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A POSITIVE RECURRENT REFLECTING BROWNIAN MOTION
WITH DIVERGENT FLUID PATH

BY MAURY BRAMSON1

University of Minnesota, Twin Cities

Semimartingale reflecting Brownian motions (SRBMs) are diffusion
processes with state space the d-dimensional nonnegative orthant, in the inte-
rior of which the processes evolve according to a Brownian motion, and that
reflect against the boundary in a specified manner. The data for such a process
are a drift vector θ , a nonsingular d × d covariance matrix �, and a d × d

reflection matrix R. A standard problem is to determine under what condi-
tions the process is positive recurrent. Necessary and sufficient conditions for
positive recurrence are easy to formulate for d = 2, but not for d > 2.

Associated with the pair (θ,R) are fluid paths, which are solutions of
deterministic equations corresponding to the random equations of the SRBM.
A standard result of Dupuis and Williams [Ann. Probab. 22 (1994) 680–702]
states that when every fluid path associated with the SRBM is attracted to the
origin, the SRBM is positive recurrent. Employing this result, El Kharroubi,
Ben Tahar and Yaacoubi [Stochastics Stochastics Rep. 68 (2000) 229–253,
Math. Methods Oper. Res. 56 (2002) 243–258] gave sufficient conditions on
(θ,�,R) for positive recurrence for d = 3; Bramson, Dai and Harrison [Ann.
Appl. Probab. 20 (2009) 753–783] showed that these conditions are, in fact,
necessary.

Relatively little is known about the recurrence behavior of SRBMs for
d > 3. This pertains, in particular, to necessary conditions for positive re-
currence. Here, we provide a family of examples, in d = 6, with θ =
(−1,−1, . . . ,−1)T , � = I and appropriate R, that are positive recurrent,
but for which a linear fluid path diverges to infinity. These examples show
in particular that, for d ≥ 6, the converse of the Dupuis–Williams result does
not hold.

1. Introduction. This paper is concerned with the class of d-dimensional dif-
fusion processes known as semimartingale reflecting Brownian motions (SRBMs).
Such processes arise as approximations for open d-station queueing networks (see,
e.g., Harrison and Nguyen [10] and Williams [17, 18]). The state space for a
process Z = {Z(t), t ≥ 0} in this class is S = R

d+, the nonnegative orthant. The
data of the process consists of a drift vector θ , a nonsingular covariance matrix �,
and a d ×d reflection matrix R that specifies the boundary behavior. In the interior
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of the orthant, Z(·) behaves as an ordinary Brownian motion with parameters θ and
� and, roughly speaking, Z(·) is pushed in direction Rk whenever the boundary
{z ∈ S : zk = 0} is hit, for k = 1, . . . , d , where Rk is the kth column of R. The
process is Feller [16] and so is strong Markov.

A precise description for Z(·) is given by

Z(t) = Z(0) + B(t) + θt + RY(t), t ≥ 0,(1.1)

where B(·) is an unconstrained Brownian motion with covariance vector � and
no drift, with B(0) = 0, and Y(·) is a d-dimensional process with components
Y1(·), . . . , Yd(·) such that

Y(·) is continuous and nondecreasing, with Y(0) = 0,(1.2)

Yk(·) only increases at times t at which Zk(t) = 0, k = 1, . . . , d,(1.3)

Z(t) ∈ S for all t ≥ 0.(1.4)

(Display (1.3) means that Yk(t2) > Yk(t1), for t2 > t1, implies Zk(t) = 0 at some
t ∈ [t1, t2].) For an SRBM with data (θ,�,R) to exist, it is necessary and sufficient
that R be completely-S. Completely-S means that each principal submatrix R′ is
an S-matrix, that is, for some w ≥ 0, R′w > 0 holds. The complete definition
and basic properties of Z(·) are reviewed in Appendix A of Bramson, Dai and
Harrison [2].

An SRBM is said to be positive recurrent if the expected time to hit an arbitrary
open neighborhood of the origin is finite for every starting state. A necessary and
sufficient condition for positive recurrence, for d = 2, is that

R is nonsingular with R−1θ < 0(1.5)

and that R is a P -matrix (El Kharroubi, Ben Tahar and Yaacoubi [7]). (That is,
each principal submatrix of R has a positive determinant.) Necessary and sufficient
conditions, for d = 3, are known, but are more complicated. El Kharroubi, Ben
Tahar and Yaacoubi [8] gave sufficient conditions; Bramson, Dai and Harrison [2]
showed these conditions are necessary. Another proof of the sufficiency of these
conditions was recently given in Dai and Harrison [4]. In the special case where
R is an M-matrix, (1.5) is necessary and sufficient for positive recurrence in all d

(Harrison and Williams [11]); (1.5) is always necessary for positive recurrence [7].
Associated with the parameters θ and R are fluid paths, which are solutions of

deterministic equations corresponding to (1.1)–(1.4). More precisely, a fluid path
is a pair of continuous functions y, z : [0,∞) → R

d that satisfy

z(t) = z(0) + θt + Ry(t) for all t ≥ 0,(1.6)

y(·) is continuous and nondecreasing, with y(0) = 0,(1.7)

yk(·) only increases at times t at which zk(t) = 0, k = 1, . . . , d,(1.8)

z(t) ∈ S for all t ≥ 0.(1.9)
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A fluid path (y, z) is attracted to the origin if z(t) → 0 as t → ∞; it is divergent

if |z(t)| → ∞ as t → ∞ [where |u| def= �i |ui |, for u = (ui) ∈ R
d ].

The following result, from Dupuis and Williams [6], gives a sufficient condition
for positive recurrence of an SRBM in terms of the associated fluid paths.

THEOREM 1.1 (Dupuis–Williams). Let Z(·) be a d-dimensional SRBM with
data (θ,�,R). If every fluid path associated with (θ,R) is attracted to the origin,
then Z(·) is positive recurrent.

Theorem 1.1 provides an important ingredient for demonstrating the sufficiency
of the conditions in [8] for positive recurrence of an SRBM, for d = 3, that were
alluded to above. An open question is whether a converse of Theorem 1.1 holds
for d > 3, that is, whether Z(·) positive recurrent implies that every fluid path is
attracted to the origin.

A fluid path (y, z) is linear if y(t) = ut and z(t) = vt for given vectors u, v ≥ 0.
(u ≥ 0 means ui ≥ 0 for i = 1, . . . , d .) When y(·) and z(·) are linear, the fluid path
properties (1.6)–(1.9) can be expressed as solutions of the linear complementarity
problem

u, v ≥ 0, v = θ + Ru, u · v = 0,(1.10)

where u · v
def= ∑

i uivi . A solution (u, v) of (1.10) is stable if v = 0 and diver-
gent otherwise. It is nondegenerate if u and v together have exactly d positive
components, and it is degenerate otherwise. It is easy to see that, for a converse
to Theorem 1.1 to hold, all linear fluid paths associated with a positive recurrent
SRBM must be stable.

In this article, we provide a family of examples, in d = 6, for which the SRBM
is positive recurrent, yet possesses a divergent linear fluid path. We set

θ = (−1,−1, . . . ,−1)T , � = I(1.11)

(where “T ” denotes the transpose), and denote by R the 6 × 6 matrix with

R = J1 + J2,(1.12)

where J1 satisfies (J1)i,j = 1, for i, j = 1, . . . ,6, and

J2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 δ2 δ2 δ2 δ2 −δ4
0 0 −δ3 −δ3 −δ3 −δ3
0 −δ3 0 −δ3 −δ3 −δ3
0 −δ3 −δ3 0 −δ3 −δ3
0 −δ3 −δ3 −δ3 0 −δ3
δ1 −δ3 −δ3 −δ3 −δ3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.(1.13)

Here, we assume that δi > 0, i = 1, . . . ,4, with

δ2 + δ3 ≤ 1
6δ4(1.14)
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and

δ1 ≤ δ3 ≤ 0.1, δ4 < 1.(1.15)

One can, for example, choose

δ1 = δ2 = δ3 = 0.05, δ4 = 0.6.(1.16)

The matrix R has been chosen so that Ri,i = 1 for i = 1, . . . ,6. The roles of the
coordinates i = 2, . . . ,5 with respect to R are indistinguishable, and the role of
i = 6 differs from those of i = 2, . . . ,5 only in its interaction with the coordinate
i = 1 through R1,6 and R6,1. Since all entries of R are positive, it is immediate that
R is completely-S. The role of the relations in (1.14) and (1.15) will be explained
in the next subsection.

The main result in this article is the following theorem.

THEOREM 1.2. Let Z(·) denote the SRBM with θ = (−1,−1, . . . ,−1)T ,
� = I and R satisfying (1.12)–(1.15). Then Z(·) is positive recurrent, but pos-
sesses a divergent linear fluid path.

One can check that (u, v), with u = e1 and v = δ1e6, defines a divergent linear
fluid path (ei denotes the ith unit vector). Since u and v together have a total of two
positive components, the fluid path is degenerate. [Related divergent fluid paths are
easy to construct, e.g., (y, z) with y(t) = e1t and z(t) =∑5

k=2 ek + δ1e6t .] In order
to demonstrate Theorem 1.2, it suffices to show Z(·) is positive recurrent.

Similar examples exist that satisfy the analog of Theorem 1.2, but with d > 6.
One can construct such examples by inserting additional coordinates Zi(·) that are
independent of Z1(·), . . . ,Z6(·), with θi = −1 and Ri,i = 1.

In the remainder of the section, we summarize how the matrix R affects the
evolution of Z(·) and leads to its positive recurrence. We also outline the rest of
the paper.

Sketch of positive recurrence. The reflection matrix R that we have chosen
has the following properties, which we will use in the next three paragraphs. For
θ given by (1.11), all of the coordinates Zk(·), k = 1, . . . ,6, have drift −1, which
is compensated for by R, which pushes a coordinate away from 0 whenever any
of the coordinates is being reflected there. (Although the motion induced by R is
not absolutely continuous, we will also refer to it as “drift” here.) Because of the
choice of θ , for k, k′ = 2, . . . ,5,

Zk′(·) − Zk(·) has no drift

except when one of the coordinates is being reflected; when the coordinate k is
reflected, the difference has negative drift because of the term δ3 in J2. Also, for
k = 2, . . . ,5, Z6(·) − Zk(·) has no drift except when Zk(·) is reflected, in which
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case the difference has negative drift, or when Z6(·) or Z1(·) is reflected, in which
case it has positive drift, the last case occurring because of the term δ1. On the
other hand, when the first coordinate is being reflected, for k = 2, . . . ,5,

Z1(·) − Zk(·) has no drift

and, when one of the other four coordinates k = 2, . . . ,5 is being reflected, the dif-
ference has positive drift because of the term δ2 in J2. But, when Z6(·) is reflected,
the difference acquires a negative drift because of the term δ4 in J2 and (1.14).

The process Z(·) is positive recurrent, although its deterministic analog z(·) pos-
sesses a divergent linear fluid path in the direction e6 when u = e1. This difference
in behavior occurs due to the following interaction between the different coordi-
nates of Z(·). When Z1(·) is close to 0 [for instance, when Zk(·), k = 2, . . . ,5,
are larger], it may remain small for an extended period of time, with the other co-
ordinates perhaps increasing. Nonetheless, as we will see, after a finite expected
time, one of the coordinates k, k = 2, . . . ,5, will hit 0. Because of the reflections
against 0 by this coordinate and perhaps by the other three coordinates, the coor-
dinate k = 1 will acquire, on the average, a positive drift and therefore increase
linearly. When this occurs, each of the coordinates k = 2, . . . ,5 will drift toward 0
and afterward remain close to 0.

The sixth coordinate increases linearly in time when the first coordinate under-
goes repeated reflection. However, when the first coordinate is instead increasing,
the sixth coordinate will drift back to 0 on account of the terms (J2)6,j = −δ3,
j = 2, . . . ,5. Moreover, on account of (1.14), the term (J2)1,6 = −δ4 is sufficiently
smaller than −δ2 so that, when the sixth coordinate starts reflecting at 0, the nega-
tive drift induced in the first coordinate more than compensates for the positive drift
induced in the first coordinate by the reflection of the other four coordinates. As a
consequence, the first coordinate acquires a negative net drift. After this occurs, the
coordinates k = 2, . . . ,6 will all remain close to 0 until the first coordinate hits 0,
in which case the behavior outlined above can repeat. This behavior prevents any
of the coordinates from typically moving too far from 0, and will ensure that the
system is positive recurrent.

The proof of Theorem 1.2 is organized as follows. In Section 2, we give a num-
ber of bounds on Y(·) and Z(·) that are derived by applying elementary Brownian
motion estimates to (1.1). These bounds are employed in the rest of the paper. In
Section 3, we demonstrate a version of Foster’s Criterion that will be used here.
We also recall and then employ the main result in Ratzkin and Treibergs [15],
which states that for a Brownian pursuit problem, the presence of four “predators”
is enough for them to capture the “prey” in finite expected time. In our context,
Zk(·), k = 2, . . . ,5, will play the role of the predators and Z1(·) will play the role
of the prey. This behavior will justify the claim in the above discussion that one of
the coordinates with k = 2, . . . ,5 will hit 0 after a finite expected time.

In Section 4, we state the main steps in the proof of Theorem 1.2 in the form
of a series of five propositions, and show how the theorem follows from them.
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Depending on whether or not Y1(·) is initially growing quickly, Proposition 4.1
states that, during this time, either the coordinates Z2(·), . . . ,Z6(·) decrease by
an appropriate factor or Z6(·) increases linearly. In the first case, it follows from
Proposition 4.2 that Z1(·) will also remain small and so, as desired, the norm of
the SRBM decreases by a factor over the time interval. In the second case, the
argument proceeds along the lines sketched above in the comparison of Z(·) with
the divergent fluid path, and employs Propositions 4.3, 4.4 and 4.5.

In Section 5, we demonstrate Propositions 4.1 and 4.2 and, in Section 6, we
demonstrate Propositions 4.3, 4.4 and 4.5. The reasoning employs the interac-
tion of the different components Zk(·), k = 1, . . . ,6, and draws from the different
bounds in Sections 2 and 3.

2. Basic estimates. In this section, we give a number of elementary bounds
that will be used in the remainder of the article. In Lemma 2.1, we give bounds on
standard one-dimensional Brownian motion B(·). (All of the bounds in the lemma
hold in greater generality; see, e.g., [12], page 59, and [13].) These bounds will
then be applied in the rest of the section to obtain bounds on the quantities Y(·) and
Z(·) in (1.1), the equation describing the evolution of SRBM. Here and elsewhere
in the paper, the notation C1,C2, . . . will be employed for positive constants whose
precise value is not of interest to us, with the same symbol often being reused.

LEMMA 2.1. Let B(·) denote a standard Brownian motion. Then, for each
t ≥ 0,

E
[

max
0≤s≤s′≤t

(
B(s′) − B(s)

)2]≤ 8t.(2.1)

For given ε > 0, there exist C1, ε′ > 0 such that, for each t ≥ 0,

P
(

max
0≤s≤t

|B(s)| ≥ εt
)

≤ C1e
−ε′t .(2.2)

For given ε > 0, there exist C1, ε′ > 0 such that, for each u ≥ 0,

P
(

inf
t≥0

(
εt + u − |B(t)|)≤ 0

)
≤ C1e

−ε′u,(2.3)

and, for each u > 0 and t ≥ 0,

P
(

min
0≤s≤s′≤t

(
ε(s′ − s) + u − |B(s ′) − B(s)|)≤ 0

)
≤ C1(t + 1)e−ε′u.(2.4)

PROOF. Since (B(s′) − B(s))2 ≤ 2(B(s′)2 + B(s)2), it follows from the Re-
flection Principle that the left-hand side of (2.1) is at most

4E
[

max
0≤s≤t

B(s)2
]
≤ 8E[B(t)2] = 8t.
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The bound (2.2) follows by applying the Reflection Principle to both B(·) and
−B(·).

Again applying the Reflection Principle to B(·) and −B(·), it follows that, for
given ε > 0,

P

(
1

2
(εt ′ + u) − max

0≤s≤t ′
|B(s)| ≤ 0

)

≤ 4P

(
1

2
(εt ′ + u) − |B(t ′)| ≤ 0

)

≤ C2 exp
(−(εt ′ + u)2/8t ′

)≤ C2e
− 1

8 εu,

where C2 does not depend on t ′ or u. Setting t ′ = 2i , i = 0,1,2, . . . , one obtains
bounds whose exceptional probabilities sum to at most C1e

−ε′u, for ε′ = 1
8ε and

appropriate C1. The bound in (2.3) follows quickly from this.
It follows from (2.3) that, for each i = 0,1,2, . . . ,

P

(
inf
s′≥i

(
ε(s′ − i) + 1

2
u − |B(s ′) − B(i)|

)
≤ 0
)

≤ C1e
− 1

2 ε′u.(2.5)

Using the Reflection Principle, it is easy to check that, for appropriate C3, ε′′ > 0
and all u ≥ 0,

P

(
max

0≤s≤1
|B(i + s) − B(i)| ≥ 1

2
u − ε

)
≤ C3e

−ε′′u.

Together with (2.5), this implies

P
(

inf
s∈[i,i+1),s′≥s

(
ε(s′ − s) + u − |B(s ′) − B(s)|)≤ 0

)
≤ C1e

−ε′u

for new choices of C1 and ε′. Summing over i < t gives the bounds in (2.4). �

The next lemma provides elementary upper and lower bounds on Yk(·).

LEMMA 2.2. For each t ≥ 0 and � = 2, . . . ,5,

6∑
k=1

Yk(t) ≥ t − Z�(0) − B�(t)(2.6)

and, for each � = 1, . . . ,6,

6∑
k=1

Yk(t) ≥ 1

2

(
t − Z�(0) − B�(t)

)
.(2.7)

For each t ≥ 0 and k = 1, . . . ,6,

Yk(t) ≤ t + max
0≤s≤t

(−Bk(s))(2.8)
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and, for a given ε ≥ 0, there exist C1 and ε′ > 0 so that

P
(
Yk(t) ≥ (1 + ε)t

)≤ C1e
−ε′t .(2.9)

PROOF. Since δ3 ≥ 0, it follows from (1.1) that, for � = 2, . . . ,5,

Z�(t) ≤ Z�(0) + B�(t) − t +
6∑

k=1

Yk(t),(2.10)

from which (2.6) immediately follows. Since each of the entries of J2 in (1.13)
is less than 1, the analog of (2.10) holds for � = 1, . . . ,6, but with the term
2
∑6

k=1 Yk(t). This implies (2.7).
Let τ denote the time in [0, t] at which Yk(t) is first attained, for given k. It

follows from (1.1) that

Yk(t) ≤ τ − Bk(τ) ≤ t + max
0≤s≤t

(−Bk(s)),

which imples (2.8). The bound (2.9) follows from (2.8) and (2.2). �

We next obtain a number of upper bounds on Zk(·). The following lemma is
elementary.

LEMMA 2.3. Let B(·) denote a standard Brownian motion. For each k, t

and x,

P
(

max
0≤s≤t

Zk(s) − Zk(0) ≥ 7t + x
)

≤ 16P
(
B(t) ≥ x

)
.(2.11)

Consequently, for all t , and appropriate C1 and ε′ > 0,

P
(

max
0≤s≤t

Zk(s) − Zk(0) ≥ 8t
)

≤ C1e
−ε′t .(2.12)

PROOF. It follows from (1.1) that, since all entries for J2 in (1.13) are at
most 1

6 ,

max
0≤s≤t

Zk(s) − Zk(0) ≤ max
0≤s≤t

Bk(s) + 7

6

6∑
�=1

Y�(t).

By (2.8) of Lemma 2.2, this is at most

7t + 7

6

6∑
�=1

max
0≤s≤t

(−B�(s)) + max
0≤s≤t

Bk(s).

The inequality in (2.11) follows from this and the Reflection Principle. The in-
equality in (2.12) is an immediate consequence of (2.11). �

The following lemma requires a bit more work. Here, we employ the notation
Nk(t), k = 1, . . . ,6, with N6(t) = Y1(t) and Nk(t) = 0 for k �= 6; x+ denotes the
positive part of x ∈ R.
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LEMMA 2.4. For each k, k = 2, . . . ,6, t ≥ 0 and x,

P
(

max
0≤s≤t

Zk(s) − Zk(0) − δ1Nk(t) ≥ x
)

≤ 48P

(
B(t) ≥ 1

4
x

)
,(2.13)

where B(·) is standard Brownian motion. Consequently, for given ε > 0, there exist
C1, ε′ > 0 such that, for each t ≥ 0,

P
(

max
0≤s≤t

Zk(s) − Zk(0) − δ1Nk(t) ≥ εt
)

≤ C1e
−ε′t .(2.14)

Also, for k = 2, . . . ,5,

E
[((

max
0≤s≤t

Zk(t) − Zk(0)
)
+
)2]≤ 24 · 16t.(2.15)

PROOF. Let τk denote the last time r , r ≤ s, at which Zk(r) = 0; if the set
is empty, let τk = 0. Let τ denote the last time r , r ≤ s, at which Z�(r) = 0 for
any � = 2, . . . ,6; denote this coordinate by L. If the set is empty, set τ = 0. We
also abbreviate by setting Bk(r1, r2) = Bk(r2)−Bk(r1) and Nk(r1, r2) = Nk(r2)−
Nk(r1).

We claim that for given k, k = 2, . . . ,6,

Zk(τ) − Zk(0) ≤ Bk(τk, τ ) − BL(τk, τ ) + δ1Nk(τ).(2.16)

To see this, note that subtraction of the equations for the kth and Lth coordinates
of (1.1) implies

Zk(τ) − Zk(τk) = ZL(τ) − ZL(τk) + Bk(τk, τ ) − BL(τk, τ )

+ δ1Nk(τk, τ ) − δ1NL(τk, τ ) − δ3
(
YL(τ) − YL(τk)

)
≤ Bk(τk, τ ) − BL(τk, τ ) + δ1Nk(τ).

When τk > 0, Zk(τk) = 0 holds, and so (2.16) follows.
Let τ ′ = τ ∨ τ1. Note that, when τ �= τ ′ > 0,

Z1(τ
′) − Z1(τ ) = −Z1(τ ) ≤ 0.

Also, since Z6(r) > 0 for r ∈ (τ, τ ′], it follows from the definition of J2 that(
R
(
Y(τ ′) − Y(τ)

))
k ≤ (R(Y(τ ′) − Y(τ)

))
1.

Subtraction of the kth and 1st coordinates of (1.1), together with these two inequal-
ities, implies that

Zk(τ
′) − Zk(τ) ≤ Bk(τ, τ

′) − B1(τ, τ
′) + δ1Nk(τ, τ

′).(2.17)

It is easy to see that

Zk(s) − Zk(τ
′) ≤ Bk(τ

′, s).(2.18)
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Combining (2.16), (2.17) and (2.18) implies

Zk(s) − Zk(0) ≤ Bk(τk, s) − BL(τk, τ ) − B1(τ, τ
′) + δ1Nk(t).(2.19)

By employing the upper bounds 1
4x on −B1(s, s

′) and Bk(s, s
′), and 1

2x on
−B�(s, s

′), � �= 1, k, for all 0 ≤ s ≤ s′ ≤ t , one therefore obtains that, for all x,

P
(

max
0≤s≤t

Zk(s) − Zk(0) − δ1Nk(t) ≥ x
)

(2.20)

≤ 12P

(
max

0≤s≤s′≤t

(
B(s′) − B(s)

)≥ 1

2
x

)
.

It follows from the Reflection Principle that the right-hand side of (2.20) is at most
48P(B(t) ≥ 1

4x), which implies (2.13).
The inequalities in (2.14) and (2.15) follow directly from (2.13). �

We will employ (2.13) to show (2.21) of the following lemma. On account of
the thin tail of max0≤s≤t Zk(s), restricting its expectation to a set F decreases
the expectation proportionally to P(F), except for a logarithmic factor; a simi-
lar statement holds for the second moment. The lemma will be important for our
calculations later in the article.

LEMMA 2.5. For an appropriate constant C1, all t ≥ 0 and all measurable
sets F with P(F) > 0,

E
[

max
0≤s≤t

Zk(s)
2;F

]
≤ C1P(F)

(
t log

(
e/P (F )

)+ M
)

(2.21)

for k = 2, . . . ,5, when Zk(0) ≤ √
M , and

E
[

max
0≤s≤t

Zk(s);F
]
≤ C1P(F)

(√
t log

(
e/P (F )

)+ t + M
)

(2.22)

for k = 1,2, . . . ,6, when Zk(0) ≤ M .

PROOF. On account of (2.13), we can construct a standard normal random
variable W on the probability space so that, for k = 2, . . . ,5,

E
[

max
0≤s≤t

((
Zk(s) − Zk(0)

)
+
)2;F ]≤ C2tE[W 2;F ],(2.23)

where C2 = 48 · 16. (The inequality follows by integrating by parts and employing
E[(4B(t))2] = 16t .) Choosing a so that P(W 2 ≥ a) = P(F), the right-hand side
of (2.23) is at most

C2t

(
aP (F ) +

∫ ∞
a

P (W 2 ≥ x)dx

)
.(2.24)
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The random variable W 2 has an exponentially tight tail in the sense that, for ap-
propriate C3,C4 > 0 and all y, x with 0 ≤ y ≤ x,

P(W 2 ≥ x) ≤ C3e
−C4(x−y)P (W 2 ≥ y).(2.25)

Setting y = 0 and x = a, this implies a ≤ 1
C4

log(C3/P (F )). Application of (2.25)
with y = a therefore implies (2.24) is at most

C2t
(
aP (F ) + (C3/C4)P (W 2 ≥ a)

)
≤ (C2/C4)tP (F )

(
log
(
1/P (F )

)+ C3 + logC3
)
.

So, for appropriate C5,

E
[

max
0≤s≤t

((
Zk(s) − Zk(0)

)
+
)2;F ]≤ C5tP (F ) log

(
e/P (F )

)
.(2.26)

For Zk(0) ≤ √
M , (2.21) follows from this by considering the complementary

events {maxs≤t Zk(s) > 2
√

M} and {maxs≤t Zk(s) ≤ 2
√

M}, and noting that, on
the former,

max
0≤s≤t

Zk(s)
2 ≤ 4 max

0≤s≤t

(
Zk(s) − Zk(0)

)2
and, on the latter, maxs≤t Zk(s)

2 ≤ 4M .
In order to show (2.22), we note that, for k = 1, . . . ,6, it follows from (1.1) and

(2.8) that

Zk(s) − Zk(0) ≤ Bk(s) − s + 7

6

6∑
�=1

Y�(s)

(2.27)

≤ 6s + Bk(s) + 7

6

6∑
�=1

max
0≤r≤s

(−B�(r)).

This, together with the Reflection Principle, implies that

P
(

max
0≤s≤t

Zk(s) − Zk(0) − 6t ≥ x
)

≤ 7P

(
max

0≤s≤t
B(s) ≥ 1

8
x

)
(2.28)

≤ 14P

(
B(t) ≥ 1

8
x

)
,

where B(·) is standard Brownian motion.
Reasoning as in the first part of the proof, we can construct a standard normal

random variable W so that

E
[

max
0≤s≤t

Zk(s) − Zk(0) − 6t;F
]
≤ C2

√
tE[W ;F ],(2.29)

where C2 = 14 · 8. Since W has an exponentially tight tail, we can reason as
through (2.26) to show that

E
[

max
0≤s≤t

Zk(s) − Zk(0) − 6t;F
]
≤ C5

√
tP (F ) log

(
e/P (F )

)
(2.30)



962 M. BRAMSON

for appropriate C5. This implies (2.22) for Zk(0) ≤ M and appropriate C1. �

We now apply Lemma 2.4 to obtain sharper bounds on Yk(·), with k = 2, . . . ,6,
than those in Lemma 2.2, provided bounds on Y1(·) are given.

LEMMA 2.6. For given ε > 0, there exist C1 and ε′ > 0 such that, for all t ≥ 0
and k = 2, . . . ,6,

P

(
Yk(t) + (1 − δ3)

6∑
�=2,� �=k

Y�(t) ≥ (1 + ε)t + δ1Nk(t)

)
≤ C1e

−ε′t .(2.31)

There exist C1 and ε′ > 0 such that, for all t ≥ 0 and k = 2, . . . ,6,

P

(
Yk(t) ≤ 1

5
t − 1

δ3

(
Zk(0) + 2Y1(t)

))≤ C1e
−ε′t .(2.32)

PROOF. It follows from (1.1) that

Zk(t) − Zk(0) ≥ Bk(t) − t + Yk(t) + (1 − δ3)

6∑
�=2,� �=k

Y�(t)(2.33)

for k = 2, . . . ,6. Together with (2.14) of Lemma 2.4, (2.33) implies (2.31).
Summing the arguments inside P(·) in (2.31), over � = 2, . . . ,6, gives

P

((
1 − 4

5
δ3

) 6∑
�=2

Y�(t) ≥ (1 + ε)t + δ1Y1(t)

)
≤ 5C1e

−ε′t .

Since δ3 ≤ 1
10 ,

1 − δ3

1 − 4/5δ3
≤ 1 − 1

5
δ3 − 1

10
δ2

3,(2.34)

which implies that, for small enough ε,

P

(
(1 − δ3)

6∑
�=2

Y�(t) − t ≥ −1

5

(
1 + 1

2
δ3

)
δ3t + δ1Y1(t)

)
≤ 5C1e

−ε′t .(2.35)

By (1.1), one has, for k = 2, . . . ,6,

Zk(t) − Zk(0) ≤ Bk(t) − t + δ3Yk(t) + (1 − δ3)

6∑
�=2

Y�(t) + (1 + δ1)Y1(t).

Off of the exceptional set in (2.35), this is at most

−1
5

(
1 + 1

2δ3
)
δ3t + Bk(t) + δ3Yk(t) + 2Y1(t).

Solving for Yk(t), together with the obvious exponential bound on Bk(t), produces
(2.32) for a new choice of C1 and ε′. �
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In Lemma 2.4, we gave upper bounds on Zk(·) for k = 2, . . . ,6. Here, we em-
ploy (2.31) and (2.32) of Lemma 2.6 to obtain an upper bound on Z1(·). The bound
implies in particular that, for large t , Y1(t) > 0 and hence Z1(s) = 0 at some s ≤ t .

LEMMA 2.7. For given ε > 0, there exist C1 and ε′ > 0 such that, for each
t ≥ 0,

P

(
Z1(t) − Z1(0) − 3

δ3

(
Y1(t) + Z6(0)

)≥ − 1

30
δ4t

)
≤ C1e

−ε′t .(2.36)

PROOF. On account of (1.1),

Z1(t) − Z1(0) ≤ B1(t) − t + Y1(t) + (1 + δ2)

6∑
k=2

Yk(t)

(2.37)
− (δ2 + δ4)Y6(t).

One bounds (1 + δ2)
∑6

k=2 Yk(t) by employing (2.31) after summing over � =
2, . . . ,6, and one bounds (δ2 + δ4)Y6(t) by employing (2.32). It then follows with
a little algebra that the right-hand side of (2.37) is at most(

9

10
δ2 + δ3 − 1

5
δ4

)
t + 3

δ3

(
Y1(t) + Z6(0)

)
(2.38)

≤ − 1

30
δ4t + 3

δ3

(
Y1(t) + Z6(0)

)
off of a set of probability C1e

−ε′t , for appropriate C1 and ε′ > 0. For the bound
on the left-hand side of (2.38), one employs the bounds on δi in (1.14) and (1.15),
together with (2.31), (2.32) and an analog of (2.34). For the inequality in (2.38),
one uses δ2 +δ3 ≤ 1

6δ4. It follows from (2.37) and (2.38) that, off of the exceptional
set,

Z1(t) − Z1(0) ≤ − 1

30
δ4t + 3

δ3

(
Y1(t) + Z6(0)

)
,

which implies (2.36). �

3. A Brownian pursuit model and Foster’s Criterion. In this section, we
first discuss a Brownian pursuit model, which was mentioned briefly at the end of
Section 1. Using a result of Ratzkin and Treibergs [15], it is employed to show
that the expected time for at least one of the coordinates Zk(·), k = 2, . . . ,5, to
hit 0 is finite. In Proposition 3.2, we apply this result to obtain a lower bound
on
∑5

k=2 Yk(·) that will be used later in the paper. We then show an appropriate
version of Foster’s Criterion. Foster’s Criterion is a tool for showing the positive
recurrence of a Markov process. Since the stopping times we will employ are ran-
dom, we need a variant of the standard version.
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A Brownian pursuit model. The pursuit model consists of n standard one-
dimensional Brownian motions, Xk(·), k = 2, . . . , n + 1, that “pursue” another
Brownian motion X1(·). The n Brownian motions are referred to as predators and
the other Brownian motion as the prey. The prey will be said to be captured at
time t if t is the first time at which X1(t) = Xk(t) for some k = 2, . . . , n + 1. All
Brownian motions are assumed to move independently.

One wishes to know whether the expected time for capture is finite or infinite.
When there are initially predators on each side of the prey, one can show that the
expected capture time is finite. When all of the predators are on one side of the
prey, the expected capture time is infinite for n ≤ 3 and finite for n ≥ 4. This and
a number of related problems were considered in Bramson and Griffeath [3] in
the context of simple symmetric random walk. There, the behavior for n ≤ 3 was
demonstrated and simulations were given that suggested the behavior for n ≥ 4. Li
and Shao [14] showed finite expected capture time for Brownian motion for n ≥ 5
and Ratzkin and Treibergs [15] more recently showed this for n = 4.

Ratzkin and Treibergs [15] showed finite expected capture time by bounding
the tail of the capture time T . Their result can be formulated as follows.

THEOREM 3.1. For any initial state where all four of the predators are within
distance 1 and to the right of the prey,

P(T > t) ≤ C1t
−(1+η)(3.1)

for appropriate C1 and all t ≥ 0, where η = 0.000073. Consequently,

E[T ] < ∞.(3.2)

The analogous result for n = 5 is less delicate, which [15] showed with η =
0.0634. The reasoning in both [14] and [15] relies on rephrasing the pursuit model
in terms of an eigenvalue problem for the departure time of an n-dimensional
Brownian motion from an appropriate generalized cone. This type of problem was
also studied in DeBlassie [5]. (See [14] for additional references.)

We will employ both (3.1) and (3.2) for Proposition 3.2. (The first inequality is
not needed, but applying it makes one of the steps more explicit.) We note that,
by (1.1), for k = 2, . . . ,5 and all t ≥ 0,

Zk(t) − Z1(t) ≤ (Zk(0) − Z1(0)
)+ (Bk(t) − B1(t)

)
(3.3)

− δ2

5∑
k=2

Yk(t) + (δ4 − δ3)Y6(t).

When Y6(t) = 0, this implies

Zk(t) − Z1(t) ≤ (Zk(0) − Z1(0)
)+ (Bk(t) − B1(t)

)
.(3.4)
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Set

T1(x) = min{t :Z1(t) − Z1(0) ≥ x},(3.5)

T6 = min{t :Z6(t) = 0}.(3.6)

By employing Theorem 3.1 and (3.4), it is easy to show the following proposition.

PROPOSITION 3.1. Suppose that for a given x ≥ 0, maxk=2,...,5Zk(0) ≤ x.
Then, for η = 0.000073 and an appropriate constant C1 not depending on x,

P
(
T1(x) ∧ T6 ≥ x2t

)≤ C1t
−(1+η)(3.7)

for all t ≥ 0. Consequently, for appropriate C2 not depending on x,

E[T1(x) ∧ T6] < C2x
2.(3.8)

PROOF. By scaling space and time by 2x and 4x2, respectively, it follows
from (3.1) of Theorem 3.1 that

P
(
B1(s) − min

2≤k≤5
Bk(s) < 2x for all s ≤ x2t

)
≤ C1t

−(1+η)

for a new choice of C1. On account of (3.4) and the bounds on Zk(0), k = 2, . . . ,5,
this implies that

P
(
Z1(s) − Z1(0) < x for all s ≤ x2t;T6 ≥ x2t

)
≤ P

(
Z1(s) − Z1(0) − min

2≤k≤5
Zk(s) < x for all s ≤ x2t;T6 ≥ x2t

)

≤ C1t
−(1+η).

The inequality in (3.7) follows immediately. �

Application of Proposition 3.1. We define the stopping times

T2(x) = min

{
t :

5∑
k=2

Yk(t) = 1

2
(t + x2)

}
∧ T6 ∧ 5x5/η,(3.9)

where η is as in Theorem 3.1. In Sections 4–6, we will require upper bounds on
E[T2(x)] in order to ensure the linear growth of Z1(·) mentioned at the end of
Section 1. Here, we employ Proposition 3.1 to obtain the following bounds.

PROPOSITION 3.2. Suppose that maxk=2,...,5 Zk(0) ≤ x, with x ≥ 2. Then, for
appropriate C1 not depending on x,

E[T2(x)] ≤ C1x
2.(3.10)
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In Sections 4–6, we will also require upper bounds on P(A), where

A = {ω :T2(x) = 5x5/η}.(3.11)

These bounds are obtained in Proposition 3.3, which we state shortly.
In order to demonstrate Propositions 3.2 and 3.3, we need to rule out certain

behavior of Z(·) except on sets of small probability. For this, we introduce the
following notation. Let S1(x) denote the last time t before T1(x) at which Z1(t) −
Z1(0) = 1

2x, for given x. Set

τ = min
{
t : min

2≤k≤5
Zk(t) = 0 for t ≥ S1(x)

}
.(3.12)

(If τ does not occur, set τ = ∞.) Neither S1(x) nor τ is a stopping time. We also
set

te = x5/η, tf = 5x5/η and T ′
1(x) = 4

(
T1(x) + x2).(3.13)

Using this notation, we define:

A1 = {ω :T1(x) ∧ T6 > te},(3.14)

A2 = {ω :T1(x) ≤ T6 ∧ τ ∧ te},(3.15)

A3 = {ω : τ < T1(x) ≤ te, T6 > T ′
1(x)},(3.16)

A4 =
{
ω :

5∑
k=2

Yk(T
′

1(x)) <
1

2

(
T ′

1(x) + x2)},(3.17)

A5 = {ω :T6 > T ′
1(x)}.(3.18)

One can check that

A5 ⊆ A1 ∪ A2 ∪ A3.(3.19)

Also, note that

T2(x) ≤ T ′
1(x) ∧ T6 on Ac

4.(3.20)

Using this notation, it is not difficult to show the following lemma.

LEMMA 3.1. For A as in (3.11),

A ⊆ A′ def= A1 ∪ A2 ∪ (A3 ∩ A4).(3.21)

PROOF. Set

T ′
2(x) = min

{
t :

5∑
k=2

Yk(t) = 1

2
(t + x2)

}
∧ T6

and A6 = {ω :T ′
2(x) ≥ tf }. It suffices to show that A6 ⊆ A′.
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Since T ′
1(x) < tf on A3,

A3 ∩ A6 ⊆ A3 ∩ A4.

Consequently, by (3.19) and the definition of A′,

A5 ∩ A6 ⊆ A1 ∪ A2 ∪ (A3 ∩ A6) ⊆ A′.(3.22)

On the other hand,

Ac
5 ∩ A6 ⊆ A1 ⊆ A′.

Together with (3.22), this implies A6 ⊆ A′, as desired. �

The bounds on P(A′) in Proposition 3.3 will be applied in the proof of Propo-
sition 3.2 and the bounds on P(A) will be applied in the proof of Proposition 4.4.
Proposition 3.1, Lemma 2.1 and (1.1) are the main tools in the proof of Proposi-
tion 3.3.

PROPOSITION 3.3. Suppose that maxk=2,...,5 Zk(0) ≤ x, with x ≥ 1. Then, for
an appropriate C1 not depending on x,

P(A) ≤ P(A′) ≤ C1x
−5/η−2.(3.23)

PROOF. In addition to A1, A2, A3 and A4, we employ the set

A7 = {ω :Z1(s) = 0 for some s ∈ [τ, T ′
1(x)]}.(3.24)

We proceed to obtain upper bounds on each of P(A1), P(A2), P(A3 ∩ A7) and
P(A3 ∩ A4 ∩ Ac

7). We first note that, by applying (3.7) of Proposition 3.1, with
t = x5/η−2,

P(A1) ≤ C2x
−5/η−2(3.25)

for appropriate C2.
In order to bound P(A2), we need to show that, over [S1(x), te], T1(x) typically

will not occur before T6 ∧ τ occurs; on this set, Z1(·) will drift toward 0 and away
from x. First note, by (1.1), that when T1(x) ≤ T6 ∧ τ ,

Z1(T1(x)) − Z1(S1(x)) = (B1(T1(x)) − B1(S1(x))
)− (T1(x) − S1(x)

)
.

It then follows from the definitions of T1(x) and S1(x) that

B1(T1(x)) − B1(S1(x)) = T1(x) − S1(x) + 1
2x.(3.26)

But, by (2.4) of Lemma 2.1, the probability of (3.26) occurring when T1(x) ≤ te is
at most

C2(te + 1)e−ε′x ≤ C3e
− 1

2 ε′x
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for appropriate C2, C3 and ε′ > 0. Consequently,

P(A2) ≤ C3e
− 1

2 ε′x.(3.27)

We next show that P(A3 ∩ A7) is small. This event will typically not occur
because the coordinates k = 2, . . . ,5 that are reflecting at 0 after τ will impart a
positive drift to Z1(·). Restricting our attention to the event A3, let K be the index
at which ZK(τ) = 0. Also, let τ ′ be any random time with

τ ≤ τ ′ ≤ T ′
1(x) ∧ min{s > τ :Z1(s) = 0}.(3.28)

Since τ ′ ≤ T ′
1(x) < T6, it follows from (1.1) that

5∑
k=2

(
Yk(τ

′) − Yk(τ )
)≥ (τ ′ − τ) − (BK(τ ′) − BK(τ)

)
.(3.29)

Applying (1.1) for the first coordinate and then substituting in (3.29), one obtains

Z1(τ
′) − Z1(τ ) ≥ B̃(τ ′) − B̃(τ ) + δ2(τ

′ − τ),(3.30)

where B̃(t)
def= B1(t) − (1 + δ2)BK(t).

Again applying (2.4) of Lemma 2.1, one has

P
(
B̃(τ ′) − B̃(τ ) + δ2(τ

′ − τ) ≤ −1
4x
)≤ C2

(
T ′

1(x) + 1
)
e−ε′x

(3.31)
≤ C3e

− 1
2 ε′x,

with T1(x) ≤ te and the definitions of T ′
1(x) and te being used in the latter inequal-

ity. Applying this to (3.30), one obtains that, since Z1(τ ) ≥ 1
2x,

P
(
Z1(τ

′) ≤ 1
4x;A3

)≤ C3e
− 1

2 ε′x

for τ ′ as in (3.28). This implies that

P(A3 ∩ A7) ≤ C3e
− 1

2 ε′x.(3.32)

We now show that

P(A3 ∩ A4 ∩ Ac
7) ≤ C2e

− 1
4 ε′x(3.33)

for an appropriate choice of C2. On the set A3 ∩ Ac
7, it follows from (1.1) that

5∑
k=2

Yk(T
′

1(x)) ≥ (T ′
1(x) − τ

)− (BK(T ′
1(x)) − BK(τ)

)
,(3.34)

where K is the index at which ZK(τ) = 0. Since τ < T1(x), it follows from the
definition of T ′

1(x) that the right-hand side of (3.34) is at least

1
2

(
T ′

1(x) + x2)+ [1
2x2 + 1

4

(
T ′

1(x) − τ
)− (BK(T ′

1(x)) − BK(τ)
)]

.
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Again applying (2.4), this is greater than 1
2(T ′

1(x) + x2) off of a set of probability

C2e
−ε′x2

, for appropriate C2 and ε′ > 0. Consequently,

P(A3 ∩ A4 ∩ Ac
7)

= P

( 5∑
k=2

Yk(T
′

1(x)) <
1

2

(
T ′

1(x) + x2);A3 ∩ Ac
7

)
(3.35)

≤ C2e
−ε′x2

.

One has

A ⊆ A′ = A1 ∪ A2 ∪ (A3 ∩ A4) ⊆ A1 ∪ A2 ∪ (A3 ∩ A7) ∪ (A3 ∩ A4 ∩ Ac
7).

Combining (3.25), (3.27), (3.32) and (3.35) therefore implies (3.23) for an appro-
priate choice of C2. �

Using Proposition 3.3, the demonstration of Proposition 3.2 is quick.

PROOF OF PROPOSITION 3.2. It follows from (3.19) that

Ac
4 ∪ Ac

5 ⊇ (A1 ∪ A2 ∪ (A3 ∩ A4)
)c = (A′)c.

Because of (3.20),

T2(x) ≤ T ′
1(x) ∧ T6(3.36)

on Ac
4. On the other hand, (3.36) holds trivially on Ac

5. Along with (3.13), this
implies that

T2(x) ≤ 4
(
T1(x) + x2)∧ T6 ≤ 4

(
T1(x) ∧ T6

)+ 4x2(3.37)

on (A′)c, and so, by (3.8) of Proposition 3.1,

E[T2(x); (A′)c] ≤ C3x
2(3.38)

for appropriate C3.
The bound T2(x) ≤ 5x5/η always holds and so, by Proposition 3.3,

E[T2(x);A′] ≤ C4/x
2(3.39)

for appropriate C4. Inequality (3.10) follows immediately from (3.38) and (3.39).
�
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Foster’s Criterion. Foster’s Criterion is a standard tool for showing positive
recurrence of a Markov process when the process has a “uniformly negative drift”
off of a bounded set in the state space (see, e.g., Bramson [1] or Foss and Kon-
stantopoulos [9]). Versions of Foster’s Criterion typically employ deterministic
stopping times whose length depends only on the initial state. Here, we require a
version of Foster’s Criterion with random times, which is given below.

We state the proposition for SRBM defined on the induced Z-path space, con-
sisting of continuous paths on R

6+ with the natural filtration, in order to facilitate
the definition of the sequence of stopping times employed in its proof. The SRBM
can always be projected onto this space. The proof of the proposition employs an
elementary martingale argument that extends to more general Feller processes.

Here and later on in the article, we employ the norm

‖z‖ = z1 +
5∑

k=2

z2
k + z6 for z = (z1, . . . , z6), zk ≥ 0.(3.40)

We set, for δ > 0,

τA(δ) = inf{t ≥ δ :Z(t) ∈ A};
Ez[·] denotes the expectation for the process with Z(0) = z, and F (t), t ≥ 0, de-
notes the filtration of σ -algebras associated with the SRBM.

PROPOSITION 3.4. Suppose that, for some δ, ε, κ > 0 and a family of stop-
ping times σ(z), z ∈ R

6+, with σ(z) ≥ δ, Ez[σ(z)] is measurable in z and the SRBM
Z(·) satisfies

Ez[‖Z(σ(z))‖] ≤ (‖z‖ ∨ κ) − εEz[σ(z)](3.41)

for all z. Then

Ez[τA(δ)] ≤ 1

ε
(‖z‖ ∨ κ) for all z,(3.42)

where A = {z :‖z‖ ≤ κ}. Hence, Z(·) is positive recurrent.

PROOF. The argument is a slight modification of that for the generalized Fos-
ter’s Criterion given on page 94 of [1]. Set σ0 = 0, and let σ1 < σ2 < · · · denote the
stopping times defined inductively, with σn − σn−1, conditioned on Z(σn−1) = z,
having the same law as σ(z) given Z(0) = z. By (3.41) and the Strong Markov
Property, for all z,

Ez[‖Z(σn)‖|F (σn−1)] ≤ (‖Z(σn−1)‖ ∨ κ
)− εEZ(σn−1)[σ(Z(σn−1))](3.43)

for almost all ω.
Set M(0) = ‖z‖ ∨ κ and

M(n) = ‖Z(σn)‖ + εσn for n ≥ 1.(3.44)
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Also, set G(n) = F (σn). On account of (3.43),

Ez[M(n)|G(n − 1)] ≤ M(n − 1) for n ≤ ρ,(3.45)

where ρ is the first time n > 0 at which M(n) ∈ A. So, M(n ∧ ρ) is a nonnegative
supermartingale on G(n).

It follows from the Optional Sampling Theorem that

Ez[M(ρ)] ≤ ‖z‖ ∨ κ.(3.46)

Note that τA(δ) ≤ σρ . Therefore, by (3.44) and (3.46),

εEz[τA(δ)] ≤ Ez[M(ρ)] ≤ ‖z‖ ∨ κ,(3.47)

which implies (3.42) as desired. �

4. Main steps of the proof of Theorem 1.2. Here, we present the main steps
of the proof of Theorem 1.2, postponing their proofs until Sections 5 and 6. Our
goal is to show that (3.41) of Proposition 3.4 is satisfied for each SRBM satisfying
the conditions of Theorem 1.2. It then follows from the proposition that the SRBM
is positive recurrent.

We employ the notation D1,D2, . . . and ε1, ε2, . . . , as well as the previous no-
tation C1,C2, . . . , to denote positive constants. As earlier, Ci denote terms whose
precise value is not of interest to us, with the same symbol sometimes being reused.
The terms Di and εi will sometimes take general values in the statements of the
propositions, in which case specific values will be employed at the end of the sec-
tion to demonstrate (3.41). We state the values of Di and εi we will apply, in most
cases, when they are first introduced.

Proposition 4.1 is the first result. It states in essence that, after an appropriate
time, either the norm of the initial state of the process decreases by a large factor
or the sixth coordinate is bounded away from 0. In the first case, (3.41) will be
demonstrated by using Proposition 4.2. In the second case, this will be done by
using Propositions 4.3–4.5. In the statement of Proposition 4.1, one can choose
D1 = 24 · 16 · 4 + 4 and D2 = 24 · 16 · 40/δ1δ3. At the end of the section, we will
set ε1 = ε2

2; the term ε2 ∈ (0, δ1δ2δ3/1200], with the exact value being specified
then.

PROPOSITION 4.1. Suppose that Z(0) = z with z1 ≤ M , z2
k ≤ M , for k =

2, . . . ,5, and z6 ≤ M . (a) For given ε1 > 0, there exist C1, D1 ≥ 1 and ε′ > 0 such
that, for all M ,

P
(
Zk(M) > D1M

)≤ C1e
−ε′M for k = 1,6,(4.1)

P
(
Zk(M) > ε1M

)≤ C1e
−ε′M for k = 2, . . . ,5,(4.2)

E[Zk(M)2] ≤ D1M for k = 2, . . . ,5.(4.3)
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(b) For appropriate D2 > 0 and each ε2 ∈ (0, 1
40δ1δ3], there exist sets F1 ∈

F (M), F2 ∈ F (M) and ε′ > 0 such that, for large enough M ,

P
(
(F1 ∪ F2)

c)≤ e−ε′M for k = 1,6,(4.4)

Z6(M) ≤ ε2M on F1,(4.5)

E[Zk(M)2;F1] ≤ ε2D2M for k = 2, . . . ,5,(4.6)

Z6(M) ≥ ε2M on F2.(4.7)

Depending on whether F1 or F2 holds, we proceed in different ways. Under F1,
we consider the evolution of the SRBM for an additional time D3M . For this, we
employ Proposition 4.2, which is given below.

We introduce the following terminology for Proposition 4.2. Set

ε3 = 6ε2/δ3 and D3 = 250D1/δ3δ4,(4.8)

for given ε2 > 0 and D1 ≥ 1. Let U1 be the first time t on the interval [0, (D3 −
ε3)M] at which Z1(t) = 12ε2

δ3
M , with U1 = (D3 − ε3)M if this does not occur. Set

U2 = U1 + ε3M ≤ D3M . The proposition states that Z1(U2), Z6(U2) and Zk(U2),
k = 2, . . . ,5, are all small in an appropriate sense. The argument requires Z1(t) >

0 for t ≤ U2, which enables all other coordinates to drift toward 0.

PROPOSITION 4.2. Suppose Z(0) = z satisfies

(12ε2/δ3)M ≤ z1 ≤ D1M,(4.9)

zk ≤ ε2M for k = 2, . . . ,6,(4.10)

for given D1 ≥ 1 and ε2 ∈ (0,1]. Then, for U2 as given above and large enough M ,

E[Zk(U2)] ≤ (70ε2/δ3)M for k = 1,6,(4.11)

E[Zk(U2)
2] ≤ (24 · 97ε2/δ3)M for k = 2, . . . ,5.(4.12)

When F2 occurs, we follow the sketch given near the end of Section 1. In this
case, we restart the SRBM at time M and apply Proposition 4.3. In the proposition,
we employ the stopping times T3(·) and T4(·). We define

T3(M) = min

{
t :

5∑
k=2

Yk(t) = 1

6
(δ1t + ε2M)

}
(4.13)

for given ε2 ∈ (0,1]. We then set T4(M) = T3(M) off of a set GM that will be spec-
ified in the proof of the proposition, with T4(M) ≤ T3(M) ∧ T6 holding on GM ,
where T6 is the stopping time that was defined in (3.6). [T3(M) < T6 will hold off
of GM .] The set GM will be negligible in the sense of (4.23) and (4.24).

In addition to the bounds on GM in (4.23) and (4.24), Proposition 4.3 gives
upper and lower bounds on T3(M) and Zk(T3(M)), for k = 1,6, and upper bounds
on Zk(T3(M)), for k = 2, . . . ,5. We will set the constant ε4 in the proposition
equal to 1

10 at the end of the section.
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PROPOSITION 4.3. Suppose Z(0) = z satisfies

zk ≤ D1M for k = 1,6,(4.14)

zk ≤ ε2
2M for k = 2, . . . ,5,(4.15)

z6 ≥ ε2M,(4.16)

for given M , D1 and ε2 ∈ (0, 1
20 ]. Then, on Gc

M and T3(M) < ∞,

T3(M) ≥ 1
30ε2M,(4.17)

T3(M) ≤ T6,(4.18)

Zk(T3(M)) ≤ 31D1

ε2
T3(M) for k = 1,6,(4.19)

Zk(T3(M)) ≤ 31ε2T3(M) for k = 2, . . . ,5,(4.20)

Z1(T3(M)) ≥ 1
12δ1δ2T3(M),(4.21)

Z6(T3(M)) ≥ 1
2δ1T3(M).(4.22)

For given ε4 > 0 and large enough M ,

E[Zk(T4(M));GM ] ≤ ε4 for k = 1,6,(4.23)

E[Zk(T4(M))2;GM ] ≤ ε4 for k = 2, . . . ,5.(4.24)

We define stopping times T ′
3(M) as follows. For given M > 0 and z = (z1,

. . . , z6), set

T ′
3(M) = T3(M) ∧ T6 ∧ 5NM(z)5/2η,(4.25)

where

NM(z) =
(

max
k=2,...,5

z2
k

)
∨ M(4.26)

and η = 0.000073 as in Section 3. Assuming random initial conditions that sat-
isfy the analog of (4.3) in Proposition 4.1, we give, in Proposition 4.4, bounds on
E[T ′

3(M)]. Moreover, the truncation event

AM = {ω :T ′
3(M) = 5NM(z)5/2η}(4.27)

is small in the sense of (4.30) and, under further initial conditions, is small as in
(4.31). Propositions 3.2 and 3.3 are the key ingredients in the proof.

PROPOSITION 4.4. Suppose that Z(0) satisfies

E[Zk(0)2] ≤ D1M for k = 2, . . . ,5,(4.28)

and given M ≥ 4 and D1. Then, for appropriate C2 not depending on M ,

E[T ′
3(M)] ≤ C2M(4.29)
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and

E[Zk(T
′

3(M))2;AM ] ≤ C2/
√

M.(4.30)

If, in addition, Zk(0) ≤ D1M for k = 1,6, then

E[Zk(T
′

3(M));AM ] ≤ C3/M(4.31)

for appropriate C3 not depending on M .

On the set Gc
M ∩ Ac

M , we continue to follow the evolution of Z(·) after the
elapsed time M + T3(M). [Note that, on Gc

M ∩ Ac
M , T3(M) = T ′

3(M).] We wish
to show that, provided Zk(·), k = 1,6, are initially “large” but Zk(·), k = 2, . . . ,5,
are initially “small,” then all coordinates will typically be small at an appropriate
random time. This is done in Proposition 4.5. The bounds (4.39) and (4.40) will
allow us to demonstrate (3.41) under the event F2 in Proposition 4.1.

In order to state Proposition 4.5, we define

T5(M1) = min{t :Z1(t) = ε5M1} ∧ D4M1,(4.32)

T ′
5(M1) = T5(M1) + 1

2ε5M1,(4.33)

for given M1 > 0, D4 and ε5 > 0. Note that

T ′
5(M1) ≤ (D4 + 1

2ε5
)
M1(4.34)

always holds. We employ the constants ε5, ε6, ε7, ε8 and D4, D5 in the proposition.
A specific value of ε5 ∈ (0, 1

72δ1δ2] will be assigned at the end of the section; there,
we will also employ ε6 = 31ε2, ε7 = 1

12δ1δ2, ε8 = 1
20δ3ε5 and D5 = 31D1/ε2;

D4 is specified in the proposition.

PROPOSITION 4.5. Let T5(·) and T ′
5(·) be as in (4.32) and (4.33) for given

ε5 > 0. Suppose Z(0) = z satisfies

zk ≤ ε6M1 for k = 2, . . . ,5,(4.35)

ε7M1 ≤ zk ≤ D5M1 for k = 1,6,(4.36)

for given M1 > 0, ε6 > 0, ε7 ≥ 6ε5 ∨ 3ε6 and D5 > 0. Then, for given ε8 > 0 and
D4 = 10D5δ4/δ2δ3,

P
(
T5(M1) = D4M1

)≤ C1e
−ε′M1,(4.37)

P
(
Zk(T5(M1)) ≥ ε8M1

)≤ C1e
−ε′M1 for k = 2, . . . ,6,(4.38)

for appropriate C1 and ε′ > 0 not depending on M1. Moreover,

E[Zk(T
′
5(M1))] ≤ 6ε5M1 + C4 for k = 1,6,(4.39)

E[Zk(T
′
5(M1))

2] ≤ 24 · 8ε5M1 + C4 for k = 2, . . . ,5,(4.40)

for appropriate C4 not depending on M1.
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Demonstration of Theorem 1.2. It suffices to consider the SRBM Z(·) on the
induced Z-path space. We will show that, for z ∈ R

6+ and an appropriate stopping
time σ(z), the assumption (3.41) of Proposition 3.4 is satisfied. The proposition
will then imply Z(·) is positive recurrent. We abbreviate by setting σ(z) = σ and
dropping the subscript z from Ez[·].

We will express σ in terms of a related stopping time σ ′, which we construct
piecemeal by using the sets appearing in the previous propositions. Assume that
‖z‖ = M . Then z1 ≤ M , z2

k ≤ M , for k = 2, . . . ,5, and z6 ≤ M , and so the as-
sumptions of Proposition 4.1 are satisfied. It follows from the proposition that
(4.1)–(4.3) hold for given M and (4.4)–(4.7) hold for large enough M . Let H1 de-
note the union of the set where (F1 ∪F2)

c occurs and where either the event in (4.1)
or the event in (4.2) occurs. On H1, we set σ ′ = M . It follows from Lemma 2.5,
(4.1), (4.2) and (4.4) that, for large enough M ,

E[‖Z(σ ′)‖;H1] ≤ 1.(4.41)

Suppose next that the event F1 ∩ Hc
1 holds. Then either (a) Z1(M) < (12ε2/

δ3)M or (b) Z1(M) ≥ (12ε2/δ3)M ; denote the former of these events by H2 and
the latter by H3. Under H2, we set σ ′ = M . Then, on account of (4.5) and (4.6) of
Proposition 4.1, with D2 = 24 · 16 · 40/δ1δ3,

E[‖Z(σ ′)‖;H2] ≤
(

12ε2

δ3
+ 4ε2D2 + ε2

)
M

(4.42)
≤ (97 · 16 · 40ε2/δ1δ3)M.

When H3 occurs, we set σ ′ = M + U2, where U2 is defined below (4.8). (Here
and later on, stopping times such as U2 refer to the restarted process.) The process
restarted at time M satisfies conditions (4.9) and (4.10) of Proposition 4.2. It fol-
lows from (4.11) and (4.12) of the proposition that

E[‖Z(σ ′)‖;H3] ≤ (140 + 96 · 97)
ε2

δ3
M ≤ 972 ε2

δ3
M.(4.43)

The bounds (4.41)–(4.43) consider the behavior of Z(σ) off of F2 ∩ Hc
1 . We

now consider the behavior on F2 ∩ Hc
1 , for which there are two cases. Denote by

H4 the subset of F2 ∩Hc
1 corresponding to the union of the events GM and AM for

the restarted process, which appear in the proof of Proposition 4.3 and in (4.27).
Let

σ ′ def= M + (T4(M) ∧ 5NM(Z(M))5/η)≤ M + T ′
3(M),

that is, σ ′ is the earlier of the times at which either the event GM or AM occurs.
The restarted process satisfies both (4.14)–(4.16) of Proposition 4.3 and (4.28) of
Proposition 4.4. It therefore follows from (4.23) and (4.24), with ε4 = 1

10 , and
(4.30) and (4.31) that

E[‖Z(σ ′)‖;H4] ≤ 1(4.44)
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for large enough M .

We also consider the behavior of Z(σ ′) on H5
def= F2 ∩ Hc

1 ∩ Hc
4 . On account of

(4.19)–(4.22) of Proposition 4.3, the conditions (4.35) and (4.36) of Proposition 4.5
are satisfied for the process restarted at time M + T3(M) = M + T ′

3(M), for M1 =
T3(M) and D5, ε6 and ε7 as specified before Proposition 4.5. Also, ε7 ≥ 6ε5 ∨ 3ε6
holds for ε2 ≤ δ1δ2δ3/1200 and ε5 as specified before the proposition. Inequalities
(4.39) and (4.40) therefore hold for T ′

5(M1) chosen as in (4.33). Setting σ ′ = M +
T3(M) + T ′

5(T3(M)), it follows from these inequalities that

E[‖Z(σ ′)‖;H5] ≤ 97 · 8ε5E[T3(M);H5] + C4
(4.45)

≤ 97 · 8ε5E[T ′
3(M)] + C4

for appropriate C4. On account of (4.3) of Proposition 4.1, one can apply Propo-
sition 4.4 to Z(·) restarted at time M , which gives the upper bound in (4.29) on
E[T ′

3(M)]. Applying this to (4.45), one obtains

E[‖Z(σ ′)‖;H5] ≤ 98 · 8ε5C2M(4.46)

for large enough M and appropriate C2.
Adding the bounds in (4.41)–(4.46) for E[Z(σ ′);Hi], i = 1, . . . ,5, one obtains

E[‖Z(σ ′)‖] ≤ C5(ε2 + ε5)M

for large enough M , with C5 depending on δ1 and δ3. So far, we have not specified
the values of ε2 and ε5; we now set

ε2 = ε5 = (1/4C5) ∧ (δ1δ2δ3/1200).

It follows that

E[‖Z(σ ′)‖] ≤ 1
2M(4.47)

for ‖z‖ = M and M ≥ M0, for appropriate M0 ≥ 1.
We define σ in terms of σ ′, by setting σ = σ ′ when ‖z‖ = M for M ≥ M0, and

σ = M ∨ 1 for M ≤ M0. When ‖z‖ = M and M ≥ M0, this implies

E[‖Z(σ)‖] ≤ 1
2M.(4.48)

On the other hand, by applying (2.22) of Lemma 2.5 to (4.1), it follows for all M

that

E[Zk(M ∨ 1)] ≤ C1(M ∨ 1) for k = 1,6

and appropriate C1 ≥ D1 ∨ 1. Together with (4.3), this implies

E[‖Z(M ∨ 1)‖] ≤ 6C1(M ∨ 1)(4.49)

for all M . Setting κ = 12C1(M0 ∨ 1), it follows from (4.48) and (4.49) that

E[‖Z(σ)‖] ≤ (‖z‖ ∨ κ) − 1
2(M ∨ 1)(4.50)
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for ‖z‖ = M and all M .
We also wish to show that, for ‖z‖ = M ,

E[σ ] ≤ C3(M ∨ 1)(4.51)

for some C3. This is a quick consequence of the definition of σ on H1, . . . ,H5
for ‖z‖ ≥ M0. On H1 ∪ H2, σ = M ; on H3, σ ≤ D3M ; on H4, σ ≤ M + T ′

3(M);
and on H5, σ = M + T ′

3(M) + T ′
5(T

′
3(M)). It therefore follows from (4.29) of

Proposition 4.4 and (4.34) that

E[σ ] ≤ M + D3M + E[T ′
3(M)] + E[T ′

5(T
′

3(M))]
(4.52)

≤ (1 + D3 + C2 + C2
(
D4 + 1

2ε5
))

M ≤ C3M

for ‖z‖ ≥ M0 and appropriate C2 and C3. Together with σ = M ∨ 1 for ‖z‖ < M0,
this implies (4.51).

Combining (4.50) and (4.51), one obtains

E[‖Z(σ)‖] ≤ (‖z‖ ∨ κ) − (1/2C3)E[σ ].(4.53)

This implies (3.41) of Proposition 3.4, with ε = 1/2C3. Since Z(·) is Feller and σ

is defined in terms of hitting times of closed sets, one can check that Ez[σ(z)] =
E[σ ] is measurable in z. By applying the proposition, (3.42) follows and hence
Z(·) is positive recurrent. This demonstrates Theorem 1.2.

5. Demonstration of Propositions 4.1 and 4.2. Proposition 4.1 constitutes
the first step of the proof of Theorem 1.2. It provides elementary upper bounds
(4.1)–(4.3) on Zk(M), k = 1, . . . ,6, and on E[Zk(M)2], k = 2, . . . ,5, that are
valid over all M . It states that, off of the exceptional set in (4.4), either Zk(M) will
be small for all k = 2, . . . ,6 or Z6(M) will be large, in the sense of (4.5)–(4.7).
This dichotomy depends on the rate of growth of Y1(·) as given by the set F3 in
(5.1) of the proof, although the actual correspondence is a bit more complicated.
The proof of Proposition 4.1 relies on the application of lemmas from Section 2 to
the equation (1.1) of the SRBM.

PROOF OF PROPOSITION 4.1. Both inequalities in (4.1) follow directly from
(2.12) of Lemma 2.3, with D1 ≥ 9. Inequality (4.2) follows from (2.14) of Lem-
ma 2.4, with a new choice of C1. For (4.3), one can restrict the expectation to the
set {Zk(M) > 2

√
M} and its complement. One then applies (2.15) to the first part

and a trivial bound to the second part to obtain (4.3), with D1 ≥ 24 · 16 · 4 + 4.
For the inequalities (4.4)–(4.7), we first set

F3 = {ω :Y1(M) − Y1(τk) > ε9M for some k = 2, . . . ,5}.(5.1)

Here, ε9
def= 2ε2/δ1 and τk is the last time before M at which Zk(t) = 0 for any t ;

if the set is empty, let τk = 0. On F3, we denote by K one of the indices k satisfy-
ing (5.1).
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We consider the behavior on F3 and Fc
3 separately, first considering the behavior

on F3. One has, by applying (1.1) to the K th and 6th coordinates,

Z6(M) − ZK(M) = (Z6(τK) − ZK(τK)
)+ (B6(M) − B6(τK)

)
− (BK(M) − BK(τK)

)+ δ1
(
Y1(M) − Y1(τK)

)
(5.2)

+ δ3
(
Y6(M) − Y6(τK)

)
.

On F3, it follows from (2.3) of Lemma 2.1 that, except on a set F4 ∈ F (M) of
exponentially small probability in M ,

Z6(M) ≥ δ1ε9M − εM ≥ 1
2δ1ε9M = ε2M(5.3)

for ε = 1
2δ1ε9 and large enough M . This gives the inequality in (4.7) on the set

F3 ∩ Fc
4 .

We now consider the behavior of Z(·) on Fc
3 . Set t1 = (1 − 20ε9/δ3)M ; since

ε2 ≤ 1
40δ1δ3, t1 ≥ 0 holds. It follows from (2.14) of Lemma 2.4 that, except on a

set F5 ∈ F (M) of exponentially small probability in M ,

Zk(t1) ≤ Zk(0) + εM ≤ ε9M(5.4)

for k = 2, . . . ,5, ε = ε9/2 and large enough M . Restarting Z(·) at time t1, it fol-
lows from (2.32) of Lemma 2.6 and (5.4) that, except on a set F6 ∈ F (M) of
exponentially small probability,

Yk(M) − Yk(t1) ≥ 4
ε9

δ3
M − ε9

δ3
M − 2

δ3

(
Y1(M) − Y1(t1)

)
.(5.5)

On Fc
3 , when τk < t1, the last term on the right-hand side of (5.5) is at most

2ε9M/δ3, which implies

Yk(M) − Yk(t1) > 0,(5.6)

and hence Zk(τ
′
k) = 0 for some τ ′

k ∈ [t1,M]. This contradicts the definition of τk ,
and so τk ≥ t1.

Let τ ′
k be the smallest such time. Since τ ′

k is a stopping time, we may restart
Z(·) at τ ′

k . Applying (2.15) of Lemma 2.4, it follows that

E[Zk(M)2;Fc
3 ∩ Fc

5 ∩ Fc
6 ] ≤ 24 · 16 · 20

ε9

δ3
M = ε2D2M(5.7)

for k = 2, . . . ,5 and D2 = 24 · 16 · 40/δ1δ3.
We now conclude the demonstration of (4.4)–(4.7). Denoting the set on which

the inequality in (4.7) holds by F2, one has by (5.3) that F2 ⊇ F3 ∩ Fc
4 . Setting

F1 = Fc
2 ∩ Fc

3 ∩ Fc
5 ∩ Fc

6 , then (4.5) is automatically satisfied and (4.6) holds
because of (5.7). Since (F1 ∪ F2)

c ⊆ F4 ∪ F5 ∪ F6, (4.4) follows, for appropriate
ε′ > 0, from the upper bounds on the probabilities of F4, F5 and F6. It follows
from the definition of F2 that F2 ∈ F (M); since Fi ∈ F (M), i = 2, . . . ,6, one also
has F1 ∈ F (M). �
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Proposition 4.2 states that, if zk , k = 2, . . . ,6, are all small and z1 is bounded
below, but is not too large, then Zk(U2), k = 1, . . . ,6, are all small in the sense
of (4.11) and (4.12). The proof considers the behavior of Z(t) over [U1,U2]. The
stopping time U1 was defined so that Z1(U1) is relatively small, but large enough
so that, over [0,U2] with U2 = U1 +ε3M , Z1(t) > 0 holds. The interval [U1,U2] is
both large enough to obtain the desired behavior of Zk(U2), k = 2, . . . ,5, in (4.12)
and short enough so (4.11) holds for Zk(U2), k = 1,6. As with Proposition 4.1,
the proof applies the lemmas of Section 2 to (1.1).

PROOF OF PROPOSITION 4.2. We first show (4.11) for k = 1. It follows from
Lemma 2.7, (4.9) and (4.10) that, on the set where Z1(t) > 0 for t ∈ [0, 1

2D3M],

Z1

(
1

2
D3M

)
≤ D1M + 3ε2

δ3
M − 1

60
δ4D3M(5.8)

except for a set F7 of exponentially small probability in M . Since the right-hand
side of (5.8) is negative for D3 satisfying (4.8) and Z1(0) ≥ 12ε2

δ3
M , Z1(t) = 12ε2

δ3
M

must occur at some t ≤ 1
2D3M ; hence Z1(U1) = 12ε2

δ3
M on Fc

7 . By (2.12) of

Lemma 2.3 and (4.8), this in turn implies that Z1(U2) ≤ 60ε2
δ3

M off of an addi-
tional set of exponentially small probability. Together with (2.22) of Lemma 2.5,
this implies (4.11) for k = 1 and large M .

Restarting Z(·) at U1, it follows from (1.1) and (4.8) that, except on a set F8 of
exponentially small probability in M ,

Z1(U1 + s) ≥ 12ε2

δ3
M + B1(s) − s > 0

for s ≤ ε3M . Consequently, on Fc
8 ,

Z1(t) > 0 for t ≤ U2.(5.9)

Since Z6(0) ≤ ε2M , one can therefore employ (2.14) of Lemma 2.4, with small
enough ε > 0, together with (2.22) of Lemma 2.5, to obtain (4.11) for k = 6.

We still need to show (4.12). For this, one can employ the conditions (4.8),
(4.10) and (5.9) and argue similarly to (5.4) through (5.6), in the proof of Proposi-
tion 4.1, to conclude that, for k = 2, . . . ,5,

Zk(τ
′
k) = 0 for some τ ′

k ∈ [U1,U2],
off of a set F9 of exponentially small probability in M . Letting τ ′

k denote the first
such time, we restart Z(·) at τ ′

k . Applying (2.15) and (2.21), it follows that

E[Zk(U2)
2] ≤ E[Zk(U2)

2;Fc
9 ] + E[Zk(U2)

2;F9]
≤ (24 · 16 + 1)ε3M ≤ (24 · 97ε2/δ3)M

for large enough M . This implies (4.12). �
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6. Demonstration of Propositions 4.3, 4.4 and 4.5. The proofs of Proposi-
tions 4.3, 4.4 and 4.5 rely on the application of the lemmas in Section 2 to the
equation (1.1) of the SRBM Z(·). Proposition 4.4 also relies on Propositions 3.2
and 3.3. The reasoning behind the proofs follows in spirit the sketch given near the
end of Section 1 and in Section 4.

We first demonstrate Proposition 4.3. The proposition states that, off of the ex-
ceptional set GM defined in the proof, the inequalities (4.17)–(4.22) all hold. In
particular, Zk(T3(M)), k = 2, . . . ,5, will be small and Zk(T3(M)), k = 1,6, will
be bounded below, but not too large. These inequalities, except for (4.21), will fol-
low from their analogs (6.1)–(6.4) that hold over [ 1

30ε2M,T3(M)] and [0, T3(M)].
The exceptional set GM will be shown to be small in the sense of (4.23) and (4.24).

The lower bounds on Zk(T3(M)), k = 1,6, constitute the more delicate part
of the argument and depend on the condition z6 ≥ ε2M in (4.16). Arguing as in
(6.17)–(6.20), we will show that the growth of Y1(·) causes Z6(·) to increase lin-
early. On the other hand, as shown below (6.6), the growth of Yk(·), k = 2, . . . ,5,
together with Y6(T3(M)) = 0, causes Z1(·) to eventually increase linearly. The
stopping time T3(M) has been chosen so that both features are present.

PROOF OF PROPOSITION 4.3. We first specify the set GM used in the defin-
ition of T4(M). We abbreviate by setting M ′ = 1

30ε2M . Writing GM =⋃5
i=1 Gi ,

the sets Gi are defined as follows:

G1 =
{
ω :

5∑
k=2

Yk(M
′) ≥ 5M ′

}
,(6.1)

G2 =
{
ω :Zk(s) ≥ 31

ε2
D1s for some s ∈ [M ′, T3(M)], k = 1,6

}
,(6.2)

G3 = {ω :Zk(s) ≥ 31ε2s for some s ∈ [M ′, T3(M)], k = 2, . . . ,5},(6.3)

G4 = {ω :Z6(s) ≤ 1
2δ1s for some s ∈ [0, T3(M)]},(6.4)

G5 = {ω :B2(s) − B1(s) ≥ 1
12δ1δ2s for some s ∈ [M ′, T3(M)]}.(6.5)

Inequality (4.17) follows from (6.1) and the definition of T3(M). Inequalities
(4.19) and (4.20) follow by setting s = T3(M) in (6.2) and (6.3); both (4.18) and
(4.22) follow from (6.4). The demonstration of (4.21) requires a little work. First
note that, on Gc

4, (1.1), (2.6) of Lemma 2.2 and (4.15) imply that

Z1(T3(M)) ≥ B1(T3(M)) − T3(M) +
6∑

k=1

Yk(T3(M)) + δ2

5∑
k=2

Yk(T3(M))

≥ 1

6
δ1δ2T3(M) +

(
1

6
δ2ε2 − ε2

2

)
M + B1(T3(M)) − B2(T3(M))(6.6)

≥ 1

6
δ1δ2T3(M) + B1(T3(M)) − B2(T3(M)),
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which, on Gc
5, is at least 1

12δ1δ2T3(M). So,

Z1(T3(M)) ≥ 1
12δ1δ2T3(M) on Gc

4 ∩ Gc
5,

which demonstrates (4.21).
We need to show (4.23) and (4.24). For this, we define Vi , i = 2,3,4,5, to be

the first time at which the event in Gi occurs, with

V1 = inf

{
s :

5∑
k=2

Yk(s) ≥ 5M ′
}
,

if G1 occurs; off of these sets, define Vi = T3(M) for i = 1, . . . ,5. We complete
our definition of T4(M) in (4.13) by setting

T4(M) = V1 ∧ V2 ∧ V3 ∧ V4 ∧ V5.(6.7)

Note that V4 ≤ T6. It follows from this and (6.7) that T4(M) ≤ T3(M) ∧ T6; more-
over, T4(M) is a stopping time.

We note that, by (2.9) of Lemma 2.2,

P(G1) ≤ C1e
−ε′M(6.8)

for appropriate C1 and ε′ > 0. Using (2.21) and (2.22) of Lemma 2.5, it therefore
follows that, for given ε10 > 0 and large enough M ,

E[Zk(T4(M));G1] ≤ ε10 for k = 1,6,(6.9)

E[Zk(T4(M))2;G1] ≤ ε10 for k = 2, . . . ,5.(6.10)

We require more detailed estimates for G2, . . . ,G5. For each i = 2, . . . ,5 and
j = 1,2, . . . , we denote by Gi(j) the event for which Gi first occurs on [j, j + 1].
We first consider the behavior on G3. We recall that, by (2.14) of Lemma 2.4, for
k = 2, . . . ,5 and given ε > 0,

P
(
Zk(s) − Zk(0) ≥ εj for some s ≤ j

)≤ C1e
−ε′j(6.11)

for each j = 1,2, . . . , and appropriate C1 and ε′ > 0. On account of (4.15), it
follows for small enough ε that

P
(
Zk(s) ≥ 31ε2s for some s ∈ [j − 1, j ])≤ C1e

−ε′j(6.12)

for j ≥ M ′. It therefore follows from (2.21) and (2.22) that

E[Zk(V3);G3(j)] ≤ e− 1
2 ε′j for k = 1,6,(6.13)

E[Zk(V3)
2;G3(j)] ≤ e− 1

2 ε′j for k = 2, . . . ,5,(6.14)

for j ≥ M ′ and large enough M . Summing over j gives

E[Zk(Vi);Gi] ≤ ε10 for k = 1,6,(6.15)

E[Zk(Vi)
2;Gi] ≤ ε10 for k = 2, . . . ,5,(6.16)
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for i = 3, given ε10 > 0 and large enough M .
The inequalities (6.15) and (6.16) hold for i = 2 and i = 5 for the same reasons,

except that one applies (2.12) of Lemma 2.3 in place of (2.14) and (4.14) in place
of (4.15) for i = 2, and one applies (2.3) of Lemma 2.1 for i = 5. The inequalities
(6.15) and (6.16) also hold for i = 4, although this requires more work; we now do
this.

We note that, by (2.6) of Lemma 2.2, (4.13) and (4.15),

Y1(s) ≥ s − (ε2
2M + B2(s)

)− 1
6(δ1s + ε2M)(6.17)

for s ≤ T3(M) ∧ T6. Together with (1.1), (4.16) and ε2 ≤ 1
20 , this implies

Z6(s) ≥ ε2M + B6(s) − s + (1 + δ1)Y1(s)
(6.18)

≥ 3
4(δ1s + ε2M) + (B6(s) − (1 + δ1)B2(s)

)
.

It follows from (2.2) of Lemma 2.1 that

P
(
Z6(s) ≤ 1

2δ1s for some s ∈ [j − 1, j ])≤ C1e
−ε′j(6.19)

for j ≥ M ′, and appropriate C1 and ε′ > 0. Also, by (2.3),

P
(
Z6(s) ≤ 1

2δ1s for some s ≤ M ′)≤ C1e
−ε′M(6.20)

for appropriate C1 and ε′ > 0. Proceeding similarly to (6.12)–(6.16), the inequali-
ties (6.15) and (6.16) with i = 4 also hold.

On account of (6.9), (6.10), (6.15) and (6.16), for i = 2, . . . ,5, it follows for
large enough M that

E[Zk(T4(M));GM ] ≤ 5ε10 for k = 1,6,(6.21)

E[Zk(T4(M))2;GM ] ≤ 5ε10 for k = 2, . . . ,5,(6.22)

where ε10 is as in (6.9) and (6.10). This implies (4.23) and (4.24) for ε4 = 5ε10,
and completes the proof of the proposition. �

The demonstration of Proposition 4.4 is based on the comparison between
T ′

3(M, z) and T2(
√

NM(z)) in (6.23). This enables one to employ the upper bounds
on E[T2(x)] and P(A) from Propositions 3.2 and 3.3.

PROOF OF PROPOSITION 4.4. Let T ′
3(M, z) and AM(z) denote the analogs of

T ′
3(M) and AM , with Z(0) = z being specified. Comparing T ′

3(M, z) with T2(x)

in (3.9), for x = √
NM(z), it is easy to see that

T ′
3(M, z) ≤ T2

(√
NM(z)

)
.(6.23)

It therefore follows from Proposition 3.2 that, for appropriate C1,

E[T ′
3(M, z)] ≤ E

[
T2
(√

NM(z)
)]≤ C1NM(z).(6.24)
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Integrating (6.24) over z and applying (4.28), one obtains

E[T ′
3(M)] = E

[
E[T ′

3(M)|Z(0) = z]]≤ C1E[NM(Z(0))]
(6.25)

≤ C1

(
E
[

max
k=2,...,5

Zk(0)2
]
+ M

)
≤ C1(5D1 + 1)M.

This implies (4.29) with C2 = C1(5D1 + 1).
Since the truncated values T6 ∧ 5NM(z)5/η and T6 ∧ 5x5/η in (4.25) and (3.9)

are equal, it is easy to check that

AM(z) ⊆ A(6.26)

for given z, where A is the event in (3.11) with x = √
NM(z). It therefore follows

from Proposition 3.3 that, for appropriate C1,

P(AM(z)) ≤ P(A) ≤ C1NM(z)
− 5

2η
−1

.(6.27)

Together with (2.21), (4.27) and (6.27) imply that, for given z,

E[Zk(T
′
3(M))2;AM(Z(0))|Z(0) = z] ≤ C2/

√
NM(z) ≤ C2/

√
M(6.28)

for k = 2, . . . ,5 and appropriate C2. Similarly, by (2.22), (4.27) and (6.27),

E[Zk(T
′

3(M));AM(Z(0))|Z(0) = z] ≤ C3/NM(z) ≤ C3/M(6.29)

for k = 1,6 and appropriate C3. Integrating (6.28) and (6.29) over z produces
(4.30) and (4.31). �

We now demonstrate Proposition 4.5. We first show (4.37) and (4.38), which
are then used to show (4.39) and (4.40). On account of the upper bounds on z1
and z6 in (4.36), Z1(·) will drift toward 0 so that Z1(t) = ε5M1 typically occurs
before time D4M1. This will imply (4.37). Since Y1(T5(M1)) = 0, the coordinates
k = 2, . . . ,6 drift toward 0 over [0, T5(M1)], implying (4.38). The elapsed time be-
tween T5(M1) and T ′

5(M1) is short enough so Zk(T
′

5(M1)), k = 1,6, will typically
still be small, and so (4.39) will hold. It is also short enough so Y1(T

′
5(M1)) = 0

and long enough for Zk(t) = 0, k = 2, . . . ,5, to typically occur, from which (4.40)
will follow.

PROOF OF PROPOSITION 4.5. We first demonstrate (4.37). To do so, we ana-
lyze Z(t) when Y1(t) = 0, for given t ≥ 0. By (1.1),

Z1(t) = Z1(0) + B1(t) − t + (1 + δ2)

6∑
k=1

Yk(t) − (δ2 + δ4)Y6(t).(6.30)

Since Y1(t) = 0, it follows from (2.32) of Lemma 2.6 and (4.36) that

Y6(t) ≥ 1

5
t − D5

δ3
M1(6.31)
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off of a set of exponentially small probability in M1. Together, (1.14), (4.36), (6.30)
and (6.31) imply that

Z1(t) ≤ 2δ4D5

δ3
M1 + B1(t) −

(
1 + δ2 + δ4

5

)
t + (1 + δ2)

6∑
k=2

Yk(t).(6.32)

Now, by (2.31) of Lemma 2.6, one has that, for given ε > 0,

−
(

1 + δ2 + δ4

5

)
t + (1 + δ2)

6∑
k=2

Yk(t)

(6.33)

≤
[
(1 + ε)(1 + δ2)

1 − δ3
− 1 − δ2 + δ4

5

]
t

off of a set of exponentially small probability in M1. One can check that, because
of (1.14) and δ3 ≤ 1

10 , the right-hand side of (6.33) is less than −(1
5δ2 + ε)t for ε

chosen small enough. Combining (6.32), (6.33) and applying (2.2) of Lemma 2.1,
one therefore obtains

Z1(t) <
2δ4D5

δ3
M1 − 1

5
δ2t(6.34)

off of a set of exponentially small probability in M1, provided Y1(t) = 0. But,
since Z1(t) ≥ 0, it follows from (6.34) that, off this set, Y1(D4M1) > 0 for D4 =
(10D5δ4/δ2δ3)M1. So, Z1(t) = 0 for some t ≤ D4M1, which implies (4.37).

Set τk = min{t :Zk(t) = 0} for k = 2, . . . ,6. In order to demonstrate (4.38), we
show that

τk ≤ T5(M1) for k = 2, . . . ,6,(6.35)

off of a set of exponentially small probability in M1. Inequality (4.38) then follows
from (4.37) and (2.14) of Lemma 2.4 for a small enough choice of ε > 0.

We claim that, off of a set of exponentially small probability in M1,

τ6 < T5(M1).(6.36)

To see this, note that, when Y6(t) = 0, it follows from (6.30), (2.6) of Lemma 2.2,
(4.35) and (4.36) and ε7 ≥ 3ε6 that

Z1(t) ≥ 1
3ε7M1 + δ2t + (B1(t) − (1 + δ2)B2(t)

)
.(6.37)

Since ε7 ≥ 6ε5, on account of (2.3) of Lemma 2.1, this is greater than ε5M1 off of
a set of exponentially small probability in M1. Together with (4.37), this implies
the claim.

Also note that, for each k = 2, . . . ,5, it follows from (1.1) and (4.35) and (4.36)
that

Zk(t) − Z6(t) ≤ Bk(t) − B6(t) − 2
3ε7M1
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on Yk(t) = 0. Together with (2.2) of Lemma 2.1, this implies

τ6 ≥ τk ∧ D4M1 ≥ τk ∧ T5(M1) for k = 2, . . . ,5,(6.38)

off of a set of exponentially small probability in M1. Together with (6.36), this
implies (6.35).

In order to demonstrate (4.39) for k = 1 and k = 6, we restart Z(·) at time
T5(M1) and then apply (2.12) of Lemma 2.3. Using the definition of T5(M1), for

k = 1, and (4.38), with ε8
def= 1

20δ3ε5 ≤ ε5, for k = 6, one obtains

P
(
Zk(T

′
5(M1)) ≥ 5ε5M1

)≤ C1e
−ε′M1 for k = 1,6,(6.39)

for appropriate C1 and ε′ > 0. Inequality (4.39) then follows from (2.22) of Lem-
ma 2.5.

In order to demonstrate (4.40), we restart Z(·) at time T5(M1), denoting the new
process by Z̃(·) and the corresponding Brownian motion by B̃(·). By (1.1),

Z̃1(t) ≥ ε5M1 − t + B̃1(t),

and so Z̃1(t) > 0 on [0, 1
2ε5M1] off of a set of exponentially small probability

in M1. Since ε8 < 1
10δ3ε5, it follows, by (2.32) of Lemma 2.6 and (4.38), that

Ỹk

(
1

2
ε5M1

)
≥
(

1

10
ε5 − ε8

δ3

)
M1 > 0 for k = 2, . . . ,5,(6.40)

off of a set F10 of exponentially small probability in M1.
We denote by τ̃k the first time at which Z̃k(t) = 0. Restarting the process at τ̃k ,

it follows from (2.15) of Lemma 2.4 that

E
[
Z̃k

(1
2ε5M1

)2;Fc
10
]≤ 24 · 8ε5M1 for k = 2, . . . ,5.

On account of the upper bounds on P(F10) and (2.21) of Lemma 2.5, one obtains

E
[
Z̃k

(1
2ε5M1

)2]≤ 24 · 8ε5M1 + C4 for k = 2, . . . ,5(6.41)

for appropriate C4, which depends on ε5 but not on M1. This implies (4.40). �
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