
The Annals of Applied Probability
2011, Vol. 21, No. 2, 669–698
DOI: 10.1214/10-AAP708
© Institute of Mathematical Statistics, 2011

SAMPLING CONDITIONED HYPOELLIPTIC DIFFUSIONS1

BY MARTIN HAIRER, ANDREW M. STUART2 AND JOCHEN VOSS

University of Warwick, University of Warwick and University of Leeds

A series of recent articles introduced a method to construct stochastic
partial differential equations (SPDEs) which are invariant with respect to the
distribution of a given conditioned diffusion. These works are restricted to
the case of elliptic diffusions where the drift has a gradient structure and the
resulting SPDE is of second-order parabolic type.

The present article extends this methodology to allow the construction
of SPDEs which are invariant with respect to the distribution of a class of
hypoelliptic diffusion processes, subject to a bridge conditioning, leading to
SPDEs which are of fourth-order parabolic type. This allows the treatment of
more realistic physical models, for example, one can use the resulting SPDE
to study transitions between meta-stable states in mechanical systems with
friction and noise. In this situation the restriction of the drift being a gradient
can also be lifted.

1. Introduction. In previous works (see, e.g., [7, 8, 15] or [9] for a review)
we described an SPDE-based method to sample paths from SDEs of the form

ẋ(t) = f (x(t)) + ẇ(t) ∀t ∈ [0, T ],(1)

where ẇ is white noise, conditioned on several different types of events. The
method works by introducing an “algorithmic time” τ and constructing a second-
order SPDE of the form

∂τ x(τ, t) = ∂2
t x(τ, t) + N (x(τ, t)) + √

2 ∂τw(τ, t)
(2)

∀(τ, t) ∈ R+ × [0, T ],
which has t as its space variable. Here ∂τw(τ, t) is space–time white noise.
The nonlinearity N and the boundary conditions of the differential operator ∂2

t

are constructed such that, in stationarity, the distribution of the random function
t �→ x(τ, t) coincides with the required conditioned distribution. See also [14]. It
transpires that the distribution of (1) under the bridge conditions x(0) = x(T ) = 0
corresponds the choice

Nj (x) = −fi(x) ∂jfi(x) − 1
2 ∂2

ij fi(x)
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(written using Einstein’s summation convention) and use of Dirichlet boundary
conditions for ∂2

t .
Assuming ergodicity of the sampling SPDE, one can now solve the sampling

problem by simulating a solution to (2) up to a large time τ and then taking t �→
x(τ, t) as an approximation to a path from the conditioned SDE. The resulting
sampling method has many applications, some of which are described in [1]. The
biggest restrictions of this method are that the derivation requires the drift f to
have some gradient structure and the diffusion matrix [chosen to be the identity
matrix in (1) above] to be invertible.

In this article we consider the different problem of sampling conditioned paths
of the second-order SDE

mẍ(t) = f (x(t)) − ẋ(t) + ẇ(t) ∀t ∈ [0, T ],(3)

conditioned on x(0) = x− and x(T ) = x+. Equation (3) could, for example, de-
scribe the time evolution of a noisy mechanical system with inertia and friction.
Rewriting this second-order SDE as a system of first-order SDEs for x and ẋ leads
to a drift which is in general not a gradient (even in the case when f itself is one)
and, since the noise only acts on ẋ, one obtains a singular diffusion matrix. Thus,
this problem is outside the scope of the previous results. However, it has enough
structure so that it still can be treated within a similar framework. Indeed, we derive
in this article a fourth-order SPDE of the form

∂τ x(τ, t) = (∂2
t − m2 ∂4

t )x(τ, t) + N (x)(τ, t) + √
2 ∂τw(τ, t)

(4)
∀(τ, t) ∈ R+ × [0, T ],

where, again, the boundary conditions and the drift term N are chosen in such a
way that the conditioned distribution of (3) is stationary for (4).

One surprising fact about this result is that it does not require f to be a gradient.
In our earlier works, even the appropriate definition of solutions for the (formal)
second-order SPDE derived to sample conditioned paths of (1) in the nongradient
case is not clear (see [7], Section 9 or [1], Section 9.2); the analysis for elliptic
equations is thus restricted to the gradient case. In contrast, the greater regularity
of solutions to SPDE (4) here, sampling conditioned paths of (3), allows us to
obtain existence results for the fourth-order SPDEs arising without any gradient
requirements on f .

In the special case where f is a gradient and f (x−) = f (x+) = 0, the compo-
nents of the nonlinearity N can be written as

Nj (x) = −fi(x) ∂jfi(x) − m∂txi ∂txk ∂2
jkfi(x) + m∂t

(
∂txi(∂ifj (x) + ∂jfi(x))

)
(using Einstein’s summation convention again). It is tempting to try to derive (2) by
taking the limit m ↓ 0 in (4), in particular since the first terms of the corresponding
nonlinearities coincide. It transpires that taking this limit is not entirely trivial: one
needs to argue that on one hand, m∂txi ∂txk → 1

2δik as m ↓ 0, but that the term
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m∂t [∂txi(∂ifj + ∂jfi)] becomes negligible in the limit. Nevertheless, this argu-
ment can be made exact; see [6] for a rigorous derivation of the required limiting
procedure.

One novelty of this article compared to earlier work like [7, 19] is that there
is no natural Banach space (like the space of continuous functions) on which the
nonlinearity is well defined and on which the linearized equation generates a con-
traction semigroup. The reason for this is that the linear operator of the equations
studied in this article is a fourth-order differential operator. Another technical dif-
ficulty stems from the fact that the nonlinearity N has very weak dissipativity and
regularity properties.

While preparing this text, we performed some numerical simulations on the
fourth-order SPDE presented here. Our aim was to study whether the SPDE could
be used as the basis of an infinite-dimensional MCMC method. Different from the
situation in earlier articles, these simulations proved prohibitively slow and the
resulting method does not seem like a useful approach to sampling. This is mainly
due to the fact that the convergence time to equilibrium seems to grow like T 4

and thus can get very big for nontrivial problems. In the gradient case, since the
system converges to the second-order SPDE as m → 0, one could expect improved
convergence rates for small values of m. However, the theory developed in [6]
suggests that the relevant lengthscale for the small-m problem is m, suggesting
that one would need numerical simulations that resolve significantly smaller scales
than that in order to obtain reliable results. Again, this would lead to inefficient
numerical methods even in the case of small m. Consequently, we do not include
our simulation results in this article.

For a number of articles considering fourth-order (S)PDEs, see, for example,
[2, 3] and [11]. Alternative methods to construct solutions of SPDEs and to identify
their stationary distributions are based on the theory of Dirichlet forms (see, e.g.,
[12]).

The text is structured as follows: in Section 2 we give a detailed description of
the sampling problem under consideration and formulate the main result in Theo-
rem 4. The proof of this result is given in Sections 3, 4 and 5.

Notation. Throughout the article we will use the notation as introduced above:
by s, t ∈ [0, T ] we denote “physical time,” that is, the time variable in equations
like (1) and (3) which define the target distributions. By σ, τ ≥ 0 we denote “al-
gorithmic time,” that is, the time variable in sampling equations like (2) and (4).
Thus, in the sampling SPDEs, τ takes the role of time and t takes the role of space.

2. The sampling problem. In this section we give the full statement of the
sampling problem we want to solve; the main result is contained in Theorem 4.

First consider the following unconditioned second-order SDE:

mẍ(t) = f (x(t)) − ẋ(t) + ẇ(t) ∀t ∈ [0, T ],
(5)

x(0) = x0, ẋ(0) = v0,
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where the solution x takes values in R
d , m > 0 is a constant, f : Rd → R

d is a
given function and w is a standard Brownian motion on R

d . The initial condi-
tions x0 and v0 are either deterministic or random variables independent of w. The
solution to this SDE can be interpreted as the time evolution of the state of a me-
chanical system with friction under the influence of noise. In this case m would
be the mass and f would be an external force field. Models like this are, for ex-
ample, widely used in molecular dynamics since, for conservative forces f , they
describe Hamiltonian systems in contact with a heat bath. In this context, equation
(5) is called the Langevin equation. The limiting case m = 0 corresponds to the
Brownian dynamics (1).

REMARK 1. Arbitrary constants in front of the ẋ and ẇ terms can be in-
troduced using a scaling argument: let β,γ > 0 and define the process y by
y(t) = x(t/γ )/

√
β/2. Then y solves the SDE

m̃ÿ(t) = f̃ (y(t)) − γ ẏ(t) +
√

2γ

β
ẇ(t) ∀t ∈ [0, T̃ ],

where m̃ = γ 2m, f̃ (x) = f (
√

β/2x)/
√

β/2 and T̃ = γ T . Thus, by rescaling T ,
m and F we can assume β = 2 and γ = 1 without loss of generality.

For our analysis we rewrite the second-order SDE (5) as a system of first-order
SDEs in the variables x and ẋ. We get

dx(t) = ẋ(t) dt, x(0) = x0,
(6)

mdẋ(t) = f (x(t)) dt − ẋ(t) dt + dw(t), ẋ(0) = v0.

In the Hamiltonian case f (x) = −∇V (x) and provided that the potential V is
sufficiently regular, it can be checked that the Boltzmann–Gibbs distribution

exp
(−2

(
V (x) + 1

2mẋ2))
dẋ dx

is invariant for (6). If V is sufficiently coercive, this distribution can be nor-
malized to a probability distribution. Note that in equilibrium, the position x

and the velocity ẋ are independent. Thus, in stationarity, the velocity satisfies
ẋ(t) ∼ N (0,1/2m) for all t ∈ [0, T ]. We will, even for the nongradient case, use
this distribution for the initial condition for ẋ.

DEFINITION 2. For T > 0, x−, x+ ∈ R
d and f : Rd → R

d , define Q
0,x−
f to be

the distribution of the process x given by (6) where x0 = x− and v0 ∼ N (0,1/2m),
independent of w. Define the target distribution Q

0,x−;T ,x+
f to be the distribution

of x under Q
0,x−
f , conditioned on x(T ) = x+.
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The sampling problem considered in the rest of this article is to find a stochastic
process with values in L2([0, T ],R

d) which has the target distribution Q
0,x−;T ,x+
f

as its stationary distribution. Note that Q
0,x−;T ,x+
f is just the distribution of x and

not of the pair (x, ẋ) and thus is a probability measure on L2([0, T ],R
d). Con-

sidering this distribution is sufficient since for solutions of (6) the initial condition
x(0) = x− allows to find a bijection between the paths x and ẋ. If f is a gradi-
ent, the distribution Q

0,x−;T ,x+
f coincides with the distribution of the process in

stationarity, conditioned on x(0) = x− and x(T ) = x+.

DEFINITION 3. Let L denote the formal differential operator

L = −m2 ∂4
t + ∂2

t

and define L to be this differential operator on the space L2([0, T ],R
d) equipped

with the domain

D(L) = {x ∈ H4 | x(0) = x(T ) = 0,
(7)

m∂2
t x(0) = ∂tx(0),m∂2

t x(T ) = −∂tx(T )},
where H4 = H4([0, T ],R

d) is the Sobolev space of functions with square inte-
grable generalized derivatives up to the fourth order. Furthermore, let x̄ : [0, T ] →
R

d be the solution of the boundary value problem Lx̄ = 0 with boundary condi-
tions

x̄(0) = x−, x̄(T ) = x+,
(8)

m∂2
t x̄(0) = ∂t x̄(0), m∂2

t x̄(T ) = −∂t x̄(T ).

We will see in Lemma 17 that the operator L given by this definition is self-
adjoint and negative definite.

THEOREM 4. Consider the L2([0, T ],R
d)-valued equation

dx(τ) = L
(
x(τ) − x̄

)
dτ + N (x(τ )) dτ + √

2dw(τ), x(0) = x0.(9)

Here L and x̄ are given in Definition 3, w is a cylindrical Wiener process, x0 ∈
L2([0, T ],R

d) and

Nk(x) = −fi(x) ∂kfi(x) + m∂txi ∂txj ∂2
ij fk(x)

− ∂txi

(
∂ifk(x) − ∂kfi(x)

) + m∂2
t xi

(
∂ifk(x) + ∂kfi(x)

)
(10)

+ m
(
fk(x−) ∂t δ0 − fk(x+) ∂t δT

)
for k = 1, . . . , d where we used Einstein’s summation convention over repeated
indices, δ0 and δT are the Dirac distributions at 0 and T , respectively, and all
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derivatives are taken in the distributional sense. Assume that f ∈ C2(Rd,R
d), that

the partial derivatives ∂if and ∂ijf are bounded and globally Lipschitz continuous
for all i, j = 1, . . . , d , and that there are constants β < 1 and c > 0 such that
|f (x)| ≤ |x|β + c for all x ∈ R

d . Furthermore assume that the SDE (6) a.s. has a
solution up to time T . Then the following statements hold:

(a) For every x0 ∈ L2([0, T ],R
d), equation (9) has a unique, global, continuous

mild solution with E(‖x(τ)‖2
L2) < ∞ for all τ > 0.

(b) For τ > 0, the solution x(τ) a.s. takes values in the Sobolev space H1([0, T ],
R

d).
(c) The distribution Q

0,x−;T ,x+
f given by Definition 2 is invariant for (9).

REMARK 5. The sub-linear growth-condition |f (x)| ≤ |x|β + c on the drift
seems quite technical. The condition is only required for the bounds in Lemma 22.
We believe that an additional, linear drift term can be added by incorporating it
into the linear operator L, following a similar procedure in [8].

REMARK 6. In [7], Remark 5.5, we see that the terms involving derivatives of
Dirac distributions can be interpreted as modifications to the boundary conditions.
Proceeding this way, we see that (9) is formally equivalent to the SPDE

∂τ xk(τ, t) = Lxk(τ, t) − fi(x) ∂kfi(x) + m∂txi ∂txj ∂2
ij fk(x)

− ∂txi

(
∂ifk(x) − ∂kfi(x)

) + m∂2
t xj

(
∂jfk(x) + ∂kfj (x)

)
+ √

2 ∂τwk(τ, t),

where ∂τw is space–time white noise, endowed with the boundary conditions

x(0) = x−, x(T ) = x+,

m∂2
t x(0) = ∂tx(0) + f (x−), m∂2

t x(T ) = −∂tx(T ) + f (x+).

In the one-dimensional case f : R → R this SPDE simplifies further to

∂τ x(τ, t) = Lx(τ, t)−f (x)f ′(x)+m(∂tx)2f ′′(x)+2m∂2
t xf ′(x)+√

2 ∂τw(τ, t).

REMARK 7. Using a standard bootstrapping argument like the one in the proof
of [5], Theorem 6.5, one can show that, in fact, the solution x of (9) takes values
in the Sobolev space Hr ([0, T ],R

d) for every r < 3/2.

The remainder of the article gives a proof of Theorem 4. We start the argument,
in Section 3 by collecting some results about the differential operator L. Section 4
shows that the theorem holds for the linear case f ≡ 0, in which case N ≡ 0.
Finally, Section 5 completes the proof by showing that introduction of the drift
N changes the stationary distribution of (9) in the correct way to account for a
nonvanishing f .
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3. Analysis of the linear operator. This section collects some results about
the operator L from Definition 3. Since we are only interested in the operator itself
and not in the full SPDE, in addition to the scaling-argument from Remark 1, we
can rescale t . Thus, throughout Section 3, we will consider the operator L̄ defined
as

L̄ = −∂4
t + γ 2 ∂2

t ,

where γ = T
πm

, on the domain

D(L̄) =
{
x ∈ H4 ∣∣ x(0) = x(π) = 0,

T

πγ
∂2
t x(0) = ∂tx(0),

T

πγ
∂2
t x(π) = −∂tx(π)

}
.

Then, after rescaling t , L̄ differs from the operator L from Definition 3 only by
multiplication of a positive constant.

Throughout the rest of the paper we will use the following notation: we denote
by [S(τ)]τ≥0 the semigroup associated to L̄ on H = L2([0, π],R

d) and by Hα =
D[(−L̄)α] the associated interpolation spaces.

3.1. Approximation to the spectral decomposition.

LEMMA 8. L̄ is a self-adjoint, negative definite operator on L2([0, π],R
d).

PROOF. Using partial integration it is easy to see that

〈x, Ly〉 = −m2
∫ π

0
∂2
t x ∂2

t y dt −
∫ π

0
∂tx ∂ty dt

− m
(
∂tx(0) ∂ty(0) + ∂tx(π) ∂ty(π)

)
for all x, y ∈ D(L), that is, the operator L is symmetric and negative. Its self-
adjointness can be checked in [13], Section VIII. �

LEMMA 9. Let λk , k ∈ N be the eigenvalues of −L̄ and ek be the correspond-
ing eigenfunctions. Define, furthermore,(

f
(i)
k | i = 1,2,3,4

) = (
sinkt, cos kt, e−kt , e−k(π−t)).

Then the following statements hold:

(a) The eigenvalues of L̄ satisfy λk = k4 + O(k2).
(b) There exist functions g

(i)
k such that ek(t) = sin(kt) + 1

k

∑4
j=1 g

(i)
k (t)f

(i)
k (t) for

all t ∈ [0, π] and such that sup4
j=1 supk∈N‖g(j)

k ‖Cj < ∞ for every j ≥ 0.
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PROOF. Since L̄ acts independently on each coordinate, we can assume d = 1
without loss of generality. The eigenfunctions of L̄ can be written in the form

x(t) = ξ1e
κ+(t−π) + ξ2e

−κ+t + ξ3e
iκ−t + ξ4e

−iκ−t ,

where

κ± =
√√√√√

μ4 + γ 4

4
± γ 2

2
= μ ± γ 2

4μ
+ O(1/μ3),

with λ = μ4 the corresponding eigenvalue. The coefficient vector ξ ∈ C
4 is de-

termined by the boundary conditions: for x to be an eigenfunction of L̄, ξ must
satisfy Aμξ = 0 where

Aμ =

⎛
⎜⎜⎝

e−κ+π 1
1 e−κ+π

(ακ+ − 1)e−κ+π ακ+ + 1
ακ+ + 1 (ακ+ − 1)e−κ+π

1 1
eiκ−π e−iκ−π

−ακ− − i −ακ− + i

(−ακ− + i)eiκ−π (−ακ− − i)e−iκ−π

⎞
⎟⎟⎠

and α = T/πγ . Setting κ = (κ+ + κ−)/2 = μ + O(1/μ3) for ease of notation, we
note that this equation has nonzero solutions if and only if

0 = detAμ = 8i
(
(α2κ2 + ακ) sin(κ−π) − (1

2 + ακ
)

cos(κ−π)
) + O(1/μ)

= 8iα2μ2 sinμπ + O(μ).

It follows immediately that, at least for large values of μ, one has μ = k + O(1/k)

with k ∈ N so that λk = k4 + O(k2) as requested. In particular, one has

κ± = k + β±
k

+ O(1/k2),

for some constants β± ∈ R. It remains to check the statement about the eigenfunc-
tions.

Given that we already have good control on the eigenvalues, our claim will
follow if we are able to show that one can choose ξ = (0,0, 1

2 ,−1
2) + O(1/k).

Expanding Aμ in powers of k, we obtain

Aμ = k

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 α −α −α

α 0 −α −α

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 1 1 1
1 0 (−1)k (−1)k

0 1 −i i

1 0 ic(−1)k −ic(−1)k

⎞
⎟⎟⎠ + O(1/k)

≡ kA(0)
μ + A(1)

μ + O(1/k),
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for c = 1 − αβ−π . It now follows from standard perturbation theory (see, e.g.,
[10], Theorem II.5.4) that the eigenvector ξ with eigenvalue 0 can be written as
ξ = ξ (0) + O(1/k), where ξ (0) satisfies A

(0)
μ ξ (0) = 0. Since A

(0)
μ is degenerate,

this is, however, not sufficient to determine ξ (0) uniquely but only tells us that ξ (0)

is of the form (a + b, a + b, a, b) for a, b ∈ R. In order to determine a and b, we
have to consider the next order which yields the compatibility condition A

(1)
μ ξ (0) ∈

RangeA
(0)
μ . This compatibility condition can be rewritten as a + b = 0, so that we

can indeed choose ξ (0) = (0,0, 1
2 ,−1

2), as requested. �

3.2. The relation between interpolation and Sobolev spaces. In this section,
we show how the interpolation spaces Hα associated to the operator L̄ relate to the
usual fractional Sobolev spaces. These results are “well known” in the folklore of
the subject. However, in our specific context (especially since we need to consider
fractional exponents), we were not able to derive them as straightforward corollar-
ies from results in standard textbooks on function spaces, like [16–18]. Because
of this, and since one can find rather short and self-contained proofs, we prefer to
include them here.

Before we turn to this however, we start with a comparison between the inter-
polation spaces of the Dirichlet Laplacian and the periodic Laplacian. These are
going to be useful in the sequel.

Let 0 denote the Laplacian on [0, π] with Dirichlet boundary conditions and
let  denote the Laplacian on [0,2π ] with periodic boundary conditions. These
operators are self-adjoint in H0 = L2([0, π]) and H = L2([0,2π ]), respectively.
We denote by Hs

0 the domain of 
s/2
0 and by Hs the domain of s/2 (defined in

the usual way through spectral decomposition). The aim of this section is to study
the correspondence between these two different types of fractional Sobolev spaces.
Denote by ι : Hs

0 → Hs the map

ιf (t) =
{

f (t), for t ∈ [0, π],
−f (2π − t), for t ∈ (π,2π ].

Note that ι/2 is an isometry since it maps the eigenfunctions of 0 into eigenfunc-
tions of . This, therefore, defines an inclusion Hs

0 ⊆ Hs . A natural left inverse for
ι is given by the restriction map

rf = f |[0,π ] for all f ∈ Hs .

However, r is not an isometry and, for s ≥ 1/2, it certainly does not map Hs into
Hs

0 in general (since the constant function 1 belongs to every Hs but only belongs
to Hs

0 for s < 1/2). We do, however, have the following:

LEMMA 10. The restriction operator r is bounded from Hs into Hs
0 for any

s < 1/2.
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PROOF. First note that Hs is isomorphic to H via the isomorphism x �→ s/2x

and similarly for Hs
0 so that the study of r as an operator from Hs to Hs

0 is equiv-

alent to the study of the operator 
s/2
0 r−s/2 from H to H0. Furthermore, we

know that r is bounded from H to H0 so that it suffices to show that the operator
A = (

s/2
0 r−s/2 − r) is bounded from H to H0.

Since A maps sin(n·) to 0 for every n, it suffices to consider A on the subspace
of H given by even functions and generated by the basis of eigenfunctions of 

given by ϕn(t) = 1
π

cosnt . Define, furthermore, the basis of eigenfunctions of 0

given by ψm = 2
π

sinmt . This yields for A the matrix elements

Amn = 〈ψm,Aϕn〉 = 2

π2 (msn−s − 1)

∫ π

0
sin(mt) cos(nt) dt

=
⎧⎨
⎩

4m(msn−s − 1)

π2(m + n)(m − n)
, if m + n is odd,

0, if m + n is even.

It follows that there exists a constant C > 0 such that ‖A‖ ≤ C‖Â‖, where the
operator Â is defined via its matrix elements by

Âmn =
{

mn−2, if n ≥ m,
ms−1n−s, if m ≥ n.

Now it is a straightforward exercise in linear algebra to show that, given an ortho-
normal basis {ϕn}n≥0, an operator Â is bounded if there exists positive numbers
fm,n such that the inequalities

sup
n≥0

∑
m≥0

|〈Âϕn, Âϕm〉|
fn,m

< ∞, sup
m≥0

∑
n≥0

|〈Âϕn, Âϕm〉|fn,m < ∞(11)

both hold. (Just expand ‖Âx‖2 for x = ∑
n≥0 xnϕn and make use of the inequality

|xnxm| ≤ x2
n

2fn,m
+ x2

mfn,m

2 .) We will show that (11) does indeed hold for Â as above.
Assuming without loss of generality that m ≥ n, we have the bound

|〈Âϕn, Âϕm〉| ≤
n∑

k=1

k2m−2n−2 +
m∑

k=n

ksm−2n−s +
∞∑

k=m

k2s−2m−sn−s

≤ C(nm−2 + ms−1n−s) ≤ Cms−1n−s

and similarly for n ≥ m. Here we have made use of the fact that s < 1
2 to ensure

that the last sum converges. It remains to check that the bounds (11) are satisfied
for some choice of fm,n. With the choice fm,n = √

m/n, we obtain

∑
m≥0

|〈Âϕn, Âϕm〉|
fn,m

≤ C

n∑
m=1

m−s−1/2ns−1/2 + C

∞∑
m=n

ms−3/2n1/2−s ≤ C,
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where we made again use of the fact that s < 1
2 . The second bound in (11) is

obtained in an identical way with the roles of m and n reversed. �

For s > 1/2, the problem is that elements of Hs
0 are forced to be equal to 0

at the boundary, which is not the case for elements of Hs . One has, however, the
following:

LEMMA 11. For any s ∈ (1/2,2], the map r is bounded from the subspace of
Hs consisting of functions that vanish at 0 and π into Hs

0.

PROOF. Instead of considering the restriction operator r as before, we are
going to consider the operator r̃ defined on continuous functions as

(r̃f )(t) = f (t) − 1

π

(
f (0)(π − t) + f (1)t

)
.

Note that r̃f = rf if f (0) = f (π) = 0, so that the statement will be implied by
the fact that r̃ is shown to be a bounded operator from Hs to Hs

0. Therefore, instead

of considering A as before, we consider the operator Ã = (
s/2
0 r̃−s/2 − r) which

has matrix elements

Ãmn =
⎧⎨
⎩Amn − 4

π2 ms−1n−s, m + n odd,

0, m + n even.

=
⎧⎨
⎩

4

π2

m

m2 − n2 (ms−2n2−s − 1), m + n odd,

0, m + n even.

Note that s = 2 is a special case since one then has Ã = 0 as a consequence of the
relation 0r̃ = r.

In this regime, we have as before ‖Ã‖ ≤ C‖Â‖, but this time Â is defined via
its matrix elements by

Âmn =
{

ms−1n−s, if n ≥ m,
m−1, if m ≥ n.

Computing 〈Âϕm, Âϕn〉 for m ≥ n as before, we note that there is a difference
between the case s ≤ 1 and the case s ≥ 1. We obtain

|〈Âϕm, Âϕn〉| ≤
{

m−1, s ≥ 1,
ns−1m−s, s < 1.

For s < 1, we now make the choice fm,n = ms−εnε−s , where ε > 0 is chosen
sufficiently small so that 2s − ε > 1 (this is always possible since s > 1

2 ). With this
choice, we obtain

∑
m≥0

|〈Âϕn, Âϕm〉|
fn,m

≤ C

n∑
m=1

mε−1n−ε + C

∞∑
m=n

mε−2sn2s−1−ε ≤ C
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and similarly for the other term. This calculation also works for the case s = 1 so
that the case s ≥ 1 can be obtained in an identical manner (set, e.g., ε = 1

2 ). �

Consider now the operator La given by (Laf )(t) = ∂4
t f , endowed with the

boundary conditions f (0) = f (π) = 0 and f ′′(0) = −af ′(0), f ′′(π) = af ′(π).
Since the domain of the square of the Dirichlet Laplacian is D(2

0) = {f ∈
D(0) | 0f ∈ D(0)} = D(L0), we have L0 = 2

0. The following lemma shows
that La for a �= 0 can still be viewed as a perturbation of 2

0:

PROPOSITION 12. Fix a ∈ R and ε > 0 be arbitrary and define the linear
operator A : H3/2+ε

0 → H−3/2−ε
0 by

Af = f ′(0)δ′
0 − f ′(π)δ′

π .

Then, the operator L̃a = 2
0 +aA is the generator of an analytic semigroup on H0.

Furthermore, this semigroup coincides with the one generated by La so that L̃a =
La . As a consequence, we obtain the identities Hα = H4α

0 for every α ∈ (−5
8 , 5

8).

PROOF. First, note that A is well defined since it follows from standard
Sobolev embedding theorems that f ′ is continuous for every f ∈ H3/2+ε and,
therefore, for every f ∈ H3/2+ε

0 . Thus, δ′
0 and δ′

π can be considered as elements

of the Sobolev space H−(3/2+ε)
0 . Since 2

0 generates an analytic semigroup on Hα
0

for any α ∈ R, it follows from applying [5], Proposition 4.42, once with B = H−3/2
0

and once with B = H−5/2+ε
0 , that L̃a is the generator of an analytic semigroup on

Hα
0 for every α ∈ (−5

2 , 5
2) and that the corresponding scale of interpolation spaces

satisfies H̃α = H4α
0 for every α ∈ (−5

8 , 5
8).

It, therefore, remains to show that the semigroup S̃τ generated by L̃a coincides
with the semigroup Sτ generated by La . Since, for any u ∈ H0, any τ > 0 and any
t ∈ (0, π), we have the identities

∂τ S̃u(τ, t) = −∂4
t S̃u(τ, t), ∂τ Su(τ, t) = −∂4

t Su(τ, t),

it suffices to show that S̃τ u ∈ D(La) for τ > 0. Since we already know that H̃1/4 =
H1

0, for example, we have (S̃τ u)(0) = (S̃τ u)(π) = 0 so that only the second set of
boundary conditions needs to be checked. For this, writing S0

τ for the semigroup
generated by 2

0, note that we have the identity

S̃τ u = S0
τ u + a

∫ τ

0
S0

τ−rAS̃τ udr + a

∫ τ

0
S0

τ−rA(S̃ru − S̃τ u) dr.(12)

Therefore, the first term in this equation belongs to H4
0. Furthermore, it follows

from the definition of A that the H4
0 norm of the third term is bounded by C

∫ τ
0 (τ −

r)−1−3/8−ε‖S̃ru − S̃τ u‖H2
0
dr . Since we know already that H2

0 = H̃1/2 and since
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S̃τ u ∈ H̃α for every α > 0, it follows from standard analytic semigroup theory that
‖S̃ru − S̃τ u‖H2

0
≤ C|r − τ |. So that the third term in (12) also belongs to H4

0, the
second term can be rewritten as∫ τ

0
S0

τ−rAS̃τ udr = −−2
0 AS̃τu − S0

τ

∫ ∞
0

S0
r AS̃τ udr.

Collecting all of this, we conclude that we can write

S̃τ u = −a−2
0 AS̃τu + Rτu,

where Rτu ∈ H4
0. On the other hand, using an approximation argument, one can

check that if f ∈ C1, then g = −2
0 Af satisfies the boundary conditions g′′(0) =

f ′(0) and g′′(π) = −f ′(π), from which the claim follows at once. �

COROLLARY 13. For every α ∈ (−1
8 , 1

8), we have the identity Hα = H4α([0,
π ],R

d). For every α ∈ (1
8 , 1

2 ], we have the identity Hα = H4α([0, π],R
d) ∩

C0([0, π],R
d), where C0([0, π],R

d) denotes the set of continuous functions van-
ishing at their endpoints. For every α ∈ [−1

2 ,−1
8), we have Hα = H4α([0, π],

R
d)/ ∼, where the relation ∼ identifies distributions that differ only by a linear

combination of δ0 and δπ .

PROOF. By Proposition 12 we already know that Hα = H4α
0 for α ∈ [0, 1

2 ].
The claim for α < 1

8 then follows from Lemma 10 while the claim for α ∈ (1
8 , 1

2)

follows from Lemma 11. The remaining claims follow from duality. �

3.3. Well-behaved projection operators. We will later identify the stationary
distribution of the SPDE (9) by using a finite-dimensional approximation argu-
ment. When projecting the equation to a finite-dimensional subspace, the most
natural choice of a projection would be to use the orthogonal projection �n onto
the space spanned by the first n eigenfunctions of L̄, but it transpires that these
projections do not possess enough regularity. Instead, we will need to use, in some
places, the operators �̂n given by

�̂nx =
n∑

k=1

n − k

n
〈x, ek〉ek,(13)

where the ek are the eigenfunctions of L̄. The purpose of this section is to prove
the required regularity properties for �̂n.

We use Hölder norms

‖x‖C1+α =
⎧⎪⎨
⎪⎩

‖x‖∞ + ‖ẋ‖∞ + sup
s �=t

|ẋ(t) − ẋ(s)|
|t − s|α , if x ∈ C1 and

+∞, else,

where α ∈ [0,1) and write C1+α = {x ∈ C1 | ‖x‖C1+α < ∞} and C1+α
0 = {x ∈

C1+α | x(0) = x(π) = 0}.
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LEMMA 14. Let fk : [0, π] → R be defined by fk(t) = sin(kt). Define the op-
erators �̂0

nx = ∑n
k=1

n−k
n

〈x,fk〉fk .

(a) Let Fn be the Fejér kernel given by Fn(t) = 1
n
[sin(nt

2 )/ sin( t
2)]2 for all t ∈

[−π,π ]. Then �̂0
nx = −1

4Fn ∗ x̃, where x̃ is the antisymmetric continuation
of x.

(b) ‖�̂0
nx‖C1+α ≤ 2π‖x‖C1+α for all x ∈ C1+α and all α ∈ (0,1).

PROOF. (a) Since
∫ π
−π x̃(t) sin(kt) dt = 2〈x,fk〉 and

∫ π
−π x̃(t) cos(kt) dt = 0,

it follows from trigonometric identities that

〈x,fk〉fk(s) = −1

2

∫ π

−π
x̃(t) cos

(
k(s − t)

)
dt.

The result then follows from the fact that Fn(t) = 2
∑n

k=1
n−k
n

cos kt .
(b) This follows directly from part (a) using the definition of the C1+α-norm

and properties of the convolution operator. �

LEMMA 15. Let α ∈ (0,1) and let x ∈ C1+α with x(0) = x(π) = 0. Then
there exists a constant c > 0 such that the bounds:

(1) ‖fk‖C1+α ≤ ck1+α ,
(2) ‖ek − fk‖C1+α ≤ ckα ,
(3) |〈x,fk〉| ≤ c‖x‖C1+αk−1−α and
(4) |〈x, ek − fk〉| ≤ c‖x‖C1+αk−2−α

hold for every k ∈ N.

PROOF. The first bound is standard. The second bound follows immediately
from Lemma 9, part (b). For the third bound, we use partial integration to get

〈x,fk〉 = 1

k

∫ π

0
ẋ(t) cos(kt) dt = 1

k

k−1∑
j=0

(−1)j
∫ π/k

0
ẋ

(
t + j

k
π

)
cos(ks) ds.

Writing |ẋ|α = sups �=t
|ẋ(t)−ẋ(s)|

|t−s|α , it is easy to see that each term of the sum is of

order O(|ẋ|α/k1+α) and the claim follows from this.
The bound on 〈x, ek − fk〉 follows similarly: if g is any C1+α function with

g(0) = g(π) = 0, we can use integration by parts to get∫ π

0
g(t) sin(kt) dt = 1

k

∫ π

0
ġ(t) cos(kt) dt,

∫ π

0
g(t)e−kt dt = 1

k

∫ π

0
ġ(t)e−kt dt
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and similar results for integrals against cos kt and e−k(π−t). As above, these ex-
pressions are bounded by O(k−1−α). The claim now follows from Lemma 9,
part (b), by absorbing the slowly varying terms g

(j)
k into g. �

The following lemma collects all the properties we will require for the opera-
tors �̂n. These will be used in the proof of Proposition 26 below.

LEMMA 16. Let (en)n∈N be an orthonormal system of eigenfunctions of L and
denote by �n the orthogonal projection of H onto En = span{e1, . . . , en}. Define
�̂n : H → En as in (13). Then the following statements hold:

(a) �̂n ◦ �n = �̂n.
(b) �̂nx → x in Hα as n → ∞ for all α ∈ R.
(c) ‖�̂n‖Hα ≤ 1 for all n ∈ N and α ∈ R.
(d) For every 0 < α < β < 1 we have ‖�̂n‖C1+β

0 →C1+α
0

< ∞.

(e) Let 0 < α < β < 1/2 and x ∈ C1+β
0 . Then ‖�̂nx − x‖C1+α → 0 as n → ∞.

PROOF. Statement (a) is clear from the definition of �̂n. Let x = ∑∞
k=1 xkek ∈

Hα . Then

x − �̂nx =
n∑

k=1

k

n
xkek +

∞∑
k=n+1

xkek

and thus, writing λk for the eigenvalues of −L,

‖x − �̂nx‖2
Hα

= ‖(−L)α(x − �̂nx)‖2
L2 =

n∑
k=1

k2

n2 λ2α
k x2

k +
∞∑

k=n+1

λ2α
k x2

k −→ 0

as n → ∞. This proves statement (b). Similarly, we have

‖�̂nx‖2
Hα

=
n∑

k=1

(n − k)2

n2 λ2α
k x2

k ≤
∞∑

k=1

λ2α
k x2

k = ‖x‖2
Hα

,

which is statement (c).
(d) From Lemma 15 we get ‖ek‖C1+α ≤ ‖fk‖C1+α + ‖ek − fk‖C1+α ≤ ck1+α .

Using this and the other bounds from Lemma 15, we obtain

‖�̂0
nx − �̂x‖C1+α =

n∑
k=1

n − k

n
‖〈x, ek − fk〉ek + 〈x,fk〉(ek − fk)‖C1+α

≤
∞∑

k=1

(|〈x, ek − fk〉|‖ek‖C1+α + |〈x,fk〉|‖ek − fk‖C1+α )

≤ C‖x‖C1+β

∞∑
k=1

k−1−(β−α).
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Since we already know that �̂0
n satisfies the requested bound, the claim follows.

(e) Let ε > 0. We can write x ∈ C1+β
0 as x = y + z with ‖y‖C1+α ≤ ε and z ∈ H2

with z(0) = z(T ) = 0. This gives

‖�̂nx − x‖C1+α ≤ cε + ‖�̂nz − z‖C1+α .

Because 1 + α + 1/2 < 2, we have ‖z‖C1+α ≤ c‖z‖H2 for all z ∈ H2. Corollary 13
gives H2 ∩ C0 = H1/2 and thus,

‖�̂nx − x‖C1+α ≤ cε + ‖�̂nz − z‖H1/2 → cε

as n → ∞ by part (b). Since we can choose ε > 0 arbitrarily small, the proof is
complete. �

4. The linear case. This section gives the proof of Theorem 4 for the linear
case f ≡ 0.

LEMMA 17. Let L and x̄ be given by Definition 3. Then Q
0,x−;T ,x+
0 = N (x̄,

−L−1).

PROOF. Since for f = 0 the components of the solution of (6) are indepen-
dent, it suffices to work in dimension d = 1. First consider the unconditioned
process described by (6). It is easy to check that p satisfies

p(t) = e−t/2mp(0) +
√

1

2

∫ t

0
e−(t−r)/2m dw(r)

and thus,

q(t) = x− + 2(1 − e−t/2m)p(0) +
√

1

2m2

∫ t

0

∫ v

0
e−(v−r)/2m dw(r) dv.

The mean of this process is

x̄0(t) = E(q(t)) = x−
and, since p(0) is independent of w, the covariance function can be found as

C0(s, t) = Cov(q(s), q(t))

= 4(1 − e−s/2m)(1 − e−t/2m)
m

2

+ 1

2m2

∫ s

0

∫ t

0

∫ u∧v

0
e−(u+v−2r)/2m dr dv du

for all s, t ∈ [0, T ]. Evaluating the integrals and combining the resulting terms
allows us to simplify this to

C0(s, t) = 2(s ∧ t) + 2m
(
e−s/2m + e−t/2m − e−|s−t |/2m − 1

)
.
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Denote the mean and covariance function of the process conditioned on q(T ) =
x+ by x̄ and C, respectively. From [8], equations (3.15) and (3.16), we know that

x̄(t) = x̄0(t) + C0(t, T )C0(T , T )−1(x+ − x−)

and

C(s, t) = C0(s, t) − C0(s, T )C0(T , T )−1C0(T , t)

for all s, t ∈ [0, T ]. The covariance operator of Q
0,x−;T ,x+
0 is then given by

Cf (s) =
∫ T

0
C(s, t)f (t) dt.

To complete the proof we have to verify that x̄ and C have the required form.
The following facts are easily checked:

(i) the first derivatives C0(s, t), ∂tC0(s, t) and ∂2
t C0(s, t) are continuous at t = s

and the third derivative at t = s jumps according to

∂3
t C0(s, s+) − ∂3

t C0(s, s−) = 1

2m2 ;
(ii) the derivative boundary conditions

2m∂2
t C0(s,0) = ∂tC0(s,0), 2m∂2

t C0(s, T ) = −∂tC0(s, T )

are satisfied;
(iii) the left boundary condition

C0(s,0) = 0

holds; and
(iv) LC0(T , t) = 0.

Clearly, by (ii) and (iii), the mean x̄ satisfies the required boundary conditions
(8) and by (iv) it also satisfies Lx̄ = 0. From the definition of L and in particular
from properties (i) and (iv), we can deduce

−LC(s, t) = δ(t − s)

and using (ii) and (iii) we deduce that C(t, s) satisfies the boundary conditions (7).
Thus C is the Green’s function of −L and we can deduce that C = −L−1 as re-
quired. �

PROPOSITION 18. Consider the L2([0, T ],R
d)-valued equation

dy(τ) = L
(
y(τ) − x̄

)
dτ + √

2dw(τ), y(0) = y0,(14)

where y0 ∈ L2([0, T ],R
d). Then the following statements hold:

(a) Equation (14) has a unique, global, continuous mild solution.
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(b) For every α < 3/8 the solution y is a.s. continuous with values in Hα .
(c) The distribution Q

0,x−;T ,x+
0 is the unique stationary distribution for (9).

PROOF. From Lemma 17 we know Q
0,x−;T ,x+
0 = N [x̄, (−L)−1]. Thus, we

can apply [8], Lemma 2.2, to get that (14) has a continuous, L2([0, T ],R
d)-valued

mild solution and ν is its unique stationary distribution.
Let λk , k ∈ N be the eigenvalues of −L. Then, using Lemma 9, tr(−L)−2β =∑
k∈N λ

−2β
k < ∞ if and only if β > 1/8. Thus, for example, by applying [5], Theo-

rem 5.13, to y − x̄, the solution takes values in Hα for every α < 1/2 − 1/8 = 3/8
and is continuous by [5], Theorem 5.17, (see also [4] for very similar results). This
completes the proof. �

The regularity of the solution given in Proposition 18 is consistent with the
regularity of the target distribution Q

0,x−;T ,x+
0 : the process ẋ in (6) is continuous

and lives in H1/2−ε and thus x is in H3/2−ε for all ε > 0. On the other hand,
Corollary 13 shows that Hα ⊆ H4α and thus, that y also takes values in H3/2−ε for
all ε > 0. The following lemma provides an additional regularity result for x in
stationarity.

LEMMA 19. Let α < 1/2. Then x ∈ C1+α for Q
0,x−;T ,x+
0 -almost all x.

PROOF. The result is a direct consequence of [5], Corollary 3.22: let ek be the
eigenfunctions of −L with corresponding eigenvalues λk . By Lemma 17, part (b),
the random variable

X + x̄ =
∞∑

k=1

ηk√
λk

ek,

where the ηk are i.i.d. standard Gaussian random variables, has distribution
Q

0,x−;T ,x+
0 . We have to show that the derivative

X′ + x̄′ =
∞∑

k=1

ηk√
λk

e′
k

is α-Hölder continuous.
Let δ ∈ (2α,1). By Lemma 9 we have ‖e′

k‖∞ = O(k), ‖e′′
k‖∞ = O(k2) and

λk = ck4 + O(k2) for some c > 0. This gives

S2
1 =

∞∑
k=1

∥∥∥∥ e′
k√
λk

∥∥∥∥
2

∞
< ∞, S2

2 =
∞∑

k=1

∥∥∥∥ e′
k√
λk

∥∥∥∥
2−δ

∞
Lip

(
e′
k√
λk

)δ

≤
∞∑

k=1

c

k2−δ
< ∞.

Thus, the conditions of [5], Corollary 3.22, are satisfied and we get the required
Hölder continuity. �
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5. The nonlinear case. In this section we complete the proof of Theorem 4.
The proof is split in a sequence of results which identify the target distribution
Q

0,x−;T ,x+
f , determine the regularity properties of the drift N , give existence of

global solutions to the SDE (9) and, finally, identify the stationary distribution of
this equation.

LEMMA 20. Assume that f : Rd → R
d is such that the SDE (6) a.s. has a

solution up to time T . Let μ = Q
0,x−;T ,x+
f and ν = Q

0,x−;T ,x+
0 be the distributions

on L2([0, T ],R
d) from Definition 2. Then the density ϕ = dμ

dν
is given by

ϕ(x) = 1

Z
exp

(
m〈f (x+), ẋ(T )〉 − m〈f (x−), ẋ(0)〉

−
∫ T

0
m〈Df (x(t))ẋ(t), ẋ(t)〉

− 〈f (x(t)), ẋ(t)〉 + 1

2
|f (x(t))|2 dt

)
,

where Df is the Jacobian of f and Z is the required normalization constant.

PROOF. Let μ̃ẋ = P
0,x−
f be the unconditioned distribution of ẋ in (6) and let

ν̃ẋ = P
0,x−
0 the same distribution, but for f = 0. Then the Girsanov formula, for

example, in the form of [7], Lemma 9, gives the density of μ̃ẋ w.r.t. ν̃ẋ ,

dμ̃ẋ

dν̃ẋ

(ẋ) = exp
(∫ T

0
〈f (x(t)), dẋ(t)〉 + 1

2

∫ T

0

〈
f (x(t)),

1

m
ẋ(t) − f (x(t))

〉
dt

)
,

where x is a deterministic function of ẋ via the relation x(t) = x− + ∫ t
0 ẋ(s) ds.

Since t �→ f (x(t)) has bounded variation, we can use partial integration to get∫ T

0
〈f (x(t)), dẋ(t)〉 = 〈f (x(T )), ẋ(T )〉 − 〈f (x(0)), ẋ(0)〉

−
∫ T

0
〈ẋ(t),Df (x(t))ẋ(t)〉dt.

Substituting this expression into the formula for dμ̃ẋ/dν̃ẋ and using substitution
to switch from ẋ to x gives

dμ̃x

dν̃x

(x) = exp
(
m〈f (x(T )), ẋ(T )〉 − m〈f (x(0)), ẋ(0)〉

− m

∫ T

0
〈ẋ(t),Df (x(t))ẋ(t)〉dt

+ 1

2

∫ T

0
〈f (x(t)), ẋ(t)〉 − |f (x(t))|2 dt

)
,
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where μ̃x = Q
0,x−
f is the unconditioned distribution of x in (6) and ν̃x = Q

0,x−
0 is

the corresponding distribution for f = 0. Now we can condition on x(T ) = x+,
for example, using [7], Lemma 5.3, to get the result. �

LEMMA 21. Let α ∈ [0,1). Then there is a c > 0 such that

‖ẋ‖1+α∞ ≤ c‖x‖α∞‖x‖C1+α

for all x ∈ C1([0, T ],R
d).

PROOF. The claim for α = 0 is trivial so we can assume α �= 0. Assume first
the case d = 1. Write |ẋ|α = sups �=t

|ẋ(t)−ẋ(s)|
|t−s|α and let t ∈ [0, T ] such that |ẋ(t)| =

‖ẋ‖∞. Then

|ẋ|α ≥ |ẋ(t) − ẋ(s)|
|t − s|α ≥ ‖ẋ‖∞ − |ẋ(s)|

|t − s|α
and thus, |ẋ(s)| ≥ ‖ẋ‖∞ − |t − s|α|ẋ|α for all s ∈ [0, T ]. This allows to conclude
that |ẋ(t)| ≥ 1

2‖ẋ‖∞ on an interval of length at least T ∧‖ẋ‖1/α∞ /(2|ẋ|α)1/α . Since
we assumed d = 1, this gives

‖x‖∞ ≥ 1

2
· 1

2
‖ẋ‖∞ ·

(
T ∧ ‖ẋ‖1/α∞

21/α|ẋ|1/α
α

)
= min

(
T

4
‖ẋ‖∞,

‖ẋ‖1+1/α∞
22+1/α|ẋ|1/α

α

)

and by solving this inequality for ‖ẋ‖∞ we find

‖ẋ‖1+α∞ ≤ c‖x‖α∞ max(|ẋ|α,‖x‖∞) ≤ c‖x‖α∞‖x‖C1+α

for some constant c.
For d > 1 we apply the inequality componentwise: since, for z ∈ R

d , we have
‖z‖2/

√
d ≤ ‖z‖∞ ≤ ‖z‖2, we get

‖ẋ‖1+α∞ ≤ c max
j=1,...,d

(‖xj‖α∞(‖xj‖∞ + ‖ẋj‖∞ + |xj |α)
)

≤ c‖x‖α∞(‖x‖∞ + ‖ẋ‖∞ + |ẋ|α),

where c is increased as needed. This completes the proof. �

The following bound for the density ϕ will be used to show that the stationary
distributions of approximations for the sampling SPDE (9) are uniformly inte-
grable.

LEMMA 22. Let ϕ be the density from Lemma 20, U = logϕ and ν =
Q

0,x−;T ,x+
0 and α ∈ (0,1). Then for every ε > 0 there is an M > 0 such that for

ν-almost all x we have

U(x) ≤ ε‖x‖2
C1+α + M.
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PROOF. We bound the five terms in U one by one. For simplicity we denote
all constants in the following estimates by the symbol c, the meaning of which
changes from expression to expression.

(1) Using the Cauchy–Schwarz inequality we get the bound

〈f (x+), ẋ(T )〉 ≤ |f (x+)|‖ẋ‖∞ ≤ |f (x+)|‖x‖C1+α ≤ ε‖x‖2
C1+α + c.

(2) A very similar argument gives −〈f (x−), ẋ(0)〉 ≤ ε‖x‖2
C1+α + c.

(3) We can use Young’s inequality together with Lemma 21 to conclude that for
every ε > 0 there is a c > 0 such that

‖ẋ‖∞ ≤ ε‖x‖C1+α + c‖x‖∞
for all x ∈ L2([0, T ],R

d). Thus, we have

−
∫ T

0
〈Df (x(t))ẋ(t), ẋ(t)〉dt

≤
∥∥∥∥ d

dt
f (x)

∥∥∥∥
2
‖ẋ‖2 ≤ T

∥∥∥∥ d

dt
f (x)

∥∥∥∥∞
‖ẋ‖∞

≤ (
ε‖f (x)‖C1+α + c‖f (x)‖∞

)
(ε‖x‖C1+α + c‖x‖∞).

Since f is differentiable with bounded derivatives, we have ‖f (x)‖C1+α ≤
c‖x‖C1+α + c and by assumption there is a β < 1 such that |f (x)| ≤ |x|β + c.
Using these estimates we find

−
∫ T

0
〈Df (x(t))ẋ(t), ẋ(t)〉dt ≤ (ε‖x‖C1+α +c‖x‖β∞+c)(ε‖x‖C1+α +c‖x‖∞)

and thus, for every ε > 0 there is a c > 0 such that

−
∫ T

0
〈Df (x(t))ẋ(t), ẋ(t)〉dt ≤ ε‖x‖2

C1+α + ε‖x‖2∞ + c‖x‖1+β∞ + c.

Since β < 1, this gives the required bound.
(4) Using the Cauchy–Schwarz inequality again, we get in a similar way∫ T

0
〈f (x(t)), ẋ(t)〉dt ≤ ‖f (x)‖2‖ẋ‖2 ≤ c(‖x‖β∞ + c)‖ẋ‖∞ ≤ ε‖x‖2

C1+α + c.

(5) Finally, we have − ∫ T
0 |f (x(t))|2 dt < 0.

Combining these bounds gives the required result. �

LEMMA 23. The drift N defined by (10) is locally Lipschitz from H1/4 to
H−7/16. Furthermore, one can write N = N1 + N2 + N3 such that N1 does not
depend on x and such that the bounds

‖N (x)‖H−7/16 ≤ c(1 + ‖x‖2
H1/4

),(15a)

‖N2(x) − N2(y)‖H−5/16 ≤ c‖x − y‖H1/4(‖x‖H1/4 + ‖y‖H1/4),(15b)

‖N3(x) − N3(y)‖H−3/16 ≤ c‖x − y‖H1/4(‖x‖H1/4 + ‖y‖H1/4)
2(15c)
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hold for all pairs x, y ∈ H1/4 and for some constant c > 0.

PROOF. We use the characterization of the spaces Hα from Corollary 13 and,
in particular, the fact that if x ∈ H1/4, then x also belongs to H1. Since we assumed
that fj and its derivatives up to the second order are globally Lipschitz, this implies
that fj (x), ∂ifj (x) and ∂ijfk(x) all belong to H1 and their norms are bounded by
multiples of that of x.

Now let x ∈ H1. Then the following statements hold:

• fi(x) ∂kfi(x) ∈ H1 since H1 is stable under composition with smooth functions,
• ∂txi[∂ifk(x) − ∂kfi(x)] ∈ L2, for the same reason,
• ∂txi ∂txj ∂2

ij fk(x) ∈ Ht for all t < −1/2 since, in this case, L1 ⊆ Ht by Sobolev
embedding,

• ∂2
t xj [∂jfk(x)+∂kfj (x)] ∈ H−1 since H−1 is stable under multiplication by H1-

functions,
• fk(x−)∂t δ0 ∈ Ht and fk(x+)∂t δT ∈ Ht for every t < −3/2.

It follows that N maps H1/4 into Hα for every α < −3
8 . In particular, it maps

H1/4 into H−7/16 as stated and the bound (15a) holds. We then define N1 as the
term proportional to fk(x−) ∂t δ0 − fk(x+) ∂t δT , N3 as the term proportional to
∂txi ∂txj ∂2

ij fk(x) and N2 as the sum of the remaining terms in the nonlinearity.
With these definitions at hand, the bounds (15b) and (15c) follow easily. �

PROPOSITION 24. For every initial condition x0 ∈ L2([0, T ],R
d), the sto-

chastic evolution equation (9) has a unique maximal local solution (x, τ ∗). The
solution satisfies x(τ) ∈ H1/4 for every τ < τ ∗ a.s. and supτ↑τ∗ ‖x(τ)‖L2 = ∞
a.s. on the set {τ ∗ < ∞}.

PROOF. Define

g(τ) = S(τ)x0 + √
2

∫ τ

0
S(τ − σ)dw(σ).

Let R > U > 0. For x : (0,U ] → H1/4 continuous, define

‖x‖∗ = sup
τ∈(0,U ]

τ 1/4‖x(τ)‖H1/4

and let X be the space of all such x with x(0) = g(0) and ‖x‖∗ < ∞. Then (X ,
‖ · ‖∗) is a Banach space. We find

‖g‖∗ ≤ sup
τ∈(0,U ]

τ 1/4
(

1

τ 1/4 ‖x0‖L2 + √
2
∥∥∥∥
∫ τ

0
S(τ − σ)dw(σ)

∥∥∥∥
H1/4

)

≤ ‖x0‖L2 + √
2R sup

τ∈[0,R]

∥∥∥∥
∫ τ

0
S(τ − σ)dw(σ)

∥∥∥∥
H1/4

=: ‖x0‖L2 + CR
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and thus, g ∈ X for every U < R. Define a map Mg : X → X by

Mgx(τ) =
∫ τ

0
S(τ − σ)N (xσ ) dσ + g(τ) ∀τ ∈ [0,U ].

By the definition of a mild solution, local solutions up to time U coincide with the
fixed points of this map.

Let B(g,1) ⊆ X denote the closed ball around g with radius 1. By Lemma 23,
the nonlinearity N : H1/4 → H−7/16 is locally Lipschitz and thus, for all x, y ∈
B(g,1), we have

‖Mgx − Mgy‖∗

≤ sup
τ∈(0,U ]

τ 1/4
∫ τ

0

∥∥S(τ − σ)
(

N (xσ ) − N (yσ )
)∥∥

H1/4
dσ

≤ sup
τ∈(0,U ]

cτ 1/4
∫ τ

0

(‖N2(xσ ) − N2(yσ )‖H−5/16

(τ − σ)9/16

+ ‖N3(xσ ) − N3(yσ )‖H−3/16

(τ − σ)7/16

)
dσ

≤ sup
τ∈(0,U ]

cτ 1/4
∫ τ

0
‖xσ − yσ‖H1/4

(‖xσ‖H1/4 + ‖yσ‖H1/4

(τ − σ)9/16

+ (‖xσ‖H1/4 + ‖yσ‖H1/4)
2

(τ − σ)7/16

)
dσ

≤ cU1/16‖x − y‖∗(1 + ‖x‖∗ + ‖y‖∗)2,

where c changes from line to line. Similarly, we have

‖Mgx − g‖∗ ≤ cU1/16‖x‖2∗ ≤ cU1/16(‖x − g‖∗ + ‖g‖∗)2.

By choosing the final time U sufficiently small, we can then make sure that Mg is
a contraction on the ball B(g,1) and, by the Banach fixed point theorem, Mg has
a unique fixed point. This gives a unique local solution of (9) up to time U .

By iterating this procedure, every time starting with the final point of the pre-
viously constructed segment, we obtain a solution up to a maximal time τ ∗ ≤ R.
Since the length of each segment of this solution only depends on the L2-norm
of its starting point, we see that τ ∗ < R implies supτ<τ∗ ‖x(τ)‖L2 = ∞. Taking
R → ∞ completes the proof. �

Even if f is globally Lipschitz, the ∂txi ∂txj ∂2
ij fk-term causes the nonlinearity

N to be only locally Lipschitz. Thus, showing the existence of global solutions to
the SDE (9) will need some care.
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PROPOSITION 25. For every initial condition x0 ∈ L2([0, T ],R
d) the SPDE

(9) has a unique global solution. For every τ > 0 the solution satisfies
E(‖x(τ)‖2

L2) < ∞.

PROOF. From Proposition 24 we know that (9) has a local solution (x, τmax).
Let y be the solution of the linear SPDE from Proposition 18, that is,

y(τ) = S(τ)(x0 − x̄) + √
2

∫ τ

0
S(τ − σ)dw(σ) + x̄

and define z(τ ) = x(τ)−y(τ) for every τ ∈ [0, τmax). Then z satisfies the stochas-
tic evolution equation

dz(τ ) = Lz(τ ) dτ + N
(
z(τ ) + y(τ)

)
dτ, z(0) = 0.

Thus ‖z(τ )‖2
L2 satisfies

d‖z(τ )‖2
L2

dτ
= 2

〈
z(τ ), Lz(τ ) + N

(
z(τ ) + y(τ)

)〉
= −4m2〈∂2

t z(τ ), ∂2
t z(τ )〉 − 4m|∂tz(0)|2 − 4m|∂tz(1)|2

(16)
− 〈∂tz(τ ), ∂tz(τ )〉 + 2

〈
z(τ ), N

(
z(τ ) + y(τ)

)〉
≤ −c‖z(τ )‖2

H2 + 2
〈
z(τ ), N

(
z(τ ) + y(τ)

)〉
for some c > 0. This formal calculation can be made rigorous by a standard ap-
proximation argument, using, for example, Galerkin approximations.

We require a priori bounds of the form 〈z, N (z + y)〉 ≤ c‖z‖2
L2 + ε‖z‖2

H2 + c

where ε > 0 is small enough to be compensated by the negative ‖z‖2
H2 -term in (16).

In order to obtain the required bounds, we consider the five terms from the defin-
ition of N individually. For the purpose of these estimates we denote all numerical
constants by c > 0 and only track the y-dependency of the bounds explicitly. For
the first term we get

〈zk,−fi(z + y) ∂kfi(z + y)〉 ≤ c‖z‖L2‖f (z + y)‖L2 ≤ c‖z‖2
L2 + c‖y‖2

L2 + c.

For the second term we find

〈zk, ∂t (zi + yi) ∂t (zj + yj ) ∂2
ij fk(z + y)〉

=
∫ 1

0
zk ∂tzi ∂t

(
∂ifk(z + y)

)
dt +

∫ 1

0
zk ∂tyi ∂t (zj + yj ) ∂2

ij fk(z + y)dt

= −
∫ 1

0
∂tzk ∂tzi ∂ifk(z + y)dt −

∫ 1

0
zk ∂2

t zi ∂ifk(z + y)dt

+
∫ 1

0
zk ∂tyi ∂t (zj + yj ) ∂2

ij fk(z + y)dt

≤ c‖z‖2
H1 + c‖z‖L2‖z‖H2 + c‖z‖L∞‖y‖H1(‖z‖H1 + ‖y‖H1).



SAMPLING CONDITIONED HYPOELLIPTIC DIFFUSIONS 693

For the third term we have

〈zk,−∂t (zi + yi)(∂ifk − ∂kfi)〉 ≤ c‖z‖L2(‖z‖H1 + ‖y‖H1).

The fourth term can be bounded as

〈zk, ∂
2
t (zi + yi)(∂ifk + ∂kfi)〉
= 〈zk, ∂

2
t zi(∂ifk + ∂kfi)〉

−
∫ 1

0
∂tzk ∂tyi(∂ifk + ∂kfi) dt

−
∫ 1

0
zk ∂tyi ∂t (zj + yj )(∂

2
ij fk + ∂2

jkfi) dt

≤ c‖z‖L2‖z‖H2 + c‖z‖H1‖y‖H1 + c‖z‖L∞‖y‖H1(‖z‖H1 + ‖y‖H1).

Finally, for the fifth term involving the derivatives of Dirac distributions, we get

〈z, ∂t δ0〉 = −z′(0) ≤ c‖z‖Hα , 〈z,−∂tδ1〉 = z′(1) ≤ c‖z‖Hα

for every α > 3/2.
To convert the bounds into the required form first note that for every s ∈

(0,2) the interpolation inequality (see, e.g., [5], Corollary 6.11) gives ‖z‖2
Hs ≤

‖z‖2−s

L2 ‖z‖s
H2 and, using Young’s inequality, we can, for every ε > 0, find a c > 0

such that

‖z‖2−s

L2 ‖z‖s
H2 ≤ c‖z‖2

L2 + ε‖z‖2
H2 .

Using this relation we find a c > 0 such that

‖z‖L∞‖y‖2
H1 ≤ 1

2‖z‖2
L∞ + 1

2‖y‖4
H1 ≤ c‖z‖2

H1 + c‖y‖4
H1

≤ c‖z‖2
L2 + ε‖z‖2

H2 + c‖y‖4
H1 .

The terms of the form ‖z‖L∞‖z‖H1‖y‖H1 can be bounded using the relation

‖z‖L∞‖z‖H1 ≤ c‖z‖H3/4‖z‖H1 ≤ c‖z‖5/8
L2 ‖z‖3/8

H2 ‖z‖1/2
L2 ‖z‖1/2

H2 = c‖z‖9/8
L2 ‖z‖7/8

H2 .

Applying Young’s inequality with p = 16/7 and q = 16/9 we find a c > 0 such
that

‖z‖L∞‖z‖H1‖y‖H1 ≤ c‖z‖7/8
H2 ‖z‖9/8

L2 ‖y‖H1 ≤ ε‖z‖2
H2 + c‖z‖2

L2‖y‖16/9
H1 .

Combining all these estimates, we find that for every ε > 0 there is a c > 0 such
that〈
z(τ ), N

(
z(τ ) + y(τ)

)〉 ≤ c(1 + ‖y‖16/9
H1 )‖z‖2

L2 + ε‖z‖2
H2 + c(1 + ‖y‖2

L2 + ‖y‖4
H1)

and substituting this bound into (16) for small enough ε > 0 we get

d‖z(τ )‖2
L2

dτ
≤ c(1 + ‖y‖16/9

H1 )‖z(τ )‖2
L2 + c(1 + ‖y‖2

L2 + ‖y‖4
H1).
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Gronwall’s inequality gives

‖z(τ )‖2
L2 ≤ c

∫ τ

0

(
1 + ‖y(σ )‖16/9

H1

) ∫ σ

0

(
1 + ‖y(r)‖2

L2 + ‖y(r)‖4
H1

)
dr

× exp
(∫ τ

σ

(
1 + ‖y(r)‖16/9

H1

)
dr

)
dσ(17)

+ c

∫ τ

0

(
1 + ‖y(σ )‖2

L2 + ‖y(σ )‖4
H1

)
dσ.

Thus, ‖z‖L2 cannot explode in finite time and from Proposition 24 we get τmax =
∞.

By Proposition 18 we have y ∈ L2([0, τ ],H1). Hence, by Fernique’s theorem
(see, e.g., [5], Theorem 3.11),

E

(
exp

(
ε

∫ τ

0
‖y(r)‖2

H1 dr

))
< ∞

for sufficiently small ε > 0. Thus, using the fact that 16/9 < 2, we see that the
right-hand side of (17) has finite expectation for all τ > 0. �

Now the only part of Theorem 4 which we still need to prove is the statement
about the stationary distribution of (9). This can be done using a finite-dimensional
approximation argument, similar to the proofs in [19] and [7], Section 3. Since
these articles assumed that U was bounded from above and also assumed different
regularity properties for the drift, the proof needs to be adapted for the situation
here; to allow for easier reading, we include the full argument instead of just enu-
merating the required changes.

PROPOSITION 26. The distribution Q
0,x−;T ,x+
f is invariant for (9).

PROOF. Let ϕ be the density of μ = Q
0,x−;T ,x+
f w.r.t. ν = Q

0,x−;T ,x+
0 as given

by Lemma 20 and let U = logϕ. Then we can compute the derivative of U at
x ∈ H1/4 in direction h ∈ H7/16 as

〈DU(x),h〉 = mfk(x+)ḣk(T ) − mfk(x−)ḣk(0)

+ 2
∫ T

0

(
−fi ∂kfi + mẋiẋj ∂2

ij fk − 1

2
ẋi (∂ifk − ∂kfi)

+ mẍi(∂ifk + ∂kfi)

)
hk(t) dt

= 〈N (x), h〉.
Here we used the fact that, by Corollary 13, h ∈ H7/16 implies h(0) = h(T ) = 0.
This shows that the function U is Fréchet-differentiable with derivative N . Let �n

and �̂n be as in Lemma 16 and define the approximations

Nn = (U ◦ �̂n)
′ = �̂nN (�̂n·)
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for n ∈ N.
Consider the n-dimensional SDEs

dyn(τ ) = Lyn(τ ) dτ + √
2�n dw(τ), yn(0) = �nx0,

and

dxn(τ ) = Lxn(τ ) dτ + Nn(xn(τ )) dτ + √
2�n dw(τ), xn(0) = �nx0.

Then, by finite-dimensional results, the stationary distributions νn and μn of yn

and xn, respectively, are given by

νn = ν ◦ �−1
n and

dμn

dνn

= exp(U ◦ �̂n).

Define the semigroup (P n
τ )τ≥0 on Cb(H,R) by P n

τ ϕ(x) = Ex(ϕ(xn(τ ))) for all
x ∈ En and ϕ ∈ Cb(H,R). Since the process xn is μn-reversible, we have∫

H
ϕ(x)P n

τ ψ(x) dμn(x) =
∫

H
ψ(x)P n

τ ϕ(x) dμn(x)(18)

for every ϕ,ψ ∈ Cb(H,R).
We need to find the limit of (18) as n → ∞. For this, we first show that xn → x

in H1/4 uniformly on bounded time intervals. Let U > 0, then we have

‖xn(τ ) − x(τ)‖H1/4 ≤
∥∥∥∥(�n − I )

(
S(τ)x0 + √

2
∫ τ

0
S(τ − σ)dW(σ)

)∥∥∥∥
H1/4

+
∥∥∥∥
∫ τ

0
S(τ − σ)

(
Nn(x(σ )) − N (x(σ ))

)
dσ

∥∥∥∥
H1/4

+
∥∥∥∥
∫ τ

0
S(τ − σ)

(
Nn(xn(σ )) − Nn(x(σ ))

)
dσ

∥∥∥∥
H1/4

=: I1(τ ) + I2(τ ) + I3(τ )

for all τ ∈ [0,U ].
From the definition of ‖ · ‖Hα and the asymptotics of the eigenvalues of L in

Lemma 9 we get, for any β > α, that there is a c > 0 such that the bound

‖�nx − x‖Hα ≤ c

n8(β−α)
‖x‖Hβ

holds for all x ∈ Hβ and all n ∈ N. Let β ∈ (1/4,3/8). Then we know from Propo-
sition 18 that τ �→ S(τ)x0 + √

2
∫ τ

0 S(τ − σ)dW(σ) is a continuous map from
[0,U ] into Hβ . Combining these two statements, we find sup0≤τ≤U I1(τ ) → 0 as
n → ∞.

From Lemma 23 we know that N is locally Lipschitz from H1/4 to H−7/16. By
Lemma 16, part (c), there is then a constant Kr > 0 such that

‖Nn(x) − Nn(y)‖H−7/16 ≤ Kr‖x − y‖H1/4
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for all n ∈ N and all x and y with ‖x‖H1/4,‖y‖H1/4 ≤ r . Thus, the Nn are also
locally Lipschitz.

We can find p,q > 1 such that p · 11
16 < 1 and 1/p + 1/q = 1. For I2 we then

get

I2(τ ) ≤
∫ τ

0

∥∥S(τ − σ)
(

Nn(x(σ )) − N (x(σ ))
)∥∥

H1/4
dσ

≤
∫ τ

0
‖S(τ − σ)‖H−7/16→H1/4‖Nn(x(σ )) − N (x(σ ))‖H−7/16 dσ

≤ c

(∫ U

0

1

σp11/16 dσ

)1/p(∫ U

0
‖Nn(x(σ )) − N (x(σ ))‖q

H−7/16
dσ

)1/q

.

The right-hand side is independent of τ and converges to 0 as n → ∞ by domi-
nated convergence, using Lemma 16, part (b).

For n ∈ N define

Tn,r = inf{τ ∈ [0,U ] | ‖x(τ)‖ > r or ‖xn(τ )‖ > r}
with the convention inf ∅ = U . For τ ≤ Tn,r we have

I3(τ ) ≤ Kr

∫ τ

0
‖S(τ − σ)‖H−7/16→H1/4‖xn(σ ) − x(σ )‖H1/4 dσ

and consequently

‖xn(τ ) − x(τ)‖H1/4 ≤ sup
0≤σ≤U

(
I1(σ ) + I2(σ )

)

+ cKr

∫ τ

0

1

(τ − σ)11/16 ‖xn(σ ) − x(σ )‖dσ.

Using Gronwall’s lemma we can conclude

‖xn(τ ) − x(τ)‖H1/4 ≤ sup
0≤σ≤U

(
I1(σ ) + I2(σ )

) · exp
(
cKr

∫ U

0

1

σ 11/16 dσ

)

for all τ ≤ Tn,r . As we have already seen, the right-hand side converges to 0 as
n → ∞.

Now choose r > 0 big enough such that sup0≤τ≤U‖x(τ)‖ ≤ r/4. Then for
sufficiently large n and all τ ≤ Tn,r we have ‖xn(τ ) − x(τ)‖ ≤ r/4 and thus,
sup0≤τ≤Tn,r

‖xn(τ )‖ ≤ r/2. This implies Tn,r = U for sufficiently large n. Thus,
we have xn → x in C([0,U ], H1/4) a.s.

Let 0 < α < β < 1/2. Define the semigroup (Pτ )τ≥0 on Cb(H,R) by Pτ ϕ(x) =
Ex(ϕ(x(τ ))) for all x ∈ H and ϕ ∈ Cb(H,R). Then, by dominated convergence,
we have P n

τ ϕ(�nx) → Pτ ϕ(x) as n → ∞. By Lemma 19, x ∈ C1+β for ν-almost
all x. Furthermore, U : C1+α → R is continuous and thus U(�̂nx) → U(x) as
n → ∞ for ν-almost all x by Lemma 16, part (e).
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Finally, let c = ‖�̂n‖C1+β
0 →C1+α

0
. Using Fernique’s theorem we can choose ε > 0

such that the function exp(εc‖x‖2
C1+β ) is ν-integrable. By Lemma 22 we can find

an M > 0 such that U(�̂nx) ≤ ε‖�̂nx‖2
C1+α + M ≤ εc‖x‖2

C1+β + M for all n ∈ N

and ν-almost all x. Then dominated convergence gives

lim
n→∞

∫
H

ϕ(x)P n
τ ψ(x) dμn(x) = lim

n→∞

∫
H

ϕ(�nx)P n
τ ψ(�nx)eU(�̂nx) dν(x)

=
∫

H
ϕ(x)Pτψ(x)eU(x) dν(x)

=
∫

H
ϕ(x)Pτψ(x) dμ(x)

and using (18) we get∫
H

ϕ(x)Pτψ(x) dμ(x) =
∫

H
ψ(x)Pτ ϕ(x) dμ(x).

Thus, the process x is μ-reversible which is the required result. �

Propositions 24, 25 and 26 together imply all claims of Theorem 4 and so the
proof of the result is complete.
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