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Recently, in a paper by Jentzen and Kloeden [Proc. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 465 (2009) 649-667], a new method for simulating
nearly linear stochastic partial differential equations (SPDEs) with additive
noise has been introduced. The key idea was to use suitable linear functionals
of the noise process in the numerical scheme which allow a higher approxi-
mation order to be obtained. Following this approach, a new simplified ver-
sion of the scheme in the above named reference is proposed and analyzed in
this article. The main advantage of the convergence result given here is the
higher convergence order for nonlinear parabolic SPDEs with additive noise,
although the used numerical scheme is very simple to simulate and imple-
ment.

1. Introduction. In this article, the numerical approximation of nonlinear
parabolic stochastic partial differential equations (SPDEs) is considered. Follow-
ing the idea in [10] for somewhat linear SPDEs, a new numerical method for simu-
lating nonlinear SPDEs with additive noise is proposed and analyzed in this article.
The main advantage of the convergence result in this article is the higher conver-
gence order for nonlinear parabolic SPDEs with additive noise in comparison to
convergence results of classical schemes such as the linear implicit Euler scheme.
Nevertheless, the here presented scheme is very simple to simulate and implement.

More precisely, let T € (0, oo) be a real number, let (2, F, IP) be a probability
space and let H = L?((0, 1), R) be the R-Hilbert space of equivalence classes of
square integrable functions from (0, 1) to R. Moreover, let f:[0,1] x R — R
be a smooth function with bounded partial derivatives, let &£:[0, 1] - R with
£(0) = £(1) = 0 be a smooth function and let W2:[0,T] x Q@ — H be a stan-
dard Q-Wiener process with a trace class operator Q: H — H (see, e.g., Defini-
tion 2.1.9 in [13]). It is a classical result (see, e.g., Proposition 2.1.5 in [13]) that
the covariance operator Q : H — H of the Wiener process W2 :[0,T] x Q — H
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has an orthonormal basis g; € H, j € N, of eigenfunctions with summable eigen-
values u; € [0, 00), j € N. In order to have a more concrete example, we consider
the choice g (x) = +/2sin(jmx) and u; = c¢j "+ forall x € (0, 1) and all j € N
with some ¢ € [0, co0) and some arbitrarily small r € (0, co) in the following and
refer to Section 2 for our general setting. Then we consider the SPDE

2

3
dX, = [—th + fx, Xt)] dt +dw2,
dx

X:(0)=X,(1) =0, Xo=§,
for x € (0,1) and ¢ € [0, T']. Under the assumptions above, the SPDE (1) has a
unique mild solution. Specifically, there exists an up to indistinguishability unique

stochastic process X : [0, T'] x 2 — H with continuous sample paths which satis-
fies

ey

t t
) X, =eMe+ /0 AT F(X ) ds + fo A=) qw @, P-a.s.

for all t+ € [0,T] where A: D(A) C H — H is the Laplacian with Dirichlet
boundary conditions on (0, 1) and where F': H — H is the Nemytskii operator
(F(v))(x) := f(x,v(x)) forallx € (0,1) and all v € H.

Then our goal is to solve the strong approximation problem of the SPDE (1).
More precisely, we want to compute a F/B(H)-measurable numerical approxi-
mation Y : Q2 — H such that

(3) (E[/ol |X7(x) — Y(x)|2dx:|>1/2 <e

holds for a given precision ¢ > 0 with the least possible computational effort
(number of computational operations and independent standard normal random
variables needed to compute Y : 2 — H). A computational operation is here an
arithmetical operation (addition, subtraction, multiplication, division), a trigono-
metrical operation (sine, cosine) or an evaluation of f:(0,1) x R — R or the
exponential function.

In order to be able to calculate such a numerical approximation on a computer,
both the time interval [0, 7] and the infinite-dimensional R-Hilbert space H =
L?((0, 1), R) have to be discretized. While for temporal discretizations the linear
implicit Euler scheme is often used, spatial discretizations are usually achieved
with finite elements, finite differences and spectral Galerkin methods. For instance,
the linear implicit Euler scheme combined with spectral Galerkin methods which
we denote by F/B(H)-measurable mappings Z,’1V Q—> H,ne{0,1,..., N2},
N eN:={1,2,...},is given by Z) := Py (&) and

T —1
N .
Zn+1 = (I — mA)

T
x <ZnN + 7 PV + P (WE e —

“)
W

o ))
nT/N?
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for every n € {0, 1,..., N> — 1} and every N € N where the bounded linear oper-
ators Py: H — H, N € N, are given by

N 1
&) (Py(v)(x) := Z2sin(nnx)/0 sin(nms)v(s)ds

n=1

for all x € (0,1), v € H and all N € N. Note that the infinite-dimensional R-
Hilbert space H is projected down to the N-dimensional R-Hilbert space Py (H)
for the spatial discretization and the time interval [0, T'] is divided into N 2 subin-
tervals, that is, N2 time steps are used, for the temporal discretization in the scheme
Zr],\’, ne{0,1,..., NZ}, above for N € N. The exact solution X : [0, T] x 2 — H
of the SPDE (1) enjoys at least twice the regularity in space than in time and there-
fore, the quadratic number of time steps is used in the scheme (4) above (see also
Walsh [15] for details).

We now review how efficiently the numerical method (4) solves the strong ap-
proximation problem (3) of the SPDE (1). Standard results in the literature (see,
e.g., Theorem 2.1 in Hausenblas [7]) yield the existence of a real number C > 0
such that

1 12
6) (B| [ 170 - zgcoax|) =cn

holds for all N € N. Since Py (H) is N-dimensional and since N2 time steps are
used in (4), O(N3 log(N)) computational operations and independent standard
normal random variables are needed to compute sz for N € N. The log term

in O(N3log(N)) for N € N arises due to computing the nonlinearity with fast
Fourier transform (aliasing errors are neglected here). Combining the computa-
tional effort O (N3 log(N)) and the estimate (6) shows that the linear implicit Euler
scheme needs about O(e~3) computational operations and independent standard
normal random variables to achieve a precision of size & > 0 in the sense of (3). In
fact, we have demonstrated that the linear implicit Euler scheme method (4) needs
0 (e~ G19) computational operations and random variables to solve (3) for every
arbitrarily small § € (0, co) but for simplicity we write about O (¢~3) computa-
tional operations and random variables here and below.

Recently, in [10], a new numerical method for simulating somewhat linear
SPDEs with additive noise has been introduced. The key idea in [10] is to use
suitable linear functionals of the noise process in the numerical scheme which al-
lows a higher approximation order to be obtained. In this paper, we extend this idea
to the case of nonlinear SPDEs of the form (1). More precisely, we introduce the
following numerical scheme which is a simplified version of the scheme consid-
eredin [10]. Let YN :Q — H,n€{0,1,..., N}, N €N, be F/B(H)-measurable
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mappings given by Yév = Py (&) and

T
YN =N (Y,f" 5 (PNF)(Y,fV))

(n+1D)T/N
+ Py (/ GAHDT/N=5) dWQ)
nT/N s

(N

P-a.s. for every n € {0,1,..., N — 1} and every N € N. Note that the infinite-
dimensional R-Hilbert space H is projected down to the N-dimensional R-Hilbert
space Py (H) for the spatial discretization and the time interval [0, T'] is divided
into N subintervals, that is, N time steps are used, for the temporal discretization
in the scheme YnN, ne{0,1,..., N}, above for N € N.

We now illustrate the main result of this article (Theorem 1) and show how
efficiently the method (7) solves the strong approximation problem (3) of the
SPDE (1). Theorem 1 shows the existence of real numbers Cs > 0, é§ € (0, 1),
such that

1 1/2
®) (B| [ 1xreo - v @Pax]) - =cseney
0
holds for all N € N and all arbitrarily small § € (0, 1). The stochastic integrals
) Py </ (DTN eA+DT/N—s) dWQ>
nT/N y
forne{0,1,..., N} and N € N in (7) provide more information about the exact

solution and this allows us to obtain the estimate (8) although only N time steps
(instead of N2 time steps in the case of the linear implicit Euler scheme) are used
in (7). Nevertheless, since the stochastic integrals (9) in (7) depend linearly on the
Wiener process W2 :[0, T] x Q — H, they are again normally distributed and
hence easy to simulate. More precisely, since Py (H) is N-dimensional and since
N time steps are used in (7), O (N 2 log(N)) computational operations and inde-
pendent standard normal random variables are needed to compute Y 1{,\’ for N e N.
The log term in O(N?1log(N)) for N € N also arises due to computing the nonlin-
earity with fast Fourier transform (aliasing errors are neglected here). Combining
the computational effort O (N 2 log(N)) and the estimate (8) shows that the numer-
ical scheme (7) needs about O(g~2) computational operations and independent
standard normal random variables to achieve a precision of size ¢ > 0 in the sense
of (3).

The estimates (6) and (8) are both asymptotic results since there is no infor-
mation about the size of the corresponding error constants. In particular, the error
constants Cs € (0, 00), § € (0, 1), in (8) could be much bigger than in (6). There-
fore, from a practical point of view, one may ask whether the numerical method
(7) solves the strong approximation problem (3) more efficiently than the linear
implicit Euler scheme (4) for a given example of the form (1) and a given concrete
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¢ > 0. In order to analyze this question, we compare both methods in the case of
a simple reaction diffusion SPDE of the form (1) (see Section 4.1 for details) and
assume that the strong approximation problem (3) should be solved with the pre-
cision ¢ = 31@. In that example, it turns out that the linear implicit Euler scheme
precisely needs 22! = 2,097,152 independent standard normal random variables
while the numerical method (7) precisely needs 2'® = 65,536 independent stan-
dard normal random variables to achieve an approximation error of size € = ﬁ
(see Tables 1 and 2 in Section 4.1). We also emphasize that the numerical scheme
(7) is very simple to implement and refer to Figure 2 for a short MATLAB code.
Having illustrated the main result of this article, we now sketch the key idea in
the proof of Theorem 1. The main difficulty was to estimate the discretization error
for nonlinear F. In that case, the main problem was to establish estimates of the
form
N-1
/-(n—H)T/N . NGD
n=0 L2(Q;H)
for all N € N and all § € (0, 1) where Cs € (0,00), § € (0, 1), are appropriate
constants and where we write | Y|[;2q. ) = (I[*E[fo1 Y (x)|>dx])/? € [0, o] for
every J/B(H)-measurable mapping Y : 2 — H for simplicity. The smoothness
of the Nemytskii operator F' on an appropriate subspace V C H shows that it
remains to estimate

(10) AT (F(Xy) — F(Xur/n)) ds

nT/N

N-1 +1)T/N AT )
/ AT F (X ) (Xs — Xur/n) ds
n

n=o “nT/N L2 H)

11
(1D <y NO-D
for all N € N and all § € (0, 1). In [10], the linear operators F’(v) for v € H and
A:D(A) C H— H are assumed to commute in some sense which is fulfilled in
the case of linear F' such as F(v) = v, v € H, but excludes nonlinear Nemytskii

operators such as F(v) = ((11;:2)) , V€ H (see Assumption 2.4 in [10] for details).
Under this commutativity condition, (11) can easily be established by using the
smoothing effect of the semigroup et el0,T] (see Section 5.b.1in [10]). Instead
of this condition, our key assumption on the nonlinearity is an appropriate estimate
on the adjoint operators of the Fréchet derivative operators of F [see (13)]. Since
in our examples F is a (nonlinear) Nemytskii operator, the derivative operators
F’(v), v € V, are self-adjoint and hence, it can easily be seen that this assumption
is fulfilled [see (17) in Section 4 for details]. Moreover, this assumption enables
use to show (11) and hence (10) [see Section 6.1.1 and particularly estimate (31)].
We also mention that the difficulty to estimate (10) can be avoided by using a more
complicated scheme with a second linear functional (see Section 6.4 in [11]).
Finally, we would like to point out limitations of the here presented numerical
method. The following assumption is essential to apply our algorithm. The eigen-
functions of the dominating linear operator and of the covariance operator of the
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driving additive noise process of the SPDE must coincide and must be known ex-
plicitly.

The rest of this article is organized as follows. The basic setting and the assump-
tions that we use (including our key assumption on the adjoint of the Fréchet deriv-
ative of the nonlinearity) are presented in Section 2. The new numerical scheme
and its convergence theorem which is the main result of this article are given in
Section 3. This result is illustrated with some examples and some numerical sim-
ulations in Section 4. Although our setting in Section 2 uses the standard global
Lipschitz assumption on the nonlinearity of the SPDE, we demonstrate the effi-
ciency of our method numerically for a SPDE with a cubic nonglobally Lipschitz
nonlinearity in Section 5. Proofs are postponed to the final section.

2. Setting and assumptions. Fix T € (0, c0) and let (2, F,P) be a prob-
ability space with a normal filtration (F;);¢[0,7] Which means F; = F; for all
t €]0,T) and {A € F|P[A] =0} C Fo (see, e.g., Definition 2.1.11 in [13]). In ad-
dition, let (V, | - ||v) be a separable R-Banach space and let (H, (-, -)q, || - ||[z) be
a separable R-Hilbert space with V C H continuously. The following assumptions
will be used.

ASSUMPTION 1 (Linear operator A). Let (A;),en C (0, 00) be an increasing
sequence of real numbers and let (e,),cy C H be an orthonormal basis of H.
Assume that the linear operator A: D(A) C H — H is given by

00
Av = Z —Anen, V)HeEn

n=1

for all v € D(A) with D(A) = {w € H|YX22 | [An|*{en, w) g |> < o0}

Let D((—A)") with |[v]p(-a)) = I(=A)"v||g for ve D((—A)") and r e R
denote the domains of fractional powers of the linear operator —A (see, e.g., Sec-
tion 3.7 in [14]).

ASSUMPTION 2 (Nonlinearity F). Assume D((—A)!/?) C V continuously
and let F: V — V be a twice continuously Fréchet differentiable mapping with

IF'(Wwla <cllwla,
(12)
IF' (WL <c, IF"W)lLo vy < ¢,

(13) ||(F/(u))*”L(D((_A)l/Z)) <c(l+ ||M||D((_A)1/2))

for every v, w € V and every u € D((—A)Y?%) where ¢ € [0, 00) is a given real
number.
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By definition F’(v) € L(V) is a bounded linear mapping from V to V for every
v € V. Due to the first condition in (12), we also have that F’(v) € L(H) is a
bounded linear mapping from H to H for every v € V. In that sense, the adjoint
operator (F'(v))* € L(H) given by

((F'(o)*u, wyg = (u, F'0)w)py

for all u,w € H is well defined for every v € V. Due to (13), the opera-
tor (F'(v))* € L(H) is also a bounded linear mapping from D((—A)'/?) to
D((—A)'/?) for every v € D((—A)'/?).

ASSUMPTION 3 (Stochastic process O). Let O:[0,T] x 2 — D((—A)”) be
a centered and adapted stochastic process with continuous sample paths such that
O, — A=) Oy, is independent of 7, for all 0 <#; <, < T and such that

E[ sup (=47 0illy]+ sup (2= 1) B0, — 0y, I}]) < 00

0<t<T 0<t;<tr<T

holds where y € [%, 1) and 6 € (0, %] are given real numbers.

ASSUMPTION 4 (Initial value &). Let £:Q2 — D(A) be a Fo/B(D(A))-
measurable mapping with E[||A& ||‘}1] < 00.

These assumptions suffice to ensure the existence of a unique solution of the
SPDE (14).

LEMMA 1 (Existence of the solution). Let Assumptions 1-4 be fulfilled. Then
there exists a unique adapted stochastic process X 1[0, T] x Q — D((—A)Y) with
continuous sample paths which fulfills

(14) X (w) = eE(w) + /O " A (X (@) ds + O(@)

forallt €0,T] and all w € Q. Moreover, X : [0, T] x Q — D((—A)Y) satisfies
Elsupo<, <7 l(=A)" X¢ |31 < oo.

The proof of Lemma 1 is given in Section 6. Some examples satisfying As-
sumptions 1-4 are presented in Section 4.

3. Numerical scheme and main result. For numerical approximations of
the SPDE (14), we have to discretize both the time interval [0, T] and the R-
Hilbert space H. To this end, we use projections Py : H — H given by Py (v) :=
Zﬁ’zl (en, v)yey, forevery v € H, N € N and finite-dimensional R-Hilbert spaces
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Hy C H givenby Hy := Py(H) for every N € N. Finally, we define F/B(Hy)-
measurable mappings Y™ :Q — Hy for m € {0,1,..., M} and N, M € N by

Yy M (w) := Py(£(@)) + Py (Oo(w)) and by

A @) = AT (1M ) + = (P PYY M @)
(1)

+ Py (Oms1yr (@) — e*T™M Oy 1 (@)

for every m € {0,1,...,M — 1}, N, M € N and every w € 2. In many examples,
this scheme is as easy to simulate as the classical linear implicit Euler scheme. We
refer to Section 4 for a detailed description of the implementation of our numerical
scheme including a short MATLAB code.

THEOREM 1. Let Assumptions 1-4 be fulfilled. Then there is a real number
C > 0 such that

16) ([ Xmrar — YVM L)Y < c(

1 (14 log(M )))
(AN)Y M?
holds for every m € {0, 1, ..., M} and every N, M € N where (An)nen C (0, 00)
is given in Assumption 1 where y € [%, 1) and 6 € (0, %] are given in Assumption 3
where X :[0,T] x Q — D((—A)?) is the solution of the SPDE (14) and where
YNM:Q— Hy,me{0,1,..., M}, N, M €N, is given by (15).

Here and below log is the natural logarithm. While the expression W for N e
N in (16) arises due to discretizing the infinite-dimensional R-Hilbert space H,
the expression % for M € N arises due to discretizing the time interval
[0, T]. We would like to remark that the logarithmic term in (H'}S[# for M e
N can be avoided by assuming F(D((—A)'/?) c D((—A)?) and an appropriate
linear growth condition on F for some & > 0. Although this condition is fulfilled
in our examples below, we use this logarithmic term in Theorem 1 here in order to
formulate Assumption 2 in our abstract setting as simple as possible.

A similar result could be obtained for SPDEs of the form (14) but with a time
dependent nonlinearity F'. However, we omit the time dependency of the nonlin-
earity here for simplicity.

4. Examples. Let H = L?((0, 1), R) be the R-Hilbert space of equivalence
classes of B((0, 1))/B(R)-measurable and square integrable functions from (0, 1)
to R with the scalar product and the norm given by

1 1 12
b = [ o) ds, ||v||H=(/0 |v(s)|2ds)

for every v, w € H. In addition, let V = C([0, 1], R) be the R-Banach space
of continuous functions from [0, 1] to R equipped with the norm |v|y =
supg<,<1|v(x)| forevery v e V.
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Let « € (0, 00) be a given positive real number and let (1,),eny C (0, 00) and
(en)nen C H be given by

An o= kn’m?, en(x) :=v/2sin(nmx)

for every x € (0, 1) and every n € N. Hence, the linear operator A: D(A) C H —
H reduces to the Laplacian with Dirichlet boundary conditions on the interval
(0, 1) times the constant ¥ € (0, c0) (see, e.g., Section 3.8.1 in Sell and You [14]).
In particular, D((—A)Y?) reduces to the R-Sobolev space HO1 ((0, 1), R) equipped
with the norm

lull p—ayy = 1(=A)ull

00 1/2
= <an2n2|<en, u>H|2)
n=1

1 1/2
— ﬁ(/o |u/(x)|2dx>

for all u € D((—A)'/?). (See Sell and You [14] for more information about this
space.)

Furthermore, let f:[0, 1] x R — R be a twice continuously differentiable func-
tion with the bounded partial derivatives

Gevl<r |Gglarlex [(Ga)en]<x

for all x € [0, 1] and all y € R with an arbitrary constant K € [0, c0). Then the
Nemytskii operator F': V — V given by (F(v))(x) = f(x, v(x)) for every x €
[0, 1] and every v € V satisfies Assumption 2. To see this note that

0
F(u)(v) = (%)(x, u(x) - v(x),

" O f
Fru)(v,w)=|——5 |, ux)) vx)- wlx)
dy?
holds for all u, v, w € V. Therefore, we have
ICF' @) * 113 ayrr2)
= (=)' 2F vl

S e

{3x [(af)(x ”(x))“”(x) + (%)(x, we) V0|

2
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ol

( )(x we) V)|

<2k

0

and

ICF' @) * 113y

<2 full? /01 %[(%)(m(w}

1
+ 2;<K2/ v/ ()% dx
0

(angy)u wen|

9
- 4||v||§)((_A)1/2)/0 KB—yJ;)(X u(x)) - ' (x)

+2K2

2

54”””%)((—A)1/2)

2
dx

[l TS
for all u, v € D((—A)'/?). Hence, we obtain

ICF @) vll3 a2y

S 4K2||v||2D((_A)l/2)

1
FARNI gy [0 COP dx
+2K 2105y

= 6K2||U||2D((_A)1/2) + 4K2K_1 ”U”%)((_A)I/Z) ||u||2D((—A)1/2)

and
l (F/(“))*U”D((_A)lﬂ)
2,—1 2
\/6K ”v“D(( A)1/2) +4K ”v“D(( A)I/Z)HMHD((iA)l/Z)
(17) < «/EK”U“D((_A)I/Z) + 2KK—1/2||U||D((_A)1/2)||”||D((_A)l/2)

< K”U”D((—A)l/2) (3 + 2K—]/2||M“D((—A)]/2))
<@+ 216_1/2)K||U||D((—A)'/2)(1 =+ ||”||D((_A)l/2))
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for all u, v € D((—A)'/?). This shows that F indeed satisfies Assumption 2 with
c=3K.

Let (by)nen C R be a sequence of real numbers with Y 72 | n®|b, |2 < oo for
some arbitrarily small ¢ € (0, co). Lemma 4.3 in [1] then gives the existence of
an up to indistinguishability unique stochastic process O :[0, T'] x €2 — V which
satisfies Assumption 3 for 6 = % and y = % and which satisfies

0 t
]P’|:Ot = Zb” (/ e—kn(t—s) dﬂf)en] =1
0
n=1

for all ¢ € [0, T'] where the 8" :[0, T] x 2 — R, n € N, are independent standard
Brownian motions with respect to a given normal filtration (F;):¢(0,7]-
Moreover, the mapping & : 2 — V given by

E(w))(x) = s1n (mx) + 3‘/— sin (37 x)

for all w € Q and all x € (0, 1) obviously satisfies Assumption 4.
In view of the above choice, the SPDE (14) reduces to

82
dXt = |:K' WXt + f(.x, Xt)i| dt + Bth,
X

(18) X:(0)=X:(1) =0,
Xo(x) = sm\(/z;x) + f sin(3x)

for x € [0, 1] and ¢ € [0, T'] where the linear operator B: H — H is given by

o
Bv = an(en, v)e
n=1

for all v € H and where (W;);¢[0,1] is a cylindrical /-Wiener process on H.
Since Assumption 3 is fulfilled for 6 = % and y = % Theorem 1 shows the
existence of a real number C > 0, such that

: 1/2
(19) (E[/o |XnT/M(X)—Y}£VsM(x)I2dxi|) <C<N &Mg(M)))

holds for all n € {0,1,..., M} and all N, M € N. While the expression % for
N € N in (19) corresponds to the spatial discretization error, the expression
w for M € Nin (19) corresponds to the temporal discretization error. Since
these error terms are nearly of the same size, we choose M = N and consider the
numerical approximations YNV :Q — Hy,n€{0,1,..., N}, N € N, in the fol-
lowing. Due to (19), we obtain the existence of real numbers Cs > 0, § € (0, 1),
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such that

1 12
(20) (EUO |XT(x)—Y}VV’N(x)|2de <Cs-NO-D

holds for all N € N and all arbitrarily small § € (0, 1).

In order to describe the implementation of the numerical scheme (15) in this
example, we use the F/B(R)-measurable mappings YIQJMM :Q2 — R given by
YNM(w) = (e, YN-M(w))y foralln e {1,2,...,N},me€{0,1,..., M} and all

,m

N, M € N. The numerical scheme (15) for the SPDE (18) with M = N then re-
NN _ 1 yN,N N.N _ 3 yN,N N.N
duces to Yl’0 =7, Y27O =0, Y3’0 =3, Y4,0 = Y5,0 =...=0and
—wm? T
Yol = e TN (Y{Y,;N + e F(Y,fv’N))H>

o292 T
Yzl\”,ﬁ] — ¢ ¥ 2T/N <Y21Y,;N + N(ez, F(Y,fV’N))H>

\/1 — ¢—22272T/N

21 4 ,
@D by 22k

N2 T
T = e VTN (VN e, FO Y )

\/1 — ¢—2¢N?72T/N

bN - N/ 2K
foralln € {0,1,..., N — 1} and all N € N where the F/B(R)-measurable map-
pings X,ﬁYm:Q%Rforn e{l,2,...,.N},me{0,1,...,N — 1} and N € N are
independent standard normal random variables. Since O(N? log(N)) computa-
tional operations and independent standard normal random variables (computa-
tional effort) are needed to compute the numerical solution Y ]1\7 N given by (21)

XN,n

for N e N, it follows that Y ICI N converges with order %7 with respect to the com-
putational effort to the exact solution X : [0, T'] x Q — D((—A)'/?) of the SPDE
(18) in the sense of (20). We remark that the log term in the computational effort
O(N? log(N)) for N € N arises if one computes the nonlinearity in (21) with fast
Fourier transform (see Figure 2 for details).

In order to compare the new numerical scheme (21) with classical schemes,
we consider the well-known linear implicit Euler scheme combined with spectral
Galerkin methods applied to the SPDE (18). The linear implicit Euler scheme is
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denoted by F/B(Hy)-measurable mappings Z,llv :Q— Hy,nef0,1, ...,Nz},
N €N, given by Z} (») := Py (§(w)) + Py (Op(w)) and

AN Y r N
ZN, (@) = ("WA> {zn (@ + 23 (B F) 2 @)
22)
+ PN(B(Wip1yr/n2 (@) = Wyr 32 (@)

for every n € {0, 1,..., N> — 1} and every N € N. It has been shown in the litera-
ture (see, e.g., Walsh [15], Gyongy [4] and Hausenblas [7]) that the linear implicit
Euler scheme (22) and other classical numerical schemes such as the linear im-
plicit Crank—Nicolson scheme combined with finite elements, finite differences

and spectral Galerkin methods converge with order %_ with respect to the compu-
tational effort. B
The following two numerical examples illustrate the convergence order % of

the numerical scheme (21) and the convergence order %7 of the linear implicit
Euler scheme (22).

4.1. A stochastic reaction diffusion equation. In this example, we set k = W%O’
—0.55

T=1,0b,= for all n € N and consider f:[0,1] x R — R given by
fx,y)=5 ((11 - y;) for all x € [0, 1], y € R. The SPDE (18) then reduces to
1 92
dth[——X, sU=X) ’)}deth,
100 9x2 (1+X?)
(23) X:(0)=X,(1)=
i 3
Xox) = s1nfgx) %» sin(37 x)

for x € [0, 1] and ¢ € [0, 1]. In Figure 1 (see also Tables 1 and 2), we plot the root
mean square discretization error

(24) ( [/ X7 () — YN (o) 2 dem

of the numerical scheme (21) versus N2 log(N) (up to a constant the computational
effort) and the root mean square discretization error

1 12
25) (B| [ 1700 = 2o ax] )

of the linear implicit Euler scheme (22) versus N 3 log(N) (up to a constant the
computational effort) for different N € N. The “expectations” are based on 40 in-
dependent random realizations and the unknown “exact” solution is approximated
with a very high accuracy there.
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-2 -2

Root mean square approximation error
—
o

Root mean square approximation error
-
o

107 107 °
Numerical scheme (21) Linear implicit Euler scheme o
4@ Orderlines 1/3, 1/2 4|0 Orderlines 1/3, 1/2
1O_O ‘2 ‘4 ‘6 ‘8 10_ 0 ‘2 ‘4 ‘6 ‘8
10 10 10 10 10 10 10 10 10 10
Computational effort N2 * log(N) Computational effort NS * log(N)

FIG. 1. Root mean square approximation error (24) of the numerical scheme (21) and root mean
square approximation error (25) of the linear implicit Euler scheme (22) applied to SPDE (23) versus
up to a constant the computational effort.

TABLE 1
Root mean square approximation error (24) of Y ]I\Y N given by (21)

applied to the SPDE (23) for N € {22,23, ..., 211

Independent standard Computational Root mean square
Numerical normal random effort N2 log(N) approximation
scheme (21) variables N2 (up to a constant) error (24)
2 H2
v;,? 16 22 0.1864
23 23
Yy 64 133 0.0914
24 2%
Y 256 710 0.0417
2523
Yy 1024 3549 0.0191
2626
Y 4096 17,035 0.0091
27,27
Yy 16,384 79,496 0.0045
8 8
v 65,536 363,408 0.0022
292°
Yo 262,144 1,635,339 0.0011
210 210
Yo’ 1,048,576 7,268,174 0.0005
11 511
Y2, 2 4,194,304 31,979,969 0.0003
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TABLE 2
Root mean square approximation error (25) of Z 1]\\52 given by (22) applied

to the SPDE (23) for N € 21,22, ..., 27}

Linear implicit Independent standard Computational Root mean square
Euler normal random effort N3 log(N) approximation
scheme (22) variables N3 (up to a constant) error (25)

72, 8 6 0.3066

z% 64 88 0.1715

z, 512 1064 0.0837

Zgg 4096 11,356 0.0353

z%, 32,768 113,565 0.0135

z2, 262,144 1,090,226 0.0058

V4 %174 2,097,152 10,175,444 0.0027

The short MATLAB code in Figure 2 shows that the solution of SPDE (23) can
be simulated quite easily with the numerical scheme (21). Figure 3 is the result
of the MATLAB code in Figure 2. It shows the solution of the stochastic reaction
diffusion equation (23) at time t = T = 1 for one sample path w € Q2 approximated
with the numerical method (21).

4.2. A stochastic partial differential equation with a spatially dependent f.
This time let k¥ = %, T=1,b,= "_Sﬂ for all n € N and consider f:[0, 1] xR —

R given by f(x,y) = (3.8x2 —2)y forall x € [0, 1], y € R to obtain the SPDE

1 92
dX, = [ — X, + (3.8x% — Z)X,] dt + BdW,,

50 0x2
(26) X:(0)=X,(1) =0,
sin(rx) 3\/5 .
Xo(x) = ——=— — —ssin(3wx)
V2 5
N = 1000; T = 1; A = - pi”®2 * (1:N).”2 / 100; Y = [1/2,0,3/5,zeros(1,N-3)];
S = sqgrt( ( exp(2*T/N*A) - 1) ./ A/ 2 ) / 3.5 .*% (1:N).” -0.55;
for n=1:N
y = dst(Y) * sqrt(2);
FY = idst( 5 * (1 -y ) ./ (1 +vy."2 ) ) / sqgrt(2);
Y =exp(A*T/N) .* (Y + T/N*FY ) + S .* randn(1,N);
end
plot( (0:N+1)/(N+1), [0,dst(Y)*sqgrt(2),0], 'k’, ’'Linewidth’, 2 );

FIG. 2. MATLAB code for the numerical scheme (21) applied to the SPDE (23).
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1.4

1.2

0.8

0.6

0.4

0.2

0 s s s s
0 0.2 0.4 0.6 0.8 1

FI1G. 3. Result of the MATLAB code in Figure 2: Solution of the stochastic reaction diffusion equa-
tion (23) at t =T =1 for one sample path w € Q approximated with the numerical method (21).

for x € [0, 1] and ¢ € [0, T']. Here too, the numerical approximation (21) converges
to the exact solution with order %7 with respect to up to a constant the computa-
tional effort (see Figure 4). Finally, in Figure 5 we illustrate how the two differ-

Root mean square approximation error

Numerical scheme (21)
++©+ Orderlines 1/3, 1/2

10° 10* 10° 10
Computational effort NZ * log(N)

FIG. 4. Root mean square approximation error (24) of the numerical scheme (21) applied to SPDE
(26) versus up to a constant the computational effort.
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Stochastic reaction diffusion equation (23) SPDE (26)
Solutiont=0 Solutiont=0
1.5 1.5
§ 1 § 1
;: 0.5 ;» 0.5
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Solutiont=0.1 Solutiont=0.1
15 15
3 3
><'-. 05 ><‘_' 0.5
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Solutiont=0.3 Solutiont=0.3
15 15
3 3
305 205
> B
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Solutiont=0.6 Solutiont=0.6
15 15
3 3
> x
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Solution t =1 Solution t =1
1.5 15
§ 1 § 1
< 05 N 0.5~/—~_‘/\
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

FI1G. 5. Solution X;(w, x), x € [0, 1], of the stochastic reaction diffusion equation (23) and of the
SPDE (26) for t € {0, %, %, li, 1} and one sample path w € Q2 approximated with the numerical
method (21).

ent f from examples (23) and (26) affect the evolution of the respective solution
X (w, x), x €0, 1], for t € {0, %, %, %, 1} and one sample path w € Q.

5. A further numerical example. Although our setting in Section 2 uses the
standard global Lipschitz assumption on the nonlinearity of the SPDE, we demon-
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strate the efficiency of our method numerically for a SPDE with a cubic nonglob-
ally Lipschitz nonlinearity in this section. More formally, we consider the SPDE

27) dX, = [i<8—2 + a—z)x, + X, — X3] dt +dw2,
10\8x? =~ 9x3 '
with
Xtly,12 =0
and

Xo(x1, x2) = sin(mwx1) sin(w x2)

for ¢, x1,x2 € [0, 1] on the R-Hilbert space H = Lz((O, 1)2, R) of equivalence
classes of B((0, 1)2)/B(R)—measurable and square integrable functions from

(0, 1)? to R here where (W,Q),e[o,l] is a cylindrical Q-Wiener process on H with
the covariance operator Q : H — H given by

(Qu)(x1, x2)

& 4sin(nrx) sin(nrxg)
= 2 (n +m)?

n,m=1

1 1
x /0 /O sin(nmy1) sin(mmy2)v(y1, y2) dyi dyz

for all x1,x3 € (0,1) and all v € H. Of course, (27) is not included in our setting
in Section 2. Even worse, it has recently been shown in [9] that many numerical
methods fail to converge to the solution of a stochastic differential equation with
super linearly growing coefficients in the strong root mean square sense. How-
ever, convergence in the pathwise sense often holds due to Gydngy’s result [3].
Therefore, we plot in Figure 6 the pathwise difference

1l 12
(/0 /0 |Xr<w,x1,xz>—Yﬁ*’v(w,xl,xz)ﬁdxldxz)

of the exact solution X7(w) and of the numerical approximation Y ]}\Y N (w)
[see (15)] applied to the SPDE (27) versus up to a constant the computational
effort N3log(N) for N € {22,23,...,27} and one random o € . It turns out that
the method (15) converges with order %_ with respect to the computational effort.
The linear implicit Euler scheme is known to converge in the pathwise sense with
order %7 with respect to the computational effort to the solution of the SPDE (27).
Further pathwise approximation results for the SPDE (27) and other SPDEs with
nonglobally Lipschitz coefficients can be found in [4-6] and [12], for instance.
Finally, we plot the solution of SPDE (27) for ¢ € {0, %} and one random w € 2
in Figure 7.
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10
S
e
o)
§ 10°)
T
£
X
o
aQ
Q
®
Q
2 10°}
=
=
©
o

Numerical scheme (15)
O+ Orderlines 1/4, 1/3
—4
10 0 ‘ 2 ‘ 4 ‘ 6 ‘ 8
10 10 10 10 10

Computational effort NS * log(N)

FIG. 6. Pathwise approximation error of the numerical scheme (15) applied to SPDE (27) versus
up to a constant the computational effort for one random w € Q.

6. Proofs. The notation
1Z\lLr:wy == ELIZII5DYP €0, o]

is used throughout this section for an R-Banach space (W, || - ||w), a F/B(W)-
measurable mapping Z : Q2 — W and a real number p € [1, c0).

6.1. Proof of Theorem 1. The F/B(H)-measurable mappings Y,f;” :Q—> H
forme{0,1,..., M} and M € N given by

m—1
Yo (@) = e &) + h ( > A B (xy, (w)))
28) k=0

+ Omn (w)

for every m € {0,1,..., M}, v € 2 and M € N are used throughout this proof.

Here and below £ is the time stepsize h = hy = % with M € N. This proof is

divided into three parts. In the first part (see Section 6.1.1), we estimate
||th - Yyﬁl”Lz(Q;H)

for every m € {0, 1, ..., M} and every M € N which corresponds to the temporal
discretization error. In the second part (see Section 6.1.2), we estimate

1Y = Pn(YID 20 m)



EFFICIENT SIMULATION OF SPDES 927

Solutiont=0

1.5

SO S OSSSSSSS

S S SSOSSOSSS

S S S SSS SIS
OSSO S

SUSSSTISSS
SRR

S SOSISSTSITTS
SSISSISIITS

F1G. 7. Solution X;(w, x1, x2), X1, x2 € [0, 1], of the SPDE (27) for t € {0, %} and one random
w € Q approximated with the numerical method (15).

for every m €{0, 1, ..., M} and every N, M € N which corresponds to the spatial
discretization error. Finally, we estimate

1PN = YN M 200y

for every m € {0,1,..., M} and every N, M € N in the third part (see Sec-
tion 6.1.3). Combining these three parts will then yield the desired assertion via
Gronwall’s lemma as we will see below.
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Before we begin with the first part, we introduce a universal constant R > 0
which is needed throughout this proof. More precisely, let R € (0, o0) be a real
number which satisfies

||F(Xt)||L2(Q;H) <R,
I(Xs, — On) — (X4y — O 2@y < Rlt2 — 11,
1 1

—+

+T +c <R,
A (=)

vl < Rllvllv,
106, = Oy 4 vy = Rl2 — nl°,
& lz2(:D((—ay) = R,
10:ll 4@ D((—ayry) = R
I Xell L4 @; D~ ay172)) = R

for every t,11,tp € [0,T] and every v € V where A1 € (0,00) is given in As-
sumption 1 where ¢ € [0, 00) is given in Assumption 2 and where y € [%, 1) and
0 € (0, %] are given in Assumption 3. Indeed, such a real number exists due to
Assumptions 1-4 and Lemma 4 in Section 6.2.

6.1.1. Temporal discretization error. Due to (14), we have

mh
X = e + /O A=) F(X Y ds + O

m=l e (k+Dh
=eME+ ) / eAMT) (XY ds 4+ O
kh
k=0

forevery m € {0, 1,..., M} and every M € N. From (28), we have

| Xmn — Yny”LZ(Q;H)

m=—1 (k+1)h m—1
Z / A=) F(X Y ds — h Z A=k X
k=0 /kh k=0

L2(Q:H)

IA

m=2 .(k+1)h m—2
> f AMTIF (X ds —h| Y eI E (Xgy)
k=0 7kh k=0

L2(Q:H)

mh
A(mh—s)F X. d
* max(m—l,O)h”e ( A)”LZ(Q;H) §

+h ||€AhF(Xmax(m—1,0)h) “LZ(Q;H)
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and

M
| Xmn — Yo | 12¢02: 1)

m=2 .(k+1)h ‘ m—2
< Z / eA(mh—A)F(XS)dS —h Z eA(mh_kh)F(th)
k=0 Vkh k=0 LX(Q:H)
h
[ [ =) L I F (X 2 1) ds
max(m—1,0)h ’
+h||eAh||L(H) ”F(Xmax(m—l,O)h)“LZ(Q;H)
forevery m € {0, 1, ..., M} and every M € N. Therefore, we obtain
||th - Ynﬁ/I”LZ(Q;H)
m=2 . (k+1)h .
S X[ e ds
=0 ki
m—2
— h(Z eA(mh_kh)F(th)> +2Rh
k=0 L2(Q;H)
m=2 .(k+1)h Ao
SIX [ AR — F(Xi)ds
k=0 kh L2(Q: H)
+2Rh
m=2 . (k+1)h
+{ > AMIF (Xin) ds
kh
k=0
m—2
k=0 L2(Q:H)
and
||th - Y;%”LZ(Q;H)
-2
m (k+1)h Almh—s) ~ -
<> e (F(Xy) — F(Xgn + Os — Ogp)) ds
=0 Jkh L2(Q; H)
-2
m (k+1)h Almh—s) ~ ~
+1> e (F(Xih + Oy — Orp) — F (X)) ds
k=0 /kh L2 H)
m—2
(k+1h
n Z / (eA(mh—s) _ eA(mh—kh))F(th)dS L ORA
kh L2(Q;H)

k=0
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for everym € {0, 1, ..., M} and every M € N. Hence, we obtain

”th - Yrﬁ/[”Lz(Q;H)

m=2 o (k+Dh

=30 [ 1M Ly FCE) = F(Xut+ Os = Ol 2oy s
k=0

(k+1)h Aok
eAMh=) B! (X i) (05 — Ogp) ds

+
h L2(Q:;H)

1
+ . eA(mh—s)/‘O F/I(th +I"(Os _ Okh))

m—2

byl

m=2 .(k+1)h
)

k=0

x (Og — Oxn, O5 — Orp)

x (1 —r)drds

L2(Q:;H)

m=2 .(k+1)h
+2 /kh (A=) — AP E (X )| 2y ds +2R2M !
k=0

and

”th - YI’I/;/[”LZ(Q;H)
m=2 .(k+1)h
<e 3 [ X~ e+ Oy = Oudlz@umy ds
i—o Jkh
m=2 .(k+1)h ‘ ‘
k=0

L2(Q:H)

m=2 .(k+1)h ‘ ‘
n Z/k A=) B/ () (A6 — 1) Ogy) ds

k=0 ’kh

m—2
+ Z/
k=0 7k

L2(Q:H)
(k+1)h

N I A=) I L(H)

1
X /0 |F"(Xtn 4 r(Os — Okn))

X (O5 — Ok, O — Okh)”LZ(Q;H) drds

m—2

(k+1)h ] B
+ Z / ”eA(mh_b) - eA(mh kh) ”L(H)”F(th)”Lz(Q;H) ds
k=0

+2R*M !
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forevery m € {0, 1, ..., M} and every M € N. Therefore, we have

1 Xomn — Y Nl 200 1)

m=2 . (k+1)h
<y fkh 1(Xs — 09) — Xk — Ol 2010y s
k=0

m—2
(k+Dh
n Z_/k A=) B (X, (05 — A6~ 04) dis

k=0 'kh

m—2
(29) +
|

L2(Q:H)

GOk o mh—s) As—kh
o MY X (T = D 0w gy ds

(k+Dh 1 )
/0 1105 = Ownlly | 2. k) dr ds

m—2
+cR Z/
k=0 'k

’"‘2/<k+1>h (mh — kh —mh +s)
k

h

||F(th)||L2(gz;H) ds

=0 ki (mh —s)
+2R*M~!
for every m € {0, 1,..., M} and every M € N due to Lemma 2 below (see Sec-

tion 6.2). Furthermore, we have

el (k+Dh A(mh A kh
/ A EL (X (05 — AT O dis

E[Zkh

2
k=0 H:|

-2

_ < (k+Dh A(mh—s) _ LA(s—kh)

=> E e F'(Xin) (05 — e Oxn) ds,
k.k=0

(k+Dh eA(mhfs)F/(X~ )(0 _eA(sflEh)O~ )ds
: kn/\Ys kh -

h
2
H]

and hence

m=2 .(k+1)h
E Z /kh AP F' (X0 (05 — AR 04) ds

k=0

m—2
(k+1)h
_ Z IE[ f A=) BT (%,
= kh

|

X (OS — eAls—kh) Okh) ds
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m—2 (k+1)h

+ Z E|:</ eA(mh_s)F/(th)(Os — eAls—kh) Okh) ds,
k,k=0 kh
ksk

(k+Dh A(mh—s) /(v _ __A(s—kh) y_ d
: e F'(X;) (05 —e O;),) ds .

forevery m € {0, 1,..., M} and every M € N. This yields
2
H:|

(kD A(mh— / A(s—kh
/kh A=) BN (X)) (05 — eASTF 0y dis

-2
S (ki A(mh—s) g/ _ LA(s—kh)
E||> e F'(Xin) (05 — e Oxn) ds

k=0

m—2

= Z E[
k=0

m—2 (k+1)h

+2 ) E[</ A=) F (X))
k,k=0 kh
k<k

|

X (Os — A=k Okh) ds,

(k+1h

kh

x (05 — A=k O,;h)ds> ]
H

)

(k+1)h
/kh eA(mh—s)F/(th)(Os _ oAG—kI) Oxn) ds

and

m=2 .(k+1)h
E Z /kh A=) B (X, (05 — A6 04,) dis

k=0

|

m=2 (k+1)h
+2 ) E[ER/ AT B (X )
k

x (05 — A M 0y ds,

(k+1)h
/,;h eA(mhfs)F/(XI;h)

x (O —eA(S_];h)OI;h)ds> |7 H
H
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forevery m € {0, 1, ..., M} and every M € N. Hence, we obtain
m=2 . (k+1)h 2

Y / A=) B/ (X005 — A0~HD 04) dis
k=0 ki H

(k+D)h A(mh—s) / _ JA(s—kh)
_Z‘ . F'(Xin) (05 — e Orn) ds

]

(k
+2Z w T rmi=s prxy,)

k,k=0
k<k

X (05 — eAL—kR) Okh) ds,

(k+1)h
f eA(mhfs)F/(Xlzh)

kh

x (E[O; — oAl —k) 0,;h|f,;h])ds>H]

.

(kD A(mh / A(s—kh
/kh AT BN (X)) (05 — AT 0 dis

and

(k+1)h A A
/kh e (mhfs)F/(th)(Os —e (kah)Okh) ds

m—2
E[ >
k=0
m—2 2
-2 )
k=0 H
for every m € {0, 1,..., M} and every M € N due to Assumption 3. Combining
(29) and (30) then shows

(30)

| Xmn — Y,Q/IHH(Q;H)

(k+1)h
<Y /k I = 00 = (X = Oun ey ds
k=0

m=2y a(k+1)h 2 12
+ (Z eA(mh—s)F/(th)(Os . eA(s—kh) Okh) ds )
ko I /kh L2(Q:H)
(kD A(mh—s) -/ A(s—kh)
+ Z/ e VF' (Xen) (e _I)Okh)||L2(S2;H)ds

(k+1) h k+Dh (s — kh)

0kh||L4(S2 V) ds + Z / md&‘

+cRZj

+2R*Mm !
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for everym € {0, 1, ..., M} and every M € N. Hence, we obtain

||th - Yn]’Y”Lz(Q;H)

m=2 o(k+1)h
gcRZ/ (s —kh)ds
k=0 kh

_2/(k+1)h . (s — kh)
k

= (mh — (k + 1)h)

m—2
+ <Z
k=0

+Z/

5 1/2
Lz(Q:H)>

(k+Dh A(mh / A kh
/kh A=) B (X005 — A 04 dis

(k+1)h
HeA(mh—s)(_A)l/Z ”L(H)

< [(=A)TV2F Xan) (e — 1) On) | 1211y 45

(k+1h

FeRY fk 10— Ol gy, ds +2R2M
k=0

and
||th - YM”LZ(Q;H)

1
< —cRMHW?

2RZM !
+R Z2(m 1<—1)Jr

m=2 ; o(k+1)h ‘
+ { Z (/ HeA(mh—s)F/(th)
kh

k=0

l\.)

5172
x (05 — eA—kn) Okh)”LZ(Q;H) ds) }

m=2 .(k+1)h "
Y [ b)Y
= S
< [(=A) T2 (X)) (e — 1) On) | 12 (0. 11y 4

m=2 . (k+1)h 5
+cR Y / (R(s — kh)?)" ds
k=0 kh
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forevery m € {0, 1, ..., M} and every M € N. This yields
| Xmn — Y,%||L2(Q;H)
<Lerti v Lra mi ) orem!
_C —_— —_—
2 2 ok
m=2 e(k+h
+cR? Z / (s — kh)29 ds
=0 kh

m=2 , .(k+1)h 2)1/2
(L 10, -0 05) |
k=0

m=2 .(k+1)h
4 Z/ (mh — (k + 1)h) ™72
= Jin
< [(—A) V2 (X)) (e — 1) O 12 (0. 11y

and

”th - Y,ﬁ/I”LZ(Q;H)
<Lerrrmt 4 LRoa 1+mi:1 !
“e - -
~2 2 =k

+2R*M ' 4 cRPMAH?

m=2 . (k+1)h Aot 5 172
" ﬁ: 2 /kh |F'(Xin) (05 — e 0p) 12 g ) s
k=0

m—2

1 Db
+~/7k§07(m_k_1)hfkh [(=A) "2 F (X

x (e — 1) Own)| 1200 1) s

forevery m € {0, 1, ..., M} and every M € N. Hence, we have

M
I Xmn — Yo 1202 1)

1 1 M
< 5R4M_1 + 5RZM—1<1 +/ —ds> +2R* M + cR3THY
1 S

m=2 . (k+1)h 12
AT [ 2o 0]
k=0
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+RZ « (m — k—l)h

k+Dh
<[ I G (€ = 1)0w) | 20 ds

and

| Xmn — Y,Q/IHLZ(Q;H)

1 1
5R M+ 2R M~ (1 +log(M)) +2R*M~" + ROM~%

1/2 (et D A kh 2 2
+Tem™V Z/ — AL~ )Okh”LZ(Q;H)dS

Z ‘ (m — k—l)h

(k+1)h
></k H sup |(w, (—A)"V2F (X

h lwiig =<1

» (eA(s_kh) — ])0kh)H’HL2(Q;]R) ds

forevery m € {0, 1,..., M} and every M € N. This yields

1 Xomn — YN 12000 1)

(I 4 log(M))

14 1., 2, pb
S(—R +5R +2R +R> 20

2

m—2 R
iy R
& (m—k—Dh

X/(k+1)hH sup |((F’(th))*(—A)_1/2w
k

h lwiim=<l
(eA(s—kh) —1I) 0kh>H | H L2(R) as

21 m=2 .(k+1)h
+ R“M Z (HOS - 0kh||L2(Q;H)
=0 ki

1,2
+ A O, — O ||Lz(Q;H))2dS}
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and

“th - Yn]y”LZ(Q;H)

¢ (1 +1og(M))
AR

m—2 R
+ Z m—k—1h

k=0

(k+Dh , % -1/2
x/k ” sup [ (F'(Xen))" (=A) " 2wl pe_ayire

h lwliz=1

% ” (eA(s—kh) _ I)

+R3M~1/?

m=2 o(k+1)h
X Z/ (105 — Oxnll 2. vy
= Jin

1/2
+ | (eA(kah) — 1) Oxn ||L2(Q;H))2ds}

937

Oin | p—ay-112) H L2

for every m € {0, 1, ..., M} and every M € N. Using now condition (13) in As-

sumption 2 shows

| Xmn — Y,%”LZ(Q;H)
§4R6(1 + log(M))

M29
m—2
R
iy R
iy (m — k—1h
(k+1)h
X / le(U+ 1 Xknll pe—ayirzy)
kh
(3D A(s—kh)
x [ (e — 1) Oxn HD((—A)—I/Z) HLZ(Q;R) ds
+RM™/?
m=2 .(k+1)h
x :Z/ (R(s — k)’
o Jkh

12
2
+ (s = k) | Ok ll L2 D((—ayry)) S
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and therefore
| Xmn — Yyﬁ/I”LZ(Q;H)

o (1 4+ log(M))
AR

m—2 cR (k+1)h
+ —/ 1+ X - .
,Z;) (m—k—1h Jin [T+ 1 Xkl - aye ||L4(Q,R)

[T — 1) O] o p(—ay-12)) A5

m=2 o(k+Dh . 12
+RMAIY / (RI® + RIOTY9)2 ds
k=0 kh
foreverym € {0, 1, ..., M} and every M € N. Hence, we obtain
_ o1 log(h)
- M2
m—2
cR
Y e (U X s ay)
k=0

(k+1)h
. /kh [ — 1) Own | L2 p(—ay-12)) 45

1/2
(k+1h
(2R2h9)2ds}

)
30 ,-172) 'S
+R°M >
k=0 'k

h
and

||th - Y%”L%Q;H)

o (1+log(M))
AR

m=2 . (k+1)h 12
+2RM!/? Z/ h* ds
= Jin

m=2 ¢R(1+R)
2 (m—k—h

k=0

(k+Dh
o O e e R

X | Oknll a0 p((—Ayry) dS
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forevery m € {0, 1, ..., M} and every M € N. This yields

1 Xmh — Yol 22¢2: 1)

R6(1 + log(M))

= 2R5M—1/2(Mh(1+29))1/2
M

m—2 3
2¢R (k+1Dh _ _
* Z < (m—k — Dh Ju [~ DA — )]y ds

and hence

1 Xmn — Yol 2200 1)

1+ log(M
4R6( +A/(I>2ge( ))+2R5\/_M 12,6

m—2

2R4 (k+1)h
_A)1/2-v)
+I§)(m—k—l)h /kh |(—=A4) |2

X ||A_1(6A(S_kh) - I)”L(H) ds

forevery m € {0, 1, ..., M} and every M € N. Therefore, we have

| Xmn — Y,ﬁ/lllLZ(sz;H)

<4R6(1 + log(M)) 4 2RO g~ (1/2+0)
— MZG

m—2 R4 (k+Dh 1\ @=1/2)
— —kh)d
+ Z (m k—1Dh Jkn (M) (s Jds

and, finally,

¢(1+log(M)) "% Rk
K M * 2:: (m—k—1)

M
< ore 018 | pe - (Z 1)

1Xmn = Yo 2201y <6

M2 &
52) (1 +log(M)) - M
+ log _
6 6 26
B 6 (1 +1log(M))
=R

forevery m € {0, 1, ..., M} and every M € N.
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6.1.2. Spatial discretization error. Due to (28), we obtain

1Yy = Pn Dl 20 m

e (& — Py (8))

m—1
+h ( Z (eA(mh—kh) _ PNeA(mh—kh))F(th))
k=0

+ Omh - PN(Omh)

L2(Q: H)
< HeAmh (& - PN(é))”Lz(Q;H) + 10mn — PN(Omi)l 12(: 1)
1

—
I h(z(eA(mh—kh) _ PNeA(mh—kh))F(th)>
k=0 L2(Q;H)
and
1Y = POl 20 m)
<1§ = PN 21y + 1Omn — PN(Omi) |l 12(: 1y
m—1
+h<Z |eAmh=kh) _ p,; pAGnh—kh) ||L(H)||F(th)||Lz(Q;H))
k=0
< = Pn)&l 2. my + 1L = PN) Omnll 12 1)
m—1
+ Rh(Z (I — Py)etmh=km ”L(H))
k=0
and hence

1YY = Py (YD L2 1y
<A = POl ll(=A) Ell 2 1y
+ (=AU = Pl (=AY Omnll 20 1)

m—1
+ Rh<2 (=AY (I = P | Loy | (— A)Y e =H) HL<H>>
k=0

= ()VN)_}/(”(_A))/SHLZ(Q;H) + ||(—A)y0mh||L2(Q;H))

m—1
+ Rh ( Y )TV (=AY A L(H))
k=0
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forevery m € {0, 1, ..., M} and every M € N. Therefore, we have
1Y = Py (YD 2209 1y

<N T2 D= ayry) T 1Omnll 2@ D ay))

+ Rh(Ay)7Y < | (—AGnh — ki)Y 40 =D ||L(H)>

/;:) (mh — kh)Y

m

5 L)

<2R(GN) Y 4+ RV ()™
k 0 )C>0

US|
-y (I=y) -y _
<2R(An)"" + Rh (An) <k§—1 kV>

"o
<2R(W)Y + RV )Y (1 +> k_V>

k=2
and

1Yy — PO 20

<RON)™ ”(2+h(1 v) 1+/ —ds))

(
(33) = RN~ V<2+h<1 V)( [(Sl(l__:))}:l»
-
( ?f(—yy;_aly)))
7=

3R A 4
(1—y>> )~

foreverym € {0, 1, ..., M} and every M € N.

=Ry~ V<2+ R1=Y)

<RGN (2 +

6.1.3. Lipschitz estimates. Note that YY" : Q — V satisfies

m—1

G4 M= Py () + h(Z Pyt E(p Y ’M)) + Py (On)
k=0

for every m € {0, 1, ..., M} and every N, M € N. Indeed, in the case m =0 we

have

Y3 M = Py (&) 4+ Py (0p)

-1
=Py (&) +h (Z Pye O W p(yY ’M>> + Py (0p)
k=0
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for every N, M € N. Moreover, if (34) holds for one m € {0, 1, ..., M — 1}, then
we obtain

Vo =M b (Py FYY ) + Py (O — € Omn)

= Ay NM . PNeAhF(Yn]y’M) + Py (Ons1yn) — € Py (Opn)
= MY M — Py(Omn)) + 1 - Pne F(YY M) + Py (Ognt1yn)
and
N.M = N.M
Ymil :eAh (eAmh(PN(E)) +h(Z PNeA(mh—k]’l)F(Yk ’ )))
k=0
+h-Pye™FYNMy £ Py (Ognsyn)

m—1
=€A(m+1)h(PN($)) +h(z PNeA((m-l-l)h—kh)F(Y]jV,M))
k=0

+h- Pye™FQYNM) + Py (Omstyn)

m
— eA(m+1)h(PN($)) + h(z PN@A((m+1)h_kh)F(Y]?]’M)>
k=0

+ PN (Ogm+1)n)
for every N, M € N, which shows (34) by induction. In the next step, (34) yields

Py(YNy —yN.M

m—1
=h ( > Pyettmh=kh) F(th)>

k=0

m—1
_ h(Z PNeA(mh—kh)F(YkN,M)>

k=0

m—1
=h ( 3" Py MR (F (X ) — F(Y,fV’M)))
k=0

forevery m € {0, 1,..., M} and every N, M € N. Therefore, we obtain

1PN YY) = Y Ml 2

m—1
<h Y| Pye ™D (F i) = FO ) 2y
k=0
m—1 NM
(35) <h Z (“ PNeA(mh—kh) ”L(H)”F(th) — F(Yk ’ )”LZ(Q;H))

k=0
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m—1

<h Y NFXin) = FOE"MN 2o
k=0
= N.M
<ch Y X —Y," 22 )
k=0

for every m € {0, 1, ..., M} and every N, M € N. Combining (32), (33) and (35)
finally yields

1 Xmn = Yo Ml 1200 m)
< Xmun — Yn/;/I”Lz(Q;H)

1Y = Pv YD 2y + 1PN = Y M 2o

5 go L+ 1og(M) 1 "«

+3R? +eh Y 1 Xk — Y 2
260 k L2(2: H)
M (AN)Y =0
foreverym € {0, 1, ..., M} and every N, M € N. Hence, Gronwall’s lemma yields
 UN.M 6 (1 +1og(M)) 3 1 T
”th Ym ||L2(Q;H) < (7R 7M2‘9 3R ()\‘N)y e
1+ log(M 1
(36) < (7R67( + Ozge( ) +7R6—>eCT
M (AN)Y
(s Ly
M2 (AN)Y
forevery m € {0, 1, ..., M} and every N, M € N, which shows the assertion.

6.2. Properties of the SPDE (1).

PROOF OF LEMMA 1. A standard application of Banach’s fix point theorem
(see, e.g., Section 7.1 in [2]) yields the existence of a unique adapted stochas-
tic process X :[0, T] x Q — V with continuous sample paths which fulfills (14).
Moreover, we have

(37) /0 l AT F (X (w))ds € D((—A)Y)

for every t € [0, T'] and every w € €2, since
t
/0 [(=A)7 eI F (X (@) ds

t
< [ 1AM IF K @) ds



944 A.JENTZEN, P. KLOEDEN AND G. WINKEL
t J—
< fo (t — )V | F(Xs(@)]l 1 ds

t
< /O t =) (clXs(@)llu + I1FO)u)ds

<([[s7as)(el swp 1% @) + 1P OI)

0<s<T

and

/0 [(=A) 2D F (X ()], ds

S(l—y) s=T
= [(1 _ y)]s:o (C(OE?ETIIXS(w)IIH) + ||F(0)||H)

T(-7)
<

(1—y) <C<02‘;SPT||Xs(w)IIH) + ||F(0)||H> < 50

holds for every ¢ € [0, T'] and every w € 2. Assumptions 3, 4 and (37) hence imply
X:(w) € D((—A)Y) for every ¢ € [0, T] and every w € Q2. Furthermore, we have

(=AY X/l u

t
< (=AY eME| g + /0 (=4 e I F(X))| 4y ds + (A Orllu

t
< (=AY &llu + /O [ (=4 e, G IF (Xl ds

+ sup [(=A)" Oslln

0<s<T

t
< I(=A)&lln + A t =) VIF(Xo)luds +OSUPT||(—A)"OSIIH

< (1= &l + sup I1(=4)" Oslln)
0<s<T

t
+f0 (t — )77 (| Xsllir + | FO) |1 1) ds

for every t € [0, T]. This yields
(=AY X;|ln

t
SC/ (t — )77 | Xl ds
0

t
+(||(—A>VsuH+ sup ||<—A)V0s||H+||F(0>||H(/0 s—yds))

0<s<T
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TP F(0
= <||(—A)y$||H+ sup [[(—=A) Oylly + [ £( )||H>
0<s<T (1—1y)

t
+C||(_A)_y||L(H)/O =)V I(=A) X; ||l u ds

for every t € [0, T]. Hence, Lemma 7.1.1 in [8] shows

sup [[(—A) X|lu

0<t<T

< Eq_p(T(cll(=A) Y |zan T = y)) /477

TU=|F(©0
(A7 81+ sup a7 0,1 + T AE Ol
0<s<T (I—1y)

and therefore

Hoi‘fﬁr |4 Xl 4 g

< Eq_p)(T(cll(=A) 7 T (1 =)/

< (=AY €t + | sup 1= Oul]
<s< ’

T“‘”MF(O)MH)
1=y
which shows the assertion. Here E (1) : [0, 00) — [0, 00) is given by

o -y
Eq- =
-1 ,§F<n<1—y>+1>

for every x € [0, o) where I': (0, co) — (0, 00) is the Gamma function. [

LEMMA 2. Let Assumptions 1-4 be fulfilled. Then we have

(o —11)
n

Aty

At
lle e ML <

foreveryty,tp € (0, T] witht; <t.

PROOF. By definition, we have

”eAfz _

A\ L
= H (eA(tz_t]) - I)eAtl ”L(H)

<A™ = D)y 1AM L)
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_1 _
= (A2 —10) " (2™ = D) ey
(2 —11)
n

5( sup mx sup xe—x)(fz—fl)

x€(0,00) X x€(0,00) 51

A
X | At e || Loy

h—t
5(2 1)
n

for every t1,t € (0, T] witht; <. U

LEMMA 3. Let Assumptions 1-4 be fulfilled. Then we obtain

1 Xe, — X, 12 )
sup 7 < 00,
0<t| <tr<T (tr —11)

where 0 € (0, %] is given in Assumption 3 and where X : Q x [0, T] — D((—A)Y)
is the solution of the SPDE (14).

PROOF. First, let R € [0, c0) be the real number given by

R = ”g”LZ(Q;D(A)) + sup ||F(Xt)||L2(Q;H)
t€[0,T]

+ sup

0<t; <t <T

(HOtz — Oy ||L2(Q;H)>
(h —11)?

which is finite due to Assumptions 1-4. Then we have
leA2& — e & 120 1)
(38) = et (e — &) 2.y < 1€ TVE = ] 2y
= ”A_l(eA(tz_[l) - I)HL(H)||-§||L2(Q;D(A)) <Rt —11)

for every 0 <t} <, < T. Moreover, we obtain

15 1
H / AT (X ) ds — / AN E(X ) ds
0 0

L2(Q:H)

15 n
/ eA(tz—s)F(Xs)ds +/ (eA(tz—s) _ eA(tl—s))F(Xs)ds
151 0

L2(2: H)

Lp) 1
< [CIFG I ds + H [ e — A9y px as
131

L2(:H)
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and hence

15} 131
” f AP (X)) ds — / AN F (X)) ds
0 0

L%2(Q;H)

<R(n—n)+ /0 A7 — AT L IF (Xo) 20 ) s

< RO = )4 R [ e - A0 ER A A
for every 0 <t} < t, <T. This yields

153 1
H / AT E(X ) ds — / AN F(X ) ds
0 0

L2(%: H)

1 _ 0
SR(Z‘Q—Z‘1)+2(19)R/0t (((1;2 2;) ds
| —

n
<R(tr—11)+2R(ts — z1)9/ (t1 —s) ?ds
0

due to Lemma 2 and therefore, we obtain

t t
H f A X ) ds — f LA F(X,) ds
0 0

L2(Q:;H)

n
(39) 5R(t2—t1)+2R(t2—t1)9/ s~ %ds
0

2
<R —1) + (mRT(1_9)>(12 — 1)’

for every 0 < #; <t < T. Combining (38), (39) and Assumption 3 yields the
assertion. [J

LEMMA 4. Let Assumptions 1-4 be fulfilled. Then we obtain

”(th - Otz) - (th - 011)||L2(Q;H)
sup <00
0<t;<tr<T ( —1)

’

where O : [0, T]x Q — D((—A)Y) is given in Assumption 3 and where X : [0, T'] X
Q — D((—A)?) is the solution of the SPDE (14).

PROOF. First, let R € [0, oo) be the real number given by

| X, — X, ||L2(Q;H)

R:=§ll.2:pay + sup IF(XOll 2y +  sup )
(DA 1€[0,T] (@ 0<t<tr<T (ty —11)?
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which exists due to Lemma 3. Then we have
leh28 — eME N 20,y = € (e TVE =€) 120 i)

(40) < e —&| o
<R(h—1)

for every 0 <t| < t, < T. Moreover, we have

15} n
H/ AT F (X)) ds —/ AN E (X)) ds
0 0

L%(Q;H)

5]
/ AT E(X ) ds
1

+/” (A9 _ A=) £ (X ) ds
0

L2(Q:H)

< [CJere), 17, d
=/ le ”L(H)” X2 myds
1

4]
n / (AR5 _ A=D)(F(X,) — F(X,,))ds
0 L2(Q;H)
+ /ll (eA(tz_s) — eA(”_S))F(X,l)ds
0 L2(Q;H)
and therefore
15} 51
/ AR (X)) ds —f AT F (X)) ds
0 0 L2(Q:H)

<R —1t)

n
—|—/0 |eAt2=s) — gAU1=5) I 1 F(Xs) = F(Xi)ll 2. 1) ds

+ RH/tl (eA(lzfs) _ eA(l1*S)) ds
0

L(H)

for every 0 <t <t <T.Hence, we obtain

15 1
H / AN F(X)ds — / AN F(X)ds
0 0

L2(Q;H)
<R(tr—1)

4]
+C/() ”eA(tz*s) — Al1=9) ”L(H)”XS - Xy, ||L2(Q;H) ds

+ RH/t1 A=t +s) go /Zl e ds
0 0

L(H)
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and

t t
H/zeA(’z_s)F(Xs)ds —/IeA(”_S)F(XS)ds
0 0

L2(Q:H)

1
< Rz = 1)+ cR [ M) = M09l —n ' ds

153 1
+RH] eASds—/ e ds
(2—11) 0 L(H)

for every 0 <t < t, <T. This shows

t n
H / AT (X ds — / AN E(X ) ds
0 0 L2(Q:H)

th (t2—t1)
/ e ds — / e ds
1 0

t n
/ AT E(X ) ds —f AN E(X ) ds
0 0

<R —1)

Ho(ty—t
+¢cR wu—m@dwﬂe‘
o (t1—s)

L(H)

due to Lemma 2 and

L2(Q:H)

1
<R(t—1)+cR(tr — “)/o (t1 — ) Vds +2R(ty — 11)

n
=R(ty—1]) + cR(tr — ;l)/ s Dds + 2Rt — 11)
0

<(R+cR(T+ DO +2R) (1, — 1)

for every 0 < #; <t < T. Combining this and (40) shows the assertion. [J

Acknowledgments. We strongly thank the anonymous referee for his careful
reading and his very valuable advice.
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