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OPTIMAL MULTIPLE STOPPING TIME PROBLEM
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We study the optimal multiple stopping time problem defined for each
stopping time S by v(S) = ess supτ1,...,τd≥S E[ψ(τ1, . . . , τd )|FS ].

The key point is the construction of a new reward φ such that the value
function v(S) also satisfies v(S) = ess supθ≥S E[φ(θ)|FS ]. This new reward
φ is not a right-continuous adapted process as in the classical case, but a fam-
ily of random variables. For such a reward, we prove a new existence result
for optimal stopping times under weaker assumptions than in the classical
case. This result is used to prove the existence of optimal multiple stopping
times for v(S) by a constructive method. Moreover, under strong regularity
assumptions on ψ , we show that the new reward φ can be aggregated by a
progressive process. This leads to new applications, particularly in finance
(applications to American options with multiple exercise times).

Introduction. The present work on the optimal multiple stopping time prob-
lem, following the optimal single stopping time problem, involves proving the ex-
istence of the maximal reward, finding necessary or sufficient conditions for the
existence of optimal stopping times and providing a method to compute these op-
timal stopping times.

The results are well known in the case of the optimal single stopping time prob-
lem. Consider a reward given by a right-continuous left-limited (RCLL) positive
adapted process (φt )0≤t≤T on F = (�, F , (Ft )0≤t≤T ,P ), F satisfying the usual
conditions, and look for the maximal reward

v(0) = sup{E[φτ ], τ ∈ T0},
where T ∈ ]0,∞[ is the fixed time horizon and T0 is the set of stopping times
θ smaller than T . From now on, the process (φt )0≤t≤T will be denoted by
(φt ). In order to compute v(0), we introduce for each S ∈ T0 the value func-
tion v(S) = ess sup{E[φτ |FS], τ ∈ TS}, where TS is the set of stopping times in
T0 greater than S. The value function is given by a family of random variables
{v(S), S ∈ T0}. By using the right continuity of the reward (φt ), it can be shown
that there exists an adapted process (vt ) which aggregates the family of random
variables {v(S), S ∈ T0} that is such that vS = v(S) a.s. for each S ∈ T0. This
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process is the Snell envelope of (φt ), that is, the smallest supermartingale process
that dominates φ. Moreover, when the reward (φt ) is continuous, the stopping time
defined trajectorially by

θ(S) = inf{t ≥ S, vt = φt }
is optimal. For details, see El Karoui (1981), Karatzas and Shreve (1998) or Peskir
and Shiryaev (2006).

In the present work, we show that computing the value function for the optimal
multiple stopping time problem

v(S) = ess sup{E[ψ(τ1, . . . , τd)|FS], τ1, . . . , τd ∈ TS},
reduces to computing the value function for an optimal single stopping time prob-
lem

u(S) = ess sup{E[φ(θ)|FS], θ ∈ TS},
where the new reward φ is no longer an RCLL process, but a family {φ(θ), θ ∈ T0}
of positive random variables which satisfies some compatibility properties. For this
new optimal single stopping time problem with a reward {φ(θ), θ ∈ T0}, we show
that the minimal optimal stopping time for the value function u(S) is no longer
given by a hitting time of processes, but by the essential infimum

θ∗(S) := ess inf{θ ∈ TS,u(θ) = φ(θ) a.s.}.
This method also has the advantage that it no longer requires any aggregation
results that need stronger hypotheses and whose proofs are rather technical.

By using the reduction property v(S) = u(S) a.s., we give a method to construct
by induction optimal stopping times (τ ∗

1 , . . . , τ ∗
d ) for v(S), which are also defined

as essential infima, in terms of nested optimal single stopping time problems.
Some examples of optimal multiple stopping time problems have been studied

in different mathematical fields. In finance, this type of problem appears in, for
instance, the study of swing options [e.g., Carmona and Touzi (2008), Carmona
and Dayanik (2008)] in the case of ordered stopping times. In the nonordered case,
some optimal multiple stopping time problems appear as useful mathematical tools
to establish some large deviations estimations [see Kobylanski and Rouy (1998)].
Further applications can be imagined in, for example, finance and insurance [see
Kobylanski, Quenez and Rouy-Mironescu (2010)]. In a work in preparation [see
Kobylanski and Quenez (2010)], the Markovian case will be studied in detail and
some applications will be presented.

The paper is organized as follows. In Section 1 we revisit the optimal single
stopping time problem for admissible families. We prove the existence of opti-
mal stopping times when the family φ is right- and left-continuous in expectation
along stopping times. We also characterize the minimal optimal stopping times. In
Section 2 we solve the optimal double stopping time problem. Under quite weak
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assumptions, we show the existence of a pair of optimal stopping times and give a
construction of those optimal stopping times. In Section 3 we generalize the results
obtained in Section 2 to the optimal d-stopping-times problem. Also, we study the
simpler case of a symmetric reward. In this case, the problem clearly reduces to
ordered stopping times, and our general characterization of the optimal multiple
stopping time problem in terms of nested optimal single stopping time problems
straightforwardly reduces to a sequence of optimal single stopping time problems
defined by backward induction. We apply these results to swing options and, in this
particular case, our results correspond to those of Carmona and Dayanik (2008).
In the last section, we prove some aggregation results and characterize the optimal
stopping times in terms of hitting times of processes.

Let F = (�, F , (Ft )0≤t≤T ,P ) be a probability space, where T ∈]0,∞[ is the
fixed time horizon and (Ft )0≤t≤T is a filtration satisfying the usual conditions of
right continuity and augmentation by the null sets of F = FT . We suppose that
F0 contains only sets of probability 0 or 1. We denote by T0 the collection of
stopping times of F with values in [0, T ]. More generally, for any stopping time S,
we denote by TS the class of stopping times θ ∈ T0 with S ≤ θ a.s.

We use the following notation: for real-valued random variables X and Xn,
n ∈ N, the notation “Xn ↑ X” means “the sequence (Xn) is nondecreasing and
converges to X a.s.”

1. The optimal single stopping time problem revisited. We first recall some
classical results on the optimal single stopping time problem.

1.1. Classical results. The following classical results, namely the super-
martingale property of the value function, the optimality criterium and the right
continuity in expectation of the value function are well known [see El Karoui
(1981) or Karatzas and Shreve (1998) or Peskir and Shiryaev (2006)]. They are
very important tools in optimal stopping theory and will often be used in this pa-
per in the (unusual) case of a reward given by an admissible family of random
variables defined as follows.

DEFINITION 1.1. A family of random variables {φ(θ), θ ∈ T0} is said to be
admissible if it satisfies the following conditions:

1. for all θ ∈ T0, φ(θ) is an Fθ -measurable R
+

-valued random variable;
2. for all θ, θ ′ ∈ T0, φ(θ) = φ(θ ′) a.s. on {θ = θ ′}.

REMARK 1.1. Let (φt ) be a positive progressive process. The family defined
by φ(θ) = φθ is admissible.

Note also that the definition of admissible families corresponds to the notion of
T0-systems introduced by El Karoui (1981).
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For the convenience of the reader, we recall the definition of the essential supre-
mum and its main properties in Appendix A.

Suppose the reward is given by an admissible family {φ(θ), θ ∈ T0}. The value
function at time S, where S ∈ T0, is given by

v(S) = ess sup
θ∈TS

E[φ(θ)|FS].(1.1)

PROPOSITION 1.1 (Admissibility of the value function). The value function
that is the family of random variables {v(S), S ∈ T0} defined by (1.1) is an admis-
sible family.

PROOF. Property 1 of admissibility for {v(S), S ∈ T0} follows from the exis-
tence of the essential supremum (see Theorem A.1 in Appendix A).

Take S,S′ ∈ T0 and let A = {S = S′}. For each θ ∈ TS , put θA = θ1A +T 1Ac . As
A ∈ FS ∩ FS′ , we have a.s. on A, E[φ(θ)|FS] = E[φ(θA)|FS] = E[φ(θA)|FS′ ] ≤
v(S′), hence taking the essential supremum over θ ∈ TS , we have v(S) ≤ v(S′)
a.s., and by symmetry of S and S′, we have shown property 2 of admissibility. �

PROPOSITION 1.2. There exists a sequence of stopping times (θn)n∈N with θn

in TS such that

E[φ(θn)|FS] ↑ v(S) a.s.

PROOF. For each S ∈ T0, one can show that the set {E[φ(θ)|FS], θ ∈
TS} is closed under pairwise maximization. Indeed, let θ, θ ′ ∈ T0 and A =
{E[φ(θ ′)|FS] ≤ E[φ(θ)|FS]}. One has A ∈ FS . Let τ = θ1A + θ ′1Ac , a stopping
time. It is easy to check that E[φ(τ)|FS] = E[φ(θ)|FS]∨ E[φ(θ ′)|FS]. The result
follows by a classical result (see Theorem A.1 in Appendix A). �

Recall that for each fixed S ∈ T0, an admissible family {h(θ), θ ∈ TS} is said to
be a supermartingale system (resp., a martingale system) if, for any θ, θ ′ ∈ T0 such
that θ ≥ θ ′ a.s.,

E[h(θ)|Fθ ′ ] ≤ h(θ ′) a.s.
(
resp., E[h(θ)|Fθ ′ ] = h(θ ′) a.s.

)
.

PROPOSITION 1.3.

• The value function {v(S), S ∈ T0} is a supermartingale system.
• Furthermore, it is characterized as the Snell envelope system associated with

{φ(S), S ∈ T0}, that is, the smallest supermartingale system which is greater
(a.s.) than {φ(S), S ∈ T0}.
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PROOF. Let us prove the first part. Fix S ≥ S′ a.s. By Proposition 1.2, there
exists an optimizing sequence (θn) for v(S). By the monotone convergence the-
orem, E[v(S)|FS′ ] = limn→∞ E[φ(θn)|FS′ ] a.s. Now, for each n, since θn ≥ S′
a.s., we have E[φ(θn)|FS′ ] ≤ v(S′) a.s. Hence, E[v(S)|FS′ ] ≤ v(S′) a.s., which
gives the supermartingale property of the value function.

Let us prove the second part. Let {v′(S), S ∈ T0} be a supermartingale system
such that for each θ ∈ T0, v′(θ) ≥ φ(θ) a.s. Fix S ∈ T0. By the properties of v′,
for all θ ∈ TS , v′(S) ≥ E[v′(θ)|FS] ≥ E[φ(θ)|FS] a.s. Taking the supremum over
θ ∈ TS , we have v′(S) ≥ v(S) a.s. �

Now, recall the following Bellman optimality criterium [see, e.g., El Karoui
(1981)].

PROPOSITION 1.4 (Optimality criterium). Fix S ∈ T0 and let θ∗ ∈ TS be such
that E[φ(θ∗)] < ∞. The three following assertions are equivalent:

1. θ∗ is S-optimal for v(S), that is,

v(S) = E[φ(θ∗)|FS] a.s.;(1.2)

2. v(θ∗) = φ(θ∗) a.s. and E[v(S)] = E[v(θ∗)];
3. E[v(S)] = E[φ(θ∗)].

REMARK 1.2. Note that since the value function is a supermartingale system,
equality E[v(S)] = E[v(θ∗)] is equivalent to the fact that the family {v(θ), θ ∈
TS,θ∗} is a martingale system.

PROOF OF PROPOSITION 1.4. Let us show that assertion 1 implies assertion 2.
Suppose assertion 1 is satisfied. Since the value function v is a supermartingale
system greater that φ, we clearly have

v(S) ≥ E[v(θ∗)|FS] ≥ E[φ(θ∗)|FS] a.s.

Since equality (1.2) holds, this implies that the previous inequalities are actually
equalities.

In particular, E[v(θ∗)|FS] = E[φ(θ∗)|FS] a.s., but as inequality v(θ∗) ≥ φ(θ∗)
holds a.s., and as E[φ(θ∗)] < ∞, we have v(θ∗) = φ(θ∗) a.s.

Moreover, v(S) = E[v(θ∗)|FS] a.s., which gives E[v(S)] = E[v(θ∗)]. Hence,
assertion 2 is satisfied.

Clearly, assertion 2 implies assertion 3. It remains to show that 3 implies 1.
Suppose that 3 is satisfied. Since v(S) ≥ E[φ(θ∗)|FS] a.s., this gives v(S) =

E[φ(θ∗)|FS] a.s. Hence, 1 is satisfied. �

REMARK 1.3. It is clear that

E[v(S)] = sup
θ∈TS

E[φ(θ)].(1.3)
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By assertion 3 of Proposition 1.4, a stopping time θ∗ ∈ TS such that E[φ(θ∗)] < ∞
is S-optimal for v(S) if and only if it is optimal for the optimal stopping time
problem (1.3), that is,

sup
θ∈TS

E[φ(θ)] = E[φ(θ∗)].

We now give a regularity result on v [see Lemma 2.13 in El Karoui (1981)]. Let
us first introduce the following definition.

DEFINITION 1.2. An admissible family {φ(θ), θ ∈ T0} is said to be right-
(resp., left-) continuous along stopping times in expectation [RCE (resp., LCE)]
if for any θ ∈ T0 and any sequence (θn)n∈N of stopping times such that θn ↓ θ

a.s. (resp., θn ↑ θ a.s.), one has E[φ(θ)] = limn→∞ E[φ(θn)].

REMARK 1.4. If (φt ) is a continuous adapted process such that
E[supt∈[0,T ] φt ] < ∞, then the family defined by φ(θ) = φθ is clearly RCE and
LCE. Also, if (φt ) is an RCLL adapted process such that its jumps are totally
inaccessible, then the family defined by φ(θ) = φθ is clearly RCE and even LCE.

PROPOSITION 1.5. Let {φ(θ), θ ∈ T0} be an admissible family which is RCE.
The family {v(S), S ∈ T0} is then RCE.

PROOF. Since {v(S), S ∈ T0} is a supermartingale system, the function S →
E[v(S)] is a nonincreasing function of stopping times. Suppose it is not RCE at
S ∈ T0. If E[v(S)] < ∞, then there exists a constant α > 0 and a sequence of
stopping times (Sn)n∈N such that Sn ↓ S a.s. and such that

lim
n→∞ ↑ E[v(Sn)] + α ≤ E[v(S)].(1.4)

Now, recall that E[v(S)] = supθ∈TS
E[φ(θ)] [see (1.3)]. Hence, there exists θ ′ ∈

TS such that

sup
n∈N

sup
θ∈TSn

E[φ(θ)] + α

2
≤ E[φ(θ ′)].

Hence, for all n ∈ N, E[φ(θ ′ ∨Sn)]+ α
2 ≤ E[φ(θ ′)]. As θ ′ ∨Sn ↓ θ ′ a.s., we obtain,

by taking the limit when n → ∞ and using the RCE property of φ, that

E[φ(θ ′)] + α

2
≤ E[φ(θ ′)],

which gives the expected contradiction in the case E[v(S)] < ∞.
Otherwise, instead of (1.4), we have limn→∞ ↑ E[v(Sn)] ≤ C for some constant

C > 0, and similar arguments as in the finite case lead to a contradiction as well.
�
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1.2. New results. We will now give a new result which generalizes the clas-
sical existence result of an optimal stopping time stated in the case of a reward
process to the case of a reward family of random variables.

THEOREM 1.1 (Existence of optimal stopping times). Let {φ(θ), θ ∈ T0} be
an admissible family that satisfies the integrability condition

v(0) = sup
θ∈T0

E[φ(θ)] < ∞
and which is RCE and LCE along stopping times. Then, for each S ∈ T0, there
exists an optimal stopping time for v(S). Moreover, the random variable defined
by

θ∗(S) := ess inf{θ ∈ TS, v(θ) = φ(θ) a.s.}(1.5)

is the minimal optimal stopping time for v(S).

Let us emphasize that in this theorem, the optimal stopping time θ∗(S) is not
defined trajectorially, but as an essential infimum of random variables. In the clas-
sical case, that is, when the reward is given by an adapted RCLL process, recall that
the minimal optimal stopping time is given by the random variable θ(S) defined
trajectorially by

θ(S) = inf{t ≥ S, vt = φt }.
The definition of θ∗(S) as an essential infimum allows the assumption on the

regularity of the reward to be relaxed. More precisely, whereas in the previous
works (mentioned in the Introduction), the reward was given by an RCLL and
LCE process, in our setting, the reward is given by an RCE and LCE family of
random variables. The idea of the proof is classical: we use an approximation
method introduced by Maingueneau (1978), but our setting allows us to simplify
and shorten the proof.

PROOF OF THEOREM 1.1. The proof will be divided into two parts.
Part I: In this part, we will prove the existence of an optimal stopping time.
Fix S ∈ T0. We begin by constructing a family of stopping times [see Maingue-

neau (1978) or El Karoui (1981)]. For λ ∈ ]0,1[, define the FS-measurable random
variable θλ(S) by

θλ(S) := ess inf{θ ∈ TS,λv(θ) ≤ φ(θ) a.s.}.(1.6)

The following lemma holds.

LEMMA 1.1. The stopping time θλ(S) is a (1 − λ)-optimal stopping time for

E[v(S)] = sup
θ∈TS

E[φ(θ)],(1.7)

that is,

λE[v(S)] ≤ E[φ(θλ(S))].(1.8)
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Suppose now that we have proven Lemma 1.1.
Since λ → θλ(S) is nondecreasing, for S ∈ T0, the stopping time

θ̂ (S) := lim
λ↑1

↑ θλ(S)(1.9)

is well defined. Let us show that θ̂ (S) is optimal for v(S).
By letting λ ↑ 1 in inequality (1.8), and since φ is LCE, we easily derive that

E[v(S)] = E[φ(θ̂(S))]. Consequently, by the optimality criterium 3 of Proposi-
tion 1.4, θ̂ (S) is S-optimal for v(S). This completes part I.

Part II: Let us now prove that θ∗(S) = θ̂ (S) a.s., where θ∗(S) is defined by
(1.5), and that it is the minimal optimal stopping time for v(S).

For each S ∈ T0, the set TS = {θ ∈ TS, v(θ) = φ(θ) a.s.} is not empty (since T

belongs to TS ) and is closed under pairwise minimization. Hence, there exists a
sequence (θn)n∈N of stopping times in TS such that θn ↓ θ∗(S) a.s. Consequently,
θ∗(S) is a stopping time.

Let θ be an optimal stopping time for v(S). By the optimality criterium (Propo-
sition 1.4), and since, by assumption, E[φ(θ)] < ∞, we have v(θ) = φ(θ) a.s. and
hence

θ∗(S) ≤ ess inf{θ ∈ T0, θ optimal for v(S)} a.s.

Now, for each λ < 1, the stopping time θλ(S) defined by (1.6) clearly satisfies
θλ(S) ≤ θ∗(S) a.s. Passing to the limit when λ ↑ 1, we obtain θ̂ (S) ≤ θ∗(S). As
θ̂ (S) is optimal for v(S), this implies that θ̂ (S) ≥ ess inf{θ ∈ T0, θ optimal for
v(S)} a.s. Hence,

θ∗(S) = θ̂ (S) = ess inf{θ ∈ T0, θ optimal for v(S)} a.s.,

which gives the desired result. The proof of Theorem 1.1 is thus complete. �

It now remains to prove Lemma 1.1.

PROOF OF LEMMA 1.1. We have to prove inequality (1.8). This will be done
by means of the following steps.

Step 1: Fix λ ∈]0,1[. It is easy to check that the set T
λ
S = {θ ∈ TS,λv(θ) ≤

φ(θ) a.s.} is nonempty (since T ∈ T
λ
S) and closed by pairwise minimization.

By Theorem A.1 in the Appendix, there exists a sequence (θn) in TS such that
θn ↓ θλ(S) a.s. Therefore, θλ(S) is a stopping time and θλ(S) ≥ S a.s. Moreover,
we have λv(θn) ≤ φ(θn) a.s. for all n. Taking expectation and using the RCE
properties of v and φ, we obtain

λE[v(θλ(S)]) ≤ E[φ(θλ(S))].(1.10)

Step 2: Let us show that for each λ ∈]0,1[ and each S ∈ T0,

v(S) = E[v(θλ(S))|FS] a.s.(1.11)
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For each S ∈ T0, let us define the random variable J (S) = E[v(θλ(S))|FS]. Step
2 amounts to showing that J (S) = v(S) a.s.

Since {v(S), S ∈ T0} is a supermartingale system and since θλ(S) ≥ S a.s., we
have that

J (S) = E[v(θλ(S))|FS] ≤ v(S) a.s.

It remains to show the reverse inequality.
Step 2a: Let us show that the family {J (S), S ∈ T0} is a supermartingale system.
Let S,S′ ∈ T0 be such that S′ ≥ S a.s. As θλ(S′) ≥ θλ(S) ≥ S a.s., we have

E[J (S′)|FS] = E[v(θλ(S′))|FS] = E
[
E

[
v(θλ(S′))|Fθλ(S)

]|FS

]
a.s.

Now, since {v(S), S ∈ T0} is a supermartingale system, E[v(θλ(S′))|Fθλ(S)] ≤
v(θλ(S)) a.s. Consequently,

E[J (S′)|FS] ≤ E[v(θλ(S))|FS] = J (S) a.s.

Step 2b: Let us show that for each S ∈ T0 and each λ ∈]0,1[,
λv(S) + (1 − λ)J (S) ≥ φ(S) a.s.

Fix S ∈ T0 and λ ∈]0,1[.
On {λv(S) ≤ φ(S)}, we have θλ(S) = S a.s. Hence, on {λv(S) ≤ φ(S)}, J (S) =

E[v(θλ(S))|FS] = E[v(S)|FS] = v(S) and therefore

λv(S) + (1 − λ)J (S) = v(S) ≥ φ(S) a.s.

Furthermore, on {λv(S) > φ(S)}, as J (S) is nonnegative, we have

λv(S) + (1 − λ)J (S) ≥ λv(S) ≥ φ(S) a.s.,

and the proof of Step 2b is complete.
Now, the family {λv(S) + (1 − λ)J (S), S ∈ T0} is a supermartingale system by

convex combination of two supermartingale systems. Hence, as the value func-
tion {v(S), S ∈ T0} is characterized as the smallest supermartingale system which
dominates {φ(S), S ∈ T0}, we derive that for each S ∈ T0,

λv(S) + (1 − λ)J (S) ≥ v(S) a.s.

Now, by the integrability assumption made on φ, we have v(S) < ∞ a.s. Hence,
we have J (S) ≥ v(S) a.s. Consequently, for each S ∈ T0, J (S) = v(S) a.s., which
completes Step 2.

Finally, Step 1 [inequality (1.10)] and Step 2 [equality (1.11)] give

λE[v(S)] = λE[v(θλ(S))] ≤ E[φ(θλ(S))].
In other words, θλ(S) is a (1−λ)-optimal stopping time for (1.7), which completes
the proof of Lemma 1.1. �
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REMARK 1.5. Recall that in the previous works [see, e.g., Karatzas and
Shreve (1998), Proposition D.10 and Theorem D.12], the proof of the existence
of optimal stopping times requires the value function to be aggregated and thus the
use of some fine aggregation results such as Proposition 4.1. In our work, since
we only work with families of random variables, we do not need any aggregation
techniques, which simplifies and shortens the proof.

Under some regularity assumptions on the reward, we can show that the value
function family is left-continuous along stopping times in expectation. More pre-
cisely, we have the following.

PROPOSITION 1.6. Suppose that the admissible family {φ(θ), θ ∈ T0} is LCE
and RCE, and satisfies the integrability condition v(0) = supθ∈T0

E[φ(θ)] < ∞.
The value function {v(S), S ∈ T0} defined by (1.1) is then LCE.

PROOF. Let S ∈ T0 and let (Sn) be a sequence of stopping times such that
Sn ↑ S a.s. Note that by the supermartingale property of v, we have

E[v(Sn)] ≥ E[v(S)].(1.12)

Now, by Theorem 1.1, the stopping time θ∗(Sn) defined by (1.5) is optimal for
v(Sn). Moreover, it is clear that (θ∗(Sn))n is a nondecreasing sequence of stopping
times dominated by θ∗(S).

Let us define θ = limn→∞ ↑ θ∗(Sn). Note that θ is a stopping time. Also, as for
each n, θ∗(Sn) ≥ Sn a.s., it follows that θ ≥ S a.s. Therefore, since φ is LCE,

E[v(S)] ≥ E[φ(θ)] = lim
n→∞E[φ(θ∗(Sn))] = lim

n→∞E[v(Sn)].
This, together with (1.12), gives E[v(S)] = limn→∞ E[v(Sn)]. �

REMARK 1.6. In this proof, we have also proven that θ is optimal for v(S).
Hence, by the optimality criterium, v(θ) = φ(θ) a.s., which implies that θ ≥ θ∗(S)

a.s. Moreover, since for each n, θ∗(Sn) ≤ θ∗(S) a.s., by letting n tend to ∞, we
clearly have that θ ≤ θ∗(S) a.s. Hence, θ = limn→∞ ↑ θ∗(Sn) = θ∗(S) a.s. Thus,
we have also shown that the map S → θ∗(S) is left-continuous along stopping
times.

2. The optimal double stopping time problem.

2.1. Definition and first properties of the value function. We now consider
the optimal double stopping time problem. We introduce the following defini-
tions.



MULTIPLE STOPPING 1375

DEFINITION 2.1. The family {ψ(θ,S), θ, S ∈ T0} is biadmissible if it satis-
fies:

1. for all θ, S ∈ T0, ψ(θ, S) is an Fθ∨S-measurable R
+

-valued r.v.;
2. for all θ, θ ′, S, S′ ∈ T0,ψ(θ, S) = ψ(θ ′, S′) a.s. on {θ = θ ′} ∩ {S = S′}.

REMARK 2.1. Let 	 be a biprocess, that is, a function

	 : [0, T ]2 × � → R
+; (t, s,ω) → 	t,s(ω)

such that for almost all ω, the map (t, s) → 	t,s(ω) is right-continuous (i.e., 	t,s

= lim(t ′,s′)→(t+,s+) 	t ′,s′), and for each (t, s) ∈ [0, T ]2, 	t,s is Ft∨s-measurable.
In this case, the family {ψ(θ,S), θ, S ∈ T0} defined by

ψ(θ,S)(ω) := 	θ(ω),S(ω)(ω)

is clearly biadmissible.

For a biadmissible family {ψ(θ,S), θ, S ∈ T0}, let us consider the value func-
tion associated with the reward family {ψ(θ,S), θ, S ∈ T0}:

v(S) = ess sup
τ1,τ2∈TS

E[ψ(τ1, τ2)|FS].(2.1)

As in the case of the single stopping time problem, we have the following prop-
erties.

PROPOSITION 2.1. Let {ψ(θ,S), θ, S ∈ T0} be a biadmissible family of ran-
dom variables. The following properties then hold:

(1) the family {v(S), S ∈ T0} is an admissible family of random variables;
(2) for each S ∈ T0, there exists a sequence of pairs of stopping times ((τn

1 ,

τ n
2 ))n∈N in TS × TS such that {E[ψ(τn

1 , τ n
2 )|FS]}n∈N is nondecreasing and

a.s.

E[ψ(τn
1 , τ n

2 )|FS] ↑ v(S);
(3) the family of random variables {v(S), S ∈ T0} is a supermartingale system,

that is, it satisfies the dynamic programming principle.

PROOF. (1) As in the case of single stopping time, property 1 of admissibility
for {v(S), S ∈ T0} follows from the existence of the essential supremum.

Take S,S′ ∈ T0 and put A = {S = S′}, and for each τ1, τ2 ∈ TS, put τA
1 =

τ11A + T 1Ac and τA
2 = τ21A + T 1Ac . As A ∈ FS ∩ FS′ , one has, a.s. on A,

E[ψ(τ1, τ2)|FS] = E[ψ(τA
1 , τA

2 )|FS] = E[ψ(τA
1 , τA

2 )|FS′ ] ≤ v(S′). Hence, tak-
ing the essential supremum over τ1, τ2 ∈ TS , we have v(S) ≤ v(S′) a.s., and,
by symmetry, we have shown property 2 of admissibility. Hence, the family
{v(S), S ∈ T0} is an admissible family of random variables.
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The proofs of (2) and (3) can be easily adapted from the proofs of Proposi-
tion 1.2 and Proposition 1.3. �

Following the case of single stopping time, we now give some regularity results
on the value function.

DEFINITION 2.2. A biadmissible family {ψ(θ,S), θ, S ∈ T0} is said to be
right-continuous along stopping times in expectation (RCE) if, for any θ, S ∈ T0
and any sequences (θn)n∈N ∈ T0 and (Sn)n∈N ∈ T0 such that θn ↓ θ and Sn ↓ S

a.s., one has E[ψ(θ,S)] = limn→∞ E[ψ(θn, Sn)].

PROPOSITION 2.2. Suppose that the biadmissible family {ψ(θ,S), θ, S ∈ T0}
is RCE. The family {v(S), S ∈ T0} defined by (2.1) is then RCE.

PROOF. The proof follows the proof of Proposition 1.5. �

2.2. Reduction to an optimal single stopping time problem. In this section, we
will show that the optimal double stopping time problem (2.1) can be reduced to
an optimal single stopping time problem associated with a new reward family.

More precisely, for each stopping time θ ∈ TS let us introduce the two Fθ -
measurable random variables

u1(θ) = ess sup
τ1∈Tθ

E[ψ(τ1, θ)|Fθ ], u2(θ) = ess sup
τ2∈Tθ

E[ψ(θ, τ2)|Fθ ].(2.2)

Note that since {ψ(θ,S), θ, S ∈ T0} is biadmissible, for each fixed θ ∈ T0, the fam-
ilies {ψ(τ1, θ), τ1 ∈ T0} and {ψ(θ, τ2), τ2 ∈ T0} are admissible. Hence, by Propo-
sition 1.1 the families {u1(θ), θ ∈ TS} and {u2(θ), θ ∈ TS} are admissible. Put

φ(θ) = max[u1(θ), u2(θ)].(2.3)

The family {φ(θ), θ ∈ TS}, which is called the new reward family, is also clearly
admissible. Consider the value function associated with the new reward

u(S) = ess sup
θ∈TS

E[φ(θ)|FS] a.s.(2.4)

THEOREM 2.1 (Reduction). Suppose that {ψ(θ,S), θ, S ∈ T0} is a biadmis-
sible family. For each stopping time S, consider v(S) defined by (2.1) and u(S)

defined by (2.2), (2.3), (2.4). Then,

v(S) = u(S) a.s.

PROOF. Let S be a stopping time.
Step 1: First, let us show that v(S) ≤ u(S) a.s.
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Let τ1, τ2 ∈ TS . Put A = {τ1 ≤ τ2}. As A is in Fτ1 ∩ Fτ2 , we have

E[ψ(τ1, τ2)|FS] = E[1AE[ψ(τ1, τ2)|Fτ1]|FS] + E[1AcE[ψ(τ1, τ2)|Fτ2]|FS].
By noticing that on A we have E[ψ(τ1, τ2)|Fτ1] ≤ u2(τ1) ≤ φ(τ1 ∧ τ2) a.s. and,
similarly, on Ac we have E[ψ(τ1, τ2)|Fτ2] ≤ u1(τ2) ≤ φ(τ1 ∧ τ2) a.s., we get

E[ψ(τ1, τ2)|FS] ≤ E[φ(τ1 ∧ τ2)|FS] ≤ u(S) a.s.

By taking the supremum over τ1 and τ2 in TS, we complete Step 1.
Step 2: Let us now show that v(S) ≥ u(S) a.s.
We clearly have v(S) ≥ ess supτ2∈TS

E[ψ(S, τ2)|FS] = u2(S) a.s. By similar
arguments, v(S) ≥ u1(S) a.s. and, consequently,

v(S) ≥ max[u1(S), u2(S)] = φ(S) a.s.

Thus, {v(S), S ∈ T0} is a supermartingale system which is greater than {φ(S), S ∈
T0}. Now, by Proposition 1.3, {u(S), S ∈ T0} is the smallest supermartingale sys-
tem which is greater than {φ(S), S ∈ T0}. Consequently, Step 2 follows, which
completes the proof. �

Note that the reduction to an optimal single stopping time problem associated
with a new reward will be the key property used to construct optimal multiple
stopping times and to establish an existence result for them (see Sections 2.3–2.5).

2.3. Properties of optimal stopping times. In this section, we are given a biad-
missible family {ψ(θ,S), θ, S ∈ T0} such that E[ess supθ,S∈T0

ψ(θ,S)] < ∞.

PROPOSITION 2.3 (A necessary condition of optimality). Let S be a stop-
ping time and consider the value function v(S) defined by (2.1) for all θ ∈ TS ,
u1(θ), u2(θ) defined by (2.2), φ(θ) defined by (2.3) and u(S) defined by (2.4).

Suppose that the pair (τ ∗
1 , τ ∗

2 ) is optimal for v(S) and put A = {τ ∗
1 ≤ τ ∗

2 }. Then:

(1) τ ∗
1 ∧ τ ∗

2 is optimal for u(S);
(2) τ ∗

2 is optimal for u2(τ
∗
1 ) a.s. on A;

(3) τ ∗
1 is optimal for u1(τ

∗
2 ) a.s. on Ac.

Moreover A = {τ ∗
1 ≤ τ ∗

2 } ⊂ B = {u1(τ
∗
1 ∧ τ ∗

2 ) ≤ u2(τ
∗
1 ∧ τ ∗

2 )}.
PROOF. Let S ∈ T0 and suppose that the pair of stopping times (τ ∗

1 , τ ∗
2 ) is

optimal for v(S). As u(S) = v(S) a.s., we obtain equality in Step 1 of the proof of
Theorem 2.1. More precisely,

v(S) = E[ψ(τ ∗
1 , τ ∗

2 )|FS] = E[φ(τ ∗
1 ∧ τ ∗

2 )|FS] = u(S) a.s.,

E[ψ(τ ∗
1 , τ ∗

2 )|Fτ∗
1
] = u2(τ

∗
1 ) = u2(τ

∗
1 ∧ τ ∗

2 ) = φ(τ ∗
1 ∧ τ ∗

2 ) a.s. on A,

E[ψ(τ ∗
1 , τ ∗

2 )|Fτ∗
2
] = u1(τ

∗
2 ) = u1(τ

∗
1 ∧ τ ∗

2 ) = φ(τ ∗
1 ∧ τ ∗

2 ) a.s. on Ac,

which easily leads to (1), (2), (3) and A ⊂ B . �
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REMARK 2.2. Note that, in general, for a pair (τ ∗
1 , τ ∗

2 ) of optimal stopping
times for v(S), the inclusion A ⊂ B is strict. Indeed if ψ ≡ 0, then v = u = u1 =
u2 = φ = 0, and all pairs of stopping times are optimal. Consider τ ∗

1 = T , τ ∗
2 = 0.

In this case, A = ∅ and B = �.

We now give a sufficient condition for optimality.

PROPOSITION 2.4 (Construction of optimal stopping times). Using the nota-
tion of Proposition 2.3, suppose that:

1. θ∗ is optimal for u(S);
2. θ∗

2 is optimal for u2(θ
∗);

3. θ∗
1 is optimal for u1(θ

∗)
and put B = {u1(θ

∗) ≤ u2(θ
∗)}. The pair of stopping times (τ ∗

1 , τ ∗
2 ) defined by

τ ∗
1 = θ∗1B + θ∗

1 1Bc, τ ∗
2 = θ∗

2 1B + θ∗1Bc(2.5)

is then optimal for v(S).
Moreover, τ ∗

1 ∧ τ ∗
2 = θ∗ and B = {τ ∗

1 ≤ τ ∗
2 }.

PROOF. Let θ∗ be an optimal stopping time for u(S), that is, u(S) =
E[φ(θ∗)|FS] a.s. Let θ∗

1 be an optimal stopping time for u1(θ
∗) (i.e., u1(θ

∗) =
E[ψ(θ∗

1 , θ∗)|Fθ∗] a.s.) and let θ∗
2 be an optimal stopping time for u2(θ

∗) (i.e.,
u2(θ

∗) = E[ψ(θ∗, θ∗
2 )|Fθ∗] a.s.). We introduce the set B = {u1(θ

∗) ≤ u2(θ
∗)}.

Note that B is in Fθ∗ .
Let τ ∗

1 , τ ∗
2 be the stopping times defined by (2.5). We clearly have the inclusion

B ⊂ {τ ∗
1 ≤ τ ∗

2 }.(2.6)

Since u(S) = E[φ(θ∗)|FS] and φ(θ∗) = max[u1(θ
∗), u2(θ

∗)], we have

u(S) = E[1Bu2(θ
∗) + 1Bcu1(θ

∗)|FS].
The optimality of θ∗

1 and θ∗
2 gives that a.s.

u(S) = E[1Bψ(θ∗, θ∗
2 ) + 1Bcψ(θ∗

1 , θ∗)|FS]
= E[1Bψ(τ ∗

1 , τ ∗
2 ) + 1Bcψ(τ ∗

1 , τ ∗
2 )|FS] = E[ψ(τ ∗

1 , τ ∗
2 )|FS].

As u(S) = v(S) a.s., the pair of stopping times (τ ∗
1 , τ ∗

2 ) is S-optimal for v(S). By
Proposition 2.3, we have {τ ∗

1 ≤ τ ∗
2 } ⊂ B . Hence, by (2.6), B = {τ ∗

1 ≤ τ ∗
2 }. �

REMARK 2.3. Proposition 2.4 still holds true if condition 2 holds true on the
set B and condition 3 holds true on the set Bc.

Note that by Remark 2.2, we do not have a characterization of optimal pairs
of stopping times. However, it is possible to give a characterization of minimal
optimal stopping times in a particular sense (see Appendix B).
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2.4. Regularity of the new reward. Before studying the problem of the exis-
tence of optimal stopping times, we have to state some regularity properties of the
new reward family {φ(θ), θ ∈ T0}.

Let us introduce the following definition.

DEFINITION 2.3. A biadmissible family {ψ(θ,S), θ, S ∈ T0} is said to be uni-
formly right- (resp., left-) continuous in expectation along stopping times [URCE
(resp., ULCE)] if v(0) = supθ,S∈T0

E[ψ(θ,S)] < ∞ and if, for each θ, S ∈ T0 and
each sequence of stopping times (Sn)n∈N such that Sn ↓ S a.s. (resp., Sn ↑ S a.s.),

lim
n→∞ sup

θ∈T0

|E[ψ(θ,S)] − E[ψ(θ,Sn)]| = 0 and

lim
n→∞ sup

θ∈T0

|E[ψ(S, θ)] − E[ψ(Sn, θ)]| = 0.

The following right continuity property holds true for the new reward family.

THEOREM 2.2. Suppose that the biadmissible family {ψ(θ,S), θ, S ∈ T0} is
URCE (resp., both URCE and ULCE). The family {φ(S), S ∈ T0} defined by (2.3)
is then RCE (resp., both RCE and LCE).

PROOF. As φ(θ) = max[u1(θ), u2(θ)], it is sufficient to show the RCE (resp.,
both RCE and LCE) properties for the family {u1(θ), θ ∈ T0}.

Let us introduce the following value function for each S, θ ∈ T0:

U1(θ, S) = ess sup
τ1∈Tθ

E[ψ(τ1, S)|Fθ ] a.s.(2.7)

As for all θ ∈ T0,

u1(θ) = U1(θ, θ) a.s.,

it is sufficient to prove that {U1(θ, S), θ, S ∈ T0} is RCE (resp., both RCE and
LCE), that is, if θ, S ∈ T0 and (θn)n, (Sn)n in T0 are such that θn ↓ θ and Sn ↓ S

a.s. (resp., θn ↑ θ and Sn ↑ S a.s.), then limn→∞ E[U1(θn, Sn)] = E[U1(θ, S)].
Now, we have

|E[U1(θ, S)] − E[U1(θn, Sn)]|
≤ |E[U1(θ, S)] − E[U1(θn, S)]|︸ ︷︷ ︸

(I)

+|E[U1(θn, S)] − E[U1(θn, Sn)]|︸ ︷︷ ︸
(II)

.

Let us show that (I) tends to 0 as n → ∞. For each S ∈ T0, {ψ(θ,S), θ ∈ T0}
is an admissible family of positive random variables which is RCE (resp., both
RCE and LCE). By Proposition 1.5 (resp., Proposition 1.6), the value function
{U1(θ, S), θ ∈ T0} is RCE (resp., both RCE and LCE). It follows that (I) converges
to 0 as n tends to ∞.
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Let us show that (II) tends to 0 as n → ∞. By definition of the value function
U1(·, ·) (2.7), it follows that

|E[U1(θn, S)] − E[U1(θn, Sn)]| ≤ sup
τ∈T0

|E[ψ(τ,S)] − E[ψ(τ,Sn)]|.

which converges to 0 since {ψ(θ,S), θ, S ∈ T0} is URCE (resp., both URCE and
ULCE). The proof of Theorem 2.2 is thus complete. �

COROLLARY 2.1. Suppose that v(0) = supθ,S∈T0
E[ψ(θ,S)] < ∞. Under the

same hypothesis as Theorem 2.2, the family {v(S), S ∈ T0} defined by (2.1) is RCE
(resp., both RCE and LCE).

PROOF. This follows from the fact that v(S) = u(S) a.s. (Theorem 2.1),
where {u(S), S ∈ T0} is the value function family associated with the new reward
{φ(S), S ∈ T0}. Applying Propositions 1.5 and 1.6, we obtain the required proper-
ties. �

We will now turn to the problem of the existence of optimal stopping times.

2.5. Existence of optimal stopping times. Let {ψ(θ,S), θ, S ∈ T0} be a biad-
missible family which is URCE and ULCE. Suppose that v(0) < ∞.

By Theorem 2.2, the admissible family of positive random variables {φ(θ), θ ∈
T0} defined by (2.3) is RCE and LCE. By Theorem 1.1, the stopping time

θ∗ = ess inf{θ ∈ TS,u(θ) = φ(θ) a.s.}
is optimal for u(S) [= v(S)], that is,

u(S) = ess sup
θ∈TS

E[φ(θ)|FS] = E[φ(θ∗)|FS] a.s.

Moreover, the families {ψ(θ, θ∗), θ ∈ Tθ∗} and {ψ(θ∗, θ), θ ∈ Tθ∗} are admissible
and are RCE and LCE. Consider the following optimal stopping time problems
defined for each S ∈ Tθ∗ :

v1(S) = ess sup
θ∈TS

E[ψ(θ, θ∗)|FS] and v2(S) = ess sup
θ∈TS

E[ψ(θ∗, θ)|FS].

By Theorem 1.1 the stopping times θ∗
1 and θ∗

2 defined by θ∗
1 = ess inf{θ ∈

Tθ∗, v1(θ) = ψ(θ, θ∗) a.s.} and θ∗
2 = ess inf{θ ∈ Tθ∗, v2(θ) = ψ(θ∗, θ) a.s.} are

optimal stopping times for v1(θ
∗) and v2(θ

∗), respectively. Note that v1(θ
∗) =

u1(θ
∗) and v2(θ

∗) = u2(θ
∗) a.s.

Let τ ∗
1 and τ ∗

2 be the stopping times defined by

τ ∗
1 = θ∗1B + θ∗

1 1Bc, τ ∗
2 = θ∗1Bc + θ∗

2 1B,(2.8)

where B = {u1(θ∗) ≤ u2(θ∗)}. By Proposition 2.4, the pair (τ ∗
1 , τ ∗

2 ) is optimal for
v(S). Consequently, we have proven the following theorem.
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THEOREM 2.3 (Existence of an optimal pair of stopping times). Let {ψ(θ,S),

θ, S ∈ T0} be a biadmissible family which is URCE and ULCE. Suppose that
v(0) < ∞.

The pair of stopping times (τ ∗
1 , τ ∗

2 ) defined by (2.8) is then optimal for v(S)

defined by (2.1).

REMARK 2.4. Note that since θ∗, θ∗
1 , θ∗

2 are minimal optimal, by results in
Appendix B, (τ ∗

1 , τ ∗
2 ) is minimal optimal for v(S) (in the sense defined in Appen-

dix B).

3. The optimal d-stopping time problem. Let d ∈ N, d ≥ 2. In this section,
we show that computing the value function for the optimal d-stopping time prob-
lem

v(S) = ess sup{E[ψ(τ1, . . . , τd)|FS], τ1, . . . , τd ∈ TS}
reduces to computing the value function for an optimal single stopping time prob-
lem, that is,

v(S) = ess sup{E[φ(θ)|FS], θ ∈ TS} a.s.,

for a new reward φ. This new reward is expressed in terms of optimal (d − 1)-
stopping time problems. Hence, by induction, the initial optimal d-stopping time
problem can be reduced to nested optimal single stopping time problems.

3.1. Definition and initial properties of the value function.

DEFINITION 3.1. We say that the family of random variables {ψ(θ), θ ∈ T d
0 }

is a d-admissible family if it satisfies the following conditions:

1. for all θ = (θ1, . . . , θd) ∈ T d
0 , ψ(θ) is an Fθ1∨···∨θd

measurable R
+

-valued ran-
dom variable;

2. for all θ, θ ′ ∈ T d
0 , ψ(θ) = ψ(θ ′) a.s. on {θ = θ ′}.

For each stopping time S ∈ T0, we consider the value function associated with
the reward {ψ(θ), θ ∈ T d

0 }:
v(S) = ess sup

τ∈T d
S

E[ψ(τ)|FS].(3.1)

As in the optimal double stopping time problem, the value function satisfies the
following properties.

PROPOSITION 3.1. Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family of random

variables. The following properties then hold:

1. {v(S), S ∈ T0} is an admissible family of random variables;
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2. For each S ∈ T0, there exists a sequence of stopping times (θn)n∈N in T d
S such

that the sequence {E[ψ(θn)|FS]}n∈N is nondecreasing and such that v(S) =
limn→∞ ↑ E[ψ(θn)|FS] a.s.;

3. The family of random variables {v(S), S ∈ T0} defined by (3.1) is a super-
martingale system.

The proof is an easy generalization of the optimal double stopping time problem
(Proposition 2.1).

Following the case with single or double stopping time, we now state the fol-
lowing result on the regularity of the value function.

PROPOSITION 3.2. Suppose that the d-admissible family {ψ(θ), θ ∈ T d
0 } is

RCE and that v(0) < ∞. The family {v(S), S ∈ T0} defined by (3.1) is then RCE.

The definition of RCE and the proof of this property are easily derived from the
single or double stopping time case (see Definition 2.2 and Proposition 2.2).

3.2. Reduction to an optimal single stopping time problem. The optimal d-
stopping time problem (3.1) can be expressed in terms of an optimal single stop-
ping time problem as follows.

For i = 1, . . . , d and θ ∈ T0, consider the random variable

u(i)(θ) = ess sup
τ1,...,τi−1,τi+1,...,τd∈T d−1

θ

E[ψ(τ1, . . . , τi−1,

(3.2)
θ, τi+1, . . . , τd)|Fθ ].

Note that this notation is adapted to the d-dimensional case.
In the two-dimensional case (d = 2), we have

u(1)(θ) = ess sup
τ2∈Tθ

E[ψ(θ, τ2)|Fθ ] = u2(θ) a.s.

and

u(2)(θ) = ess sup
τ1∈Tθ

E[ψ(τ1, θ)|Fθ ] = u1(θ) a.s.,

by definition of u1(θ) and u2(θ) [see (2.2)]. Thus, the notation in the two-
dimensional case was different, but more adapted to that simpler case.

For each θ ∈ T0, define the Fθ -measurable random variable called the new re-
ward,

φ(θ) = max
[
u(1)(θ), . . . , u(d)(θ)

]
,(3.3)

and for each stopping time S, define the FS -measurable variable

u(S) = ess sup
θ∈TS

E[φ(θ)|FS].(3.4)
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THEOREM 3.1 (Reduction). Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family of

random variables and for each stopping time S, consider v(S) defined by (3.1) and
u(S) defined by (3.2), (3.3) and (3.4). Then,

v(S) = u(S) a.s.

PROOF. Step 1: Let us prove that for all S ∈ T0, v(S) ≤ u(S) a.s.
Let S be a stopping time and τ = (τ1, . . . , τd) ∈ T d

S . There exists (Ai)i=1,...,d

with � = ⋃
i Ai , where Ai ∩ Aj = for i �= j , τ1 ∧ · · · ∧ τd = τi a.s. on Ai and

Ai are in Fτ1∧···∧τd
for i = 1, . . . , d (for d = 2, one can take A1 = {τ1 ≤ τ2} and

A2 = Ac
1). We have

E[ψ(τ)|FS] =
d∑

i=1

E[1Ai
E[ψ(τ)|Fτi

]|FS].

By noticing that on Ai one has a.s. E[ψ(τ)|Fτi
] ≤ u(i)(τi) ≤ φ(τi) = φ(τ1 ∧ · · · ∧

τd), we get E[ψ(τ)|FS] ≤ E[φ(τ1 ∧ · · · ∧ τd)|FS] ≤ u(S) a.s. By taking the
supremum over τ = (τ1, . . . , τd), we complete Step 1.

Step 2: Let us show that for all S ∈ T0, v(S) ≥ u(S) a.s.
This follows from the fact that {v(S), S ∈ T0} is a supermartingale system

greater than {φ(S), S ∈ T0} and that {u(S), S ∈ T0} is the smallest supermartin-
gale system of this class. �

Note that the new reward is expressed in terms of optimal (d − 1)-stopping
time problems. Hence, by induction, the initial optimal d-stopping time problem
can be reduced to nested optimal single stopping time problems. In the case of a
symmetric reward, the problem reduces to ordered stopping times and the nested
optimal single stopping time problems simply reduce to a sequence of optimal
single stopping time problems defined by backward induction (see Section 3.6 and
the application to swing options).

3.3. Properties of optimal stopping times in the d-stopping time problem. Let
{ψ(θ), θ ∈ T d

0 } be a d-admissible family. Let us introduce the following notation:
for i = 1, . . . , d , θ ∈ T0 and τ1, . . . , τd−1 in T0, consider the random variable

ψ(i)(τ1, . . . , τd−1, θ) = ψ(τ1, . . . , τi−1, θ, τi, . . . , τd−1).(3.5)

Using this notation, note that for each i = 1, . . . , d, the value function u(i) defined
at (3.2) can be written

u(i)(θ) = ess sup
τ∈T d−1

θ

E
[
ψ(i)(τ, θ)|Fθ

]
.(3.6)

PROPOSITION 3.3 (Construction of optimal stopping times). Suppose that:

1. there exists an optimal stopping time θ∗ for u(S);
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2. for i = 1, . . . , d , there exist (θ
(i)∗
1 , . . . , θ

(i)∗
i−1 , θ

(i)∗
i+1 , . . . , θ

(i)∗
d ) = θ(i)∗ in T d−1

θ

such that u(i)(θ∗) = E[ψ(i)(θ(i)∗, θ∗)|Fθ∗].
Let (Bi)i=1,...,d with � = ⋃

i Bi be such that Bi ∩ Bj = ∅ for i �= j , φ(θ∗) =
u(i)(θ∗) a.s. on Bi and Bi is Fθ∗-measurable for i = 1, . . . , d . Put

τ ∗
j = θ∗1Bj

+
d∑

i �=j,i=1

θ
(i)∗
j 1Bi

.(3.7)

Then, (τ ∗
1 , . . . , τ ∗

d ) is optimal for v(S), and τ ∗
1 ∧ · · · ∧ τ ∗

d = θ∗.

PROOF. It is clear that τ ∗
1 ∧ · · · ∧ τ ∗

d = θ∗, and a.s.

u(S) = E[φ(θ∗)|FS] =
d∑

i=1

E
[
1Bi

u(i)(θ∗)|FS

]

=
d∑

i=1

E
[
1Bi

E
[
ψ(i)(θ(i)∗, θ∗)|Fθ∗

]|FS

]

=
d∑

i=1

E
[
1Bi

E
[
ψ

(
θ

(i)∗
1 , . . . , θ

(i)∗
i−1 , θ∗, θ (i)∗

i+1 , . . . , θ
(i)∗
d

)|Fθ∗
]|FS

]

= E[ψ(τ ∗
1 , . . . , τ ∗

i−1, τ
∗
i , τ ∗

i+1, . . . , τ
∗
d )|FS] ≤ v(S) = u(S). �

REMARK 3.1. As in the bidimensional case, one can easily derive a necessary
condition for obtaining optimal stopping times. Moreover, for an adapted partial
order relation on R

d , one can also derive a characterization of minimal optimal
d-stopping times. This result is given in Appendix B.2.

Before studying the existence of an optimal d-stopping time for v(S), we will
study the regularity properties of the new reward {φ(θ), θ ∈ T0} defined by (3.3).

3.4. Regularity of the new reward. Let us introduce the following definition
of uniform continuity.

DEFINITION 3.2. A d-admissible family {ψ(θ), θ ∈ T d
0 } is said to be uni-

formly right- (resp., left-) continuous along stopping times in expectation [URCE
(resp., ULCE)] if v(0) < ∞, and for each i = 1, . . . , d , S ∈ T0 and sequence of
stopping times (Sn)n∈N such that Sn ↓ S a.s. (resp., Sn ↑ S a.s.), we have

lim
n→∞ sup

θ∈T d−1
0

∣∣E[
ψ(i)(θ, Sn)

] − E
[
ψ(i)(θ, S)

]∣∣ = 0 a.s.



MULTIPLE STOPPING 1385

PROPOSITION 3.4. Let {ψ(θ), θ ∈ T d
0 } be a d-admissible family which is

URCE (resp., both URCE and ULCE). The family of positive random variables
{φ(S), S ∈ T0} defined by (3.3) is then RCE (resp., both RCE and LCE).

PROOF. The proof uses an induction argument. For d = 1 and d = 2, the result
has already been shown. Fix d ≥ 1 and suppose by induction that the property
holds for any d-admissible family which is URCE (resp., both URCE and ULCE).
Let {ψ(θ), θ ∈ T d+1

S } be a (d + 1)-admissible family which is URCE (resp., both
URCE and ULCE). As φ(θ) = max[u(1)(θ), . . . , u(d+1)(θ)], it is sufficient to show
the RCE (resp., both RCE and LCE) properties for the family {u(i)(θ), θ ∈ T0} for
all i = 1, . . . , d + 1.

Let us introduce the following value function for each S, θ ∈ T0:

U(i)(θ, S) = ess sup
τ∈T d

θ

E
[
ψ(i)(τ, S)|Fθ

]
a.s.(3.8)

As for all θ ∈ T0,

u(i)(θ) = U(i)(θ, θ) a.s.,

it is sufficient to prove that the biadmissible family {U(i)(θ, S), θ, S ∈ T0} is RCE
(resp., both RCE and LCE) as in the bidimensional case.

Let θ, S ∈ T0 and (θn)n, (Sn)n be monotonic sequences of stopping times that
converge, respectively, to θ and S a.s. We have

E
[∣∣U(i)(θ, S) − U(i)(θn, Sn)

∣∣]
≤ E

[∣∣U(i)(θ, S) − U(i)(θn, S)
∣∣]︸ ︷︷ ︸

(I)

+E
[∣∣U(i)(θn, S) − U(i)(θn, Sn)

∣∣]︸ ︷︷ ︸
(II)

.

Let us show that (I) tends to 0 as n → ∞. Note that for each S ∈ T0, {ψ(i)(τ, S), τ ∈
T d

0 } is a d-admissible family of positive random variables which is URCE (resp.,
both URCE and ULCE) and {U(i)(θ, S), θ ∈ T0} is the corresponding value func-
tion family. By the induction assumption, this family is RCE (resp., both RCE and
LCE). Hence, (I) converges a.s. to 0 as n tends to ∞ when (θn) is monotonic.

Let us now show that (II) tends to 0 as n → ∞. By definition of the value
function U(i)(·, ·) (3.8), it follows that

E
[∣∣U(i)(θn, S) − U(i)(θn, Sn)

∣∣] ≤ sup
θ∈T d

0

∣∣E[
ψ(i)(θ, S)

] − E
[
ψ(i)(θ, Sn)

]∣∣,

and the right-hand side tends to 0 by the URCE (resp., both URCE and ULCE)
properties of ψ . �
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3.5. Existence of optimal stopping times. By Theorem 1.1, the regularity prop-
erties of the new reward will ensure the existence of an optimal stopping time
θ∗ ∈ T0 for u(S). By Proposition 3.3, this will allow us to show by induction the
existence of an optimal stopping time for v(S).

THEOREM 3.2 (Existence of optimal stopping times). Let {ψ(θ), θ ∈ T d
0 } be

a d-admissible family of positive random variables which is URCE and ULCE.
There then exists a τ ∗ ∈ T d

S optimal for v(S), that is, such that

v(S) = ess sup
τ∈T d

S

E[ψ(τ)|FS] = E[ψ(τ∗)|FS].

PROOF. The result is proved by induction on d . For d = 1 the result is just
Theorem 1.1. Suppose now that d ≥ 1 and suppose by induction that for all d-
admissible families which are URCE and ULCE, optimal d-stopping times do ex-
ist. Let {ψ(θ), θ ∈ T d+1

S } be a (d + 1)-admissible family which is URCE and
ULCE. The existence of an optimal (d + 1)-stopping time for the associated
value function v(S) will be derived by applying Proposition 3.3. Now, by Proposi-
tion 3.4, the new reward family {φ(θ), θ ∈ T0} is LCE and RCE. By Theorem 1.1,
there exists an optimal stopping time θ∗ for u(S). Thus, we have proven that con-
dition 1 of Proposition 3.3 is satisfied.

Note now that for i = 1, . . . , d + 1, the d-admissible families {ψ(i)(θ, θ∗), θ ∈
T d

0 } are URCE and ULCE. Thus, by the induction hypothesis, for each θ ∈ T0,
there exists an optimal θ∗(i) ∈ T d

θ∗ for the value function U(i)(θ∗, θ∗) defined by
(3.8). Noting that U(i)(θ∗, θ∗) = u(i)(θ∗), we have proven that condition 2 of
Proposition 3.3 is satisfied. Now applying Proposition 3.3, the result follows. �

3.6. Symmetric case. Suppose that ψ(τ1, . . . , τd) is symmetric with respect to
(τ1, . . . , τd), that is,

ψ(τ1, . . . , τd) = ψ
(
τσ(1), . . . , τσ(d)

)
for each permutation σ of {1, . . . , d}. By symmetry we can suppose that τ1 ≤ τ2 ≤
· · · ≤ τd , that is, that the value function v(S) coincides with

vd(S) = ess sup
(τ1,...,τd )∈S d

S

E[ψ(τ1, . . . , τd)|FS],

where S d
S = {τ1, . . . , τd ∈ TS s.t. τ1 ≤ τ2 ≤ · · · ≤ τd}. It follows that the value

functions u(i)(θ) and the new reward φ(θ) coincide and are simply given for each
θ ∈ T0 by the following random variable:

φ1(θ) = ess sup
(τ2,τ3,...,τd )∈S d−1

θ

E[ψ(θ, τ2, . . . , τd)|Fθ ].
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The reduction property can be written as follows:

v(S) = ess sup
θ∈TS

E[φ1(θ)|FS].

We then consider the value function φ1(θ1). The associated new reward is given
for θ1, θ2 such that S ≤ θ1 ≤ θ2 by

φ2(θ1, θ2) = ess sup
(τ3,...,τd )∈S d−2

θ2

E[ψ(θ1, θ2, τ3, . . . , τd)|Fθ2].

Again, the reduction property gives

φ1(θ1) = ess sup
θ∈Tθ1

E[φ2(θ1, θ2)|Fθ1].(3.9)

We then consider the value function φ2(θ1, θ2), and so on. Thus, by forward in-
duction, we define the new rewards φi for i = 1,2, . . . , d − 1 by

φi(θ1, . . . , θi) = ess sup
(τi+1,...,τd )∈S d−i

θi

E[ψ(θ1, . . . , θi, τi+1, . . . , τd)|Fθi
]

for each (θ1, . . . , θi) ∈ S i
S . The reduction property gives

φi(θ1, . . . , θi) = ess sup
θi+1∈Tθi

E[φi+1(θ1, . . . , θi, θi+1)|Fθi
].(3.10)

Note that for i = d − 1,

φd−1(θ1, . . . , θd−1) = ess sup
θd∈Tθd−1

E[	(θ1, . . . , θd−1, θd)|Fθd−1](3.11)

for each (θ1, . . . , θd−1) ∈ S d−1
S .

Hence, using backward induction we can now define φd−1(θ1, . . . , θd−1) by
(3.11) and then φd−2(θ1, . . . , θd−2), . . . , φ2(θ1, θ2), φ1(θ1) by the induction for-
mula (3.10). Consequently, we have the following characterization of the value
function and construction of a multiple optimal stopping time (which are rather
intuitive).

PROPOSITION 3.5.

• Let {ψ(θ), θ ∈ T d
0 } be a symmetric d-admissible family of random variables,

and for each stopping time S, consider the associated value function v(S).
Let φi , i = d − 1, d − 2, . . . ,2,1, be defined by backward induction as fol-

lows: φd−1(θ1, . . . , θd−1) is given by (3.11) for each (θ1, . . . , θd−1) ∈ S d−1
S .

Also, for i = d − 2, . . . ,2,1 and each (θ1, . . . , θi) ∈ S i
S , φi(θ1, . . . , θi) is given

in terms of the function φi+1 by backward induction formula (3.10).
The value function then satisfies

v(S) = ess sup
θ∈TS

E[φ1(θ)|FS].(3.12)
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• Suppose that {ψ(θ), θ ∈ T d
0 } is URCE and ULCE. Let θ∗

1 be an optimal stopping
time for v(S) given by (3.12), let θ∗

2 be an optimal stopping time for φ1(θ
∗
1 )

given by (3.9) and for i = 2,3, . . . , d − 1, let θ∗
i+1 be an optimal stopping time

for φi(θ
∗
1 , . . . , θ∗

i ) given by (3.10).
Then, (θ∗

1 , . . . , θ∗
d ) is a multiple optimal stopping time for v(S).

Some simple examples. First, consider the very simple additive case: suppose
that the reward is given by

ψ(τ1, . . . , τd) = Y(τ1) + Y(τ2) + · · · + Y(τd),(3.13)

where Y is an admissible family of random variables such that supτ∈T0
E[Y(τ)] <

∞. We then obviously have that v(S) = dv1(S), where v1(S) is the value function
of the single optimal stopping time problem associated with reward Y . Also, if θ∗

1
is an optimal stopping time for v1(S), then (θ∗

1 , . . . , θ∗
1 ) is optimal for v(S).

Application to swing options. Let us now consider the more interesting addi-
tive case of swing options: suppose that T = +∞ and that the reward is still given
by (3.13), but the stopping times are separated by a fixed amount of time δ > 0
(sometimes called “refracting time”). In this case, the value function is given by

v(S) = ess sup{E[ψ(τ1, . . . , τd)|FS], (τ1, . . . , τd) ∈ S d
S },

where S d
S = {τ1, . . . , τd ∈ TS s.t. τi ∈ Tτi−1+δ,2 ≤ i ≤ d − 1}. All the previous

properties then still hold. Again, the φi satisfy the following induction equality:

φi(θ1, . . . , θi) = ess sup
θi+1∈Tθi+δ

E[φi+1(θ1, . . . , θi, θi+1)|Fθi
].

One can then easily derive that φd−1(θ1, θ2, . . . , θd−1) = Y(θ1) + · · · + Y(θd−1) +
Zd−1(θd−1), where

Zd−1(θd−1) = ess sup
τ∈Tθd−1+δ

E[Y(τ)|Fθd−1].

φd−2(θ1, . . . , θd−2) = Y(θ1) + · · · + Y(θd−2) + Zd−2(θd−2), where

Zd−2(θd−2) = ess sup
τ∈Tθd−2+δ

E[Y(τ) + Zd−1(τ )|Fθd−2],

and so on. Hence, for i = 1,2, . . . , d − 2, φi(θ1, . . . , θi) = Y(θ1) + · · · + Y(θi) +
Zi(θi), where

Zi(θi) = ess sup
τ∈Tθi+δ

E[Y(τ) + Zi+1(τ )|Fθi
].

The value function satisfies

v(S) = ess sup
θ∈TS

E[Y(θ) + Z1(θ)|FS].(3.14)
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This corresponds to Proposition 3.2 of Carmona and Dayanik (2008).
Suppose that Y is RCE and LCE. Let θ∗

1 be the minimal optimal stopping time
for v(S) given by (3.14) and for i = 1,2, . . . , d −1, let θ∗

i+1 be the minimal optimal
stopping time for Zi(θ

∗
i ). The d-stopping time (θ∗

1 , . . . , θ∗
d ) is then the minimal

optimal stopping time for v(S). This corresponds to Proposition 5.4 of Carmona
and Dayanik (2008).

Note that the multiplicative case can be solved similarly. Further applications
to American options with multiple exercise times are studied in Kobylanski and
Quenez (2010).

4. Aggregation and multiple optimal stopping times. As explained in the
Introduction, in previous works on the optimal single stopping time problem,
the reward is given by an RCLL positive adapted process (φt ). Moreover, when
the reward (φt ) is continuous, an optimal S-stopping time is given by

θ(S) = inf{t ≥ S, vt = φt },(4.1)

which corresponds to the first hitting time after S of 0 by the RCLL adapted
process (vt − φt). This formulation is very important since it gives a simple and
efficient method to compute an optimal stopping time.

In the two-dimensional case, instead of considering a reward process, it is quite
natural to suppose that the reward is given by a biprocess (	t,s)(t,s)∈[0,T ]2 such
that a.s., the map (t, s) → 	t,s is continuous and for each (t, s) ∈ [0, T ]2, 	t,s is
Ft∨s-measurable (see Remark 2.1).

We would like to construct some optimal stopping times by using hitting times
of processes. By the existence and construction properties of optimal stopping
times given in Theorem 2.3, we are led to construct θ∗, θ∗

1 and θ∗
2 as hitting times

of processes. Since 	 is a continuous biprocess, there is no problem for θ∗
1 , θ∗

2 .
However, for θ∗ we need to aggregate the new reward {φ(θ), θ ∈ T0}, which re-
quires new aggregation results. These results hold under stronger assumptions on
the reward than those made in the previous existence theorem (Theorem 2.3).

4.1. Some general aggregation results.

4.1.1. Aggregation of a supermartingale system. Recall the classical result of
aggregation of a supermartingale system [El Karoui (1981)].

PROPOSITION 4.1. Let {h(S), S ∈ T0} be a supermartingale system which is
RCE and such that h(0) < ∞. There then exists an RCLL adapted process (ht )

which aggregates the family {h(S), S ∈ T0}, that is, for each S ∈ T0, hS = h(S)

a.s.

This lemma relies on a well-known result [see, e.g., El Karoui (1981) or Theo-
rem 3.13 in Karatzas and Shreve (1994); for details, see the proof in Section 4.4].
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Classically, the above Proposition 4.1 is used to aggregate the value function of
the single stopping time problem. However, it cannot be applied to the new reward
since it is no longer a supermartingale system. Thus, we will now state a new result
on aggregation.

4.1.2. A new result on aggregation of an admissible family. Let us introduce
the following right-continuous property for admissible families.

DEFINITION 4.1. An admissible family {φ(θ), θ ∈ T0} is said to be right-
continuous along stopping times (RC) if for any θ ∈ T0 and any sequence (θn)n∈N

of stopping times such that θn ↓ θ a.s., we have φ(θ) = limn→∞ φ(θn) a.s.

We state the following result.

THEOREM 4.1. Suppose that the admissible family of positive random vari-
ables {φ(θ), θ ∈ T0} is right-continuous along stopping times. There then exists a
progressive process (φt ) such that for each θ ∈ T0, φθ = φ(θ) a.s. and such that
there exists a nonincreasing sequence of right-continuous processes (φn

t )n∈N such
that for each (ω, t) ∈ � × [0, T ], limn→∞ φn

t (ω) = φt (ω).

PROOF. See Section 4.4. �

4.2. The optimal stopping problem. First, recall the following classical result
[El Karoui (1981)].

PROPOSITION 4.2 (Aggregation of the value function). Let {φ(θ), θ ∈ T0}
be an admissible family of random variables which is RCE. Suppose that
E[ess supθ∈T0

φ(θ)] < ∞.
There then exists an RCLL supermartingale (vt ) which aggregates the family

{v(S), S ∈ T0} defined by (1.1), that is, for each stopping time S, v(S) = vS a.s.

PROOF. The family {v(S), S ∈ T0} is a supermartingale system (Proposi-
tion 1.3) and has the RCE property (Proposition 1.5). The result clearly follows by
applying the aggregation property of supermartingale systems (Proposition 4.1).

�

THEOREM 4.2. Suppose the reward is given by an RC and LCE admissible
family {φ(θ), θ ∈ T0} such that E[ess supθ∈T0

φ(θ)] < ∞.
Let (φt ) be the progressive process given by Theorem 4.1 that aggregates this

family. Let {v(S), S ∈ T0} be the family of value functions defined by (1.1), and let
(vt ) be an RCLL adapted process that aggregates the family {v(S), S ∈ T0}.

The random variable defined by

θ(S) = inf{t ≥ S, vt = φt }(4.2)

is the minimal optimal stopping time for v(S), that is, θ(S) = θ∗(S) a.s.
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As for Theorem 1.1, the proof relies on the construction of a family of stop-
ping times that are approximatively optimal. The details, which require some fine
techniques of the general theory of processes, are given in Section 4.4.

REMARK 4.1. In the case of an RCLL reward process supposed to be LCE,
the above theorem corresponds to the classical existence result [see El Karoui
(1981) and Karatzas and Shreve (1998)].

4.3. The optimal multiple stopping time problem. For simplicity, we study
only the case when d = 2. We will now prove that the minimal optimal pair of
stopping times (τ ∗

1 , τ ∗
2 ) defined by (2.8) can also be given in terms of hitting times.

In order to do this, we first need to aggregate the value function and the new re-
ward.

4.3.1. Aggregation of the value function.

PROPOSITION 4.3. Suppose the reward is given by an RCE biadmissible fam-
ily {ψ(θ,S), θ, S ∈ T0} such that E[ess supθ,S∈T0

ψ(θ,S)] < ∞.
There then exists a supermartingale (vt ) with RCLL paths that aggregates the

family {v(S), S ∈ T0} defined by (2.1), that is, such for each S ∈ T0, v(S) = vS a.s.

PROOF. The RCE property of {v(S), S ∈ T0} shown in Proposition 2.2, to-
gether with the supermartingale property [Proposition 2.1(3)] gives, by Proposi-
tion 4.1, the desired result. �

4.3.2. Aggregation of the new reward. We will now study the aggregation
problem of the new reward family {φ(θ), θ ∈ T0}. Let us introduce the following
definition.

DEFINITION 4.2. A biadmissible family {ψ(θ,S), θ, S ∈ T0} is said to be uni-
formly right-continuous along stopping times (URC) if E[ess supθ,S∈T0

ψ(θ,S)] <

∞ and if for each nonincreasing sequence of stopping times (Sn)n∈N in TS which
converges a.s. to a stopping time S ∈ T0,

lim
n→∞

[
ess sup

θ∈TS

{|ψ(θ,Sn) − ψ(θ,S)|}
]
= 0 a.s.

and

lim
n→∞

[
ess sup

θ∈TS

{|ψ(Sn, θ) − ψ(S, θ)|}
]
= 0 a.s.

The following right continuity property holds true for the new reward family.
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THEOREM 4.3. Suppose that the admissible family of positive random vari-
ables {ψ(θ,S), θ, S ∈ T0} is URC. The family of positive random variables
{φ(S), S ∈ T0} defined by (2.3) is then RC.

PROOF. As φ(θ) = max[u1(θ), u2(θ)], it is sufficient to show the RC property
for the family {u1(θ), θ ∈ T0}.

Now, for all θ ∈ T0, u1(θ) = U1(θ, θ) a.s., where

U1(θ, S) = ess sup
τ1∈Tθ

E[ψ(τ1, S)|Fθ ] a.s.(4.3)

Hence, it is sufficient to prove that {U1(θ, S), θ, S ∈ T0} is RC.
Let θ, S ∈ T0 and (θn)n, (Sn)n be nonincreasing sequences of stopping times in

T0 that converge to θ and S a.s. We have

|U1(θ, S) − U1(θn, Sn)| ≤ |U1(θ, S) − U1(θn, S)|︸ ︷︷ ︸
(I)

+|U1(θn, S) − U1(θn, Sn)|︸ ︷︷ ︸
(II)

.

(I) tends to 0 as n → ∞.
For each S ∈ T0, as {ψ(θ,S), θ ∈ T0} is an admissible family of positive random

variables which is RC, Proposition 4.3 gives the existence of an RCLL adapted
process (U

1,S
t ) such that for each stopping time θ ∈ T0,

U
1,S
θ = U1(θ, S) a.s.(4.4)

(I) can be rewritten as |U1(θ, S) − U1(θn, S)| = |U1,S
θ − U

1,S
θn

| a.s., which con-
verges a.s. to 0 as n tends to ∞ by the right continuity of the process (U

1,θ
t ).

(II) tends to 0 as n → ∞.
By definition of the value function U1(·, ·) (4.3), it follows that

|U1(θn, S) − U1(θn, Sn)| ≤ E
(
ess sup

τ1∈Tθn

|ψ(τ1, S) − ψ(τ1, Sn)|
∣∣Fθn

)

≤ E(Zm|Fθn) a.s.

for any n ≥ m, where Zm := supr≥m{ess supτ∈T0
|ψ(τ,Sr) − ψ(τ,S)|} and

(E(Zm|Ft ))t≥0 is an RCLL version of the conditional expectation. Hence, by
the right continuity of this process, for each fixed m ∈ N, the sequence of random
variables (E(Zm|Fθn))n∈N converges a.s. to E(Zm|Fθ ) as n tends to ∞. It follows
that for each m ∈ N,

lim sup
n→∞

|U1(θn, S) − U1(θn, Sn)| ≤ E(Zm|Fθ ) a.s.(4.5)

Now, the sequence (Zm)m∈N converges a.s. to 0 and

|Zm| ≤ 2 ess sup
θ,S∈T0

ψ(θ,S) a.s.
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Note that the second member of this inequality is integrable. By the Lebesgue
theorem for the conditional expectation, E(Zm|Fθ ) converges to 0 in L1 as m

tends to ∞. The sequence (Zm)m∈N is decreasing. It follows that the sequence
{E(Zm|Fθ )}m∈N is also decreasing and hence converges a.s. Since this sequence
converges to 0 in L1, its limit is also 0 almost surely. By letting m tend to ∞ in
(4.5), we obtain

lim sup
n→∞

|U1(θn, S) − U1(θn, Sn)| ≤ 0 a.s.

The proof of Theorem 4.3 is thus complete. �

COROLLARY 4.1 (Aggregation of the new reward). Under the same hypothe-
sis as Theorem 4.3, there exists some progressive right-continuous adapted process
(φt ) which aggregates the family {φ(θ), θ ∈ T0}, that is, φθ = φ(θ) a.s. for
each θ ∈ T0, and such that there exists a decreasing sequence of right-continuous
processes (φn

t )n∈N that converges to (φt ).

PROOF. This follows from the right continuity of the new reward (Theo-
rem 4.3) which we can aggregate (Theorem 4.1). �

REMARK 4.2. For the optimal d-stopping time problem, the same result
holds for URC d-admissible families {ψ(θ), θ ∈ T d

0 }, that is, families that satisfy
E[ess supθ∈T0

ψ(θ)] < ∞ and

lim
n→∞ ess sup

θ∈T0

∣∣ψ(i)(θ, S) − ψ(i)(θ, Sn)
∣∣ = 0

for i = 1, . . . , d, θ, S ∈ T0 and sequences (Sn) in T0 such that Sn ↓ S a.s.
The proof is strictly the same, with U1(θ, S) replaced by U(i)(θ, S) for θ, S ∈ T0

and ψ(τ,S) with τ, S ∈ T0 replaced by ψ(i)(τ, S), with τ ∈ T d−1
0 and S ∈ T0.

4.3.3. Optimal multiple stopping times as hitting times of processes. As be-
fore, for the sake of simplicity, we suppose that d = 2. Suppose that {ψ(θ,S), θ,

S ∈ T0} is a URC and ULCE biadmissible family. Let {φ(θ), θ ∈ T0} be the new
reward family. By Theorem 2.2, this family is LCE. Furthermore, by Theorem 4.3,
this family is RC. Let (φt ) be the progressive process that aggregates this fam-
ily, given by Theorem 4.1. Let (ut ) be an RCLL process that aggregates the value
function associated with (φt ). By Theorem 4.2, the stopping time

θ∗ = inf{t ≥ S,ut = φt }
is optimal for u(S).

The family {ψ(θ, θ∗), θ ∈ Tθ∗} is admissible, RC and LCE. Let (ψ1
t ) be the

progressive process that aggregates this family given by Theorem 4.1. Let (v1
t )

be an RCLL process that aggregates the value function associated with (ψ1
t ). By

Theorem 4.2 the stopping time θ∗
1 = inf{t ≥ θ∗, v1

t = ψ1
t } is optimal for v1

θ∗ and
v1
θ∗ = u1(θ∗).
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The family {ψ(θ∗, θ), θ ∈ Tθ∗} is admissible, RC and LCE. Let (ψ2
t ) be the

progressive process that aggregates this family given by Theorem 4.1. Let (v2
t )

be an RCLL process that aggregates the value function associated with (ψ2
t ). By

Theorem 4.2, the stopping time θ∗
2 = inf{t ≥ θ∗, v2

t = ψ2
t } is optimal for v2

θ∗ , and
v2
θ∗ = u2(θ

∗).
By Proposition 2.4, the pair of stopping times (τ ∗

1 , τ ∗
2 ) defined by

τ ∗
1 = θ∗1B + θ∗

1 1Bc, τ ∗
2 = θ∗

2 1B + θ∗1Bc,(4.6)

where B = {u1(θ
∗) ≤ u2(θ

∗)} = {v1
θ∗ ≤ v2

θ∗}, is optimal for v(S).

THEOREM 4.4. Let {ψ(θ,S), θ, S ∈ T0} be a biadmissible family which is
URC and ULCE. The pair of stopping times (τ ∗

1 , τ ∗
2 ) defined by (4.6) is then opti-

mal for v(S).

Note that the above construction of (τ ∗
1 , τ ∗

2 ) as hitting times of processes re-
quires stronger assumptions on the reward than those made in Theorem 2.3. Fur-
thermore, let us emphasize that it also requires some new aggregation results (The-
orems 4.1 and 4.2).

4.4. Proofs of Proposition 4.1 and Theorems 4.1 and 4.2. We now give the
proofs of Proposition 4.1 and Theorems 4.1 and 4.2.

First, we give the short proof of the classical Proposition 4.1 which we recall
here (for the reader’s convenience).

PROPOSITION 4.1. Let {h(S), S ∈ T0} be a supermartingale system which
satisfies h(0) < ∞ and which is right-continuous along stopping times in expecta-
tion. There then exists an RCLL adapted process (ht ) which aggregates the family
{h(S), S ∈ T0}, that is, hS = h(S) a.s.

PROOF. Let us consider the process (h(t))0≤t≤T . It is a supermartingale and
the function t → E(h(t)) is right-continuous. By classical results [see Theo-
rem 3.13 in Karatzas and Shreve (1994)], there exists an RCLL supermartingale
(ht )0≤t≤T such that for each t ∈ [0, T ], ht = h(t) a.s. It is then clear that for each
dyadic stopping time S ∈ T0, hS = h(S) a.s. (for details, see Part 2 of the proof of
Theorem 1.1). This implies that

E[hS] = E[h(S)].(4.7)

Since the process (ht )0≤t≤T is RCLL and since the family {h(S), S ∈ T0} is right-
continuous in expectation, equality (4.7) still holds for any stopping time S ∈ T0.
It then remains to show that hS = h(S) a.s., but this is classical. Let A ∈ FS and
define SA = S1A + T 1Ac . Since SA is a stopping time, E[hSA

] = E[h(SA)]. Since
hT = h(T ) a.s., it gives that E[hS1A] = E[h(S)1A], from which the desired result
follows. �

We now give the proof of Theorem 4.1.
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THEOREM 4.1. Suppose that the admissible family of positive random vari-
ables {φ(θ), θ ∈ T0} is right-continuous along stopping times. There then exists a
progressive process (φt ) such that for each θ ∈ T0, φθ = φ(θ) a.s. and such that
there exists a nonincreasing sequence of right-continuous processes (φn

t )n∈N such
that for each (ω, t) ∈ � × [0, T ], limn→∞ φn

t (ω) = φt(ω).

PROOF. For each n ∈ N
∗, let us define a process (φn

t )t≥0 that is a function of
(ω, t) by

φn
t (ω) = sup

s∈D∩]t,([2nt]+1)/2n[
φ(s ∧ T )(4.8)

for each (ω, t) ∈ � × [0, T ], where D is the set of dyadic rationals.
For each t ∈ [0, T ] and each ε > 1

2n , the process (φn
t ) is (Ft+ε)-adapted and, for

each ω ∈ �, the function t → φn
t (ω) is right-continuous. Hence, the process (φn

t )

is also (Ft+ε)-progressive. Moreover, the sequence (φn
t )n∈N∗ is decreasing. Let φt

be its limit, that is, for each (ω, t) ∈ � × [0, T ],
φt (ω) = lim

n→∞φn
t (ω).

It follows that for each ε > 0, the process (φt ) is (Ft+ε)-progressive. Thus, (φt ) is
(Ft+)-progressive and consequently (Ft )-progressive since Ft+ = Ft .

Step 1: Fix θ ∈ T0. Let us show that φθ ≤ φ(θ) a.s.
Let us suppose, by contradiction, that the above inequality does not hold. There

then exists ε > 0 such that the set A = {φ(θ) ≤ φθ − ε} satisfies P(A) > 0.
Fix n ∈ N . For all ω ∈ A, we have that φ(θ)(ω) ≤ φn

θ(ω)(ω)−ε, where φn
θ(ω)(ω)

is defined by (4.8) with t replaced by θ(ω).
By definition of φn there exists t ∈]θ(ω), [2nθ(ω)]+1

2n [∩D such that

φ(θ)(ω) ≤ φ(t)(ω) − ε

2
.

We introduce the following subset of [0, T ] × �:

An =
{
(t,ω), t ∈

]
θ(ω),

[2nθ(ω)] + 1

2n

[
∩D and φ(θ)(ω) ≤ φ(t)(ω) − ε

2

}
.

First, note that An is optional. Indeed, we have An = ⋃
t∈D{t} × Bn,t , where

Bn,t =
{
θ < t <

[2nθ ] + 1

2n

}
∩

{
φ(θ) ≤ φ(t) − ε

2

}
,

and the process (ω, t) → 1Bn,t (ω) is optional since θ and [2nθ ]+1
2n are stopping

times and {φ(θ), θ ∈ T0} is admissible. Also, A is included in π(An), the projec-
tion of An onto �, that is,

A ⊂ π(An) = {ω ∈ �, ∃t ∈ [0, T ] s.t. (t,ω) ∈ An}.
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Hence, by a section theorem [see Dellacherie and Meyer (1975), Chapter IV], there
exists a dyadic stopping time Tn such that for each ω in {Tn < ∞}, (Tn(ω),ω) ∈ An

and

P(Tn < ∞) ≥ P(π(An)) − P(A)

2n+1 ≥ P(A) − P(A)

2n+1 .

Hence, for all ω in {Tn < ∞}
φ(θ)(ω) ≤ φ(Tn(ω)) − ε

2
and Tn(ω) ∈

]
θ(ω),

[2nθ(ω)] + 1

2n

[
∩ D.

Note that

P

(⋂
n≥1

{Tn < ∞}
)

≥ P(A) −
(∑

n≥1

P(A)

2n+1

)
≥ P(A)

2
> 0.

Put T n = T1 ∧ · · · ∧ Tn. We have T n ↓ θ and φ(θ) ≤ φ(T n) − ε
2 for each n

on
⋂

n≥1{Tn < ∞}. By letting n tend to ∞ in this inequality, since {φ(θ), θ ∈ T0}
is right-continuous along stopping times, we derive that φ(θ) ≤ φ(θ) − ε

2 a.s. on⋂
n≥1{Tn < ∞}, which gives the desired contradiction.
Step 2: Fix θ ∈ T0. Let us show that φ(θ) ≤ φθ a.s.
Put T n = [2nθ ]+1

2n . The sequence (T n) is a nonincreasing sequence of stopping
times such that T n ↓ θ . Moreover, note that since the family {φ(θ), θ ∈ T0} is
admissible, for each d ∈ D, for almost every ω ∈ {T n+1 = d}, φ(T n+1)(ω) =
φ(d)(ω). Now, we have T n+1 ∈]θ, T n[∩D. Also, for each ω ∈ � and each
d ∈]θ(ω), T n(ω)[∩D,

φ(d)(ω) ≤ sup
s∈]θ(ω),T n(ω)[∩D

φ(s)(ω) = φn
θ(ω)(ω),

where the last equality follows by the definition of φn
θ(ω)(ω) [see (4.8), with t

replaced by θ(ω)]. Hence,

φ(T n+1) ≤ φn
θ a.s.

Letting n tend to ∞, by using the right-continuous property of {φ(θ), θ ∈ T0} along
stopping times and the convergence of φn

θ(ω)(ω) to φθ(ω)(ω) for each ω, we derive
that φ(θ) ≤ φθ a.s. �

We now give the proof of Theorem 4.2.

THEOREM 4.2. θ(S) = inf{t ≥ S, vt = φt } is an optimal stopping time for vS .

PROOF. We begin by constructing a family of stopping times that are approx-
imatively optimal. For λ ∈]0,1[, define the stopping time

θ
λ
(S) := inf{t ≥ S,λvt ≤ φt } ∧ T .(4.9)

The proof follows the proof of Theorem 1.1 exactly, except for Step 1, which
corresponds to the following lemma.
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LEMMA 4.1. For each S ∈ T0 and λ ∈]0,1[,
λv

θ
λ
(S)

≤ φ
θ

λ
(S)

a.s.(4.10)

By the same arguments as in the proof of Theorem 1.1, θ
λ
(S) is nondecreas-

ing with respect to λ and converges as λ ↑ 1 to an optimal stopping time which
coincides with θ(S) a.s. �

PROOF OF LEMMA 4.1. To simplify notation, θ
λ
(S) will be written as θ

λ
. For

the sake of simplicity, without loss of generality, we suppose that t → vt (ω) is
RCLL for each ω ∈ �.

Fix ω ∈ �. In the following, we use only simple analytic arguments.
By definition of θ

λ
(ω) (1.6), for each n ∈ N

∗, there exists t ∈ [θλ
(ω), θ

λ
(ω)+ 1

n
[

such that λvt (ω) ≤ φt (ω).

Also, note that for each m ∈ N
∗, φt(ω) ≤ φm

t (ω).
Now, fix m ∈ N

∗ and α > 0.
By the right continuity of t → vt (ω) and t → φm

t (ω), there exists tmn (ω) ∈
D ∩ [θλ

(ω), θ
λ
(ω) + 1

n
[ such that

λvtmn (ω)(ω) ≤ φm
tmn (ω)(ω) + α.(4.11)

Note that limn→∞ tmn (ω) = θ
λ
(ω) and tmn (ω) ≥ θ

λ
(ω) for any n. Again, by using

the right continuity of t → vt (ω) and t → φm
t (ω), and by letting n tend to ∞ in

(4.11), we derive that

λv
θ

λ
(ω)

(ω) ≤ φm

θ
λ
(ω)

(ω) + α,

and this inequality holds for each α > 0, m ∈ N
∗ and ω ∈ �. By letting m tend to

∞ and α tend to 0, we derive that for each ω ∈ �, λv
θ

λ
(ω)

(ω) ≤ φ
θ

λ
(ω)

(ω), which
completes the proof of the lemma. �

APPENDIX A

We recall the following classical theorem [see, e.g., Karatzas and Shreve (1998),
Neveu (1975)].

THEOREM A.1 (Essential supremum). Let (�, F ,P ) be a probability space
and let X be a nonempty family of positive random variables defined on (�, F ,P ).
There exists a random variable X∗ satisfying:

1. for all X ∈ X , X ≤ X∗ a.s.;
2. if Y is a random variable satisfying X ≤ Y a.s. for all X ∈ X , then X∗ ≤ Y a.s.
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This random variable, which is unique a.s., is called the essential supremum of X
and is denoted ess sup X .

Furthermore, if X is closed under pairwise maximization (i.e., X,Y ∈ X implies
X ∨Y ∈ X ), then there is a nondecreasing sequence {Zn}n∈N of random variables
in X satisfying X∗ = limn→∞ Zn a.s.

APPENDIX B

B.1. Characterization of minimal optimal double stopping time. In order
to give a characterization of minimal optimal stopping times, we introduce the
following partial order relation on R

2: (a, b) ≺ (a′, b′) if and only if

[(a ∧ b < a′ ∧ b′) or (a ∧ b = a′ ∧ b′ and a ≤ a′ and b ≤ b′)].
Note that although the minimum of two elements of R

2 is not defined, the in-
fimum, that is, the greatest minorant of the couple, does exist and inf[(a, b), (a′,
b′)] = 1{a∧b<a′∧b′}(a, b) + 1{a′∧b′<a∧b}(a′, b′) + 1{a∧b=a′∧b′}(a ∧ a′, b ∧ b′).

Note also that if (τ ∗
1 , τ ∗

2 ), (τ ′
1, τ

′
2) ∈ T0 × T0 are optimal for v(S), then the in-

fimum of the couple inf[(τ ∗
1 , τ ∗

2 ), (τ ′
1, τ

′
2)], in the sense of the relation ≺ a.s., is

optimal for v(S).
The two following assertions can be shown to be equivalent:

1. a pair (τ ∗
1 , τ ∗

2 ) ∈ T0 ×T0 is minimal optimal for v(S) (i.e, is the minimum for the
order ≺ a.s. of the set {(τ ∗

1 , τ ∗
2 ) ∈ T 2

S , v(S) = E[ψ(τ ∗
1 , τ ∗

2 )|FS]}), θ∗ = τ ∗
1 ∧ τ ∗

2
and θ∗

1 , θ∗
2 ∈ T0 are such that θ∗

2 = τ ∗
2 on {τ ∗

1 < τ ∗
2 } and θ∗

1 = τ ∗
1 on {τ ∗

1 > τ ∗
2 };

2. (a) θ∗ ∈ T0 is minimal optimal for u(S);
(b) θ∗

2 ∈ T0 is minimal optimal for u2(θ
∗) on {u1(θ

∗) < u2(θ
∗)};

(c) θ∗
1 ∈ T0 is minimal optimal for u1(θ

∗) on {u2(θ
∗) < u1(θ

∗)}, and τ ∗
1 =

θ∗1{u1(θ
∗)≤u2(θ

∗)} + θ∗
1 1{u1(θ

∗)>u2(θ
∗)}, τ ∗

2 = θ∗1{u2(θ
∗)≤u1(θ

∗)} + θ∗
2 ×

1{u2(θ
∗)>u1(θ

∗)}.

B.2. Characterization of minimal optimal d-stopping times. Consider the
following partial order relation ≺d on R

d defined by induction in the follow-
ing way: for d = 1, ∀a, a′ ∈ R, a ≺1 a′ if and only if a ≤ a′, and for d > 1,
∀(a1, . . . , ad), (a′

1, . . . , a
′
d) ∈ R

d, (a1, . . . , ad) ≺d (a′
1, . . . , a

′
d) if and only if either

a1 ∧ · · · ∧ ad < a′
1 ∧ · · · ∧ a′

d or⎧⎪⎪⎨
⎪⎪⎩

a1 ∧ · · · ∧ ad = a′
1 ∧ · · · ∧ a′

d, and, for i = 1, . . . , d,

ai = a1 ∧ · · · ∧ ad �⇒
⎧⎨
⎩

a′
i = a′

1 ∧ · · · ∧ a′
d and

(a1, . . . , ai−1, ai+1, . . . , ad)

≺d−1 (a′
1, . . . , a

′
i−1, a

′
i+1, . . . , a

′
d).

Note that for d = 2 the order relation ≺2 is the order relation ≺ defined above.
One can show that a d-stopping time (τ1, . . . , τd) is the d-minimal optimal stop-

ping time for v(S), that is, it is minimal for the order ≺d in the set {τ ∈ T d
S , v(S) =

E[ψ(τ)|FS]} if and only if:
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1. θ∗ = τ1 ∧ · · · ∧ τd is minimal optimal for u(S);
2. for i = 1, . . . , d , θ∗(i) = τi ∈ T d−1

S is the (d − 1)-minimal optimal stopping
time for u(i)(θ∗) on the set {u(i)(θ∗) ≥ ∨

k �=i u
(k)(θ∗)}.
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