= O(1).

Similarly, we obtain

nm/2E
∣∣∣∣x∗

n(t3)A−1(σ1)(xn(t2) − xn(t4)) − Ex∗
n(t3)A−1(σ1)(xn(t2) − xn(t4))

‖t2 − t4‖
∣∣∣∣
m

= O(1).
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Using the martingale decomposition and the Burkholder inequality, we get

nm/2E|x∗
n(t3)A−1(σ1)A−1(σ2)xn(t4) − Ex∗

n(t2)A−1(σ1)A−1(σ2)xn(t4)|m

≤ Lnm/2

[
n∑

k=1

E|x∗
n(t3)[A−1(σ1)A−1(σ2) − A−1

k (σ1)A
−1
k (σ2)]xn(t4)|m

+ E

(
n∑

k=1

Ek−1|x∗
n(t3)[A−1(σ1)A−1(σ2)

− A−1
k (σ1)A

−1
k (σ2)]xn(t4)|2

)m/2]

= O(1),

which follows from applying the following decomposition:

A−1(σ1)A−1(σ2) − A−1
k (σ1)A

−1
k (σ2)

= β(σ1)A
−1
k (σ1)sks∗

kA−1
k (σ1)A

−1
k (σ2) + β(σ2)A

−1
k (σ1)A

−1
k (σ2)sks∗

kA−1
k (σ2)

+ β(σk)β(σ2)A
−1
k (σ1)sks∗

kA−1
k (σ1)A

−1
k (σ2)sks∗

kA−1
k (σ2)

and thereafter employing the results in (3.5). Thus, condition (3.16) is verified. �

4. Proof of Corollary 2. Applying the quadratic equation (1.7), we have

σ = 1

m
− 1

1 + ym
.(4.1)

Making a difference of σ1 and σ2, we obtain

σ1 − σ2 = m(σ2) − m(σ1)

m(σ1)m(σ2)
− y(m(σ2) − m(σ1))

(1 + ym(σ1))(1 + ym(σ2))
.

We also establish

m(σ2) − m(σ1)

σ1 − σ2
= m(σ1)m(σ2)(1 + ym(σ1))(1 + ym(σ2))

(1 + ym(σ1))(1 + ym(σ2)) − ym(σ1)m(σ2)
.(4.2)

Finally, we conclude that

m(σ2) − m(σ1)

σ1 − σ2
− m(σ1)m(σ2)

= ym2(σ1)m
2(σ2)

(1 + ym(σ1))(1 + ym(σ2)) − ym(σ1)m(σ2)
= W(σ1, σ2)

by noticing that 1 + ym(σ) = m(σ)/(1 − σm(σ)), an easy consequence of (4.1).
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Furthermore, one could easily show that the left-hand side of the above equation
is ∫ b

a

dFy(x)

(x + σ1)(x + σ2)
−

∫ b

a

dFy(x)

x + σ1

∫ b

a

dFy(x)

x + σ2
.

By using the unique extension of analytic functions, we have

W(z1, z2) =
∫ b

a

dFy(x)

(x − z1)(x − z2)
−

∫ b

a

dFy(x)

x − z1

∫ b

a

dFy(x)

x − z2
.

Substituting this into Corollary 1, we complete the proof of Corollary 2.

APPENDIX

LEMMA 3 [Theorem 35.12 of Billingsley (1995)]. Suppose that, for each n,
Xn,1,Xn,2, . . . ,Xn,rn is a real martingale difference sequence with respect to the
increasing σ -field {Fn,j } having second moments. If, as n → ∞,

(i)
rn∑

j=1

E(X2
n,j |Fn,j−1)

i.p.−→ σ 2 and

(ii)
rn∑

j=1

E
(
X2

n,j I(|Yn,j |≥ε)

) −→ 0,

where σ 2 is a positive constant and ε is an arbitrary positive number, then

rn∑
j=1

Xn,j
D−→ N(0, σ 2).

In what follows, sj , A−1 and A−1
j are defined in Section 3 and Mj and M refer

to any pair of matrices which are independent of sj .

LEMMA 4. Under the conditions of Theorem 1, for any matrix Mj bounded
in norm and independent of sj , we have

max
j

∣∣∣∣1

n
(s∗

jMj sj − trMj)

∣∣∣∣ a.s.−→ 0.(A.1)

The proof of this lemma could be easily obtained by applying the truncation
technique and invoking Lemma 2.7 of Bai and Silverstein (1998).

LEMMA 5. Under the conditions of Theorem 1, for any xn,yn ∈ C
p
1 ,

sup
j

|x∗
nA−1Myn − x∗

nA−1
j Myn| a.s.−→ 0.(A.2)
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Similarly, for any matrix M with bounded norm and independent of si , we have

max
i,j

|Ej x∗
nA−1

j (σ )Myn − Ej x∗
nA−1

ij (σ )Myn| a.s.−→ 0.(A.3)

PROOF. Using

A−1(σ ) = A−1
j (σ ) − A−1

j (σ )sj s∗
j A−1

j (σ )βj (σ ),(A.4)

we obtain

sup
j

|x∗
nA−1Myn − x∗

nA−1
j Myn| ≤ sup

j

1

n
|x∗

nA−1
j sj s∗

j A−1
j Myn|

= sup
j

1

n
|x∗

nA−1
j A−1

j Myn| + o(1),

which, in turn, implies (A.2). Here, we adopt (A.1) in the last step above. The
conclusion (A.3) can be proved in a similar way. �

LEMMA 6. Under the conditions of Theorem 1, for any xn,yn ∈ C
p
1 , we have

x∗
nA−1(σ )yn − x∗

nynm(σ)
a.s.−→ 0(A.5)

and

max
j

|Ej x∗
nA−1

j (σ )yn − x∗
nynm(σ)| a.s.−→ 0.(A.6)

PROOF. By using the formula A = ∑n
j=1 sj s∗

j + σ I and multiplying x∗
n from

the left- and multiplying A−1yn from the right-hand side of the equation, we obtain

x∗
nA−1(σ )yn = σ−1x∗

nyn − 1

nσ

n∑
j=1

x∗
nsj s∗

j A−1
j (σ )βj (σ )yn.

As βj (σ )
a.s.−→ b = 1

1+ym(σ)
uniformly in j , we apply Lemmas 4 and 5 and obtain

x∗
nA−1(σ )yn = σ−1x∗

nyn − σ−1x∗
nA−1(σ )ynb(σ ) + o(1).

This, in turn, implies that

x∗
nA−1(σ )yn = x∗

nyn + o(1)

σ + b(σ )
.

The conclusion in (A.5) could then follow from the fact that

m(σ) = 1

σ + b(σ )
,

whereas the conclusion in (A.6) can be proved by employing the same method.
�
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LEMMA 7. Under the conditions of Theorem 1, for any xn,yn ∈ C
p
1 , we have

√
n
(
x∗
nE(Sn + σI)−1yn − x∗

nynmn(σ )
) −→ 0.

PROOF. When yn = xn, Lemma 7 in our paper reduces to the conclusion (5.5)
→ 0 as shown in Bai, Miao and Pan (2007). To complete the proof, one could
simply keep x∗

n unchanged and substitute xn by yn = (x∗
nyn)xn + zn in the proof of

the above conclusion. Thereafter, the proof of this lemma follows. �
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